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Abstract. The purpose of the research is to build a machine learning
model which can drive a car on the tracks of Udacity’s Car simula-
tor without any human intervention. This is achieved by mimicking the
human driving behaviour in the training mode on a track. A dataset is
generated by the simulator based on the human driving behaviour in
the training mode and a deep learning model is built using this dataset
which is then used to drive the car autonomously on any unseen track.
Initially the model performed well only on the already seen track and
failed to perform well on new unseen tracks. The simulator track in which
the car was trained with didn’t consist of any sharp turns or elevations
or any other road barriers, but the real world tracks do contain them,
so in order to overcome this problem image processing techniques like
zooming, changing brightness, flipping images, panning were used and
in order to avoid over-fitting problem more dataset was generated using
data augmentation techniques. Finally a model was built which was able
to generalise the tracks and drive the car autonomously on the unseen
track of the simulator.

Keywords: Self-driving car · Deep learning · Automation · Machine
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1 Introduction

This section describes the need of autonomous cars and the objectives of our
research work.

1.1 Motivation

Today, driving has become a stress full job, people going on long trips get tired
because of driving and lose their focus many times due to which accidents hap-
pen, this can be solved through model-based and learning-based [3] approaches
in order to achieve full vehicle autonomy without or with minimum human inter-
vention. Perceiving the scenes, controlling the vehicles and choosing a best and
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safe path to drive remains a challenge. A machine learning model is needed which
can aid the car to drive autonomously in the real world tracks which has lot of
constraints like pot holes, elevations, speed breakers etc. With advancement in
technologies and many things getting automated it’s time to automate the driv-
ing task by building a model which can handle a lot of edge cases and the error
produced by it should be extremely small.

1.2 Objectives

The governing objectives of the study are:

– To create a driving dataset using Udacity Simulator which can provide high
definition pictures and video for the development of a deep learning model,
similar to the famous NVIDIA model [1].

– To identify the right tools and techniques which can help in providing a safe
vehicle autonomy.

– The car must be capable of driving within the lanes of the track.

2 Related Work

Muddassir Ahmed Khan [2] has undertaken this research work 4 years ago. For
data generation, images were picked from the metadata provided driving log.csv
file and passed through the augmentor to get the training data. The top and
bottom 25 pixels of the images are ignored, in order to get rid of the front of the
car from the images, he has used various augmentation techniques like image
flipping, brightness variation, adding shadows to the images. When he trained
the network using such data alone the network went off the track and wasn’t
able to drive properly. He then included the left and right images with various
offsets such as 0.3, 0.2, but these values led to large shifts in the steering and
the car would wear off the track. 0.3 worked fine when training the network for
few epochs but when the number of epochs was increased the vehicles started
to move in a zig-zag fashion across the road with more and more hard turns. At
the last moment he changed the offset to 0.09 and started getting better results.

In 2017, Albin Falk and David Granqvist from Chalmers University of Tech-
nology, University of Gothenburg [8], Sweden proposed that by integrating deep
learning and conventional computer vision based techniques, redundancy can be
introduced and it can minimize the unsafe behaviour in autonomous vehicles. A
control algorithm was constructed to combine the advantages of a lane detection
algorithm with a deep neural network which ensures the vehicle stays within the
appropriate lane. The proposition makes it evident that the system shows better
performance when a combination of the two technologies were run in a simulator
than using them independently.

In 2018, Aditya Babhulkar from California State University, Sacramento has
undertaken this research work [9]. The dataset was collected by driving the car
on Track 1 of the simulator in the training mode, and the simulator provided
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the dataset in a csv file which consisted of steering angle and the path to then
directory in which the images of the track were stored. During the autonomous
mode the simulator acts as a server and the images captured from the single
center camera of the car are sent to the client python program which uses the
built neural network model and send back a steering angle to the car to drive
autonomously on the Track 2 of the simulator in autonomous mode. The model
was built using sequential models provided by Keras.

3 Proposed Methodology

Fig. 1. Bird’s eye view of the system’s working

Figure 1 shows an overview of our system. The images from the three cameras
attached to the car in the training mode of the simulator, are fed to the CNN
model which predicts a steering angle for that part of the track, this predicted
steering angle is compared to the desired steering angle proposed by human for
that part of the track. And the weights of the CNN are adjusted to bring the
CNN output closer to the desired output. Weight adjustment is accomplished
using back propagation. Once trained, the network is able to generate steering
commands for driving left, straight or right from the video images of a single
center camera provided by the simulator in autonomous mode. Figure 2 shows
this configuration.

4 Algorithm

– Open Unity Self Driving car simulator powered by Udacity.
– Select Track-1, the primitive track and choose training mode.
– Turn on recording mode and start collecting the data - track images and

steering angle.
– Perform Data Manipulation i.e. changing or altering the collected data.
– Perform Data Augmentation.
– Pre-process the data.
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Fig. 2. The CNN predicts a steering angle for the images from the single center camera
of the car in the autonomous mode of the simulator.

– Train the data using CNN and build the ML model.
– In the simulator, select Track-2 the unseen track and choose autonomous

mode.
– In this mode simulator acts as a server and a python code built using Flask

framework contains the built ML model acts as a client.
– The track images are sent to the python script containing the ML model.
– ML model sends the predicted steering angle for that point of the track back

to the simulator.
– Test the performance of the model in the simulator.

4.1 Udacity Simulator

Unity simulator by Udacity [7] is used for training the self-driving car. The
simulator provides two types of tracks, Track-1 is a circular track with a few
sharp turns and no elevations, this is the track which was used for data collection
purposes. Track-2 is a very complex track with a lot of sharp turns, ups and
downs through out the end of the track, this is the track where we tested the car
using the built machine learning model. The simulator has two modes - Training
mode, where an user can move the car using his keyboard and Autonomous
mode where the car is moved by instructions given by ML model. The car in
the training mode has 3 cameras attached to it and in autonomous mode has a
single camera attached to it.

4.2 Assumptions and Limitations

– No other cars are present along the track.
– No speed breakers are present.
– No human interventions along the track.
– Performance is affected by hardware specification, performance will be good

only if run on machines with atleast 8 GB of Ram and quad cores.
– No split lanes in the track. Assuming just a one way track.
– Udacity has released a newer version where we can train the car to handle

the lane changes, it will be considered in the future works.
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– Road traffic with few vehicles, hurdles and risks will be considered in the
future works.

– A speed limit variable is set to control the speed of the car while driving
autonomously. It’s value can range from 5 MPH to 30 MPH (max speed of
the car).

4.3 Data Collection

Steps involved in the data collection are

– Training mode is turned on for Track-1 and data collection process is started.
– Various images of the track are captured.
– The simulator also records the Steering angle and speed of the car.
– The simulator provides the recorded data in CSV format.
– Size of the collected dataset = 25641 images of Track-1
– Amount of data used for Training = 15384
– Amount of data used for Testing on Track-2 = 10257

4.4 Data Manipulation

The car provided by the simulator in the training mode contains 3 cameras
attached in it’s front part. The cameras are located on the left, center and right
side in the front part of the car. The idea is to make the images captured by the
left and the right cameras as though they were captured by the center camera,
this is done by adding a bias to their steering angles, this is necessary because
in the autonomous mode the simulator provides only a single center camera
to the car. Also by utilizing all the 3 cameras we get a bigger dataset of the
track images to train our model, which helped in improving the accuracy of our
machine learning model. The distance-arc length between center and left camera
(or right camera) is called as bias After trial and error we came up with 0.09 bias,
which gave good predictions when trained with our machine learning model. For
the images captured by the left camera, 0.09 bias was added to it’s steering
angle. For the images captured by the right camera, −0.09 bias was added to it’s
steering angle. These images from left and right cameras after adding the bias
were appended to the images captured by the center camera.

In Fig. 3, x-axis shows the range of steering angle and y-axis shows the count
of images for that particular steering angle.

Since amount of images available for 0.0, 0.09 and −0.09 steering angle is
more, our model will always tend to predict these steering angles making our
model predict poorly, so, we deliberately delete some images containing these
steering angles from various parts of the track, Fig. 4 depicts the new distribution
of steering angle after that deletion.
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Fig. 3. Histogram of steering angle-1 Fig. 4. Histogram of steering angle-2

4.5 Data Augmentation

The biggest challenge was to generalize the car behaviour on Track 2 (unseen
track) of the simulator. In real world, we can never train a machine learning
model for every available track as it will require a humongous amount of data
to train and process it. Real world contains a variety of weather conditions, and
it is impossible to build a dataset for all such weather conditions and roads,
however by using data augmentation techniques we can create a dataset closer
to the real world.

Zooming. Images were zoomed, to get a better view of the track. OpenCV
techniques were used to achieve this. Figure 5 shows the original and zoomed
track.

Changing Brightness. By changing the brightness of the track images we can
generalize the weather conditions. By increasing brightness we can get a track
which looks as if it was captured during a sunny day and by decreasing the
brightness we can make the track image look like as though it was captured
during night time or a cloudy day or a shadow of a building/tree falls on the
track. The change in brightness for various images of the track can be seen in
the Fig. 6.

Panning/Translation. The image is moved along the x-axis or y-axis, which
make the neural network to look everywhere in the image to capture the vital
data. The original and translated images are shown in Fig. 7.
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Fig. 5. Zoomed image

Fig. 6. Brightness altered image

Horizontal Flipping. Sometimes when we collect data, the data may be
skewed to left side (or right side), i.e. if the track that we trained contained
more no. of left turns compared to the no. of right turns, our model will always
predict a left steering angle. Where as in real life tracks have an equal no. of
left and right turns. To solve this problem, we randomly select some tracks and
flip it horizontally and negating it’s corresponding steering angle. This helped
in making the dataset to contain nearly equal counts for left and right steering
angles. Figure 8 shows the flipped image.

4.6 Pre-processing

The height of the image is reduced to bring focus on the track thereby ignoring
the landscapes surrounding the track. The color images(RGB) are converted to
YUV(Y-Brightness and UV - color) encoding pattern. Gaussian Blur of size 3
by 3 was applied to the image. Images were resized to the shape 200 by 66.
Normalization of the images are done (Fig. 9).

4.7 Training

The recorded data is splitted into x train and y train. Figure 12 shows the split-
ted data, x-axis represents the steering angle, y-axis represents the count of



332 B. Harish and D. Thenmozhi

Fig. 7. Panned image

Fig. 8. Flipped image

images for each steering angle. Blue and red plot shows the histogram distribu-
tion for training and testing data respectively. x train contains the images of the
track and y train contains the steering angle of the car.

A convolutional neural network model, is built and 80% of the collected
dataset is used for training remaining 20% is used for testing. The weights of
the network are adjusted by back propagation to minimize the mean-squared
error between the predicted steering angle and the desired steering command
of the human driver. Figure 13 shows the network architecture, The network
architecture contains nine layers of which there are five convolution layers, three
fully connected layers and a normalization layer. The image from the simulator
is pre-processed and is converted into YUV planes and is passed to the network.

First layer of the network is normalization layer which performs normaliza-
tion of the input image. Feature extraction is done by the convolution layers.
2 × 2 stride convolution and 5× 5 kernel are used in the first three convolution
layers and the last two convolution layers consist of a non-strided convolution and
a 3 × 3 kernel. The convolution layers are designed to perform feature extraction,
and are chosen through a series of experiments that vary layer configurations.
We then use strided convolutions in the first three convolution layers with a 2× 2
stride and a 5× 5 kernel, and a non-strided convolution with a 3× 3 kernel size
in the last two convolution layers.
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Fig. 9. Pre-processed image

The five convolution layers are shown in Fig. 13. The three fully connected
layers which are designed to act as controller for steering, outputs the steering
angle. To avoid over-fitting problem, we need a large amount of data to train on,
so using data augmentation technique the batch generator creates large amount
of data on the fly i.e. only during training after this the training begins. The
Rectified Linear Unit-ReLU activation function-R(z) = max(0, z) was used dur-
ing the initial stages of building and testing the model, however ReLU was not a
good choice for this problem because ReLU function returns zero for values less
than zero but our steering angles consist of both positive and negative values.
So if a neuron gets an input of negative number it will return a value of zero,
so the gradient at this point is zero and the weight of this neuron will never
be changed because the back propogation uses the gradient value to change the
weight values of the neurons. This phenomenon is called as dead ReLU. Due to
this the neuron will always receive a value of zero and will always feed forward
the value of zero and there is no learning. Sigmoid function can’t be used as it
would create vanishing gradient problem as our network is complex. So we chose
Exponential Linear Unit-ELU activation function which is similar to ReLU in
positive region but in negative region it returns the negative number. So unlike
ReLU, ELU has a non-zero gradient value in the negative region, which means
that it can always recover and fix it’s weight parameters to decrease it’s error
i.e. it is always capable of learning and contributing to the model, unlike ReLU
which can essentially die. Figures 10 and 11 shows the ELU, ReLU and Sig-
moid functions. Based on the accuracy, the CNN model is modified by changing
the no. of neurons, by adding dropout layers, changing the learning rate, data
augmentation etc. to improve the accuracy.
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Using PYTHON and Flask the created CNN model is given to the simulator
and the car is driven in autonomous mode in the selected track. A speed limit
is set to the car, the speed of the car increases till that limit and begins to
gradually slow down after that.

Fig. 10. ELU function

Fig. 11. ReLU and sigmoid functions

Fig. 12. Histogram distribution of steering angles after train-test split (Color figure
online)
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Fig. 13. Architecture

5 Testing

The built model is used in a python application which uses socketio to connect
to the udacity simulator (server) by acting as a client. The Udacity simulator
in autonomous mode acts as a server. In terminal the python driver file is run
after loading the model. Inside the simulator, autonomous mode is selected and
Track-2 - the unseen track is chosen. Unseen track is the one which the car has
never seen before while training. The simulator sends the track images to the
client (python application), which uses the built model to predict the steering
angle for the car at that point of the track. The client code returns the steering
angle to the simulator. To avoid the car going very fast, a speed limit variable is
used to control the throttle of the car. Response time is the sum of, time to send
the track image to ML model, time for ML model to predict the steering angle
for that point of track, time to send back the steering angle to the simulator.
Here sending back steering angle takes very less time compared to other two
factors. It takes a lot of time to send an image from simulator to model, but
however since the model is available in local machine we can decrease this time
by using it on a machine with decent hardware specs like atleast 8 GB ram
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and quad cores. And the ML model predicting the steering angle also depends
on the hardware specs, so by using the above hardware specs we can altogether
reduce the latency i.e. the response time. Figures 14 and 15 shows the car driving
without human intervention in an unseen track i.e. in Track-2 of the simulator.

Fig. 14. Car driving in autonomous
mode

Fig. 15. Car driving in autonomous
mode

6 Results

This section shows how our approach is different from the existing approaches
and how well the built model has predicted in various parts of the unseen track
(Track-2).

Our approach though it uses the same augmentation techniques as with the
existing approaches mentioned in the literature survey, how we have used it mat-
ters. The existing approaches use all the augmentation techniques at once during
data augmentation, whereas in our approach we apply the 4 augmentation tech-
niques (zooming, panning, flipping images and changing brightness) randomly,
we select an image at random from the training dataset and then we generate a
random number between 0 and 1, if the value is greater than 0.5 we apply zoom-
ing technique to it, or else we don’t apply zooming to that image, and again
we repeat the same for other augmentation techniques. So a particular image
chosen for augmentation may be applied with all the 4 augmentation techniques
or 3 or 2 or 1 or even none. This approach produces a dataset with increased
randomness in the images compared to the existing approaches. Also, we have
used ELU activation function which drastically improved the performance in the
unseen track i.e. Track-2.

Images below on the left column represent the true value of steering angle
(TSA) for that point in the track.

Images on the right column represent the predicted value of steering angle
(PSA) for that point in the track.

6.1 Left Curved Roads

See Figs. 16, 17, 18 and 19.
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Fig. 16. True SA = −0.148 Fig. 17. Predicted SA = −0.106

Fig. 18. True SA = −0.238 Fig. 19. Predicted SA = −0.283

6.2 Right Curved Roads

See Figs. 20, 21, 22 and 23.

Fig. 20. True SA = 0.257 Fig. 21. Predicted SA = 0.256
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Fig. 22. True SA = 0.381 Fig. 23. Predicted SA = 0.430

S. No Figure No TSA PSA ‖PSA − TSA‖ ‖PSA − TSA‖2

1 16,17 −0.148 −0.106 0.042 0.00176

2 18,19 −0.238 −0.283 −0.045 0.00202

3 20,21 0.257 0.256 −0.001 1.0000e−06

4 22,23 0.381 0.430 0.049 0.002401

MSE(Mean Squared Error) =
∑4

i=1 ‖PSA − TSA‖2/4 = 0.00154

RMSE(Root Mean Squared Error) =
√∑4

i=1 ‖PSA − TSA‖2/4 = 0.03934

The table above shows the difference between True Steering Angle (TSA)
and Predicted Steering Angle (PSA) i.e. ‖PSA − TSA‖, ‖PSA − TSA‖2, for
the various road tracks.

7 Scope of Deployment in Real World

Since this research focused on working in a constrained environment, in the real
world it could be used in places like industries where unmanned cars can be
used for transporting goods. The minimum hardware requirement is a camera
to capture the track images, servo/induction motors to drive the car based on
predicted steering angle and a computer to run the model and give instructions
to the car. We can use a Programmable Logic Controller (PLC) as a computer
which would cost a minimum of Rs. 20000. The cost of a good quality single
camera compatible with PLC would be around Rs. 5000. The cost of servo motors
for real cars would cost around Rs. 20000. The cost of building the entire setup
would be around Rs. 20000. So the total cost to deploy this work with minimum
hardware configurations in a constrained environment in the real world would
be around Rs. 65000.
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8 Conclusions and Future Work

This research started with capturing images of the tracks, using computer vision
[4,6] OpenCV techniques to add shadows to tracks, zooming of tracks, etc. Ini-
tially the model performed well only on the already seen track and failed to
perform well on new unseen tracks. So, many models were built by changing
the parameters like the number of neurons or the activation function so that
the model was able to generalize road conditions and achieve the similar perfor-
mance on different tracks. The spatial features were obtained by using CNN [5].
In this research we used only the data obtained from the simulator, future works
can be carried out by combining simulator data with the real world data and
already many experimental configurations are being carried out in the field of
autonomous cars. The models used in this research were built sequentially using
Keras, future works can be done by trying parallel network layers for learning
the specific track behaviour which can lead to an increase in performance. In
this research the simulated environment didn’t consist of traffic environment,
multiple lanes, obstacles or other cars along the track, when these are placed on
the tracks they would make it more closer to a real world environment and a
challenge for the self-driving cars.
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