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Abstract. Aphonocardiogram (PCG) signal holds aural information generated by
the heart during a cycle. A close examination of the PCG signal can reveal valuable
cardiac information thereby allowing detection of abnormalities and diagnosis of
heart diseases. An automation-aided analysis of PCG signals can play a vital role
in the medical field, especially in remote patient monitoring, apart from being a
very efficient approach. In this study, PCG signals are classified under 5 different
classes based on the features extracted. The five classes are normal,mitral stenosis,
mitral regurgitation, mitral valve prolapse, aortic stenosis (N, MS, MR, MVP,
AS). Mel-Frequency Cepstral Coefficients (MFCCs) are extracted from the PCG
audio signals and fed into a deep learning based convolutional neural network
(CNN). The proposed approach achieves a maximum accuracy of 99.64% which
outperforms the existing state-of-the-art approaches.
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1 Introduction

Among all the necessities for the normal functioning of the human body, a healthy heart
is the most important. It is the heart that carries out mechanical and electrical activities to
ensure blood is pumped to all parts of the body. A problem in the functioning of the heart
can therefore be devastating. Cardiovascular diseases (CVDs) are a very common cause
of demise for individuals. According to WHO surveys, approximately 33% of all deaths
are related to CVDs. An early and accurate detection of abnormalities or diseases can
essentially save the lives of countless individuals. Amidst the most popular modalities
that exist to monitor the health of a functioning heart are electrocardiogram (ECG),
photoplethysmography (PPG) and phonocardiogram [12] (PCG). An ECG signal is a
recording of the electrical activity of the heart; a PPG estimates the blood flow rate by
employing light based sensors; PCG signals are audio recordings of heart sounds and
murmurs present in one cardiac cycle.
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A PCG signal is obtained using a machine called phonocardiograph. It uses a high-
fidelity microphone to record the sounds and murmurs made by the heart. There are two
fundamental heart sounds in every PCG signal - S1 and S2. These are caused by the
atrioventricular and semilunar valves during their closure, and are alsowhatwe generally
associate with the ‘lub-dub’ sound our hearts make. The interval between S1 and S2 is
called systole (‘lub’) and the vice versa is called diastole (‘dub’). A normal PCG signal
contains only S1 and S2, however abnormalities cause other sounds or murmurs to arise
and can be labeled as S3, S4 and so on.

Traditionally, a doctor analyses the sounds produced by the heart using a stethoscope
and tries to identify any abnormality in the rhythm or the sound. This is a very difficult
skill that requires years of exposure to gain proficiency at. Also, there are a myriad of
limitations to the human ear as it ages that make detection of pathological symptoms
quite inaccurate.

In this paper, MFCCs [4, 14] have been employed because of the similarities in
properties that PCG signals have with speech signals. 26 such coefficients are extracted
from a single frame. After extraction of features, a 2-D convolutional network ensues
that classifies each audio signal into one of the five classes mentioned earlier.

The following graphical representation depicted in Figs. 1, 2, 3, 4 and 5 are PCG
signals from individuals having N, MR, MS, MVP and AS conditions.

Fig. 1. N type PCG signal

Fig. 2. MR type PCG signal
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Fig. 3. MS type PCG signal

Fig. 4. MVP type PCG signal

Fig. 5. AS type PCG signal

2 Related Work

Chowdhury et al. [1] employs DWT to decompose the PCG signals into multiple sub-
bands having different frequencies. The sub-bands which contain unnecessary noise are
dropped. For feature extraction,MFCCandMel-scaled power spectrograms (Mel- Scale)
are used. The latter is then fed through a 5-layered feed-forward DNN model trained
by keras. The model has an accuracy, specificity and sensitivity of 97.10%, 94.86% and
99.26% respectively.
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K. Poudel et al. [2] encountered a problem of an unbalanced dataset and employed a
pre-processing method called SMOTE (Synthetic Minority Over-Sampling Technique)
to counter it. Mel-Scale andMFCCs have been used for feature extraction from the PCG
signals. They then pass this to a 1-D CNN model that has 4 hidden layers. The layers
have been implemented with the ReLu activation function having filters of sizes 128
to 1024, with each increment doubling in size. The PCG signal is then classified in the
database. The authors have used Shannon energy envelopes to develop a segmentation
technique. The model has an accuracy of 93.20%, specificity of 94.20% and sensitivity
of 89.20%.

Alkhodhari et al. [3] have used the combination of CNN and Bi-LSTM for the
automatic extraction of features from the PCG signals. The VHD classes namely AS,
MR,MVP,MSwere preprocessed byMODWT and z-scoring normalization. The model
was tested and trained using a 10-fold cross validation with CNN-Bi-LSTM network
as well as CNN and Bi-LSTM individually. The model has an Accuracy of 99.32%,
specificity of 99.58% and Sensitivity of 98.30%

Thework ofN. Baghela et al. [4] proposes amachine learningmodel to automatically
diagnose CVDs using PCG signal. The model has a combination of 1-D CNN layers and
Dense layers. Extensive preprocessing such as pitch correction, amplitude normalization,
etcwere done alongwith augmentation to increase the dataset size. Themodelwas trained
and evaluated using 10-fold cross validation, with an accuracy of 98.6%.

Shuvo et al. [5] have employed automatic detection of CVDs under the classes -
N, AS, MR, MS and MVP using raw PCG signals. They use a CRNN architecture
for this. Their model has representational and sequence residual learning phases. The
time invariant features of the PCG signal are extracted using Adaptive Feature Extractor
(AFE), Frequency Feature Extractor (FFE) and Pattern Extractor (PE), which are all
included under representational learning. The latter includes bidirectional connections,
which is used for the extraction of temporal features. Their model achieved 99.6%
accuracy in the GitHub dataset and 86.57% in the Physionet dataset.

Li Oh et al. [6] proposed the WaveNet model which consisted of 6 residual blocks.
1000 PCG signals were collected from an open database which consisted of signals
from 5 different classes. The signals were resampled at 8 Khz and were then normalized
between −1 to 1. The model was cross-validated using 10 folds. It was trained for 3
epochs and the optimization algorithm used was Adam. The learning rate was set to
0.0005. The model has an average accuracy of 97%.

3 Proposed Methodology

2-D CNNs [13] are widely used in image recognition and object detection. For audio
signals, 1-D convolutions are preferred as the kernel is only expected to slide across the
time axis. In this paper, we extractedMel Frequency Cepstral Coefficients from the audio
signals. MFCCs are represented as 2-D data, with one axis representing the coefficient
and the other axis representing time. We extracted 26 such coefficients. The magnitude
of the frequency is represented by color. As a result, the MFCCs can be considered as
a 2-D image. We have used 2048 samples in a window with a hop length of 512. The
proposed methodology is depicted in Fig. 6.
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3.1 Block Diagram

Fig. 6. Block diagram

3.2 Architecture and Training

Table 1. Model architecture

• Input layer: 32 filters of dimensions 3 × 3 with stride size set to 1 and padding set to
‘same’ and activation function set to relu, resulting in an output dimension of (26, 44,
32) (Table 1).

• Hidden Layer 1: 32 filters of dimensions 3 × 3, stride size set to 1, padding set to
‘same’ and activation function set to relu.

• Hidden Layer 2: 64 filters of dimensions 3 × 3 with stride size set to 1, padding set
to ‘same’ and activation function set to relu.
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• Hidden Layer 3: 128 filters of dimensions 3 × 3 stride size set to 1, padding set to
‘same’ and activation function set to relu.

• Hidden Layer 4: 64 filters of dimensions 3 × 3 with stride size set to 1, padding set
to ‘same’ and activation function set to relu. The output is flattened.

• Hidden Layer 5: Dense layer comprising 512 units and activation function as relu.
• Hidden Layer 6: Dense layer comprising 256 units and activation function as relu.
• Output Layer: Dense layer comprising 5 units and activation function as softmax.

The model was trained for 15 epochs on a Tesla K80 GPU. The loss function used was
categorical cross entropy, with Adam being the choice of the optimizer with a learning
rate of 0.001.

4 Results and Discussion

The dataset (link included) used in this study includes a total of 1000 PCG signals from
patients (inclusive of both sexes and all age groups) with normal and 4 different valvular
heart diseases (MS, MR, MVP, AR). The 1000 signals are divided into the 5 classes of
200 signals each. The duration of each signal is fixed at 2 s. To evaluate the performance
metrics of the model, cross validation with fold size 10 has been used.

Table 2 shows the results of the cross validation with accuracy as the parameter.

Table 2. Training and validation accurary of each fold
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Table 3. Parameter values of each fold
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The lowest validation accuracy was 98.46% and the highest validation accuracy was
100%. The mean validation accuracy across all the folds was 99.64%.

Table 3 shows the performance of the model for each class on metrics such as
precision, recall and F1-scores for all 10 folds. The following parameters are calculated
as follows:

Precision = TP

FP + TP
(1)

Recall = TP

TP + FN
(2)

(3)

Table 3 shows the parameter values for all the folds while Table 4 compares the
model presented in this paper with other models.

The following figures present the confusion matrices for folds that do not have a
validation accuracy of 100%.

Fig. 7. Confusion matrix for Fold 2

Fig. 8. Confusion matrix for Fold 3



322 V. Pravin et al.

Fig. 9. Confusion matrix for Fold 6

Fig. 10. Confusion matrix for Fold 8

From Figs. 7, 8, 9 and 10 it is evident that the misclassifications have occurred at
certain instances.

• In the confusion matrix for fold 2, as shown in Fig. 7, 1 signal attributed to MVP has
been misclassified as MR, resulting in an overall accuracy of 99.49%.

• For fold 3, 1 MVP signal has been misclassified as AS and 1 MR signal has been
misclassified as MVP, lowering the overall accuracy to 98.97%.

• Fold 6 shown in Fig. 9 has the most number of misclassifications and hence the least
overall accuracy of 98.46%. 2 MR signals have been incorrectly classified as AS and
MVP respectively. In addition to this, 1 MS signal has been misclassified as N.

• In fold 8, 1 MS signal has been classified as MVP thereby resulting in an overall
accuracy of 99.49%.

MR is incorrectly classified three times, whileMVP andMS signals aremisclassified
twice.
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Even though MFCCs are not traditional two-dimensional images, the 2-D CNN
model was able to perform surprisingly well. It matches and even surpasses the
performance of 1-D CNN and LSTM [15] in some cases.

Table 4. Study comparison

Model Features Accuracy

MD Chowdhury et al. [1] MFCC, Mel-Scale 97.10%

M. Chowdhury et al. [2] MFCC 93.20%

Li Oh et al. [6] Deep Learned 97.00%

Yaseen et al. [9] MFCC, Wavelet 87.2%

P.Lubaib et al. [10] MFCC, envelope detection 99.01%

Ghosh et al. [11] Chirplet transform 98.33%

Proposed Study MFCC, 2-D CNN 99.64%

5 Conclusion

Manual detection of heart abnormalities is a challenging and time-consuming task that
requires specific expertise. This study proposes a computer aided diagnosis (CAD) sys-
tem using 2-D CNN for classification of cardiovascular diseases. 2-D CNNs are uncom-
mon in the audio domain, but continue to gain traction. The proposedmethod achieves an
average 10-Fold cross validation accuracy of 99.64%, which surpasses many other state
of the art models in this dataset. This model does not require extensive pre-processing
and is relatively light-weight. The overall accuracy of themodelmay be further improved
by performing data augmentation.

The main limitation of the proposed work is the lack of multi-class PCG datasets.
While there are multiple datasets for binary PCG signal datasets, it is not the case for
non-binary datasets.
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