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Abstract. Catheters are usually used to deliver drugs and medications
close to the heart and to monitor the vital organs around the chest region
for patients who undertook critical surgery. Radiologists often check for
the presence of catheters, puncture-needles, guiding sheaths, and var-
ious other tube-like structures in interventional radiology. The clinical
analysis of X-ray requires a manual pixel-wise annotation which is an
excruciating process. In order to address this issue, we attempt to auto-
annotate the CXRs using a Self-Supervised Learning approach. Further,
the classification task on the catheter is performed based on semantic
and perceptual clues (object shapes, colors, and their interactions) of
color and class distributions. A generative adversarial network is utilized
to learn a mapping to annotate (colorize and identify end-tip points)
and classify the given grayscale CXR. The additional number of classes,
custom loss function, and attention heads introduced in the model is a
unique attempt to ensure robust results in the radiological inferences.
It is evident that the qualitative and quantitative results of annotation
and classification are viable which resembles how humans perceive such
problems. The results are consistent and outperform’s the state-of-the-
art supervised learning models in terms of metrics and inference dura-
tions. The model being end-to-end in nature, can be integrated along
with the existing in-hospital pipeline and will be ready to use instantly.
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1 Introduction

Chest X-rays are commonly performed radiologic examination of the human
body for patients kept under critical care. Portable anterior-posterior (AP) CXRs
are often used to detect malpositions if any and verify the placement of catheters.
These catheters are inserted through the subclavian or jugular veins and are
typically blindly operated upon [12]. After placement Chest X-Rays (CXRs) are
obtained to analyze their presence, and identity to avoid any mispositioning or
other complications. Traditionally it requires years of training, experience, and
skill-set to accomplish such a task. With the recent developments in computer

c© IFIP International Federation for Information Processing 2022
Published by Springer Nature Switzerland AG 2022
E. J. Neuhold et al. (Eds.): ICCCSP 2022, IFIP AICT 651, pp. 151–162, 2022.
https://doi.org/10.1007/978-3-031-11633-9_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-11633-9_12&domain=pdf
http://orcid.org/0000-0002-1568-0155
http://orcid.org/0000-0002-6545-2783
https://doi.org/10.1007/978-3-031-11633-9_12


152 A. Karthikeyan and S. P. Subramanian

vision and the advent of Artificial Intelligence, autonomous report generation in
radiology will considerably expedite clinical workload, Such a system would be
able to remotely generate reports for CXRs in a matter of seconds.

Table 1. Distribution of the samples over various classes of catheters based on their
position

Description No. samples

Endo-tracheal tube Abnormal 16

Borderline abnormal 192

Normal 1423

Naso-gastric tube Abnormal 61

Borderline abnormal 95

Incompletely imaged 507

Normal 887

Central venous catheter Abnormal 640

Borderline abnormal 1596

Normal 4220

Swan-Ganz Presence of Swan-Ganz catheter 139

Total classes: 11 Total: 30083

Previous attempts at producing such reports, under in-hospital conditions
- lack the diagnostic interpretation and accuracy. The need for consistent and
structured reports are imminent and plays a pivotal role in clinical care. Fail-
ure to report (multilabel classifications as shown in Table 1, and corresponding
problems based on their positioning and insertions if any) in a clear and concise
manner reflects in sub-optimal care.

The popular approach involves, the use of Deep Convolutional models. To be
able to learn unique discriminative spatio-temporal features for CXRs is a difficult
task. Hence recognition and classification of catheters from direct whole images
yield poor results, as these needle-like structures account for less than 1% of the
footprint in the whole image [12]. It is evident from the Class Activation Map as
shown in Fig. 1 of traditional convolutional models struggles with classification
tasks due to overlap in receptive fields. Different classes of catheters arise, owing to
the difference in tip locations, functions, and the target organ as shown in Table 1.

While conventional CNNs could be used for this task, they usually require
a large amount of paired data which is to be manually annotated, yet will still
suffer from class imbalances. Moreover, almost all the CNNs are used to 3-
channel input rather than single-channel input in the case of CXRs limiting the
use of ImageNet weights of state-of-the-art models.

This paper presents an approach to address the automatic classification of
unlabeled samples and the classification of peripheral and central catheter posi-
tions through a GAN model that is based on semantic and perceptual (end-
tip points, pins, object shapes, colors, and their interactions) nature. We also
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Fig. 1. Class activation maps of a multi-labelled sample, with logits

Fig. 2. Example of annotated sample, multi-labeled and annotated sample

explore how colorization affects the class distribution in CXRs. The model is
designed in an end-to-end fashion and trained in a weakly supervised manner.
Initial tests involving perpetual cues provided good initializations. In particular,
adding color to the classification task leads to better initializations and forces
the model to learn proper feature representations as seen in warm-starting of
ImageNet models for various transfer learning applications.

1.1 Related Work

The absence of colors being a major reason for the failure of ImageNet models in
CXRs. Colors also seemed to add class-specific semantic clues which are known
to boost performance. Zhang et al. proposed an automatic colorization algo-
rithm where colorization is treated as a multinomial classification problem [16]
proposed a colorization model that learns to map a monochromatic image along
with user-provided hints and cues that later is used to fuse along with high-level
semantic information to provide realistic outputs. These processes again make
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the task multistage or involve humans in a loop making it difficult to build a
standalone system.

“Generative Adversarial Networks (GANs) have been a popular choice to
learn a mapping between gray-scale photographs. In recent times, Wasserstein
GANs have been used with the gradient penalty to generate paired image-mask
samples from CXRs” [10]. Authors of [2] proposed to use such generated masks
to be paired along with real-time images to train in a supervised manner. A few
methods were employed for non-paired data generation of medical and clinical
images, entailing these data from an auxiliary imaging modality in a domain
adaptation setting [8]. Performance evaluation of these techniques has not been
evaluated. The author [6] proposed the “use of conditioned GANs to map the
images using U-Net-based architecture. They adopted Dice Loss and Wasserstein
loss to generalize the same to high-resolution images, stabilize and converge
faster” [9].

Notice that GANs were essentially utilized to generate synthetic data which
is used to provide better domain adaptation in various transfer learning tasks
utilizing deep convolutional networks. Upon using a shared module trained in a
joint manner (Semantic annotation and Classification) in an adversarial method
yields better results and reduced inference period, as these learned representa-
tions aid in the classification as well acts as a form of additional supervision.

2 Method

2.1 Annotation-GAN

When the gray-scale image L which resembles the CXR, the model aims to
learn a mapping G : L → c such that I = (L, c) which represent a probable color
distribution, and π(z) denotes real image distribution. A bijective mapping such
that c = G−1(z;L) is near the ground truth values is learned. Thus, the generated
annotated sample is expected to encompass semantic, perceptual, and geometric
characters to that of the ground truth image.

As in [14] a generator module learns a function G which is also invertible
in nature and in an end-to-end fashion. While parallelly a discriminator module
validates the similarity between the colorized output to actual ground truth.
I = (L, c) of L. The GAN model tries to tune the Ψ and w, parameters of the
model. This ensures a conditioned GAN trained in a weakly-supervised nature
using the annotated samples, with model initialized with weights from ImageNet
[4], Especially when using an annotated sample Iz = (L, c), the model learns the
color information in a split fashion: The mono-chromatic channel L and the
chrominance channels (c) similar to the method in [14].

The generator GΨ also tries to learn a [nx1] classification matrix. The advan-
tage of using such an approach enables us to learn the perpetual and semantic
image distribution contained in L that makes the model similar to how humans
perceive color. Let us subnets of generator be defined as follows, GΨ1

1
: L → (c),

and GΨ2
2
: L → y.
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Fig. 3. Auto-Annotation GAN can colorize the tubular structures of catheters in CXR’s
based on different classes, It is a combination of Discriminator Network, DΛ in pink,
and the Generator Network, GΨ which consist of two-subnets: G1

Ψ1 (yellow, aqua-green,
purple and gray layers) and G2

Ψ2 (yellow, purple and gray layers). (Color figure online)

2.2 Objective Formulation

The error function is given by:

L(GΨ ,DΛ) = Lε(G1
Ψ1

) + λgLg(G1
Ψ1

,DΛ) + λsLs(G2
Ψ2

) (1)

The initial term represents reconstruction loss which is defined as follows:

Lε(G1
Ψ1

) = E(L,c)∼Pc
[− log(q)(L, c′)||G1

Ψ1
(L) − c||22] (2)

where, Pc represents the distribution of ground truth images, the initial part
represents negative log-likelihood loss added along with || · ||2 for the euclidean
norm to retain the structural similarity in the image and prevent from losing
data. To improve the sensitivity to perpetual color, we use class distribution
loss

Ls(G2
Ψ2

) = EL∼Pz
[KL(yυ||G2

Ψ2
(L))) (3)

Herein, Pz represents the distribution of CXR input, and yυ ∈ labels as
in Table 1 the softmax output is obtained from VGG-16 classification branch
[11]. KL(·||·) represents the Kullback-Leibler divergence. The Lg denotes the
WGAN loss which represents Wasserstein GAN [1]. WGAN provides a few
niceties like avoiding vanishing gradient issues, preventing mode collapse, and
faster convergence.
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Lg(G1
Ψ1

,DΛ) = EL′∼Pc
[DΛ(L′)] − E(c)∼P

G1
Ψ1

[DΛ(c, L)]

−EL′∼PÎ
[(||∇ÎDΛ(Î)||2 − 1)2]

(4)

with PG1
Ψ1

representing the probability density of the model G1
Ψ1

(L) denoting the
generator distribution, with L ∼ Pz. PL′ sampled uniformly along straight lines
between pairs of points from data distribution Pc and PG1

Ψ1
The negative sign in

(Eq. 4) ensures that the model minimizes the loss with respect to discriminator
parameters.

This now reduces to a min-max problem that tries to converge in an alternate
fashion by adjusting the weights of generator and discriminator modules. Later
in the ablation experiments, it was also observed that the reconstruction loss
enables quicker convergence.

min
GΨ

max
DΛ∈D

L(GΨ ,DΛ) (5)

Conditional GAN Loss and Adversarial Strategy Lg . The general adver-
sarial min-max game between a generator and discriminator deals with learning
suitable parameters so that the generator mimics the probability distribution of
real data.

The WGAN is a better alternative to the non-overlapping supports app-
roach. In contrast, KL divergence causes a vanishing gradient problem. The JS
divergence may be non-continuous with parameters.

The results for objective formulation were in agreement with [7]. This app-
roach outperforms the colorization produced by only L2 or L1 color loss terms
and prevents model collapse.

Learning per-pixel probability distribution allows the use of a variety of clas-
sification losses. Classification Loss. The Ls(G1

Ψ1
) Eq. 3 tries to minimize the

difference between generated data with respect to actual distribution, to accom-
plish that we adapt convolutional layers from VGG-16 model pre-trained on
ImageNet dataset. So to make the input competent with the model we create
copies of the grayscale channel and reshape the input as (L,L,L) such that it
could be used to generate the density distribution as stated earlier.

2.3 Model Architecture

The model architecture is as shown in Fig. 3. It is comprised of 3 sub-parts. Two
of those focusing on chrominance information and classification are the same.
The last one belongs to the discriminator network which to distinguishes ground
truth from synthetic data.
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Generator Architecture GΨ . The generator subnetworks G1
Ψ1

and G2
Ψ2

out-
puts chrominance related data, (c) = G1

Ψ1
(L) and classification vectors, y =

G2
Ψ2

(L). Both the subnetworks are trained jointly through a single step back-
prop as in proposed in [14].

The basic blocks responsible for global feature extraction are shared by both
subnets. Which is initialized with pre-trained ImageNet weights.

The first subnetwork (displayed aqua-green in Fig. 3) proceeds with a form of
Convolutional(3 × 3)-BatchNorm-AReLu to learn G1

Ψ1
and similarly the second

subnetwork (displayed purple in Fig. 3) learns the G2
Ψ2

using four modules of
form Convolutional(1×1)-BatchNorm-AReLu, sufficed by fully connected layers
(in purple) providing us the classification vector.

The first stage results (displayed yellow in Fig. 3) are shared to both the sub-
networks and has the same architecture of VGG-16 [17] and are initialized with
ImageNet weights [17]. Once G1

Ψ1
is learned it is used to generate useful infor-

mation to help the colorization process. Later these two subnetworks are fused
and are used to predict (c) by up-sampling with the help of Convolution-AReLu
layers. The class distribution loss Eq. 3 only subnet G2

Ψ2
is affected. Whereas the

color error loss Eq. 1 affects the whole network. We use AReLU [3] as activation
for all layers and use a Softmax in the final layer to obtain the logits distri-
bution. The AReLU enables a learnable activation function and formulates an
element wise attention mechanism. The attention map forwards scaled positive
elements which enable us to capture discriminative features amongst different
classes. This amplifies positive elements and suppresses the negative ones.

Discriminator Architecture DΛ . The discriminator is adapted from Patch-
GAN [7] a markovian discriminator. It operates in a sliding window fashion
instead of considering the CXR as a whole to focus on local patches. Instead
of classifying a whole image the discriminator convolutionally runs across the
image and provides the average of those responses.

3 Experimentation and Results

Quantitatively studying the effect of colorization is a difficult task so in order to
analyze how each term in the loss function affects the model, we can perform an
ablation study and evaluate the different variants. GAN model using adversarial
learning and classification approach and GAN w/o class [λs = 0]. We also com-
pare the results with EfficientNet backbones and Knowledge Distilled models
for endpoint detection and classification with custom loss function as shown in
Fig. 4.

3.1 Dataset

We took the RANZCR CLiP dataset which is in-turn built upon Chest X Ray14
dataset [15], one of the largest publicly available datasets, where 30000 labeled
(but non- annotated) CXRs spread across 11 different classes as in Table 1 were
taken into consideration. A subset of these samples, around 950 were manually
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Fig. 4. Teacher - Student model with catheter enpoint heatmap, Source: kaggle

annotated with catheters and tube positions as shown in Fig. 2 to indicate pixels
that belong to catheters or tubes. The class wise distribution of the labeled sam-
ples are as shown in Table 1. The CXRs are of varied resolutions (>2048×2048).
We resize these samples to 1024× 1024 by means of learned image resizing tech-
nique [13]. Replacing the typical linear resizers with learned resizers can substan-
tially improve the results as they produce machine friendly visual manipulations.
This resizer model is trained jointly with the classifier subnet model.

Fig. 5. Segemeted results show the presence of a multi-labeled sample (i.e. ETT
- Abnormal, ETT - Borderline positive sample), Image to the left represents un-
annotated sample and the one on right represents auto-annotation
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3.2 Implementation Details

Table 2. Optimal Training Parameters and Hyper-parameters, Note that first and last
layers consist of 7 × 7 kernels. With a larger kernel size allows more receptive fields,
it is also verified from [13] and provides about 1–2% increase in accuracy. We also use
batch normalization layers followed by AReLU activations [3].

Optimizer

GAN: AdamW 1e − 5

Hyperparameter

λg = 0.1 λs = 0.003

Activation

GAN: ReLU GΨ2
2
: AReLU

Kernel

n = 16 3 × 3

Device: NVIDIA P100

Batch-Size: 10

We trained the Annotation - GAN Model with about 950 annotated CXRs
resized to 2048× 2048 with parameters as in Table 2. A single epoch took about
5 h to train. We had to retain the original image size to make the annotations
less ambiguous. The inference phase takes around 2 s Fig. 5. We minimize the
objective loss using AdamW optimizer with the parameters as given in Table 2.
The intensity regularization makes the model develop a mean color response over
the regions of the catheter and tubes. For reliable evaluation of the data, we took
a 5-fold cross-validation using F1 scores, pixel-wise precision, and recall metrics
Table 3, owing to the thin structures of the catheters and tubes we enlarged the
manually annotated samples to a 5-pixel dilation radius which resulted in 70%
cases with over 50% of overlap.

Metrics such as Structural Similarity Index (SSIM) check for variation in
contrast, luminance in high frequency region. Similarly, the Hausdorff distance
measures the closeness to the ground truth thus representing the resemblance
amongst the images.

Table 3. Evaluation of Auto-Annotated Samples with respect to ground truth annota-
tion. Note these are the results of auto-annotated data averaged over a batchsize of 10.

Data SSIM PSNR Hausdorf

Auto - Annotated CXR 0.98184 28.5766 4 ± 0.3

GANw/oclass 0.99411 33.9304 4 ± 0.5
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Fig. 6. Results of the Annotation GAN for each class, Mean values of the same are as
shown in Table 4

3.3 Limitations

While the model offers quick inference and has a higher potential to improve
workflow efficiency, there are a few drawbacks. The system confuses the catheters
with tips with bone edges, often around the ribs. This can be avoided by adding
additional background annotation classes (i.e., ribs, collar bones) and retraining
the network so that the model will learn a differential feature to separate out
the various classes.

The class imbalance can be mitigated via class frequency weights as an addi-
tional loss term. Further data augmentation techniques can be studied to provide
better initializations to the model and prevent the mixing of background with
labeled data.

3.4 Future Scope and Direction

Chest radiography analysis is an important stage in post-surgical care it involves
detection and identification of tip locations, endpoints of catheters. The proposed
model is capable of detecting tip locations of various different catheters and the
inference takes about 2 s this could accelerate the mundane but essential tasks
required in the health care system.

Our initial target was to detect catheter endpoints and reduce the false neg-
atives, such as to make the solution viable in real-time applications. However,
as a part of distinguishing the catheters from one another, it will work to our
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Table 4. Results of the catheter classification (Mean ± standard deviation) AUC:
Area under ROC, Acc: Accuracy, P: Precision, R: Recall). MTSS: Multi-Teacher Single
Student trained and distilled network model with EfficientNet backbone.

Model AUC Accuracy P R F1

Resnet200D* 0.884 ± 0.055 0.822 0.33 0.27 0.61

EfficientNet* - B0* 0.883 ± 0.055 0.732 0.4 0.39 0.62

EfficientNet - MTSS 0.917 ± 0.005 0.903 0.50 0.55 0.65

MoCo [5] 0.815 ± 0.5 0.711 0.56 0.58 0.51

AnnotationGAN 0.969 ± 0.005 0.952 0.77 0.68 0.73

benefit if we could capture all the tubular structures present in the given sam-
ple. This also aids the clinical setting without having to redesign the system to
incorporate the model. The current approach involves analyzing the CXR from
a single viewpoint. It could benefit us to analyze both frontal and lateral views
for detecting any abnormalities.

4 Conclusion

We propose an autonomous report generation system that can autonomously
classify and identify unlabeled samples and provide reports for central and
peripheral catheter positions (Table 4, Fig. 6). Experiments show that our end-
to-end model performs equivalent to the state-of-the-art models even though it
was trained 0.033% (950 annotated samples) of labeled data. Auto-annotation
GAN can further be explored with the help of shape constraints and incorporat-
ing spatial priors to improvise the results. Future prospects include autonomous
report generation and validation by various trials, which results in robust report-
ing with minimal costs which is well under regulatory requirements. However,
the proposed approach could be expanded scope for similar tasks in ophthalmol-
ogy, 3D volume colorization, motion forecasting or satellite image analysis, and
beyond.
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