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Abstract. The Stokes and Oseen problems are saddle-point problems
common to many methods aimed at the efficient solution of incompress-
ible flows. There are basically two methods for solving saddle problems
– coupled (solution of the whole system) and segregated (fractional step
method). In this paper, we consider the first approach as the most effi-
cient for steady state problems, in the form of block-triangular precon-
ditioning and its variants. The most difficult part is the design of an effi-
cient preconditioner for the saddle-point problem. Different variants of
preconditioning and formulations of pressure Schur complement approx-
imate matrices are considered. The main question is: Given that compu-
tations on Graphics Processing Units (GPUs) are cheaper and less energy
demanding than computations only on Central Processing Units (CPUs),
can an efficient preconditioner be implemented in GPU-only calculation
mode? We apply these preconditioners with the most advanced Alge-
braic Multigrid methods (AMG) based on the AMGCL framework devel-
oped by D. Demidov. The AMGCL framework is extensively modified
for the purpose of testing in GPU-only calculation modes. To formulate
the Stokes problem, we use the classical MAC method on a staggered
grid and consider different types of 3D problems. It is concluded that
GPU-only computations can be approximately 3–4 times more efficient
than CPU+GPU implementations and about 20 times more efficient than
CPU-only implementations of the original AMGCL framework.

Keywords: Saddle-point problems · Stokes equations · Algebraic
Multigrid methods · General Purpose GPU computations · Iterative
methods · Pressure Schur complement

1 Introduction

The solution of Stokes-type linear systems is a problem that is considered com-
plicated [3]. The original Stokes system is derived from the fluid dynamics of
an incompressible viscous fluid when flow dynamics is such that the nonlinear
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effects of the advective terms can be neglected. In this case, the temporal scale
becomes proportional to the scale of length squared, and the solution of the
stationary problem is mainly of interest. The discretization of the problem can
be formulated in two ways: without stabilization and with stabilization. In both
cases, it is necessary to solve a saddle-point linear system in the form:

Ax = b ⇔
(

A BT

B C

)(
u
p

)
=

(
f
g

)
. (1)

In the first case, one arrives at the symmetric indefinite linear system that
approximates the saddle-point problem where the approximation satisfies the
Ladyzhenskaya–Babushka–Bretzi (LBB) or inf-sup condition, and C = 0, g = 0
in (1). In the case of finite differences (FDM) this is the well-known staggered
grid [19], and in the case of finite elements (FEM) these are the unequal order
finite element pairs [25] of different design. In the second case, one arrives at
the indefinite problem with an arbitrary approximation and some way of sta-
bilization, e.g. Rhie–Chow stabilization for FDM [24,28] or Brezzi–Pitkaranta
stabilization for FEM [5], in this case C �= 0, g �= 0. There exist many different
methods for solving the problem using different approaches. The resulting sys-
tem can be factored to obtain the Schur complement matrix S = C − BA−1BT ,
which can be used to find the variable p. Depending on the way this system is
solved, two approaches are possible:

– Segregated approach: 1. Solve for p = Ŝ−1(g − BA−1f), 2. solve for u =
A−1(f − BT p), each with the iterative method and an appropriate precondi-
tioner, where Ŝ−1 is an approximation to the Schur complement inverse.

– Coupled approach: Solve the whole system Ax = b, usually with the Krylov-
type method and an appropriate preconditioner for the saddle-point system.

The advantages and disadvantages of each approach are discussed in [3,13] in
detail. In this research, we focus on the coupled system solution using different
variants of preconditioners based on the Algebraic Multigrid Method (AMG).
Such methods are efficient and, if correctly constructed, are close to optimal
[12,18,21,27,29] in terms of the number of iterations and grid diameter indepen-
dence. However, there is still no universal preconditioner that can solve a wide
range of different problems, especially for parallel computational architectures.
Such methods can be constructed in two different approaches: separate velocity
and pressure preconditioning using the Schur complement matrix approximation
[15,22] and Vanka-type preconditioning, which can be considered as a global sym-
metric block Gauss–Seidel iteration process over all discretization cells [26]. In
this paper, we focus on the first approach, leaving the description of the Vanka
smoother implementation elsewhere. In this case, the following system is solved:

P−1Ax = P−1b, (2)

where P is the coupled left preconditioning operator. The formulation and inver-
sion of this preconditioner can be done in different ways, including block pressure
correction or bock triangular approaches. On each step, it is necessary to solve
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linear systems for the approximate matrix Ŝ and matrix A, which can be applied
as exact or approximate factorization. In this study, we apply the AMG method.

The computational platform for the AMG method in this research is the
AMGCL library developed by D.Demidov [8,9,11]. Our initial attempt to use
the AMGX library failed [16], and the AMGCL framework was used instead. It
is a header-only template library written in C++, which is very programmer-
friendly and has many implemented features and methods, including GPU sup-
port. The library is also oriented on solving challenging linear systems, includ-
ing Stokes-type systems, see [10]. The results obtained in the cited paper look
promising. However, the idea of the AMGCL implementation is aimed at using
a host-assembled matrix in the CPU memory. All methods constructing AMG
hierarchies, prolongation and restriction operators are based on built-in matrix
arrays that operate on CPU OpenMP or MPI parallel architectures. Hence,
the framework cannot be used in GPU-only mode, where the system matrix
A is stored in the device memory, without intermediate host-device memory
transforms.

The analysis of different preconditioning strategies and approximate Schur
complement matrices is performed. The main question is: Given that computa-
tions on Graphics Processing Units (GPUs) are cheaper and less energy demand-
ing than computations only on Central Processing Units (CPUs), can an efficient
preconditioner be implemented in GPU-only calculation mode? To achieve this
goal, the AMGCL library is modified in order to execute the GPU-only mode
when the matrix is formed in the device memory. The paper is laid out as follows.
First, the problem formulation and different types of approximate Schur com-
plement matrices are considered. Next, the AMG algorithm modifications of the
GPU-only approach are described. Then, test problems and numerical experi-
ments are conducted for different preconditioners and compared with each other
and with the original AMGCL implementation.

2 Problem Formulation

2.1 Discretization and Formulation of Preconditioners

The nondimentionalized Stokes problem in the domain Ω ⊂ R
3 with the piece-

wise smooth Lipschiz boundary δΩ is described by the following system:

−�v + ∇p = f ,

∇ · v = 0,

v|δΩD
= vd,

(∇v − pI) · n|δΩN
= g.

(3)

The vector function v is commonly referred to as the velocity, the scalar function
p as the pressure, the known vector function in the right-hand side f as the source
term, the subscripts D and N represent the Dirichlet and Neumann boundary
conditions, respectively, and the vector n represents the outward normal vector
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on the boundary. This problem, despite being linear, is relatively computation-
ally difficult. The solution pair (v, p) of (3) is not the minimizer of a quadratic
functional, as it would be in the case of an elliptic-type Partial Differential Equa-
tion (PDE), but of a saddle point. The pressure function can be considered as
the Lagrange multiplier for the original diffusive system being subject to the
incompressibility constraint. Assuming that the functions under consideration
are smooth, one can apply discretization to problem (3) to form discrete system
(1). The main target of the research is the solution of linear system (2). The
linear system is solved using the GMRES method, where the action of the pre-
conditioner is supplied via the assembled hierarchies of AMG solvers. The first
preconditioner tested is a block triangular preconditioner, which is applied as
the following composition:

P−1 =
(

A BT

0 Ŝ

)−1

=
(

A−1 −A−1BT Ŝ−1

0 Ŝ−1

)
=

(
A−1 0
0 E

)(
E −BT

0 E

) (
E 0
0 Ŝ−1

)
.

(4)
Each element of the matrix composition is applied using an AMG solver sweep
(single V or W -cycle). The second preconditioner is a variant of the Braess–
Sarazin preconditioner [4], which is applied as the following application:

P−1 =
(

A BT

B 0

)−1

=

⎛
⎝

(
A−1 − A−1BT Ŝ−1BA−1

) (
A−1BT Ŝ−1

)
(
Ŝ−1BA−1

) (
−Ŝ−1

)
⎞
⎠ . (5)

Having the residual vector of the coupled problem r = (ru, rp)T = Ax − b, one
usually applies the pressure solver first and then reuses the result in the velocity
solver to minimize the number of solver applications in (5) as:

Ŝp = BA−1ru − rp

Au = ru − BT p.
(6)

In any case, both preconditioners allow one to apply pressure and velocity
solvers separately. These approaches are implemented in the AMGCL Stokes
preconditioner [10]. For each preconditioner it is necessary to define different
forms of approximate A, Ŝ matrices. In this study, we use the following matrix
approximations. The velocity matrix A is inverted via AMG sweeps using either
V or W cycles.

The Schur complement pressure matrix in its exact form is prohibitively
expensive both in terms of the computation time and device memory occupancy
(due to the usage of the inverted velocity matrix). Instead, we apply two different
strategies to construct the matrix. First, the approximation of Carriere and
Jeandel [7] is used:

Ŝ = B(diag(A))−1BT , (7)

where diag(A) is the diagonal of the velocity matrix A. The preconditioning
with this matrix is applied through a single AMG sweep (V or W cycle) using
the Sparse approximate inverse (SPAI0) [6] or Damped Jacobi smoother, which
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we call SIMPLE amg. Another option is only a single application of the SPAI0
preconditioner formed from this matrix, which we call SIMPLE spai0.

Another variant is the application of a weighted BFBt preconditioner of
Elman [14] based on the concept of approximate commutators. In this case, the
approximation to the inverse Schur complement is formulated as:

Ŝ−1 = (B̃B̃T + C̃)−1B̃ÃB̃T (B̃B̃T + C̃)−1, (8)

where the matrices with tilde are designated as weighted matrices, i.e. C̃ =
CM

−1/2
d , B̃ = BM

−1/2
d , Ã = M

−1/2
d AM

−1/2
d , and Md is the diagonal of the

velocity mass matrix for finite element discretization. In the case of finite differ-
ence discretization, non-scaled matrices are used [14], however, we apply block
diagonal scaling as in [20]. According to our observations, such scaling slightly
increased the convergence speed. The application of this approximate matrix
can be performed in two different strategies. The first one is the application
of a single sweep (V or W cycle) of the AMG preconditioner to each solution
of the B̃B̃T equation, which we call BFBt amg. The other option is the exact
solution of this equation using the GMRES or CG method with the AMG pre-
conditioner, which uses a single sweep with the SPAI0 smoother. We call this
strategy BFBt exact.

2.2 Discretization and Considered Problems

A simple staggered finite difference scheme discretization [19] is used in this
study. Grid functions with indexes (j, k, l) in the (x, y, z) directions, respectively,
are introduced and labeled identically to the continuous functions. Grid functions
will be explicitly identified, if needed, to escape ambiguity. A single block of
variables is formulated as uxj−1/2,k,l, uyj,k−1/2,l, uzj,k,l−1/2, pj,k,l. In this case,
the formed matrix A is a 7-banded scalar matrix, and the matrices B and BT

each have 4 bands. In the case of boundary conditions, where interior walls
present, the diffusion operator is discretized in such a way that the zero value is
prescribed on the boundary of the wall. Inactive cells, where no flow occurs, are
removed from the process of the matrix assembly.

This simple discretization is selected because it allows testing large matrices
with a minimal number of nonzero elements. It is computationally convenient
in a parallel processing and multigrid context since they hold an (almost) iden-
tical degree distribution for both the velocity and pressure and represent the
lowest possible order approximation, which is LBB-stable. Several problems are
formulated to verify the convergence of discrete system (3). Besides, the usage of
some Finite Element discretization would require the application of block matrix
operations, which are not yet implemented in our GPU AMG variant.

Problem 1. Stokes Lid Driven Cavity. The problem is formulated as a
classical 3D lid driven cavity [1]. The aim of the test is to verify the convergence
properties of the method for the problem with singularities in the corners, as
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well as a nontrivial kernel for the Schur complement matrix: ker(S) = span(1).
The domain is set to a unit cube [0, 1]3, zero Dirichlet boundary conditions are
prescribed for the velocity on all plains, except one, where the unit tangential
value is set.

Problem 2. Flow in a Channel with Obstacles. This problem poses some
convergence complications. The part of the internal field (that corresponds to
the internal walls) is excluded from the simulation. We also modify the aspect
ratio of the domain in this problem. The boundary conditions are set as a unit
streamwise pressure gradient and Neumann boundary conditions for the velocity
vector. In other directions, the no-slip condition is set.

Problem 3. Flow in a Porous Medium. The last problem is taken
from https://www.digitalrocksportal.org/projects/374/origin data/1785/ as an
example of a real world application. The problem is a unit cube [0, 1]3, the dis-
cretization of the original problem is 256 points in each direction, the porosity
is 35%. This test verifies the performance and convergence of the method for
a complex real world application. The boundary conditions are the same as for
Problem 2.

3 AMGCL Framework Modifications

The process of the general preconditioned solution of the coupled Stokes sys-
tem can be described by provided Algorithms 1, 2, which are implemented in
AMGCL. The velocity solver is related to the preconditioner used to apply the
system solve on A, and the pressure solver is related to the preconditioner used
to apply the system solve on Ŝ. In this implementation, the coupled system is
solved using the GMRES method with a Krylov subspace size of 20 (parame-
ter R in the solve system call). In each iteration of the GMRES method, a
preconditioner is called; it is applied by either process (4) or (6).

Algorithm 1. Setup phase
1: function setup preconditioner(A, pind)
2: {A, B, BT , C} ← cut matrices(A, pind);
3: divn ← form vector division(pind);
4: U ← form velocity solver(A);
5: P ← form pressure solver(A, B, BT , C);
6: P ← form preconditioner(U, P, divn);
7: return (P);

The implementation of these Algorithms is performed in original AMGCL.
Methods based on (4), (6) and (7) are readily available in AMGCL. We imple-
mented method (8) separately. However, setup phase Algorithm 1 uses CPU

https://www.digitalrocksportal.org/projects/374/origin_data/1785/
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Algorithm 2. Solve phase
1: function solve system(A,P,b, R)
2: x ← gmres(R)(A, P, b);
3: return x;

matrices and performs a matrix copy to the host memory if the original matrix
is located in the GPU device memory. All operations with the formulation of
Schur complement approximates (7) are also performed using CPU matrices.
The stages for building AMG hierarchies (if needed) in form velocity solver
and form pressure solver require the utilization of significantly serial algo-
rithms for amgcl::coarsening::plain aggregates, which are used to con-
struct operators on each level. In addition, some smoothers on the intermediate
levels of AMG are also formed on the CPU only. As a result, according to
Amdahl’s law, the whole speedup is limited to these steps, and can only be
speeded up partially using the OpenMP CPU implementation.

To circumvent this problem, it is necessary to reorganize the whole process of
constructing AMG hierarchies, to specialize additional methods for cuda matrix
classes and implement cut matrices and form vector division methods on
the GPU. Thus, CPU↔GPU memory copies are minimized, and the most time-
consuming operations are executed on the GPU only.

To achieve the goal, we used CUDA C++ and templates extensively, since
the original AMGCL framework heavily relies on template metaprogramming.
The most time-consuming operations during the setup are the construction of
additional matrices, the Schur complement approximation Ŝ and the formulation
of pressure and velocity solvers. In turn, each solver can invoke the construction
of AMG hierarchies, smoothers and prolongation/restriction operators on each
level. The construction of additional matrices is replaced by direct CUDA kernel
invokes, as well as by the process of constructing separate and joint residuals
r ↔ (ru, rp)T using divn in Algorithm 1. The formulation of the preconditioning
approximate matrix Ŝ is performed using the cuda matrix specialization for a
sparse matrix product.

The construction of aggregates cannot be handled so easily. The serial version
available in amgcl::coarsening::plain aggregates cannot be implemented
on the parallel architecture. Instead, an updated version of the Parallel Maxi-
mal Independent Set K (MIS(K)) is implemented, see [2,17]. An independent
set is a set of nodes, in which no two of them are adjacent, and it is a maximal
independent set (MIS) if it is not a subset of any other independent set. The
generalization of MIS is MIS(K), in which the distance between any two inde-
pendent nodes is greater than K, and for every other node there is at least one
independent node that is within the distance less than or equal to K. Hence, the
construction of interpolation operators and smoothing aggregation is performed
on the GPU only using the obtained aggregates from the MIS(K) process. The
whole redesign of the code resulted in a substantial modification of the original
framework. The constructors had to be specified for the GPU-only operation
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through all classes. To obtain the maximum speedup on both the original and
modified variants of the code, one needs to use the latest CUDA Developer
Toolkit, version 11.5, where many functions from the cusparse and cusolver
libraries are optimized. In addition, we used our own implementation of matri-
ces and arrays, taking into account the optimization in terms of memory layout
depending on the device, and the GPU-optimized spECK library [23] to per-
form gemm (sparse matrix – matrix product) operations. These modifications
also boosted the original AMGCL implementation. However, the used spECK
library is not a header only, and it violates the philosophy of original AMGCL.
Nevertheless, in this research, we are more interested in performance than in
design features.

4 Numerical Results

In this section, we present the numerical results obtained by solving the prob-
lems listed above. The following hardware configuration is used: CPU – 2×Intel
Xeon Gold 6248R, totally having 48 cores (96 threads) with 512 GB of ECC host
memory, GPU – Nvidia Tesla V100 with 32 GB of ECC device memory. Double
precision is used in all calculations, no mixed precision was used (which should
boost GPU performance even further). All results presented in the research are
obtained on the hardware listed above. Ten runs of each test configuration were
performed, and mean values were used in all measured tests to obtain statisti-
cally justified results. For some problems, we estimate the mean residual reduc-
tion rate. The residual reduction rate on the n-th iteration is ρn = ‖rn+1‖/‖rn‖,
where n ≥ 1, therefore, the initial residual is excluded. The mean residual reduc-
tion rate is the averaged value ρ = 〈ρn〉.

4.1 Unit Cube Problem

We used a set of matrices from [10] where the testing of the method with an
analytical solution on a unit cube was performed. The target relative residual is
set to 1.0·10−8. The problem has a total dimension of 5.5E5, 2.94E6 and 4.38E6
with 1.43E7, 7.84E7 and 1.17E8 nonzero entries in the matrices, respectively.
This test was chosen since it has a scalar structure, and block matrices are not
yet implemented in our GPU variant. First, an analysis of the optimal number
of OpenMP threads for the original implementation for the used hardware is
carried out. The results are provided in Fig. 1 for the setup and solve phases
of the original AMGCL implementations. These results are obtained for the
Block Triangular preconditioner and the SIMPLE spai0 Schur matrix, the other
variants have the same time ratio distributions. One can observe that the speedup
reverses from 32 to 64 threads, depending on the matrix size. For further tests, we
shall use the best number of OpenMP threads without explicitly demonstrating
this value.
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Fig. 1. Setup and solve wall times for the Unit cube problem for different vector sizes
on the original AMGCL implementation depending on the number of OpenMP threads.
Upper row - CPU, lower row - GPU.

One can also observe in Fig. 1, second row, an obvious bottleneck in the
setup/solve phase ratio for the GPU implementation. This situation only con-
firms the need to implement a GPU-only variant with a full GPU setup phase.

In Fig. 2, upper row, we demonstrate the speedup obtained using the GPU-
only variant of AMGCL compared to the original AMGCL GPU variant. It is
shown that the setup phase was substantially speeded up. For a single core, we
obtained a speedup of 8.29 on the biggest matrix and maximum speedup of 5.1
compared to the 64-core execution with the GPU. The solve phase either did
not change or slightly decelerated with the worst value of 0.92 for the problem
sized 2.94E6 compared to the 64-core original implementation. This is because
we used a smoothed aggregation based on the MIS(K) algorithm instead of the
original aggregation algorithm. As a result, the convergence of the problem to
the preset relative tolerance required 1–2 more iterations. In the lower row in
Fig. 2, we demonstrate the wall time of different preconditioners. It should be
noted that BFBt preconditioners (8) are worse in this problem since the scaling
was empirical as no mass matrices are available for this problem. In total, we
obtained a speedup of about 2.6–2.9 for the largest matrix compared to the best
(OpenMP GPU) original AMGCL implementation. For the pure single-threaded
CPU implementation vs. the pure GPU implementation, we achieved a speedup
of about 22.2 times on this problem against 7.08 times for the original AMGCL
implementations.
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Fig. 2. Upper row: Setup and solve speedup using the new AMG GPU-only implemen-
tation vs. the original AMGCL implementation depending on the number of OpenMP
threads. Lower row: Wall time for the new GPU-only speedup for different precondi-
tioners. The numbers indicate the speedup vs. the best original implementation.

Fig. 3. Wall time in log scale (left) and mean residual reduction rate (right) for Problem
1: bl.tria is block triangular preconditioner (4) and BZ is Braess Sarazin preconditioner
(5).

4.2 Stokes Lid Driven Cavity

We constructed three matrices corresponding to the problem domain sized 503,
1003 and 1503. The total problem sizes are 5.1E5, 4.03E6 and 1.35E7, respec-
tively. The numbers of nonzero elements in the matrices are 6.94E6, 3.27E7 and
1.11E8, respectively. The target relative residual is set to 1.0 · 10−8. The wall
time execution and the mean residual reduction rate are presented in Fig. 3. In
all variants, where applicable, we used the SIMPLE spai0 approximate Schur
matrix formulation as the fastest among those tested.
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One can observe that the new GPU variant for both the block triangular
and Braess Sarazin preconditioners is faster than the best variant of the original
AMGCL implementation (GPU + 64 OpenMP threads) for these precondition-
ers. We obtained a speedup of 1.47, 1.49 for the smallest matrix and 2.92, 3.52
for the largest matrix, respectively. It can be seen that the performance of the
preconditioners in terms of the residual reduction rate is different. The new vari-
ants of the BZ and bl.tria preconditioners based on the MIS(K) aggregates are
slightly worse. The BFBt preconditioner is worse in any variant. This is due to
the nontrivial kernel for the Schur complement matrix. Possible remedies can
be found in the literature and are beyond the scope of this paper, see [14]. The
reduction rate in Fig. 3 on the right indicates that the grid independence was
achieved for all preconditioners. For the GPU variant vs. the single-threaded
CPU variant, we achieved a speedup of about 25.4 times against 8.1 times for
the original AMGCL implementations.

4.3 Flow in a Channel with Obstacles

The problem of a channel with obstacles in different directions is presented with
the domain sized 503, 1003, 1503 and 2003. The obstacles are rotating planes
in different directions that force the flow like a 3D heater, see Fig. 5, left, for
the streamline visualization. The total problem sizes are 1.87E5,1.84E6,6.66E6
and 1.62E7, respectively. The numbers of nonzero elements in the matrices are
1.28E6, 1.41E7, 5.25E7 and 1.29E8, respectively. The target relative residual
is set to 1.0 · 10−8. The resulting wall time execution and the mean residual
reduction rate are presented in Fig. 4.

We observe that only the BFBt-type approximation to the inverse of the
Schur complement matrix is capable of correctly preconditioning the problem.
Only 3 iterations were required for the smallest matrix in the case of the exact
BFBt variant. The grid independence was achieved with a mean reduction rate
of about 0.55–0.58 for the BFBt amg variants. The other preconditioners were
unable to converge for 300 iterations to the desired tolerance and were termi-
nated. In this case, we can compare the original AMGCL implementation and the
new one in terms of speedup for the same number of iterations. In this case, the
GPU-only variant is about 1.3–2.0 times faster than the best AMGCL variant
(GPU + 64 OpenMP threads) for the largest matrix. This is because more iter-
ations were used where the difference in the implementations was not large. For
the GPU variant vs. the single-threaded CPU variant, we achieved a speedup of
about 32.18 times against 18.9 times for the original AMGCL implementations.
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Fig. 4. Wall time in log scale (left) and mean residual reduction rate (right) for
Problem 2: bl.tria is block triangular preconditioner (4) and BZ is Braess Sarazin
preconditioner (5).

4.4 Flow in a Porous Medium

The total size of the problem is 1.96E7, and the matrix has 1.54E8 nonzero
entries. The flow is visualized through the streamlines in Fig. 5, right. The tar-
get relative residual is set to 1.0·10−8. The execution results are brought together
in Table 1. The setup step was speeded up by 5.22 and 4.28 times for the GPU
vs. CPU variants of the original implementation, respectively. The total speedup
is about 1.6–1.8 times since more time was spent on iterations. Again, we can
observe that for this type of problems and scalar matrices, the best variant is
the BFBt amg preconditioner. It can also be seen that since the original aggre-
gation method is essentially serial, the speedup of the setup step in the original
implementation is about 2.5 for 64 threads.

Table 1. Solution data for the problem of flow in a porous medium.

name time setup time solve total time iterations residual < ρ >

BZ gpu 2.68 54.77 57.45 300 6.0E-7 0.97

bl.tria gpu 2.65 30.29 32.94 300 1.7E-6 0.97

bfbt amg gpu 3.46 10.08 13.54 30 7.7E-9 0.58

bfbt exact gpu 3.25 31.06 34.31 35 9.6E-9 0.71

bfbt BZ amg gpu 3.53 11.62 15.15 35 8.7E-9 0.60

bfbt BZ exact gpu 3.21 51.80 55.02 46 7.8E-9 0.76

original BZ gpu 64 13.97 69.46 83.43 300 5.4E-7 0.97

original BZ cpu 64 11.45 297.06 308.51 300 5.4E-7 0.97

original BZ cpu 1 28.22 1,586.05 1,614.27 300 5.4E-7 0.97

original bl.tri gpu 64 12.74 37.73 50.47 300 1.1E-6 0.97

original bl.tri cpu 64 11.34 160.72 172.06 300 1.1E-6 0.97

original bl.tri cpu 1 28.07 1,045.27 1,073.34 300 1.1E-6 0.97
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Fig. 5. Streamlines for Problem 2 (left) and Problem 3 (right).

5 Conclusion

We implemented the GPU-only variant of the aggregation AMG method based
on the AMGCL implementation. To do it, we needed to change the aggrega-
tion algorithm on the parallel version (used MIS(K)) and redesign the whole
library in such a way that no intermediate CPU calculations were required. We
used CUDA C++ together with template programming to achieve this. We also
suggested a scaled variant of the BFBt preconditioner implementation for the
approximate Schur complement matrix inverse. The tests show that the sug-
gested GPU-only variant can be approximately 3–4 times more efficient than
CPU+GPU implementations and about 20–35 times more efficient than the
CPU-only implementations of the original AMGCL framework. This speedup is
obtained mostly due to the setup step, which is speeded up by about 5–7 times
for large matrices compared to the best variant of the AMGCL configuration.
The BFBt preconditioner shows efficient properties for the problems with obsta-
cles. Support for block matrices and multiple GPUs is next to be implemented.
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