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Abstract. To predict emergencies and the irreversible consequences of
human activity, scientists widely use mathematical modeling. In the
event of an emergency, it is important that the time for its elimination
be the shortest. It is necessary to develop effective methods for solving
systems of large-dimensional grid equations with a non-self-adjoint oper-
ator in the numerical solution of hydrophysics and biological kinetics
problems. A large amount of processed information and the complexity
of calculations lead to the need to use computing clusters, which include
video adapters to increase the computing system performance and the
data conversion rate. The research aim is to develop a software module
that implements an algorithm for solving a system of linear algebraic
equations (SLAE) of large dimensions by the modified alternately trian-
gular iterative method (MATM), applicable in heterogeneous computing
systems. The decomposition method of the computational domain in
the three-dimensional case is described. A graph model for organizing a
parallel pipeline computing process focused on heterogeneous computing
systems is proposed. Based on the results of the research, a regression
equation is obtained with a coefficient of determination equal to 0.86.
The parameters of the obtained regression equation are the size of the
CUDA computing block along the Oy axis and the size ratio along the
Ox and Oz axes. The performed numerical experiments show that the
minimum calculation time of one MATM step is achieved with the largest
available value of the CUDA computing block size along the Ox axis.

Keywords: System of linear algebraic equations · Heterogeneous
Computing System · Parallel algorithm

1 Introduction

The prediction of environmental risks allows one to reduce the damage from
adverse situations and emergencies in nature, in particular, in the coastal water
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zone. Research in this area requires the construction of mathematical models
and the study of the influence of various factors on the research object.

Currently, computer modeling is becoming more relevant, it replaces complex
systems and physical models, as well as allows one to predict various phenomena
and processes in nature. Computer modeling is usually based on mathematical
models, the discretization of which leads to large-dimensional SLAEs with self-
adjoint and non-self-adjoint operators. Solving such systems of grid equations
requires a lot of computing capacity.

Both Russian and foreign researchers study the processes occurring in var-
ious reservoirs and water systems. Scientists of the Marchuk Institute of Com-
putational Mathematics of the Russian Academy of Sciences and the Keldysh
Institute of Applied Mathematics are engaged in the analysis and modeling of
complex systems (in ecology, environment, etc.), modeling of hydrodynamic pro-
cesses, and forecasting of climate changes in the world ocean. Studies on modeling
hydrophysical processes are performed on the example of the Azov Sea under
the leadership of G.G. Matishov. Mathematical models of sea level dynamics are
described in the papers of A. Bonaduce, J. Staneva [1]. Scientists P. Marchesiello
[2], A. Androsov [3], etc. are engaged in improving the ocean models. The existing
standard software often includes simplified mathematical models that do not take
into account the spatially inhomogeneous water transport, and have insufficient
accuracy in modeling the vortex structures of water flow currents, shore and bot-
tom topography [1–4]. The actual direction of improving software systems is the
development of parallel algorithms executed on both the CPU (Central Process-
ing Unit) and the GPU (Graphics Processing Unit). Scientists Weicheng Xue and
Christopher J. Roy are engaged in research related to optimizing computing per-
formance at solving fluid dynamics problems on multiple GPUs, improving the
performance of multi-GPUs on structured grids. In their work, the use of GPUs
improves the performance by 30–70 times [5,6]. Researchers Taku Nagatake and
Tomoaki Kunugi analyze the possibility of using the GPU to accelerate the calcu-
lation of multiphase flows. They determine that the calculation time on the GPU
(single GTX280) is about 4 times faster than the calculation time on the CPU
(Xeon 5040, 4 parallelized threads) [7]. David J. Munk and Timoleon Kipouros
describe the acceleration of the optimization process of multi-physical topology
on the GPU architecture [8].

To increase the efficiency of using GPU computing resources, we propose
an algorithm and a software module that implements it, which allows using
functions from the NVIDIA CUDA library to select the optimal solution for a
large-dimensional SLAE in the case of self-adjoint and non-self-adjoint operators.
The developed software tools make it possible to more efficiently utilize the
heterogeneous computing system resources used to computationally solve spatial
and three-dimensional problems of hydrophysics.
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2 Method for Solving Grid Equations

It becomes necessary to solve a high-dimensional SLAE in the mathematical
modeling process of hydrodynamics and hydrobiology problems

Ax = f, (1)

where A is the linear, positive definite operator (A > 0) in the finite-dimensional
Hilbert space H.

To solve SLAE (1) by iterative methods, the canonical form is used [9,10]

B
xm+1 − xm

τm+1
+ Axm = f, (2)

where m is the iteration number, τm+1 > 0 is the iteration parameter, B is the
preconditioner, which is formed as follows

B = (D + ωR1) D−1 (D + ωR2) ,D = D∗ > 0, ω > 0, (3)

where D is the diagonal operator, R1, R2 are the lower- and upper-triangular
operators, respectively.

MATM calculation steps:

1. Calculation of the residual vector

rm = Axm − f.

2. Calculation of the correction vector wm

B(ωm)wm = rm.

3. Calculation of the convergence rate of the method

s2m = 1 − (A0w
m, wm)2

(B−1A0wm) (Bwm, wm)
.

4. Calculation of the ratio of the norm of the skew-symmetric part of the
operator to the norm of the symmetric part

k2
m =

(
B−1A1w

m, A1w
m

)

(B−1A0wm, A0wm)
,

5. Calculation of the coefficient θm

θm =
1 −

√
s2mk2

m

(1+k2
m)

1 + k2
m (1 − s2m)

.

6. Calculation of the iteration parameter

τm+1 = θm
(A0w

m, wm)
(B−1A0wm, A0wm)

.
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7. Recalculation of the vector x at the next iteration

xm+1 = xm − τm+1w
m.

8. Recalculation of the coefficient ω at the next iteration

ωm+1 =

√
(Dwm, wm)

(D−1R2wm, R2wm)
.

3 Software Implementation of the Method for Solving
Grid Equations

The software implementation of the MATM for solving high-dimensional SLAEs
is based on the developed parallel algorithms that implement a pipeline comput-
ing process. The use of these algorithms allows one to fully utilize all available
computing resources, including high-performance graphics accelerators. A dis-
tinctive feature of the proposed algorithms is the possibility of using calculators
with different performance. This allows one to organize distributed computing
using different models of central processing units (CPUs) on different nodes and
even different video accelerators (GPUs) inside a separate compute node. The
software implementation enables to indicate the number and technical charac-
teristics of the CPU and GPU at the initial stage of the decomposition of the
computational grid for each compute node of the cluster. For each CPU, the
number of cores is set. For the GPU, the number of streaming multiprocessors is
specified. Calculations are performed on the K60 hybrid supercomputer installed
at the Supercomputer Centre of Collective Usage of KIAM RAS.

In the process of solving computational problems, it is necessary to dynami-
cally distribute the computational load between dissimilar computers. Therefore,
a class library is developed in C++, it allows describing the structure and hard-
ware of a computing cluster. The class library contains the following classes:

– ComputingCluster, describes the structure of a computing cluster. Stores
objects describing compute nodes in the std::map container. The class imple-
ments a number of auxiliary methods that allow one to manage the list of
compute nodes, to determine the total performance of the cluster and display
detailed information about it.

– ComputingNode, describes the structure and characteristics of a compute
node. The methods of the class allow one to manage the list of computing
devices, to determine the total performance and the size of the random access
memory of the compute node.

– ComputingDevice is an abstract class that describes the general characteris-
tics of computing devices located in a separate compute node of a cluster.

– ComputingDeviceCPU, a heir of the abstract ComputingDevice class, describ-
ing the characteristics of the CPU.

– ComputingDeviceGPU, a heir of the abstract ComputingDevice class,
describing the characteristics of the GPU.
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A multi-threaded computing process is controlled by an algorithm that allows
each node to manage all available program threads (calculators) running on
both the CPU and GPU. Each calculator handles only for its own fragment of
the computational domain. For this, the computational domain is divided into
subdomains assigned to individual compute nodes (Fig. 1). Next, each subdo-
main is divided into blocks assigned to each computing device (CPU or GPU).
After that, each block is divided into fragments assigned to calculators (CPU
cores and GPU streaming multiprocessors). Notations in Fig. 1: Node1, Node2,
Node3 are compute nodes; Device1, Device2, Device3 are blocks of the compu-
tational domain calculated on separate computing devices of the node. Thread1,
Thread2, Thread3, Thread4 are fragment arrays of the computational domain
calculated by separate threads of the computing device.

Fig. 1. Computational domain fragments distribution across the compute nodes,
devices and threads

The subdivision of subdomains into fragments mapped to each calculator
inside a separate compute node is performed as follows: the number of frag-
ments of the computational domain along the Oz axis is selected as the smallest
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common multiple of the optimal dimensions of CUDA computing blocks for all
video accelerators involved in the cluster (Fig. 2). In Fig. 2, Nv is the calculator
index; Nx is the number of nodes of the computational domain on the Ox axis;
Ny0, Ny1, Ny2, Ny3 is the number of nodes of the computational domain on
the Oy axis for the calculator with indexes 0, 1, 2 and 3, respectively; z is the
layer index on the Oz axis; s is the index of the pipeline calculation stage. The
number of fragments of the computational domain on the Ox axis in the block
(Nx) is selected in such a way that their number is greater than the number of
calculators in the cluster, and they are the same. The number of fragments of
the computational domain along the Oy axis in the block is selected so that the
calculation time of each block by different calculators is approximately the same.
For this, a series of experiments is preperformed to calculate the performance of
calculators, which is the 95th percentile of the calculation time in terms of 1000
nodes of the computational grid.

The fragments of the computational domain processed in parallel are high-
lighted in gray. Note that the calculator index coincides with the fragment index
of the computational domain on the Oy axis.

A graph model is used to describe the relationships between the adjacent
fragments of the computational grid and the organization of a pipeline calcula-
tion process (Fig. 3). Each graph node is an object of a class that describes a
fragment of the computational domain. This class contains the following fields:
the dimensions of the fragment along the Ox, Oy, and Oz axes, the index of the
zero node of the fragment in the global computational domain, pointers to the
adjacent fragments of the computational grid, and pointers to the objects that
describe the parameters of the calculators. The computational process is a graph
traversal from the root node with a parallel launch of calculators that process
the graph nodes in accordance with the value of the calculation step counter
s = ki + j.

An algorithm and its program implementation in the CUDA C language are
developed to improve the calculation efficiency of computational grid fragments
assigned to graphics accelerators [12–16].

A fragment of the algorithm for solving a SLAE with a lower triangular
matrix contains the following steps:

1. Computation of global thread indexes

tdX = bkDim.x · bkIdx.x + tdIdx.x;

tdZ = bkDim.z · bkIdx.z + tIdx.z.

2. Calculation of the indexes of the row, layer and initialization of the counter
by the coordinate (variable) processed by the current thread

i = tdX + 1; k = tdZ + 1; j = 1.

3. Initialization of the loop parameter for calculating the residual vector:
s = 3.
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Fig. 2. Decomposition of the computational subdomain calculated by a separate com-
pute node with the organization of a parallel pipeline computing process

4. Calculation of the indexes of the nodes of a seven-point grid pattern

mIdx0 = i + (bkDim.x + 1) · j + n1 · n2 · k;

mIdx2 = mIdx0 − 1;

mIdx4 = mIdx0 − n1;

mIdx6 = mIdx0 − n1 · n2.

5. Initialization of the residual vector value at the template point mIdx4 = 0.
6. Checking the condition (s > 3 + tdX + tdZ) for calculating the value of

the residual vector at the template point mIdx4. If the condition is met,
then rmIdx4 = cmem[tdX][tdZ]. Otherwise, rmIdx4 = r[mIdx4].

7. Initialization of the residual vector value at the template point mIdx2 = 0.
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Fig. 3. Graph model that describes the relationships between the adjacent fragments
of the computational grid and the process of pipeline calculation

8. Checking the condition (tdX �= 0)∧(s > 3+tdX+tdZ) for calculating the
value of the residual vector at the template point mIdx2. If the condition is
met, then rmIdx2 = cmem[tdX−1][tdZ]. Otherwise, rmIdx2 = r[mIdx2].

9. Initialization of the residual vector value at the template point mIdx6 = 0.
10. Checking the condition (tdZ �= 0)∧(s > 3+tdX +tdZ) for calculating the

value of the residual vector at the template point mIdx6. If the condition is
met, then rmIdx6 = cmem[tdX][tdZ−1]. Otherwise, rmIdx6 = r[mIdx6].

11. Calculation of the value of the residual vector at the central point of the
seven-point pattern mIdx0

rmIdx0 = (ω · (ksu2[mIdx0] · rmIdx2 + ksu4[mIdx0] · rmIdx4+

+ksu6[m0] · rmIdx6) + r[mIdx0])/((0.5 · ω + 1) · ksu0[mIdx0]);

cmem[tdX][tdZ] ← rmIdx0;

r[mIdx0] ← rmIdx0.

12. Transition to the next node of the computational grid along the coordinate
y: j = j + 1.



Solving Grid Equations on a Heterogeneous Computing System 81

13. Assigning the loop parameter to the next value s = s + 1.
14. Checking the exit condition from the loop s ≤ n1 + n2 + n3 − 3. If the

condition is true, then the transition to step 4 is performed; otherwise,
the algorithm exits.

The conducted studies show a significant dependence of the algorithm imple-
mentation time for calculating the preconditioner on the ratio of threads in
spatial coordinates.

The GeForce GTX 1650 video adapter is used in experimental studies. It has
4 GB of video memory, a core and memory clock frequency of 1485 MHz and 8000
MHz, respectively, and a video memory bus bit rate of 128 bits. The computing
part consists of 56 texture processor clusters (TPC) with 2 multiprocessors (SM)
in each. Each multiprocessor contains 8 streaming processors (SP) or CUDA
cores. Therefore, the number of CUDA cores for the GeForce GTX 1650 video
adapter is 896.

The purpose of the experiment is to determine the distribution of flows along
the Ox and Oz axes of the computational grid at different values of its nodes
along the Oy axis so that the implementation time on the GPU of one MATM
step is minimal. Two values are taken as factors: k = X/Z is the ratio of the
number of threads on the Ox, (X) axis to the number of threads on the Oz,
(Z) axis; Y is the number of threads on the Oy axis. Values of the objective
function: TGPU is the implementation time of one MATM step on the GPU in
terms of 1000 nodes of the computational grid, ms. The multiply of threads X
and Z must not exceed 640 – the number of threads in a single block. Therefore,
the levels of variation of the values X and Z are chosen taking into account
CUDA limitations. For example, the number of threads on the Oy axis varies in
the range [1000, 30000]. Experimental data analysis for the factor values X = 1,
Z = 640 and X = 640, Z = 1 shows that the allocated memory is not used
when calculating the objective function at the specified points. Therefore, these
points must be excluded from regression analysis.

The regression equation is obtained as a result of experimental data
processing:

TGPU = a − b · Y − c · ln(k) − d · ln(Y ), (4)

where TGPU is the implementation time of one MATM step on the GPU in
terms of 1000 nodes of the computational grid, ms. The determination coefficient
is 0.86; a = 0.026; b = 0.0000002; c = 0.00016; d = 0.00077. The graph of the
objective function is given in Fig. 4.

The analysis of the graph, constructed according to equation (6), shows a
slowdown in the calculation speed at k < 10 and Y < 1000, which is explained
in this case by the inefficient use of the distributed memory of the graphics
accelerator (Fig. 4).

As a result of experimental data analysis, it is found that the shortest imple-
mentation time of one MATM step in terms of 1000 nodes of the computa-
tional grid on the GeForce GTX 1650 video adapter will be obtained with the
largest number of threads along the Oy axis and the highest coefficient value k.
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Fig. 4. Surface of the response function TGPU = f(k, Y )

The implementation time of one MATM step in terms of 1000 nodes of the
computational grid on the GeForce GTX 1650 video adapter is inversely propor-
tional to the number of computational grid nodes on the Oz axis, i.e., with an
increase in the number of nodes on the Oz axis, the calculation time decreases.
The highest value of the coefficient k is achieved when the number of threads
on the Ox axis increases, and the number of threads on the Oz axis decreases.
Therefore, it is advisable to perform the decomposition of the computational
domain in the form of parallelepipeds, in which the size on the Oz axis is mini-
mal, and on the Ox axis is maximal. The choice of the decomposition method of
the computational domain in the form of parallelepipeds must be made taking
into account the architecture of the video adapter.

When developing a parallel algorithm that implements the pipeline process
of computations, it is necessary to take into account the amount of data trans-
mitted between compute nodes, i.e., the size of the transmitted plane (number
of elements in the plane). To dynamically determine the size of the transmitted
plane, it is necessary to determine the functional dependence of the time spent
on transferring data between compute nodes on the size of the transmitted plane.
The resulting dependence will make it possible to obtain such a decomposition
of the computational domain that will reduce the execution time of the entire
parallel algorithm.

The purpose of the experiment is to determine the functional dependence of
the data transfer time between compute nodes on the number of elements in the
transmitted plane. The number of elements in the plane is taken as a factor V .
The value of the objective function Time, ms is the time of transmitting the
number of elements V .

To determine the dependence of the time of data transmission between com-
pute nodes on the number of transmitted elements, an algorithm and its software
implementation in the C language are developed. The program considers three
ranges of dimensions of the transmitted plane: V ∈ [1; 100] with a step of 1,
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V ∈ [100; 10000] with a step of 100 elements, and V ∈ [10000; 1000000] with a
step of 10,000 elements.

The developed algorithm is tested on the main computing resource of the
Keldysh Institute of Applied Mathematics, namely, the K-60 computing cluster.
The specified cluster consists of two sections – one without graphics accelerators
k60.kiam.ru, the other with graphics accelerators k60gpu.kiam.ru. The hardware
of the GPU section consists of 10 compute nodes. Each node is a dual-processor
server with the following characteristics: 2 x Intel Xeon Gold 6142 v4 processors
(16 x cores), 4 x nVidia Volta GV100GL GPU, 768 GB RAM, 2 TB disk.

As a result of processing experimental data for the range of dimensions of
the transmitted plane from 10,000 to 1,000,000 elements, a regression equation
is obtained:

T = a + bV, (5)

where T is the time of transmitting the number of V elements, ms. The deter-
mination coefficient is 0.995; a = 278.72; b = 0.038.

The resulting functional dependence is used by the decomposition algorithm
to dynamically determine the dimensions of the plane transmitted between com-
pute nodes.

4 Conclusions

As a result of the conducted research, an algorithm and a software module
implementing it, designed to solve SLAEs that arise during the discretization
of spatial-three-dimensional model problems of mathematical physics using the
MATM, are developed.

A graph model that makes it possible to organize a parallel pipeline com-
puting process on the GPU, designed to solve systems of large-dimensional grid
equations, is proposed.

It is established that the shortest implementation time of one MATM step per
1000 nodes of the computational grid on the GeForce GTX 1650 video adapter
will be obtained with the largest number of threads on the Oy axis and the
highest value of the coefficient k, directly proportional to the number of threads,
on the Ox axis. The optimal decomposition method for the three-dimensional
computational grid with the number of nodes up to 1011 and the time layers
number from 104 and more, if we focus on the limitations of computational
stability and accuracy of discrete models, applicable to the GPU, is described.
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