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Abstract. Iterative methods for solving systems of linear algebraic
equations with high-order sparse matrices that arise in absolutely sta-
ble implicit finite-volume approximations of three-dimensional initial-
boundary value problems for the heat and mass transfer equation on
unstructured grids in computational domains with a complex configura-
tion of multiply connected piecewise smooth boundary surfaces and con-
trasting material properties are considered. At each time step, algebraic
systems are solved using parallel preconditioned algorithms for conju-
gate directions in Krylov subspaces. To speed up the iterative processes,
variational methods for choosing initial approximations are applied using
numerical solutions from previous time steps. It is discussed how the pro-
posed approaches can be more general formulations of problems, as well as
how to increase the productivity of computational methods and technolo-
gies in the multiple solution of algebraic systems with sequentially deter-
mined different right-hand sides and with the scalable parallelization of
algorithms based on the additive methods of domain decomposition. The
efficiency of the proposed approaches is investigated for the implicit Euler
and Crank–Nicholson schemes based on the results of numerical experi-
ments on a representative series of methodological problems.

Keywords: initial-boundary value problem · implicit schemes ·
iterative processes · Krylov subspaces · least squares method ·
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1 Introduction

The numerical solution of multidimensional initial-boundary value problems for
partial differential equations of parabolic type is an urgent practical problem in
the mathematical modeling of processes and phenomena in many applications,
including interdisciplinary ones [7]. A typical example is non-isothermal multi-
phase filtration [11] in porous media with different-scale geometric and material
characteristics. Modern numerical algorithms and technologies for solving the
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considered computational problems of thermal conductivity are presented, for
example, in [1,3,10,13–15]. Implicit approximations of the original statements
on adaptive unstructured grids, necessary to ensure the absolute stability of
numerical integration in time and high-resolution calculations, require the con-
struction of high-performance algorithms for multiprocessor computing systems
(MCS). The most resource-intensive stage here is the solution of systems of linear
algebraic equations (SLAEs), which take up to 80 % and more computer time
when implementing non-stationary and nonlinear models, since at this stage the
volume of arithmetic operations performed grows nonlinearly with an increase in
the number of degrees of freedom. An existing technological feature of algorithms
for solving problems with real data is the storage of matrices of large algebraic
systems (with orders 108 − 1010 and higher) in sparse compressed formats.

The purpose of this work is to analyze the features of the application of
parallel preconditioned iterative methods in Krylov subspaces in relation to a
three-dimensional linear initial-boundary value problem with mixed-type bound-
ary conditions for a non-stationary heat equation. It should be noted that in
classical iterative processes, algorithms that converge regardless of the nature
of the initial approximation are studied. The main emphasis in our studies is
placed on the choice of initial approximations, which make it possible to sig-
nificantly reduce the number of iterations when solving the SLAE at each time
level, due to the use of the results obtained at the previous steps. In contrast to
the approximation approaches in common methods of predictor-corrector type
[8], we propose a variational algebraic principle based on minimizing the initial
residual. Incomplete factorization methods in Krylov subspaces are used as iter-
ative solvers. Solvable algebraic systems are formed using barycentric finite vol-
ume methods on a tetrahedral grid, described in [3]. For approximation in time,
parametrized two-layer schemes are used, with an emphasis on the implicit Euler
and Crank–Nicholson schemes (for further research, the discontinuous Galerkin
methods of various orders of accuracy in space and time proposed in [2] are of
considerable interest). We also discuss a possible generalization of the results
to the solution of initial-boundary value problems in the presence of convection
and/or nonlinearity, as well as the possibility of accelerating computations when
repeatedly solving SLAEs with different right-hand sides and using the paral-
lelization of algorithms based on the additive method of domain decomposition,
see [4,6,9].

The present work is structured as follows. Section 2 describes the features of
the continuous and discrete formulations of the problems under consideration,
including the study of the stability and additional error of the grid solution due
to the approximate nature of the iterative implementation of implicit schemes.
Section 3 is devoted to the presentation of the proposed parallel iterative algo-
rithms with the analysis of different approaches to the choice of initial approx-
imations at different time steps. Section 4 presents the results of experimental
studies of the effectiveness of algorithms based on the results of calculations for a
series of methodological problems. In conclusion, the results obtained and plans
for further research are discussed.
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2 Continuous and Discrete Problem Setting

Consider the formulation of the three-dimensional initial-boundary value prob-
lem of heat conduction in the computational domain

(x, y, z, t) ∈ Ω × [0, T ], Ω ∈ R3, T ∈ R1,

with a piecewise smooth boundary Γ , in general, multiply connected, and a
closure Ω = Ω ∪ Γ . The heat conduction equation can be written as

c
∂u

∂t
= div(λ · gradu) + f(x, y, z, t), (1)

where λ is the thermal conductivity coefficient, c is the heat capacity coefficient,
and f(x, y, z, t) is the continuous sufficiently smooth source function. On different
sections of the boundary ΓD and ΓN , ΓD ∪ΓN = Γ , the Dirichlet and Neumann
boundary conditions are imposed on the sought solution, respectively:

u|ΓD
= uD(x, y, z, t), λ

∂u

∂n

∣
∣
∣
∣
ΓN

= σN (x, y, z, t). (2)

Here uD and σN are the given functions of temperature and heat flux dis-
tribution. Relations (1), (2) are supplemented by the initial conditions for
(x, y, z) ∈ Ω:

u(x, y, z, 0) = u0(x, y, z). (3)

We assume that the initial data of problem (1)–(3) have properties that ensure
the existence, uniqueness, and sufficient smoothness of the solution necessary to
justify the approximation, stability, and convergence of the approximate methods
used below for solving the initial-boundary value problem.

Relations (1)–(3) are approximated on the space-time grid Ωh × Ωτ , where
the time steps are generally different, i.e.,

Ωτ = {tn+1 = tn + τn, n = 0, 1, · · · , Nt},

and the spatial mesh with the number of nodes Nh is adaptive and unstructured.
For simplicity, we consider it static, i.e., not changing over time. The process of
discretizing the initial continuous statement is carried out in two stages. First,
using the barycentric finite volume method [3], we approximate the partial dif-
ferential equation and boundary conditions, as a result of which we obtain a
system of ordinary differential equations (ODEs)

Ch
d(u)h

dt
+ Ah(u)h = gh + ψh,

uh, gh, ψh ∈ �Nh , Ch, Ah ∈ �Nh,Nh

(4)

where (u)h = {uk(t)} is the vector of values of the desired solution at grid nodes,
ψh is the spatial approximation error, and Ch and Ah are some independent from
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time to time symmetric matrices, traditionally called mass and stiffness matrices,
respectively, see [7]. At the second stage, we approximate the ODE system using
the parameterized one-step scheme

Ch((u)n+1−(u)n) = τn[θ(gn+1−Ah(u)n+1)+(1−θ)(gn−Ah(u)n)+ψh
n+ψτ

n]. (5)

Here (u)n = {uk(tn)} are the vectors of exact values of the sought solution at
the nodes of the space-time grid, θ ∈ [0, 1] is the parameter of the approximating
scheme, and ψτ = O(τγ) is the time approximation error vector (γ = 2 for θ = 1

2
and γ = 1 for the rest cases). Note that the algorithms defined by relation (4)
for θ = 1

2 , 0, 1 are called Crank–Nicholson, explicit Euler and “strictly implicit”
Euler schemes, respectively. Discarding the approximation terms ψh

n and ψτ
n

in (4), we arrive at a system of linear algebraic equations for the vectors of
approximate grid solutions un = {un

k}:

(Ch + θτnAh)un+1 = (Ch − (1 − θ)τnAh)un + τngn+θ,

gn+θ = τn(θgn+1 + (1 − θ)gn).
(6)

It is noteworthy that if at each n-th time step SLAE (3) is solved approx-
imately using some iterative process, then un+1 is replaced by the iterative
approximation ũn+1, for which the residual vector is determined

rn+1 = gn+θ + τ−1
n (Ch − (1 − θ)τnAh)ũn − (Ch + θτnAh)ũn+1 (7)

As shown in [10], for θ ≥ 1/2 and a sufficiently small residual norm ‖rn+1‖
for the implicit schemes under consideration, the absolute stability of numerical
integration with respect to time follows.

In this paper, we restrict ourselves to considering the simplest approxima-
tions in time, which can be called one-stage Runge-Kutta (R-K) methods. More
accurate approximations can be built using multistage R-K algorithms, both
explicit and implicit, see [8].

3 Methods for Solving SLAEs in Implicit Schemes

System of equations (6), solved at each time step, can be rewritten as

Aun+1 = f
n+1

, n = 0, 1, · · · , Nt,

A = Ch + θτnAh, f
n+1

= τngn+1 + (Ch − (1 − θ)τnAh)un.
(8)

It is natural to solve SLAE (8) for θ > 0 using iterative algorithms for two
reasons. The first is related to the spectral properties of the matrix A. Since
for the most common spatial approximations considered by us, the mass matrix
Ch has eigenvalues ν = O(1), i.e., independent of the characteristic mesh steps
tau, h, and the eigenvalues of the stiffness matrix Ah lie in the interval λ ∈
[λ1, λN ], λ1 = O(1), λN = O(h−2), see [7], for the eigenvalues of the matrix
A we obtain the following relations:

μ(A) ∈ [μ1, μN ], μ1 = O(1), μN = O(1 + θτh−2). (9)
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Hence, for the corresponding condition number, we have
cond(A) = maxk{μk}

mink{μk} = O(θτh−2), which for small values of τ means a suffi-
ciently fast convergence of iterations.

The second feature of the problems under consideration is that when solving
the SLAE at the current time step, the previous solutions are already known,
which can be used to find a good initial approximation and reduce the number
of iterations. Let us describe some possible approaches here.

3.1 Choice of an Initial Approximation for Solving a SLAE

a) The simplest trick is to choose an arbitrary initial approximation, for exam-
ple un+1,0 = 0. However, this means that the specifics of the initial-boundary
value problem being solved is not taken into account in any way.

b) The most natural way is to put un+1,0 = un, which formally means the use
of zero-order interpolation (we denote this approach by I0). This approxi-
mation principle can be generalized to higher orders if one remembers the
solutions un−1, un−2, · · · from the previous time steps. For example, using
linear extrapolation gives

un+1,0 = un + (un − un−1)τn/τn−1. (10)

c) The predictor-corrector method [8], which is implemented in two stages, is
widespread, especially when solving ordinary differential equations. At the
first stage, a preliminary (prognostic) approximation is calculated, for which,
in fact, the explicit scheme obtained from (6) is used for θ = 0:

ûn+1 = C−1
h [(Ch − τnAh)un + τngn]. (11)

At the second stage, the calculated value is corrected with the determination
of the initial approximation by the formula

un+1,1 = C−1
h [(Ch − (1 − θ)τnAh)un + τngn+ 1

2 − θτnAhûn+1]. (12)

Obviously, procedure (14) can be interpreted as the application of a simple
iteration algorithm. This correction can be repeated any given number of m
times, resulting in a method denoted as PCm (PC for m = 1):

ûn+1,k = C−1
h [(Ch − (1 − θ)τnAh)un + τngn+1 − θτnAhûn+1,k−1],

k = 1, · · · ,m; ûn+1,0 = ûn+1; un+1,0 = ûn+1,m.
(13)

Obviously, for sufficiently small τn, this iterative process converges, but
slowly. If we formally restrict ourselves here to the case m = 0, i.e., no
correction, and set un+1,0 = ûn+1, then we denote this method as P. Note
also that the PCm methods can be applied both for the Crank–Nicholson
schemes, and for the implicit Euler method (θ = 1

2 , 1, respectively), but
these, naturally, will be different algorithms. It is important to bear in mind
that predictor-corrector methods are traditionally used without iterative
refinement.
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d) Reducing the number of iterations at each time step can be ensured if fast
preconditioned methods in Krylov subspaces are used to solve SLAE (5),
and the initial approximation un+1,0 is determined not from approxima-
tion, but from optimization algebraic approaches. For example, in the PC
method, instead of correction stage (14), one can use a linear combination
of the vectors un, ûn+1 according to the condition of minimizing the initial
discrepancy rn+1,0 = f

n+1 − Aun+1,0, determined from equation (10):

un+1,0 = un + cvn, vn = ûn+1 − un,

rn+1,0 = rn − cAvn, c =
(rn, Avn)

(Avn, Avn)
.

(14)

Note that in this case, the condition A, the orthogonalization of the vec-
tors rn+1,0 and vn, is satisfied, i.e., (rn+1,0, Avn) = 0. Since formulas (16)
implement the simplest version of the least squares method, the correspond-
ing algorithm is further denoted as P-LSM1. It can be generalized in an
obvious way if in formulas (16) the vector ûn+1 is replaced by ûn+1,m from
(15), obtained after m corrections, which formally defines the PC m -LSM1
method.

e) The natural development of the considered least squares method is an
increase in the number of solutions stored and used to select un+1,0 from
the previous time steps un−1, · · · , un−s. We describe this algorithm without
using a predictor, denoting it as LSMs:

un+1,0 = un + c1v
n
1 + · · · + csv

n
s = un + Vn�c,

�c = (c1, . . . , cs)T , Vn = (vn
1 , . . . , vn

s ) ∈ �N,s,

rn+1,0 = rn − Wn�c, Wn = AVn.

(15)

Here the vectors vk, k = 1, . . . , n, can be defined in different ways as the
differences of the already calculated approximations. For example, in the P-
LSM2 method considered further in Sect. 4, we define v1 = ûn+1−un, v2 =
un−1−un. Hence, we obtain that the minimization of the norms ‖rn+1,0‖2 is
equivalent to the orthogonality relation WT

n rn+1,0 = 0. This formally leads
to the problem of calculating the normal solution of the overdetermined joint
algebraic system Wn�c = rn:

B�c ≡ WT
n Wn�c = WT

n rn, �c = (WT
n Wn)+WT

n rn, B ∈ �s,s. (16)

Here B+ means the generalized inverse matrix [12], which in this case coin-
cides with the inverse matrix B−1, if Wn has full rank, which means the linear
independence of the vectors vn

1 , . . . , vn
s . It should be noted that instead of

(18), to determine the vector �c, one can use the relations obtained from the
orthogonality condition
V T

n rn+1,0 = 0:

Ã�c ≡ V T
n AVn�c = V T

n rn, �c = Ã+V T
n rn. (17)
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Moreover, the matrix Ã ∈ �s,s is called a low-rank approximation to A.
After calculating the vector �c by formulas (18) or (19) (the question of their
preference is still open), the initial approximation is determined from (17).

3.2 Iterative Algorithms for Implicit Schemes

We represent the matrix of system of equations (8) as the sum A = D + L +
U , where D, L and U are the diagonal (or block-diagonal), lower and upper
triangular matrices, respectively. Following the method of symmetric sequential
upper relaxation SSOR (or its block version BSSOR, see [5]), or incomplete
factorization, to speed up iterations at each time step, we define preconditioning
matrices:

B = B̌B̂, B̌−1 = Ǧ(G + L)−1, B̂−1 = (G + U)−1Ǧ, G = ǦĜ. (18)

Here G, Ǧ, Ĝ are the easily invertible matrices selected for the optimization of
the algorithm. In the simplest case, when D is a diagonal positive definite matrix,
it is assumed

Ĝ
1
2 = Ǧ

1
2 = G = ω−1D, (19)

where ω ∈ [1, 2) is the upper relaxation parameter.
Consider Aizenshtat’s modification for two-way SSOR preconditioning in the

following form:

Ãũ ≡ B̌−1ǦAǦ−1B̂−1B̂−1ũB̂ = f̃ ≡ B̌−1f, ũ = B̂u. (20)

Then the matrix of the preconditioned SLAE is written as

Ã = (I + L)−1 + (I + Ũ)−1 + (I + L)−1(D̃ − 2I)(I + Ũ)−1,

D̃ = Ĝ−1DǦ−1, L = Ĝ−1LǦ−1, Ũ = Ĝ−1UǦ−1.
(21)

Here, for the parameter ω from (21) selected from the condition of approximate
minimization of the condition number cond(Ã), the following formula demon-
strates good practical results, confirmed in the simplest cases by theoretical
estimates:

ω = b −
√

b2 − 4ab

2a
, a = (LD−1Ue, e), b = (De, e), (22)

where e = (1, . . . , 1)T is the vector with unit components. The corresponding
approach, according to [5], will be called the incomplete Aizenshtat factorization
IFE. Its distinguishing feature is the efficiency of implementing each iteration,
since the multiplication of a vector by the matrix Ã by the formula

Ãv = (I + L̃)−1[v + (D − 2I)w] + w, w = (I + Ũ)−1v (23)

requires almost as many arithmetic operations as multiplying by the original
matrix A.
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To solve preconditioned algebraic system (22), consider the iterative process
of conjugate directions (see [5])

p0 = r0 = f̃ − Ãu0, n = 0, 1, · · · :

un+1 = un + anpn, rn+1 = rn − anÃpn,
(24)

where u0 is the arbitrary initial approximation, rn is the residual vector, and
pn are the direction vectors with respect to which we assume that the following
orthogonalization conditions are satisfied:

(Aγpk, Apn) = ρnδk,n, ρn = (Aγpn, Apn), (25)

where δk,n is the Kronecker symbol and γ = 0, 1 for the conjugate gradient and
conjugate residual methods, respectively. It is easy to check that when deter-
mining in (26) the iterative parameters by the formula

ak = (r0, Aγpk)/ρn, k = 0, 1, . . . , n, (26)

residual functionals ψn
γ = (A

γ−1
rn+1, rn+1) are minimized in Krylov subspaces

Kn+1(p0, Ã) = Span{p0, Ãp0, . . . , Ãnp0}. (27)

Due to the symmetry of the matrix Ã, orthogonality conditions (27) are satisfied
if the direction vectors are determined using the two-term recursion

pn+1 = rn+1 + βnpn = σn+1/σn, σn = (Aγrn, rn), (28)

in this case, it is expedient to calculate the iterative parameters αn instead of
(26) by the formula αn = σn/ρn. The criterion for the termination of iterations
is the fulfillment of the condition

‖rn+1‖22 = (rn+1, rn+1) ≤ ε2(f̃ , f̃), (29)

where ε << 1 is the priori given value, the optimal definition of which, strictly
speaking, requires a special analysis of the final error of the numerical solution
in accordance with formula (9). The number of iterations n(ε) required to satisfy
condition (31) is determined by the inequality

n(ε) ≤ 1
2
|lnε

2
|cond(Ã

1
2 ) + 1. (30)

3.3 Some Questions of Generalization of the Considered Approaches
and Speed-up of Computations

Above, we presented the main directions for improving the efficiency of abso-
lutely stable implicit grid approximations of resource-intensive multidimensional
initial-boundary value problems based on the application of the universal least
squares method. The above algorithms for the classical heat conduction equation
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can naturally be transferred to more general formulations: diffusion-convective
processes, nonlinear problems with phase transitions, interdisciplinary problems,
an example of which is nonisothermal filtration in porous media. Generally
speaking, the question of the optimal choice of initial approximations in the
iterative implementation of implicit schemes is relevant when modeling any non-
stationary processes and phenomena.

The second side of the issue is to apply the proposed approaches to grid
equations of a higher order of accuracy, in relation to both spatial and tempo-
ral approximations. Here, in particular, promising discontinuous Galerkin algo-
rithms [2,7] are actively developing. Such methods will lead to more complex
calculations at each step in time, but also to a reduction in their total number
and, as a consequence, to a decrease in communication losses, which is highly
important in the light of the evolution of computer platforms.

Another potential opportunity to improve performance in the considered
computational models is the use of known technologies for the multiple solu-
tion of SLAEs with different sequentially determined right-hand sides. Here,
similarly, one can successfully apply the least squares method, using previously
stored information to speed up iterations in Krylov subspaces (see the review on
deflation algorithms in [4]).

Finally, we emphasize that all the approaches outlined above are based on
vector operations that allow scalable parallelization by means of hybrid pro-
gramming on various computer architectures with distributed and/or hierarchi-
cal shared memory. When solving large sparse SLAEs with orders of 1010 − 1011

and higher, additional calculations due to least squares methods are parallelized
almost ideally with linear acceleration. This is achieved by means of either MPI
message passing (here, the additive methods of the decomposition of areas are
natural [9]), or multithreading (OPEN MP), or the vectorization of operations
(command systems of AVX type). Results for specific applications here require
special experimental applications, and general principles can be found in [6,9].

4 Examples of Numerical Experiments

We investigate the efficiency of the above algorithms experimentally using the
results of the numerical solution of three-dimensional initial-boundary value
problems for Eq. (1) with constant coefficients c, λ and with Dirichlet boundary
conditions. The main goal in this case is to carry out a comparative analysis
of the efficiency of the iterative algorithms described in clauses 3.1 and 3.2 for
various methods of choosing the initial approximations. All calculations were
carried out for a cubic computational domain Ω = [0, 1]3 on a cubic grid with
the number of steps along each coordinate Nx = 16.32.64. The time steps τ were
also chosen constant, and their values and quantities were selected from the
conditions of visual representations of the characteristics of the algorithms. All
arithmetic operations in the experiments were performed with standard double
precision. We do not dwell on the issues of the performance of software imple-
mentations and the execution time of the algorithms, since the main goal of
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research in this case is the mathematical characteristics of the methods, i.e.,
accuracy and asymptotic estimates of their resource intensity.

The studies were carried out on two test examples with well-known analytical
solutions, which were used to determine the initial and boundary conditions. In
the first test, the exact solution is

u(x, y, z, t) = x(1 − x) + y(1 − y) + z(1 − z) +
t2

2
,

for which the spatial approximation error is zero, and the right-hand side of
Eq. (1) is written as

f(x, y, z, t) = 2t + 6.

For the second example, the sought solution and the corresponding right-hand
side are described by the following formulas:

u(x, y, z, t) = sin(πx) sin(πy) sin(πz)t(T − t),

f(x, y, z, t) = (2(T − 2t) + 1.5π2t(T − t)) sin(πx) sin(πy) sin(πz).

The tables below show the results of applying the preconditioned iterative
conjugate gradient method described in Sect. 3.2 (γ = 0 in formulas (26)–(30)).

Table 1 shows the results of calculations for the 1st test problem for nine
different space-time grids: Nx = 16, 32, 64; Nt = 10, 20, 40, using the iteration
end criterion in (31) ε = 10−3, 10−5. We consider five ways of choosing the initial
iterative approximations described in subparagraphs (a)–(e) from Sect. 3.1: O
corresponds to un+1,0 = 0, I0 is the extrapolation of the form un+1,0 = un,
see item b), PI is the predictor with the definition un+1,0 = ûn+1, P-LSM1,
P-LSM2, each of which in this case applies to the Crank–Nicholson scheme.
The values n1 and n2 indicated in the cells of the table are the number of
iterations averaged over time steps for ε = 10−3 and ε = 10−5, respectively,
and delta = maxn ‖u(tn+1) − un+1 |∞ is the uniform norm (maximum vector
component) of the numerical solution error for ε = 10−3. The content of Table 2
is similar, but for the second test problem.

The content of Tables 3 and 4 repeats Tables 1 and 2, but only for the implicit
Euler scheme.

The analysis of the above results allows us to draw the following preliminary
conclusions:

– the use of the least squares method LSM1 and even more so LSM2 can signif-
icantly reduce the number of iterations at time steps, with the fundamental
possibility of constructing implicit non-iterative approximations;

– the effect obtained from the variational (algebraic) choice of initial approxi-
mations has approximately the same character for different values of the steps
of the space-time grid and for different types of implicit schemes.
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Table 1. Calculation results for the first test, ε = 10−3, ε = 10−5, Crank–Nicholson
scheme

Methods \ Nh

16

δ n1 n2

32

δ n1 n2

64

δ n1 n2

O

Nt=10

Nt=20

Nt=40

8,45E-07 10 16

4,44E-07 9 14

2,25E-07 8 12

2,35E-06 15 24

1,32E-06 13 21

3,32E-07 12 18

4,62E-06 23 36

2,66E-06 20 33

3,01E-06 17 28

I0
Nt=10

Nt=20

Nt=40

4,99E-07 9 15

1,07E-06 7 13

1,43E-06 6 10

1,42E-06 13 22

4,99E-07 11 19

1,71E-06 9 15

2,70E-06 19 33

4,17E-06 16 29

3,22E-06 13 23

PI

Nt=10

Nt=20

Nt=40

8,52E-07 7 13

1,75E-06 6 11

6,58E-07 4 9

1,88E-06 11 20

1,38E-06 8 16

1,06E-06 6 13

3,11E-06 16 30

4,38E-06 12 25

6,97E-06 9 19

P-LSM1

Nt=10

Nt=20

Nt=40

1,35E-06 3 3

1,27E-06 2 2

1,50E-06 2 2

7,97E-06 5 5

1,44E-06 4 4

3,56E-06 3 3

5,63E-06 10 8

3,79E-06 8 8

6,63E-06 6 6

P-LSM2

Nt=10

Nt=20

Nt=40

9,07E-07 1 2

1,13E-06 0 2

1,42E-06 0 1

6,04E-06 1 2

2,54E-06 1 2

1,46E-06 1 1

6,30E-06 2 5

5,00E-06 1 2

4,97E-06 1 1

Table 2. Calculation results for the second test, ε = 10−3, ε = 10−5, Crank–Nicholson
scheme

Methods \ Nh

16

δ n1 n2

32

δ n1 n2

64

δ n1 n2

O

Nt=10

Nt=20

Nt=40

7,46E-04 8 13

7,48E-04 7 11

7,49E-04 6 9

1,86E-04 12 20

1,87E-04 10 17

1,87E-04 8 14

4,65E-05 18 30

4,67E-05 15 26

4,68E-05 12 20

I0
Nt=10

Nt=20

Nt=40

7,46E-04 8 13

7,48E-04 6 10

7,50E-04 5 8

1,86E-04 11 19

1,87E-04 9 16

1,87E-04 6 12

4,65E-05 17 29

4,67E-05 13 24

4,68E-05 9 18

PI

Nt=10

Nt=20

Nt=40

7,46E-04 7 12

7,48E-04 5 9

7,50E-04 3 7

1,86E-04 10 18

1,87E-04 7 14

1,87E-04 5 10

4,65E-05 15 28

4,67E-05 11 21

4,68E-05 7 15

P-LSM1

Nt=10

Nt=20

Nt=40

7,46E-04 2 6

7,48E-04 2 4

7,49E-04 1 3

1,86E-04 4 9

1,87E-04 3 6

1,87E-04 2 4

4,66E-05 9 15

4,67E-05 6 9

4,68E-05 5 6

P-LSM2

Nt=10

Nt=20

Nt=40

7,46E-04 1 5

7,48E-04 0 3

7,49E-04 0 2

1,86E-04 2 7

1,87E-04 1 5

1,87E-04 0 3

4,65E-05 3 12

4,67E-05 1 8

4,68E-05 0 5

A further increase in the performance of algorithms for solving SLAEs in
multidimensional initial-boundary value problems can be developed in various
directions. The first is the optimization of the considered initial approxima-
tions un+1,0. The second is to use the SLAE solution with different right-hand
sides, see the overview in [4]. The third is the parallelization of algorithms by
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Table 3. Calculation results for the first test, ε = 10−3, ε = 10−5, Euler’s scheme

Methods \ Nh

16

δ n1 n2

32

δ n1 n2

64

δ n1 n2

O

Nt=10

Nt=20

Nt=40

1,88E-06 11 17

1,61E-06 10 16

8,86E-07 9 14

1,56E-06 17 25

4,46E-06 15 24

2,50E-06 13 21

5,05E-06 26 38

8,78E-06 23 36

5,17E-06 20 33

I0
Nt=10

Nt=20

Nt=40

1,56E-06 10 16

1,10E-06 8 14

9,78E-07 7 12

4,63E-06 14 24

2,61E-06 12 21

2,85E-06 10 18

7,64E-06 21 36

3,55E-06 18 32

6,67E-06 15 28

PI

Nt=10

Nt=20

Nt=40

3,89E-07 8 14

9,29E-07 6 12

3,57E-06 5 10

2,19E-06 12 21

1,95E-06 9 19

1,81E-06 7 15

7,78E-06 17 32

4,98E-06 13 28

5,83E-06 10 22

P-LSM1

Nt=10

Nt=20

Nt=40

8,00E-07 3 4

1,75E-06 2 2

1,84E-06 1 1

2,91E-06 5 6

2,76E-06 4 4

3,01E-06 3 3

6,38E-06 9 9

5,74E-06 7 6

4,34E-06 5 5

P-LSM2

Nt=10

Nt=20

Nt=40

2,98E-06 1 3

2,03E-06 0 2

2,55E-06 0 1

9,8E-06 1 4

3,14E-06 0 3

6,25E-06 0 2

1,07E-05 2 8

2,05E-05 0 4

1,80E-05 0 2

Table 4. Calculation results for the second test, ε = 10−3, ε = 10−5, Euler’s scheme

Methods \ Nh

16

δ n1 n2

32

δ n1 n2

64

δ n1 n2

O

Nt=10

Nt=20

Nt=40

0,032 10 15

1,74E-02 8 13

9,15E-03 7 11

3,18E-02 14 22

1,71E-02 12 20

8,90E-03 10 17

3,18E-02 21 33

1,71E-02 18 30

8,84E-03 15 26

I0
Nt=10

Nt=20

Nt=40

0,032 9 14

1,74E-02 7 12

9,15E-03 6 10

3,18E-02 12 21

1,71E-02 10 18

8,90E-03 8 15

3,18E-02 18 31

1,71E-02 15 28

8,84E-03 12 23

PI

Nt=10

Nt=20

Nt=40

0,032 8 14

1,74E-02 6 11

9,15E-03 4 9

3,18E-02 11 20

1,71E-02 8 17

8,90E-03 6 13

3,18E-02 17 30

1,71E-02 13 26

8,84E-03 9 20

P-LSM1

Nt=10

Nt=20

Nt=40

0,032 4 10

1,74E-02 2 7

9,15E-03 1 5

3,18E-02 6 16

1,71E-02 4 12

8,90E-03 2 8

3,18E-02 12 26

1,71E-02 7 20

8,84E-03 4 13

P-LSM2

Nt=10

Nt=20

Nt=40

0,032 3 9

1,74E-02 2 6

9,15E-03 1 4

3,18E-02 5 13

1,71E-02 3 9

8,90E-03 1 6

3,18E-02 10 20

1,71E-02 7 14

8,84E-03 3 9

using additive methods for decomposing domains. It is also noteworthy that
these directions of development (possibly in combination with approximation
approaches) can be carried over to more general formulations of problems: in
the presence of convection, nonlinear effects, etc.
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5 Conclusion

The performed comparative analysis of iterative methods for solving algebraic
systems with sparse matrices of high orders that arise in the implementation
of implicit approximations of multidimensional initial-boundary value problems
demonstrates the high efficiency of the algorithms while maintaining the abso-
lute stability of numerical integration over time. The number of iterations at
each time step is significantly reduced by choosing an initial approximation
with the sequential use of already calculated solutions using the least squares
method. The efficiency of the proposed approaches is illustrated by the results
of experimental studies on a representative series of methodological problems
using preconditioned iterative incomplete factorization processes in Krylov sub-
spaces. The presented test results on accelerating computations of the proposed
algorithms indicate their efficiency for supercomputers with distributed and hier-
archical shared memory. The issues of transferring the proposed approaches to
more general problem statements are discussed. A further increase in the per-
formance of the algorithms is possible when using scalable parallelization based
on additive methods for the decomposition of regions in Krylov subspaces. At
the same time, an additional significant increase in the speed of computations
can be achieved due to parallel methods of the decomposition of domains, as
well as through the use of techniques for the multiple solution of SLAEs with
sequentially determined right-hand sides.
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