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Abstract. The paper describes a computational model and an original
software system, UKS-Dynamic, for the analysis of dynamic interaction
between train pantographs and an overhead catenary system at high-
speed railway lines. The study focuses on the problem of reducing non-
physical high-frequency oscillations arising in dynamic simulations due
to the spatial discretization of flexible wires of the catenary. A number
of model problems are solved both analytically and numerically, and the
quality of high-frequency mode suppression is studied for several suppres-
sion techniques, including specific time integrators (beta-Newmark and
generalized-alpha methods) and Rayleigh damping. The model is vali-
dated against the solutions of etalon problems given by the EN 50318:2018
standard for alternating and direct current catenary lines at a train speed
of 320 km/h. Code parallelization employs the OpenMP library; the code
profiling results are presented for both serial and parallel implementations.

Keywords: Overhead catenary line + Dynamic simulation -
High-frequency oscillation suppression

1 Introduction

In the design of overhead contact lines for high-speed railway tracks, it is impor-
tant to ensure a high quality of electric current collection. The analysis of the
current collection quality requires a realistic simulation of the dynamic contact
between train pantographs and contact wires. These contact interactions are
influenced by the elastic waves propagating in the catenary system. At train
speed values of 350-400 km/h, high-frequency oscillations can physically emerge
in the catenary. On the other hand, the finite element models of catenaries
also spawn non-physical high-frequency oscillation modes that occur due to
the space discretization of continuous elastic wires. These non-physical high-
frequency modes can be withdrawn from the solution using different suppression
techniques, such as specific time integrators (beta-Newmark and generalized-
alpha methods), Rayleigh damping and output filtering.
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The goals of this study are: (a) to analyze dynamic processes occurring in
the catenary system by solving a number of analytical model problems; (b) to
test the quality of numerical time integrators on model problems; (c¢) to examine
high-frequency suppression techniques for the degree of dissipation. After con-
sidering the model problems, we switch to real-life catenaries and demonstrate
the validation of the presented computational model against the etalon problem
solution from [1].

The UKS computational system for the design of railway overhead catenary
lines (OHL) has been being developed by the team of Universal Catenary Sys-
tems Co. and researchers from St. Petersburg Polytechnic University over the
past twenty years [2,3]. Computational models involved in OHL dynamics simu-
lations are constantly upgraded in accordance with the international standards
developed by the European Committee for Electrotechnical Standardization [1].
To the authors’ knowledge, the described computational package is the only
domestic professional software used at the industrial level and supporting all
stages of the OCL design, from the initial scratch to the final technical docu-
mentation albums for railway construction and maintenance staff.

The functionality of the software system includes:

— UKS-Static module for the non-linear static finite element analyses of cate-
nary lines, trusses and frames with large nodal displacements;

— UKS-Dynamic module for the linear dynamic finite element analyses of cate-
nary lines, including near real-time simulations of contact interaction between
pantographs and the catenary;

— statistical analysis of the simulation output (mean value, standard deviation
calculation);

— spectral analysis of the simulation output;

— output signal filtering;

— GUI pre- and post-processing modules: integration with AutoCAD, produc-
tion of design documentation, visualization of simulation results.

The presented computational system was successfully applied for design-
ing overhead catenary lines at high-speed railway lines, including the
Moscow—St. Petersburg 250 km/h line (currently in operation), the Moscow—
St. Petersburg 400km/h line (under construction) and the Moscow—Kazan
400km/h line (design stage competed, construction suspended).

The rest of the paper is organized as follows: Sect. 2 describes the mathemat-
ical models employed in the design of catenary lines; in Sect. 3, model problems
are stated; Sect.4 describes the numerical time integration schemes employed
in the analyses (namely, beta-Newmark and generalized alpha method fami-
lies); Sect. 5 outlines the features of the numerical implementation; in Sect. 6,
the simulation results are presented, and the quality of high-frequency suppres-
sion is analyzed both for model problems and one etalon problem from the
EN 50318:2018 standard [1] for a train speed of 320 km/h; Sect. 7 describes the
OpenMP parallelization of the code and presents the code profiling results.
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2 Mathematical Models

2.1 Catenary Line Model

A schematic view of a section of the overhead catenary line is shown in Fig. 1:
the messenger wire and the contact wire are supported by cantilevers, which
are, in turn, mounted to supports. The contact wire is fixed by the cantilevers’
steady arms and droppers mounted between the contact wire and the messenger
wire.

Pantograph Messenger Droppers Stitch f
F ; ; fFC F :l wire : F ; E F ; wire FI;
Steady arm Contact

wire ‘
Support

Fig. 1. Catenary line with supporting elements (supports, cantilevers and fixation
arms)

In the presented model, catenary wires (contact and messenger wires and
droppers) are simulated as ideally flexible threads using finite elements of “link”
type with the account for unloading (folding) under a negative axial force.
Supporting constructions (rotating cantilevers and fixation arms) are modeled
as truss elements connected to catenary wires. Supporting constructions are
included in the model to take into account their response (for example, at rota-
tion) on the position and tension of catenary wires.

2.2 Non-linear Static Analysis

The wires of the catenary line are modeled as elastic, pre-tensioned, ideally flexi-
ble threads. At the first simulation stage, the static configuration of the catenary
line under the action of gravity, pre-tension and static pressure from pantographs
is determined. Static analysis takes into account the actual configuration of the
catenary under the acting loads (“large displacements” analysis). The 3D dis-
placement field of each wire in the catenary is described in the local coordinate
system (which is attached to the reference configuration of the wire) by the
following equations:

H(u! o w') s + ¢/ (a') = 0
2, 7
H(u' v w') e +p/' (') =0 (1)
2./
ESZ;’L? + 7_/(1,/) =0,

where 2’ is the axial coordinate in the local basis, v(z'), w(z') are the transversal
displacements, u(z') is the axial displacement, ES is the axial stiffness of the
wire, H(z') is the axial force, ¢'(z’), p’(2’) are the transversal distributed loads,
7/(2') is the axial distributed load.
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After the finite element discretization of 1 and the transformation of element
matrices to the global coordinates, the resulting system of nonlinear algebraic
equations is written as:

K(U)U:Fext7 (2)

where U is the vector of nodal displacements measured from the reference
(unloaded) configuration, K(U) is the stiffness matrix and Fiy is the vector
of external nodal loads.

System 2 is solved using the fixed-point iteration method with the relaxation
factor r € (0;1]. The i*"! iteration of the method is written as follows:

K(U;—1)AU; = r(Fexy — K(U;21)Ui—1), U; = U1 + AU,

2.3 Dynamic Analysis

In dynamic analysis, small oscillations of the wires around their static config-
uration are considered. In the local coordinate system, the oscillations of each
wire are modeled with the following equations:

ma%/ +2D% . Hstatic(x/)‘aiv _ q’(x’ t’)

aQtz ) 2/2 9’
*w'’ ow'’ *w'’

m%h- + 2D %% — Hyanic(2') 5 = p/ (2, 1) (3)
2 7 ’ 2,/

m&h +2D% — ESTY = 7'(a/,1),

where m is the mass per unit length, g is the gravity acceleration, Hgtatic(z) is
the axial tension force obtained from static analysis, D is the viscous damping
coefficient.

In the finite element formulation, a linear ODE system is solved:

MU + BU 4 KU = Fou(t). (4)

Here M is the mass matrix, B is the damping matrix. The constant stiffness
matrix K is computed in the reference configuration obtained from static anal-
ysis 2.

During time integration, the tensions in the droppers are checked; in the
case of dropper unloading, the stiffness matrix is corrected, and the time step is
repeated until the stiffness matrix is stabilized (see [2] for more details).

Supporting elements (such as fixation arms or cantilevers) are modeled as
visco-elastic nodal supports at this stage.

The EN 50318:2018 standard [1] does not require using any specific struc-
tural damping model; the standard requires that the damping of the overhead
contact line is adjusted to a non-dimensional damping rate (ratio of damping vs.
critical damping) of 0.1% to 0.15% for the overhead contact line. The standard
recommends using Rayleigh damping in the discretized (finite element) model:

B=aM+pK, a=125-10>s"!, g=10""s. (5)

The Rayleigh damping model [4] was originally proposed to the mimic inter-
nal damping of materials in structures. However, it does not agree with nature
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experiments [5]: material damping does not tend to depend on the frequency [5].
Nevertheless, the Rayleigh damping model can be useful for suppressing artificial
high-frequency oscillations arising in the numerical solution due to the distor-
tion of the frequency characteristics of a continuous elastic body after spatial
discretization.

In the Rayleigh model, the damping ratio { depends on the mode frequency

w as follows [4]:
n 1/«
= — = — — 6
¢ w 2 (w + ﬁw) ’ (6)
where n is the decay ratio. The first natural frequency of the catenary line is
typically 1 Hz. The substitution of w = 27 x 1 Hz and 5 into 6 gives the damping

ratio ¢ = 0.0013.

2.4 Pantograph Model. Contact Interaction Between Pantographs
and the Contact Wire

Pantographs are modeled as discrete systems containing two or three lumped
masses connected with elastic springs, dry friction elements and viscous dampers
as shown in Fig. 2.

Fig. 2. Two-mass and three-mass pantograph models

In Fig.2, the vectors F4 and Fy are the aerodynamic lift force and static
push force, correspondingly, and the vector F¢ is the force of contact interaction
between the contact wire and the pantograph.

Contact interaction between the pantograph and the contact wire is modeled
with the penalty method [6]: a restoring force proportional to the value of the
mutual penetration of the pantograph and the CW is applied to the contact wire
in order to eliminate the penetration of the contacting parts. More details on
applying the method to the UKS-dynamic model can be found in [2].

3 Model Problems Setup

In the model problems, small transversal oscillations of an ideally flexible pre-
tensioned wire are modeled using Eqs. 3-4. In problems 1 and 2, the oscillations
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are free (the only load is gravity). In the 3rd problem, the oscillations are driven
by the moving force of the constant magnitude. The pretension value and all
characteristics of the wire (see Table 1) represent a real-life contact wire. The
length of the wire L = 50 m is a typical railway span length.

Table 1. Parameters of the model problems

Parameter Value
Span length L 50 m
Pretension T’ 20 kN
Mass per unit length m 1kg/m
Viscous damping coefficient 2D/m 0.010185342 s™*
Disturbing force F' in problem 1 10N
Impact impulse S in problem 2 25 kg - m/s
Moving force F' magnitude in problem 3 110N
Moving force velocity V' in problem 3 135m/s

Due to the lack of space, we omit the expressions for analytical and semi-
analytical solutions of the model problems; however, the curves representing
these solutions are presented in the Results section.

3.1 Problems 1,2: Free Oscillations Excited Statically
and Dynamically (by Impact Interaction)

In problem 1, free oscillations of the wire are excited in a static way: at x = L/2,
a lumped force is applied (quasi-statically) and then released at ¢ = 0 s. In
problem 2, free oscillations are excited by impact interaction: at * = L/2, the
impulse s = M -V} is applied at t =0 s.

3.2 Problem 3: Oscillations Driven by a Constant Push Force
Moving Along the Span

In problem 3, driven oscillations of the wire are excited by the vertical force
F moving with the constant speed V' along the span. In this case, the critical
(resonance) speed of the load V., equals to the speed of the wave propagation ¢

along the span: V. = ¢, where ¢ = \/% = 141 m/s.

4 Numerical Time-Integration Methods

The time-integration schemes implemented and tested in the current study
include Newmark-beta schemes [8] and the generalized alpha-method [9]. All
used methods are absolutely stable, implicit and have the 2"d order of preci-
sion except for the 15¢ order Newmark-beta scheme with 3 = 0.3025, v = 0.6.
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Designed for Hamiltonian systems, the methods significantly differ in compu-
tational complexity, internal dissipation and wave dispersion. We performed a
comparative study of these methods to estimate the quality of numerical solu-
tions in catenary line dynamics simulations.

The generalized alpha-method for numerical time integration [9] was pro-
posed for suppressing non-physical high-frequency oscillations occurring in
numerical solutions due to spatial discretization. The method is described with
the following formulas:

(1—am)MA 1+ anMA, =apF, + (1 —oaf)Fpi
Unt1=Un - Vn + T(% - ﬁ)An + TﬁAn-i-l (7)

L
LtV — (1= ) Ay +7Auia,

T

where n + 1 is the current time layer number, 7 is the time integration step,
U, V, A are the arrays of nodal displacements, velocities and accelerations,
correspondingly, and o, oy, (B, < are the parameters of the method. The
parameters o, oy were calculated depending on the desired dissipation of high
frequencies using the formula proposed in [9]:

2000 — 1 Poo 1 1., 1
, Qf = ) - - + = B = -+« — Qipy, 8
ol Yooy P 10t v=gtay (8)

Ay =

where pso = lim,, .o p, p is the spectral radius of the transfer matrix of the
method.

The generalized alpha methods defined by formulae 7-8 are absolutely stable
and have the second order of precision [9]. The values p = 0 and po = 0
correspond to the total and zero dissipation of the method at high frequencies,
correspondingly. Imposing o, = ay = 0 in 7 produces the family of beta-
Newmark methods. In this study, the absolutely stable implicit first order beta-
Newmark scheme with g = 0.3025, v = 0.6 and the second order trapezoidal
rule with 8 = 0.25, v = 0.5 were tested. In all time integration schemes, the
time step was chosen so that the Courant number [10] equaled 0.5. The maximal
finite element length varied between 10 cm and 25 cm.

5 Software Implementation

The software system basically consists of two modules, UKS-Static and UKS-
Dynamic, aimed for the static and dynamic analyses of mechanical interactions
between train pantographs and an overhead catenary line. The computational
core of the system is implemented in Fortran 2018 and parallelized with the
OpenMP library [11]. The core employs the classical mathematical libraries
LAPACK and BLAS [12] for solving systems of linear algebraic equations. The
system is closely integrated with the AutoCAD software [13]: the AutoCAD sys-
tem is used for the pre- and post-processing of simulations, as well as for the
production of design documentation. Integration with AutoCAD is performed
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via AutoLISP scripts. The post-processing utilities of the system also employ
the GTK library for creating animations.

The workflow of the UKS-Dynamic computational module is presented in
Fig. 3, with the external libraries (BLAS/LAPACK and GTK) shown as blue
rectangles. The main submodules of UKS-Dynamic are listed below:

— Dat, DataFileRes—submodules defining initial data: basic global constants,
variables and data structures;

— ConvCalcVal—converts data types and performs geometric calculations;

— ToSurface—produces the graphical output using the GTK Cairo library;

— OutDataRes—sets scale factors for graphs, colors for suspension elements and
graphs;

— ToAutoCAD—translates graphical data into AutoCAD;

— MfCacl—simulates interaction between pantographs and the catenary line;

— Pantograph2, Pantograph3—calculate two-mass and three-mass pantograph
configurations;

— WithoutPantograph—simulates the dynamics of the catenary line in the
absence of pantographs;

— WithPantograph—simulates the dynamics of interaction between pan-
tographs and the catenary line within one tensioning section;

— Overlap—simulates the dynamics of interaction between pantographs and the
catenary line within two tensioning sections, taking into account the overlap
zone;

— LibFS—low-level C language library for file I/O, interacts with a Windows
API;

— FSWrappers, FortranFSWrappers—Fortran wrappers for C functions and
interfaces for lower-level functions from FSWrappers and LibFS modules,
correspondingly;

— Drawinglbb, Drawing15bACAD—export catenary line views and data graphs
to PNG files and AutoCAD;

— UKSDynamic—program entry point.

6 Results

6.1 Model Problems: Free Oscillations

In model problems simulations, the finite element length was 25cm, and the
time step value was 1 ms. In Fig.4 and 5, the analytical solutions are shown
by red lines. The green lines correspond to the generalized alpha-method with
Poo = 0.1, the blue and violet lines correspond to the beta-Newmark method
with 8 = 0.3025, v = 0.6 and the beta-Newmark trapezoidal rule § = 0.25,
v = 0.5, correspondingly.

Figure 4 shows the simulation results of problem 1 (free oscillations of the
wire excited by a static force) for a viscous damping model (with the diagonal
damping matrix B) and a Rayleigh damping model. The displacement dynamics



Parallel Simulations 241

DataFileRes

ToAutoCAD | OutDataRes I FortranFSWrappers
“-

e /

<3

WithoutPantograph

FSWrappers

Pantograph3

A

Fig. 3. Workflow of the UKS-Dynamic computational module

is well mimicked by all methods, independently of the damping model (Fig. 4a, ¢).
In the absence of Rayleigh damping, the velocity dynamics graph (Fig. 4b) shows
intensive non-physical oscillations for all methods except beta-Newmark 8 =
0.3025, v = 0.6. The latter has a very strong internal dissipation (which is
expressed in a higher oscillation decay compared to the analytical solution). Since
this beta-Newmark scheme has only the first order of precision, the accuracy of
the solution should be controlled with a sufficiently small time step.

Together with Rayleigh damping (Fig. 4c, d), all schemes show satisfactory
results, although beta-Newmark § = 0.3025, v = 0.6 tends to overdamp the
solution.

Figure 5 shows the simulation results of problem 2 (free oscillations of the
wire excited by impact interaction). In the absence of Rayleigh damping, the
displacements (Fig.5a) oscillate heavily in all methods except beta-Newmark
6 = 0.3025, v = 0.6. In Fig. 5b, the wave shape is shown at the time moment
t = 0.1 s (the wave crosses the span in about 0.3s); the shape is distorted in
all time integration schemes (however, it should be noted, that all non-physical
oscillations and distortions shown in Fig.4 and 5 tend to decay with a decrease
in the finite element size).

Together with Rayleigh damping (Fig.4 and 5c, d), all schemes show satis-
factory results, with some overdamping in beta-Newmark g = 0.3025, v = 0.6.
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0 T T 0 b
) L I A
-0.05 | “ M M -0.02 \ /
E -0.1 S LA ) LU A A S | 5‘0-04 I ft i 1
S analytical S \ /
E-U 15 alpha, ro=0.1 £_.0.06
4 gamma 0.6 beta 0.3025 —— | §
E‘ gamma 0.5 beta 0.25 —— E
= -0.2 ~-0.08
o o analytical
alpha, ro=0.1 ——
0.25 . -0.1 gamma 0.6 beta 0.3025 ——
gamma 0.5 beta 0.25 ——
0.3 L L -0.12 L L
0 1 2 3 4 5 6 0 10 20 30 40 50
Time, s Coordinate, m
0 0
c d
N\ A

—
—
|
]
_—
T~

I Il_.‘]l I .
analytical —— | § \ /
alpha, ro=0.1 —— E-D.Os

gamma 0.6 beta 0.3025 —— % A
gamma 0.5 beta 0.25 —— | &

&
5-0.08
ﬂ N ﬂ I ﬂ a analytical
alpha, ro=0.1 ——

o

Displacement, m
S .
He
«

s
9

0.25 0.1 gamma 0.6 beta 0.3025
gamma 0.5 beta 0.25 ——
0.3 -0.12 L
0 1 2 3 4 5 6 0 10 20 30 40 50
Time, s Coordinate, m

Fig. 5. Model problem 2: free oscillations of the wire excited by impact interaction.
Displacements in the mid-span and wave shape at ¢ = 0.1 s, viscous damping (a, b)
and Rayleigh damping (c, d)



Parallel Simulations 243

6.2 Model Problem: Driven Oscillations

In the problem of driven oscillations, only the subcritical load velocity value
(135m/s) is considered; supercritical train speeds are prohibited by design stan-
dards. According to the analytical solution, the critical load speed equals to the
wave propagation speed, which is 141 m/s for the considered wire. When the load
speed is under the critical value, the maximal displacement occurs in the point
of force application. The distribution of displacements at the moment when the
load is at the middle of the span is shown in Fig.6. The beta-Newmark scheme
0 =0.3025, v = 0.6 shows the smoothest results.
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Fig. 6. Model problem 3: driven oscillations, load speed 135m/s (486 km/h). Wave
shape at the moment when the force is in the middle of the span

6.3 Validation of the Model Against the Etalon Problem from EN
50318:2018

The described computational model was successfully validated against etalon
problems and experimental data for real existing overhead contact line sections
of high speed railway lines (Annex A, B of EN 50318:2018, [1]). Figure 7 presents
simulation results for the etalon problem of a catenary line containing a messen-
ger wire, one contact wire, two pantographs located at a 200 m distance (the three
lumped masses model of the pantograph is used according to [1]). The messen-
ger wire is connected to fixed points via spring-damping elements. The contact
wire is connected to fixed points via supporting elements, i.e. steady arms. The
finite element model contains 22 spans, 10 of them are reference spans (according
to [1]). Pantographs start moving at the beginning of the section. Ten referent
spans are located in the middle of the section, between supports 7 and 17. The
time integration step is 0.5 ms. The maximal finite element length is 0.1 m. The
contact stiffness in the penalty method is 50 000 N/m, in accordance with the
recommendations of EN 50318:2002. The sampling 200 Hz (the sampling interval
is 5 ms) is decoupled from the time integration step. The output signal is filtered
by band filters with bandwidths 0-20 Hz, 0-5 Hz and 5-20 Hz according to [1].
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The initial configuration of the catenary and pantographs is shown in Fig. 7a.
The dynamics of the vertical elevations of two contacts along the train trajec-
tory is presented in Fig. 7b. Figure 7c, d shows the statistical distribution of the
contact force values. The variation of the contact force along the track after
filtering with a bandwidth of 0-20 Hz is presented in Fig.7e, f. The simulated
parameters, which are the most important for the current collection quality, are
listed in the tables in Fig. 7.

All simulation results for the etalon model fit into the reference ranges given
in [1].

Speed: V = 320 km/h MaxLelt = 0,10 m
Messenger wire: MW-120, 7 = 16,00 kN df = 0,50 ms

tact Contact wire: CW-150, K = 22,00 kN dts = 5,00 ms
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Fig. 7. Etalon problem solution, train speed of 320km/h: (a) initial configuration of
the catenary and pantographs, (b) vertical positions of two contact points along the
train trajectory, (c, d) statistical distribution of the contact force values, (e, f) variation
of the contact force along the track
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7 OpenMP Parallelization and Code Performance

To identify the bottlenecks of the UKS-Dynamics program, the profiling of the
serial version was performed using the gprof profiler. The profiling showed that
the main bottleneck was the matrix multiplication procedure: it took about 54%
of the elapsed time. In the second place, it was the linear algebraic equations
system solution in the LAPACK dpbtrs package (19%), wherein the factorization
itself did not take up significant resources (taking into account the fact that it is
taken out of the time integration loop). Parallelization was performed using the
OpenMP library. The loops containing matrix multiplications and the procedures
for simulation output filtering were parallelized. Additionally, a number of loops
were rewritten to enable automatic parallelization by the compiler.

The computational time spent on solving the etalon problem from EN
50318:2018 for a train speed of 320km/h with a finite element length of 0.1 m
and a time step of 0.5 ms is shown in Fig. 9. The results are obtained at the opti-
mization level of the compiler -O2 on an Intel Core i5-3450 3.5 GHz computer
with two physical and four logical cores. A relatively modest speed-up is due to
the usage of an algorithmically sequential Holecky solver for the SLAE (system
of linear algebraic equations) solution. However, iterative SLAE solvers are less
preferable here due to small problem sizes (~ 10* — 10° degrees of freedom)
(Fig. 8).

MAIN__
56.30%

dtbsv_
18.35%

main
18.77%

conv.4619.constprop.0
%

(4.16%)

©0.00%) @ ©0.00%) W (18.35%)

56.30% /18.77%
3x 1x

4.97%

__mfcacl_MOD_droppercurrentstate
4.97%
(4.97%)
8629%

__mfcacl_MOD_multku
54.84%
(54.84%)
51775%

Fig. 8. Serial mode: code profiling results
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Fig. 9. Computational time spent on the etalon problem solution in serial and parallel
modes on an Intel Core i5-3450 3.5 GHz standalone computer

8 Conclusions

Several techniques of high-frequency oscillation suppression were tested and
applied to the problem of modeling the dynamics of interaction between train
pantographs and a catenary line. The techniques include three special time inte-
gration schemes (generalized-alpha with p,, = 0.1, beta-Newmark 8 = 0.3025,
v = 0.6 and beta-Newmark trapezoidal rule § = 0.25, v = 0.5) and Rayleigh
damping. The simulation results indicate that Rayleigh damping alone is not suf-
ficient in high-frequency suppression. Qualitatively, beta-Newmark 5 = 0.3025,
v = 0.6 is the best high-frequency suppression scheme in all computational tests,
despite the first order of precision. Quantitatively, beta-Newmark g = 0.3025,
v = 0.6 in combination with Rayleigh damping tends to overdamp the problem
due to the lower accuracy of the scheme; appropriate time stepping should be
used. Another advantage of this scheme is lower computational costs compared to
generalized-alpha methods. The trapezoidal rule produced intensive non-physical
oscillations and cannot be recommended for wire dynamics modeling.

For the etalon problem solution, beta-Newmark 3 = 0.3025, v = 0.6 was cho-
sen as the fastest and most robust integration scheme. All simulation results for
the etalon model fit into the reference ranges given in [1]. The serial optimization
and OpenMP parallelization of the program were performed; the computational
time spent on the etalon problem solution was reduced by 44%. Further work
on improving the performance of the program will be continued.
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