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Abstract. Supernovae are the major sources of elements in the peri-
odic table, planets, and life. Type Ia supernovae (SNeIa) are not only
sources of elements, but also “standard candles” to measure distances in
the Universe. We propose a mechanism of carbon burning that causes
non-standard Type Ia supernova explosions. The mechanism is based on
intensity variations in the incomplete nuclear burning of carbon. In this
case, the explosion energy can vary significantly due to the presence of
different regimes of carbon burning during the development of turbulence
in the burning zone. The energy released during burning, sufficient for
the explosion of a white dwarf (as a type Ia supernova), can be achieved
with a smaller Chandrasekhar mass. In addition, the explosion energy of
a white dwarf with a Chandrasekhar mass can differ considerably. Such a
conclusion can be made from modern observations of incomplete burning
and chemistry of burning, which determine the explosion energy. In the
present paper, a software tool is proposed to demonstrate a significant
difference in the values of the explosion energy obtained with different
parameterizations of subgrid carbon burning. For computational experi-
ments, we use a code developed by the authors, which is extended using
an adaptive nested grid approach to achieve a more accurate reproduc-
tion of turbulent burning.

Keywords: Computational Astrophysics · Numerical Methods ·
High-Performance Computing

1 Introduction

Supernovas are the major sources of “life” elements—from carbon to iron. Type
Ia supernovas are very bright and, therefore, are used as “standard candles”
to determine distances to galaxies and the expansion rate of the Universe. The
mathematical simulation of supernova explosions is the major tool for studying
their dynamics and formation. The formation of complex flows in supernova
explosions imposes rigid requirements on the spatial resolution of the simulation.
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The major scenario [17] of supernova explosion is based on the merging of two
degenerate white dwarfs with the subsequent collapse of a new star when it
reaches the Chandrasekhar mass, ignition of the carbon burning process, and
type Ia supernova explosion.

The realistic computer simulation of SNeIa remains an unsolved problem.
However, there exist some approaches to solving this problem. These are the
collision of white dwarfs [28,37,38], violent merger [34,40], spiral instability
[18,19], and tidal heating [8], D6 [13,34,41]. In the present paper, no review
of possible scenarios is made: it is also too early to compare our preliminary
results with those of other authors; it is planned to do this in the forthcoming
paper. Here the process of the noncentral ignition of a white dwarf in a merging
close pair, first studied in [16], is considered. This model will be extended with
modern computational tools enabling a more detailed description of the process
of nuclear carbon burning. The model demonstrates that tidal heating shifts
the maximum temperature point in a degenerate dwarf from the center to the
mantle.

Noncentral explosions should be studied for the following reason: the observed
“dipole” character of SNeIa explosions is typically explained by the presence
of a close satellite of a degenerate dwarf [5], although it may be a result of a
noncentral explosion. Both scenarios are considered in the present paper. Double
detonation, which can cause a noncentral explosion, is due to other chemistry
and other masses of the explosion point [12]. Tidal heating is also studied in [8].
It should be noted that the noncentral location of the explosion point can be
caused by other reasons: helium layer detonation, magnetic field, jet formation,
etc. Therefore, a comprehensive study of possible noncentral explosions is of
great interest.

The goal of this paper is to determine the role of the ignition point in nuclear
fuel burning and in the dynamics of the remnants of a degenerate dwarf explo-
sion. For this, the nuclear burning of carbon in the development of supersonic
turbulence will be simulated directly, not as a subgrid process. The computa-
tional model is implemented by using distributed computing: the hydrodynamic
evolution of white dwarfs is simulated on nested meshes (basic calculation). As
the temperature and density reach some critical values, a new task is started on
a distributed memory architecture to simulate the development of hydrodynamic
turbulence leading to supersonic nuclear carbon burning (satellite calculation).

The present paper is devoted to the study of the pattern of 3D gas dynamical
explosions of carbon dwarfs. The main parameter of the problem is the intensity
of the nuclear burning of carbon in the explosion zone. In this case, the explosion
energy can vary considerably due to the variable carbon burning regime during
the development of turbulence in the burning region. The goal of this study is
to assess the impact of some so far undetermined parameters and factors on the
observed manifestations of explosions and on the limits to what extent SNeIa
can be considered “standard”.
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In the second section, a numerical model of white dwarfs is formulated. The
third section describes the parallel and distributed organization of calculations
for a detailed description of turbulent carbon burning and explosion hydrody-
namics. The fourth section is devoted to the results of computational exper-
iments. In the fifth section, we will discuss some important issues. The sixth
section provides conclusions to the paper.

2 Numerical Model

2.1 Hydrodynamic Equations

Consider an overdetermined conservative form of the equations of gravitational
gas dynamics: the law of conservation of mass

∂ρ

∂t
+ ∇ · (ρu) = 0, (1)

the law of conservation of momentum

∂ρu
∂t

+ ∇ · (ρuu) = −∇p − ρ∇Φ, (2)

the law of conservation of total mechanical energy

∂

∂t

[
E + ρ

u2

2

]
+ ∇ ·

([
E + ρ

u2

2

]
u
)

= −∇ · (pu) − (ρ∇Φ,u) + Q, (3)

and the equation for entropy S

∂ρS

∂t
+ ∇ · (ρSu) =

2Q

3ρ2/3
, (4)

supplemented by the Poisson equation for the gravitational potential

ΔΦ = 4πGρ, (5)

where ρ is the density, u is the velocity, p is the pressure, Φ is the gravitational
potential, E is the internal energy of the gas, G is the gravitational constant,
and Q is the energy source due to nuclear reactions.

2.2 Stellar Equation of State

The stellar equation of state consists of the pressure of a nondegenerate hot
gas, the pressure due to radiation, and a degenerate gas [42]. In the case of
a degenerate gas, relativistic and nonrelativistic regimes are considered. In the
equation of state p = (ρ, T ), p will be sought for as the sum of four components:

p = prad + pion + pdeg,nrel + pdeg,rel, (6)
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where T is the temperature, prad is the radiation pressure, pion is the pressure
of a nondegenerate hot gas (ions), pdeg,nrel is the pressure of a degenerate non-
relativistic gas, and pdeg,rel is the pressure of a degenerate relativistic gas. Let
us present formulas for each pressure type:

prad =
4σT 4

3c
, (7)

where c is the speed of light, and σ is the Stefan-Boltzmann constant. Let us
write the pressure of a cold gas in terms of an entropy function:

pion =
k

μ
Tρ = Sρ5/3, (8)

where k is the Boltzmann constant, and μ is the chemical potential,

pdeg,nrel =

{
ρ0Kdeg,nrel

(
ρ

ρ0μe

)5/3

, ρ < ρ0

0, ρ > ρ0
, (9)

where Kdeg,nrel = 1013 Erg/g, μe is the number of nucleons per electron, and
ρ0 = 106 g/cm3,

pdeg,rel =

{
ρ0Kdeg,rel

(
ρ

ρ0μe

)4/3

, ρ > ρ0

0, ρ < ρ0
, (10)

where Kdeg,rel = 1015 Erg/g. In this case, the internal energy is written as

E = Erad + Eion + Edeg,nrel + Edeg,rel (11)

= 3prad +
3
2
pion +

3
2
pdeg,nrel + 3pdeg,rel.

The formulation of pressure and internal energy in terms of the entropy function
makes it possible to calculate temperature variations without solving a nonlinear
equation.

2.3 Initial Profile

To specify the equilibrium initial data, we fix the initial temperature T and
the characteristic density. The latter is important for determining the adiabatic
index of a degenerate gas. Assume that the adiabatic index γ is determined as
a constant K at the exponential function for the pressure of a degenerate gas
(9) or (10). Let us present the balance of pressure and gravity forces in Eq.
(2) and Poisson Eq. (5) in spherical one-dimensional coordinates using ordinary
differential equations:

−dp

dr
= ρ

dΦ

dr
,

d

dr

(
r2

dΦ

dr

)
= 4πGr2ρ,
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where r is the spherical radius. With the fixed parameters, we obtain an equation
of the Emden type:

− d

dr

(
r2

ρ

d

dr

[
4σ

3c
T 4 +

k

μ
Tρ + Kργ

])
= 4πGr2ρ.

It is evident that the radiation term 4σ
3c T 4 does not depend on the radius r.

Therefore, the equation for the equilibrium density profile can be written as

− d

dr

(
r2

ρ

d

dr

[
k

μ
Tρ + Kργ

])
= 4πGr2ρ. (12)

Equation (12) can be solved numerically [43]. To speed up the iterative process,
one can linearize the equation and use the solution to the linearized problem as
an initial temperature approximation.

2.4 Carbon Burning

When burning carbon in white dwarfs, the main way to obtain heavy elements
(such as nickel and iron) is to pass the α-network [39]. Since we are primarily
interested in the explosion energy, we will consider a chain of reactions of the
form 14 ×12 C → 356Ni. Let XC be the abundance of carbon. Carbon burning
may be written as [11]

dXc

dt
= − 7

36
× ρ × NA × λ × X2

c , (13)

where ρ is the density, NA is the Avogadro number, and λ is the reaction rate,
which can be written as

λ =
1.26 × 1027 × T

5
6
9a × T

− 3
2

9 × exp
(
−84.165 × T

− 1
3

9a

)

NA ×
(
exp (−0.01 × T 4

9a) + exp
(
1.685 × T

2
3
9a

)) , (14)

where T9 is a temperature of 109 K, T9a = T9/ (1 + 0.067 × T9). The energy
release is determined as follows:

Q = −ρ × ε × dXc

dt
=

7 × ε

36
× ρ × NA × λ × X2

c , (15)

where ε = 7 × 107 Erg/g [20].
The burning rate in the above equation cannot be found with the IEEE 754

standard. Therefore, we use the following method:

1027 × exp
(
−84.165 × T

− 1
3

9a

)
= exp

(
27 × ln10 − 84.165 × T

− 1
3

9a

)
.

This expression can be represented in the IEEE 754 floating point standard and
used in calculations.
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3 Parallel & Distributed Code

To simulate the evolution of white dwarfs, supernova explosions, and turbulent
carbon burning, we will use a modification of our code published in [22,23,25].
Figure 1 shows a schematic diagram of the calculations. Nested grids are used

Fig. 1. Schematic diagram of Parallel & Distributed computing on nested grids (blue
color) and regular grids (red color). (Color figure online)

to simulate the basic process of the evolution of white dwarfs. In the subgrid
carbon burning process, the evolution of a cell where carbon burning takes place
is simulated on regular grids. Note that the simulations on the nested and regular
grids are performed with all MPI processes being used. The calculation algorithm
is as follows:

1. Construct a workable nested grid configuration to simulate the hydrodynam-
ics of a single dwarf or a system of white dwarfs. For this, a simulation cor-
responding to the simple analytics described in Sect. 2.4 can be performed
on regular grids using subgrid carbon burning. This configuration is used to
minimize the reconstruction of nested grids. The nested grid configuration
turns out to be appropriate, and the Increase/Decrease operations with the
nested grids do not require additional balancing of data loading.

2. Balance the loading of calculations on the nested grids between the MPI
processes (see Sect. 3.2 for a detailed description of the balancing).

3. Determine a single time step τWD in solving the hydrodynamic equations to
describe the evolution of white dwarfs on nested grids. For this, the maximum
velocity vmax and the sound speed cmax are determined for all cells of the
nested grids. For definiteness, let hmin be the minimum cell size of the nested
grids, and let CFL be the Courant number. In this case, the time step is
calculated from the condition

(vmax + cmax) τWD

hmin
= CFL. (16)
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This method of determining the time step provides the uniqueness of the
numerical solution on nested grids, since in this case the characteristics
obtained from the Riemann problems on the nested grid cells do not intersect.
Note that this calculation method allows using nested grids with any ratio of
the neighboring cells (not only 1:2, as described in [4]).

4. Calculate the hydrodynamics of the evolution of white dwarfs in time τWD

on nested grids (see Sect. 3.2 for a detailed description of the calculation).
5. Define nested grid cells (i, j, k, l,m, n), where (i, j, k) is the number of a root

grid cell, and (l,m, n) is the number of the nested grid cell (i, j, k); in these
cells there is a carbon burning trigger T = 109 K, and a density ρ = 107 g
cm−3. Form a list of cells Rn, n = 1, . . . , K, where K is the number of cells
with the real trigger of carbon burning.

6. For all cells Rn, n = 1, . . . ,K, to implement subgrid turbulent carbon burn-
ing, perform an individual simulation of hydrodynamic turbulence. The size
of the simulated domain is equal to that of the cell hn, τWD is the turbulence
simulation time, ρ0 = ρn is the initial density, T0 = Tn is the temperature, and
σ2

n is the velocity dispersion, which is determined from the neighboring cells
(see Sect. 3.1 for a detailed deception of turbulent carbon burning). All prob-
lems of turbulent burning are simulated sequentially on a regular grid using
all MPI processes. The percentage of burned carbon and the released energy
are returned to the corresponding cell of the nested grids (i, j, k, l,m, n). The
calculation of the hydrodynamic equations on regular grids is described in
detail in [25].

Such an organization of calculations naturally requires great computational
costs, since a single problem of hydrodynamic turbulence is calculated in a large
number of cells. Note that the calculation time needed for turbulence problems is
two orders of magnitude greater than that for the hydrodynamics of the evolution
of white dwarfs. Therefore, the speedup and scalability of Parallel & Distributed
computing are determined by the source code and coincide with those obtained
in [25]. Section 3.3 presents the estimates of the efficiency of a code modification
for the calculation on nested grids.

3.1 Turbulence Model of Carbon Burning

When the temperature in the cell reaches a critical value, T = 109 K, and the
density ρ = 107 g cm−3, distributed calculations of the hydrodynamic turbu-
lence of carbon burning are launched on a regular mesh, and the results are
returned to the main calculation of hydrodynamics. Carbon burning during the
development of turbulence [7] and in the process of a collapse [27] are considered
by many authors. We propose a method when turbulent carbon burning takes
place “on the fly” when calculating the basic hydrodynamics of the process. In
[26], we study in detail the development of hydrodynamic turbulence with and
without self-gravity forces. In the present paper, gravitation is neglected, since
the characteristic time of the process is much less than the free fall time. How-
ever, if necessary, we can take into account the collapse process (as in [27]) or
self-gravity forces in the development of hydrodynamic turbulence [26].
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The critical density ρ = 107 g cm−3 of the transition from deflagration to
detonation is taken as a characteristic density value, and the temperature T =
109 K. The initial velocity perturbation at a known turbulence energy, σ2, is
taken from [1]. Let us describe this procedure in detail. Consider the energy
spectrum E(k) = A × k−5/3 with the known turbulence energy, σ2. Then the
coefficient A can be found from the equation

∫ kmax

kmin

E(k)dk = σ2, (17)

where kmin and kmax are the minimum and maximum wave numbers, respec-
tively. The turbulent pulsation field u(x), where x is a space point, is given by
the equation

u(x) =
3σ√
2N

N∑
n=1

un(x), (18)

where N is the number of harmonics. Each of the harmonics is given by the
equation

un(x) = Q (wn) [ξnsin (kn (wn, x)) + ηncos (kn (wn, x))] , (19)

where wn = (wn
1 , wn

2 , wn
3 ) is the unit vector uniformly distributed over the sphere

to provide ∇ ·u = 0, Q (wn) is a random matrix with elements qn
ij = δij − wn

i ×
wn

j , δij is the Kronecker symbol, the coefficients ξn and ηn have the standard
Gaussian distribution N(0, 1). The wave numbers kn are distributed with the
density ρ(k) = E(k)/σ2.

The model of subgrid carbon burning based on turbulent burning being used
exactly corresponds to the model described in [10]. The main difference is as
follows: the process of subgrid turbulence starts when the critical temperature of
carbon burning is reached. This is primarily due to computational aspects. In the
present paper, the critical temperature is used to start the burning process, and
the “turbulization” of the medium increases the efficiency of burning. In [10], a
temperature starting from T = 108 K is considered, and the use of such an initial
temperature is mainly motivated by the reproduction of the initial burning front.
In our study, we use the energy component where the kinetic energy of turbulence
transforms to the internal energy and becomes an additional trigger for carbon
burning intensification and, hence, for obtaining more explosion energy with
less fuel consumption. In this way we demonstrate a possible SNeIa explosion
scenario at masses smaller than the Chandrasekhar mass.

3.2 Nested Grid

To discretize with nested grids, we introduce, in a three-dimensional solution
domain, a uniform cubic root grid with the coordinates of the centers of cells
xi = i×h−h/2, i = 1, .., Imax, yk = k×h−h/2, k = 1, ..,Kmax, zl = l×h−h/2,
l = 1, .., Lmax, where h is the root grid spacing, Imax, Kmax, Lmax is the number
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of cells in the x, y, z directions, respectively. In this implementation, for the
convenience of organizing calculations and without loss of generality of the code,
we use Imax = Kmax = Lmax = N . In a cell (i, k, l), we introduce a nested cubic
grid with the coordinates of the centers of cells xi,nested = i×hnested −hnested/2,
i = 1, ..,M , yk,nested = k × hnested − hnested/2, k = 1, ..,M , zl,nested = l ×
hnested − hnested/2, l = 1, ..,M , where hnested is the nested grid spacing, and M
is the number of nested grid cells in the x, y, z directions. The hydrodynamic
equations will be calculated for quantities in the cells of the root and nested
grids. A detailed arrangement of the hydrodynamic quantities in the calculations
is shown in Fig. 2. Solving the equations of hydrodynamics (finding solutions to
the Riemann problems) consists of the following two steps:

Fig. 2. Arrangement of hydrodynamic quantities on the root and nested grids: the
hydrodynamic parameters on the root grid (blue asterisks), the hydrodynamic param-
eters on the nested grid (red circles), nested grid nodes (yellow rhombuses), the Rie-
mann problem solution at the interfaces between the internal cells of the nested grid,
the intraboundary cells of the nested grid, and the cells of the neighboring root cell
(green rectangles). (Color figure online)

1. solving the Riemann problems at all nested grid boundaries,
2. solving the Riemann problems at all internal nested grid interfaces.

Whereas the second step of finding solutions to the Riemann problems is trivial,
the first step requires a specific method of calculations depending on the cell
sizes of two neighboring nested grids. Only three types of arrangement of the
cells of neighboring grids are possible (see Fig. 3). If the cell sizes are equal (Fig. 3
(middle)), the solution of the Riemann problem is similar to that of the Riemann
problems at the internal interfaces of the nested grid, and is trivial. If the cell of
the neighboring nested grid is larger than the one being considered (Fig. 3 (left)),
it is assumed that the quantities in the blue cell have a uniform distribution,
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Fig. 3. Three types of arrangement of the cells of neighboring nested grids: a cell for
which the Riemann problem is solved (pink color), and a cell of the neighboring nested
grid (blue color) (Color figure online)

and the Riemann problem is solved at the interface between the decreased blue
cell and the pink cell. If the pink cell borders on several cells of the neighboring
nested grid (Fig. 3 (right)), a uniform distribution of the hydrodynamic quanti-
ties in the pink cell is assumed, the Riemann problems are solved at all interfaces,
and then the fluxes are averaged. The grid is restructured according to the root
cell mass. The size of the nested grid is calculated from the condition

M = 2C1�log(ρ)�+C2 , (20)

where C1,2 are the scaling constants chosen according to the requirements of the
characteristic density and the minimum resolution of the problem. We use C1 = 1
and C2 = 5 as characteristic parameters in this work, i.e., at the characteristic
carbon combustion density ρ = 107 g cm−3, a grid with an effective resolution
of 40963 is used. At each time step, it is checked whether the grid needs to
be restructured. Therefore, the grid is changed not more than by a factor of
two. The grid restructuring scheme is shown in Fig. 4. Figure 4 illustrates the
projections of the conservative quantities (density, angular momentum, entropy
density, and total energy). Once the grid is restructured, the nonconservative

Fig. 4. Refinement (top) and coarsening (bottom) of the nested grid
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quantities (primitive in the case of relativistic hydrodynamics) are calculated
from the conservative variables. A detailed description of the calculation for the
hydrodynamic equations in nested grids can be found in [24]. To balance the
load between the processes, we use the following algorithm performed by all
MPI processes (P processes in total) located on individual nodes:

1. Calculate the number of nested grid cells in each slice (YZ plane) of the root
grid Wi, where i = 1, . . . , N and N is the number of root grid cells in the
X-direction.

2. Determine the average number of cells in the slice for the entire root grid
M =

∑
Wi/P , and distribute this value as evenly as possible between the

processes.
3. Set k = 1, where k is the number of the process for which the slice thickness

is formed.
4. Set i = 1, where 1 ≤ i ≤ N is the number of the slice.
5. Set Nk = 0, where Nk is the slice thickness of the kth process.
6. If Nk + Wi > M , Nk is the final slice thickness for the processor k. Increase

k by unity and go to step 5. Otherwise, go to step 7.
7. Increase the slice thickness Nk by Wi, increase the number of the slice i by

unity and go to step 6.

As a result, the slice thicknesses between the processes differ by no more than
unity. To perform the boundary layer exchange between the overlapping nested
grids, a plan of overlapping YZ planes for nested grids is formed.

3.3 Performance

To perform calculations and computational experiments, we use a hybrid super-
computer, NKS-1P of the Siberian Supercomputer Center at ICM & MG SB
RAS (16 nodes, RSC Tornado Phi architecture: Intel Xeon Phi 7290 1.5 GHz,
72 cores, 16 GB MCDRAM; 96 GB DDR4 DRAM; Intel Omni Path 100 Gb/s
interconnect). The performance of the solver on regular grids is estimated in
[25]. In the parallel implementation on nested grids, we use a 1283 root grid and
the following three configurations of nested grids:

1. Config 1: All nested grids have a size of 43 (a uniform grid with an effective
resolution of 5123).

2. Config 2: 75% of nested grids have a size of 23, and 25% have a size of 83 (the
effective resolution is 10243).

3. Config 3: 75% nested grids have a size of 23, 15% have a size of 83, and 10%
have a size of 323 (the effective resolution is 40963).

The code speedup for some nested grid configurations is presented in Table 1.
At a uniform distribution of calculations, we have a 38-fold code speedup; less
uniform calculations drop the speedup to 34-fold, which is achieved with fewer
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Table 1. Speedup.

Threads Config 1 Config 2 Config 3

1 1.0 1.0 1.0

2 1.9 1.9 1.9

4 3.9 3.9 3.8

8 7.9 7.9 7.8

12 11.6 11.6 11.8

16 15.7 15.5 15.7

24 21.2 22.9 22.3

32 25.4 28.0 25.6

48 30.7 37.6 34.9

64 33.1 32.5 33.6

96 38.2 27.1 32.3

128 33.6 26.2 31.1

threads. In a study of scalability when the grid configuration is doubled for a
given number of processes, it is found that the scalability corresponds to the
source code one and is about 96% with 16 Intel Xeon Phi 7290 accelerators.

4 Numerical Simulation of SNeIa Explosion

Here we consider two components of the problem of type Ia supernova explosion:
turbulent carbon burning and an experimental study of the energy released at
various perturbations, and the hydrodynamics of SNeIa explosion.

4.1 Turbulence Carbon Burning

To study various regimes of turbulent carbon burning, we will consider a 100 km3

domain with the density ρ = 107 g cm−3 and the temperature T = 109 K
with a normal velocity distribution and a Mach number of the root-mean-square
deviation MRMS . The characteristic density corresponding to the density of the
transition from deflagration to detonation in carbon burning is taken according
to [14,30,45]. Figure 5 presents the results of simulation: the relative increase in
the explosion energy versus the Mach number of the root-mean-square deviation
MRMS . One can see inFig. 5 that in considerable supersonic turbulence, the explo-
sion energy can have a relative increase of more than three times. In the present
paper, the question of whether such a turbulence regime can be achieved in the
merging of white dwarfs is not considered. In what follows, we will study how
the explosion energy affects the explosion hydrodynamics pattern. This issue has
been actively studied recently, for instance, in [2,29]. The simulation with all the
resources of the Siberian Supercomputer Center (16 Intel Xeon Phi 7290 and 72
physical cores in an accelerator on a regular 2563 calculation grid) is about 10 min.
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Fig. 5. Relative increase in the explosion energy versus Mach number of the root-mean-
square deviation MRMS . The basic explosion energy corresponds to an energy release
of 1051 Erg.

When simulating an SNeIa explosion on the basis of the merging of white dwarfs
and the asymmetric explosion of a single dwarf, the typical time step, τWD, is 10
ms. Thus, the typical calculation time of the next two problems using the approach
with the direct simulation of turbulent carbon burning is about one week. As men-
tioned earlier, the major computational load is the reproduction of turbulent car-
bon burning as an individual problem. In a series of experiments, we consider the
turbulent combustion of carbon at various perturbation velocity dispersions. The
kinetic energy obtained from the nonzero dispersion of perturbation velocities is
converted into the internal energy and, as a result, into a more intense mode of car-
bon combustion, which gives a greater energy yield compared to static combustion
used in classical methods for specifying subgrid processes. In further calculations,
we use this problem as a component for describing the subgrid process of carbon
combustion.

4.2 Hydrodynamics of SNeIa Explosion

We identified 11 possible scenarios (see Fig. 6) of a supernova explosion, which
differ in the hydrodynamics of the process:

1. The merger of white dwarfs [15] is the classical scenario of a merger of
two white dwarfs with the achievement of a mass greater than the mass of
Chandrasekhar and the subsequent explosion of a type Ia supernova (see
Fig. 6I).

2. The off-center collision of white dwarfs [37] is a collision of two white dwarfs
of arbitrary masses moving in parabolic orbits. The high kinetic energy and,
therefore, the interaction energy lead to the launch of the nuclear combustion
of the material of white dwarfs, followed by a type Ia supernova explosion
(see Fig. 6II).

3. The central collision of white dwarfs [38] is a degenerate scenario of a high-
velocity collision of two white dwarfs, followed by a type Ia supernova explo-
sion (see Fig. 6III).
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4. The close passage of white dwarfs [28] is a motion of white dwarfs along
parabolic trajectories without collision. The high speed of movement pre-
vents the dwarfs from entering the merge mode (see Fig. 6IV).

5. The forced fusion of white dwarfs of equal [34] and different masses [40] is a
merger of white dwarfs forced out of equilibrium due to a mass difference of
20% or the slowing down of the dwarf’s velocity in a tight binary pair. Both
scenarios result in dwarf fusion and Chandrasekhar mass excess, leading to
a Type Ia supernova explosion (see Fig. 6V).

6. The supernova explosion based on the development of spiral instability [18,
19] is a type Ia supernova explosion based on the development of turbulence
in spirals in merging white dwarfs. The development of turbulence in high-
density islands that are in spirals is the main explosion mechanism [10]. A
feature of such turbulent combustion can be the occurrence of any scenario
of the nuclear combustion of the material: detonation model [3], deflagration
model [32], delayed detonation model [21] (see Fig. 6VI).

7. Tidal heating [8] is a scenario of the explosion of a new super or new type
Ia based on a combination of tidal heating, accretion heating and material
nuclear burning. The location of ignition due to tidal heating is a feature of
this scenario. In the case of a surface explosion, the white dwarf degenerates
into a new star. When the detonation point is deep enough, an off-center
explosion of a type Ia supernova occurs (see Fig. 6VII).

8. The dynamic double detonation of double degenerate dwarfs of a pre-Chan-
drasekhar mass or D6 [13] is a scenario of a merging of two degenerate
dwarfs, one of which receives a shear momentum of the base relative to the
nucleus. As a result, an instability of the Kelvin-Helmholtz type develops at
the boundary between the nucleus and the shell of one of the dwarfs. Pri-
mary detonation occurs in dense waves of an unstable flow. The shock waves
from waves come on the shell surface. At this moment, a second detonation,
sufficient for the formation of a type Ia supernova, occurs (see Fig. 6VIII).

9. The tidal detonation of a white dwarf during the close passage of a black
hole [41] is a scenario of a shell detonation of a white dwarf of an arbitrary
mass and an explosion in the form of a type Ia supernova due to tidal heating
caused by the close passage of a black hole. A preliminary analysis of such
scenarios shows that a medium-mass black hole is sufficient (see Fig. 6IX).

10. The merger of a white dwarf with a star of main sequence [44] is another
classical scenario of the merging of a white dwarf with a star of main sequence
with achieving a mass greater than the Chandrasekhar mass, followed by a
type Ia supernova explosion (see Fig. 6X).

11. The collision of a white dwarf type with a terrestrial planet is a hypothetical
scenario of a collision of a white dwarf with a planet from the terrestrial
type to a gas giant. The achieved Chandrasekhar mass and, in addition,
the kinetic impulse obtained from the planet lead to a type Ia supernova
explosion (see Fig. 6XI).

The consideration of these possible scenarios from the point of view of the
hydrodynamics of the process can be reduced to three fundamentally different
scenarios:
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1. “Merger” is a scenario of stars interaction, among which three variants can
also be distinguished: evolutionary merging, central and off-center collisions
of stars.

2. “Gravity Shock” is a scenario with an explosion of a static or moving point
of detonation. The movement of the detonation point is associated with the
direction of the influence of the gravitational impact.

3. “Bubbles” is a multiple detonation when the number of detonation points
can reach hundreds [9].

Next, we will demonstrate computational experiments to study these scenarios.

Fig. 6. SNeIa Explosion Scenarios

SNeIa Explosion Scenario Based on White Dwarf Merger. We will
simulate two white dwarfs with solar masses and the temperature T = 109 K.
The angular velocity of white dwarfs, v, is obtained from an analytical solution
based on the following equality of the centripetal force and the force of gravity:

v2

r
= G

M�
r2

,

where v is the equilibrium angular velocity, M� is the mass of dwarfs, and r is the
distance between the dwarfs. The rotation speed of one of the dwarfs is decreased
by 20%. This results in the merger of the white dwarfs. Figure 7 presents the
simulation results: the initial state of the dwarfs, the beginning of the merging
of the dwarfs, the state of the merging at the time of the explosion, and an
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asymmetric supernova Ia explosion. To simulate nuclear carbon burning, we use
the perturbation rate obtained by simulating the hydrodynamics of the merging

Fig. 7. Relative density distribution in the equatorial plane during the merger of white
dwarfs and the subsequent type Ia supernova explosion at 0 s (a), 40 s (b), 60 s (c),
and 70 s (d).

of the dwarfs. The simulation results (7) show that critical densities for starting
detonation carbon burning are reached in the merger. The explosion dynamics is
subsequently determined by the results of the non-center white dwarf explosion.

SNeIa Explosion Scenario Based on White Dwarf Central Collision.
We will simulate two white dwarfs with solar masses and the temperature T =
109 K. The velocity of the central collision is equal to 1000 km s−1. Figure 8
presents the simulation results: the initial state of the dwarfs, the beginning
of the collision of the dwarfs, the late state of the collision, and an supernova
Ia explosion. To simulate nuclear carbon burning, we use the perturbation rate
obtained by simulating the hydrodynamics of the merging of the dwarfs. It can

Fig. 8. Relative density distribution in the equatorial plane during the central collision
of white dwarfs and the subsequent type Ia supernova explosion at 0 s (a), 20 s (b),
40 s (c), and 45 s (d).

be seen from the simulation results that after the explosion, two diverging shock
fronts, similar to jets, are formed. The whole simulation in general repeats the
previous scenario.
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SNeIa Explosion Scenario Based on White Dwarf Non Central Col-
lision. We will simulate two white dwarfs with solar masses and the temper-
ature T = 109 K. The velocity of the non-central collision is equal to 1000 km
s−1. Figure 9 presents the simulation results: the initial state of the dwarfs, the
beginning of the collision of the dwarfs, the late state of the collision, and an
supernova Ia explosion. To simulate nuclear carbon burning, we use the per-
turbation rate obtained by simulating the hydrodynamics of the merging of the
dwarfs. The whole simulation in general repeats the previous scenarios.

Fig. 9. Relative density distribution in the equatorial plane during the non-central
collision of white dwarfs and the subsequent type Ia supernova explosion at 0 s (a),
20 s (b), 40 s (c), and 45 s (d).

Asymmetric Explosions of White Dwarfs. Let us simulate a single white
dwarf with two solar masses and the temperature T = 109 K. The explosion
zone is specified at a distance of 20% of the radius from the center. The explo-
sion energy is specified with the values obtained in the previous subsection.
Figure 10 presents the simulation results: the density distribution at the time
when the explosion takes place in most of the star at various explosion energies.
The simulation results (10) show that when the explosion force is considerable,

Fig. 10. Relative density distribution in the equatorial plane at explosion energy values
of 1/2 × E0 (a), E0 (b), 2 × E0 (c), 4 × E0 (d).

the star collapses, and a thin shock wave from the supernova is formed. As the
explosion energy decreases, the wave dissipates over a sufficiently large distance.
It is obvious that in this case, the brightness of the supernova changes con-
siderably depending on the carbon burning mode and the subsequent explosion
energy. Increasing the explosion energy produces a hydrodynamic instability due
to the presence of a small perturbation in the white dwarf density (see Fig. 10
for relative densities at one second after the explosion).
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Multiply Explosions of White Dwarfs. Finally, let us simulate a single white
dwarf with two solar masses and the temperature T = 109 K. The explosion
zones are specified at a distance of 20% of the radius from the center and in the
center. The explosion energy is specified with the values obtained in the previous
subsection. Figure 11 presents the simulation results. Thanks to the numerical

Fig. 11. Isolines (left) and isosurface (right) of the relative density distribution in 5 s.

simulation, we can see the result of the supernovae Ia explosion in the form of a
“horseshoe” image.

5 Discussion

1. We do not deny the concept of “standard candles” for measuring distances in
the Universe. Let us only pay attention to the fact that the energy behavior
of the process of the explosion of white dwarfs in the form of supernovae with
the incomplete combustion of the material is non-standard. We offer only one
scenario that reveals the ambiguity of the burning process.

2. The computational model has a simple adiabatic form of the stellar equa-
tion of state. Although numerous studies of the stellar equation of state are
available, we have not found any convincing arguments in favor of using more
complicated coefficients of the adiabatic density function when considering
the energy behavior. Maybe the model should be complicated considering the
concentration distributions of the elements.

3. In our model of burning, we use the alpha process of carbon burning up to
iron and nickel. The concentration distributions of the elements in supernova
explosions are not considered. The major attention is given to the explosion
energy with incomplete carbon burning and the non-standard character of
this process.
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4. To describe subgrid carbon burning, the model considered in detail in [39]
is used. The advantage of this model is that it has an analytical solution
for determining the energy released as a result of carbon burning. In the
present paper, the chemical composition of the remnant is not considered.
The chemical composition of the remnant is described in [6,31,33,35,36].

5. The main calculation time in our model of the evolution of white dwarfs and
the explosion of type Ia supernovae is spent on modeling the subgrid process
of carbon combustion in white dwarfs. We start such turbulent combustion at
each time step in each computational cell of nested grids used to simulate the
hydrodynamics of white dwarfs, provided that the required values of temper-
ature and density in the cells are reached. In fact, at each time step, we run a
fairly large number of full-fledged hydrodynamic calculations using a regular
grid on the time step of white dwarf hydrodynamics. For the calculation, we
use the already developed parallel code computing infrastructure from [25].
The calculations of the hydrodynamics of white dwarfs take negligible time
and are reduced by the use of nested grids. In connection with this way of
organizing calculations, we do not consider scalability studies on regular grids
(they are described in detail in [25]), but we present scalability results only
for nested grids.

6. It is known that the classical SNeIa supernova scenario is based on the merger
of white dwarfs, reaching the mass of Chandrasekhar, the start of the ther-
monuclear combustion of carbon, and the subsequent supernova explosion
with the almost complete combustion of the material. Professor A.V. Tutukov
proposed a hypothesis about the possibility of an explosion of SNeIa during
the combustion of a mass smaller than the mass of Chandrasekhar, which led
to the formation of many scenarios described in this article. The key point,
in our opinion, is related to the more intense combustion of the white dwarf
material. To describe such combustion, we propose the subgrid carbon com-
bustion apparatus in the form of an independent hydrodynamic problem of
turbulence development.

6 Conclusions

In this paper, a non-standard mechanism of carbon burning in type Ia supernova
explosions is proposed. The mechanism is based on intensity variations in the
nuclear burning of carbon during its incomplete combustion. In this case, the
explosion energy can vary significantly due to the presence of different regimes of
carbon burning during the development of turbulence in the burning zone. The
energy released during burning, sufficient for the explosion of a white dwarf (as a
type Ia supernova), can be achieved with a mass smaller than the Chandrasekhar
mass. In addition, the explosion energy of a white dwarf with a Chandrasekhar
mass can differ considerably.
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