
Visualizing Multidimensional Linear
Programming Problems

Nikolay A. Olkhovsky and Leonid B. Sokolinsky(B)

South Ural State University (National Research University),
76, Lenin prospekt, Chelyabinsk 454080, Russia
{olkhovskiiNA,leonid.sokolinsky}@susu.ru

Abstract. The article proposes an n-dimensional mathematical model
of the visual representation of a linear programming problem. This model
makes it possible to use artificial neural networks to solve multidimen-
sional linear optimization problems, the feasible region of which is a
bounded non-empty set. To visualize a linear programming problem, an
objective hyperplane is introduced, its orientation is determined by the
gradient of the linear objective function: the gradient is the normal to the
objective hyperplane. In the case of searching the maximum, the objec-
tive hyperplane is positioned in such a way that the value of the objective
function at all its points exceeds the value of the objective function at all
points of the feasible region, which is a bounded convex polytope. For an
arbitrary point of the objective hyperplane, the objective projection onto
the polytope is determined: the closer the objective projection point is to
the objective hyperplane, the greater the value of the objective function
at this point. Based on the objective hyperplane, a finite regular set of
points, called the receptive field, is constructed. Using objective projec-
tions, an image of the polytope is constructed. This image includes the
distances from the receptive points to the corresponding points of the
polytope surface. Based on the proposed model, parallel algorithms for
visualizing a linear programming problem are constructed. An analytical
estimation of its scalability is performed. Information about the software
implementation and the results of large-scale computational experiments
confirming the efficiency of the proposed approaches are presented.

Keywords: Linear programming · Multydimensional visualization ·
Mathematical model · Parallel algorithm · BSF-skeleton

1 Introduction

The rapid development of Big Data technologies [11,12] has led to the emergence
of mathematical optimization models in the form of large-scale linear program-
ming (LP) problems [24]. Such problems arise in industry, economics, logistics,
statistics, quantum physics, and other fields [3,4,8,22,25]. In many cases, the
conventional software is not able to handle such large-scale LP problems in an

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
L. Sokolinsky and M. Zymbler (Eds.): PCT 2022, CCIS 1618, pp. 172–196, 2022.
https://doi.org/10.1007/978-3-031-11623-0_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-11623-0_13&domain=pdf
http://orcid.org/0000-0001-9997-3918
https://doi.org/10.1007/978-3-031-11623-0_13

Visualizing LP Problems 173

acceptable time [2]. At the same time, in the nearest future, exascale supercom-
puters potentially capable of solving such problems will appear [6]. In accordance
with this, the issue of developing new effective methods for solving large-scale
LP problems using exascale supercomputing systems is urgent.

Until now, the class of algorithms proposed and developed by Dantzig on the
basis of the simplex method [5] is one of the most common ways to solve LP prob-
lems. The simplex method is effective for solving a large class of LP problems. How-
ever, the simplex method has some fundamental features that limit its applicabil-
ity to large LP problems. First, in the worst case, the simplex method traverses all
the vertices of the simplex, which results in exponential time complexity [35]. Sec-
ond, in most cases, the simplex method successfully solves LP problems containing
up to 50,000 variables. However, a loss of precision is observed when the simplex
method is used for solving large LP problems. Such a loss of precision cannot be
compensated even by applying such computational intensive procedures as “affine
scaling” or “iterative refinement” [34]. Third, the simplex method does not scale
well on multiprocessor systems with distributed memory. Many attempts to par-
allelize the simplex method were made, but they all failed [19]. In [14], Karmarkar
proposed the inner point method having polynomial time complexity in all cases.
This method effectively solves problems with millions of variables and millions of
constraints. Unlike the simplex method, the inner point method is self-correcting.
Therefore, it is robust to the loss of precision in computations. The drawbacks of
the interior point method are as follows. First, the interior point method requires
the careful tuning of its parameters. Second, this method needs a known point that
belongs to the feasible region of the LP problem to start calculations. Finding such
an interior point can be reduced to solving an additional LP problem. An alterna-
tive is iterative projection-type methods [23,26,31], which are also self-correcting.
Third, like the simplex method, the inner point method does not scale well on mul-
tiprocessor systems with distributed memory. Several attempts at effective paral-
lelization for particular cases were made (see, for example, [10,15]). However, it
was not possible to make efficient parallelization for the general case. In accordance
with this, research directions related to the development of new scalable methods
for solving LP problems are urgent.

A possible efficient alternative to the conventional methods of LP is optimiza-
tion methods based on neural network models. Artificial neural networks [20,21]
are one of the most promising and rapidly developing areas of modern informa-
tion technology. Neural networks are a universal tool capable of solving problems
in almost all areas. The most impressive success was achieved in image recogni-
tion and analysis using convolutional neural networks [18]. However, in scientific
periodicals, there are almost no works devoted to the use of convolutional neural
networks for solving linear optimization problems [17]. The reason is that con-
volutional neural networks focus on image processing, but there are no works on
the visual representation of multidimensional linear programming problems in
the scientific literature. Thus, the issue of developing new neural network models
and methods focused on linear optimization remains open.

In this paper, we try to develop an n-dimensional mathematical model of
the visual representation of the LP problem. This model allows one to employ

174 N. A. Olkhovsky and L. B. Sokolinsky

the technique of artificial neural networks to solve multidimensional linear opti-
mization problems, the feasible region of which is a bounded non-empty set.
The visualization method based on the described model has high computational
complexity. For this reason, we propose its implementation as a parallel algo-
rithm designed for cluster computing systems. The rest of the paper is organized
as follows. Section 2 is devoted to the design of the mathematical model of the
visual representation of multidimensional LP problems. Section 3 describes the
implementation of the proposed visualization method as a parallel algorithm and
provides an analytical estimation of its scalability. Section 4 presents informa-
tion about the software implementation of the described parallel algorithm and
discusses the results of large-scale computational experiments on a cluster com-
puting system. Section 5 summarizes the obtained results and provides directions
for further research.

2 Mathematical Model of the LP Visual Representation

The linear optimization problem can be stated as follows

x̄ = arg max {〈c, x〉|Ax � b, x ∈ R
n} , (1)

where c, b ∈ R
n, A ∈ R

m×n, and c �= 0. Here and below, 〈· , ·〉 stands for the dot
product of vectors. We assume that the constraint x � 0 is also included in the
system Ax � b in the form of the following inequalities:

−x1 + 0 + · · · · · · · · · + 0 � 0;
0 − x2 + 0 + · · · + 0 � 0;

· ·
0 + · · · · · · · · · + 0 − xn � 0.

The vector c is the gradient of the linear objective function

f(x) = c1x1 + . . . + cnxn. (2)

Let M denote the feasible region of problem (1):

M = {x ∈ R
n|Ax � b} . (3)

We assume from now on that M is a non-empty bounded set. This means that
M is a convex closed polytope in the space R

n, and the solution set of problem
(1) is not empty.

Let ãi ∈ R
n be a vector formed by the elements of the ith row of the matrix A.

Then, the matrix inequality Ax � b is represented as a system of inequalities

〈ãi, x〉 � bi, i = 1, . . . , m. (4)

We assume from now on that
ãi �= 0. (5)

Visualizing LP Problems 175

for all i = 1, . . . , m. Let us denote by Hi the hyperplane defined by the equation

〈ãi, x〉 = bi (1 � i � m). (6)

Thus,
Hi = {x ∈ R

n| 〈ãi, x〉 = bi} . (7)

Definition 1. The half-space H+
i generated by the hyperplane Hi is the half-

space defined by the equation

H+
i = {x ∈ R

n| 〈ãi, x〉 � bi} . (8)

From now on, we assume that problem (1) is non-degenerate, i.e.,

∀i �= j : Hi �= Hj (i, j ∈ {1, . . . ,m}) . (9)

Definition 2. The half-space H+
i generated by the hyperplane Hi is recessive

with respect to the vector c if

∀x ∈ Hi,∀λ ∈ R>0 : x − λc ∈ H+
i ∧ x − λc /∈ Hi. (10)

In other words, the ray coming from the hyperplane Hi in the direction opposite
to the vector c lies completely in H+

i , but not in Hi.

Proposition 1. The necessary and sufficient condition for the recessivity of the
half-space H+

i with respect to the vector c is the condition

〈ãi, c〉 > 0. (11)

Proof. Let us prove the necessity first. Let condition (10) hold. Equation (7)
implies

x =
biãi

‖ãi‖2 ∈ Hi. (12)

By virtue of (5),

λ =
1

‖ãi‖2 ∈ R>0. (13)

Comparing (10) with (12) and (13), we obtain

biãi

‖ãi‖2 − 1
‖ãi‖2 c ∈ H+

i ;

biãi

‖ãi‖2 − 1
‖ãi‖2 c /∈ Hi.

In view of (7) and (8), this implies
〈
ãi,

biãi

‖ãi‖2 − 1
‖ãi‖2 c

〉
< bi. (14)

176 N. A. Olkhovsky and L. B. Sokolinsky

Using simple algebraic transformations of inequality (14), we obtain (11). Thus,
the necessity is proved.

Let us prove the sufficiency by contradiction. Assume that (11) holds, and
there are x ∈ Hi and λ > 0 such that

x − λc /∈ H+
i ∨ x − λc ∈ Hi.

In accordance with (7) and (8), this implies

〈ãi, x − λc〉 � bi

that is equivalent to
〈ãi, x〉 − λ 〈ãi, c〉 � bi.

Since λ > 0, it follows from (11) that

〈ãi, x〉 > bi,

but this contradicts our assumption that x ∈ Hi.
�
Definition 3. Fix a point z ∈ R

n such that the half-space

H+
c = {x ∈ R

n| 〈c, x − z〉 � 0} (15)

includes the polytope M :
M ⊂ H+

c .

In this case, we call the half-space H+
c the objective half-space, and the hyperplane

Hc, defined by the equation

Hc = {x ∈ R
n| 〈c, x − z〉 = 0} , (16)

the objective hyperplane.

Denote by πc(x) the orthogonal projection of the point x onto the objective
hyperplane Hc:

πc(x) = x − 〈c, x − z〉
‖c‖2 c. (17)

Here, ‖·‖ stands for the Euclidean norm. Define the distance ρc(x) from x ∈ H+
c

to the objective hyperplane Hc as follows:

ρc(x) = ‖πc(x) − x‖. (18)

Comparing (15), (17) and (18), we find that, in this case, the distance ρc(x) can
be calculated as follows:

ρc(x) =
〈c, z − x〉

‖c‖ . (19)

The following Proposition 2 holds.

Visualizing LP Problems 177

Proposition 2. For all x, y ∈ H+
c ,

ρc(x) � ρc(y) ⇔ 〈c, x〉 � 〈c, y〉 .

Proof. Equation (19) implies that

ρc(x) � ρc(y) ⇔ 〈c, z − x〉
‖c‖ � 〈c, z − y〉

‖c‖
⇔ 〈c, z − x〉 � 〈c, z − y〉
⇔ 〈c, z〉 + 〈c,−x〉 � 〈c, z〉 + 〈c,−y〉
⇔ 〈c,−x〉 � 〈c,−y〉
⇔ 〈c, x〉 � 〈c, y〉 .

�
Proposition 2 says that problem (1) is equivalent to the following problem:

x̄ = arg min {ρc(x)|x ∈ M} . (20)

Definition 4. Let the half-space H+
i be recessive with respect to the vector c.

The objective projection γi(x) of the point x ∈ R
n onto the recessive half-space

H+
i is a point defined by the equation

γi(x) = x − σi(x)c, (21)

where
σi(x) = min {σ ∈ R�0 | x − σc ∈ H+

i

}
.

Examples of objective projections in R
2 are shown in Fig. 1.

Fig. 1. Objective projections in the space R
2: γi(x

′) = q′; γi(x
′′) = q′′ = x′′.

The following Proposition 3 provides an equation for calculating the objective
projection onto a half-space that is recessive with respect to the vector c.

178 N. A. Olkhovsky and L. B. Sokolinsky

Proposition 3. Let the half-space H+
i defined by the inequality

〈ãi, x〉 � bi (22)

be recessive with respect to the vector c. Let

g /∈ H+
i . (23)

Then,

γi(g) = g − 〈ãi, g〉 − bi
〈ãi, c〉 c. (24)

Proof. According to Definition 4, we have

γi(g) = g − σi(g)c,

where
σi(x) = min {σ ∈ R�0 | x − σc ∈ H+

i

}
.

Thus, we need to prove that

〈ãi, g〉 − bi
〈ãi, c〉 = min {σ ∈ R�0 | x − σc ∈ H+

i

}
. (25)

Consider the strait line L defined by the parametric equation

L = {g + τc| τ ∈ R} .

Let the point q be the intersection of the line L with the hyperplane Hi:

q = L ∩ Hi. (26)

Then, q must satisfy the equation

q = g + τ ′c (27)

for some τ ′ ∈ R. Substitute the right side of Eq. (27) into Eq. (6) instead of x:

〈ãi, g + τ ′c〉 = bi.

It follows that

〈ãi, g〉 + τ ′ 〈ãi, c〉 = bi,

τ ′ =
bi − 〈ãi, g〉

〈ãi, c〉 . (28)

Substituting the right side of Eq. (28) into Eq. (27) instead of τ ′, we obtain

q = g +
bi − 〈ãi, g〉

〈ãi, c〉 c,

Visualizing LP Problems 179

which is equivalent to

q = g − 〈ãi, g〉 − bi
〈ãi, c〉 c. (29)

Since, according to (26), q ∈ Hi, Eq. (25) will hold if

∀σ ∈ R>0 : σ <
〈ãi, g〉 − bi

〈ãi, c〉 ⇒ g − σc /∈ H+
i (30)

holds. Assume the opposite, i.e., there exist σ′ > 0 such that

σ′ <
〈ãi, g〉 − bi

〈ãi, c〉 (31)

and
g − σ′c ∈ H+

i . (32)

Then, it follows from (22) and (32) that

〈ãi, g − σ′c〉 � bi.

This is equivalent to
〈ãi, g〉 − bi � σ′ 〈ãi, c〉 . (33)

Proposition 1 implies that 〈ãi, c〉 > 0. Hence, Eq. (33) is equivalent to

σ′ � 〈ãi, g〉 − bi
〈ãi, c〉 .

Thus, we have a contradiction with (31).
�
Definition 5. Let g ∈ Hc. The objective projection γM (g) of the point g onto
the polytope M is a point defined by the following equation:

γM (g) = g − σM (g)c, (34)

where
σM (g) = min {σ ∈ R�0| g − σc ∈ M} .

If
¬∃ σ ∈ R�0 : g − σc ∈ M,

then we set γM (g) = �∞, where �∞ stands for a point that is infinitely far from
the polytope M .

Examples of objective projections onto the polytope M in R
2 are shown in Fig. 2.

180 N. A. Olkhovsky and L. B. Sokolinsky

Fig. 2. Objective projections onto the polytope M in R
2: γM (g′) = q′; γM (g′′) = �∞.

Definition 6. The receptive field G(z, η, δ) ⊂ Hc of the density δ ∈ R>0 with
the center z ∈ Hc and the rank η ∈ N is a finite ordered set of points satisfying
the following conditions:

z ∈ G(z, η, δ); (35)
∀g ∈ G(z, η, δ) : ‖g − z‖ � ηδ

√
n; (36)

∀g′, g′′ ∈ G(z, η, δ) : g′ �= g′′ ⇒ ‖g′ − g′′‖ � δ; (37)
∀g′ ∈ G(z, η, δ) ∃g′′ ∈ G(z, η, δ) : ‖g′ − g′′‖ = δ; (38)
∀x ∈ Co(G(z, η, δ)) ∃g ∈ G(z, η, δ) : ‖g − x‖ � 1

2δ
√

n. (39)

The points of the receptive field will be called receptive points.

Here, Co(X) stands for the convex hull of a finite point set X =
{
x(1), . . . ,

x(K)
} ⊂ R

n:

Co(X) =

{
K∑
i=1

λix
(i)

∣∣∣∣∣ λi ∈ R�0,
K∑
i=1

λi = 1

}
.

In Definition 6, condition (35) means that the center of the receptive field belongs
to this field. Condition (36) implies that the distance from the central point z to
each point g of the receptive field does not exceed ηδ

√
n. According to (37), for

any two different points g′ �= g′′ of the receptive field, the distance between them
cannot be less than δ. Condition (38) says that for any point g′ of the receptive
field, there is a point g′′ in this field such that the distance between g′ and g′′ is
equal to δ. Condition (39) implies that for any point x belonging to the convex
hull of the receptive field, there is a point g in this field such that the distance
between x and g does not exceed 1

2δ
√

n. An example of the receptive field in the
space R

3 is presented in Fig. 3.

Visualizing LP Problems 181

Fig. 3. Receptive field in the space R
3.

Let us describe a constructive method for building a receptive field. Without
loss of generality, we assume that cn �= 0. Consider the following set of vectors:

c(0) = c = (c1, c2, c3, c4, . . . , cn−1, cn);

c(1) =

⎧
⎨
⎩

(
− 1

c1

∑n

i=2
c2i , c2, c3, c4, . . . , cn−1, cn

)
, if c1 �= 0;

(1, 0, . . . , 0), if c1 = 0;

c(2) =

⎧
⎨
⎩

(
0,− 1

c2

∑n

i=3
c2i , c3, c4, . . . , cn−1, cn

)
, if c2 �= 0;

(0, 1, 0, . . . , 0), if c2 = 0;

c(3) =

⎧
⎨
⎩

(
0, 0,− 1

c3

∑n

i=4
c2i , c4, . . . , cn−1, cn

)
, if c3 �= 0;

(0, 0, 1, 0, . . . , 0), if c3 = 0;

. .

c(n−2) =

⎧
⎨
⎩

(
0, . . . , 0,− 1

cn−2

∑n

i=n−1
c2i , cn−1, cn

)
, if cn−2 �= 0;

(0, . . . , 0, 1, 0, 0), if cn−2 = 0;

c(n−1) =

⎧
⎨
⎩

(
0, . . . , 0,− c2n

cn−1
, cn

)
, if cn−1 �= 0;

(0, . . . , 0, 0, 1, 0), if cn−1 = 0.

It is easy to see that

∀i, j ∈ {0, 1, . . . , n − 1}, i �= j :
〈
c(i), c(j)

〉
= 0.

This means that c0, . . . , cn−1 is an orthogonal basis in R
n. In particular,

∀i = 1, . . . , n − 1 :
〈
c, c(i)

〉
= 0. (40)

The following Proposition 4 shows that the linear subspace of the dimension
(n− 1) generated by the orthogonal vectors c1, . . . , cn−1 is a hyperplane parallel
to the hyperplane Hc.

Proposition 4. Define the following linear subspace Sc of the dimension (n−1)
in R

n:

182 N. A. Olkhovsky and L. B. Sokolinsky

Sc =

{
n−1∑
i=1

λic
(i)

∣∣∣∣∣ λi ∈ R

}
. (41)

Then,
∀s ∈ Sc : s + z ∈ Hc. (42)

Proof. Let s ∈ Sc, i.e.,

s = λ1c
(1) + . . . + λn−1c

(n−1).

Then,
〈c, (s + z) − z〉 = λ1

〈
c, c(1)

〉
+ . . . + λn−1

〈
c, c(n−1)

〉
.

In view of (40), this implies

〈c, (s + z) − z〉 = 0.

Comparing this with (16), we obtain s + z ∈ Hc.
�
Define the following set of vectors:

e(i) =
c(i)

‖c(i)‖ (i = 1, . . . , n − 1). (43)

It is easy to see that the set {e1, . . . , en−1} is an orthonormal basis of the sub-
space Sc.

The procedure for constructing a receptive field is presented as Algorithm 1.
This algorithm constructs a receptive field G(z, η, δ) consisting of

KG = (2η + 1)n−1 (44)

points. These points are arranged at the nodes of a regular lattice having the form
of a hypersquare (a hypercube of the dimension n−1) with the edge length equal
to 2ηδ. The edge length of the unit cell is δ. According to Step 13 of Algorithm 1
and Proposition 4, this hypersquare lies in the hyperplane Hc and has the center
at the point z. The drawback of Algorithm 1 is that the number of nested for
loops depends on the dimension of the space. This issue can be solved using the
function G, which calculates a point of the receptive field by its ordinal number
(numbering starts from zero; the order is determined by Algorithm 1). The
implementation of the function G is represented as Algorithm 2. The following
Proposition 5 provides an estimation of the time complexity of Algorithm 2.

Proposition 5. Algorithm 2 enables an implementation that has time
complexity1

cG = 4n2 + 5n − 9, (45)

where n is the space dimension.

1 Here, time complexity refers to the number of arithmetic and comparison operations
required to execute the algorithm.

Visualizing LP Problems 183

Algorithm 1. Building a receptive field
G(z, η, δ)
Require: z ∈ Hc, η ∈ N, δ ∈ R>0

1: G := ∅
2: for in−1 = 0 . . . 2η do
3: sn−1 := in−1δ − ηδ
4: for in−2 = 0 . . . 2η do
5: sn−2 := in−2δ − ηδ
6: . . .
7: for i1 = 0 . . . 2η do
8: s1 := i1δ − ηδ
9: s :=0

10: for j = 1 . . . n − 1 do
11: s := s + sje

(j)

12: end for
13: G :=G ∪ {s + z}
14: end for
15: end for
16: end for

Proof. Consider Algorithm 3 representing a low-level implementation of Algo-
rithm 2. The values calculated in Steps 1–2 of Algorithm 3 do not depend on the
receptive point number k and therefore can be considered constants. In Steps 3–8,
the repeat/until loop runs (n − 1) times and requires c3:8 = 5(n − 1) opera-
tions. In steps 13–16, the nested repeat/until loop runs n times and requires
c13:16 = 4n operations. In steps 10–18, the external repeat/until loop runs
(n − 1) times and requires c10:18 = (4 + c13−16)(n − 1) = 4(n2 − 1) operations.
In total, we obtain

cG = c3:8 + c10:18 = 4n2 + 5n − 9.

�
Corollary 1. The time complexity of Algorithm 2 can be estimated as O(n2).

Definition 7. Let z ∈ Hc. Fix η ∈ N, δ ∈ R>0. The image I(z, η, δ) generated
by the receptive field G(z, η, δ) is an ordered set of real numbers defined by the
equation

I(z, η, δ) = {ρc(γM (g))| g ∈ G(z, η, δ)} . (46)

The order of the real numbers in the image is determined by the order of the
respective receptive points.

184 N. A. Olkhovsky and L. B. Sokolinsky

Algorithm 2. The function G calculates a receptive point by its num-
ber k
Require: z ∈ Hc, η ∈ N, δ ∈ R>0

1: function G(k, n, z, η, δ)
2: for j = (n − 1) . . . 1 do
3: ij :=

⌊
k/(2η + 1)j−1

⌋

4: k := k mod (2η + 1)j−1

5: end for
6: g := z
7: for j = 1 . . . (n − 1) do
8: g := g + (ijδ − ηδ)e(j)

9: end for
10: G := g
11: end function

The following Algorithm 4 implements the function I(z, η, δ) building an image
as a list of real numbers.

Algorithm 3. Low-level implementation of Algorithm 2
1: p := 2η + 1; r := ηδ; h := pn−2; g := z
2: j := n − 1
3: repeat
4: lj := �k/h�
5: k := k mod h
6: h := h/p
7: j := j − 1
8: until j = 0
9: j := 1

10: repeat
11: wj := ljδ − r
12: i := 1
13: repeat
14: gi := gi + wje

(j)
i

15: i := i + 1
16: until i > n
17: j := j + 1
18: until j = n

Here, [] stands for the empty list, and ++ stands for the operation of list con-
catenation.

Let 〈ãi, c〉 > 0. This means that the half-space H+
i is recessive with respect

to the vector c (see Proposition 1). Let there be a point u ∈ Hi ∩ M . Assume

Visualizing LP Problems 185

that we managed to create an artificial neural network DNN, which receives the
image I(πc(u), η, δ) as an input and outputs the point u′ such that

u′ = arg min {ρc(x)| x ∈ Hi ∩ M} .

Then, we can build the following Algorithm 5 solving linear programming prob-
lem (20) using the DNN.

Algorithm 4. Building an image
I(z, η, δ)
Require: z ∈ Hc, η ∈ N, δ ∈ R>0

1: function I(z, η, δ)
2: I :=[]
3: for k = 0 . . . ((2η + 1)n−1 − 1) do
4: gk := G(k, n, z, η, δ)
5: I := I ++ [ρc(γM (gk))]
6: end for
7: end function

Algorithm 5. Linear programming using a DNN
Require: u(1) ∈ Hi ∩ M, 〈ãi, c〉 > 0, z ∈ Hc; η ∈ N, δ ∈ R>0

1: k := 1
2: repeat
3: I := I(u(k), η, δ)
4: u(k+1) := DNN(I)
5: k := k + 1
6: until u(k) �= u(k−1)

7: x̄ := u(k)

8: stop

Only an outline of the forthcoming algorithm is presented here, it needs further
formalization, detalization and refinement.

3 Parallel Algorithm for Building an LP Problem Image

When solving LP problems of large dimension with a large number of constraints,
Algorithm 4 of building an LP problem image can incur significant runtime over-
head. This section presents a parallel version of Algorithm 4, which significantly
reduces the runtime overhead of building the image of a large-scale LP prob-
lem. The parallel implementation of Algorithm 4 is based on the BSF parallel
computation model [27,28]. The BSF model is intended for a cluster computing
system, uses the master/worker paradigm and requires the representation of the
algorithm in the form of operations on lists using higher-order functions Map
and Reduce defined in the Bird–Meertens formalism [1]. The BSF model also

186 N. A. Olkhovsky and L. B. Sokolinsky

provides a cost metric for the analytical evaluation of the scalability of a parallel
algorithm that meets the specified requirements. Examples of the BSF model
application can be found in [7,30–33].

Let us represent Algorithm 4 in the form of operations on lists using higher-
order functions Map and Reduce. We use the list of ordinal numbers of inequal-
ities of system (4) as a list, which is the second parameter of the higher-order
function Map:

Lmap = [1, . . . , m] . (47)

Designate R∞ = R ∪ {∞}. We define a parameterized function

Fk : {1, . . . , m} → R∞,

which is the first parameter of the higher-order function Map, as follows:

Fk(i) =

{
ρc (γi(gk)) , if 〈ãi, c〉 > 0 and γi(gk) ∈ M ;
∞, if 〈ãi, c〉 � 0 or γi(gk) /∈ M.

(48)

where gk = G(k, n, z, η, δ) (see Algorithm 2), and γi(gk) is calculated by Eq. (24).
Informally, the function Fk maps the ordinal number of the half-space H+

i to
the distance from the objective projection to the objective hyperplane if H+

i

is recessive with respect to c (see Proposition 1), and the objective projection
belongs to M . Otherwise, Fk returns the special value ∞.

The higher-order function Map transforms the list Lmap into the list Lreduce

by applying the function Fk to each element of the list Lmap:

Lreduce = Map (Fk,Lmap) = [Fk(1), . . . ,Fk(m)] = [ρ1, . . . , ρm] .

Define the associative binary operation ©↓ : R∞ → R∞ as follows:

∞©↓ ∞ = ∞;
∀α ∈ R : α ©↓ ∞ = α;

∀α, β ∈ R : α ©↓ β = min(α, β).

Informally, the operation ©↓ calculates the minimum of two numbers.
The higher-order function Reduce folds the list Lreduce to the single value

ρ ∈ R∞ by sequentially applying the operation ©↓ to the entire list:

Reduce(©↓ ,Lreduce) = ρ1 ©↓ ρ2 ©↓ . . . ©↓ ρm = ρ.

Visualizing LP Problems 187

Algorithm 6. Building an image I by Map and Reduce
Require: z ∈ Hc, η ∈ N, δ ∈ R>0

1: input n, m, A, b, c, z, η, δ
2: I :=[]
3: Lmap :=[1, . . . , m]
4: for k = 0 . . . ((2η + 1)n−1 − 1) do
5: Lreduce := Map(Fk, Lmap)
6: ρ := Reduce(©↓ , Lreduce)
7: I := I ++ [ρ]
8: end for
9: output I

10: stop

Algorithm 6 builds the image I of the LP problem using higher-order func-
tions Map and Reduce. The parallel version of Algorithm 6 is based on algorith-
mic template 2 in [28]. The result is presented as Algorithm 7.

Algorithm 7. Parallel algorithm of building the image I

Master lth Worker (l=0,. . . ,L-1)

1: input n
2: I :=[]
3: k := 0
4: repeat
5: SendToWorkers k
6:
7:
8: RecvFromWorkers [ρ0, . . . , ρL−1]
9: ρ := Reduce (©↓ , [ρ0, . . . , ρL−1])

10: I := I ++ [ρ]
11: k := k + 1
12: exit :=

(
k � (2η + 1)n−1

)

13: SendToWorkers exit
14: until exit
15: output I

16: stop

1: input n, m, A, b, c, z, η, δ
2: L := NumberOfWorkers
3: Lmap(l) :=[lm/L, . . . , ((l+1)m/L)−1]
4: repeat
5: RecvFromMaster k
6: Lreduce(l) := Map

(
Fk, Lmap(l)

)

7: ρl := Reduce
(©↓ , Lreduce(l)

)

8: SendToMaster ρl

9:
10:
11:
12:
13: RecvFromMaster exit
14: until exit
15:
16: stop

Let us explain the steps of Algorithm 7. For simplicity, we assume that the
number of constraints m is a multiple of the number of workers L. We also
assume that the numbering of inequalities starts from zero. The parallel algo-
rithm includes L + 1 processes: one master process and L worker processes.

188 N. A. Olkhovsky and L. B. Sokolinsky

The master manages the computations. In Step 1, the master reads the space
dimension n. In Step 2 of the master, the image variable I is initialized to
the empty list. Step 3 of the master assigns zero to the iteration counter k. At
Steps 4–14, the master organizes the repeat/until loop, in which the image I of
the LP problem is built. In Step 5, the master sends the receptive point number
gk to all workers. In Step 8, the master expects particular results from all work-
ers. These particular results are folded to a single value, which is added to the
image I (Steps 9–10 of the master). Step 11 of the master increases the iteration
counter k by 1. Step 12 of the master assigns the logical value

(
k � (2η + 1)n−1

)
to the Boolean variable exit. In Step 13, the master sends the value of the Boolean
variable exit to all workers. According to (44), exit = false means that not all
the points of the receptive field are processed. In this case, the control is passed
to the next iteration of the external repeat/until loop (Step 14 of the master).
After exiting the repeat/until loop, the master outputs the constructed image
I (Step 15) and terminates its work (Step 16).

All workers execute the same program codes, but with different data.
In Step 3, the lth worker defines its own sublist. In Step 4, the worker enters
the repeat/until loop. In Step 5, it receives the number k of the next receptive
point. In Step 6, the worker processes its sublist Lmap(l) using the higher-order
function Map, which applies the parameterized function Fk, defined by (48), to
each element of the sublist. The result is the sublist Lreduce(l), which includes the
distances Fk(i) from the objective hyperplane Hc to the objective projections of
the receptive point gk onto the hyperplanes Hi for all i from the sublist Lmap(l).
In Step 7, the worker uses the higher-order function Reduce to fold the sublist
Lreduce(l) to the single value of ρl, using the associative binary operation ©↓ ,
which calculates the minimum distance. The computed particular result is sent
to the master (Step 8 of the worker). In Step 13, the worker waits for the mas-
ter to send the value of the Boolean variable exit. If the received value is false,
the worker continues executing the repeat/until loop (Step 14 of the worker).
Otherwise, the worker process is terminated in Step 16.

Let us obtain an analytical estimation of the scalability bound of parallel
Algorithm 7 using the cost metric of the BSF parallel computation model [28].
Here, the scalability bound means the number of workers at which the maximum
speedup is achieved. The cost metric of the BSF model includes the following
cost parameters for the repeat/until loop (Steps 4–14) of parallel Algorithm 7:

m : length of the list Lmap;
D : latency (time taken by the master to send one byte message

to a single worker);
tc : time taken by the master to send the coordinates of the receptive

point to a single worker and receive the computed value from it
(including latency);

tMap : time taken by a single worker to process the higher-order function
Map for the entire list Lmap;

ta : time taken by computing the binary operation ©↓ .

Visualizing LP Problems 189

According to Eq. (14) from [28], the scalability bound of Algorithm 7 can be
estimated as follows:

Lmax =
1
2

√(
tc

ta ln 2

)2

+
tMap

ta
+ 4m − tc

ta ln 2
. (49)

Calculate estimations for the time parameters of Eq. (49). To do this, we intro-
duce the following notation for a single iteration of the repeat/until loop (Steps
4–14) of Algorithm 7:

cc : quantity of numbers sent from the master to the worker and
back within one iteration;

cMap : quantity of arithmetic and comparison operations computed in
Step 5 of serial algorithm 6;

ca : quantity of arithmetic and comparison operations required
to compute the binary operation ©↓ .

At the beginning of every iteration, the master sends each worker the receptive
point number k. In response, the worker sends the distance from the receptive
point gk to its objective projection. Therefore,

cc = 2. (50)

In the context of Algorithm 6

cMap = (cG + cFk
) m, (51)

where cG is the number of operations taken to compute the coordinates of the
point gk, and cFk

is the number of operations required to calculate the value
of Fk(i), assuming that the coordinates of the point gk have already been calcu-
lated. The estimation of cG is provided by Proposition 5. Let us estimate cFk

.
According to (24), calculating the objective projection γi(g) takes (6n−2) arith-
metic operations. It follows from (19) that the calculation of ρc(x) takes (5n−1)
arithmetic operations. Inequalities (4) imply that checking the condition x ∈ M
takes m(2n − 1) arithmetic operations and m comparison operations. Hence,
Fk(i) takes a total of (2mn + 11n − 3) operations. Thus,

cFk
= 2mn + 11n − 3. (52)

Substituting the right-hand sides of Eqs. (45) and (52) in (51), we obtain

cMap = 4n2m + 2m2n + 16nm − 12m. (53)

To perform the binary operation ©↓ , one comparison operation must be executed:

ca = 1. (54)

190 N. A. Olkhovsky and L. B. Sokolinsky

Let τop stand for the average execution time of arithmetic and comparison oper-
ations, and let τtr stand for the average time of sending a single real number
(excluding latency). Then, using Eqs. (50), (53), and (54) we obtain

tc = ccτtr + 2D = 2(τtr + D); (55)
tMap = cMapτop = (4n2m + 2m2n + 16nm − 12m)τop; (56)
ta = caτop = τop. (57)

Substituting the right-hand sides of Eqs. (55)–(57) in (49), we obtain the follow-
ing estimations of the scalability bound of Algorithm 7:

Lmax =
1
2

√(
2(τtr + D)

τop ln 2

)2

+ 4n2m + 2m2n + 16nm − 12m − 2(τtr + D)
τop ln 2

.

where n is the space dimension, m is the number of constraints, D is the latency.
For large values of m and n, this is equivalent to

Lmax ≈ O(
√

2n2m + m2n + 8nm − 6m). (58)

If we assume that m = O(n), then it follows from (58) that

Lmax ≈ O(n
√

n), (59)

where n is the space dimension. Estimation (59) allows us to conclude that Algo-
rithm 7 scales very well2. In the following section, we verify analytical estima-
tion (59) by conducting large-scale computational experiments on a real cluster
computing system.

4 Computational Experiments

We performed a parallel implementation of Algorithm 7 in the form of the
ViLiPP (Visualization of Linear Programming Problem) program in C++ using
a BSF-skeleton [29]. The BSF-skeleton based on the BSF parallel computation
model encapsulates all aspects related to the parallelization of the program using
the MPI [9] library and the OpenMP [13] programming interface. The source
code of the ViLiPP program is freely available on the Internet at https://github.
com/nikolay-olkhovsky/LP-visualization-MPI. Using the ViLiPP parallel pro-
gram, we conducted experiments to evaluate the scalability of Algorithm 7 on
the “Tornado SUSU” cluster computing system [16], the characteristics of which
are presented in Table 1.

To conduct computational experiments, we constructed three random LP
problems using the FRaGenLP problem generator [32]. The parameters of these

2 Let Lmax = O(nα). We say: the algorithm scales perfectly if α > 1; the algorithm
scales well if α = 1; the algorithm demonstrates limited scalability if 0 < α < 1; the
algorithm does not scale if α = 0.

https://github.com/nikolay-olkhovsky/LP-visualization-MPI
https://github.com/nikolay-olkhovsky/LP-visualization-MPI

Visualizing LP Problems 191

Table 1. Specifications of the “Tornado SUSU” computing cluster

Parameter Value

Number of processor nodes 480

Processor Intel Xeon X5680 (6 cores, 3.33 GHz)

Processors per node 2

Memory per node 24 GB DDR3

Interconnect InfiniBand QDR (40 Gbit/s)

Operating system Linux CentOS

Table 2. Parameters of test LP problems

Problem
ID

Dimension Number of
constraints

Non-zero
values in A

Receptive field
cardinality

LP7 7 4 016 100% 15 625

LP6 6 4 014 100% 3 125

LP5 5 4 012 100% 625

problems are given in Table 2. In all cases, the number of non-zero values of the
matrix A of problem (1) was 100%. For all problems, the rank η of the receptive
field was assumed to be equal to 2. In accordance with Eq. (44), the receptive
field cardinality demonstrated an exponential growth with an increase in the
space dimension.

The results of the computational experiments are presented in Table 3 and in
Fig. 4. In all runs, a separate processor node was allocated for each worker. One
more separate processor node was allocated for the master. The computational
experiments show that the ViLiPP program scalability bound increases with
an increase in the problem dimension. For LP5, the maximum of the speedup
curve is reached around 190 nodes. For LP6, the maximum is located around
260 nodes. For LP7, the scalability bound is approximately equal to 326 nodes.
At the same time, there is an exponential increase in the runtime of building the
LP problem image. Building the LP5 problem image takes 10 s on 11 processor
nodes. Building the LP7 problem image takes 5 min on the same number of
nodes. An additional computational experiment shows that building an image
of the problem with n = 9 takes 1.5 h on 11 processor nodes.

The conducted experiments show that on the current development level of
high-performance computing, the proposed method is applicable to solving LP
problems that include up to 100 variables and up to 100 000 constraints.

192 N. A. Olkhovsky and L. B. Sokolinsky

Table 3. Runtime of building an LP problem image (sec.)

Number of pro-
cessor nodes

LP5 LP6 LP7

11 9.81 54.45 303.78

56 1.93 10.02 59.43

101 1.55 6.29 33.82

146 1.39 4.84 24.73

191 1.35 4.20 21.10

236 1.38 3.98 19.20

281 1.45 3.98 18.47

326 1.55 4.14 18.30

Fig. 4. ViLiPP parallel program speedup for LP problems of various sizes.

5 Conclusion

The main contribution of this work is a mathematical model of the visual rep-
resentation of a multidimensional linear programming problem of finding the
maximum of a linear objective function in a feasible region. The central element
of the model is the receptive field, which is a finite set of points located at the
nodes of a square lattice constructed inside a hypercube. All points of the recep-
tive field lie in the objective hyperplane orthogonal to the vector c = (c1, . . . , cn),
which is composed of the coefficients of the linear objective function. The tar-
get hyperplane is placed so that for any point x from the feasible region and
any point z of the objective hyperplane, the inequality 〈c, x〉 < 〈c, z〉 holds. We
can say that the receptive field is a multidimensional abstraction of the digital
camera image sensor. From each point of the receptive field, we construct a ray
parallel to the vector c and directed to the side of the feasible region. The point

Visualizing LP Problems 193

at which the ray hits the feasible region is called the objective projection. The
image of the linear programming problem is a matrix of the dimension (n − 1),
in which each element is the distance from the point of the receptive field to the
corresponding point of the objective projection.

The algorithm for calculating the coordinates of a receptive field point by its
ordinal number is described. It is shown that the time complexity of this algo-
rithm can be estimated as O(n2), where n is the space dimension. An outline of
the algorithm for solving the linear programming problem by an artificial neu-
ral network using the constructed images is presented. A parallel algorithm for
constructing the image of a linear programming problem on computing clusters
is proposed. This algorithm is based on the BSF parallel computation model,
which uses the master/workers paradigm and assumes a representation of the
algorithm in the form of operations on lists using higher-order functions Map and
Reduce. It is shown that the scalability bound of the parallel algorithm admits
the estimation of O(n

√
n). This means that the algorithm demonstrates good

scalability.
The parallel algorithm for constructing the multidimensional image of a lin-

ear programming problem is implemented in C++ using the BSF–skeleton that
encapsulates all aspects related to parallelization by the MPI library and the
OpenMP API. Using this software implementation, we conducted large-scale
computational experiments on constructing images for random multidimensional
linear programming problems with a large number of constraints on the “Tor-
nado SUSU” computing cluster. The conducted experiments confirm the validity
and efficiency of the proposed approaches. At the same time, it should be noted
that the time of image construction increases exponentially with an increase
in the space dimension. Therefore, the proposed method is applicable to prob-
lems with the number of variables not exceeding 100. However, the number of
constraints can theoretically be unbounded.

Future research directions are as follows.

1. Develop a method for solving linear programming problems based on the
analysis of their images and prove its convergence.

2. Develop and implement a method for training data set generation to create a
neural network that solves linear programming problems by analyzing their
images.

3. Develop and train an artificial neural network solving multidimensional linear
programming problems.

4. Develop and implement a parallel program on a computing cluster that con-
structs multidimensional images of a linear programming problem and calcu-
lates its solution using an artificial neural network.

Funding Information. The study was partially funded by the Russian Foundation

for Basic Research (project No. 20-07-00092-a) and the Ministry of Science and Higher

Education of the Russian Federation (government order FENU-2020-0022).

194 N. A. Olkhovsky and L. B. Sokolinsky

References

1. Bird, R.S.: Lectures on constructive functional programming. In: Broy, M. (ed.)
Constructive Methods in Computing Science. NATO ASI Series, vol. 55, pp. 151–
216. Springer, Heidelberg (1988). https://doi.org/10.1007/978-3-642-74884-4 5

2. Bixby, R.: Solving real-world linear programs: a decade and more of progress. Oper.
Res. 50(1), 3–15 (2002). https://doi.org/10.1287/opre.50.1.3.17780

3. Brogaard, J., Hendershott, T., Riordan, R.: High-frequency trading and price dis-
covery. Rev. Financ. Stud. 27(8), 2267–2306 (2014). https://doi.org/10.1093/rfs/
hhu032

4. Chung, W.: Applying large-scale linear programming in business analytics. In: 2015
IEEE International Conference on Industrial Engineering and Engineering Manage-
ment (IEEM), pp. 1860–1864. IEEE (2015). https://doi.org/10.1109/IEEM.2015.
7385970

5. Dantzig, G.: Linear Programming and Extensions. Princeton University Press,
Princeton (1998)

6. Dongarra, J., Gottlieb, S., Kramer, W.: Race to exascale. Comput. Sci. Eng. 21(1),
4–5 (2019). https://doi.org/10.1109/MCSE.2018.2882574

7. Ezhova, N.A., Sokolinsky, L.B.: Scalability evaluation of iterative algorithms used
for supercomputer simulation of physical processes. In: Proceedings - 2018 Global
Smart Industry Conference, GloSIC 2018, Art. No. 8570131, p. 10. IEEE (2018).
https://doi.org/10.1109/GloSIC.2018.8570131

8. Gondzio, J., Gruca, J.A., Hall, J., Laskowski, W., Zukowski, M.: Solving large-scale
optimization problems related to Bell’s Theorem. J. Comput. Appl. Math. 263,
392–404 (2014). https://doi.org/10.1016/j.cam.2013.12.003

9. Gropp, W.: MPI 3 and beyond: why MPI is successful and what challenges it faces.
In: Träff, J.L., Benkner, S., Dongarra, J.J. (eds.) EuroMPI 2012. LNCS, vol. 7490,
pp. 1–9. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33518-1 1

10. Hafsteinsson, H., Levkovitz, R., Mitra, G.: Solving large scale linear program-
ming problems using an interior point method on a massively parallel SIMD com-
puter. Parallel Algorithms Appl. 4(3–4), 301–316 (1994). https://doi.org/10.1080/
10637199408915470

11. Hartung, T.: Making big sense from big data. Front. Big Data 1, 5 (2018). https://
doi.org/10.3389/fdata.2018.00005

12. Jagadish, H.V., et al.: Big data and its technical challenges. Commun. ACM 57(7),
86–94 (2014). https://doi.org/10.1145/2611567

13. Kale, V.: Shared-memory parallel programming with OpenMP. In: Paral-
lel Computing Architectures and APIs, chap. 14, pp. 213–222. Chapman
and Hall/CRC, Boca Raton (2019). https://doi.org/10.1201/9781351029223-18/
SHARED-MEMORY-PARALLEL-PROGRAMMING-OPENMP-VIVEK-KALE

14. Karmarkar, N.: A new polynomial-time algorithm for linear programming. Com-
binatorica 4(4), 373–395 (1984). https://doi.org/10.1007/BF02579150

15. Karypis, G., Gupta, A., Kumar, V.: A parallel formulation of interior point algo-
rithms. In: Proceedings of the 1994 ACM/IEEE Conference on Supercomputing
(Supercomputing 1994), Los Alamitos, CA, USA, pp. 204–213. IEEE Computer
Society Press (1994). https://doi.org/10.1109/SUPERC.1994.344280

16. Kostenetskiy, P., Semenikhina, P.: SUSU supercomputer resources for industry
and fundamental science. In: Proceedings - 2018 Global Smart Industry Confer-
ence, GloSIC 2018, Art. No. 8570068, p. 7. IEEE (2018). https://doi.org/10.1109/
GloSIC.2018.8570068

https://doi.org/10.1007/978-3-642-74884-4_5
https://doi.org/10.1287/opre.50.1.3.17780
https://doi.org/10.1093/rfs/hhu032
https://doi.org/10.1093/rfs/hhu032
https://doi.org/10.1109/IEEM.2015.7385970
https://doi.org/10.1109/IEEM.2015.7385970
https://doi.org/10.1109/MCSE.2018.2882574
https://doi.org/10.1109/GloSIC.2018.8570131
https://doi.org/10.1016/j.cam.2013.12.003
https://doi.org/10.1007/978-3-642-33518-1_1
https://doi.org/10.1080/10637199408915470
https://doi.org/10.1080/10637199408915470
https://doi.org/10.3389/fdata.2018.00005
https://doi.org/10.3389/fdata.2018.00005
https://doi.org/10.1145/2611567
https://doi.org/10.1201/9781351029223-18/SHARED-MEMORY-PARALLEL-PROGRAMMING-OPENMP-VIVEK-KALE
https://doi.org/10.1201/9781351029223-18/SHARED-MEMORY-PARALLEL-PROGRAMMING-OPENMP-VIVEK-KALE
https://doi.org/10.1007/BF02579150
https://doi.org/10.1109/SUPERC.1994.344280
https://doi.org/10.1109/GloSIC.2018.8570068
https://doi.org/10.1109/GloSIC.2018.8570068

Visualizing LP Problems 195

17. Lachhwani, K.: Application of neural network models for mathematical program-
ming problems: a state of art review. Arch. Comput. Methods Eng. 27(1), 171–182
(2019). https://doi.org/10.1007/s11831-018-09309-5

18. LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553), 436–444
(2015). https://doi.org/10.1038/nature14539

19. Mamalis, B., Pantziou, G.: Advances in the parallelization of the simplex method.
In: Zaroliagis, C., Pantziou, G., Kontogiannis, S. (eds.) Algorithms, Probability,
Networks, and Games. LNCS, vol. 9295, pp. 281–307. Springer, Cham (2015).
https://doi.org/10.1007/978-3-319-24024-4 17

20. Prieto, A., et al.: Neural networks: an overview of early research, current frame-
works and new challenges. Neurocomputing 214, 242–268 (2016). https://doi.org/
10.1016/j.neucom.2016.06.014

21. Schmidhuber, J.: Deep learning in neural networks: an overview. Neural Netw. 61,
85–117 (2015). https://doi.org/10.1016/j.neunet.2014.09.003

22. Sodhi, M.: LP modeling for asset-liability management: a survey of choices and
simplifications. Oper. Res. 53(2), 181–196 (2005). https://doi.org/10.1287/opre.
1040.0185

23. Sokolinskaya, I.: Parallel method of pseudoprojection for linear inequalities. In:
Sokolinsky, L., Zymbler, M. (eds.) PCT 2018. CCIS, vol. 910, pp. 216–231. Springer,
Cham (2018). https://doi.org/10.1007/978-3-319-99673-8 16

24. Sokolinskaya, I., Sokolinsky, L.B.: On the solution of linear programming problems
in the age of big data. In: Sokolinsky, L., Zymbler, M. (eds.) PCT 2017. CCIS,
vol. 753, pp. 86–100. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
67035-5 7

25. Sokolinskaya, I., Sokolinsky, L.B.: Scalability evaluation of NSLP algorithm for
solving non-stationary linear programming problems on cluster computing systems.
In: Voevodin, V., Sobolev, S. (eds.) RuSCDays 2017. Communications in Computer
and Information Science, vol. 793, pp. 40–53. Springer, Cham (2017). https://doi.
org/10.1007/978-3-319-71255-0 4

26. Sokolinskaya, I.M., Sokolinsky, L.B.: Scalability evaluation of cimmino algorithm
for solving linear inequality systems on multiprocessors with distributed mem-
ory. Supercomput. Front. Innov. 5(2), 11–22 (2018). https://doi.org/10.14529/
jsfi180202

27. Sokolinsky, L.B.: Analytical estimation of the scalability of iterative numerical
algorithms on distributed memory multiprocessors. Lobachevskii J. Math. 39(4),
571–575 (2018). https://doi.org/10.1134/S1995080218040121

28. Sokolinsky, L.B.: BSF: a parallel computation model for scalability estimation of
iterative numerical algorithms on cluster computing systems. J. Parallel Distrib.
Comput. 149, 193–206 (2021). https://doi.org/10.1016/j.jpdc.2020.12.009

29. Sokolinsky, L.B.: BSF-skeleton: a template for parallelization of iterative numerical
algorithms on cluster computing systems. MethodsX 8, Article Number 101,437
(2021). https://doi.org/10.1016/j.mex.2021.101437

30. Sokolinsky, L.B., Sokolinskaya, I.M.: Scalable method for linear optimization of
industrial processes. In: Proceedings - 2020 Global Smart Industry Conference,
GloSIC 2020, pp. 20–26. Article Number 9267,854. IEEE (2020). https://doi.org/
10.1109/GloSIC50886.2020.9267854

31. Sokolinsky, L.B., Sokolinskaya, I.M.: Scalable parallel algorithm for solving non-
stationary systems of linear inequalities. Lobachevskii J. Math. 41(8), 1571–1580
(2020). https://doi.org/10.1134/S1995080220080181

https://doi.org/10.1007/s11831-018-09309-5
https://doi.org/10.1038/nature14539
https://doi.org/10.1007/978-3-319-24024-4_17
https://doi.org/10.1016/j.neucom.2016.06.014
https://doi.org/10.1016/j.neucom.2016.06.014
https://doi.org/10.1016/j.neunet.2014.09.003
https://doi.org/10.1287/opre.1040.0185
https://doi.org/10.1287/opre.1040.0185
https://doi.org/10.1007/978-3-319-99673-8_16
https://doi.org/10.1007/978-3-319-67035-5_7
https://doi.org/10.1007/978-3-319-67035-5_7
https://doi.org/10.1007/978-3-319-71255-0_4
https://doi.org/10.1007/978-3-319-71255-0_4
https://doi.org/10.14529/jsfi180202
https://doi.org/10.14529/jsfi180202
https://doi.org/10.1134/S1995080218040121
https://doi.org/10.1016/j.jpdc.2020.12.009
https://doi.org/10.1016/j.mex.2021.101437
https://doi.org/10.1109/GloSIC50886.2020.9267854
https://doi.org/10.1109/GloSIC50886.2020.9267854
https://doi.org/10.1134/S1995080220080181

196 N. A. Olkhovsky and L. B. Sokolinsky

32. Sokolinsky, L.B., Sokolinskaya, I.M.: FRaGenLP: a generator of random linear
programming problems for cluster computing systems. In: Sokolinsky, L., Zymbler,
M. (eds.) PCT 2021. CCIS, vol. 1437, pp. 164–177. Springer, Cham (2021). https://
doi.org/10.1007/978-3-030-81691-9 12

33. Sokolinsky, L.B., Sokolinskaya, I.M.: VaLiPro: linear programming validator for
cluster computing systems. Supercomput. Front. Innov. 8(3), 51–61 (2021).
https://doi.org/10.14529/js210303

34. Tolla, P.: A survey of some linear programming methods. In: Paschos, V.T. (ed.)
Concepts of Combinatorial Optimization, 2 edn, chap. 7, pp. 157–188. Wiley, Hobo-
ken (2014). https://doi.org/10.1002/9781119005216.ch7

35. Zadeh, N.: A bad network problem for the simplex method and other minimum
cost flow algorithms. Math. Program. 5(1), 255–266 (1973). https://doi.org/10.
1007/BF01580132

https://doi.org/10.1007/978-3-030-81691-9_12
https://doi.org/10.1007/978-3-030-81691-9_12
https://doi.org/10.14529/js210303
https://doi.org/10.1002/9781119005216.ch7
https://doi.org/10.1007/BF01580132
https://doi.org/10.1007/BF01580132

	Visualizing Multidimensional Linear Programming Problems
	1 Introduction
	2 Mathematical Model of the LP Visual Representation
	3 Parallel Algorithm for Building an LP Problem Image
	4 Computational Experiments
	5 Conclusion
	References

