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Abstract. This paper studies the problem of algebraic cryptanalysis
where state-of-the-art SAT solvers are used to invert some cryptographic
function. We define a new metric of the hardness of CNF formulas that
encode the corresponding cryptanalysis problems. The introduced met-
ric is similar to the well-known tree-like metrics used in the theory of
propositional proofs. However, unlike the latter, the new metric can be
effectively estimated in application to specific cryptographic functions.
The corresponding approach combines the Monte Carlo method and
metaheuristic black-box optimization algorithms. The proposed algo-
rithms require a large amount of computational resources, and for their
experimental evaluation we used a supercomputer. In the experiments,
we applied the proposed metrics to construct estimations of guess-and-
determine attacks on the compression function of the well-known MD4
cryptographic hash algorithm.

Keywords: Algebraic cryptanalysis · Boolean Satisfiability Problem
(SAT) · SAT solvers · Guess-and-determine attacks · Inverse Backdoor
Set (IBS)

1 Introduction

The present paper studies the application of parallel algorithms for solving the
Boolean satisfiability problem (SAT) to the problems of algebraic cryptanalysis.
In particular, we introduce new metrics that make it possible to estimate the
complexity of SAT-based guess-and-determine cryptographic attacks [6]. The
problem of constructing estimations of this kind is reduced to the optimiza-
tion problem of the special fitness function, which is defined at the points of a
Boolean hypercube. This fitness function is a black-box function whose values
are calculated using the Monte Carlo method. To minimize this function, we
use metaheuristic algorithms implemented in form of an MPI application. All
computational experiments are carried out on a supercomputer.
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The Boolean satisfiability problem (SAT) is a combinatorial problem with an
extremely wide range of practical applications. Like many other NP-hard prob-
lems, SAT is not always difficult in practice, and for many of its particular cases
can be solved quite effectively using various additional techniques and heuristics.
As said above, we use state-of-the-art SAT solving algorithms in application to
algebraic cryptanalysis. In more detail, we construct the so-called guess-and-
determine attacks on some cryptographic functions using SAT solvers. In this
context, we follow [6] and many other works in which SAT solvers are applied to
algebraic equations describing the calculation process of the considered cipher.

Roughly speaking, the idea of a guess-and-determine attack consists in choos-
ing (guessing) bits from a certain set, the substitution of which greatly simplifies
the original cryptanalysis problem. Such a set is called a guessed bits set. Var-
ious methods can be used to solve problems weakened by such substitutions.
For example, a substitution of bits from some guessed bits set to the Multi-
variate Quadratic (MQ) system [22] may turn it into a linear system. However,
examples of successful attacks of this kind are very rare (see, e.g., [4]). The app-
roach with a wider area of applications implies a reduction of the considered
cryptographic problem to some combinatorial problem, the algorithmic base of
which is well developed. As G. Bard notices in [6], SAT is a good example of
such a problem. In application to the SAT encodings of cryptanalysis problems,
guess-and-determine strategies can also be defined quite naturally.

The main problem that arises when using SAT in cryptanalysis is that the
runtime of a SAT solver on a specific formula is hard to predict [17]. There are a
number of serious studies of possible measures that can be used to evaluate the
hardness of concrete formulas w.r.t. concrete algorithms for solving SAT. Below
we rely on the results of [5], in which various approaches to measuring tree-like
metrics of the hardness of Boolean formulas are studied. Specifically, in this
paper, several different tree-like metrics used in propositional proof complexity
are unified. The most important result of [5] for our case is the conclusion about
the relationship between the tree-like metric and the notion of a Backdoor set
(concretely, we mean the Strong Backdoor Set), presented in [37]. This notion
in the sense of the idea is very close to that of a guessed bits set. The Strong
Backdoor Set (SBS) is a set of variables such that the substitution of any values
to the corresponding variables in the original formula results in a formula for
which SAT is solved by some polynomial algorithm A. As we will see below, only
extremely small SBSs can give a gain in complexity, but such situations are very
rare in practice.

The approach in which we do not require the algorithm A to have poly-
nomial complexity turns out to be more practical. In such a case, A can be
an arbitrary complete algorithm for solving some NP-hard problem, for exam-
ple, a SAT solver. This is exactly the approach used in a number of works on
the decomposition of hard SAT instances, including applications in cryptanal-
ysis [31–33,38]. In fact, in these papers, it is shown that one can estimate the
complexity of Boolean formulas using SBS generalizations for the case when A
is a complete SAT solver. Specifically, in such cases, a special technique that



Measuring the IBS Effectiveness 145

combines the stochastic Monte Carlo method and metaheuristic optimization is
used. In [34] there is presented a class of SAT-based cryptographic attacks that
uses the so-called Inverse Backdoor Sets (IBS). For such backdoors, the com-
plexity estimations of the corresponding attacks have convincing guarantees of
accuracy. This allows one to compare the effectiveness of attacks based on an
IBS with the effectiveness of other attacks, and in a number of cases, IBS-based
attacks have the best-known effectiveness.

In the present paper, we combine ideas from [5] with ideas from [34] and
propose new tree-like metrics of the hardness of SAT instances that encode the
inversion problems of cryptographic functions. For these metrics, it is possible
to construct estimations using probabilistic algorithms similar to those used in
[34]. We construct such estimations for the functions considered in [18–20]. For
this purpose, we use a metaheuristic optimization of a special fitness function
calculated on a computing cluster.

As a result, we construct SAT-based guessed-and-determine attacks on
reduced-round versions of the compression function of the well-known MD4 hash-
ing algorithm. Namely, we mean the functions of the kind MD4-k, where k is the
number of steps of the base algorithm (MD4-48 corresponds to the complete-
round version of the considered function). In the computational part of our work,
we present non-trivial attacks on the functions MD4-43, MD4-45 and MD4-47.
The estimations of the hardness of these attacks are significantly smaller than
those of brute-force attacks for these functions.

2 Preliminaries

All variables considered below are Boolean variables, i.e., they take values from
{0, 1}. Assume that X = {x1, . . . , xn} is a set of Boolean variables. Then the
Boolean formula F is an expression constructed with respect to special rules
over the alphabet including X, brackets, and special symbols called logical con-
nectives. The simplest Boolean formulas of the kind x or ¬x are called literals
(here ¬ is the negation connective). The Boolean Satisfiability Problem (SAT)
is a problem that requires one to determine for an arbitrary Boolean formula
F whether there exists such an assignment α of variables from X, the substitu-
tion of which [9] to F results in 1 (true). If such an α exists, then it is called
a satisfying assignment, and the formula F is called satisfiable. Otherwise, F
is called unsatisfiable. SAT is NP-complete [11,25] in the decision variant and
NP-hard in its search variant (where if the considered formula is satisfiable, it
is required to find at least one satisfying assignment). Thus, SAT is most likely
to be unsolvable in polynomial time in the general case. On the other hand,
combinatorial problems from a wide variety of subject areas can be effectively
reduced to SAT [8].

It is well known that the Tseitin transformations [35] can be used to tran-
sition from SAT for an arbitrary Boolean formula to SAT for a formula in the
Conjunctive Normal Form (CNF). With respect to this, hereinafter we consider
SAT for arbitrary CNFs. The CNF is a conjunction of elementary Boolean con-
straints called clauses. Each clause is a disjunction of different literals among
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which there are not complementary ones (remind that the literals x and ¬x are
called complementary). If x is an arbitrary Boolean variable, then the notation
xα, α ∈ {0, 1} means ¬x if α = 0 and x if α = 1.

Let C be an arbitrary CNF over the set X = {0, 1}n. Consider an arbitrary
subset B ⊆ X. Denote all possible assignments of variables from B as {0, 1}|B|.
By C[β/B] denote the CNF constructed from C by substituting an arbitrary
assignment β ∈ {0, 1}|B| to C. Let A be an arbitrary polynomial algorithm
(subsolver in terms of [37]).

Definition 1. ([37]). For a CNF C over the set of Boolean variables X, the set
B ⊆ X is a Strong Backdoor Set w.r.t. the polynomial subsolver A if for each
β ∈ {0, 1}|B|, the algorithm A outputs the solution of SAT for C[β/B].

In [37] there is described an algorithm for solving SAT with complexity

O

(
p(|C|) ·

(
2|X|√

|B|

)|B|)
under the assumption that there exists an SBS B:

|B| ≤ |X|/2. However, this algorithm can be used in practice only if the consid-
ered formula has extremely small SBSs.

It is shown in [5] that the notion of SBS can be used to evaluate the hardness
of Boolean formulas. In particular, the paper studies different approaches to
estimating this hardness using tree-like metrics employed in propositional proof
complexity. In addition, [5] demonstrates the relationship between these metrics
and the so-called Backdoor hardness (the exact notion of Backdoor hardness is
presented in [31]).

In [31], the following problem is considered: to construct such a set B, B ⊆ X
that the total time μA,B(C) of solving SAT for CNFs of the kind C[β/B] over
all possible β ∈ {0, 1}|B| by some complete SAT solving algorithm A (which is
not necessarily polynomial) is less than the runtime of A on the original CNF
C. Following the terminology from [34], let us refer to such a set B as to a
Non-deterministic Oracle Backdoor Set (NOBS). In [31], it is shown that one
can estimate the value of μA,B(C) using Monte Carlo sampling. The problem
of finding the NOBS with the smallest value of μA,B(C) can thus be viewed as
the problem of minimizing a special pseudo-Boolean black-box fitness function
[31–33,38].

Now consider the function

f : {0, 1}n → {0, 1}m (1)

defined by some cryptographic algorithm (cipher). This function is defined every-
where on {0, 1}n (in the case of a stream cipher, it corresponds to the set of
all possible secret keys). Denote the set of possible images of f as Rangef ,
Rangef ⊆ {0, 1}n. The main problem considered below is the problem of inver-
sion (or of finding preimages) of the function f : given an arbitrary γ ∈ Rangef
to find some α ∈ {0, 1}n such that f(α) = γ. It is a well-known fact that such
problems can be effectively reduced to SAT [6].
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To reduce the problem of the inversion of a specific function to SAT, one
can use a number of software tools: for example, the well-known CBMC tool for
verifying C programs [10] or the Transalg translator specialized for cryptanal-
ysis instances [29]. The advantage of Transalg consists in that it constructs
the so-called template CNF Cf for the function f [23]. Essentially, the template
CNF is a symbolic representation of the algorithm Af that specifies the func-
tion f . An important fact is that one can model how Af works on an arbitrary
input α ∈ {0, 1}n, α = (α1, . . . , αn) by the iterative application of the Unit
Propagation rule [27] to the CNF

xα1
1 ∧ . . . ∧ xαn

n ∧ Cf . (2)

In (2), the variables x1, . . . , xn form a set, which we denote as Xin. These vari-
ables encode the input of the function f .

Our first goal is to use a SAT solver to construct an attack on the crypto-
graphic function f : in particular, to learn how to effectively invert this function
at least on some portion of its images. As mentioned above, we will construct
SAT-based guess-and-determine attacks, i.e., search for such sets of guessed bits
that make it possible to substantially simplify the solution of the inversion prob-
lem for f . It is quite clear that the notions of the guessed bits set and that of
NOBS are very close in spirit. Unfortunately, as it follows from the results of
[33,34], NOBSs do not suit well to constructing runtime estimations of guess-and-
determine attacks due to the fact that in such estimations there is an unknown
variance of some random variable.

To account for this, the notion of Inverse Backdoor Sets (IBS) is proposed in
[34]. For IBS-based attacks, one can estimate their runtime with any predefined
accuracy using the Monte Carlo scheme.

Briefly, the basic idea of IBS-based attacks proposed in [34] is as follows. Con-
sider a template CNF Cf for the function f . Define a uniform distribution over

{0, 1}n and construct a random sample of inputs α1, . . . , αN , αj =
(
αj
1, . . . , α

j
n

)
,

j ∈ {1, . . . , N} for f . For each αj , j ∈ {1, . . . , N} consider CNF (2). It is well-
known [7] that one can derive from (2) the values of all variables in the CNF Cf

using only the Unit Propagation rule. We will say that such values are induced
by the input αj of the considered function. In particular, during this process the
values y1 = γj

1, . . . , ym = γj
m, such that f(αj) = γj , γj =

(
γj
1, . . . , γ

j
m

)
will be

obtained.
Assume that A is a SAT solving algorithm, B ⊆ X is an arbitrary set of

variables in Cf , α ∈ {0, 1}n is some input of f , and t is a positive constant that
limits the runtime of A. Denote by β(α) the assignment of variables from B
induced by the input α and by γ(α) the value of the function f on the input α.
Associate with an arbitrary α ∈ {0, 1}n the value of the function ξ : {0, 1}n →
{0, 1} defined as follows: ξ(α) = 1 if A in time ≤ t finds a satisfying assignment of
the CNF Cf (β(α), γ(α)), which results from substituting the assignments β(α)
and γ(α) to the template CNF Cf ; otherwise ξ(α) = 0.



148 A. Gladush et al.

Define a uniform distribution over {0, 1}n. Then the portion of vectors from
{0, 1}n on which the random variable ξ takes the value 1 is defined by the
following probability:

ρA,t(B) =
|{α ∈ {0, 1}n | ξ(α) = 1}|

2n
(3)

Since ξ is a Bernoulli random variable, then ρA,t(B) = E[ξ], and E[ξ] can be
estimated via the Monte Carlo method [28]. In particular, one can use the sample
mean of the values of ξ observed in N independent experiments in the role of the
estimation of E[ξ]. It is important to note that this estimation does not depend
on the characteristics of the algorithm A (as in the case of the estimations for the
NOBS in [31]) and can be made arbitrarily precise by increasing the number of
observations N . In more detail, let ξ1, . . . , ξN be independent observations of the
variable ξ. Applying the Chebyshev inequality [16] (w.r.t. that ξ is a Bernoulli
variable) to ξ, we conclude that the following holds:

Pr

⎧⎨
⎩

∣∣∣∣∣∣ρA,t(B) − 1
N

N∑
j=1

ξj

∣∣∣∣∣∣ ≤ ε

⎫⎬
⎭ ≥ 1 − 1

4ε2N
(4)

Definition 2 ([34]). A non-empty set B ⊆ X : |B| = s with the properties
described above is called an Inverse Backdoor Set (IBS) with the parameters
(s, t, ρA,t(B)) for Cf w.r.t. the algorithm A.

In [34] there is described a general IBS-based guess-and-determine attack appli-
cable to any function (1). This attack is applied to a set of outputs γ1, . . . , γM

of function (1). If we consider the probability of inverting at least one γk, k ∈
{1, . . . , M} to be ≥ 95%, then the runtime of this attack for some IBS B is:

TimeA,t(B) = 2|B| · t · 3
ρA,t(B)

(5)

As outlined in [34], it is possible to view the problem of constructing an effective
guess-and-determine attack as a problem of finding a set B with the smallest
value of (5). The latter problem can be considered as a problem of minimizing
the following pseudo-Boolean fitness function:

ΦA,t(θB) = 2|B| · t · 3N∑N
j=1 ξj

(6)

In (6), by θB we denote a Boolean vector of length |X| where ones correspond
to variables from X present in B, and zeroes correspond to variables from X
absent from B. Probability (3) in (6) is replaced by its statistic estimation w.r.t.
(4). To optimize functions (6), in [30,33,34] a computing cluster is used. In the
role of optimization schemes the papers employ both local search algorithms and
evolutionary algorithms.
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3 Using Tree-Like Metrics to Estimate the Effectiveness
of SAT-Based Guess-and-Determine Attacks

In this section, we introduce new metrics of effectiveness for IBS-based algebraic
attacks. Our main motivation is inspired by the results of [5], where several
different approaches to estimating the hardness of a Boolean formula via tree-
like metrics are considered. For the measures studied in [5], it is possible to
construct estimations of hardness for several infinite families of formulas (e.g.,
for pigeonhole principle formulas [12]). These estimations are constructed ana-
lytically, and it is completely unclear how one can obtain such estimations for
arbitrary Boolean formulas. Below we introduce tree-like metrics of effectiveness
for IBS-based guess-and-determine attacks. To solve SAT for CNFs of the kind
Cf (β, γ), we use modern complete SAT solvers based on the CDCL concept [27].

Let B, |B| = s be an arbitrary IBS. The first observation consists in the fact
that a Boolean hypercube {0, 1}s can be represented by a complete binary tree
Ts(B) of the depth s: the arbitrary assignment β of variables from B corresponds
to the path π(β) in Ts(B), which goes from a root to a leaf. We can establish
some order over B = {xB

1 , . . . , xB
s } so that all paths in Ts(B) are traversed in

this order, e.g., xB
1 < . . . < xB

S (we assume that the variable xB
1 is associated

with a root of Ts(B)).
Let f be function (1), Cf be a template CNF for f over a set X of Boolean

variables, and B, B ⊆ X be an arbitrary IBS. Assume that A is a complete
deterministic SAT solving algorithm that traverses some tree or forest in the
process of its work. Note that both DPLL and CDCL are examples of such
algorithms. In particular, DPLL traverses a binary tree in which all paths follow
some common order. On the other hand, CDCL works with a forest formed by
different binary trees, and each tree corresponds to a specific restart. In general,
different paths in such a forest have different variable orderings. If C is a fixed
CNF, then by FA(C) denote the tree (in the case of DPLL) or forest (in the
case of CDCL) traversed by the considered algorithm A in order to construct an
unsatisfiability proof for C or its satisfying assignment. By FA(C, t) denote the
part of FA(C) that contains the first t paths traversed by A.

Consider an arbitrary γ ∈ Rangef . Let π(β) be an arbitrary path in Ts(B),
and l(β) be a leaf of this path. Let us connect l(β) with the root or with the set
of roots FA(Cf (β, γ), t) by a new edge or several edges. We do this for each β ∈
{0, 1}|B| and for the corresponding path in Ts(B). Denote the constructed tree as
T ∗(Cf , A,B, γ, t). Let π∗ be an arbitrary path in T ∗(Cf , A,B, γ, t). Taking into
account the nature of the DPLL and CDCL algorithms, the path π∗ corresponds
to a sequence of decision levels [27] and literals derived via UP, which either ends
in a conflict or in a derivation of an assignment that satisfies Cf (β, γ).

Definition 3. If the path π∗ ends in a derivation of a satisfying assignment for
Cf (β, γ), then we refer to π∗ as a positive path, otherwise, π∗ is a negative path.

Now let us establish the following fact.
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Theorem 1. Let α be an arbitrary input of f chosen from {0, 1}n in accordance
with a uniform distribution, and γ = f(α). Assume that B is an IBS with the
parameters (s, t, ρA,t(B)) for Cf w.r.t. a SAT solving algorithm A. Then the
probability that the tree T ∗(Cf , A,B, γ, t) contains a positive path is ρA,t(B).

Sketch Proof. As follows from the definition of ρA,t(B), this is the probability of
an event that consists in finding by the algorithm A a satisfying assignment for
Cf (β(α), γ(α)) in time ≤ t. It is supposed that α is chosen from {0, 1}n w.r.t.
the uniform distribution, and β(α), γ(α) are the assignments of variables from
B and from the output of the function f , induced by α in the sense defined
above. Denote the upper bound on the number of paths traversed by A in a
tree or forest FA(Cf (β, γ)) as t. Note that T ∗(Cf , A,B, γ, t) at the beginning is
essentially a tree-like representation of the set {0, 1}|B|. However, in this case,
the tree contains a path that starts from β(α), where α is the preimage of γ w.r.t.
f . Denote this path as π̃. From (3) it follows that ρA,t(B) is the probability that
π̃ is positive. Thus, the theorem is proved.

If we construct trees of the kind T ∗(Cf , A,B, γk, t) for k ∈ {1, . . . , M}, then
from the proven theorem and the results of [34] it follows that for M ≥ 3/ρA,t(B),
the probability that at least one of these trees has a positive path (which corre-
sponds to the successful solution of the inversion problem for a specific γk) is at
least 95%.

Definition 4. We define the hardness of a guess-and-determine attack based
on an IBS B in the context of the tree-like metric proposed above as the total
number of paths in all trees T ∗(Cf , A,B, γk, t), k ∈ {1, . . . ,M}.

Note that the approach from [34] that uses the statistic estimation of the
hardness of IBS-based guess-and-determine attacks can be naturally transferred
to the introduced tree-like metric. Thus, we can use the computational scheme
of the Monte Carlo method in combination with metaheuristic optimization for
this purpose.

4 Class of Considered Functions

In this section, we describe the functions for the inversion of which we run
computational experiments on a supercomputer. These are the variants of the
compression function of the well-known cryptographic MD4 hash function. The
MD4 function is vulnerable to the so-called collision attack [36]. However, for its
inversion problem, no attacks with realistic runtime are known so far. The best
preimage attack known to the authors is the one described in [24]. The attack
proposed in the paper has a complexity of 296 calls of the MD4 compression
function. It is noteworthy that the computational results of [24] are quite hard
to reproduce.

Our goal is to construct an estimate of the hardness of the inversion problem
of the MD4 compression function w.r.t. the tree-like metrics proposed above and
compare it with the results of [24]. We would like to highlight that it is not hard
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to reproduce our results since for this purpose one can use publicly available
software tools and a computer cluster.

In addition to the complete-round MD4 compression function, we will con-
sider the inversion problems of the variants of this function, limited in the num-
ber of steps, for which we use the notation fMD4-k, where k is the number of
compression steps, k ∈ {1, . . . , 48}, and the case k = 48 corresponds to the
complete-round compression function.

In application to functions of the kind fMD4-k, we use special techniques
for weakening their inversion problems. The basic idea of such techniques goes
back to H. Dobbertin [14] and consists in fixing the values of some chaining
variables to a constant. This step leads to the derivation of the values of some
other variables. The SAT variant of Dobbertin’s attack is described in [13], and
this attack turns out to be substantially more effective compared to the original
one. In [18], it is suggested to use the automatic search of relaxation constraints
a la Dobbertin by applying black-box optimization algorithms. As a result, new
relaxation constraints are found, they give an attack that is significantly more
effective than the attack from [13]. In particular, the attack from [18] allows
inverting the MD4-39 function in less than 1 minute on randomly selected vec-
tors from {0, 1}128 on a personal computer.

The key idea of the attacks from [18–20] is to reduce the inversion problem
of functions of the kind

fMD4-k : {0, 1}512 → {0, 1}128

to inverting functions of the kind

gλr

MD4-k : {0, 1}pr → {0, 1}128, (7)

where pr < 512. Functions (7) are built using the vectors λr, which specify
the sets of Dobbertin’s relaxation constraints. Any λr is a Boolean vector of
length 48: ones in it indicate at which step of the compression algorithm the
corresponding chaining variable is replaced by the constant 032. So, for example,
the vector λ1 used in [18] (in the paper it appears as ρ1) defines the function

gλ1
MD4-k : {0, 1}128 → {0, 1}128. (8)

As shown in [19], function (8) is defined almost everywhere on {0, 1}128. At
least half of the vectors from {0, 1}128 have gλ1

MD4-k-preimages (at least for
k ∈ {39, . . . , 45}). If for χ ∈ {0, 1}128 there exists such α′ ∈ {0, 1}128 that
gλ1

MD4-k(α′) = χ, then from such α′ we can effectively recover α ∈ {0, 1}512 for
which the following holds: fMD4-k(α) = χ.

5 Computational Experiments

In this section, we provide a description of computational experiments in which
SAT-based guess-and-determine attacks for functions of kind (8) are built.
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In these experiments, at the stage of debugging and testing software applica-
tions, the “Akademik V.M. Matrosov” cluster of Irkutsk Supercomputer Center
[2] is used. The main computational experiments are carried out on the cluster
of Peter the Great St. Petersburg Polytechnic University [3].

5.1 General Scenario

Once again let us give a brief description of the computational problem, for the
solution of which a supercomputer is used. We consider the inversion problems
of a function of kind (8) for different k, k ∈ {40, . . . , 48} (for k < 40, the
corresponding problems can be solved on a PC). For such functions, we build
IBS-based guess-and-determine attacks. In the role of a SAT solving algorithm
A, we use several state-of-the-art CDCL-based SAT solvers: MiniSat, Glucose,
Cadical, MapleLCM.

Let us construct a template CNF C
g

λ1
MD4-k

using the Transalg tool [29].
For each considered function of kind (8) we generate a sample on N random
inputs α1, . . . , αN ∈ {0, 1}128, and for each j ∈ {1, . . . , N} we generate the
assignment of all variables in C

g
λ1
MD4-k

by applying UP to CNFs of the kind

x
αj

1
1 ∧ . . . ∧ x

αj
n

n ∧ C
g

λ1
MD4-k

. An arbitrary set B ⊆ X is represented by a Boolean

vector θB of length |X|. Let us define at an arbitrary point θB ∈ {0, 1}|X| the
value of fitness function (6) as follows:

1. For a random sample α1, . . . , αN generate outputs γ1, . . . , γN of the function
gλ1

MD4-k and assignments of variables from B: β1, . . . , βN ;
2. Consider CNF formulas C

g
λ1
MD4-k

(βj , γj), j ∈ {1, . . . , N} and apply the SAT
solver A to each such a formula with a constraint on the number of conflicts
≤ t (the constant t is chosen during the experiments). If A has made more
than t conflicts, the corresponding computation is interrupted;

3. With each run of A on the CNF C
g

λ1
MD4-k

(βj , γj) we associate the observed

value ξj of the random variable ξ: if A managed to find a satisfying assign-
ment for C

g
λ1
MD4-k

(βj , γj) using ≤ t conflicts, then ξj = 1, otherwise ξj = 0;
4. Calculate the value of the fitness function at the point θB according to for-

mula (6);
5. Go to a new point θB using some metaheuristic strategy [26].

Note that a similar approach is used in several prior papers, e.g., [30,34].
However, in these papers, the runtime of the algorithm A is limited by a straight-
forward time limit in seconds, while in the present paper we impose a limit in the
number of conflicts. In addition, the cited papers employ different algorithms to
optimize the fitness function, in particular, [34] uses the tabu search algorithm,
while [30] utilizes several variants of the (1+1) Evolutionary algorithm, as well
as a special genetic algorithm (GA). It is the latter algorithm that we use in our
experiments, however, for the purposes of the present paper it is reimplemented
to fully work on clusters.
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In this work, we use a version of the algorithm from [30] implemented as an
MPI program, and thus one can run it on a computer cluster of any capacity.
Specifically, the algorithm works with several points of the hypercube forming
a population θB1 , . . . , θBQ

. Let Π be an arbitrary population of the size Q. We
associate the distribution DΠ = {p1, . . . , pQ} with it, defining the probabilities
pl, l ∈ {1, . . . , Q} as follows:

pl =
1/Φ(θBl

)∑Q
i=1 (1/Φ(θBi

))
(9)

The transition from the current population Π towards the new population Π ′ is
performed as follows. We select individuals from Π randomly w.r.t. the distribu-
tion DΠ and to each pair of selected individuals we apply the standard two-point
crossover operator [26] in a combination of the FGA-mutation operator proposed
in [15]. In such a way we construct G individuals of a new population. We also
add to the new population H individuals from Π that have the best values of
the fitness function (this step corresponds to the so-called elitism concept [26]).
As a result, we ensure that the following holds: G+H = Q. In all computational
experiments we use the following values of these parameters: Q = 10, G = 8,
H = 2.

From the definition of the fitness function, it directly follows that this func-
tion is quite costly in a computational sense. Even with the use of a powerful
supercomputer, optimizing such a function over the hypercube {0, 1}|X| would
require colossal computational resources. That is why in our experiments we
solve the optimization problems of functions (6) on some special subsets of X.
As noted in [34], we can take as a started point of our optimization process some
Strong Unit Propagation Backdoor Set (SUPBS). If B is a SUPBS, then the cal-
culation of the value Φ(θB) takes t = 0 conflicts. In our cases, a trivial SUPBS is
formed by the input variables of the considered function, and we denote this set
by Xin. For any function considered in this paper this set consists of 128 vari-
ables. In our experiments we optimize the functions of the kind Φ (θB), namely,
on 2Xin

.

5.2 Implementation and Results

As said above, we conduct computational experiments on two supercomputers,
the “Akademik V.M. Matrosov” cluster of Irkutsk Supercomputer center [2] and
the computing cluster of St. Petersburg Polytechnic University (SPPU) [3]. Each
compute node of the former is equipped with two 18-core processors Intel Xeon
E5 2695 v4 and 128 GB DDR4-2400 RAM. In our experiments, we employ up
to 10 nodes (180 cores) for up to one day. The nodes of the latter cluster are
equipped with four 14-core processors Intel Xeon E5 2695 v3 and 64 GB DDR4-
2400 RAM. In each experiment, we harness 25 nodes (1400 cores) and use the
same duration (one day).

The “Akademik V.M. Matrosov” cluster is mainly used to debug and test
the developed MPI program and the employed SAT solvers (see details further).
The major part of the computational experiments is run on the SPPU cluster.
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In our experiments, we consider the problems of inverting the functions
gλ1

MD4-k, k ∈ {43, 45, 47, 48} described above. To minimize the functions Φ (θB),
we employ the EvoGuess framework [1], specially developed for solving pseudo-
Boolean optimization problems associated with SAT. This framework imple-
ments several evolutionary algorithms, however, we mainly use the implemen-
tation of the Genetic Algorithm described above. EvoGuess can be used as an
MPI application and, thus, can harness any number of available cores. Actually,
EvoGuess can be considered as an optimization wrap-around for the PySAT
tool [21], which, in turn, is the environment for invoking SAT and MaxSAT
solvers incrementally from Python. PySAT supports a number of modern SAT
solvers (MiniSat, Glucose, Cadical, MapleLCMDist, etc.). On the testing stage,
we check all of them, but for our class of instances the best results are obtained
using MiniSat 2.2, thus in all experiments we use this solver.

The results of the computational experiments are presented in the following
table.

Table 1. Results of the experiments. In each experiment, 1400 cores of the SPPU
cluster are used (25 nodes) for 1 day (24 h). The SAT solver MiniSat 2.2 (embedded
in the PySAT tool) is applied.

MD4-43,

(inverting

gλ1
MD4-43)

MD4-45,

(inverting

gλ1
MD4-45)

MD4-47,

(inverting

gλ1
MD4-47)

MD4-48,

(inverting

gλ1
MD4-48)

Best value of

Φ (θB) in the proposed

tree-like metric

(estimation of guess-

and-determine

attack hardness)

2.489460e+13 1.770887e+21 2.415492e+28 8.222028e+36

Size of the best

backdoor (w.r.t. the

best value of Φ (θB))

19 46 70 99

Number of

visited points in

the hypercube

54312 47840 42456 41984

Let us briefly discuss the obtained results. Recall that with respect to what is
said above, we can consider one conflict as one elementary call of a special func-
tion (actually, a SAT solver), which is used to solve the corresponding cryptanal-
ysis problem. On the other hand, in brute-force attacks on each of the consid-
ered functions we make 2128 ≈ 3, 4e+38 calls of the corresponding function in the
worst case scenario and 2127 calls on average. Thus, we can conclude that the MD4
compression function has non-trivial SAT based guess-and-determine attacks for
k = 43, 45, 47. For a complete-round version of this function, i.e., for MD4-48,
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the obtained attack is comparable to a brute-force attack, and thus the use of SAT
solvers does not lead to any advantage in this case.

6 Conclusion

In this paper, we present new measures to estimate the hardness of algebraic
attacks on cryptographic functions that use state-of-the-art SAT solvers. The
proposed measures are tree-like. In fact, they are statistic estimations of the
number of paths in some tree, which corresponds to the process of enumerating
all possible assignments of variables in some guessed bits set. By estimating this
number, we construct the estimation of the corresponding attack. The problem
of constructing the best attack of this kind is viewed as a problem of minimizing
some fitness function, the values of which are calculated probabilistically using
the Monte Carlo method. To optimize such a function, we use a specially devel-
oped framework for solving black-box optimization problems associated with
SAT, which is an MPI program that can work on a supercomputer. In our com-
putational experiments, two clusters [2,3] are harnessed. As a result, we con-
struct a non-trivial SAT based guess-and-determine attack on reduced-round
versions of the compression function of the well-known MD4 hashing algorithm,
namely, for MD4-43, MD4-45, MD4-47. Using the proposed tree-like metrics,
it is shown that the constructed attacks are significantly more effective than
brute-force attacks.
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