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Abstract. The implementation of the Algebraic Multigrid (AMG)
solver designed specifically for Graphics Processing Units (GPUs) is pre-
sented. It is based on the well-known and highly efficient AMGCL header-
only library designed and implemented by D. Demidov using C++. The
original AMGCL approach for GPU speedup relies on the initialization
(setup) phase performed purely on the CPU, while the solution (iteration
process) is moved to the GPU. This approach works well for the case of
transient solvers, when the system matrix does not change much during
time-stepping. However, it does not fit for cases of highly nonlinear sys-
tems or stationary systems, especially when a linear system is formed
in the device memory. For these systems it is better to use GPU-only
solvers. To implement the GPU-oriented AMG solver, the design of the
original framework had to be changed. The maximal independent set
aggregation algorithm and derived smoothed aggregation operations are
added to the framework. A number of smoothers on the intermediate lev-
els are implemented with full support for GPUs. The full AMG hierarchy
can now be constructed entirely on the GPU with no CPU invokes. The
method is tested against the original AMGCL framework on matrices
derived from elliptic and parabolic partial differential equations (PDEs).
It is shown that the GPU-only approach can speed up the setup phase
by up to 5-6 times compared to the original framework.

Keywords: Aggregation · Iterative methods · Algebraic Multigrid
methods · Elliptic partial differential equations · General Purpose GPU
computations

1 Introduction

There are few modern methods for solving large linear systems that can be
considered mainstream. These include multigrid methods and domain decompo-
sition methods. Among the former, Algebraic Multigrid (AMG) methods are one
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of the most popular choices. The methods (generally) require no additional infor-
mation, however, the matrix itself is relatively memory thrifty and, if correctly
constructed, can be as efficient as geometric multigrid (GMG) methods. All this
makes AMG a very attractive “black box” solver for particular classes of prob-
lems (positive definite, semi-positive definite and M-matrices). Any multigrid
solver has two stages: setup and solve. The setup stage performs the necessary
computations and prepares operators for the solve phase. The solve phase actu-
ally solves a linear system. In AMG methods, the solve phase is a substantial
and important part in both the convergence and wall time. We refer the reader
to [6,8,11,16] for more detailed information on AMG methods. In this work, we
mainly focus on the setup phase.

To construct matrices, smoothing, prolongation and restriction multigrid
operators on all levels, one uses entries in the main system matrix, as well as, pos-
sibly, some external information. The resulting set of operators is called the AMG
hierarchy. The classical AMG approach [11] constructs hierarchies by dividing
matrix entries into coarse and fine ones so that the smoothed error slowly varies
in the direction of large matrix coefficients. The coarse nodes are used to con-
struct the lower level, and the prolongation operation is defined by interpolation.
The restriction operation is usually defined by either the one-to-one restriction
operation or the transpose of the prolongation operator. Smoothing operators
are built based on the nodes on each levels. This approach often results in rela-
tively good hierarchies that guarantee grid independent convergence. However,
to achieve this quality, classical aggregation often leads to large coarse level
matrices and requires a substantial amount of memory, see [10] for more infor-
mation. In addition, the original classical aggregation algorithm is essentially
serial. Other variants of the algorithm, such as PMIS, HMIS, CLJS, etc. (see
[15]), do not produce hierarchies of such quality.

Another variant considered here is aggregation AMG methods [14]. These
methods rely on grouping fine level nodes to form a coarse matrix on the lower
level. Smoothing operations are also constructed on top of the formed matrices
on each level. The restriction operation usually acts as an averaging of the vari-
ables inside each group, and the prolongation operator is a transposed restriction
operator. Such an approach is much more economical in terms of memory con-
sumption on the coarse levels, however, this approach is usually not applied since
it cannot generally provide grid independent convergence rates [13]. To override
this problem, smoothed aggregation was proposed [13,14]. However, smoothed
aggregation AMG results in greater memory requirements, and grid independent
convergence is still not guarantied for some classes of problems. For a comparison
of different approaches see [12,15].

Having described one problem of selecting an appropriate setup procedure,
one faces another problem, namely, how to speed up the setup phase. To speed
up an aggregation-based algorithm, it is necessary to apply a parallel aggregation
algorithm with all variants, including smoothed aggregation (since none of them
can be universal). Modern high-performance computing architectures de facto
must have Graphics Processing Units (GPUs). Such an architecture is efficient,
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if properly programmed, and more environmentally friendly. In addition, modern
desktops can fit up to 4 (or 8) powerful GPUs capable of solving relatively large-
scale problems. It would be unwise to deprive the users of these desktops from
solving middle-sized problems of academic or engineering orientation. Hence, the
implementation of the fully GPU-accelerated AMG solver is an important task.

We tried to utilize the AMGX solver for our problems on GPUs, but failed,
see [5]. To verify our implementations of GPU-accelerated setup procedures, we
used the AMGCL library [3] by D. Demidov. It is a C++ header-only library that
heavily relies on template metaprogramming and has GPU support via CUDA
and OpenCL. It is efficient and has been tested in many applications. However,
the library is explicitly designed in such a way that the setup process is performed
on CPUs only, accelerated by either OpenMP or MPI. GPU support is localized
only in the solve stage. Besides, if the system matrix is formed on GPUs, then
the library performs CPU↔GPU memcpy. The author’s idea is that the setup
is executed only a limited number of times, and the matrix of the linear system
can be reused (by calling the rebuild process also performed on the CPU), if
applied many times, say in Newton’s method, see [4] for details. However, if the
problem being solved is complicated, and the stationary point is not easily found
(see, for example, [2]), then this strategy may lead to unsatisfactory results, e.g.
substantially decrease the CFL number in implicit methods. In this paper, we
would like to overcome this flaw. We apply the Parallel Maximal Independent
Set K (MIS(K)) on the GPU, as described in [1,7], with modifications that form
aggregates closer to the serial version. The method is implemented in CUDA
C++ using templates.

The paper is laid out as follows. First, the aggregation method, the modified
MIS(K) method and its application in AMG during the setup are described.
Next, the modifications introduced in the AMGCL library to implement this
method in the GPU-only approach are outlined. Numerical experiments on sev-
eral available and generated sparse matrices are also presented, and the perfor-
mance and convergence of the modified and original AMGCL library are mea-
sured. The paper is finalized by a conclusion.

2 Aggregation AMG on the GPU

The initial approach adopted for the AMG hierarchy build process in AMGCL
is based on constructing aggregates as noted in the introduction. Aggregates are
unions of nodes (variables) on the fine level. After aggregation, each aggregate
corresponds to one and only one node on the coarse level. Let n be the number of
nodes on the current (fine) level. We can mathematically describe the aggregate
structure by the array of numbers ai, where i ∈ {0, ..., n−1} and ai ∈ {0, ..., nc−
1}, and nc is, in turn, the number of nodes on the next (coarse) level.

Transfer operators (prolongation and restriction) are fully determined by the
aggregate structure. Regular (non-smoothed) aggregation builds the restriction
operator (matrix) R in the following way:
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Rj,i =

{
1

|{k|ak=j}| , if ai = j

0, otherwise

The prolongation matrix is defined as a transposition of the restriction
matrix: P = RT . The coarse operator matrix is defined according to the Galerkin
projection: Ac = RAP , where A is the fine level matrix. For smoothed aggre-
gation, the restriction matrix is defined as a product of the restriction matrix
defined above and the smoothing matrix I + ωAF . ω is the relaxation param-
eter, and AF is a specially filtered version of the matrix A. Further levels are
constructed in a recursive way.

One can see that in this formalism the overall aggregation algorithm is fully
determined by the method of constructing aggregates. Regardless of the choice
of a particular algorithm, a strong connections graph first needs to be con-
structed. There are several variations of strong connections criteria. The one
used in AMGCL is described, for example, in [14]. We denote the strong con-
nections graph incidence matrix by C, Ci,j = 1 means that the node with the
number i is strongly connected to the node with the number j, while Ci,j = 0
means the absence of connection. Note that the matrix C is supposed to be
symmetric in the algorithm mentioned below.

The initial algorithm in AMGCL (called plain aggregation) uses a substan-
tially serial approach that exploits a given order of nodes for their grouping. On
the other hand, our task was to implement the fully GPU workflow for the setup
phase, thus the parallelizable algorithm had to be utilized. A common choice
for constructing parallel aggregates is the Maximal Independent Set algorithm,
see, for example, [1]. A parallel version of this algorithm uses random seeds to
construct MIS(K). MIS(K) is the subset of fine level nodes, and the shortest
path length between any two MIS(K) nodes in the graph C is larger than K.
“Maximal” means that adding any other node to MIS(K) breaks this property.
Usually K = 2 is used in the context of AMG.

Our version of the MIS(K) algorithm for constructing aggregates is presented
here as Algorithm 1. Note that there are two parts that differ from the original
version of MIS(K), highlighted in colour in the Algorithm. The first one is in the
node weights (the second element of the tuples Ti). While originally only random
numbers vi were used for the weights, we added an extra term niWnb. Wnb is
the global algorithm parameter. Wnb = 0 falls back to the initial version, while
Wnb = 1 or Wnb = −1 can be used to adjust the behavior of constructing aggre-
gates. We noted that Wnb = 0 usually resulted in the lower aggregates number
compared to the original AMGCL plain aggregation. This leads to a lower con-
vergence rate, thus usually slowing down the solve phase. The Wnb = −1 choice
enlarges the aggregates number, thereby partially fixing the convergence prob-
lem. However, for some matrices (not considered in the current paper), Wnb = 1
may be the best option, since the reduced number of variables on the coarse
levels speeds up the computational wall time.



Implementation of the Algebraic Multigrid Solver Designed 135

Algorithm 1. MIS(K) parallel, with modification outlined by colour.
1: function misk aggregation(C, K, Wnb)
2: I = {0, ..., n − 1};
3: a ← −1; s ← 0; v ← random; � init states and random vector
4: while {i ∈ I : si = 0} �= ∅ do
5: for i ∈ I do � for each node in parallel
6: ni ← #{j : Ci,j �= 0, sj == 0}; � number of neighbors
7: Ti ← (si, vi+niWnb, i); � set tuple (state,value,index)

8: for r = 1, ..., K do � propagate distance K
9: for i ∈ I do � for each node in parallel

10: t ← Ti;
11: for j : Ci,j �= 0 do
12: t ← max(t, Tj); � maximal tuple among neighbors

13: T̂ ← t;

14: T = T̂ ;

15: for i ∈ I do � for each node in parallel
16: (smax, vmax, imax) ← Ti;
17: if si == 0 then � if unmarked...
18: if imax == i then � if current is maximal...
19: si ← 1; � mark as new aggregate
20: ai ← i;
21: else if smax == 1 then
22: si ← −1; � add to existing aggregate
23: ai ← imax;

24: for i ∈ I do � for each node in parallel
25: if si == −1 then � not center of aggregate
26: for j : Ci,j �= 0 do
27: if sj == 1 then � neighbor is aggregate center...
28: ai ← j; � reconnect to neighbor

29: return (a); � return list of MIS(K) aggregates

The second difference is in the post-processing part. One can consider it as
a reconnection procedure. While the original plain aggregates implementation
manually connects all closest strong neighbors to newly created aggregate cen-
ters, the MIS(K) algorithm can produce highly skewed aggregates. To overcome
this problem, additional regrouping was added after the main iterations cycle.
The point is to reconnect the nodes initially connected to the “far” aggregates
center to the close ones, if any. Together, these two improvements reduce the con-
vergence rate drop to an acceptable level of approximately 10% in the worst case
among the systems under consideration. Moreover, the initial plain aggregates
algorithm can produce different results depending on matrix ordering, while the
randomized algorithm demonstrates robustness to this factor.

All other parts of the AMG hierarchy construction (transfer operators,
Galerkin projections) are naturally parallelizable for both CPUs and GPUs.
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The most time-consuming part is the sparse matrix-matrix product, and it will
be addressed further in more detail.

3 Implementation

Algorithm 1 can be readily implemented on GPUs. Loops with the comment
“for each node in parallel” turn into CUDA kernel calls, since there are no data
dependencies inside them. There are some technical issues. First, it was not
initially clear which data layout was the best for the tuples T . Experiments
showed that the “structure of arrays” was still preferable, despite the fact that
the size of one tuple is 16 bytes in our implementation. Second, tuples initializa-
tion and maximum tuple iterations loops were merged together using the CUB
reduce by key algorithm, which resulted in better performance.

From the performance point of view, sparse matrix-matrix multiplication
was found to be the bottleneck. We first used the legacy cusparseXcsrgemm2
operation from the cuSparse library of the CUDA toolkit, however, that already
deprecated version performed badly. The new version introduced in the latest
CUDA toolkit exposed a huge speedup of this operation, but failed in terms
of extra memory consumption. Finally, we tried the SpECK library [9], which
showed the best results in both memory consumption and performance. The only
disadvantage of this library is the absence of support for Compute Capabilities
lower than 6.1. The Legacy cuSparse implementation was left for the case of
older hardware.

Another important aspect of the fully GPU AMG stack is a smoothers
(“relaxation” in terms of AMGCL) implementation without any CPU invokes.
We ported setups for three of them: spai0 (sparse approximate inversion), ilu0
(incomplete LU factorization) and damped Jacobi. Although in an algorithmic
sense there are no problems with their implementation on the GPU, some prob-
lems arise with the AMGCL architecture. Initially it was not designed for such
GPU-only usage, therefore, we needed to introduce a new setup constructor
conveyor from the top make solver class down to coarsening and smoothers ini-
tialization methods.

4 Numerical Experiments

All experiments are conducted on symmetric matrices. The following hardware is
used in all experiments: CPU – 2×Intel Xeon Gold 6248R, totally having 48 cores
(96 threads) with 512 GB of ECC host memory, GPU – Nvidia Tesla V100 with
32GB of ECC device memory. Double precision is used in all calculations. The
AMGCL setup for all experiments is the same: the conjugate gradient method
is used as the main solver, preconditioned by a single AMG V-cycle. The ilu0
smoother is used on each level of the multigrid, the exact solver is used in the
lowest level. All problems are convergent, the target relative residual is set to
1.0 · 10−14. All results are presented by three figures – wall time for the setup,
solve phases and speedup. In addition, for each matrix, a table that contains
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the minimum wall time for all runs and for all implementations is presented.
It should be noted once again that the original AMGCL implementation uses a
multi-threaded CPU setup phase in both CPU and GPU implementations. Thus,
the obtained speedup for the setup phase depends on the number of OpenMP
threads for both implementations.

The first experiment is conducted with the matrix available in the AMGCL
examples folder, i.e. a small matrix from the discretization of a Poisson equation
called poisson3Db. Its size is 8.56E4, and the number of nonzero elements is
2.37E6. The results are presented in Fig. 1 and Table 1.

Fig. 1. Results for the poisson3Db matrix depending on the number of OpenMP
threads: setup phase - left, solve phase - center, speedup - right.

It is observed that for such matrix sizes, the speedup is negligible or even
reversed. The setup of the AMG hierarchy using the MIS(K) algorithm on the
CPU is slower than the original algorithm. The GPU setup phase algorithm is
faster than the single-threaded execution of the original algorithm. However, it
is slower for 48, 64 and 80 threads. It is not recommended to use GPUs for small
matrices.

The next experiment is taken from the sparse matrix market, the matrix is
called parabolic fem. Its size is 5.26E5, and it has 3.67E6 nonzero elements.
The results are presented in Fig. 2 and Table 2.

Table 1. Minimum wall times, mean iterations and attained residuals for the pois-
son3Db matrix.

name time setup time solve total time iterations residual

original host 0.409184 0.471179 0.892288 21 3.62E-16

original cuda 0.155554 0.189926 0.346058 21 5.55E-15

mis(k) host 0.409326 0.417123 0.847573 22 3.12E-15

mis(k) cuda 0.18529 0.225905 0.416847 23 9.47E-16
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Fig. 2. Results for the parabolic fem matrix: setup phase - left, solve phase - center,
speedup - right.

Table 2. Minimum wall times, mean iterations and attained residuals for the
parabolic fem matrix.

name time setup time solve total time iterations residual

original host 0.221891 0.212528 0.453675 14 3.22E-15

original cuda 0.164093 0.055595 0.220113 14 3.22E-15

mis(k) host 0.334386 0.240353 0.597847 12 5.67E-15

mis(k) cuda 0.123283 0.05631 0.182331 11 1.17E-15

The results again indicate that the host variant of MIK(K) is slower than
the original variant in both the setup and solve phases. The GPU MIS(K) setup
phase is 2.4 times faster than the single-threaded original AMGCL implemen-
tation and about as fast as the 48-threaded version. The solve phase is slightly
slower for the GPU implementation (0.96 times in average). The convergence is
slower on 1–2 iterations. The results indicate that the CPU implementation can
be used instead of the GPU implementation with a slight penalty on the wall
time. These two matrices are small to be efficiently used on GPUs.

The next sparse market matrix is called thermal2, its size is 1.23E6 with
8.58E6 nonzero elements. The obtained speedup, presented in Fig. 3 and Table 3,
shows that the CPU MIS(K) version is slightly faster in the solve phase for 48
threads or more. However, it is almost twice slower for the setup phase.

Fig. 3. Results for the thermal2 matrix: setup phase - left, solve phase - center,
speedup - right.
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Table 3. Minimum wall times, mean iterations and attained residuals for the ther-
mal2 matrix.

name time setup time solve total time iterations residual

original host 0.759762 1.030344 1.925627 13 6.70E-15

original cuda 0.511443 0.830287 1.342058 13 6.70E-15

mis(k) host 0.914104 0.691784 1.824731 11 4.82E-15

mis(k) cuda 0.233334 0.547645 0.780979 13 1.18E-15

The GPU MIS(K) variant is 6 times faster than the single-threaded setup
phase of the original implementation. The minimum speedup of the GPU
MIS(K) implementation compared to the best multi-threaded original GPU
implementation is 1.85 times for the setup phase. The solve phase for the GPU
MIS(K) implementation is about 1.5 times faster due to the difference in the
obtained AMG hierarchy.

A set of parameterized matrices was generated to perform analysis in terms of
matrix sizes. A finite difference 7-point 3D Laplace operator was generated and
used for the Poisson equation with Neumann and a single Dirichlet boundary
condition. The cubic domain was discretized with 50, 100, 150, 200 and 250 grid
points in each direction, respectively. The results of the solution of this problem
are presented in Fig. 4 and Table 4.

Fig. 4. Results for the generated finite difference Laplace operator: setup phase - left,
solve phase - center, speedup - right, upper row - one thread, lower row - best times of
all OpenMP threads.
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First, we analyze the behavior for the case when a single thread is used in
the original AMGCL implementation. The CPU variant of our implementation
is clearly inferior compared to the original AMGCL implementation. The GPU
variant, on the other hand, is efficient. For this case, we obtain a substantial
speedup starting from a linear matrix size of 150. The maximum speedup in the
setup phase of about 7 times is achieved for the largest matrix.

Next, we analyze the behavior for the best variant of the AMGCL multi-
threaded GPU implementation. In this case, a speedup of about 3.51 times is
achieved for the largest matrix in the setup phase. The solve phase is approx-
imately the same for both implementations. The solve phase fluctuates around
one, see Table 4.

Table 4. Minimum wall times for all generated Poisson problem matrices and all
considered OpenMP threads.

setup

lin.size original host original cuda mis(k) host mis(k) cuda

50 0.160 0.167 0.146 0.094

100 0.694 0.508 0.854 0.250

150 2.239 1.554 3.401 0.607

200 4.943 4.449 8.844 1.375

250 9.754 8.253 16.345 2.346

solve

50 0.085 0.060 0.082 0.069

100 0.580 0.301 0.545 0.259

150 2.271 0.656 2.039 0.594

200 4.317 1.131 5.189 1.262

250 10.145 2.597 10.073 2.621

5 Conclusion

In this research, we presented the implementation of the AMG framework that
targets GPUs. The AMGCL header-only library, designed and implemented by
D. Demidov using C++, was used as a base framework, which was subject to
deep modifications. The whole process (both setup and solve phases) was imple-
mented and tested on multiple symmetric matrices, generated and real-world-
alike. It is concluded that for small matrices, e.g. poisson3Db, the usage of our
implementation is not recommended. The GPU load is insufficient to deliver any
speedup against modern CPUs. We also do not recommend using the CPU variant
of MIS(K) aggregates since it is clearly inferior in all numerical experiments. On
the other hand, we obtained a speedup of the setup phase for intermediate and
large matrices (matrix size starting from ∼ 1E6) by about 7 times against the
AMGCL single-threaded GPU implementation and by about 3.5 times for the best
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multi-threaded variant. The speedup of the solve phase depends on the problem
(since aggregates are generated differently for AMGCL and our implementation
using MIS(K)) and fluctuates between 0.95 and 1.15. The suggested GPU-only
implementation can be recommended if matrices are generated on GPUs for sta-
tionary problems with a time-consuming setup phase, as well as for hard transient
problems, when a matrix rebuild is required on each time step.

Variations of classical AMG aggregation algorithms, as well as support for
multiple GPUs, are to be implemented for GPUs.
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