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Preface

This volume contains a selection of the papers presented at the 16th International
Scientific Conference on Parallel Computational Technologies, PCT 2022. The PCT
2022 conference was held in Dubna, Russia, during March 29–31, 2022.

The PCT series of conferences aims at providing an opportunity to report and
discuss the results achieved by leading research groups in solving practical issues
using supercomputer and neural network technologies. The scope of the PCT series
of conferences includes all aspects of the application of cloud, supercomputer, and
neural network technologies in science and technology such as applications, hardware
and software, specialized languages, and packages.

The PCT series is organized by the Supercomputing Consortium of Russian
Universities and the Ministry of Science and Higher Education of the Russian
Federation. Originating in 2007 at the South Ural State University (Chelyabinsk,
Russia), the PCT series of conferences has now become one of the most prestigious
Russian scientific meetings on parallel programming, high-performance computing,
and machine learning. PCT 2022 in Dubna continued the series after Chelyabinsk
(2007), St. Petersburg (2008), Nizhny Novgorod (2009), Ufa (2010), Moscow (2011),
Novosibirsk (2012), Chelyabinsk (2013), Rostov-on-Don (2014), Ekaterinburg (2015),
Arkhangelsk (2016), Kazan (2017), Rostov-on-Don (2018), Kaliningrad (2019), Perm
(2020), and Volgograd (2021).

Each paper submitted to the conference was scrupulously evaluated by three
reviewers based on relevance to the conference topics, scientific and practical contri-
bution, experimental evaluation of the results, and presentation quality. The Program
Committee of PCT selected the 22 best papers to be included in this CCIS proceedings
volume.

Wewould like to thank the respectedPCT2022platinumsponsors, namely Intel,RSC
Group, and Karma Group, and the conference partner, Special Technological Center, for
their continued financial support of the PCT series of conferences.

We would like to express our gratitude to every individual who contributed to
the success of PCT 2022. Special thanks to the Program Committee members and
the external reviewers for evaluating papers submitted to the conference. Thanks
also to the Organizing Committee members and all the colleagues involved in the
conference organization from the Joint Institute for Nuclear Research, the South Ural
State University (national research university), and Moscow State University. We thank
the participants of PCT 2022 for sharing their research and presenting their achievements
as well.

Finally, we thank Springer for publishing the proceedings of PCT 2022 in the
Communications in Computer and Information Science series.

June 2022 Leonid Sokolinsky
Mikhail Zymbler
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VGL Rating: A Novel Benchmarking
Suite for Modern Supercomputing

Architectures

Ilya Afanasyev1,2(B) and Sviatoslav Krymskii1

1 Research Computing Center, Lomonosov Moscow State University,
Moscow 119234, Russia

afanasiev ilya@icloud.com
2 Moscow Center of Fundamental and Applied Mathematics, Moscow 119991, Russia

Abstract. This paper presents a novel project aimed to rank mod-
ern supercomputing architectures. The proposed rating is based on an
architecture-independent Vector Graph Library (VGL) framework. The
initial integration with VGL greatly simplifies the process of ranking new
supercomputing architectures due to the fact that VGL provides a con-
venient API for developing graph algorithms on a large variety of super-
computing architectures. Unlike existing projects (such as Graph500),
the proposed rating is based on a larger number of graph algorithms and
input graphs with fundamentally different characteristics, which makes
it significantly more representative when certain architectures have to be
compared for a specific real-world problem. Moreover, the proposed flex-
ible software architecture of our rating allows one to easily supplement
the rating with new graph algorithms and input data, if necessary.

Keywords: Graph Algorithms · Graph Framework · Benchmarking ·
Rating systems · Graph500 · NVIDIA GPU

1 Introduction

The ranking of modern supercomputing systems and computational platforms
is an important problem of modern computer science. With a large variety of
architectures that exist and are widely used nowadays, it is crucial to under-
stand which systems are capable of solving a specific real-world problem faster,
frequently taking into account the properties of input data.

There exist multiple projects such as Top500 [14], Graph500 [15], HPCG [13],
Algo500 [5], which are aimed to rank the performance of supercomputing systems
based on algorithms used in different fields of application. The purpose of this
study is to develop a ranking of modern shared memory systems that is more
representative than existing systems. Our research extends the approach of using
graph algorithms to rank modern supercomputing architectures using a family
of graph algorithms, which is important due to the fact that graph algorithms
are used in a wide range of applications: solution of infrastructure and biological
problems, analysis of social and web networks, etc.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
L. Sokolinsky and M. Zymbler (Eds.): PCT 2022, CCIS 1618, pp. 3–16, 2022.
https://doi.org/10.1007/978-3-031-11623-0_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-11623-0_1&domain=pdf
http://orcid.org/0000-0002-0202-1548
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4 I. Afanasyev and S. Krymskii

We have developed a novel rating system named as the VGL-rating project1,
which is designed to achieve two main goals: (1) broader the group of graph
algorithms and input data used in the benchmarking core to make the rating
more representative and (2) make the benchmarking and submission process as
simple as running a single script on the target architecture (with all the required
action being automatized).

Thus, our project has the following advantages over existing solutions such
as Graph500 or Algo500. Firstly, our rating takes into account a larger group
of graph algorithms with drastically different characteristics, as well as input
data from various fields of application, which makes it more representative than
existing counterparts. Secondly, its native integration with the VGL framework
greatly simplifies the process of benchmarking a new architecture. Previously,
when submitting to a rating project, such as Graph500 or Algo500, the user has
to follow the following relatively complex steps: (1) develop optimized imple-
mentations of a specific graph algorithm, (2) obtain input data, (3) run the
implementation and measure performance metrics correctly and (4) fill multiple
forms to get into the rating list.

On the contrary, our rating makes the benchmarking process as simple as
running a single script that automatically performs the described steps. This is
achieved by the native integration of the rating with the VGL framework, which
provides highly optimized implementations for a large variety of modern CPUs
and GPUs. Thus, the development of an optimized implementation is covered
by VGL developers and hardware vendors, who are allowed to extend VGL on
their platforms, while all the remaining steps (downloading input data, compil-
ing optimized implementations, submitting performance results) are performed
automatically by a convenient script provided in VGL.

The rating system described in this paper is currently intended for shared
memory architectures. For this reason, at the current stage of the project, it
cannot be considered as a full replacement of Graph500. However, the VGL rat-
ing can easily be extended for clusters and systems containing multiple NVIDIA
GPUs (DGX) or vector engines (Aurora8) due to outgoing updates of the VGL
framework, which currently enables distributed graph processing using MPI as
a beta version [3].

2 Related Work

At the moment of this writing, many solutions aimed to benchmark and conse-
quently rank supercomputing systems exist. Examples of such solutions include
the Top500 [14], Graph500 [15], Green500 [7] lists, the Algo500 [5] project based
on Algowiki [17], the HPCG [13] benchmark, and some others. Typically, these
solutions are based on applying a specific frequently used algorithm and its
implementation, such as solving SLE, doing SPMV, etc., and using some per-
formance metrics to rank various supercomputing systems. Such a variety of

1 The VGL rating is currently available at vgl-rating.parallel.ru.
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existing ratings is explained by the fact that different algorithms used as a bench-
marking core stress different parts of the supercomputing hardware (for example,
Graph500 – memory subsystem). At the same time some approaches, such as
Algo500, are more general, since they are capable of benchmarking supercom-
puting systems based on any algorithm described in the Algowiki project.

The most related to our project is the Graph500 rating, which also uses the
implementations of the Shortest Paths and Breadth-First Search (BFS) graph
algorithms launched on RMAT [6] graphs of different scales as a benchmarking
core. However, this rating, in our opinion, has the following drawbacks:

– Only 2 graph algorithms are used. At the same time, there are many other
graph algorithms with different properties, which usually demonstrate a dras-
tically different performance on different evaluated architectures and result
into significantly different ratings based on these algorithms;

– Similarly, using only one type of synthetic input graphs leads to the same
problem, i.e. architectures can potentially be ranked drastically differently
when some other graph is used;

– Graph500 provides only generic MPI and OpenMP implementations, forcing
users to develop their own highly optimized implementations;

– Graph500 targets large supercomputing systems, while it is also interesting
to compare single-node (and single-GPU) systems.

Thus, we decided to build our own rating system on top of the VGL frame-
work. This rating is mostly aimed to benchmark single-node systems, at the
same time using graphs and algorithms with different properties, which allows
creating a more general and balanced rating.

As a benchmarking core we use our own VGL framework. There exist poten-
tially other CPU-based or GPU-based graph-processing systems, such as Gun-
rock [18], cuSha [9], Ligra [16], etc. However, as we will show in the following
sections, VGL suites these purposes better since it is architecture-independent
and supports a large variety of modern architectures.

3 Proposed Benchmarking Method

When developing a novel rating designed to rank systems based on the perfor-
mance of graph algorithm implementations, we had to decide three main features
of the developed rating:

1. which graph algorithms should be used as the basis of the rating;
2. which input graphs should be used as the basis of the rating;
3. which mathematical model should be used to create a rating based on the

selected graph algorithms and input graphs.

The next three subsections describe each of these three features in detail.
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3.1 Selecting Graph Algorithms

Firstly, we conducted a detailed study of the characteristic properties of a wide
set of graph algorithms, which was aimed at identifying fundamentally different
graph algorithms with fundamentally different computational characteristics. In
the course of this study, a number of basic mathematical properties of graph
algorithms (complexity, computing power, structure of information graphs), as
well as the properties of typical programs that implement these algorithms, were
examined.

Based on the analysis, we decided to form our rating on top of the following
graph algorithms:

Breadth First Search (BFS) is an algorithm designed to find the shortest
paths from one vertex of an unweighted graph to other vertexes. In a parallel
version, the algorithm traverses the graph by “layers”, starting from the initial
layer, which consists of the source vertex. The Breadth First Search algorithm is
the basis for many other graph algorithms, such as searching for connected and
strongly connected components, transitive closure, etc. This algorithm differs
from others in its “sparsity”: on each iteration, BFS typically processes only a
certain subset of graph vertexes (which can be rather small for the currently
processed “layer”).

Page Rank (PR) is a graph algorithm that is applied to a collection of
hyperlinked documents and assigns to each of them some numerical value mea-
suring its “importance”. This algorithm can be applied not only to web pages,
but also to any set of objects interconnected by reciprocal links, for example, to
any graph. This algorithm differs from others in that the processing of each ver-
tex requires loading information from multiple indirectly accessed arrays, thus
causing a larger latency compared to other algorithms (BFS, SSSP), which indi-
rectly access only a single array.

HITS (search for topics by hyperlinks) is a graph algorithm designed
to find Internet pages that match the user’s request based on the information
contained in a hyperlink. The idea of the algorithm relies on the assumption
that hyperlinks encode a significant number of hidden authoritative pages (an
authoritative page is a page that corresponds to the user’s request and has a
greater proportion among documents of a given topic, i.e. a larger number of
pages linking to this page). The HITS algorithm is similar to the Page Rank
algorithm. They both use the link relationship in web graphs to determine the
importance of pages. However, unlike Page Rank, HITS only works with small
subgraphs of a large web graph. This algorithm differs from others as it changes
the traversal direction (visiting either incoming or outgoing edges) twice on each
iteration.

The Bellman-Ford algorithm of shortest paths in a graph from a
source node (Shortest Paths from a Single Source, SSSP) is a graph
algorithm that finds the shortest paths from the starting node of the graph to
all the others. This algorithm goes through all the edges of the graph at most
|V −1| times and tries to improve the value of the shortest paths. This algorithm
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differs from others due to (1) its larger computational complexity and the (2)
fact that it processes weighted graphs.

The main comparative characteristics of the algorithms (including those
already mentioned during the algorithm description) are provided in Table 1.
An analysis of these characteristics enables to conclude that we selected a repre-
sentative set of graph algorithms. Our additional conducted experiments demon-
strated that the performance of graph algorithms solving other problems, includ-
ing Maximum Flow, Strongly Connected Components, Coloring, quite resembled
one or several algorithms that we used as the basis of our benchmark. Thus, these
four algorithms form the basis for a representative rating reflecting the features
of a wide range of graph algorithms. However, our implementation makes it eas-
ily to extend the set of algorithms used in the rating (as will be shown in the
other section), in case we need to add another drastically different algorithm in
the future.

Table 1. Main comparative characteristics of the algorithms used in the rating basis.

BFS SSSP PR HITS

Sequential
complexity

O(|E|) O(|V | ∗ |E|) O(|E| ∗ N) O(|E| ∗ N)

Parallel
complexity

O(d) O(|V |) O(N) O(N)

Computing
power

1 |V | N N

Working with
sparse vertex

lists
yes no no no

Working with
inbound and

outbound edges
at the same

time

yes no no yes

Working with
weighted graphs

no yes no no

Necessity to use
atomic

operations
no no yes yes

Necessity to
check

convergence
no no yes no

Fixed number
of iterations

no no yes yes
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3.2 Selecting Input Graphs

Secondly, we had to decide which input graphs should form the basis of the
rating. Unlike existing ratings (e.g. Graph500), which use a single type of input
graphs, we used a wide set of real-world and synthetic graphs of different size,
the main characteristics of which are provided in Table 2.

Table 2. Graphs used in the project. Each graph is described by the Name, Number
of Vertexes, Number of Edges triple. The columns and rows of the table correspond to
the different sizes and categories of these graphs.

Social Infrastructure Internet Rating Synthetic

Tiny

YouTube

friendships

(1.13 mln, 3

mln)

Texas (1.38 mln,

1.9 mln)

Stanford

(282k, 2.3

mln)

Netflix (498k,

1B)

RMAT (218,

223)

Small

LiveJournal

links (5.2

mln, 49 mln)

Western USA

(6.2 mln, 15 mln)

Zhishi (7.83

mln, 66 mln)

Amazon

ratings (3.4

mln, 5.8 mln)

RMAT (222,

227)

Medium -
Central USA (14

mln, 34 mln)

UK domain

(18.5 mln,

262 mln)

-
RMAT (224,

229)

Large
Twitter (41.6

mln, 1.5B)

Full USA (24

mln, 57.7 mln)

Web trackers

(40.4 mln,

140 mln)

Amazon (31

mln, 82.6

mln)

RMAT (225,

230)

Table 2 demonstrates the graphs from four important application fields
(social, infrastructure, internet, rankings), which differ in:

1. Number of vertexes (from 133 thousand to 105 million).
2. Number of edges (from 144 thousand to 3.3 billion).
3. Maximum number of edges outgoing from one vertex (from 9 to 20.7 million).
4. Average number of edges outgoing from one vertex (from 2.13 to 496).
5. Size of the largest connectivity component (from 75 to 104 million).
6. Diameter (from 4 to 8000).
7. Number of cycles in the graph (from 0 to 5.6 million).

Based on the data presented, we can conclude that the developed rating uses
different classes, the parameters of which significantly impact the performance
of graph algorithm implementations on different architectures.

3.3 Principles Used to Form the Rating

The rating has a large number of parameters that allow one to specify weights
for the category of graphs (social, infrastructure, Internet, rating, synthetic),
algorithms (Page Rank, HITS, Shortest Paths, BFS), graph size (tiny, small,
medium, large). By default, all parameters have the same weight (equal to 0.5)
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and, therefore, the same contribution to the final result, however, the user can
select a weight for each parameter in order to give preference to one or another
parameter. Each selected weight (from 0.0 to 1.0) indicates how strongly a par-
ticular parameter should affect the generated rating.

Two approaches to the formation of the rating were implemented. First, for
both approaches, all algorithms are launched on all graphs. Further, for each
pair {graph, algorithm}:

1. The performance values are sorted among all architectures; after sorting, each
architecture receives a sequential number, i.e. an index in the sorted array. For
each architecture, a value equal to the difference of the number of architec-
tures and the sequential number of the architecture, multiplied by the weight,
is added to the final rating.

2. The maximum performance value among all architectures is found, and all
results are divided by this value (normalization is performed). After that, for
each architecture, the normalized values multiplied by weights are added to
the final rating value.

Let us denote the set of graph types (social, infrastructure, etc.) used as the
basis of the rating as I, the set of graphs as G, the set of used graph algorithms as
J , the set of graph scales as K, the set of tested architectures as A. In addition,
let us denote the weights of these sets (which are specified by users) as xi, xj ,
xk.

In the first implementation, we first fix the graph g ∈ G, the graph
algorithm j ∈ J , and for all a ∈ A we obtain an array of performance values
Mgja corresponding to the triple {g, j, a}. Then we sort these values, and each
architecture gets the value pgja corresponding to the index of the value Mgja in
the sorted array. Let N be the number of architectures, then the final rating is
formed according to the following equation:

Ra (Rating of architecture a) =
∑

∀g∈G,∀j∈J

(N − pgja) ∗ xi ∗ xj ,

In the second implementation, the rating is formed according to the
following equation:

Ra (Rating of architecture a) =
∑

∀i∈I,∀j∈J,∀k∈K

∀p ∈ A Mijk p

max∀t∈A Mijk t
∗ xi ∗ xj ∗ xk.

where Mijk a is the performance of the implementation of the graph algorithm j
on graphs of type i of size k on the architecture a.

The essence of the first approach is that the architecture that is often better
in efficiency on fixed graphs and algorithms will have a higher rating; while the
second approach calculates the sum of normalized efficiency values. The problem
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of the second approach may be that one architecture works much better than
others on a small number of fixed graphs and algorithms, while it is slightly
worse on all others. In this case, this architecture can be ranked higher than
others, although it shows less efficiency on most graphs.

In the second approach, the normalization by the maximum performance
value obtained among all architectures on a certain combination of input param-
eters i, j, k, t is required to avoid situations when performance differences on
different sets of input data are drastically different due to some properties of
input data. For example, the shortest paths algorithm on a road graph performs
many more iterations compared to social graphs (due to their different diame-
ters). Without this normalization, the performance input of road graphs will be
much lower compared to social ones, which should not be the case.

4 Using VGL as a Benchmarking Core

As mentioned in the introduction, we decided to use the architecture-
independent graph-processing framework VGL [2,4] as a benchmarking core;
it currently supports many modern supercomputing architectures: NVIDIA
GPUs [10], NEC SX-Aurora TSUBASA vector engines [1], A64FX with HBM
memory, as well as multicore CPUs of different models and vendors (Intel Xeon,
Intel KNL, Arm Kunpeng, AMD EPYC, etc.). The architectural independence of
VGL [2] is achieved by using the same data and computation abstractions for all
supported architectures (in terms of interfaces, but not implementations). The
use of optimized implementations with generic interfaces is achieved by means
of C++ object oriented programming, inheritance and templates.

Using VGL as a benchmarking core requires the development of implemen-
tations of the graph algorithms selected in Sect. 3.2 on the basis of VGL com-
putational and data abstractions. Thus, the developed high-performance imple-
mentations of the PR, SSSP, BFS, HITS graph algorithms based on the VGL
API will be able to operate on different VGL-supported architectures with the
specification of proper compilation flags.

Scripts to perform the automatic downloading of input data, the compilation
of the required algorithms for the target architecture, as well as the submission
of performance measurements and performance results, were added to the VGL
build. These modifications will be described in the following section in detail.

5 Developed Benchmarking System

During the course of this project, the VGL framework was extended with a
set of interfaces for automatically collecting performance data. These interfaces
execute the selected graph algorithms (PR, BFS, SSSP, HITS) on specified input
data on VGL-supported architectures. Afterwards, the interfaces automatically
send the results to the rating server, which in turn creates a rating based on the
ranking method described in Sect. 3.
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The general scheme of the developed benchmarking system is illustrated in
Fig. 1.

Fig. 1. Scheme of the developed benchmarking system: the client side is implemented
via VGL scripts and interfaces, while the server part is responsible for data storage
and rating visualization.

As shown in Fig. 1, the developed system has client and server parts.

Client Part: On the architecture being benchmarked, the user launches a
Python script provided inside VGL, which downloads graphs from the Konect
collection [12], converts them into the internal VGL format, launches four graph
algorithms and then collects performance data in TEPS [15]. Afterwards, the
performance data is uploaded to the rating server.
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Server Part: The server executes two scripts: the first is responsible for receiv-
ing data from the client and storing the received data in MongoDB [8], while the
second is responsible for calculating the rating based on user-specified parame-
ters and visualizing it as an HTML page.

Next, we will describe these two parts in detail, following the process of
benchmarking a specific architecture chosen by the user, submitting the obtained
benchmarking results and processing these results by the rating system.

First of all, the user launches the Python script submit.py on the client side,
which automatically performs the following actions.

At the beginning, the type of the architecture is determined: presence of
GPUs, vector edges of the SX-Aurora TSUBASA system [11], vendor, type and
generation of the CPU, etc. Depending on the obtained values, the evaluated
graph algorithm implementations are compiled according to the obtained infor-
mation (using specific compilers, optimizations flags, etc.). To achieve this, we
implemented in VGL a fairly large database of recommended compilation and
optimization settings for many widely used supercomputing architectures.

Afterwards, all graphs needed for testing are downloaded from the Konect
collection, and synthetic graphs are generated using random graph generators
implemented in the VGL framework.

After downloading, all graphs are divided into groups by the categories
defined in Sect. 3.1. When generating a rating, the user will be able to spec-
ify influence weights for each of the groups.

The user can provide additional parameters to the submity.py script to launch
graph algorithms on specific subsets of input graphs: Tiny, Tiny + Small, Tiny
+ Small + Medium, Tiny + Small + Medium + Large (in other words, a gradual
increase in the graphs used). These modes allow one to accelerate the benchmark-
ing process, as well as to solve the problem when certain large graphs cannot be
stored in the memory of the evaluated architecture, which can be the case for
NVIDIA GPUs or personal computers where the memory is limited by around
16–32 GB. It is important to emphasize that if some graph is not used for test-
ing, the obtained rating of the benchmarked architecture will be lower as if the
performance obtained on these graphs was equal to zero.

Once downloaded, the graphs are converted to an edge list format and stored
on the disk as binary files. Then, the optimized routines of the VGL framework
are used to load and convert these graphs into a specific optimized representation,
namely, CSR, VectorCSR [4], segmented or clusterized CSR [19], etc. Using
the optional parameters of the submit.py script, the user can select a specific
graph storage format for the evaluated architecture, which they think would be
more suitable. By default, VGL also provides a recommendation database, which
format should be used for a specific architecture (similarly to compilation and
optimization options).

Afterwards, all four algorithms are executed on all converted graphs, the
performance data is collected and saved as an array of dictionaries. Finally, this
performance data is packed and sent to the rating server. An offline export of
the performance data is implemented as an option. This is necessary in the case
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when the benchmarked system does not have access to the Internet, which is a
frequent situation for supercomputer nodes. In both cases, the generated array
of dictionaries containing the performance results is converted to a stream of
bytes using the pickle library and sent by the client to the server using the
socket library, where the received stream of bytes is converted back to a Python
dictionary.

The rating server processes the received performance data in the following
way.

Fig. 2. Structure of the data saved in the Mongo database.

The received data is saved to the Mongo database in the format shown in
Fig. 2. We decided to use a non-relational (NoSQL) Mongo database due to
the fact that in MongoDB, each collection object can contain different fields,
while in SQL databases, tables have a strongly typed schema. In our project,
it allows providing additional information, i.e. new graphs, algorithms, types of
the evaluated system during the development of the project, while remaining
back compatibility with older data.

After the data is saved, a specific method for calculating the rating (described
in Sect. 3) is used. The developed system is very flexible, and additional rating
formulas can be easily provided. In the future, we plan to support data visual-
ization based on various rating formulas according to the user’s choice.

A web page2 written in html, css and javascript is used to visualize the results.
The interaction of Python scripts and web pages is implemented using the Flask
web framework.
2 vgl-rating.parallel.ru.
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6 Using the Developed Benchmarking System to Rank
Modern Supercomputing Platforms

Table 3. Rating results used to make observations. Each cell after the name of the
architecture provides its rating value, which shows how often the given architecture is
better than the others.

Rating
position

Overall rating
BFS

algorithm
LARGE size

1

NEC
SX-Aurora
TSUABSA,

37.4

NEC
SX-Aurora
TSUABSA,

32

NVIDIA
GPU V100,

36.25

2
NVIDIA

GPU V100,
31.23

Intel Xeon
6140, 22.75

NVIDIA
GPU P100,

31

3
NVIDIA

GPU P100,
19.86

NVIDIA
GPU

V100,16.25

Intel Xeon
6140, 25.5

4
Intel Xeon
6140, 12

Kunpeng
920, 16

Kunpeng
920, 22

5
Kunpeng 920,

8.81

NVIDIA
GPU P100,

15

NEC
SX-Aurora
TSUABSA,

19

6
Intel Xeon
6240, 5.45

Intel Xeon
6126, 10.75

Intel Xeon
6240, 7.75

7
Intel Xeon
6126, 4.35

Intel Xeon
6240, 9.25

Intel Xeon
6126, 7.5

Based on the developed rating, the following modern supercomputer architec-
tures were ranked:

1. Vector processors NEC SX-Aurora TSUBASA
2. Graphics accelerators NVIDIA (P100, V100, etc.)
3. Central processing units Intel Xeon (Skylake, Cascade Lake)
4. Central processing units A64FX
5. Central processing units ARM Kunpeng.

The following observations were made according to the results provided in
Table 3:

1. Kunpeng 920 works faster on infrastructure graphs than Intel Xeon 6140, but
slower on all the others.
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2. NVIDIA GPUs process social graphs faster than NEC SX-Aurora TSUBASA
v1.0 and all the others slower.

3. NVIDIA GPUs work faster with the PR, SSSP algorithms than NEC SX-
Aurora TSUBASA v1.0 and slower with the other algorithms.

4. Intel Xeon 6140 is faster on the BFS algorithm than NVIDIA GPU P100 and
V100 and slower on the other algorithms.

5. Kunpeng 920 is faster on BFS than Intel Xeon 6140 and slower on all the
others.

6. NVIDIA GPUs are faster on Large graphs than NEC SX-Aurora TSUBASA
v1.0 and slower on the other graph sizes.

7. Kunpeng 920 and Intel Xeon 6140 are faster on Large graphs than NEC
SX-Aurora TSUBASA v1.0 and slower on the other graph sizes.

7 Conclusion

In this paper, we proposed a novel rating system that evaluates the performance
of target architectures based on the performance of multiple graph algorithms:
PR, SSSP, BFS and HITS. At the same time, our rating uses different types of
input graphs: infrastructure, social, rating, synthetic, which in aggregate makes
the proposed rating more representative than its existing counterparts.

The proposed rating system is implemented on top of the architecture-
independent VGL framework, which makes the benchmarking and submission
process as simple as running a single script provided in VGL.

Information about our rating is currently available on the vgl-rating.
parallel.ru website. In addition, everyone can easily contribute to the VGL frame-
work, freely available at vgl.parallel.ru, by implementing support for new archi-
tectures. We strongly believe that the proposed rating will be frequently used to
compare modern supercomputing architectures, gradually turning into a larger
project.
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Abstract. This paper is devoted to the monitoring system HPC Task-
Master developed at the HSE University for the cHARISMa cluster.
This system automatically evaluates the efficiency of performing tasks
of HPC cluster users and identifies inefficient tasks, thereby significantly
saving the expensive machine time. In addition, users can view reports
on completing their tasks, along with inferences about their work and
interactive graphs. Particular attention in this paper is paid to determin-
ing the effectiveness of the task – the system allows the administrator
to personally configure the criteria for evaluating the effectiveness of the
task without the need for changes in the source code. The system is
developed using open-source software and is publicly available for use on
other clusters.

Keywords: HPC cluster · efficiency · monitoring

1 Introduction

A task efficiency monitoring system is essential for detecting incorrectly started
calculations that entail the insufficiently efficient use of cluster resources. This
paper describes a new task performance monitoring system, HPC TaskMaster,
developed at the HSE University for the cHARISMa (Computer of HSE for
Artificial Intelligence and Supercomputer Modeling) cluster.

The developed system allows users to view reports on the performance of their
tasks together with interactive execution schedules and automatically identify
tasks that worked inefficiently. Having access to the results of the analysis, users
can run their tasks more efficiently in the future, which will significantly save
the machine time of the cluster.

In addition, the system will allow the administrators of the cluster to collect
statistics about user tasks, which was previously unavailable.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
L. Sokolinsky and M. Zymbler (Eds.): PCT 2022, CCIS 1618, pp. 17–29, 2022.
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The most common examples of the inefficient usage of cluster resources are:

– allocation of insufficient or excessive resources for a task;
– running a non-parallel task on multiple CPU cores or GPUs;
– allocation of the compute node capacity without starting calculations.

The following requirements were defined for the design of the task perfor-
mance monitoring system.

1. The system should collect the following data for each task:
– utilization of specific CPU cores allocated for the task;
– utilization of GPUs allocated for the task;
– GPU memory utilization;
– GPU power consumption;
– utilization of RAM created by the task;
– file system usage.

2. The system must analyze the collected data and use it to determine whether
the task worked effectively.

3. The system must provide users with access to the list of completed tasks and
reports on their completion using a web application.

The rest of this paper is organized as follows. A comparison of different
monitoring systems is carried out in Sect. 2. In Sect. 3, the architecture of the
system is described. The detection of inefficient user tasks is considered in Sect. 4.
User statistics are provided in Sect. 5. Finally, Sect. 6 shows the conclusions of
this work.

2 Related Work

The key feature of the HSE cluster is how it allocates resources for user tasks.
Instead of allocating the entire compute node for one task, the user is given a
certain number of processor cores and GPUs. As a result, several dozen tasks can
be performed on the compute node at once, thus optimizing cluster resources.
Due to this feature, ready-made solutions for monitoring system resources, such
as Nagios and Zabbix, are not suitable for this cluster. cHARISMa already has
a monitoring system of its own [4], however, it is designed to display only the
global usage across the whole cluster and its nodes.

Since one of the HSE University goals is to provide cluster users with a
secure system in the HSE University environment, a new monitoring system was
built using open-source monitoring tools. Chan [3], Wegrzynek [11], Kychkin [6],
Safonov [10] describe how using a combination of programs such as Telegraf,
InfluxDB and Grafana allows one to quickly set up and run a cluster resource
monitoring system. In [2,3], it is also described how the Slurm plugin acct gather
enables to collect metrics for Slurm tasks, which is precisely the data required
for a task efficiency monitoring system. Since all programs, except Telegraf, are
already installed on cHARISMa, this approach can be used to monitor tasks on
the cluster.
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The development of LIKWID Monitoring Stat [9], a task monitoring system
using InfluxDB, Grafana and built-in LIKWID tools for monitoring tasks on the
cluster, also draws attention. For each task, a dashboard is created from ready-
made JSON templates, which allows creating personalized graphs for each task.
The disadvantages of using the LIKWID Monitoring Stack on the HSE Cluster
include the need to use LIKWID tools for the system to operate and the lack of
a web interface for the system in addition to Grafana, which makes the system
inconvenient for using on a cluster with a large number of users and tasks.

In addition to monitoring cluster resources, the system must analyze the
effectiveness of user tasks. A well-known system for creating reports on the
effectiveness of tasks is JobDigest [7,8]. It analyzes the collected integral values
and, based on them, applies a tag to the task describing the property of the
task (for example, “low GPU utilization”). Although using tags is convenient
for searching and filtering tasks, it is not always possible to provide an overall
picture of the effectiveness of the task using tags alone.

Summarizing all the above, we can conclude that there is no ready-made
task monitoring system fitting the individual characteristics of the cHARISMa
cluster, which can be integrated into the HSE University environment. It is
necessary to develop its own software system for evaluating the effectiveness of
tasks, which can be flexibly configured for specific types of user tasks, delimit
access for cluster users, and take into account the compliance of tasks with
registered scientific and educational projects. As the basis of the system, it is
worth using the open-source software Telegraf, InfluxDB and Grafana.

3 System Architecture

This section describes the monitoring infrastructure of the HPC TaskMaster
system, shown in Fig. 1.

Fig. 1. Diagram of the system components
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The Slurm task scheduler is used to run tasks on the cluster. The main
data of Slurm tasks is stored in the MySQL relational database using the back-
ground process slurm database (slurmdbd), and the task metrics are written to
the InfluxDB time series database using the plugin acct gather. This plugin col-
lects memory and filesystem usage (read/write) for each task.

The required metrics of utilizing specific CPU cores and GPUs are collected
with the Telegraf daemon, which has built-in plugins for these metrics. Thus,
having the CPU and GPU IDs assigned to the task, the system can collect
metrics for the components and, therefore, distinguish utilization for different
tasks on one node. Additional metrics are collected using developed plugins in
Python.

The collected metrics are stored in the InfluxDB database. InfluxDB was cho-
sen as a time-series database because of Telegraf support and Slurm acct gather
plugin support, which allows one to store all the required metrics in one database.

Grafana is used as a tool for visualizing graphs on the cHARISMa cluster.
Grafana provides great opportunities for configuring and formatting charts and
also has support for creating them using the API. This API allows automating
the creation of graphs for each task. New graphs for each task are created using
JSON templates. Based on the available data about the task, when the user
requests it, graphs are automatically built in Grafana. The created graphs are
displayed on the system’s website using iframe technology, where the user can
interactively view the graphs for the period of task execution. In addition, the
system creates graphs for both completed and running tasks. Thereby, the user
can observe the work of his task in real time.

The advantage of using a combination of Telegraf, InfluxDB and Grafana is
the ability to install and configure these tools on any cluster. Moreover, these
tools make the monitoring system quite flexible – additional data for the system
can be collected using the built-in plugins of Telegraf or developed ones.

It is important to pay attention to the fact that the HPC TaskMaster system
has a negligible impact on the performance of compute nodes; the installed
Telegraf daemon uses only 0.03% of the overall CPU performance. In addition
to Telegraf, another source of the computing cluster load is InfluxDB. Installed
on the head node, InluxDB uses an average of 5 GB of storage per month. To
free up storage, a retention policy that compresses metrics older than 6 months
is used.

The HPC TaskMaster system is developed on Django, a Python web frame-
work that has a large number of available packages and a wide range of tools for
developing web applications, which allows one to develop a monitoring system
using Telegraf, InfluxDB and Grafana. In addition, Django has a built-in admin-
istration panel through which the administrator can configure the monitoring
system himself without making changes to the source code of the program.

The task performance monitoring system works according to the following
principles:
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– metrics are collected on each compute node using Telegraf and stored in the
InfluxDB database on the head node. Metrics from the acct gather plugin are
also stored in InfluxDB;

– the system updates its local MySQL database by comparing its tasks with
those from the Slurm database;

– while the task is running, aggregated metrics are collected for it from the
InfluxDB database with a certain period;

– if the task is completed, its aggregated metrics are collected for the last time;
– the collected aggregated metrics are analyzed by the system, and an inference

about the efficiency of the task is generated.

4 Detecting Inefficient Tasks

The user interacts with the HSE high-performance computing cluster [4] by
launching tasks through the SLURM workload manager. A task is a set of user
processes for which the workload manager allocates computing resources (com-
pute nodes, CPUs, GPUs, etc.) Each launch of the user’s program for execution
generates a new task, which is collected in the database and analyzed.

Here we define task efficiency as the usage of allocated resources above a
certain threshold.

4.1 Collected Data

HPC TaskMaster collects two types of data about running tasks on the HPC
cluster:

1) parameters characterizing the running task;
2) metrics that characterize the execution of the task.

Parameters. Table 1 shows the task parameters and their type.

Metrics
Table 2 shows the metrics collected during the execution of the task. The metrics
form a time series θi. Θ = {θi} denotes the set of all-time series of the task.

The frequency of collecting metrics can be adjusted and selected in such a way
as to obtain sufficiently detailed information about the task without overloading
the system with data collection and storage.

4.2 Data Processing

Aggregated Metrics
To simplify the analysis, aggregated metrics Λk = (λk

1 , · · · , λk
m) are calculated

for each time series [5]. They include the minimum, maximum, average, median
and standard deviations. In addition to them, the tuple Λ includes the average
load of each node and the combined average load of the nodes.



22 P. Kostenetskiy et al.

Table 1. Parameters of the task

№ Parameter Type

1 ID Integer

2 Task name

String
3 Status

4 Launch command

5 Type of compute nodes

6 Number of compute nodes

Integer

7 Number of CPU cores

8 Number of GPUs

9 Exit code

10 User ID

11 Project ID

12 Start date and time
Date

13 End date and time

Table 2. Collected metrics and collection frequency

№ Metrics Frequency, seconds Units of measurement

1 CPU cores usage by the user

10

percentages2 CPU cores usage by the system

3 GPU usage

4 RAM usage

kilobyte5 GPU memory usage

7 GPU power consumption watt

8 File System access 60 megabyte

Tags
Since the task parameters are a heterogeneous set of data (integers, strings,
dates), to simplify their analysis, a system of tags, i.e., “labels” indicating the
type of task, execution time, and other properties of the task, is introduced.
Table 3 contains a list of tags currently available in the system. Additional tags
can be developed and implemented into the system.

The tuple T k = (τk
1 , . . . , τk

n) is assigned to the task with the ID k, where n is
the number of tags in the system. The τi element corresponds to the indicator of
the i tag and takes the value 1 if all conditions are met and the tag is assigned
to the task, and 0 otherwise.

Indicators
To determine if the task is working inefficiently, it is necessary to evaluate the
disposal of the components involved in the task. To do this, the concept of
indicator of problems is introduced.
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Table 3. List of tags

№ Tags Type

1 Jupyter-notebook task

String

2 LAMMPS task

3 VASP task

4 Allocation of resources for calculations

5 The task lasted less than a minute

6 The task was completed with an error

Indicators, dimensionless values inversely proportional to the value of the
metrics, are used to evaluate the disposal of the components involved in the
task.

Indicators take a value from 0 (with the full use of allocated resources) to
1 (otherwise). For example, the value of the indicator lj is calculated from the
aggregated metric λk

j ∈ Λk using formula (1).

lkj = 1 − λk
j − aj

bj − aj
, lj ∈ [0, 1], (1)

where aj , bj are the admin defined parameters referring to the minimum and
maximum possible values of the j-th element of the aggregated metrics.

Indicators are placed in the tuple of indicators Lk = (lk1 , . . . , lkm).
The list of currently available indicators is presented in Table 4. Additional

indicators can be developed and implemented into the system. The number of
indicators for a specific task depends on the number of cores, compute nodes
and GPUs used.

Table 4. List of indicators

№ Indicators

1 Low average CPU usage

2 Low average CPU core usage

3 Low average GPU usage

4 Low GPU memory usage

5 The task was completed with an error

4.3 Inferences

To help users to interpret the results, the system has a set of inferences Φ = (φi).
Inferences are the result of the analysis of the task.
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Different requirements for tags and indicator values are set for each inference.
An inference is assigned to the task when all the conditions are met. Several
inferences can correspond to one task at once.

Denote the union of tuples of indicators L and tags T as

Nk = (lk1 , . . . , lkn, τk
1 , . . . , τk

m). (2)

Let Ωi be a set of conditions for the output of φi to the elements of the tuple
Nk.

Then we can match the set Ck to each problem:

Ck = {φi ∈ Φ : Πω∈Ωi
1ω(Nk) = 1}, (3)

where 1ω is the indicator function equal to 1 if the condition ω ∈ Ωi is met. In
other words, the tuple Ck contains the inferences assigned to the task.

4.4 Example

Let us consider a computational task performed on the cHARISMa supercom-
puter using 176 cores and 16 NVIDIA Tesla V100 GPU accelerators on 4 compute
nodes. Table 5 shows the parameters of the task.

Table 5. Parameters of the task

№ Parameter Value

1 ID 405408

2 Task name SimpleRun

3 Status Successful

4 Exit code 0

5 Launch command sbatch run task.sh

6 User ID 2000

7 Project ID 32

8 Start date and time November 11, 2021 10:13:28

9 End date and time November 12, 2021 13:19:09

10 Type of compute nodes type a

11 Number of compute nodes 4

12 Number of CPU cores 176

13 Number of GPUs 16

The aggregated metrics across all compute nodes for the example task are
shown in Table 6.
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Table 6. Aggregated metrics by node

№ Metrics Value

1 Avg. load of cores on comp. node cn-001 99.36

2 Avg. load of cores on comp. node cn-002 99.11

3 Avg. load of cores on comp. node cn-003 99.15

4 Avg. load of cores on comp. node cn-004 99.51

5 Avg. load of comp. nodes 99.28

7 Avg. utilization of GPUs on comp. node cn-001 71.62

8 Avg. utilization of GPUs on comp. node cn-002 71.6

9 Avg. utilization of GPUs on comp. node cn-003 71.15

10 Avg. utilization of GPUs on comp. node cn-004 71.8

11 Avg. utilization of GPUs 71.54

Table 7 shows the aggregated metrics of the time series for compute node
cn-001. Data for compute nodes cn-002, cn-003, cn-004 are not shown to save
space.

Table 7. Aggregated metrics of compute node cn-001

Node cn-001 Min Avg Max

CPU usage by the system

1 Core 1 0 0.12 11.4
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

44 Core 44 0 0.13 7

CPU usage by the user

45 Core 1 0 98.9 100
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

88 Core 44 0 99.8 100

89 Average usage of cores on the node 99.36

GPU usage №:0

90 Utilization 0 71.62 99

91 Memory usage, MB 0 7095.3 8780

92 Power consumption, Watt 66 128.9 156.1

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.

GPU usage №:3

99 Utilization 0 71.61 99

100 Memory usage, MB 0 7095.3 8780

101 Power consumption, Watt 66 129 155.9

102 RAM usage, MB 0.35 128.29 715.44

File system access, GB

103 Read 0 141389.39 288706.41

104 Write 0 1302.76 2753.31
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Tags of the Task
Based on the parameters of the task from Table 5 and the tags from Table 3, no
tag will be assigned to task 405408, since it is completed without an error and
is not the launch of one of the packages. Therefore, the tuple of task tags will
have the form T 405408 = (0, 0, 0, 0, 0, 0).

Indicators of the Task
Based on the data from Tables 6, 7, the system calculates the values of the
indicators shown in Table 8.

Table 8. List of indicators

N Indicator Value

Compute node cn-001

1 Core 1 0.011
.
.
.

.

.

.
.
.
.

44 Core 44 0.002

207 GPU №:0 utilization 0.284
.
.
.

.

.

.
.
.
.

210 GPU №:3 utilization 0.284

223 GPU №:0 memory usage 0.778
.
.
.

.

.

.
.
.
.

226 GPU №:3 memory usage 0.778

.

.

.
.
.
.

.

.

.

Compute node cn-004

205 Core 1 0.011
.
.
.

.

.

.
.
.
.

206 Core 40 0.002

207 GPU №:0 utilization 0.279
.
.
.

.

.

.
.
.
.

208 GPU №:4 utilization 0.28

209 GPU №:0 memory usage 0.779
.
.
.

.

.

.
.
.
.

210 GPU №:3 memory usage 0.778

Summary

239 Avg. load of cores on node cn-001 0.006

240 Avg. load of cores on node cn-002 0.009

241 Avg. load of cores on node cn-003 0.008

242 Avg. load of cores on node cn-004 0.005

243 Avg. load of nodes 0.007

244 Avg. utilization of GPUs on node cn-001 0.284

245 Avg. utilization of GPUs on node cn-002 0.284

246 Avg. utilization of GPUs on node cn-003 0.289

247 Avg. utilization of GPUs on node cn-004 0.282

248 Avg. utilization of GPUs 0.285
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Inferences of the Task
After the previous steps, we get a tuple

N405408 = (l1, . . . , l202, τ1, . . . , τ6)
As an example, let us consider the three outputs presented in Table 9.

Table 9. Inferences

φi Inference Conditions Cond. is met

1 Successful task li ≤ 0.5, i = 1, · · · , 248 Yes

τi = 0, i = 5, 6 Yes

2 Task completed with an error τ5 = 1 No

3 Inefficient CPU usage li > .5 i = 1, · · · , 206, 239, · · · , 243 No

4 GPU is not used
li ≤ 0.5,
i = 1, · · · , 206, 211, · · · , 215

No

li > 0.8,
i = 207, · · · , 238, 244, · · · , 248

No

Based on the tuple N405408, the system will associate the set C405408 = {φ1}
with task 405408, since the task is executed without errors and all resources are
used.

An example of the task report with an inference of inefficient salloc usage is
shown in Fig. 2.

Fig. 2. Task report

5 User Statistics

System administrators have access to inference statistics for each cluster user
for a selected period of time. An example of statistics is shown in Fig. 3. Using
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this pie chart, administrators can understand which types of tasks are caus-
ing difficulties for the user. After determining the problem that the user has
encountered, he can get a personal consultation to solve this problem.

Fig. 3. Graphs of the utilization of computing resources by the task

Statistics of the most active users of the cluster with the lowest percentage
of effective tasks are compiled monthly; personal consultations are held on the
basis of the statistics. By tracking trends in user efficiency by month, we can
conclude how the HPC TaskMaster system can increase the efficiency of using
cluster resources.

6 Conclusions

The developed task performance monitoring system, HPC TaskMaster, is a pow-
erful tool that provides all the necessary information (main information, aggre-
gated metrics, graphs, and inferences) about tasks in one place. This system
will help users to identify the problem for existing scientific applications and
applications of their development, thereby simplifying work with the cluster for
users, allowing them to perform scientific calculations faster and more efficiently
in the future.

HPC TaskMaster is constantly evolving and improving. Among the future
directions for development are:

– monitoring the effectiveness of individual categories of applications using
machine learning tools;
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– adding new types of indicators and tags to generate new inferences;
– smart recognition of the type of running application;
– development of a module for notifying users about the launch of inefficient

tasks by them.

HPC TaskMaster is available to all cluster users of cHARISMa via the personal
account of the supercomputer complex. HPC TaskMaster is also available for
public use [1], and any suggestions for improving the project are greatly appre-
ciated.

The research was performed using the cHARISMa HPC cluster of the HSE
University [4].
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Abstract. The current state of the methods for solving computational
problems of mathematical physics and supercomputer systems poses a
complicated task for the researcher associated with the choice of numer-
ical methods and a multicore computer architecture for efficiently solv-
ing the problem in a reasonable time with the required accuracy. We
are developing an intelligent support system for solving mathematical
physics problems on supercomputers. The system includes a knowledge
base and an expert system based on the ontological representation of
numerical methods, computing architectures, and inference rules that
connect them. This paper discusses in detail the issues related to the
formation of inference rules for solving astrophysical problems. The for-
malization of these rules is described, and their application for construct-
ing a solution scheme of the problem according to the user’s specification
is shown. An example of solving the problem of modeling the spiral insta-
bility evolution in a protostellar disk based on the proposed approach is
given.

Keywords: Intelligent decision support · Inference engine · Inference
rules · Astrophysics · Compute-Intensive Problems

1 Introduction

Modern astrophysics studies the physical processes of the Universe, the evolution
of astronomical objects and their interaction. Mathematical models of evolving
astronomical objects and their mutual influence are constructed on the basis
of the observed information taking into account the gravitational and magnetic
fields. It should be noted that mathematical modeling is the primary theoretical
method for studying astrophysical processes. It becomes necessary to solve a
numerous class of problems associated with the study of the structure, dynamics
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and evolution of stellar systems, the Sun and stars, with the study of variable
stars, multiple stellar systems and the physics of the interstellar medium.

A large number of parallel codes have been developed for the solution of astro-
physical problems. We distinguish the following groups of codes: codes based on
Smoothed Particle Hydrodynamics [1–3], grid codes [4–6], including codes using
adaptive [7–9] and moving [10–12] meshes. Each implemented numerical method
and code focus on a certain type of problems and are often limited to the use of
classical supercomputer architectures. There are also codes adapted on graph-
ics accelerators [13–15] and Intel Xeon Phi accelerators [16]. However, the use of
any of these codes for solving a specific astrophysical problem requires significant
improvement. Currently, there are no universal systems for generating astrophys-
ical codes. Nevertheless, attempts to create such systems exist, for example, at
the University of Costa Rica [17] on the basis of the EXCALC package. An
intelligent system for generating astrophysical codes has not yet been created,
although there are attempts to develop such a system, including those based on
the ontological approach [18] and the ontological approach practice [19].

In [20,21], we presented the concept of intelligent support for solving
compute-intensive problems of mathematical physics using ontology. Let us
briefly list the main blocks of the proposed system and their purpose (Fig. 1).
The main block of the system is a knowledge base, which includes the ontol-
ogy of numerical methods and parallel algorithms and the ontology of parallel
architectures and technologies, and inference rules. Based on these ontologies, an
information-analytical web resource is built, it allows the user to study objects
included in the knowledge base, to view the connections between them, and also
add new objects to the base. The next block is an expert system, at the input of
which the user submits the specification of the problem to be solved. Based on
this information, the inference engine builds a scheme for solving the problem
using ontology objects from the knowledge base and inference rules formulated
by experts. When the solution scheme is determined, the next step is to build a
parallel program for solving the problem. In this step, modules from the software
library are used. If there is no suitable module, then the user will have to develop
it himself. Thus, a parallel code is generated taking into account the computa-
tional algorithm and architecture of the selected computing system. The system
also includes a block for simulation, which allows one to determine the optimal
number of computing cores for solving the problem.

To work with ontological models, inference machines are used, they allow one
to check the correctness of the ontology, operating with the names of classes,
properties and entities. They can also be used to display information that is not
explicitly contained in the ontology based on inference rules. There are several
inference machines, the most famous of which are Pellet, HermiT, FaCT++.
These inference engines are installed as plugins for the Protege ontology
editor [22].

The goal of this work is to develop a crucial component for solving astro-
physical problems using the ontological approach: the assignment of a group
of inference rules that determine the choice of a numerical method, computing
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Fig. 1. Main blocks of the intelligent support system for solving compute-intensive
problems of mathematical physics.

system architecture and parallel programming technology from the knowledge
base. It should be noted that making these decisions depends on the user solving
his problem. Therefore, speaking about a system of intelligent support, we con-
sider only such support for decision-making that consists in the best provision
of the user with the information required for its conscious adoption, as well as in
the prediction of the consequences of certain options for solving the problem. In
this paper, we consider inference rules for solving astrophysical problems using
an intelligent support system.

2 Scheme Construction and Rules Formalization
for Solving Compute-Intensive Astrophysics Problems

The general approach to constructing an ontology for intelligent support of solv-
ing compute-intensive problems of mathematical physics is described in detail in
[20,21,23]. In [23], the upper level of the ontology for solving compute-intensive
problems of cosmic plasma hydrodynamics is shown with templates for describ-
ing objects of the main ontology classes. The base objects of each class are listed.
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In [20], an example of choosing a chain of objects from the main classes of such
an ontology to solve an astrophysical problem associated with the collision of
galaxies is given. This work does not consider in detail how this chain should be
built to solve the problem, including the questions of setting a group of rules,
on the basis of which the numerical method and architecture of the computing
system are selected from those available in the ontology.

In [24], we considered a conceptual model for constructing a scheme for solv-
ing a mathematical physics problem based on the ontology approach (Fig. 2).
The main blocks for the specification of the problem (user interface), the main
blocks of the solution scheme, as well as the groups of rules that must be set for
the automatic construction of the scheme are highlighted. These are groups of
rules determining a system of equations, a numerical method, the implementa-
tion of a parallel algorithm, the properties of this algorithm, parallel computing
architectures and technologies. Essentially, these are user decision points where
intelligent support is needed to select the optimal solution, including from the
point of view of parallel implementation. Therefore, for each subject area, it is
necessary to develop a set of such rules that will allow the user to avoid mistakes
when developing a parallel algorithm and a program for solving his problem.

Fig. 2. Scheme of relationships between the main blocks of the user interface (high-
lighted in blue), problem-solution scheme blocks (highlighted in yellow), and rule groups
(highlighted in green). (Color figure online)

Let us consider these issues in more detail in relation to the solution of
astrophysical problems. Figure 3 demonstrates the main ontology objects at each
point of choice, which can be used to solve astrophysical problems.
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Fig. 3. Basic ontology objects for constructing a scheme of an astrophysical problem
solution.

Let us formulate the rules for solving astrophysical problems in a language
familiar to an expert in the mathematical modeling of astrophysical processes.

Rules for Determining Physical and Mathematical Models
1. The hydrodynamics model is used by default.
2. If there is a magnetic field, then the magnetic hydrodynamics model is used.
3. If there are velocities of the order of the speed of light, then relativistic hydro-

dynamics is used.
4. If it is important to take into account the composition of astrophysical objects,

then chemical dynamics is added.
5. If the velocities of gravitational interaction are of the order of hydrodynamic

ones, then gravity is added.
6. If radiation or a special composition of the gas is taken into account, then a

special equation of state is constructed.

Rules for Determining Discretization (Grid)
1. The regular grid is used by default.
2. If a collapse-based process is modeled, then nested grids are used.
3. If the collapse process is multiple, then adaptive grids are used.
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4. If it is important to take into account the angular momentum, then moving
grids are used.

5. If a spherical object is modeled, then geodetic grids are used.
6. If it is necessary to take into account the collisionless component, then

Smoothed Particle Hydrodynamics is used.
7. If it is important to take into account shock hydrodynamic waves, when mod-

eling the collisionless part, gridless methods are used.

Rules for Determining a Hydrodynamic Solver
1. Godunov’s method is used by default.
2. If it is necessary to take into account “carbuncle free” effects, then the method

of the HLL (Harten, Lax and van Leer) family is used.
3. If it is necessary to reproduce the solution with low dissipation, then the

PPM-type (piecewise parabolic method) method is used.
4. If the piecewise parabolic representation is insufficient, then the WENO-type

(weighted essentially non-oscillatory) scheme is used.

Rules for Determining a Poisson Equation Solver
1. The method based on the fast Fourier transform (FFT) is used by default for

regular grids.
2. If the FFT-based method is long, then multigrid methods are used.
3. If the grid is not regular, then iterative methods are used.

Rules for Determining a Parallel Architecture and Programming
Technology
1. The MPP architecture is used by default as the most cross-functional.
2. For the parallel implementation of HLL family methods, Advanced Vector

Extensions (AVX) for Intel processors are used.

The rules presented above were formulated by an expert and then formalized
using Semantic Web tools [25]. For this purpose, in the ontology there was cre-
ated the class “Problem Solving Scheme”, as well as the relations “includes Math-
ematical Model”, “includes Method”, “includes Parallel Algorithm”, “includes
Technology”, “includes Architecture Element”, “includes Software Product” for
linking the constructed Problem Solving Schemes with specific systems of equa-
tions, numerical methods, parallel algorithms, parallel programming technolo-
gies, parallel architectures and their elements, program codes. The description
of the classes “System of Equations”, “Numerical Method”, etc., and examples
of their entities for solving compute-intensive problems of cosmic plasma hydro-
dynamics are detailed earlier in [23].

The properties of the classes “Astrophysical Problem” (Fig. 4), “Astrophys-
ical object”, “Astrophysical phenomenon/process”, allowing one to specify the
problem to be solved by the user, were also added to the ontology.

The inference rule was formalized in the SWRL language [26], the support
for which is built into the Protege editor.
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Fig. 4. Properties of an Astrophysical Problem.

3 Using Inference Rules for Intelligent Support

The developed rules were tested when constructing a scheme for solving star
formation problems. Below, in an unformalized form, the specification of this
class of problems is presented, and it is indicated what conclusions the system
should draw.

1. The process of star formation is weakly dependent on changes in gas tem-
perature. The main one is dynamics due to gravity. Thus, we will use the
isothermal gravitational hydrodynamics model.

2. The peculiarity of the star formation problem is that it has a strong different
scale: 12 orders of magnitude in spatial scales and 15 orders of magnitude in
density. Thus, we will use multi-level nested grids.

3. The peculiarity of nested grids leads us to the use of iterative numerical
methods for solving the Poisson equation based on the Krylov subspace. For
example, the conjugate gradient method.

4. The processes of star formation are supersonic flows with reversed flotation,
which leads to the need to use HLLC-type methods.

5. For the parallel implementation of such methods, a convenient solution would
be to use the Fortran language and its Coarray Fortran (CAF) feature. The
CAF implementation provides a sufficiently compact parallel code with a
simple syntax and comparable performance to the equivalent MPI version.

6. The use of HLL family methods makes it possible to use vector calculations
quite well, first of all, AVX technology. Since the isothermal hydrodynamics
model is used, the conservative variables are density and the three components
of the angular momentum. Thus, to organize computations, it is enough to
use 4 elements in a vector implemented in AVX-256 or AVX-2 technology.

Let us note an important point of discussion regarding the use of graphics
cards. Traditionally, vector computing is considered to be well suited for imple-
mentation on graphics cards. This is true for simple vector operations, however,



Constructing an Expert System for Solving Astrophysical Problems 37

it is important to take into account that graphics cards are primarily aimed
at the vector organization of calculations, the elementary operation of which is
a simple subtask, which does not imply vectorization. In the case of a family
of methods like HLL, it is vector calculations with short vectors that become
important, which makes the use of technologies like AVX the most promising.

A “Problem 2” object was added to the system, and its properties were set.
Figure 5 shows how these properties are set in the Protege editor.

Fig. 5. Star formation problem specification.

As can be seen from Fig. 5, the problem of modeling star formation is con-
sidered. It is associated with such physical processes as Star formation and Col-
lapse. When solving it, the temperature change is not taken into account, and
“carbuncle free” effects are taken into account.

To construct the scheme, the following objects were added to the ontology:
“Scheme for solving Problem2”, as well as objects associated with the scheme by
the inclusion relation – “Mathematical model for solving the problem”, “Numer-
ical method for solving the problem”, “Parallel algorithm for solving the prob-
lem”, “Parallel programming technology for solving the problem”, “Architectural
element for solving the problem”, “Software product for solving the problem”.
The specific properties of these objects will be determined as a result of the
operation of inference rules. Below, in a formalized form, the rules elaborated
when constructing the scheme for solving the problem under consideration are
presented in Fig. 6
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Fig. 6. The rules elaborated when constructing the scheme for solving the star forma-
tion problem.

Fig. 7. Determination of methods for solving the problem.

Figure 7 shows which numerical methods and some of their properties were
defined in the results of the rules operation in the Protege editor. Similarly, one
can see the descriptions of other elements of the Problem Solving Scheme.

As already mentioned, the intelligent problem-solving support system
includes the Information-analytical Internet resource built on the basis of the
considered ontology. It allows one to present information to the user in a struc-
tured, visual form.
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4 Codes and Computational Experiments

The expert rules presented in Sect. 2 are based on the author’s extensive experi-
ence in developing parallel program codes for solving astrophysical problems on
various computer architectures. It includes codes such as:

1. GPUPEGAS (GPU-accelerated Performance Gas Astrophysical Simulation)
for the simulation of interacting galaxies [14]. A speedup of 55 times was
obtained within a single GPU accelerator. The use of 60 GPU accelerators
resulted in 96% parallel efficiency.

2. AstroPhi for the simulation of the dynamics of an astrophysical object on
hybrid supercomputers equipped with Intel Xenon Phi KNC accelerators [16].
A single Xeon Phi yielded a 27-fold speedup. The use of 32 Xeon Phi accel-
erators resulted in 94% parallel efficiency.

3. Hydrodynamics code to simulate astrophysical flows on Intel Xeon Phi KNL
and Intel Xeon Scalable processors based on multicomponent gravitational
hydrodynamics [27]. The parallel implementation is based on a multilevel
decomposition of calculations between the MPI process, OpenMP threads,
and the Vectorization of one cell calculation. A performance of 173 Gflops
and a 48-fold speedup are obtained on a single Intel Xeon Phi processor. 97%
weak scalability is reached with 16 Intel Xeon Phi 7290 processors. 200%
performance growth is achieved due to the vector instructions usage.

4. Code to simulate special relativistic hydrodynamic flows on supercomputer
architectures with distributed memory based on a combination of Godunov’s
method and the piecewise parabolic method with a local stencil [28]. The
code scalability is 94% on the NKS-30T (Intel Xeon X5670) cluster with 768
cores.

As a result of the example from Sect. 3, we present computational experi-
ments on the spiral instability development in a protostellar disk (Fig. 8). For
the calculation, we used one node with Intel Xeon Phi Knights Landing (KNL)
processors (with support of vector calculations) as part of the Siberian Super-
computer Center. The calculation results agree with the observations [29].

For the computational experiment, a cold Bonnor-Ebert sphere, rotating with
an equilibrium differential rotation, with a mass equal to several solar masses is
considered. At the initial moment of time, a collapse occurs with an order density
of one particle per cm3. For sixty years, the sphere collapses with an increase in
the central density by five orders of magnitude. For six thousand years, the core
of the disk is formed with a density of 108 particles per cm3, while the size of the
core is on the order of two AU. For the next thousand years, the density rises
by another two orders of magnitude, and the development of spiral instabilities
takes place. At the time of 15 thousand years, a fairly stable core of the disk with
spirals and a characteristic stellar density of the order of 0.1 g/cm3 is formed,
and the density contrast is 12 orders of magnitude.
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Fig. 8. Logarithm of the density distribution (g/cm3) in the equatorial plane of the
disk. Distances in thousands of AU are plotted along the axes, the unit time is chosen
equal to one million years.

5 Conclusion

The article discusses inference rules for constructing a scheme to solve astro-
physical problems using an intelligent decision support system based on the
ontological approach. The inference rules generalize and formalize the authors’
long-term experience in the development of parallel astrophysical codes for mul-
ticore computing systems. The basic rules are formulated in a common expert
language and formalized using Semantic Web tools with the introduction of addi-
tional objects into the ontology. Using the example of solving the problem of the
spiral instability development in a protostellar disk, the results of the inference
engine operation in the Protege editor are shown. The results of numerical mod-
eling carried out on the basis of the recommendations proposed by the system
are presented. An important feature of this approach is the ability of the user
to quickly select a suitable solution to the problem.

Acknowledgments. This research was conducted within budget project No. 0251-
2021-0005 for ICMMG SB RAS.
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Abstract. Currently, South Ural State University (SUSU) has signifi-
cant achievements in supercomputer modeling, artificial intelligence and
Big Data. The high-performance resources of SUSU include an energy-
efficient supercomputer “Tornado SUSU” and a specialized multipro-
cessor complex “Neurocomputer”. The “Tornado SUSU” supercomputer
and the “Neurocomputer” complex are at the center of the scientific life
of the University and enable complex calculations for engineering, nat-
ural and human sciences, artificial intelligence. The high-performance
resources of SUSU are used in education and for calculating the tasks
of the University’s partners. The paper describes the “Tornado SUSU”
supercomputer and “Neurocomputer” complex technical features, sys-
tem and application parallel software, scientific and engineering tasks
solved with the help of the SUSU resources.
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1 Introduction

South Ural State University has achieved significant results in the field of digital
industry creation. Research is actively developing with the use of supercomputer
modeling, artificial intelligence and Big Data. Currently, SUSU has an energy-
efficient supercomputer “Tornado SUSU”, which ranks 15-th in the TOP50 list of
the most powerful CIS supercomputers (September 2021). Tasks in the field of arti-
ficial intelligence require high parallelism on shared memory, however, a supercom-
puter with a cluster architecture does not provide it. To create artificial neural net-
works, SUSU acquired a specialized multiprocessor complex “Neurocomputer”.
The neurocomputer uses powerful advanced graphics accelerators to train neural
networks. SUSU’s high-performance computing resources are used by more than
500 people, these are not only employees and students of South Ural State Uni-
versity, but also employees of external educational, scientific and industrial orga-
nizations (industrial enterprises, universities, institutes of the Russian Academy
of Sciences). SUSU established the Scientific and Educational Center “Artificial
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Intelligence and Quantum Technologies” (SEC AIQT) [32]. SEC AIQT employ-
ees are engaged in the administration of the high-performance resources of SUSU
and scientific research in the field of supercomputer technologies, as well as provide
user support.

The paper is structured as follows. Section 2 introduces the main high-
performance SUSU resources installed in the SEC AIQT, such as the “SUSU
Tornado supercomputer”, the “Neurocomputer” complex, Panasas ActiveStor 11
data storage systems, OceanStor Dorado 3000 V6, Huawei OceanStor 5300 V5.
Section 3 contains an overview of the system software used in the SEC AIQT. The
application of equipment monitoring and control systems and software systems
in the SEC AIQT is described. Section 4 presents the application software avail-
able to users of SUSU’s high-performance resources and provides an overview
of the scientific and engineering tasks being solved. Finally, Sect. 5 contains the
final conclusions.

2 High Performance Resources

2.1 “Tornado SUSU” Supercomputer

The “Tornado SUSU” supercomputer is a fully liquid-cooled computing system
with a performance of 473.6 Teraflops, ranked 19-th in the TOP50 list of the
most powerful supercomputers in Russia (March 2022). Liquid cooling improves
system energy efficiency (40–50% energy savings compared to air-cooled sys-
tems) and maximizes electronics packaging density. This makes it possible to
get rid of moving parts in the computer, noise and vibration, thereby increasing
the reliability and ergonomics of the system [1]. The technical features of the
“Tornado SUSU” supercomputer are presented in Table 1.

The “Tornado SUSU” supercomputer is equipped with a high-performance
parallel data storage system Panasas ActiveStor 11. It is designed to store initial
data and user calculation results. Its peak performance is 30,886 IOPS, the write
speed is 2402 MB/s, and the read speed is 3239 MB/s. Currently, more than 500
users of the supercomputer successfully use the storage; the system has been in
continuous use since its installation in 2013 and has proven to be fault-tolerant
and reliable.

The Panasas ActiveStor 11 storage system consists of five shelves. Four
shelves contain 10 storage nodes (StorageBlade) with a capacity of 4 TB each
and one control node (DirectorBlade), the fifth one consists of 11 storage nodes.
The storage capacity is 204 TB, part of which is reserved for data replication.
Control nodes perform the task of storing metadata and provide access to data
using protocols such as NFS and CIFS. The system is configured with 7 virtual
hot spare nodes, allowing to achieve operational stability in the case of a failure
of up to seven disks inclusive.

The shelves in Panasas ActiveStor 11 only support the 10 Gigabit Ethernet
interface. Three Panasas Ininiband routers are used to connect the system to
the 40 Gb/s Infiniband QDR network, they route packets from the Infiniband
QDR network to the storage network. Network load balancing is performed on
compute nodes via routes to the storage system network with the same metric.
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Table 1. Technical features of the “Tornado SUSU” Supercomputer

Technical features Value

Quantity of compute nodes/
processors/coprocessors/cores

480/960/384/29184

Type of processor Intel Xeon X5680
(Gulftown, 6 cores, 3.33 GHz)

Type of coprocessor Intel Xeon Phi SE10X
(61 cores, 1.1 GHz)

RAM 16.9 TB

Disk memory 204 TB, Panasas ActiveStor 11;
700 TB, Huawei OceanStor 5300 V5

System network InfiniBand QDR (40 Gbit/s)

Control network Gigabit Ethernet

Peak performance 473.6 TFlops

Operating system Linux CentOS 6.2

2.2 “Neurocomputer” Complex

The architecture of the “Neurocomputer” complex is based on heterogeneous
graphics accelerators. Thus, the “Neurocomputer” structure allows one to flex-
ibly choose the appropriate equipment for the most efficient calculation of any
task related to neural networks. The complex consists of six servers united by
a common task queue, with the help of which the user gets access to the server
with the architecture required for his task. The technical features of the “Neu-
rocomputer” complex are presented in Table 2.

The architecture of the “Neurocomputer” complex is shown in Fig. 1 and
consists of two Dell PowerEdge R750 GPU servers based on NVIDIA Ampere
A100, three Dell PowerEdge R750 GPU servers based on NVIDIA Ampere A30,
one HPE Apollo ProLiant XL270d Gen10 GPU server based on NVIDIA Tesla
V100, and three Dell PowerEdge R640 management servers.

The Dell PowerEdge R750 GPU server features two NVIDIA Ampere A100
GPUs with 80 GB of VRAM, two Intel Xeon Silver 4314 processors, 192 GB of
RAM and 1.9 TB of SSD storage. The Dell PowerEdge R750 GPU server based
on NVIDIA Ampere A30 consists of two GPUs with 24 GB VRAM, two Intel
Xeon Silver 4314 processors, 192 GB RAM and 1.9 TB SSDs. These servers are
best suited for video-memory-demanding tasks and tasks that require exclusive
access to the resources.

The HPE Apollo ProLiant XL270d Gen10 GPU Server is a server with
eight NVIDIA Tesla V100 SXM2 GPUs (32 GB VRAM) connected by NVLink,
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Table 2. Technical features of the “Neurocomputer” complex

Technical features Value

Quantity of GPUs/ CUDA cores 18/91432

Types of GPUs NVIDIA Ampere A100 80 GB PCI-E – 4 pcs.
NVIDIA Ampere A30 24 GB PCI-E – 6 pcs.
NVIDIA Tesla V100 SXM2 – 8 pcs.

Quantity of processors/cores 18/268

Types of processors Intel Xeon Gold 6254
(Cascade Lake, 18 Cores, 4GHz) – 2 pcs.;
Intel Xeon Silver 4314
(Ice Lake, 16 Cores, 3.4GHz) – 10 pcs.;
Intel Xeon Silver 4214
(Cascade Lake, 12 Cores, 3.2GHz) – 6 pcs.

RAM 1920 GB

Storage systems 700 TB, Huawei OceanStor 5300 V5;
46 TB, Huawei OceanStor Dorado 3000 V6 –
Storage system based on Solid State Drives (SSD)

Communication network Mellanox Infiniband QSFP28, Mellanox Infiniband
SFP28, Gigabit Ethernet

Peak performance 276.4 TFlops

Operating system Linux Centos 7.8

two Intel Xeon Gold 6254 processors, 192 GB of RAM, and 7.68 TB of SSDs in
total. The server allows one to achieve maximum efficiency when parallelizing
tasks on several graphics accelerators.

The complex also includes three Dell PowerEdge R640 control servers
required to organize the operation of the complex. Each control server contains
two Intel Xeon Silver 4214 processors and 256 GB of RAM.

Large data sets, which usually consist of many small files (images, audio and
video files), are used to train neural networks. The Huawei OceanStor Dorado
3000 V6 data storage system based on solid state drives is connected to the
“Neurocomputer” complex. The storage system provides maximum performance
when working with files for training neural networks. This storage system per-
forms reads, writes two orders of magnitude faster than hard drives and does
not lose performance when working with a many small files.

Huawei OceanStor Dorado 3000 V6 contains two controllers that can replace
each other in the event of a failure of one of them, thus ensuring uninterrupted
storage operation. Each controller has one Kungpeng 920 processor and an
Ascend 310 coprocessor. The processor is developed by Huawei on top of the
ARM architecture, with 96 GB of cache memory. The coprocessor is designed to
support service neural networks built into the storage.
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Fig. 1. Architecture of the “Neurocomputer” complex

The storage includes 12 Enterprise SSDs of 3.84 TB each. All storage com-
ponents are Huawei’s own design. The storage capacity is 46.08 TB with 192 GB
cache memory. The effective amount of storage that users can use for their data
is at least 35 TB, the rest of the space is used for storage fault tolerance.

The “Neurocomputer” complex uses the Huawei OceanStor 5300 V5 data
storage system with 700 TB for long-term storage of user data and calculation
results. The Huawei OceanStor storage architecture contains two controllers,
each controller has one Kungpeng 920 processor with 64 GB of cache memory,
data mirroring between the controllers is carried out via a 100 Gb/s network.
The storage system includes 50 NL-SAS hard drives, 14 TB each. Support for
the most popular protocols, such as NFS, CIFS, iSCSI, etc., makes it possible
to use this storage for both the “Neurocomputer” complex and the “Tornado
SUSU” supercomputer.
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3 System Software

The CentOS 6.2 operating system is installed on each compute node of the
“Tornado SUSU” supercomputer. Compilers such as Intel Compiler (C/C++,
Fortran 77, Fortran 90), GCC, the MPI2 parallel programming library (Intel
MPI, OpenMPI, MVAPICH) are used. They allow users to implement their own
applications to solve their tasks.

The “Neurocomputer” complex has the CentOS 7.8 operating system
installed. Users use several versions of the GCC compiler, the CUDA, NCCL and
CUDNN libraries for working with graphics accelerators, the OpenMPI parallel
programming library. The Anaconda system is installed on the “Neurocomputer”
complex. It is used for configuring the user environment of the Python program
(installing the required version of Python, installing related libraries that pro-
vide interaction with artificial neural networks, Keras [13], Tensorflow [34], etc.).
A fault-tolerant and scalable cluster management and job scheduling system
SLURM [27] is installed on each computer complex for the efficient sharing of
resources by a many users. SLURM version 2.5.3 is installed on the “Tornado
SUSU” supercomputer, SLURM version 20.02.4 is used in the “Neurocomputer”
complex.

3.1 Monitoring Systems

One of the main tasks of a system administrator is to ensure the correct and
uninterrupted operation of the equipment, for example, the Infiniband and Eth-
ernet networks, data storage systems, etc. The Nagios and Zabbix systems are
used for system monitoring at the Scientific and Educational Center “Artifi-
cial Intelligence and Quantum Technologies” (SEC AIQT). We also developed
our own supercomputer load monitoring system. It is designed to generate
reports on the load and activities of users from the structural divisions of the
university [15].

The Nagios system provides information about the health of hardware and
software services and generates a status change message sent by e-mail to the
administrator [5]. The main approach to writing checks in Nagios is the descrip-
tion of checks in the form of scripts using a self-written code, as well as using a
standard set of basic checks that are not suitable for organizing monitoring of
all resources. Nagios gives the flexibility to perform checks on various services by
allowing one to write simple checks yourself; however, this is also a serious draw-
back. You must independently describe all non-standard checks that require you
to analyze the SNMP commands of the equipment. Notification via e-mail is also
an inconvenient mechanism since letters often get into the spam folder or arrive
later than necessary to respond quickly to problems. We use Nagios to check the
status of services such as mail, task queues, networking, communications, and
other types of the equipment (Fig. 2).

The Zabbix [6] monitoring system started to be used later than Nagios, but
we use it more widely, since Zabbix has the ability to monitor systems actively
and passively. In addition, it can be installed on Windows and Linux. Zabbix
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Fig. 2. Monitoring the equipment status using the web interface of the Nagios system

allows creating graphs for individual groups of the equipment (Fig. 3). It has
a large and growing base of standard equipment checks (for example, for the
Dorado storage system, etc.). This feature of Zabbix enables the setup of new
equipment monitoring in the short term.

Fig. 3. Monitoring the state of the chiller of the “Tornado SUSU” supercomputer using
the web interface of the Zabbix system

Graphs are also a useful Zabbix tool, they allow comparing parameters that
have been monitored at different time intervals, identifying dependencies and
problems. In addition to the above, a significant advantage of the Zabbix system
is the ability to integrate with popular instant messengers and corporate systems,
which enables to achieve almost instant response to a change in the state of the
equipment or software service. Currently, Zabbix is being actively implemented.
It replaces most of the functionality of Nagios, however, the Zabbix system
cannot fully cover the functionality of Nagios yet. The SEC AIQT infrastructure
diagram in the Zabbix monitoring system is shown in Fig. 4.
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Fig. 4. SEC AIQT infrastructure diagram in the Zabbix monitoring system

3.2 Control Systems

We use specialized software control systems, xCAT and Puppet, to install and con-
figure software on a many compute nodes of the “Tornado SUSU” supercomputer.

xCAT (Extreme Cluster Administration Tool) is a scalable toolkit for deploy-
ing and maintaining large clusters [18]. xCAT provides a unified interface for
hardware management, the discovery and deployment of diskful/diskless oper-
ating systems. All commands are client-server, logged and controlled by policies.
They also support authentication. xCAT supports the differentiation of rights
based on access policies. The entire flow between the client and the server in
the xCAT client/server application is controlled by the xcatd service (xCAT
daemon) on the Management Node. When the xcatd service receives an XML-
packaged command, it checks the sender’s credentials against the ACLs in the
policy table.

The service also receives information about the state and status of the nodes
from the moment they start working. xCAT is designed to scale very large clus-
ters. Hierarchy support allows one control node to have any number of stateless
or stateful service nodes, which improves performance and enables the manage-
ment of very large clusters. xCAT is used for installing a clustered operating
system on compute nodes, by PXE booting over DHCP, with the initial installa-
tion and configuration of the operating system, and running the Puppet system
background process for further configuration.

Puppet is a configuration management system and a language for describ-
ing configuration tasks. System administrators use Puppet to effectively man-
age a many systems and ensure a single configuration. We set up all compute
node configurations with Puppet after its basic installation with xCAT. Namely,
we install SLURM task queues, packages for working with the high-speed
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Infiniband network, storage and system packages. This organization of the sys-
tem installation enables to make changes to the system configuration if necessary.

4 Application Software

The high-performance computing resources of SUSU have both proprietary and
free application software installed [33], including:

– ANSYS, CAE/multiphysics engineering simulation software for product
design, testing and operation [3];

– LS-DYNA, a general-purpose multiphysics simulation software package [19];
– FlowVision, complete, integrated CFD software [9];
– SFTC DEFORM, engineering software that enables designers to analyze

metal forming, heat treatment, machining and mechanical joining processes
on the computer [25];

– MATLAB, a programming and numeric computing platform used by millions
of engineers and scientists to analyze data, develop algorithms, and create
models [20];

– OpenFOAM, free, open source CFD software. It has a large user base across
most areas of engineering and science, from both commercial and academic
organizations [24].

More than 250 scientific tasks are annually performed on the computing
resources of SUSU. These are tasks from the fields of artificial intelligence, mechan-
ical engineering, metallurgy and metalworking, the fuel and energy complex, light
industry, the production of supercomputers and software, including:

– forecast of the passage time of the queue of highly automated vehicles
based on neural networks in the services of cooperative intelligent transport
systems [26]

– tigris basin landscapes: sensitivity of the ndvi vegetation index to climate
variability derived from observation and reanalysis data [2]

– simulation of the compressibility of isostructural halogen containing crystals
on macro- and microlevels [4],

– quantum electronic pressure and crystal compressibility for magnesium
diboride under simulated compression [21],

– reaction mechanism and energetics of the decomposition of tetrakis-
(1,3-dimethyltetrazol-5-imidoperchloratomanganese(II)) from quantum-
mechanics-based reactive dynamics [36],

– ab initio calculation of the total energy of a bcc iron cell containing three
dissolved carbon atoms, and internal friction in Fe–C solid solutions [23],

– duplexer based on volumetric modular technology [10],
– VaLiPro: linear programming validator for cluster computing systems [29],
– A parallel computation model for scalability estimation of iterative numerical

algorithms on cluster computing systems [28],
– in-RDBMS industrial sensor data analysis [39],
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– parallel similarity search [16] and discovery of time series motifs [40], anoma-
lies [38,41], and snippets [37],

– aramid fabric surface treatment and its impact on the mechanics of the fric-
tional interaction of yarns [11],

– development of a supercomputer model of needle-punched felt [7],
– plastic deformation at the dynamic compaction of aluminum nanopowder:

molecular dynamics simulations and mechanical model [22],
– micromechanical model of representative volume of powder material [12],
– towards the fog computing PaaS solution [35],
– fog computing state of the art: concept and classification of platforms to

support distributed computing systems [14],
– transfer learning for Russian speech synthesis [17],
– model of compound eye vision for machine learning [30],
– student attendance control system with face recognition based on a neural

network [31],
– traffic flow estimation with data from a video surveillance camera [8].

5 Conclusions

In this article, we reviewed the high-performance resources of South Ural State
University, i.e., the “Tornado SUSU” supercomputer, the “Neurocomputer” com-
plex, the Panasas ActiveStor 11 data storage systems, OceanStor Dorado 3000
V6, Huawei OceanStor 5300 V5. Access to the resources is provided by the Scien-
tific and Educational Center “Artificial Intelligence and Quantum Technologies”
established at SUSU. Currently, the HPC resources are used by more than 500
people. These are students and employees of SUSU and external educational,
scientific and industrial organizations. Employees of the SEC AIQT maintain
the operability of the SLURM task queue, ensure the correct and uninterrupted
operation of the Infiniband and Ethernet networks, storage and other equipment
using specialized monitoring and management systems. Modern parallel software
is installed on the high-performance resources of SUSU, which allows performing
research and development work from different fields of knowledge.
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Abstract. Iterative methods for solving systems of linear algebraic
equations with high-order sparse matrices that arise in absolutely sta-
ble implicit finite-volume approximations of three-dimensional initial-
boundary value problems for the heat and mass transfer equation on
unstructured grids in computational domains with a complex configura-
tion of multiply connected piecewise smooth boundary surfaces and con-
trasting material properties are considered. At each time step, algebraic
systems are solved using parallel preconditioned algorithms for conju-
gate directions in Krylov subspaces. To speed up the iterative processes,
variational methods for choosing initial approximations are applied using
numerical solutions from previous time steps. It is discussed how the pro-
posed approaches can be more general formulations of problems, as well as
how to increase the productivity of computational methods and technolo-
gies in the multiple solution of algebraic systems with sequentially deter-
mined different right-hand sides and with the scalable parallelization of
algorithms based on the additive methods of domain decomposition. The
efficiency of the proposed approaches is investigated for the implicit Euler
and Crank–Nicholson schemes based on the results of numerical experi-
ments on a representative series of methodological problems.

Keywords: initial-boundary value problem · implicit schemes ·
iterative processes · Krylov subspaces · least squares method ·
numerical experiments

1 Introduction

The numerical solution of multidimensional initial-boundary value problems for
partial differential equations of parabolic type is an urgent practical problem in
the mathematical modeling of processes and phenomena in many applications,
including interdisciplinary ones [7]. A typical example is non-isothermal multi-
phase filtration [11] in porous media with different-scale geometric and material
characteristics. Modern numerical algorithms and technologies for solving the
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
L. Sokolinsky and M. Zymbler (Eds.): PCT 2022, CCIS 1618, pp. 59–72, 2022.
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considered computational problems of thermal conductivity are presented, for
example, in [1,3,10,13–15]. Implicit approximations of the original statements
on adaptive unstructured grids, necessary to ensure the absolute stability of
numerical integration in time and high-resolution calculations, require the con-
struction of high-performance algorithms for multiprocessor computing systems
(MCS). The most resource-intensive stage here is the solution of systems of linear
algebraic equations (SLAEs), which take up to 80 % and more computer time
when implementing non-stationary and nonlinear models, since at this stage the
volume of arithmetic operations performed grows nonlinearly with an increase in
the number of degrees of freedom. An existing technological feature of algorithms
for solving problems with real data is the storage of matrices of large algebraic
systems (with orders 108 − 1010 and higher) in sparse compressed formats.

The purpose of this work is to analyze the features of the application of
parallel preconditioned iterative methods in Krylov subspaces in relation to a
three-dimensional linear initial-boundary value problem with mixed-type bound-
ary conditions for a non-stationary heat equation. It should be noted that in
classical iterative processes, algorithms that converge regardless of the nature
of the initial approximation are studied. The main emphasis in our studies is
placed on the choice of initial approximations, which make it possible to sig-
nificantly reduce the number of iterations when solving the SLAE at each time
level, due to the use of the results obtained at the previous steps. In contrast to
the approximation approaches in common methods of predictor-corrector type
[8], we propose a variational algebraic principle based on minimizing the initial
residual. Incomplete factorization methods in Krylov subspaces are used as iter-
ative solvers. Solvable algebraic systems are formed using barycentric finite vol-
ume methods on a tetrahedral grid, described in [3]. For approximation in time,
parametrized two-layer schemes are used, with an emphasis on the implicit Euler
and Crank–Nicholson schemes (for further research, the discontinuous Galerkin
methods of various orders of accuracy in space and time proposed in [2] are of
considerable interest). We also discuss a possible generalization of the results
to the solution of initial-boundary value problems in the presence of convection
and/or nonlinearity, as well as the possibility of accelerating computations when
repeatedly solving SLAEs with different right-hand sides and using the paral-
lelization of algorithms based on the additive method of domain decomposition,
see [4,6,9].

The present work is structured as follows. Section 2 describes the features of
the continuous and discrete formulations of the problems under consideration,
including the study of the stability and additional error of the grid solution due
to the approximate nature of the iterative implementation of implicit schemes.
Section 3 is devoted to the presentation of the proposed parallel iterative algo-
rithms with the analysis of different approaches to the choice of initial approx-
imations at different time steps. Section 4 presents the results of experimental
studies of the effectiveness of algorithms based on the results of calculations for a
series of methodological problems. In conclusion, the results obtained and plans
for further research are discussed.
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2 Continuous and Discrete Problem Setting

Consider the formulation of the three-dimensional initial-boundary value prob-
lem of heat conduction in the computational domain

(x, y, z, t) ∈ Ω × [0, T ], Ω ∈ R3, T ∈ R1,

with a piecewise smooth boundary Γ , in general, multiply connected, and a
closure Ω = Ω ∪ Γ . The heat conduction equation can be written as

c
∂u

∂t
= div(λ · gradu) + f(x, y, z, t), (1)

where λ is the thermal conductivity coefficient, c is the heat capacity coefficient,
and f(x, y, z, t) is the continuous sufficiently smooth source function. On different
sections of the boundary ΓD and ΓN , ΓD ∪ΓN = Γ , the Dirichlet and Neumann
boundary conditions are imposed on the sought solution, respectively:

u|ΓD
= uD(x, y, z, t), λ

∂u

∂n

∣
∣
∣
∣
ΓN

= σN (x, y, z, t). (2)

Here uD and σN are the given functions of temperature and heat flux dis-
tribution. Relations (1), (2) are supplemented by the initial conditions for
(x, y, z) ∈ Ω:

u(x, y, z, 0) = u0(x, y, z). (3)

We assume that the initial data of problem (1)–(3) have properties that ensure
the existence, uniqueness, and sufficient smoothness of the solution necessary to
justify the approximation, stability, and convergence of the approximate methods
used below for solving the initial-boundary value problem.

Relations (1)–(3) are approximated on the space-time grid Ωh × Ωτ , where
the time steps are generally different, i.e.,

Ωτ = {tn+1 = tn + τn, n = 0, 1, · · · , Nt},

and the spatial mesh with the number of nodes Nh is adaptive and unstructured.
For simplicity, we consider it static, i.e., not changing over time. The process of
discretizing the initial continuous statement is carried out in two stages. First,
using the barycentric finite volume method [3], we approximate the partial dif-
ferential equation and boundary conditions, as a result of which we obtain a
system of ordinary differential equations (ODEs)

Ch
d(u)h

dt
+ Ah(u)h = gh + ψh,

uh, gh, ψh ∈ �Nh , Ch, Ah ∈ �Nh,Nh

(4)

where (u)h = {uk(t)} is the vector of values of the desired solution at grid nodes,
ψh is the spatial approximation error, and Ch and Ah are some independent from
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time to time symmetric matrices, traditionally called mass and stiffness matrices,
respectively, see [7]. At the second stage, we approximate the ODE system using
the parameterized one-step scheme

Ch((u)n+1−(u)n) = τn[θ(gn+1−Ah(u)n+1)+(1−θ)(gn−Ah(u)n)+ψh
n+ψτ

n]. (5)

Here (u)n = {uk(tn)} are the vectors of exact values of the sought solution at
the nodes of the space-time grid, θ ∈ [0, 1] is the parameter of the approximating
scheme, and ψτ = O(τγ) is the time approximation error vector (γ = 2 for θ = 1

2
and γ = 1 for the rest cases). Note that the algorithms defined by relation (4)
for θ = 1

2 , 0, 1 are called Crank–Nicholson, explicit Euler and “strictly implicit”
Euler schemes, respectively. Discarding the approximation terms ψh

n and ψτ
n

in (4), we arrive at a system of linear algebraic equations for the vectors of
approximate grid solutions un = {un

k}:

(Ch + θτnAh)un+1 = (Ch − (1 − θ)τnAh)un + τngn+θ,

gn+θ = τn(θgn+1 + (1 − θ)gn).
(6)

It is noteworthy that if at each n-th time step SLAE (3) is solved approx-
imately using some iterative process, then un+1 is replaced by the iterative
approximation ũn+1, for which the residual vector is determined

rn+1 = gn+θ + τ−1
n (Ch − (1 − θ)τnAh)ũn − (Ch + θτnAh)ũn+1 (7)

As shown in [10], for θ ≥ 1/2 and a sufficiently small residual norm ‖rn+1‖
for the implicit schemes under consideration, the absolute stability of numerical
integration with respect to time follows.

In this paper, we restrict ourselves to considering the simplest approxima-
tions in time, which can be called one-stage Runge-Kutta (R-K) methods. More
accurate approximations can be built using multistage R-K algorithms, both
explicit and implicit, see [8].

3 Methods for Solving SLAEs in Implicit Schemes

System of equations (6), solved at each time step, can be rewritten as

Aun+1 = f
n+1

, n = 0, 1, · · · , Nt,

A = Ch + θτnAh, f
n+1

= τngn+1 + (Ch − (1 − θ)τnAh)un.
(8)

It is natural to solve SLAE (8) for θ > 0 using iterative algorithms for two
reasons. The first is related to the spectral properties of the matrix A. Since
for the most common spatial approximations considered by us, the mass matrix
Ch has eigenvalues ν = O(1), i.e., independent of the characteristic mesh steps
tau, h, and the eigenvalues of the stiffness matrix Ah lie in the interval λ ∈
[λ1, λN ], λ1 = O(1), λN = O(h−2), see [7], for the eigenvalues of the matrix
A we obtain the following relations:

μ(A) ∈ [μ1, μN ], μ1 = O(1), μN = O(1 + θτh−2). (9)



Comparative Analysis of Parallel Methods 63

Hence, for the corresponding condition number, we have
cond(A) = maxk{μk}

mink{μk} = O(θτh−2), which for small values of τ means a suffi-
ciently fast convergence of iterations.

The second feature of the problems under consideration is that when solving
the SLAE at the current time step, the previous solutions are already known,
which can be used to find a good initial approximation and reduce the number
of iterations. Let us describe some possible approaches here.

3.1 Choice of an Initial Approximation for Solving a SLAE

a) The simplest trick is to choose an arbitrary initial approximation, for exam-
ple un+1,0 = 0. However, this means that the specifics of the initial-boundary
value problem being solved is not taken into account in any way.

b) The most natural way is to put un+1,0 = un, which formally means the use
of zero-order interpolation (we denote this approach by I0). This approxi-
mation principle can be generalized to higher orders if one remembers the
solutions un−1, un−2, · · · from the previous time steps. For example, using
linear extrapolation gives

un+1,0 = un + (un − un−1)τn/τn−1. (10)

c) The predictor-corrector method [8], which is implemented in two stages, is
widespread, especially when solving ordinary differential equations. At the
first stage, a preliminary (prognostic) approximation is calculated, for which,
in fact, the explicit scheme obtained from (6) is used for θ = 0:

ûn+1 = C−1
h [(Ch − τnAh)un + τngn]. (11)

At the second stage, the calculated value is corrected with the determination
of the initial approximation by the formula

un+1,1 = C−1
h [(Ch − (1 − θ)τnAh)un + τngn+ 1

2 − θτnAhûn+1]. (12)

Obviously, procedure (14) can be interpreted as the application of a simple
iteration algorithm. This correction can be repeated any given number of m
times, resulting in a method denoted as PCm (PC for m = 1):

ûn+1,k = C−1
h [(Ch − (1 − θ)τnAh)un + τngn+1 − θτnAhûn+1,k−1],

k = 1, · · · ,m; ûn+1,0 = ûn+1; un+1,0 = ûn+1,m.
(13)

Obviously, for sufficiently small τn, this iterative process converges, but
slowly. If we formally restrict ourselves here to the case m = 0, i.e., no
correction, and set un+1,0 = ûn+1, then we denote this method as P. Note
also that the PCm methods can be applied both for the Crank–Nicholson
schemes, and for the implicit Euler method (θ = 1

2 , 1, respectively), but
these, naturally, will be different algorithms. It is important to bear in mind
that predictor-corrector methods are traditionally used without iterative
refinement.
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d) Reducing the number of iterations at each time step can be ensured if fast
preconditioned methods in Krylov subspaces are used to solve SLAE (5),
and the initial approximation un+1,0 is determined not from approxima-
tion, but from optimization algebraic approaches. For example, in the PC
method, instead of correction stage (14), one can use a linear combination
of the vectors un, ûn+1 according to the condition of minimizing the initial
discrepancy rn+1,0 = f

n+1 − Aun+1,0, determined from equation (10):

un+1,0 = un + cvn, vn = ûn+1 − un,

rn+1,0 = rn − cAvn, c =
(rn, Avn)

(Avn, Avn)
.

(14)

Note that in this case, the condition A, the orthogonalization of the vec-
tors rn+1,0 and vn, is satisfied, i.e., (rn+1,0, Avn) = 0. Since formulas (16)
implement the simplest version of the least squares method, the correspond-
ing algorithm is further denoted as P-LSM1. It can be generalized in an
obvious way if in formulas (16) the vector ûn+1 is replaced by ûn+1,m from
(15), obtained after m corrections, which formally defines the PC m -LSM1
method.

e) The natural development of the considered least squares method is an
increase in the number of solutions stored and used to select un+1,0 from
the previous time steps un−1, · · · , un−s. We describe this algorithm without
using a predictor, denoting it as LSMs:

un+1,0 = un + c1v
n
1 + · · · + csv

n
s = un + Vn�c,

�c = (c1, . . . , cs)T , Vn = (vn
1 , . . . , vn

s ) ∈ �N,s,

rn+1,0 = rn − Wn�c, Wn = AVn.

(15)

Here the vectors vk, k = 1, . . . , n, can be defined in different ways as the
differences of the already calculated approximations. For example, in the P-
LSM2 method considered further in Sect. 4, we define v1 = ûn+1−un, v2 =
un−1−un. Hence, we obtain that the minimization of the norms ‖rn+1,0‖2 is
equivalent to the orthogonality relation WT

n rn+1,0 = 0. This formally leads
to the problem of calculating the normal solution of the overdetermined joint
algebraic system Wn�c = rn:

B�c ≡ WT
n Wn�c = WT

n rn, �c = (WT
n Wn)+WT

n rn, B ∈ �s,s. (16)

Here B+ means the generalized inverse matrix [12], which in this case coin-
cides with the inverse matrix B−1, if Wn has full rank, which means the linear
independence of the vectors vn

1 , . . . , vn
s . It should be noted that instead of

(18), to determine the vector �c, one can use the relations obtained from the
orthogonality condition
V T

n rn+1,0 = 0:

Ã�c ≡ V T
n AVn�c = V T

n rn, �c = Ã+V T
n rn. (17)
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Moreover, the matrix Ã ∈ �s,s is called a low-rank approximation to A.
After calculating the vector �c by formulas (18) or (19) (the question of their
preference is still open), the initial approximation is determined from (17).

3.2 Iterative Algorithms for Implicit Schemes

We represent the matrix of system of equations (8) as the sum A = D + L +
U , where D, L and U are the diagonal (or block-diagonal), lower and upper
triangular matrices, respectively. Following the method of symmetric sequential
upper relaxation SSOR (or its block version BSSOR, see [5]), or incomplete
factorization, to speed up iterations at each time step, we define preconditioning
matrices:

B = B̌B̂, B̌−1 = Ǧ(G + L)−1, B̂−1 = (G + U)−1Ǧ, G = ǦĜ. (18)

Here G, Ǧ, Ĝ are the easily invertible matrices selected for the optimization of
the algorithm. In the simplest case, when D is a diagonal positive definite matrix,
it is assumed

Ĝ
1
2 = Ǧ

1
2 = G = ω−1D, (19)

where ω ∈ [1, 2) is the upper relaxation parameter.
Consider Aizenshtat’s modification for two-way SSOR preconditioning in the

following form:

Ãũ ≡ B̌−1ǦAǦ−1B̂−1B̂−1ũB̂ = f̃ ≡ B̌−1f, ũ = B̂u. (20)

Then the matrix of the preconditioned SLAE is written as

Ã = (I + L)−1 + (I + Ũ)−1 + (I + L)−1(D̃ − 2I)(I + Ũ)−1,

D̃ = Ĝ−1DǦ−1, L = Ĝ−1LǦ−1, Ũ = Ĝ−1UǦ−1.
(21)

Here, for the parameter ω from (21) selected from the condition of approximate
minimization of the condition number cond(Ã), the following formula demon-
strates good practical results, confirmed in the simplest cases by theoretical
estimates:

ω = b −
√

b2 − 4ab

2a
, a = (LD−1Ue, e), b = (De, e), (22)

where e = (1, . . . , 1)T is the vector with unit components. The corresponding
approach, according to [5], will be called the incomplete Aizenshtat factorization
IFE. Its distinguishing feature is the efficiency of implementing each iteration,
since the multiplication of a vector by the matrix Ã by the formula

Ãv = (I + L̃)−1[v + (D − 2I)w] + w, w = (I + Ũ)−1v (23)

requires almost as many arithmetic operations as multiplying by the original
matrix A.
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To solve preconditioned algebraic system (22), consider the iterative process
of conjugate directions (see [5])

p0 = r0 = f̃ − Ãu0, n = 0, 1, · · · :

un+1 = un + anpn, rn+1 = rn − anÃpn,
(24)

where u0 is the arbitrary initial approximation, rn is the residual vector, and
pn are the direction vectors with respect to which we assume that the following
orthogonalization conditions are satisfied:

(Aγpk, Apn) = ρnδk,n, ρn = (Aγpn, Apn), (25)

where δk,n is the Kronecker symbol and γ = 0, 1 for the conjugate gradient and
conjugate residual methods, respectively. It is easy to check that when deter-
mining in (26) the iterative parameters by the formula

ak = (r0, Aγpk)/ρn, k = 0, 1, . . . , n, (26)

residual functionals ψn
γ = (A

γ−1
rn+1, rn+1) are minimized in Krylov subspaces

Kn+1(p0, Ã) = Span{p0, Ãp0, . . . , Ãnp0}. (27)

Due to the symmetry of the matrix Ã, orthogonality conditions (27) are satisfied
if the direction vectors are determined using the two-term recursion

pn+1 = rn+1 + βnpn = σn+1/σn, σn = (Aγrn, rn), (28)

in this case, it is expedient to calculate the iterative parameters αn instead of
(26) by the formula αn = σn/ρn. The criterion for the termination of iterations
is the fulfillment of the condition

‖rn+1‖22 = (rn+1, rn+1) ≤ ε2(f̃ , f̃), (29)

where ε << 1 is the priori given value, the optimal definition of which, strictly
speaking, requires a special analysis of the final error of the numerical solution
in accordance with formula (9). The number of iterations n(ε) required to satisfy
condition (31) is determined by the inequality

n(ε) ≤ 1
2
|lnε

2
|cond(Ã

1
2 ) + 1. (30)

3.3 Some Questions of Generalization of the Considered Approaches
and Speed-up of Computations

Above, we presented the main directions for improving the efficiency of abso-
lutely stable implicit grid approximations of resource-intensive multidimensional
initial-boundary value problems based on the application of the universal least
squares method. The above algorithms for the classical heat conduction equation
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can naturally be transferred to more general formulations: diffusion-convective
processes, nonlinear problems with phase transitions, interdisciplinary problems,
an example of which is nonisothermal filtration in porous media. Generally
speaking, the question of the optimal choice of initial approximations in the
iterative implementation of implicit schemes is relevant when modeling any non-
stationary processes and phenomena.

The second side of the issue is to apply the proposed approaches to grid
equations of a higher order of accuracy, in relation to both spatial and tempo-
ral approximations. Here, in particular, promising discontinuous Galerkin algo-
rithms [2,7] are actively developing. Such methods will lead to more complex
calculations at each step in time, but also to a reduction in their total number
and, as a consequence, to a decrease in communication losses, which is highly
important in the light of the evolution of computer platforms.

Another potential opportunity to improve performance in the considered
computational models is the use of known technologies for the multiple solu-
tion of SLAEs with different sequentially determined right-hand sides. Here,
similarly, one can successfully apply the least squares method, using previously
stored information to speed up iterations in Krylov subspaces (see the review on
deflation algorithms in [4]).

Finally, we emphasize that all the approaches outlined above are based on
vector operations that allow scalable parallelization by means of hybrid pro-
gramming on various computer architectures with distributed and/or hierarchi-
cal shared memory. When solving large sparse SLAEs with orders of 1010 − 1011

and higher, additional calculations due to least squares methods are parallelized
almost ideally with linear acceleration. This is achieved by means of either MPI
message passing (here, the additive methods of the decomposition of areas are
natural [9]), or multithreading (OPEN MP), or the vectorization of operations
(command systems of AVX type). Results for specific applications here require
special experimental applications, and general principles can be found in [6,9].

4 Examples of Numerical Experiments

We investigate the efficiency of the above algorithms experimentally using the
results of the numerical solution of three-dimensional initial-boundary value
problems for Eq. (1) with constant coefficients c, λ and with Dirichlet boundary
conditions. The main goal in this case is to carry out a comparative analysis
of the efficiency of the iterative algorithms described in clauses 3.1 and 3.2 for
various methods of choosing the initial approximations. All calculations were
carried out for a cubic computational domain Ω = [0, 1]3 on a cubic grid with
the number of steps along each coordinate Nx = 16.32.64. The time steps τ were
also chosen constant, and their values and quantities were selected from the
conditions of visual representations of the characteristics of the algorithms. All
arithmetic operations in the experiments were performed with standard double
precision. We do not dwell on the issues of the performance of software imple-
mentations and the execution time of the algorithms, since the main goal of
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research in this case is the mathematical characteristics of the methods, i.e.,
accuracy and asymptotic estimates of their resource intensity.

The studies were carried out on two test examples with well-known analytical
solutions, which were used to determine the initial and boundary conditions. In
the first test, the exact solution is

u(x, y, z, t) = x(1 − x) + y(1 − y) + z(1 − z) +
t2

2
,

for which the spatial approximation error is zero, and the right-hand side of
Eq. (1) is written as

f(x, y, z, t) = 2t + 6.

For the second example, the sought solution and the corresponding right-hand
side are described by the following formulas:

u(x, y, z, t) = sin(πx) sin(πy) sin(πz)t(T − t),

f(x, y, z, t) = (2(T − 2t) + 1.5π2t(T − t)) sin(πx) sin(πy) sin(πz).

The tables below show the results of applying the preconditioned iterative
conjugate gradient method described in Sect. 3.2 (γ = 0 in formulas (26)–(30)).

Table 1 shows the results of calculations for the 1st test problem for nine
different space-time grids: Nx = 16, 32, 64; Nt = 10, 20, 40, using the iteration
end criterion in (31) ε = 10−3, 10−5. We consider five ways of choosing the initial
iterative approximations described in subparagraphs (a)–(e) from Sect. 3.1: O
corresponds to un+1,0 = 0, I0 is the extrapolation of the form un+1,0 = un,
see item b), PI is the predictor with the definition un+1,0 = ûn+1, P-LSM1,
P-LSM2, each of which in this case applies to the Crank–Nicholson scheme.
The values n1 and n2 indicated in the cells of the table are the number of
iterations averaged over time steps for ε = 10−3 and ε = 10−5, respectively,
and delta = maxn ‖u(tn+1) − un+1 |∞ is the uniform norm (maximum vector
component) of the numerical solution error for ε = 10−3. The content of Table 2
is similar, but for the second test problem.

The content of Tables 3 and 4 repeats Tables 1 and 2, but only for the implicit
Euler scheme.

The analysis of the above results allows us to draw the following preliminary
conclusions:

– the use of the least squares method LSM1 and even more so LSM2 can signif-
icantly reduce the number of iterations at time steps, with the fundamental
possibility of constructing implicit non-iterative approximations;

– the effect obtained from the variational (algebraic) choice of initial approxi-
mations has approximately the same character for different values of the steps
of the space-time grid and for different types of implicit schemes.
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Table 1. Calculation results for the first test, ε = 10−3, ε = 10−5, Crank–Nicholson
scheme

Methods \ Nh

16

δ n1 n2

32

δ n1 n2

64

δ n1 n2

O

Nt=10

Nt=20

Nt=40

8,45E-07 10 16

4,44E-07 9 14

2,25E-07 8 12

2,35E-06 15 24

1,32E-06 13 21

3,32E-07 12 18

4,62E-06 23 36

2,66E-06 20 33

3,01E-06 17 28

I0
Nt=10

Nt=20

Nt=40

4,99E-07 9 15

1,07E-06 7 13

1,43E-06 6 10

1,42E-06 13 22

4,99E-07 11 19

1,71E-06 9 15

2,70E-06 19 33

4,17E-06 16 29

3,22E-06 13 23

PI

Nt=10

Nt=20

Nt=40

8,52E-07 7 13

1,75E-06 6 11

6,58E-07 4 9

1,88E-06 11 20

1,38E-06 8 16

1,06E-06 6 13

3,11E-06 16 30

4,38E-06 12 25

6,97E-06 9 19

P-LSM1

Nt=10

Nt=20

Nt=40

1,35E-06 3 3

1,27E-06 2 2

1,50E-06 2 2

7,97E-06 5 5

1,44E-06 4 4

3,56E-06 3 3

5,63E-06 10 8

3,79E-06 8 8

6,63E-06 6 6

P-LSM2

Nt=10

Nt=20

Nt=40

9,07E-07 1 2

1,13E-06 0 2

1,42E-06 0 1

6,04E-06 1 2

2,54E-06 1 2

1,46E-06 1 1

6,30E-06 2 5

5,00E-06 1 2

4,97E-06 1 1

Table 2. Calculation results for the second test, ε = 10−3, ε = 10−5, Crank–Nicholson
scheme

Methods \ Nh

16

δ n1 n2

32

δ n1 n2

64

δ n1 n2

O

Nt=10

Nt=20

Nt=40

7,46E-04 8 13

7,48E-04 7 11

7,49E-04 6 9

1,86E-04 12 20

1,87E-04 10 17

1,87E-04 8 14

4,65E-05 18 30

4,67E-05 15 26

4,68E-05 12 20

I0
Nt=10

Nt=20

Nt=40

7,46E-04 8 13

7,48E-04 6 10

7,50E-04 5 8

1,86E-04 11 19

1,87E-04 9 16

1,87E-04 6 12

4,65E-05 17 29

4,67E-05 13 24

4,68E-05 9 18

PI

Nt=10

Nt=20

Nt=40

7,46E-04 7 12

7,48E-04 5 9

7,50E-04 3 7

1,86E-04 10 18

1,87E-04 7 14

1,87E-04 5 10

4,65E-05 15 28

4,67E-05 11 21

4,68E-05 7 15

P-LSM1

Nt=10

Nt=20

Nt=40

7,46E-04 2 6

7,48E-04 2 4

7,49E-04 1 3

1,86E-04 4 9

1,87E-04 3 6

1,87E-04 2 4

4,66E-05 9 15

4,67E-05 6 9

4,68E-05 5 6

P-LSM2

Nt=10

Nt=20

Nt=40

7,46E-04 1 5

7,48E-04 0 3

7,49E-04 0 2

1,86E-04 2 7

1,87E-04 1 5

1,87E-04 0 3

4,65E-05 3 12

4,67E-05 1 8

4,68E-05 0 5

A further increase in the performance of algorithms for solving SLAEs in
multidimensional initial-boundary value problems can be developed in various
directions. The first is the optimization of the considered initial approxima-
tions un+1,0. The second is to use the SLAE solution with different right-hand
sides, see the overview in [4]. The third is the parallelization of algorithms by
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Table 3. Calculation results for the first test, ε = 10−3, ε = 10−5, Euler’s scheme

Methods \ Nh

16

δ n1 n2

32

δ n1 n2

64

δ n1 n2

O

Nt=10

Nt=20

Nt=40

1,88E-06 11 17

1,61E-06 10 16

8,86E-07 9 14

1,56E-06 17 25

4,46E-06 15 24

2,50E-06 13 21

5,05E-06 26 38

8,78E-06 23 36

5,17E-06 20 33

I0
Nt=10

Nt=20

Nt=40

1,56E-06 10 16

1,10E-06 8 14

9,78E-07 7 12

4,63E-06 14 24

2,61E-06 12 21

2,85E-06 10 18

7,64E-06 21 36

3,55E-06 18 32

6,67E-06 15 28

PI

Nt=10

Nt=20

Nt=40

3,89E-07 8 14

9,29E-07 6 12

3,57E-06 5 10

2,19E-06 12 21

1,95E-06 9 19

1,81E-06 7 15

7,78E-06 17 32

4,98E-06 13 28

5,83E-06 10 22

P-LSM1

Nt=10

Nt=20

Nt=40

8,00E-07 3 4

1,75E-06 2 2

1,84E-06 1 1

2,91E-06 5 6

2,76E-06 4 4

3,01E-06 3 3

6,38E-06 9 9

5,74E-06 7 6

4,34E-06 5 5

P-LSM2

Nt=10

Nt=20

Nt=40

2,98E-06 1 3

2,03E-06 0 2

2,55E-06 0 1

9,8E-06 1 4

3,14E-06 0 3

6,25E-06 0 2

1,07E-05 2 8

2,05E-05 0 4

1,80E-05 0 2

Table 4. Calculation results for the second test, ε = 10−3, ε = 10−5, Euler’s scheme

Methods \ Nh

16

δ n1 n2

32

δ n1 n2

64

δ n1 n2

O

Nt=10

Nt=20

Nt=40

0,032 10 15

1,74E-02 8 13

9,15E-03 7 11

3,18E-02 14 22

1,71E-02 12 20

8,90E-03 10 17

3,18E-02 21 33

1,71E-02 18 30

8,84E-03 15 26

I0
Nt=10

Nt=20

Nt=40

0,032 9 14

1,74E-02 7 12

9,15E-03 6 10

3,18E-02 12 21

1,71E-02 10 18

8,90E-03 8 15

3,18E-02 18 31

1,71E-02 15 28

8,84E-03 12 23

PI

Nt=10

Nt=20

Nt=40

0,032 8 14

1,74E-02 6 11

9,15E-03 4 9

3,18E-02 11 20

1,71E-02 8 17

8,90E-03 6 13

3,18E-02 17 30

1,71E-02 13 26

8,84E-03 9 20

P-LSM1

Nt=10

Nt=20

Nt=40

0,032 4 10

1,74E-02 2 7

9,15E-03 1 5

3,18E-02 6 16

1,71E-02 4 12

8,90E-03 2 8

3,18E-02 12 26

1,71E-02 7 20

8,84E-03 4 13

P-LSM2

Nt=10

Nt=20

Nt=40

0,032 3 9

1,74E-02 2 6

9,15E-03 1 4

3,18E-02 5 13

1,71E-02 3 9

8,90E-03 1 6

3,18E-02 10 20

1,71E-02 7 14

8,84E-03 3 9

using additive methods for decomposing domains. It is also noteworthy that
these directions of development (possibly in combination with approximation
approaches) can be carried over to more general formulations of problems: in
the presence of convection, nonlinear effects, etc.
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5 Conclusion

The performed comparative analysis of iterative methods for solving algebraic
systems with sparse matrices of high orders that arise in the implementation
of implicit approximations of multidimensional initial-boundary value problems
demonstrates the high efficiency of the algorithms while maintaining the abso-
lute stability of numerical integration over time. The number of iterations at
each time step is significantly reduced by choosing an initial approximation
with the sequential use of already calculated solutions using the least squares
method. The efficiency of the proposed approaches is illustrated by the results
of experimental studies on a representative series of methodological problems
using preconditioned iterative incomplete factorization processes in Krylov sub-
spaces. The presented test results on accelerating computations of the proposed
algorithms indicate their efficiency for supercomputers with distributed and hier-
archical shared memory. The issues of transferring the proposed approaches to
more general problem statements are discussed. A further increase in the per-
formance of the algorithms is possible when using scalable parallelization based
on additive methods for the decomposition of regions in Krylov subspaces. At
the same time, an additional significant increase in the speed of computations
can be achieved due to parallel methods of the decomposition of domains, as
well as through the use of techniques for the multiple solution of SLAEs with
sequentially determined right-hand sides.
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I., Faragó, I., Vulkov, L. (eds.) FDM 2018. LNCS, vol. 11386, pp. 580–587. Springer,
Cham (2019). https://doi.org/10.1007/978-3-030-11539-5 68

15. Vasiliev, V.I., Vasilieva, M.V., Grigoriev, A.V., et al.: Numerical modelling of heat
and mass transfer processes in the permafrost zone. NEFU Publishing House,
Yakutsk (2019)

https://doi.org/10.1007/978-3-319-99673-8_14
https://doi.org/10.1137/1.9780898718003
https://doi.org/10.1007/978-3-030-11539-5_68


Optimization of the Computational
Process for Solving Grid Equations

on a Heterogeneous Computing System
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Abstract. To predict emergencies and the irreversible consequences of
human activity, scientists widely use mathematical modeling. In the
event of an emergency, it is important that the time for its elimination
be the shortest. It is necessary to develop effective methods for solving
systems of large-dimensional grid equations with a non-self-adjoint oper-
ator in the numerical solution of hydrophysics and biological kinetics
problems. A large amount of processed information and the complexity
of calculations lead to the need to use computing clusters, which include
video adapters to increase the computing system performance and the
data conversion rate. The research aim is to develop a software module
that implements an algorithm for solving a system of linear algebraic
equations (SLAE) of large dimensions by the modified alternately trian-
gular iterative method (MATM), applicable in heterogeneous computing
systems. The decomposition method of the computational domain in
the three-dimensional case is described. A graph model for organizing a
parallel pipeline computing process focused on heterogeneous computing
systems is proposed. Based on the results of the research, a regression
equation is obtained with a coefficient of determination equal to 0.86.
The parameters of the obtained regression equation are the size of the
CUDA computing block along the Oy axis and the size ratio along the
Ox and Oz axes. The performed numerical experiments show that the
minimum calculation time of one MATM step is achieved with the largest
available value of the CUDA computing block size along the Ox axis.

Keywords: System of linear algebraic equations · Heterogeneous
Computing System · Parallel algorithm

1 Introduction

The prediction of environmental risks allows one to reduce the damage from
adverse situations and emergencies in nature, in particular, in the coastal water
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zone. Research in this area requires the construction of mathematical models
and the study of the influence of various factors on the research object.

Currently, computer modeling is becoming more relevant, it replaces complex
systems and physical models, as well as allows one to predict various phenomena
and processes in nature. Computer modeling is usually based on mathematical
models, the discretization of which leads to large-dimensional SLAEs with self-
adjoint and non-self-adjoint operators. Solving such systems of grid equations
requires a lot of computing capacity.

Both Russian and foreign researchers study the processes occurring in var-
ious reservoirs and water systems. Scientists of the Marchuk Institute of Com-
putational Mathematics of the Russian Academy of Sciences and the Keldysh
Institute of Applied Mathematics are engaged in the analysis and modeling of
complex systems (in ecology, environment, etc.), modeling of hydrodynamic pro-
cesses, and forecasting of climate changes in the world ocean. Studies on modeling
hydrophysical processes are performed on the example of the Azov Sea under
the leadership of G.G. Matishov. Mathematical models of sea level dynamics are
described in the papers of A. Bonaduce, J. Staneva [1]. Scientists P. Marchesiello
[2], A. Androsov [3], etc. are engaged in improving the ocean models. The existing
standard software often includes simplified mathematical models that do not take
into account the spatially inhomogeneous water transport, and have insufficient
accuracy in modeling the vortex structures of water flow currents, shore and bot-
tom topography [1–4]. The actual direction of improving software systems is the
development of parallel algorithms executed on both the CPU (Central Process-
ing Unit) and the GPU (Graphics Processing Unit). Scientists Weicheng Xue and
Christopher J. Roy are engaged in research related to optimizing computing per-
formance at solving fluid dynamics problems on multiple GPUs, improving the
performance of multi-GPUs on structured grids. In their work, the use of GPUs
improves the performance by 30–70 times [5,6]. Researchers Taku Nagatake and
Tomoaki Kunugi analyze the possibility of using the GPU to accelerate the calcu-
lation of multiphase flows. They determine that the calculation time on the GPU
(single GTX280) is about 4 times faster than the calculation time on the CPU
(Xeon 5040, 4 parallelized threads) [7]. David J. Munk and Timoleon Kipouros
describe the acceleration of the optimization process of multi-physical topology
on the GPU architecture [8].

To increase the efficiency of using GPU computing resources, we propose
an algorithm and a software module that implements it, which allows using
functions from the NVIDIA CUDA library to select the optimal solution for a
large-dimensional SLAE in the case of self-adjoint and non-self-adjoint operators.
The developed software tools make it possible to more efficiently utilize the
heterogeneous computing system resources used to computationally solve spatial
and three-dimensional problems of hydrophysics.
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2 Method for Solving Grid Equations

It becomes necessary to solve a high-dimensional SLAE in the mathematical
modeling process of hydrodynamics and hydrobiology problems

Ax = f, (1)

where A is the linear, positive definite operator (A > 0) in the finite-dimensional
Hilbert space H.

To solve SLAE (1) by iterative methods, the canonical form is used [9,10]

B
xm+1 − xm

τm+1
+ Axm = f, (2)

where m is the iteration number, τm+1 > 0 is the iteration parameter, B is the
preconditioner, which is formed as follows

B = (D + ωR1) D−1 (D + ωR2) ,D = D∗ > 0, ω > 0, (3)

where D is the diagonal operator, R1, R2 are the lower- and upper-triangular
operators, respectively.

MATM calculation steps:

1. Calculation of the residual vector

rm = Axm − f.

2. Calculation of the correction vector wm

B(ωm)wm = rm.

3. Calculation of the convergence rate of the method

s2m = 1 − (A0w
m, wm)2

(B−1A0wm) (Bwm, wm)
.

4. Calculation of the ratio of the norm of the skew-symmetric part of the
operator to the norm of the symmetric part

k2
m =

(
B−1A1w

m, A1w
m

)

(B−1A0wm, A0wm)
,

5. Calculation of the coefficient θm

θm =
1 −

√
s2mk2

m

(1+k2
m)

1 + k2
m (1 − s2m)

.

6. Calculation of the iteration parameter

τm+1 = θm
(A0w

m, wm)
(B−1A0wm, A0wm)

.
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7. Recalculation of the vector x at the next iteration

xm+1 = xm − τm+1w
m.

8. Recalculation of the coefficient ω at the next iteration

ωm+1 =

√
(Dwm, wm)

(D−1R2wm, R2wm)
.

3 Software Implementation of the Method for Solving
Grid Equations

The software implementation of the MATM for solving high-dimensional SLAEs
is based on the developed parallel algorithms that implement a pipeline comput-
ing process. The use of these algorithms allows one to fully utilize all available
computing resources, including high-performance graphics accelerators. A dis-
tinctive feature of the proposed algorithms is the possibility of using calculators
with different performance. This allows one to organize distributed computing
using different models of central processing units (CPUs) on different nodes and
even different video accelerators (GPUs) inside a separate compute node. The
software implementation enables to indicate the number and technical charac-
teristics of the CPU and GPU at the initial stage of the decomposition of the
computational grid for each compute node of the cluster. For each CPU, the
number of cores is set. For the GPU, the number of streaming multiprocessors is
specified. Calculations are performed on the K60 hybrid supercomputer installed
at the Supercomputer Centre of Collective Usage of KIAM RAS.

In the process of solving computational problems, it is necessary to dynami-
cally distribute the computational load between dissimilar computers. Therefore,
a class library is developed in C++, it allows describing the structure and hard-
ware of a computing cluster. The class library contains the following classes:

– ComputingCluster, describes the structure of a computing cluster. Stores
objects describing compute nodes in the std::map container. The class imple-
ments a number of auxiliary methods that allow one to manage the list of
compute nodes, to determine the total performance of the cluster and display
detailed information about it.

– ComputingNode, describes the structure and characteristics of a compute
node. The methods of the class allow one to manage the list of computing
devices, to determine the total performance and the size of the random access
memory of the compute node.

– ComputingDevice is an abstract class that describes the general characteris-
tics of computing devices located in a separate compute node of a cluster.

– ComputingDeviceCPU, a heir of the abstract ComputingDevice class, describ-
ing the characteristics of the CPU.

– ComputingDeviceGPU, a heir of the abstract ComputingDevice class,
describing the characteristics of the GPU.
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A multi-threaded computing process is controlled by an algorithm that allows
each node to manage all available program threads (calculators) running on
both the CPU and GPU. Each calculator handles only for its own fragment of
the computational domain. For this, the computational domain is divided into
subdomains assigned to individual compute nodes (Fig. 1). Next, each subdo-
main is divided into blocks assigned to each computing device (CPU or GPU).
After that, each block is divided into fragments assigned to calculators (CPU
cores and GPU streaming multiprocessors). Notations in Fig. 1: Node1, Node2,
Node3 are compute nodes; Device1, Device2, Device3 are blocks of the compu-
tational domain calculated on separate computing devices of the node. Thread1,
Thread2, Thread3, Thread4 are fragment arrays of the computational domain
calculated by separate threads of the computing device.

Fig. 1. Computational domain fragments distribution across the compute nodes,
devices and threads

The subdivision of subdomains into fragments mapped to each calculator
inside a separate compute node is performed as follows: the number of frag-
ments of the computational domain along the Oz axis is selected as the smallest
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common multiple of the optimal dimensions of CUDA computing blocks for all
video accelerators involved in the cluster (Fig. 2). In Fig. 2, Nv is the calculator
index; Nx is the number of nodes of the computational domain on the Ox axis;
Ny0, Ny1, Ny2, Ny3 is the number of nodes of the computational domain on
the Oy axis for the calculator with indexes 0, 1, 2 and 3, respectively; z is the
layer index on the Oz axis; s is the index of the pipeline calculation stage. The
number of fragments of the computational domain on the Ox axis in the block
(Nx) is selected in such a way that their number is greater than the number of
calculators in the cluster, and they are the same. The number of fragments of
the computational domain along the Oy axis in the block is selected so that the
calculation time of each block by different calculators is approximately the same.
For this, a series of experiments is preperformed to calculate the performance of
calculators, which is the 95th percentile of the calculation time in terms of 1000
nodes of the computational grid.

The fragments of the computational domain processed in parallel are high-
lighted in gray. Note that the calculator index coincides with the fragment index
of the computational domain on the Oy axis.

A graph model is used to describe the relationships between the adjacent
fragments of the computational grid and the organization of a pipeline calcula-
tion process (Fig. 3). Each graph node is an object of a class that describes a
fragment of the computational domain. This class contains the following fields:
the dimensions of the fragment along the Ox, Oy, and Oz axes, the index of the
zero node of the fragment in the global computational domain, pointers to the
adjacent fragments of the computational grid, and pointers to the objects that
describe the parameters of the calculators. The computational process is a graph
traversal from the root node with a parallel launch of calculators that process
the graph nodes in accordance with the value of the calculation step counter
s = ki + j.

An algorithm and its program implementation in the CUDA C language are
developed to improve the calculation efficiency of computational grid fragments
assigned to graphics accelerators [12–16].

A fragment of the algorithm for solving a SLAE with a lower triangular
matrix contains the following steps:

1. Computation of global thread indexes

tdX = bkDim.x · bkIdx.x + tdIdx.x;

tdZ = bkDim.z · bkIdx.z + tIdx.z.

2. Calculation of the indexes of the row, layer and initialization of the counter
by the coordinate (variable) processed by the current thread

i = tdX + 1; k = tdZ + 1; j = 1.

3. Initialization of the loop parameter for calculating the residual vector:
s = 3.
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Fig. 2. Decomposition of the computational subdomain calculated by a separate com-
pute node with the organization of a parallel pipeline computing process

4. Calculation of the indexes of the nodes of a seven-point grid pattern

mIdx0 = i + (bkDim.x + 1) · j + n1 · n2 · k;

mIdx2 = mIdx0 − 1;

mIdx4 = mIdx0 − n1;

mIdx6 = mIdx0 − n1 · n2.

5. Initialization of the residual vector value at the template point mIdx4 = 0.
6. Checking the condition (s > 3 + tdX + tdZ) for calculating the value of

the residual vector at the template point mIdx4. If the condition is met,
then rmIdx4 = cmem[tdX][tdZ]. Otherwise, rmIdx4 = r[mIdx4].

7. Initialization of the residual vector value at the template point mIdx2 = 0.



80 A. Sukhinov et al.

Fig. 3. Graph model that describes the relationships between the adjacent fragments
of the computational grid and the process of pipeline calculation

8. Checking the condition (tdX �= 0)∧(s > 3+tdX+tdZ) for calculating the
value of the residual vector at the template point mIdx2. If the condition is
met, then rmIdx2 = cmem[tdX−1][tdZ]. Otherwise, rmIdx2 = r[mIdx2].

9. Initialization of the residual vector value at the template point mIdx6 = 0.
10. Checking the condition (tdZ �= 0)∧(s > 3+tdX +tdZ) for calculating the

value of the residual vector at the template point mIdx6. If the condition is
met, then rmIdx6 = cmem[tdX][tdZ−1]. Otherwise, rmIdx6 = r[mIdx6].

11. Calculation of the value of the residual vector at the central point of the
seven-point pattern mIdx0

rmIdx0 = (ω · (ksu2[mIdx0] · rmIdx2 + ksu4[mIdx0] · rmIdx4+

+ksu6[m0] · rmIdx6) + r[mIdx0])/((0.5 · ω + 1) · ksu0[mIdx0]);

cmem[tdX][tdZ] ← rmIdx0;

r[mIdx0] ← rmIdx0.

12. Transition to the next node of the computational grid along the coordinate
y: j = j + 1.
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13. Assigning the loop parameter to the next value s = s + 1.
14. Checking the exit condition from the loop s ≤ n1 + n2 + n3 − 3. If the

condition is true, then the transition to step 4 is performed; otherwise,
the algorithm exits.

The conducted studies show a significant dependence of the algorithm imple-
mentation time for calculating the preconditioner on the ratio of threads in
spatial coordinates.

The GeForce GTX 1650 video adapter is used in experimental studies. It has
4 GB of video memory, a core and memory clock frequency of 1485 MHz and 8000
MHz, respectively, and a video memory bus bit rate of 128 bits. The computing
part consists of 56 texture processor clusters (TPC) with 2 multiprocessors (SM)
in each. Each multiprocessor contains 8 streaming processors (SP) or CUDA
cores. Therefore, the number of CUDA cores for the GeForce GTX 1650 video
adapter is 896.

The purpose of the experiment is to determine the distribution of flows along
the Ox and Oz axes of the computational grid at different values of its nodes
along the Oy axis so that the implementation time on the GPU of one MATM
step is minimal. Two values are taken as factors: k = X/Z is the ratio of the
number of threads on the Ox, (X) axis to the number of threads on the Oz,
(Z) axis; Y is the number of threads on the Oy axis. Values of the objective
function: TGPU is the implementation time of one MATM step on the GPU in
terms of 1000 nodes of the computational grid, ms. The multiply of threads X
and Z must not exceed 640 – the number of threads in a single block. Therefore,
the levels of variation of the values X and Z are chosen taking into account
CUDA limitations. For example, the number of threads on the Oy axis varies in
the range [1000, 30000]. Experimental data analysis for the factor values X = 1,
Z = 640 and X = 640, Z = 1 shows that the allocated memory is not used
when calculating the objective function at the specified points. Therefore, these
points must be excluded from regression analysis.

The regression equation is obtained as a result of experimental data
processing:

TGPU = a − b · Y − c · ln(k) − d · ln(Y ), (4)

where TGPU is the implementation time of one MATM step on the GPU in
terms of 1000 nodes of the computational grid, ms. The determination coefficient
is 0.86; a = 0.026; b = 0.0000002; c = 0.00016; d = 0.00077. The graph of the
objective function is given in Fig. 4.

The analysis of the graph, constructed according to equation (6), shows a
slowdown in the calculation speed at k < 10 and Y < 1000, which is explained
in this case by the inefficient use of the distributed memory of the graphics
accelerator (Fig. 4).

As a result of experimental data analysis, it is found that the shortest imple-
mentation time of one MATM step in terms of 1000 nodes of the computa-
tional grid on the GeForce GTX 1650 video adapter will be obtained with the
largest number of threads along the Oy axis and the highest coefficient value k.
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Fig. 4. Surface of the response function TGPU = f(k, Y )

The implementation time of one MATM step in terms of 1000 nodes of the
computational grid on the GeForce GTX 1650 video adapter is inversely propor-
tional to the number of computational grid nodes on the Oz axis, i.e., with an
increase in the number of nodes on the Oz axis, the calculation time decreases.
The highest value of the coefficient k is achieved when the number of threads
on the Ox axis increases, and the number of threads on the Oz axis decreases.
Therefore, it is advisable to perform the decomposition of the computational
domain in the form of parallelepipeds, in which the size on the Oz axis is mini-
mal, and on the Ox axis is maximal. The choice of the decomposition method of
the computational domain in the form of parallelepipeds must be made taking
into account the architecture of the video adapter.

When developing a parallel algorithm that implements the pipeline process
of computations, it is necessary to take into account the amount of data trans-
mitted between compute nodes, i.e., the size of the transmitted plane (number
of elements in the plane). To dynamically determine the size of the transmitted
plane, it is necessary to determine the functional dependence of the time spent
on transferring data between compute nodes on the size of the transmitted plane.
The resulting dependence will make it possible to obtain such a decomposition
of the computational domain that will reduce the execution time of the entire
parallel algorithm.

The purpose of the experiment is to determine the functional dependence of
the data transfer time between compute nodes on the number of elements in the
transmitted plane. The number of elements in the plane is taken as a factor V .
The value of the objective function Time, ms is the time of transmitting the
number of elements V .

To determine the dependence of the time of data transmission between com-
pute nodes on the number of transmitted elements, an algorithm and its software
implementation in the C language are developed. The program considers three
ranges of dimensions of the transmitted plane: V ∈ [1; 100] with a step of 1,
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V ∈ [100; 10000] with a step of 100 elements, and V ∈ [10000; 1000000] with a
step of 10,000 elements.

The developed algorithm is tested on the main computing resource of the
Keldysh Institute of Applied Mathematics, namely, the K-60 computing cluster.
The specified cluster consists of two sections – one without graphics accelerators
k60.kiam.ru, the other with graphics accelerators k60gpu.kiam.ru. The hardware
of the GPU section consists of 10 compute nodes. Each node is a dual-processor
server with the following characteristics: 2 x Intel Xeon Gold 6142 v4 processors
(16 x cores), 4 x nVidia Volta GV100GL GPU, 768 GB RAM, 2 TB disk.

As a result of processing experimental data for the range of dimensions of
the transmitted plane from 10,000 to 1,000,000 elements, a regression equation
is obtained:

T = a + bV, (5)

where T is the time of transmitting the number of V elements, ms. The deter-
mination coefficient is 0.995; a = 278.72; b = 0.038.

The resulting functional dependence is used by the decomposition algorithm
to dynamically determine the dimensions of the plane transmitted between com-
pute nodes.

4 Conclusions

As a result of the conducted research, an algorithm and a software module
implementing it, designed to solve SLAEs that arise during the discretization
of spatial-three-dimensional model problems of mathematical physics using the
MATM, are developed.

A graph model that makes it possible to organize a parallel pipeline com-
puting process on the GPU, designed to solve systems of large-dimensional grid
equations, is proposed.

It is established that the shortest implementation time of one MATM step per
1000 nodes of the computational grid on the GeForce GTX 1650 video adapter
will be obtained with the largest number of threads on the Oy axis and the
highest value of the coefficient k, directly proportional to the number of threads,
on the Ox axis. The optimal decomposition method for the three-dimensional
computational grid with the number of nodes up to 1011 and the time layers
number from 104 and more, if we focus on the limitations of computational
stability and accuracy of discrete models, applicable to the GPU, is described.
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Abstract. Parallel methods for solving saddle-type algebraic systems
that are relevant for modeling processes and phenomena in the problems
of electromagnetism, hydro-gas dynamics, elastoplasticity, filtration and
other applications are considered. Preconditioned iterative processes in
the Krylov subspaces, including the efficient generalization of the Golub-
Kahan-Arioli bidiagonalization method, are investigated as applied to
large SLAEs with sparse matrices that arise when approximating multi-
dimensional boundary value problems with a complex geometric config-
uration of computational domains and the contrasting material prop-
erties of various media on unstructured grids. It is supposed to store
the matrices in compressed formats that require special technologies for
working with big data. The parallelization of the proposed class of block
algorithms is carried out by means of hybrid programming on supercom-
puters of a heterogeneous architecture with distributed and hierarchical
shared memory, using the means of inter-node message transmission,
multi-threaded computing, operation vectorization. A comparative anal-
ysis of various algorithmic approaches is carried out on the basis of the
estimates of the performance and resource intensity of the corresponding
software implementations.

Keywords: large sparse SLAEs · saddle matrices · iterative processes ·
algorithm parallelization · Krylov subspaces · computing performance

1 Introduction

Systems of linear algebraic equations (SLAEs) of the saddle type in their classical
version are associated with second order block matrices having a zero lower-right
block and written in the following form (we limit ourselves to a real case for
simplicity):

Au ≡
[

D C
C� 0

] [
u1

u2

]
=

[
f1
f2

]
≡ f, (1)

u, f ∈ RN ; u1, f1 ∈ RN1 ; u2, f2 ∈ RN2 ; N = N1 + N2,

D ∈ RN1,N1 , C ∈ RN1,N2 , A ∈ RN,N .
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For a number of characteristic applications, the matrix A from (1) has the fol-
lowing property, see [1]–[2].

Property A. The matrix D is symmetric and positive definite (s.p.d.), the null
spaces of the matrices D and C� do not intersect, i.e., ker(D)∩ker(C�) = {0},
which ensures the non-singularity of the matrix A.

The saddle-type matrices A from (1) are sometimes considered in a more
general form

A =
[

D C1

C�
2 −εH

]
, ε > 0, (2)

where H ∈ RN2,N2 is the positive-semi-definite matrix, in the sense of fulfilling
the inequality (Hv, v) ≥ 0 for v ∈ RN2 , introduced either by the conditions of
the problem statement, or for the reasons of the regularization of original SLAEs
(1). In addition, the matrices D,H,A can be asymmetric, i.e., C1 �= C2,D �=
D�,H �= H�, A �= A�.

Note that without loss of generality, instead of (1), we can consider saddle
SLAEs of the form [

D C
C� 0

] [
u1

u2

]
=

[
f1
0

]
. (3)

Indeed, if we take any particular solution of the subsystem Cû1 = f2, the
vector u = ǔ + û is the solution of systems of linear algebraic equations (1),
satisfying the system

[
D C
C� 0

] [
ǔ1

u2

]
=

[
f1 − Dû1

0

]
.

Note also that any solution to SLAEs (1) simultaneously satisfies the system

Ãv = Ã

[
u1

u2

]
≡

[
D̃ C
C� 0

] [
u1

u2

]
=

[
f1
0

]
≡ f̃ ,

D̃ = D + γR, R = CK−1C�, γ ≥ 0, (4)

where vf̃ ∈ RN and K ∈ RN1,N1 is an arbitrary non-degenerate matrix. Since
the latter system is formally a regularization, or generalization, of SLAEs (1),
we further focus on the algorithm for solving equation (4). The parameter γ is
introduced for the convenience of varying the algorithm, in particular, γ = 0
means no regularization.

Note that the non-degenerate matrix of the form of (1) can have an alternat-
ing spectrum, which creates its own difficulties in the iterative solution of the
corresponding algebraic system.

Without loss of generality, the studied SLAEs can be written down in the
following form:

Ã

[
u1

u2

]
≡

[
D̃ C
C� 0

] [
u1

u2

]
=

[
0
g

]
, D̃ = D + γCK−1C�. (5)
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It is easy to check that if in (4), the vector u1 is replaced by u1 + D̃−1f1, then
this system will take the form of (5) with the right hand side g = −C�D̃−1f1.
It is assumed that in (5), D̃ and K are the s.p.d. matrices, and the inequality
N1 ≥ N2 also holds.

Algebraic systems of the form of (1), (2) are in demand in many topical prob-
lems of electromagnetism, hydro-gas dynamics, heat and mass transfer, elastic-
ity, multiphase filtration in porous-fractured media and in other applications.
In particular, they arise in mixed classical or generalized formulations for initial
boundary value problems. A large number of papers are devoted to the study
of the saddle SLAEs under consideration and methods for solving them, see [3–
12] and an extensive list of literature given therein. In recent years, due to the
increasing role of the predictive modeling of real processes and phenomena with
big data, there has been a significant increase in the interest in high-performance
methods and technologies for solving large SLAEs with sparse matrices arising
from the approximations of multi-dimensional boundary value problems with
complex configurations of computational domains and the contrasting material
properties of different media using finite difference methods, finite volumes, finite
elements and discontinuous Galerkin algorithms of various orders of accuracy on
unstructured grids [13]. The resulting algebraic systems have 108−1010 sizes and
are poorly conditioned (the conditioning numbers of matrices reach 1013 and
greater), thus, their numerical solution in practice takes up to 80% of the total
machine resources. Therefore, the main reserve for speeding up calculations is
the scalable parallelization of algorithms by means of hybrid programming with
the inter-node message transmission, multi-threaded messages and vectoriza-
tion of operations (MPI, OpenMP, AVX systems, respectively) of heterogeneous
architecture supercomputers with distributed and hierarchical shared memory,
see [14–18]. It should be noted that due to the large-block structure of saddle
matrices, two-level iterative algorithms with specific features of data organiza-
tion and memory access methods are characteristic of solving the corresponding
SLAEs, and optimization is critical for improving the performance of software
implementations.

This paper is structured as follows. Section 2 discusses the main approaches
to constructing preconditioned block iterative methods in the Krylov subspaces
for the effective solution of the considered algebraic systems. Section 3 deals with
the analysis of the performance of the scalable parallelization of the studied com-
putational processes in the weak and strong senses. In conclusion, the problems
of improving the performance of algorithms for solving saddle SLAEs are dis-
cussed in the light of the current trends in the development of supercomputer
architectures.

2 Iterative Algorithms in the Krylov Subspaces
for Solving Saddle SLAEs

In this section, we first characterize the general property of Krylov-type iterative
processes and then focus on their features when solving SLAEs with saddle
matrices.
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2.1 General Scheme of the Krylov Approaches for Symmetric
and Non-symmetric Algebraic Systems

For solving symmetric or non-symmetric SLAEs

Au = f, A ∈ RN,N ; f ∈ RN (6)

iterative methods in the Krylov subspaces can be written down as follows:

un+1 = un + αnpn = u0 + α0p
0 + ... + αnpn,

rn+1 = rn − αnApn = r0 − α0Ap0 − ... − αnApn, (7)

Here u0 is an arbitrary initial vector, r0 = f −Au0 is the corresponding residual,
αn and pn are the iterative parameters and guiding vectors. In the absence of
a precondition for system (6), p0 = r0 is conventionally assumed (to be used
below), although formally the initial guiding vector can be arbitrary. Assume
that the direction vectors are Aγ-orthogonal, i.e.,

(pn, pk)γ = (Aγpn, pk) = ρ
(γ)
k δn,k, ρ

(γ)
k = (Aγpk, pk) = ||pk||2γ , (8)

where δn,k is the Kronecker symbol, and the exponents are equal to γ = 0, 1, 2.
Then the residuals are rn for the value of the parameters

αn = σn/ρn, σn = (r0, pn)γ−1 = (rn, pn)γ−1 = ||rn||2γ−1, (9)

providing a minimum of the functional Φγ(rn) = (Aγ−2rn, rn) in the Krylov
subspaces

Kn(r0, A) = Span(r0, Ar0, ..., An−1r0). (10)

If the matrix A is symmetric, then orthogonality conditions (8) are provided
when determining the direction vectors pn by the two-term recursive formulas

pn+1 = rn+1 + βnpn, βn = σn+1/σn. (11)

For the case γ = 0, however, the calculation of αn must be done in a different way.
Since the exact solution of SLAEs can be represented as a basis decomposition

u = u0 + α0p
0 + ... + αm−1p

m−1, m ≤ N,

then the iterative vectors and the corresponding residual vectors are presented
in the following form:

vn = u − un = αnpn + ... + αmpm,

rn = Avn = αnApn + ... + αmApm. (12)

Hence, using Aγ , the orthogonalization of the vectors pk, we have

αn = (vn, pn)γ/||pn||2γ = −αn−1(vn, Apn−1)/||pn||2γ
= −αn−1(rn, pn−1)γ/||pn||2γ . (13)
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Here the orthogonality of the vectors pn−2, pn−1 and pn is used. The calcula-
tion of the coefficient βn in this case should be carried out according to formula
(11).

These algorithms for γ = 0, 1, 2 have the names of the methods of minimal
iterations, or errors [17], as well as conjugate gradients and conjugate residuals,
respectively.

The described approaches allow for a simple generalization to SLAEs, pre-
conditioned with the help of some s.p.d. matrices B. To preserve the symmetry
of the systems, it is advisable to do this by two-way preconditioning using the
formally introduced matrix B1/2. As a result, system (1) takes the form

Āū = f̄ , Ā = B−1/2AB−1/2, ū = B1/2u, f̄ = B−1/2f. (14)

A result of applying the conjugate direction formulas to SLAE (14), after certain
transformations for γ = 1, 2, we obtain the following iterative process:

p̂0 = r̂0 = B−1r0 = B−1(f − Au0), n = 0, 1, 2, ...;
un+1 = un + αnp̂n, r̂n = r̂n − αnAp̂n; (15)

p̂n+1 = r̂n+1 + βnp̂n, αn = σn/ρn, βn = σn+1/σn;
σn = (Aγ−1r̂n, r̂n), ρn = (B−1Ap̂n, Aγ−1p̂n),

where the new vectors are related to the previous relations p̂n = B−1pn, r̂n =
B−1rn. In the method of minimum iterations with γ = 0, the calculation of the
parameters αn, βn must be carried out according to formulas (9), (10), with the
replacement values of r̄n = B−1rn, p̄n = B−1pn, respectively.

For non-symmetric algebraic systems, the methods of their solution become
significantly more complicated. We briefly present a description of specific
approaches for a fairly wide class of multi-preconditioned algorithms of semi-
conjugate direction [18]. In general, these iterative processes in the block Krylov
subspaces can be presented as follows:

r0 = f − Au0, n = 0, . . . : un+1 = un + Pnᾱn,

Pn = (pn
1 , . . . , pn

Mn
), rn+1 = rn − APnᾱn, ᾱn = (αn,1, . . . , αn,Mn

)�.

Here pn
1 , ..., pn

Mn
are the guiding vectors that make up the matrix Pn of the

n-th iteration, and ᾱn is the vector of the iterative parameters. With respect to
the vectors pn

k in the above relations, only orthogonality conditions are assumed
to be fulfilled

(Apn
k , Aγpn′

k′ ) = ρ
(γ)
n,kδk,k′

n,n′ , ρ
(γ)
n,k = (Apn

k , Aγpn
k ),

γ = 0, 1, n′ = 0, 1, . . . , n − 1, k, k′ = 1, 2, . . . ,Mn.

If, at the same time, the coefficients ᾱn = {αn,l} are defined by the formulas

αn,l = σn,l/ρ(γ)n,n, σn,l = (r0, Aγ p̄n
l ),
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then the functional of the residual Φ
(γ)
n (rn+1) ≡ (rn+1, Aγ−1rn+1) reaches its

minima in the Krylov block subspaces

KM = Span{p01, ..., p
0
M0

, Ap11, . . . , Ap1M1
, . . . , Apn

1 , . . . , Apn
Mn

},

M = M0 + M1 + · · · + Mn,

for γ = 1, and in the case of symmetry of the matrix A and for γ = 0.
The orthogonality properties of the guiding vectors can be provided if they

are determined using “multi-conditional” recurrence relations in which each vec-
tor pn+1

l corresponds to “its” preconditioning matrix Bn+1,l:

p0l = B−1
0,l r0, pn+1

l = B−1
n+1,lr

n+1 −
n∑

k=0

Mk∑
l=1

β
(γ)
n,k,lp

k
l , n = 0, 1, . . . ;

Bn,l ∈ RN,N , i = 1, . . . ,Mn; γ = 0, 1,

β̄
(γ)
n,k = {βγ

n,k,l} =
(
β
(γ)
n,k,1 . . . β

(γ)
n,k,Mn

)�
∈ RMn ,

β
(γ)
n,k,l = −

(
Aγpk

l , AB−1
n+1,lr

n+1
)
/ργ

n,l, n = 0, 1, . . . ;

k = 0, . . . , n; l = 1, . . . ,Mn.

The peculiarity of the algorithms under consideration when solving poorly con-
ditioned asymmetric SLAEs is of a high resource intensity, in terms of both
the amount of calculations and the required memory, when conducting a large
number of iterations. The remedy for this disadvantage can be carried out in
two ways by reducing the number of used and saved direction vectors. The first
of them is to reduce the recursion taking into account only its last m vectors.
The second way consists in periodic restarts when using a given number of m
iterations, the residual vector being calculated from the recurrence formula, and
the original equation being to zero as the iteration:

rnt = f − Aunt , nt = mt, t = 0, 1, ...,

where t is the number for the restart. Further calculations up to n = nt+1 are
carried out according to usual recursions. Both of these approaches lead to a
significant slowdown in the iterative process.

To eliminate such a stagnating effect, it is proposed to add the second level of
iterations using the least squares method (LSM) [17]. Let the “restart” approxi-
mations un0 , un1 , ..., unt , n0 = 0 be known. Then to correct the iterative vector
unt , which is the initial one for the next restart period, we use the following
linear combination:

ûnt = unt + b1v1 + . . . + btvt = unt + vnt , vnt = Vtb̄, b̄ = (b1, . . . , bt)�,

Vt = {vk = unk − unk−1 , k = 1, . . . , t} ∈ RN,t,
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the vector of the coefficients b̄ of which is determined by the condition of the min-
imum norm of residuals ||rnt || from the generalized solution of the overdefined
algebraic system

W�
t Wtb̄ = rnt ≡ ant , Wt = AVt.

The solution to this problem can be obtained, for example, using the QR - or
SV D - decomposition of the matrix Wt. The normal solution with the minimum
norm ||b̄|| is determined after applying the left Gauss transformation:

W�
t Wtb̄ = Wtr

nt .

A more lightweight SLAEs format, in the sense of reducing its condition number,
follows after multiplying the system on the left by the matrix Vt:

Ctb̄ ≡ V �
t AVtb̄ = V �

t rnt .

If the matrix Vt has a full rank, then the matrices A and Ct will be non-
degenerate at the same time. In this case, for a correction vector we have vnt =
Btr

nt ≡ Vt(V T
t AVt)−1V T

t rnt , where the matrix Bt = VtÂ
−1V T

t , Â = V T
t AV

is a low-rank approximation of the matrix A−1. In the approach considered, all
restart vectors are stored in the corrected form, and the corresponding residuals
are calculated using the formula rnt = f − Aûnt .

If there is no inverse for some matrix under consideration, then a generalized
inverse matrix is used. Numerous experiments using the LSM to speed up the
Krylov processes with restarts show its high efficiency.

We also note the following possibility of improving the performance of the
SCD (Semi-Conjugate Direction) methods with restarts: when iterating the first
restart period, remember all the pn direction vectors, as well as the Apn vectors,
and when calculating subsequent restart periods, we do not consider new vectors
pn and Apk, but use the previous ones.

The described class of SCD-methods with dynamic multi-conditionality in
terms of the rate of convergence of iterations is equivalent to other well-known
algorithms for solving asymmetric SLAEs in the Krylov subspaces, among which
the generalized minimum residuals method (GMRES) based on the Arnoldi
orthogonalization and existing in various versions is the most popular. The
research into iterative methods for solving algebraic systems with saddle-type
matrices involves the use of a wide variety of block preconditioners. The starting
point for their construction is the following formula for the factorization of the
matrix A = D + L + U , where D is block-diagonal, and L,U are the strictly
lower and upper triangular matrices:

A = (G + L)G−1(G + U), G = D − LG−1U,

G1 = D, G2 = −εH − C�
2 D−1C1.

In particular, if the matrix A has a block structure of the form of (2), then
G = block − diagonal{G1, G2} has non-zero diagonal blocks only

G1 = D, G2 = −εH − C�
2 D−1C1.



92 V. P. Il’in and D. I. Kozlov

Note that if the matrix A is symmetric, i.e., C1 = C2 and L = U�, D and R
in (2) are s.p.d. matrices, the given factorization is a congruence transformation
of the block-diagonal matrix G. Since it obviously has an alternating sign spec-
trum, the matrix A has the same property, which causes certain difficulties in
constructing methods for solving the corresponding SLAEs. If the definition of
the matrix G is replaced by some approximation that allows simple calculations,
then we get a family of preconditioners B ≈ A. This implies, in particular, an
iterative method of the Uzava type (see [14–20]). Another promising way is to
construct block-diagonal preconditioners of the form

B =

⎡
⎢⎢⎣

D̃ + CK−1
1 C� 0

. . .

0 K2

⎤
⎥⎥⎦ ,

where K1 and K2 are some s.p.d. matrices, see [17,18].

2.2 Generalized G-K-A – Bidiagonalization Method

Next, we consider a family of iterative methods for solving saddle symmetric
SLAEs with the matrix Ã from (4), based on the efficient approach of the G-K
– Golub-Kahan bidiagonalization, which was originally proposed for a singular
decomposition of rectangular matrices, but then in the publications by M. Saun-
ders, M. Arioli, C. Greif and some other authors was successfully used to solve
algebraic systems, including those with allowance for a block saddle structure.

More specifically, we present a generalization of the Golub-Kahan-Arioli
algorithm, which is published in [9] under the title <<generalized G-K–
bidiagonalization method>>, based on the construction of D̃-orthogonal vectors
vk and P -orthogonal vectors qk, which satisfy the conditions

CQn = D̃VnBn, V �
n D̃Vn = IN1 ,

C�Vn = PQnB�
n , Q�

n PQn = IN2 , (16)

where Vn = [v1, ..., vn] ∈ RN1,n, Qn = [q1, ..., qn] ∈ RN2,n, P ∈ RN2,N2 – s.p.d.
matrices and Bn ∈ Rn,n is the bidiagonal matrix

Bn =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

α1 β2 0 . . . 0

0 α2 β3
. . . 0

...
. . . . . . . . .

...
0 . . . 0 αn−1 βn

0
. . . 0 0 αn

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

.

Let us note that in [9] only the case of K = P is considered, which is
not is mandatory, see formula (5). Introducing new unknown vectors μn =
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(μ1, ..., μn), νn = (ν1, ..., νn) ∈ Rn, substituting the expressions

u1 = Vnμn, u2 = Qnνn (17)

in (5) and multiplying system (5) on the left by the block-diagonal matrix
block-diag(V �, Q�), we get

V �
n D̃Vn(μn + Bnνn) = 0, Q�

n PQnB�
n μn = Q�

n g. (18)

Thus, SLAEs (18) are reduced to the form[
In Bn

B�
n 0

] [
μn

νn

]
=

[
0

Q�g

]
. (19)

Assuming further Q�
n g = e1||g||P −1 , e1 = (1, 0, ...)�, we define the vector

q1 = P−1g/||g||P −1 , ||g||P −1 = (g, P−1g)1/2.

Let us find the initial vector v1:

α1D̃
−1v1 = Cq1, v1 = w/α1, α1 =

√
w�Cq1, w = D̃−1q1. (20)

Note that the vector μ = B−�
n Q�

n g is determined up to a constant by the first
column of the matrix B−1

n = (B�
n )−1.

Further the vectors vn, qn and the matrix B entries αn, βn are calculated
from the following recurrent relations, n = 1, 2, ...:

s = P−1(Cvn − αnPqn), βn+1 =
√

s�Ps,

qn+1 = s/βn+1, w = D̃−1(C�qn+1 − βn+1D̃vn), (21)
αn+1 = (w�D̃w)1/2, vn+1 = w/αn+1.

Successive approximations un, beginning with (17), (18), are determined by
the first n columns of the matrix V , according to

un+1
1 =

n∑
j=1

μjvj = un
1 + μnvn, (22)

where μj are the components of the vector μn from (19), calculated by the
formulas

μ1 = ||g||P −1/α1, μj+1 = −βj+1μj/αj+1 j = 1, 2..... (23)

Omitting the details of the derivation of the formula (see [10]), we present the
resulting recurrence relation for the iterative solution:

un+1
2 = un

2 − νndn+1, d1 = q1/α1, dn+1 = (qn+1 − βn+1αn)/αn+1, (24)

where dn is the n-th column D = QB−1. This approach is called the generalized
G-K-A – bidiagonalization algorithm. At each step of such an iterative process,
the error norm ||u − un|| is minimized. As noted in [14], the two-level itera-
tive method demonstrates high performance and convergence rate when solving
saddle-type SLAEs obtained in grid approximations of the mixed formulations
of multi-dimensional boundary value problems.
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3 Scalable Parallelization of Iterative Methods

In general, the computational quality of the algorithm can be characterized by
means of two different features. The first one is mathematical efficiency, which
can be estimated by the total number of arithmetical operations. The second
characteristic is more practical and is measured by the run time of the method
implementation on a specific computer configuration. In other words, in this case
we speak about the quality of mapping algorithms onto an architecture that
usually has a heterogeneous structure with distributed and hierarchical shared
memory. A significant complexity of the problem of studying the performance
of an executable program code lies in the actual absence of a mathematical
model of supercomputer calculations, and optimization attempts require some
experience and skill gained in order to avoid repeated trials and errors. Scalable
parallelization is conventionally understood in either a strong or weak sense. The
first means a reduction in the calculation time of a fixed task with an increase
in the number of computing devices, for example, cores. In the second case,
a simultaneous proportional increase in the resource intensity of the problem
(the number of degrees of freedom) and the number of arithmetic devices are
considered (ideally, the estimated time remains approximately constant). The
SLAEs of most interest to us have high orders and sparse matrices with large
conditionality numbers and an irregular structure. This does not only lead to an
increase in the number of iterations, but also forces one to work with distributed
and/or hierarchical shared memory systems, and also significantly slows down
the access to data. It should be said that the large-block structure of saddle
matrices strongly affects the computational scheme of iterative algorithms and
the ways of parallelizing them when changing the type of a preconditioner. In
this section, we briefly focus on the general current problems of parallelization
and in more detail on the proposed generalization of the G-K-A – bidiagonal-
ization algorithm, as applied to the solution of saddle SLAEs obtained from
a finite element approximation of the three-dimensional initial boundary value
problem for the two-phase filtration proposed in [24]. In this case, the order of
SLAEs (1)–(5) is equal to N ∼= 4h−3, where h is the characteristic element of
the grid, and the dimensions of the diagonal blocks are equal to N1

∼= 3h−3

and N2
∼= h−3. In physical terms, the subvector u1 = {ux, uy, uz} consists of

components of the velocity vector along different axes of the Cartesian coordi-
nate system referred to the midpoints of the faces of the cubic grid, and u2 is a
set of values of the scalar pressure function at the centers of the grid cells. The
matrix D is block-diagonal, and its non-zero blocks are easily invertible s.p.d.
tridiagonal matrices with a strict diagonal dominance. The off-diagonal matrix
is represented as three block rows C = (C�

1 , C�
2 , C�

3 ), and each Ck, k = 1, 2, 3,
is a two-diagonal matrix. The parallelization of the G-K-A – bidiagonalization
method, presented in Sect. 2.2., consists of the following main stages. The auxil-
iary orthogonal vectors vn, qn and the entries αn, βn of the matrix B by formulas
(20), (21) are calculated. The tedious procedure of this stage essentially depends
on the structure of the matrices D̃ and K introduced in (5), and the matrices
of the form P of (16). We get a simple case at γ = 0 in (5), i.e., the matrix K
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is missing, and P is a diagonal matrix. At the same time, the appeal D̃ = D is
implemented by efficient iteration-free runs, which can be performed in parallel
without any additional expenditure of machine resources. If γ �= 0, then even
with the diagonal character of K, the inversion of the matrix D̃ (more precisely,
the solution of auxiliary SLAEs with such a matrix) requires the introduction of
a two-level iterative process. The issue of optimizing these algorithm parameters,
which can potentially significantly reduce the number of iterations, seems to be
non-trivial and requires a special study.

We denote the possibilities of parallelization:

1. The parallelization of vector-matrix operations of the Krylov processes.
2. The calculation of two-term recursions for the vectors un

1 , un
2 is performed by

formulas (24). These vector operations are naturally parallelized with a linear
speedup.

3. The formation of data structures and buffers is based on the separation of
computational vectors, which geometrically corresponds to the decomposition
of computational and grid domains to subdomains. For big data tasks, reduc-
ing communications at each iteration is critical to scalable parallelization.

The performance of parallel computing is defined mainly by the speedup,
which is determined by the formulas

Sp = T1/Tp, Tp = T a + T c. (25)

Here, Tp means the run time of solving the task on p processors. This value
consists of two parts: the times of data exchanges and the implementation of
the arithmetic operations. The latter can be described approximately by the
following relations:

T a = τaNa, T c = Nt(τ0 + τcNc).

In these formulas, τa means the average run time of an arithmetic operation,
Na is their total number, Nt is the number of communications, τ0 and τc are
the memory system waiting time and the transfer duration of one value, and
Nc is the average volume of one data exchange. Since the machine constants
are satisfied to the conditions τ0 � τc � τa, we can propose the following rec-
ommendations for the algorithms being constructed: we should try to minimize
the volume of communications, and the exchanges should be carried out not in
small, but in large portions, i.e., if possible, to carry out the preliminary accu-
mulation of data buffers. These conclusions are even true because interprocessor
information transfers not only slow down the computing process, but are also
the most energy-consuming operations, and this becomes a significant factor in
the cost of operating a supercomputer.

One of the important practical problems of scalable parallelization is due to
solving large SLAEs with sparse matrices that arise from the grid approxima-
tions of multi-dimensional boundary or initial-boundary value problems. Here,
the main approaches are additive domain decomposition methods with two-
level iterative processes and the use of hybrid programming tools. The top level
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iterations implemented over the subdomains are carried out by means of MPI
(Massage Passing Interface) for communications between the contacting sub-
domains. The low level of the algorithm includes the simultaneous solution of
algebraic subsystems in the corresponding subdomains. This stage is parallelized
by multi-threaded computing (OpenMP). At each such iteration, the values of
approximate solutions are exchanged on the interface boundary surfaces of the
contacting subdomains. Naturally, all matrix and vector data for subsystems are
performed in the process-distributed form. The solution to SLAEs in each of
the subdomains is parallelized using multi-threaded computing (OpenMP-type
systems) on multi-core processors with shared memory. Additional speedup here
can be achieved by vectorizing operations (AVX-type command systems based
on SIMD – Single Instruction Multi Data technologies), see reviews in [20–25].
Unfortunately, here we can state the absence of regular programming systems
with the automatic parallelization of algorithms, so that the success in the scal-
ability of speeding up calculations largely depends on the art and skill of a
mathematician-programmer. One of the common modern supercomputer con-
figurations is a network of multi-core servers, with a number of cores in several
tens or hundreds, which have several memory levels with different information
exchange rates. For quite understandable reasons, larger memory devices have a
lower data transfer rate (the fastest are the registers of arithmetic units - AU).
In this situation, communication channels between different levels of memory
are represented as a bottleneck, the access to which dramatically degrades the
performance of the computing process. The most successful algorithmic solu-
tions are those that use a small-block structure of data with the maximum use
of AU registers, as well as the features of implementing their communications
with lower-level memory.

Strictly speaking, the main objective of code optimization is not parallelism,
but high performance. A significant speedup of calculations can be attained
using variable precision machine arithmetic. The conventional way to solve large
SLAEs is to use standard double precision with a 64-bit floating-point repre-
sentation length. Many years of numerical experience show that this accuracy
is sufficient in practice. However, for some ill-conditioned algebraic problems, it
is necessary to use quadruple precision (128 bits). On the other side, at many
stages of the algorithms, it is enough to apply single (32 bits) and even half
precision (16 bits) which can be performed much faster. Nevertheless, with this
approach, it is necessary to check the stability of computations. Hopefully, such
an intelligent problem will be solved in the near future. Another way to obtain
high performance and code optimization can be achieved through the efficient
use of reliable implemented numerical tools (from SPARSE BLAS, for example)
that are adapted to various computer platforms.

4 Conclusion

Parallel iterative methods in the Krylov subspaces for solving large saddle-type
SLAEs with various matrices, relevant in the problems of electromagnetism,
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strength, hydro-gas dynamics and other applications, are considered. The issues
of constructing preconditioners for symmetric or non-symmetric systems using
universal least squares algorithms to speed up the Krylov iterations are dis-
cussed. Approaches to the generalization of Golub-Kahan-Arioli bidiagonaliza-
tion methods are described. Scalable distributed technologies in the strong and
weak senses, focused on minimizing communication losses, based on the use
of hybrid programming tools, namely, the transmission of inter-node messages,
multi-threaded computing and the vectorization of operations (MPI, OpenMP,
and AVX systems), on supercomputers of a heterogeneous architecture with dis-
tributed and hierarchical shared memory, are considered.
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Abstract. Fluxes in computational fluid dynamics are often expressed
through the variables defined in the neighboring cells of the spatial grid.
The time required for a cell update is limited by the calculation perfor-
mance, as well as by the bandwidth of the memory storage where the
required and updated data is located. Thus, the data layout and the
method of data access are important for the efficient parallel implemen-
tation. A new compact algorithm is proposed for numerical schemes on a
cubic mesh that are defined through fluxes. It has a resemblance to Mar-
golous neighborhood cellular automata and is inspired by the streaming
patterns of the Lattice Boltzmann method. The data is stored in small
groups of cells so that when each group is updated, there is no access to
the neighboring cells. This results in the optimal use of memory band-
width and in a high potential for parallelization.

Keywords: CFD · Fluxes · Margolous neighborhood · Roofline
analysis · Parallel algorithms

1 Introduction

Computational Fluid Dynamics (CFD) [6] is a rapidly evolving field of study, and
its new applications continue to be discovered [2,22]. Unfortunately, the scope of
the problems that can be solved with CFD is limited not only by the imagination
of scientists, but more so by the computing cost of the desired simulations [13].

To tackle new tasks, one can try to minimize the cost of the numerical scheme
by inventing ways to perform simulations on a coarser grid with larger time
steps. This is not what we consider in the current work. Computers currently
available to researchers should be more than capable to deal with high-resolution
problems.

Another way to make large-scale simulations feasible is to find ways to opti-
mize the existing code for newer and more powerful computer hardware [1,5].
This is a crucial step, but the performance gain can be either relatively small,
unless the unoptimized code is intentionally bad, or highly limited by legacy
approaches to programming.
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This work deals with increasing the efficiency of CFD codes on modern
hardware by developing advanced algorithms. The change in the algorithm can
raise the peak performance towards which the code is optimized. It was done
many times by the application of LRnLA (Locally Recursive non-Locally Asyn-
chronous) algorithms [9,10,18]. Additionally, while the work on parallel code
optimization for a specific system with specific programming tools may become
obsolete with the advance of computer technologies, the algorithm construction
theory is timeless. When properly parametrized, the theory can be applied to
existing and theoretical processors, which are very unlike one another [11].

The basic issue that has to be solved with newer algorithms is the fact that,
in the evolution of computers, the increase in memory bandwidth lags behind
the increase in peak computer performance [3]. Since high-resolution CFD deals
with big data problems, we need to optimize the data layout, methods of data
access, and find ways to take advantage of all the complex inner architecture of
the computer memory subsystem.

The current work is inspired by the success of the compact streaming scheme
in Lattice Boltzmann Method (LBM) codes [20,30]. We anticipate that this
success can be repeated for other numerical schemes for systems of conservation
laws. The LBM implementation with a compact streaming pattern and LRnLA
algorithms allows obtaining the fastest LBM code for the relevant vector CPU
architectures with advanced memory hierarchy, since, with it, the computation
can be localized in faster and smaller cache levels [20].

In the LBM [8,24], several floating point values are stored for each lattice
site, and there is a streaming step, in which the values are transferred from
one node to another. In the other steps, the data from the neighboring cells is
often not required. Due to its transparency, the LBM has provided the base for
the development of advanced temporal blocking algorithms [15,17,23,27]. It has
been repeatedly proven that the data layout and the data access pattern have a
great impact on the code performance. Thus, many variations of the streaming
step were proposed [4,12,28]. In [20], a new compact streaming scheme was
introduced, and it has been used with the recent advances of LRnLA algorithms
in [19]. In the compact streaming in D-dimensions, to fully update all data in a
group of 2D cells, only the data in these 2D cells is accessed. This is not the case
in any other streaming scheme. For example, in the common ’pull’ scheme [28],
the data is collected from a cube of 3D neighbors to update one cell. In higher
dimensions, some cell is repeatedly accessed and loaded into higher levels of
memory when its neighbors are updated. The issue is commonly mitigated by
introducing an advanced data layout such as Morton Z-order [17] or Peano [14]
space filling curves; or by spatial blocking [15], but with the compact streaming
the issue does not appear.

In this paper, we propose a general method of compact scheme construction
for numerical schemes for systems of conservation laws, which can be expressed
with fluxes on a rectangular grid. The novel compact scheme for flux-based
schemes is introduced in Sect. 2. A class of problems for which the current method
is applicable and a basic scheme used for an illustration in the current paper are
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presented in Sect. 2.1. The target properties of the compact update are described
in Sect. 2.2. The proposed compact update is presented in Sect. 2.3. The efficiency
of the compact update is demonstrated with a sample implementation for CUDA
GPU, which is described in Sect. 3. For a performance illustration, the scheme
is implemented using modern temporal-blocking algorithms, and a significant
increase in performance is obtained. The performance benchmark results are
reported in Sect. 3.5.

2 Compact Streaming for Flux-Based Schemes

2.1 Problem Statement

A system of conservation laws in the differential form can be written as [26]:

∂u
∂t

+
∂F(u)

∂x
+

∂G(u)
∂y

+
∂H(u)

∂z
= 0. (1)

Here u is the set of conserved variables, and F, G, H are the flux vectors, which
are some functions of u. Numerical schemes differ in the manner of calculating
fluxes and in the way of discretizing partial differentials.

Let us first consider a basic scheme with one conserved variable per cell with
one stage per cell update, where only directly adjacent cells are to be read for
the computation of fluxes.

For example, the advection equation can be discretized on a uniform rectan-
gular grid in the following manner:
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,

(2)

where u|tx,y,z is the variable of interest in the cubic cell at {x, y, z} at time t,
and F are the fluxes at the faces of this cell. We consider only fluxes that can
be expressed as a function of values of u in the adjacent cells, i.e. F

t+1/2
x+1/2,y,z =

flux(u|tx,y,z, u|tx+1,y,z). The coefficients Cx, Cy, Cz in (2) can be any functions
of the local value of u, time or space.

For explicit scheme (2), the values Cx, Cy, Cz are limited by the Courant
(CFL) condition:

|Cx| + |Cy| + |Cz| ≤ 1. (3)
For a simple flux computation, one can choose the second order Lax-Wendroff

numerical scheme: Cxflux(uL, uR) =
Δt

2Δx
Vx

(
uL + uR − Δt

Δx
Vx (uR − uL)

)
,

for the flux through in the x axis direction. Here Δt is the time step, Δx is the
space step for the x-axis, Vx is the x-component of the velocity vector. Similar
equations can be written for the other directions.

For parabolic problems, the flux can be expressed as Cxflux(uL, uR) =
Δt

Δx2
(uR − uL), and it leads to the classical first-order explicit finite-difference

numerical scheme for the heat equation.
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2.2 Requirements for Compactness

The first requirement for the method is that the compact scheme is constructed
without modifying the numerical expressions. It only deals with data structures
and data access patterns.

Second, the data layout is Array of Structures (AoS). This way, all field and
flux values of the cell are stored alongside each other, and the cell data is stored
in memory linearly according to some space-filling curve.

Third, we require the compact property of data access: for the update of a
group of 2D cells only the data from these 2D cells is accessed. For this purpose,
we allow flexibility in data storage; the values or fluxes corresponding to the cell
can be stored in its neighbors.

2.3 Compact Update

We propose the following method of data storage and update that satisfies the
compact property. In the data structure, each cell contains one field for the value
u and D = 3 fields for the fluxes in the x, y, z axis directions.

Let us take a group that is a cube of 2×2×2 cells in 3D, or 2×2 cells for 2D
illustrations. Please refer to Fig. 1, which illustrates three steps of the algorithm.

1. The fluxes through the inner cell faces of the cube, i.e. the fluxes between the
cells of one group, are computed. There are 4 fluxes in 2D and 12 fluxes in
3D. The resulting flux through some cell interface is then stored in both cells
that share this interface. Thus, the flux data is duplicated.

2. The cells are regrouped so that the new groups are shifted in the (1, 1, 1)
direction in relation to the previous configuration.

3. In each new group, the inner fluxes are computed, but they are not saved.
Instead, the values of u are updated using the fluxes computed in step 1 and
in the current step. The values of u are stored in the corresponding cells.

Immediately after the last step, the inner fluxes of the current groups can be
computed, so the algorithm is repeated from step 1.

3 Implementation with LRnLA Algorithms

The compact update described in Sect. 2.3 can be implemented with any kind of
traditional stepwise mesh traversal. In the stepwise compact update, there is an
outer loop in time iterations, and the mesh update is the repetition (in a time
loop) of the following steps: (1) perform step 1 for all mesh cells; (2) shift the
point of reference; (3) perform step 3 for all mesh cells.

The memory bandwidth saturation is guaranteed here for any kind of mesh
traversal, and communication for parallel computing is only required in the sec-
ond step. However, it can be noted that the proposed compact scheme requires
more data storage, and thus more memory transfers, than the traditional imple-
mentation.
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Fig. 1. Illustration for the compact scheme update in 2D. Left: the fluxes on the inner
faces of the group (pink) are computed and stored in both cells that share the corre-
sponding face. Center: the fluxes on the inner faces of the shifted group are computed,
and the cell values are computed and stored. Right: the first step is repeated in the
shifted group.

Let us compare the data requirements with the naive approach. A naive
implementation of (2) would require either two data copies of the u value, or
the storage of one copy of fluxes to exclude data race conditions. In the compact
update, one copy of the field value u is required, and D fluxes per cell are stored
between steps 1 and 3.

The drawback for the requirement of data storage can be crucial, since some
modern hardware, like GPU, has very limited storage, and the resolution of
simulation is limited by it.

This drawback, however, is erased with the use of the novel FArSh data
structure for LRnLA algorithms [19,21]. This method is used here. Below, we
describe one sample implementation. Please refer to [10] for the details of LRnLA
algorithm construction.

3.1 LRnLA Algorithm ConeTorre

In the ConeTorre Algorithm [10], unlike the traditional traversal, there is no
outer loop in time steps. The dependency graph of the task is subdivided into
prism-like shapes (subtasks), so that the dependencies between the subtasks are
unilateral (Fig. 2). The order of execution is determined by the data dependen-
cies. Asynchronous subtasks can be identified and processed in parallel. The
whole mesh is updated to the same time step only once every NT time step.

Here, one ConeTorre is a subtask of performing step 1 of the compact update
for a cube of NB×NB×NB cells in N3

B/8 groups, shifting the point of view in step
2, and performing step 3 for the cube shifted by (1, 1, 1) (Fig. 3). Then the same
cube undergoes step 1 of the compact update, so that steps 1,2,3 are repeated in
the loop with NT iterations on the cube, which shifts by (NT , NT , NT ) relative
to its initial position.
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Fig. 2. (a) ConeTorre projection in 1D1T. The arrows show data dependencies. (b)
ConeTorre and its decomposition projection in 2D1T.

Fig. 3. ConeTorre kernel. For illustration purposes, D = 2, NB = NT = 4. Left: A Tile

(green) is loaded into registers; the FArSh array is initialized in the shared memory
(purple), and the FArSh lines are copied into it from the global FArSh array (red); step
1 of the compact update is processed. Center: the groups are shifted, the computed flux
values to the bottom and left of the green tile are stored into the FArSh lines replacing
the used values; step 2 of the compact scheme is processed. Right: final state of the
ConeTorre; the FArSh lines are copied to the global FArSh array; the field values from
the green cells are copied to the Tile array.

When the final or initial position is outside of the mesh domain, the update
does not take place. ConeTorre subtasks are performed in the order deter-
mined by the dependencies between them. In a domain of Nx + 1 × Ny +
1 × Nz + 1 cells, the first one is performed for the cube that starts from
(Nx − NB , Ny − NB , Nz − NB). The next three ConeTorres start from the
cubes at (Nx − 2NB , Ny − NB , Nz − NB), (Nx − NB , Ny − 2NB , NZ − NB),
and (Nx − NB , Ny − NB , Nz − 2NB). These three are asynchronous and can
be processed in parallel. The following ConeTorres are processed in the correct
order until the cells in the whole domain are updated NT times.

If NT = 1, the traditional traversal with stepwise synchronization is realized.
If NT is higher, more floating point operations are possible with the data loaded
to higher memory storage, so the increase in the efficiency of memory bandwidth
utilization is even greater compared to the use of the compact scheme with the
traditional traversal.
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3.2 FArSh Data Structure

It is noteworthy that the flux data in the scheme computation is temporary and
is only required for neighbor communication in the cell update.

Fig. 4. Data structures in 2D projection. Yellow: tiles containing field values; red: cells
containing fluxes; green: ConeTorre base, M = NB . (a) Initial state; (b) state during
the execution where the yellow data on the left of FArSh is on the step t = 0, and the
data to the right of FArSh is on the step t = NT , and the FArSH data is on all the
intermediate time steps; (c) final step after the execution of the first NT time steps in
the whole domain.

A ConeTorre starts with a cube that requires only values of u and outputs
the cube of u values from its top base. In its progression, the ConeTorre uses
the flux data prepared by the previous ConeTorres and outputs the flux data to
the ConeTorres on the same layer.

ConeTorres progress in a wavefront [29] manner across the domain. Thus, the
FArSh data is required in a strip of NT cells wide (Fig. 4). Moreover, the flux
data in the ConeTorre is read and stored not in the order of a cardinal direction,
but in the order of a diagonal (1, 1, 1) direction.

Therefore, there are two types of data.

– The initial conditions and the data output contain the values of u. The
data structure is organized for convenient visualization and input as com-
mon space-filling curves. For locality, it is preferable to organize cells into
tiles of size NB × NB × NB .

– Data communication between the ConeTorres is through the flux data. This
data is stored in a manner convenient for reading and writing in ConeTorres
as a set of diagonal lines of cells and cannot be output in a human-readable
form without special conversion.

Thus, the flux data is not required in the whole domain. This approach
was previously used in ’computational window’ approaches in hydrodynamics
and plasma physics [7], where the calculation of fluxes could be an expensive
procedure. This flux storage reduces the overall number of flux calculations.

Since the flux data is stored only for a small portion of the domain, the
increase in memory storage requirements for the compact scheme does not
present a problem.
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3.3 Sample Implementation in CUDA

We implemented the proposed scheme for the 3D advection equation with Lax-
Wendroff fluxes on CUDA GPU [16]. Here we present some specifics of the
implementation.

Fig. 5. Data structure for the Cell and Tile data. Double or single precision can be
used instead of ftype.

The CUDA GPU device has a global memory storage, which is used here as
the main data storage site, shared memory for CUDA-thread communication, a
register file for the localization of computations. To compute a ConeTorre, the
data of a NB × NB × NB cube is loaded into the register file.

The cell and the tile are defined as a data structure (Fig. 5). The cell contains
4 values: the u value and the fluxes in three directions. Each flux can be on the
right side or on the left side of the cell in its direction, depending on the stage
of the algorithm and the cell position. The tile contains only the u field values
in a cube of NB × NB × NB cells.

In the global device storage, there are two arrays:

– Main data, i.e. the u values on the mesh, organized in Tiles. Fluxes are not
stored here. This data can be localized in CPU RAM or even on SSD, since
the communication volume per time unit is minimal.

– FArSh data array that contains lines of NB Cells, containing fluxes in addition
to the u values. The FArSh line is a short array of NT Cells. It should fit into
the device memory [21].

The shared memory of the device is used for data exchange between groups
in step 2 of the compact update (Sect. 2.3). An array of 2NB ×2NB ×2NB Cells
is initialized in the shared memory (Fig. 3).

One ConeTorre is a subtask that performs the following operations NT /NB

times:

1. Load a cube of N3
B u values from the tiles in the main data array into the

register file.
2. Load all data necessary for the current ConeTorre from the FArSh data array

into the shared memory. This amounts to NB lines of cells with 4 numbers in
one cell.
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3. Perform NB time steps of the ConeTorre algorithm as described above. Here
only the data from the shared memory and registers are used.

4. Transfer all necessary data from the shared memory to the FArSh array in
the global memory (NB lines of cells with 4 numbers in one cell);

5. Transfer one tile of the data values (N3
B field values) into the main storage.

This ConeTorre is implemented as a CUDA kernel (Fig. 6), where one thread
is assigned to a cell, and it shifts to the next cell in the (1, 1, 1) direction with
each iteration of the compact update. This way, data load and store operations
are coalesced. There are NT such shifts total, that is why the introduced FArSh
array of lines of NB cells is convenient.

ConeTorres are assigned to asynchronous CUDA-blocks. The dependecies of
ConeTorres in one time layer (from t = 0 to t = NT ) make up a dependency
graph. There is an outer loop in the tiers of the graph; on each iteration the
ConeTorres of one tier are performed in parallel by distributing them between
asynchronous CUDA-blocks.

In the shared memory, FArSh is stored in a 3D array of cells, which is super-
fluous and has unused storage. However, the shared memory is a relatively fast
storage, and the data is reused multiple times in the ConeTorre. Thus, we allow
excessive memory usage here and leave this optimization for future studies.

In the global memory, the ability to cut storage costs by storing only the
required cells is important. The minimal flux data, which is required in the
introduced algorithm, is as follows. For each mesh cell, which is on the right
boundary of the domain in x, y or z directions, a line of NT cells in the (1, 1, 1)
direction should be initialized (see Fig. 4, left). The boundary is a 2D set, and
the NT span adds a third dimension, thus, the global FArSh array is 3D.

The correspondence of the 2D array to the 3D domain can be easily imple-
mented in the following way. Let us rotate the domain so that the line in the
(1, 1, 1) direction is projected into a dot on the viewer plane (Fig. 8a). Each mesh
cell, which is on the right boundary of the domain in x, y or z directions, has
a unique projection on this plane in a hexagonal pattern. Any method of 2D
indexing of a hexagonal mesh can be used here. For a demonstrative implemen-
tation, we chose to pad the domain to fill the rectangle. The overhead is ∼ 30%.
For each cell of the 3D domain, the index of the corresponding FArSh line can
be uniquely computed (Fig. 8b).

3.4 Performance and Data Sizes

In this work, the performance is measured in Gcells/sec: billions of cell updates
per second for single precision (SP) and double precision (DP) implementations.
According to the Roofline model, the chosen problem is memory-bound, so the
peak performance can be evaluated as follows.
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Fig. 6. CUDA kernel for the ConeTorre implementing the compact update. The CTloop

method is demonstrated in Fig. 7.

Fig. 7. Compact update loop in the ConeTorre.

For the update of NB4 cells, 3NB2−3NB+1 lines of cells have to be loaded,
and the same amount of data has to be written to the memory. Each line of cells
has NB cells total. We can ignore the overhead of the load and store the data
from the tiles at the start and finish of the ConeTorre, since these operations
become neglectable as NT increases.
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Fig. 8. FArSh indexing. For illustration purposes, the size of the whole simulation
domain is sketched with 5×5×5 mesh nodes. The size of the FArSh Array is 5×9×NT

(a). Global FArSh array data structure and its indexing method (b).

The peak performance of the ConeTorre algorithm can be approximated by
ΘL/sizeof(Cell), where L is the locality coefficient (ratio of the number of the
updated cells to the number of cell load/store operations)

L =
1
2

NB4

(3NB2 − 3NB + 1) · NB

and Θ is the GPU memory bandwidth. If NB = 8, L = 1.515.
The estimated memory bandwidth of RTX3090 is ∼ 850 GBytes/sec. The

cell size is 16B (single precision), thus, the peak performance has to be ∼ 81
GCells/sec.

For the stepwise algorithm, the locality coefficient is L =
1
2

NB3

(NB + 2)3
, and

the size of the cell is 4B (fluxes are not stored). Thus, the peak performance on
RTX 3090 is ∼ 54 GCells/sec for NB = 8 or up to 106 GCells/sec if NB → ∞.

3.5 Performance Benchmarks

We performed the comparative analysis of three implementations of the 3D
advection equation with NVidia RTX3090 GPU. GPU-implemented LRnLA
codes provide better performance [11], since the superior memory bandwidth
of GPU devices is efficiently used.

In the ‘Naive stepwise’ implementation, only two copies of the u value are
stored for each cell: old and new. Fluxes are not stored, and they are computed
twice, for the update of the value in each of the interfacing cell. The excess com-
putation is negligible, since the problem is memory-bound. For the same reason,
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the computation is faster without the flux storage, as no memory transfers for
fluxes are performed.

In the ‘Stepwise compact’ algorithm, the compact scheme described in
Sect. 2.3 is implemented without LRnLA algorithms and without the FArSh
data structure. One u value and three fluxes are stored for each cell, and the
cells are organized in a standard C 3-dimensional array in the AoS manner. The
algorithm has global synchronization at each time step and consists of two sub-
steps: (1) calculation of fluxes between 8 cells and (2) value updates of the 8
cells. There is a shift by one cell in each axis direction in between the substeps.

Finally, the ‘Compact ConeTorre’ implementation is described in Sect. 3.3.
In Fig. 9, the dependence of the performance on the block size is shown.

For the ConeTorre algorithm, the block size is the size of the ConeTorre base
in cells. For stepwise algorithms, it is the size of the tile of cells assigned to
one CUDA-block. The performance of the compact stepwise implementation is
lower than that of the naive stepwise implementation, since the compact scheme
requires flux storage and memory transfers for fluxes, and the problem under
study is memory-bound. In accordance with the LRnLA algorithm theory [10],
the performance is higher with the larger block size. The code is optimized for
NB = 8.

Fig. 9. Dependence on the block size NB . Here the grid size is Nx = Ny = Nz = 1080
for the compact stepwise case and Nx = Ny = Nz = 1440 for other cases, NT = 16NT .

In Fig. 10, the dependence of the performance on the ConeTorre height NT is
shown for the compact ConeTorre algorithm. With higher NT , memory transfers
for the block bases become negligible, and most of the memory exchanges occur
between FArSh structures. The implementation where the size of the problem
does not fit the device memory and the Tile data is stored in CPU RAM is also
studied here. With low NT , data transfers between CPU and GPU significantly
decrease the performance. In this case, the algorithm is closer to the stepwise
algorithm, in which the GPU acceleration often becomes hidden by the cost of
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CPU-GPU memory transfers, so that such storage is used only with temporal
blocking approaches [23]. With higher NT , memory transfers are concealed with
computations, and the performance does not drop in comparison with runs where
only the GPU device memory is used.

Fig. 10. Dependence on NT . Here NB = 8 for compact algorithms, NB = 6 for the
naive stepwise algorithm.

In Fig. 11, the dependence of the performance on the grid size is shown. The
performance of the naive stepwise implementation is better than the perfor-
mance of the compact stepwise code, since fluxes are not stored and thus fewer
data loads and store operations are performed. When the temporal blocking
is implemented with the ConeTorre algorithm, a significant increase in perfor-
mance is evident. The performance of the compact ConeTorre implementation
is superior to the naive approach for larger grid sizes. This is the common prop-
erty of LRnLA algorithm implementations [10]. Furthermore, the expected drop
in performance for the tasks that do not fit the GPU device memory is illus-
trated. It is important to emphasize that stepwise algorithms have no chance
to overcome this limit if they are memory-bound. The implementation with the
ConeTorre algorithm allows one to maintain the GPU device performance for
larger problems, the data of which are stored in the host memory.

4 Results and Discussion

In this work, we introduced the construction of a compact update scheme for
CFD numerical methods written in fluxes on a rectangular grid. Let us discuss
the impact of this invention.

First, we note the simplicity and beauty of the scheme. Instead of partially
referencing the data in the 3 × 3 × 3 neighbourhood, we reference the data in
the 2×2×2 neighborhood in full. At the same time, the numerical expression is
not changed, and the compact update can be similarly written for a large class
of CFD methods.
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Fig. 11. Dependence on the grid size. The grid is cube-shaped for all cases, except for
the Compact ConeTorre with the storage of the main data in the host memory. In this
case, Ny = Nz = 1440, and Nx is variable.

In this fact, we see a resemblance with the Margolous neighborhood in block
cellular automata [25]. First, all dependencies, the input and output of the
update, are inside a group of 2D cells, and the groups are shifted in even and
odd steps. Second, the compact update is optimized for schemes in fluxes for
conserved variables, and block cellular automata are also known for the value
conservation properties.

From the computing point of view, such data access saturates memory band-
width so that no data is accessed twice or more per time step update. This is
guaranteed for any kind of data storage and any kind of mesh traversal. On the
other hand, the implementation of the compact scheme shows lower performance.
This is caused by the additional storage of fluxes and is remedied with the use of
advanced temporal blocking algorithms. In the current performance study, the
implementation of the FArSh data structure indeed added some complexity to
the code. However, FArSh is a recent idea [19,21], so this complexity can only
be due to the fact that this data structure is unfamiliar to programmers, but
may become a new standard rather soon.

The idea seems promising for applying to state-of-the-art high-order numeri-
cal schemes, such as the Runge-Kutta discontinuous Galerkin method (RKDG),
as well as actual physical models, e.g. multi-phase fluid dynamics, magneto-
hydrodynamics, etc. In these applications, flux approximation plays the most
significant part both in the sense of method accuracy and numerical complex-
ity. The key feature of the proposed algorithm is that it is low-cost in terms of
flux calculations, introducing as minimal flux calculations as possible by storing
fluxes in a special way. Another useful feature is algorithm scalability in terms
of the problem memory size, provided by FArSh. This is important, since the
solution of problems with a large number of degrees of freedom using multistage
high-order schemes can be very memory-consuming. In the future, it is possible
to expand the approach to a wider range of numerical methods.



Compact LRnLA Algorithms 113

Acknowledgements. The work was supported by the Russian Science Foundation,
grant #18-71-10004.

References

1. Borrell, R., et al.: Heterogeneous CPU/GPU co-execution of CFD simulations on
the POWER9 architecture: application to airplane aerodynamics. Future Gener.
Comput. Syst. 107, 31–48 (2020). https://doi.org/10.1016/j.future.2020.01.045

2. Corson, D., Jaiman, R., Shakib, F.: Industrial application of RANS modelling:
capabilities and needs. Int. J. Comput. Fluid Dyn. 23(4), 337–347 (2009). https://
doi.org/10.1080/10618560902776810

3. Endo, T., Midorikawa, H., Sato, Y.: Software technology that deals with deeper
memory hierarchy in Post-petascale era. In: Sato, M. (ed.) Advanced Software
Technologies for Post-Peta Scale Computing, pp. 227–248. Springer, Singapore
(2019). https://doi.org/10.1007/978-981-13-1924-2 12

4. Geier, M., Schönherr, M.: Esoteric twist: an efficient in-place streaming algorithms
for the lattice Boltzmann method on massively parallel hardware. Computation
5(2), 19 (2017). https://doi.org/10.3390/computation5020019

5. Gorobets, A., Bakhvalov, P.: Heterogeneous CPU+GPU parallelization for high-
accuracy scale-resolving simulations of compressible turbulent flows on hybrid
supercomputers. Comput. Phys. Commun. 271, 108, 231 (2022). https://doi.org/
10.1016/j.cpc.2021.108231. URL https://www.sciencedirect.com/science/article/
pii/S001046552100343X

6. Hirsch, C.: Numerical Computation of Internal And External Flows: The Funda-
mentals of Computational Fluid Dynamics. Elsevier, Amsterdam (2007)

7. Korneev, B., Levchenko, V.: DiamondTorre GPU implementation algorithm of the
RKDG solver for fluid dynamics and its using for the numerical simulation of the
bubble-shock interaction problem. Proc. Comput. Sci. 51, 1292–1302 (2015). URL
https://www.sciencedirect.com/science/article/pii/S1877050915011229
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Abstract. The Stokes and Oseen problems are saddle-point problems
common to many methods aimed at the efficient solution of incompress-
ible flows. There are basically two methods for solving saddle problems
– coupled (solution of the whole system) and segregated (fractional step
method). In this paper, we consider the first approach as the most effi-
cient for steady state problems, in the form of block-triangular precon-
ditioning and its variants. The most difficult part is the design of an effi-
cient preconditioner for the saddle-point problem. Different variants of
preconditioning and formulations of pressure Schur complement approx-
imate matrices are considered. The main question is: Given that compu-
tations on Graphics Processing Units (GPUs) are cheaper and less energy
demanding than computations only on Central Processing Units (CPUs),
can an efficient preconditioner be implemented in GPU-only calculation
mode? We apply these preconditioners with the most advanced Alge-
braic Multigrid methods (AMG) based on the AMGCL framework devel-
oped by D. Demidov. The AMGCL framework is extensively modified
for the purpose of testing in GPU-only calculation modes. To formulate
the Stokes problem, we use the classical MAC method on a staggered
grid and consider different types of 3D problems. It is concluded that
GPU-only computations can be approximately 3–4 times more efficient
than CPU+GPU implementations and about 20 times more efficient than
CPU-only implementations of the original AMGCL framework.

Keywords: Saddle-point problems · Stokes equations · Algebraic
Multigrid methods · General Purpose GPU computations · Iterative
methods · Pressure Schur complement

1 Introduction

The solution of Stokes-type linear systems is a problem that is considered com-
plicated [3]. The original Stokes system is derived from the fluid dynamics of
an incompressible viscous fluid when flow dynamics is such that the nonlinear
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effects of the advective terms can be neglected. In this case, the temporal scale
becomes proportional to the scale of length squared, and the solution of the
stationary problem is mainly of interest. The discretization of the problem can
be formulated in two ways: without stabilization and with stabilization. In both
cases, it is necessary to solve a saddle-point linear system in the form:

Ax = b ⇔
(

A BT

B C

)(
u
p

)
=

(
f
g

)
. (1)

In the first case, one arrives at the symmetric indefinite linear system that
approximates the saddle-point problem where the approximation satisfies the
Ladyzhenskaya–Babushka–Bretzi (LBB) or inf-sup condition, and C = 0, g = 0
in (1). In the case of finite differences (FDM) this is the well-known staggered
grid [19], and in the case of finite elements (FEM) these are the unequal order
finite element pairs [25] of different design. In the second case, one arrives at
the indefinite problem with an arbitrary approximation and some way of sta-
bilization, e.g. Rhie–Chow stabilization for FDM [24,28] or Brezzi–Pitkaranta
stabilization for FEM [5], in this case C �= 0, g �= 0. There exist many different
methods for solving the problem using different approaches. The resulting sys-
tem can be factored to obtain the Schur complement matrix S = C − BA−1BT ,
which can be used to find the variable p. Depending on the way this system is
solved, two approaches are possible:

– Segregated approach: 1. Solve for p = Ŝ−1(g − BA−1f), 2. solve for u =
A−1(f − BT p), each with the iterative method and an appropriate precondi-
tioner, where Ŝ−1 is an approximation to the Schur complement inverse.

– Coupled approach: Solve the whole system Ax = b, usually with the Krylov-
type method and an appropriate preconditioner for the saddle-point system.

The advantages and disadvantages of each approach are discussed in [3,13] in
detail. In this research, we focus on the coupled system solution using different
variants of preconditioners based on the Algebraic Multigrid Method (AMG).
Such methods are efficient and, if correctly constructed, are close to optimal
[12,18,21,27,29] in terms of the number of iterations and grid diameter indepen-
dence. However, there is still no universal preconditioner that can solve a wide
range of different problems, especially for parallel computational architectures.
Such methods can be constructed in two different approaches: separate velocity
and pressure preconditioning using the Schur complement matrix approximation
[15,22] and Vanka-type preconditioning, which can be considered as a global sym-
metric block Gauss–Seidel iteration process over all discretization cells [26]. In
this paper, we focus on the first approach, leaving the description of the Vanka
smoother implementation elsewhere. In this case, the following system is solved:

P−1Ax = P−1b, (2)

where P is the coupled left preconditioning operator. The formulation and inver-
sion of this preconditioner can be done in different ways, including block pressure
correction or bock triangular approaches. On each step, it is necessary to solve
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linear systems for the approximate matrix Ŝ and matrix A, which can be applied
as exact or approximate factorization. In this study, we apply the AMG method.

The computational platform for the AMG method in this research is the
AMGCL library developed by D.Demidov [8,9,11]. Our initial attempt to use
the AMGX library failed [16], and the AMGCL framework was used instead. It
is a header-only template library written in C++, which is very programmer-
friendly and has many implemented features and methods, including GPU sup-
port. The library is also oriented on solving challenging linear systems, includ-
ing Stokes-type systems, see [10]. The results obtained in the cited paper look
promising. However, the idea of the AMGCL implementation is aimed at using
a host-assembled matrix in the CPU memory. All methods constructing AMG
hierarchies, prolongation and restriction operators are based on built-in matrix
arrays that operate on CPU OpenMP or MPI parallel architectures. Hence,
the framework cannot be used in GPU-only mode, where the system matrix
A is stored in the device memory, without intermediate host-device memory
transforms.

The analysis of different preconditioning strategies and approximate Schur
complement matrices is performed. The main question is: Given that computa-
tions on Graphics Processing Units (GPUs) are cheaper and less energy demand-
ing than computations only on Central Processing Units (CPUs), can an efficient
preconditioner be implemented in GPU-only calculation mode? To achieve this
goal, the AMGCL library is modified in order to execute the GPU-only mode
when the matrix is formed in the device memory. The paper is laid out as follows.
First, the problem formulation and different types of approximate Schur com-
plement matrices are considered. Next, the AMG algorithm modifications of the
GPU-only approach are described. Then, test problems and numerical experi-
ments are conducted for different preconditioners and compared with each other
and with the original AMGCL implementation.

2 Problem Formulation

2.1 Discretization and Formulation of Preconditioners

The nondimentionalized Stokes problem in the domain Ω ⊂ R
3 with the piece-

wise smooth Lipschiz boundary δΩ is described by the following system:

−�v + ∇p = f ,

∇ · v = 0,

v|δΩD
= vd,

(∇v − pI) · n|δΩN
= g.

(3)

The vector function v is commonly referred to as the velocity, the scalar function
p as the pressure, the known vector function in the right-hand side f as the source
term, the subscripts D and N represent the Dirichlet and Neumann boundary
conditions, respectively, and the vector n represents the outward normal vector
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on the boundary. This problem, despite being linear, is relatively computation-
ally difficult. The solution pair (v, p) of (3) is not the minimizer of a quadratic
functional, as it would be in the case of an elliptic-type Partial Differential Equa-
tion (PDE), but of a saddle point. The pressure function can be considered as
the Lagrange multiplier for the original diffusive system being subject to the
incompressibility constraint. Assuming that the functions under consideration
are smooth, one can apply discretization to problem (3) to form discrete system
(1). The main target of the research is the solution of linear system (2). The
linear system is solved using the GMRES method, where the action of the pre-
conditioner is supplied via the assembled hierarchies of AMG solvers. The first
preconditioner tested is a block triangular preconditioner, which is applied as
the following composition:

P−1 =
(

A BT

0 Ŝ

)−1

=
(

A−1 −A−1BT Ŝ−1

0 Ŝ−1

)
=

(
A−1 0
0 E

)(
E −BT

0 E

) (
E 0
0 Ŝ−1

)
.

(4)
Each element of the matrix composition is applied using an AMG solver sweep
(single V or W -cycle). The second preconditioner is a variant of the Braess–
Sarazin preconditioner [4], which is applied as the following application:

P−1 =
(

A BT

B 0

)−1

=

⎛
⎝

(
A−1 − A−1BT Ŝ−1BA−1

) (
A−1BT Ŝ−1

)
(
Ŝ−1BA−1

) (
−Ŝ−1

)
⎞
⎠ . (5)

Having the residual vector of the coupled problem r = (ru, rp)T = Ax − b, one
usually applies the pressure solver first and then reuses the result in the velocity
solver to minimize the number of solver applications in (5) as:

Ŝp = BA−1ru − rp

Au = ru − BT p.
(6)

In any case, both preconditioners allow one to apply pressure and velocity
solvers separately. These approaches are implemented in the AMGCL Stokes
preconditioner [10]. For each preconditioner it is necessary to define different
forms of approximate A, Ŝ matrices. In this study, we use the following matrix
approximations. The velocity matrix A is inverted via AMG sweeps using either
V or W cycles.

The Schur complement pressure matrix in its exact form is prohibitively
expensive both in terms of the computation time and device memory occupancy
(due to the usage of the inverted velocity matrix). Instead, we apply two different
strategies to construct the matrix. First, the approximation of Carriere and
Jeandel [7] is used:

Ŝ = B(diag(A))−1BT , (7)

where diag(A) is the diagonal of the velocity matrix A. The preconditioning
with this matrix is applied through a single AMG sweep (V or W cycle) using
the Sparse approximate inverse (SPAI0) [6] or Damped Jacobi smoother, which
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we call SIMPLE amg. Another option is only a single application of the SPAI0
preconditioner formed from this matrix, which we call SIMPLE spai0.

Another variant is the application of a weighted BFBt preconditioner of
Elman [14] based on the concept of approximate commutators. In this case, the
approximation to the inverse Schur complement is formulated as:

Ŝ−1 = (B̃B̃T + C̃)−1B̃ÃB̃T (B̃B̃T + C̃)−1, (8)

where the matrices with tilde are designated as weighted matrices, i.e. C̃ =
CM

−1/2
d , B̃ = BM

−1/2
d , Ã = M

−1/2
d AM

−1/2
d , and Md is the diagonal of the

velocity mass matrix for finite element discretization. In the case of finite differ-
ence discretization, non-scaled matrices are used [14], however, we apply block
diagonal scaling as in [20]. According to our observations, such scaling slightly
increased the convergence speed. The application of this approximate matrix
can be performed in two different strategies. The first one is the application
of a single sweep (V or W cycle) of the AMG preconditioner to each solution
of the B̃B̃T equation, which we call BFBt amg. The other option is the exact
solution of this equation using the GMRES or CG method with the AMG pre-
conditioner, which uses a single sweep with the SPAI0 smoother. We call this
strategy BFBt exact.

2.2 Discretization and Considered Problems

A simple staggered finite difference scheme discretization [19] is used in this
study. Grid functions with indexes (j, k, l) in the (x, y, z) directions, respectively,
are introduced and labeled identically to the continuous functions. Grid functions
will be explicitly identified, if needed, to escape ambiguity. A single block of
variables is formulated as uxj−1/2,k,l, uyj,k−1/2,l, uzj,k,l−1/2, pj,k,l. In this case,
the formed matrix A is a 7-banded scalar matrix, and the matrices B and BT

each have 4 bands. In the case of boundary conditions, where interior walls
present, the diffusion operator is discretized in such a way that the zero value is
prescribed on the boundary of the wall. Inactive cells, where no flow occurs, are
removed from the process of the matrix assembly.

This simple discretization is selected because it allows testing large matrices
with a minimal number of nonzero elements. It is computationally convenient
in a parallel processing and multigrid context since they hold an (almost) iden-
tical degree distribution for both the velocity and pressure and represent the
lowest possible order approximation, which is LBB-stable. Several problems are
formulated to verify the convergence of discrete system (3). Besides, the usage of
some Finite Element discretization would require the application of block matrix
operations, which are not yet implemented in our GPU AMG variant.

Problem 1. Stokes Lid Driven Cavity. The problem is formulated as a
classical 3D lid driven cavity [1]. The aim of the test is to verify the convergence
properties of the method for the problem with singularities in the corners, as
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well as a nontrivial kernel for the Schur complement matrix: ker(S) = span(1).
The domain is set to a unit cube [0, 1]3, zero Dirichlet boundary conditions are
prescribed for the velocity on all plains, except one, where the unit tangential
value is set.

Problem 2. Flow in a Channel with Obstacles. This problem poses some
convergence complications. The part of the internal field (that corresponds to
the internal walls) is excluded from the simulation. We also modify the aspect
ratio of the domain in this problem. The boundary conditions are set as a unit
streamwise pressure gradient and Neumann boundary conditions for the velocity
vector. In other directions, the no-slip condition is set.

Problem 3. Flow in a Porous Medium. The last problem is taken
from https://www.digitalrocksportal.org/projects/374/origin data/1785/ as an
example of a real world application. The problem is a unit cube [0, 1]3, the dis-
cretization of the original problem is 256 points in each direction, the porosity
is 35%. This test verifies the performance and convergence of the method for
a complex real world application. The boundary conditions are the same as for
Problem 2.

3 AMGCL Framework Modifications

The process of the general preconditioned solution of the coupled Stokes sys-
tem can be described by provided Algorithms 1, 2, which are implemented in
AMGCL. The velocity solver is related to the preconditioner used to apply the
system solve on A, and the pressure solver is related to the preconditioner used
to apply the system solve on Ŝ. In this implementation, the coupled system is
solved using the GMRES method with a Krylov subspace size of 20 (parame-
ter R in the solve system call). In each iteration of the GMRES method, a
preconditioner is called; it is applied by either process (4) or (6).

Algorithm 1. Setup phase
1: function setup preconditioner(A, pind)
2: {A, B, BT , C} ← cut matrices(A, pind);
3: divn ← form vector division(pind);
4: U ← form velocity solver(A);
5: P ← form pressure solver(A, B, BT , C);
6: P ← form preconditioner(U, P, divn);
7: return (P);

The implementation of these Algorithms is performed in original AMGCL.
Methods based on (4), (6) and (7) are readily available in AMGCL. We imple-
mented method (8) separately. However, setup phase Algorithm 1 uses CPU

https://www.digitalrocksportal.org/projects/374/origin_data/1785/
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Algorithm 2. Solve phase
1: function solve system(A,P,b, R)
2: x ← gmres(R)(A, P, b);
3: return x;

matrices and performs a matrix copy to the host memory if the original matrix
is located in the GPU device memory. All operations with the formulation of
Schur complement approximates (7) are also performed using CPU matrices.
The stages for building AMG hierarchies (if needed) in form velocity solver
and form pressure solver require the utilization of significantly serial algo-
rithms for amgcl::coarsening::plain aggregates, which are used to con-
struct operators on each level. In addition, some smoothers on the intermediate
levels of AMG are also formed on the CPU only. As a result, according to
Amdahl’s law, the whole speedup is limited to these steps, and can only be
speeded up partially using the OpenMP CPU implementation.

To circumvent this problem, it is necessary to reorganize the whole process of
constructing AMG hierarchies, to specialize additional methods for cuda matrix
classes and implement cut matrices and form vector division methods on
the GPU. Thus, CPU↔GPU memory copies are minimized, and the most time-
consuming operations are executed on the GPU only.

To achieve the goal, we used CUDA C++ and templates extensively, since
the original AMGCL framework heavily relies on template metaprogramming.
The most time-consuming operations during the setup are the construction of
additional matrices, the Schur complement approximation Ŝ and the formulation
of pressure and velocity solvers. In turn, each solver can invoke the construction
of AMG hierarchies, smoothers and prolongation/restriction operators on each
level. The construction of additional matrices is replaced by direct CUDA kernel
invokes, as well as by the process of constructing separate and joint residuals
r ↔ (ru, rp)T using divn in Algorithm 1. The formulation of the preconditioning
approximate matrix Ŝ is performed using the cuda matrix specialization for a
sparse matrix product.

The construction of aggregates cannot be handled so easily. The serial version
available in amgcl::coarsening::plain aggregates cannot be implemented
on the parallel architecture. Instead, an updated version of the Parallel Maxi-
mal Independent Set K (MIS(K)) is implemented, see [2,17]. An independent
set is a set of nodes, in which no two of them are adjacent, and it is a maximal
independent set (MIS) if it is not a subset of any other independent set. The
generalization of MIS is MIS(K), in which the distance between any two inde-
pendent nodes is greater than K, and for every other node there is at least one
independent node that is within the distance less than or equal to K. Hence, the
construction of interpolation operators and smoothing aggregation is performed
on the GPU only using the obtained aggregates from the MIS(K) process. The
whole redesign of the code resulted in a substantial modification of the original
framework. The constructors had to be specified for the GPU-only operation
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through all classes. To obtain the maximum speedup on both the original and
modified variants of the code, one needs to use the latest CUDA Developer
Toolkit, version 11.5, where many functions from the cusparse and cusolver
libraries are optimized. In addition, we used our own implementation of matri-
ces and arrays, taking into account the optimization in terms of memory layout
depending on the device, and the GPU-optimized spECK library [23] to per-
form gemm (sparse matrix – matrix product) operations. These modifications
also boosted the original AMGCL implementation. However, the used spECK
library is not a header only, and it violates the philosophy of original AMGCL.
Nevertheless, in this research, we are more interested in performance than in
design features.

4 Numerical Results

In this section, we present the numerical results obtained by solving the prob-
lems listed above. The following hardware configuration is used: CPU – 2×Intel
Xeon Gold 6248R, totally having 48 cores (96 threads) with 512 GB of ECC host
memory, GPU – Nvidia Tesla V100 with 32 GB of ECC device memory. Double
precision is used in all calculations, no mixed precision was used (which should
boost GPU performance even further). All results presented in the research are
obtained on the hardware listed above. Ten runs of each test configuration were
performed, and mean values were used in all measured tests to obtain statisti-
cally justified results. For some problems, we estimate the mean residual reduc-
tion rate. The residual reduction rate on the n-th iteration is ρn = ‖rn+1‖/‖rn‖,
where n ≥ 1, therefore, the initial residual is excluded. The mean residual reduc-
tion rate is the averaged value ρ = 〈ρn〉.

4.1 Unit Cube Problem

We used a set of matrices from [10] where the testing of the method with an
analytical solution on a unit cube was performed. The target relative residual is
set to 1.0·10−8. The problem has a total dimension of 5.5E5, 2.94E6 and 4.38E6
with 1.43E7, 7.84E7 and 1.17E8 nonzero entries in the matrices, respectively.
This test was chosen since it has a scalar structure, and block matrices are not
yet implemented in our GPU variant. First, an analysis of the optimal number
of OpenMP threads for the original implementation for the used hardware is
carried out. The results are provided in Fig. 1 for the setup and solve phases
of the original AMGCL implementations. These results are obtained for the
Block Triangular preconditioner and the SIMPLE spai0 Schur matrix, the other
variants have the same time ratio distributions. One can observe that the speedup
reverses from 32 to 64 threads, depending on the matrix size. For further tests, we
shall use the best number of OpenMP threads without explicitly demonstrating
this value.
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Fig. 1. Setup and solve wall times for the Unit cube problem for different vector sizes
on the original AMGCL implementation depending on the number of OpenMP threads.
Upper row - CPU, lower row - GPU.

One can also observe in Fig. 1, second row, an obvious bottleneck in the
setup/solve phase ratio for the GPU implementation. This situation only con-
firms the need to implement a GPU-only variant with a full GPU setup phase.

In Fig. 2, upper row, we demonstrate the speedup obtained using the GPU-
only variant of AMGCL compared to the original AMGCL GPU variant. It is
shown that the setup phase was substantially speeded up. For a single core, we
obtained a speedup of 8.29 on the biggest matrix and maximum speedup of 5.1
compared to the 64-core execution with the GPU. The solve phase either did
not change or slightly decelerated with the worst value of 0.92 for the problem
sized 2.94E6 compared to the 64-core original implementation. This is because
we used a smoothed aggregation based on the MIS(K) algorithm instead of the
original aggregation algorithm. As a result, the convergence of the problem to
the preset relative tolerance required 1–2 more iterations. In the lower row in
Fig. 2, we demonstrate the wall time of different preconditioners. It should be
noted that BFBt preconditioners (8) are worse in this problem since the scaling
was empirical as no mass matrices are available for this problem. In total, we
obtained a speedup of about 2.6–2.9 for the largest matrix compared to the best
(OpenMP GPU) original AMGCL implementation. For the pure single-threaded
CPU implementation vs. the pure GPU implementation, we achieved a speedup
of about 22.2 times on this problem against 7.08 times for the original AMGCL
implementations.
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Fig. 2. Upper row: Setup and solve speedup using the new AMG GPU-only implemen-
tation vs. the original AMGCL implementation depending on the number of OpenMP
threads. Lower row: Wall time for the new GPU-only speedup for different precondi-
tioners. The numbers indicate the speedup vs. the best original implementation.

Fig. 3. Wall time in log scale (left) and mean residual reduction rate (right) for Problem
1: bl.tria is block triangular preconditioner (4) and BZ is Braess Sarazin preconditioner
(5).

4.2 Stokes Lid Driven Cavity

We constructed three matrices corresponding to the problem domain sized 503,
1003 and 1503. The total problem sizes are 5.1E5, 4.03E6 and 1.35E7, respec-
tively. The numbers of nonzero elements in the matrices are 6.94E6, 3.27E7 and
1.11E8, respectively. The target relative residual is set to 1.0 · 10−8. The wall
time execution and the mean residual reduction rate are presented in Fig. 3. In
all variants, where applicable, we used the SIMPLE spai0 approximate Schur
matrix formulation as the fastest among those tested.
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One can observe that the new GPU variant for both the block triangular
and Braess Sarazin preconditioners is faster than the best variant of the original
AMGCL implementation (GPU + 64 OpenMP threads) for these precondition-
ers. We obtained a speedup of 1.47, 1.49 for the smallest matrix and 2.92, 3.52
for the largest matrix, respectively. It can be seen that the performance of the
preconditioners in terms of the residual reduction rate is different. The new vari-
ants of the BZ and bl.tria preconditioners based on the MIS(K) aggregates are
slightly worse. The BFBt preconditioner is worse in any variant. This is due to
the nontrivial kernel for the Schur complement matrix. Possible remedies can
be found in the literature and are beyond the scope of this paper, see [14]. The
reduction rate in Fig. 3 on the right indicates that the grid independence was
achieved for all preconditioners. For the GPU variant vs. the single-threaded
CPU variant, we achieved a speedup of about 25.4 times against 8.1 times for
the original AMGCL implementations.

4.3 Flow in a Channel with Obstacles

The problem of a channel with obstacles in different directions is presented with
the domain sized 503, 1003, 1503 and 2003. The obstacles are rotating planes
in different directions that force the flow like a 3D heater, see Fig. 5, left, for
the streamline visualization. The total problem sizes are 1.87E5,1.84E6,6.66E6
and 1.62E7, respectively. The numbers of nonzero elements in the matrices are
1.28E6, 1.41E7, 5.25E7 and 1.29E8, respectively. The target relative residual
is set to 1.0 · 10−8. The resulting wall time execution and the mean residual
reduction rate are presented in Fig. 4.

We observe that only the BFBt-type approximation to the inverse of the
Schur complement matrix is capable of correctly preconditioning the problem.
Only 3 iterations were required for the smallest matrix in the case of the exact
BFBt variant. The grid independence was achieved with a mean reduction rate
of about 0.55–0.58 for the BFBt amg variants. The other preconditioners were
unable to converge for 300 iterations to the desired tolerance and were termi-
nated. In this case, we can compare the original AMGCL implementation and the
new one in terms of speedup for the same number of iterations. In this case, the
GPU-only variant is about 1.3–2.0 times faster than the best AMGCL variant
(GPU + 64 OpenMP threads) for the largest matrix. This is because more iter-
ations were used where the difference in the implementations was not large. For
the GPU variant vs. the single-threaded CPU variant, we achieved a speedup of
about 32.18 times against 18.9 times for the original AMGCL implementations.
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Fig. 4. Wall time in log scale (left) and mean residual reduction rate (right) for
Problem 2: bl.tria is block triangular preconditioner (4) and BZ is Braess Sarazin
preconditioner (5).

4.4 Flow in a Porous Medium

The total size of the problem is 1.96E7, and the matrix has 1.54E8 nonzero
entries. The flow is visualized through the streamlines in Fig. 5, right. The tar-
get relative residual is set to 1.0·10−8. The execution results are brought together
in Table 1. The setup step was speeded up by 5.22 and 4.28 times for the GPU
vs. CPU variants of the original implementation, respectively. The total speedup
is about 1.6–1.8 times since more time was spent on iterations. Again, we can
observe that for this type of problems and scalar matrices, the best variant is
the BFBt amg preconditioner. It can also be seen that since the original aggre-
gation method is essentially serial, the speedup of the setup step in the original
implementation is about 2.5 for 64 threads.

Table 1. Solution data for the problem of flow in a porous medium.

name time setup time solve total time iterations residual < ρ >

BZ gpu 2.68 54.77 57.45 300 6.0E-7 0.97

bl.tria gpu 2.65 30.29 32.94 300 1.7E-6 0.97

bfbt amg gpu 3.46 10.08 13.54 30 7.7E-9 0.58

bfbt exact gpu 3.25 31.06 34.31 35 9.6E-9 0.71

bfbt BZ amg gpu 3.53 11.62 15.15 35 8.7E-9 0.60

bfbt BZ exact gpu 3.21 51.80 55.02 46 7.8E-9 0.76

original BZ gpu 64 13.97 69.46 83.43 300 5.4E-7 0.97

original BZ cpu 64 11.45 297.06 308.51 300 5.4E-7 0.97

original BZ cpu 1 28.22 1,586.05 1,614.27 300 5.4E-7 0.97

original bl.tri gpu 64 12.74 37.73 50.47 300 1.1E-6 0.97

original bl.tri cpu 64 11.34 160.72 172.06 300 1.1E-6 0.97

original bl.tri cpu 1 28.07 1,045.27 1,073.34 300 1.1E-6 0.97
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Fig. 5. Streamlines for Problem 2 (left) and Problem 3 (right).

5 Conclusion

We implemented the GPU-only variant of the aggregation AMG method based
on the AMGCL implementation. To do it, we needed to change the aggrega-
tion algorithm on the parallel version (used MIS(K)) and redesign the whole
library in such a way that no intermediate CPU calculations were required. We
used CUDA C++ together with template programming to achieve this. We also
suggested a scaled variant of the BFBt preconditioner implementation for the
approximate Schur complement matrix inverse. The tests show that the sug-
gested GPU-only variant can be approximately 3–4 times more efficient than
CPU+GPU implementations and about 20–35 times more efficient than the
CPU-only implementations of the original AMGCL framework. This speedup is
obtained mostly due to the setup step, which is speeded up by about 5–7 times
for large matrices compared to the best variant of the AMGCL configuration.
The BFBt preconditioner shows efficient properties for the problems with obsta-
cles. Support for block matrices and multiple GPUs is next to be implemented.
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Abstract. The implementation of the Algebraic Multigrid (AMG)
solver designed specifically for Graphics Processing Units (GPUs) is pre-
sented. It is based on the well-known and highly efficient AMGCL header-
only library designed and implemented by D. Demidov using C++. The
original AMGCL approach for GPU speedup relies on the initialization
(setup) phase performed purely on the CPU, while the solution (iteration
process) is moved to the GPU. This approach works well for the case of
transient solvers, when the system matrix does not change much during
time-stepping. However, it does not fit for cases of highly nonlinear sys-
tems or stationary systems, especially when a linear system is formed
in the device memory. For these systems it is better to use GPU-only
solvers. To implement the GPU-oriented AMG solver, the design of the
original framework had to be changed. The maximal independent set
aggregation algorithm and derived smoothed aggregation operations are
added to the framework. A number of smoothers on the intermediate lev-
els are implemented with full support for GPUs. The full AMG hierarchy
can now be constructed entirely on the GPU with no CPU invokes. The
method is tested against the original AMGCL framework on matrices
derived from elliptic and parabolic partial differential equations (PDEs).
It is shown that the GPU-only approach can speed up the setup phase
by up to 5-6 times compared to the original framework.

Keywords: Aggregation · Iterative methods · Algebraic Multigrid
methods · Elliptic partial differential equations · General Purpose GPU
computations

1 Introduction

There are few modern methods for solving large linear systems that can be
considered mainstream. These include multigrid methods and domain decompo-
sition methods. Among the former, Algebraic Multigrid (AMG) methods are one
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of the most popular choices. The methods (generally) require no additional infor-
mation, however, the matrix itself is relatively memory thrifty and, if correctly
constructed, can be as efficient as geometric multigrid (GMG) methods. All this
makes AMG a very attractive “black box” solver for particular classes of prob-
lems (positive definite, semi-positive definite and M-matrices). Any multigrid
solver has two stages: setup and solve. The setup stage performs the necessary
computations and prepares operators for the solve phase. The solve phase actu-
ally solves a linear system. In AMG methods, the solve phase is a substantial
and important part in both the convergence and wall time. We refer the reader
to [6,8,11,16] for more detailed information on AMG methods. In this work, we
mainly focus on the setup phase.

To construct matrices, smoothing, prolongation and restriction multigrid
operators on all levels, one uses entries in the main system matrix, as well as, pos-
sibly, some external information. The resulting set of operators is called the AMG
hierarchy. The classical AMG approach [11] constructs hierarchies by dividing
matrix entries into coarse and fine ones so that the smoothed error slowly varies
in the direction of large matrix coefficients. The coarse nodes are used to con-
struct the lower level, and the prolongation operation is defined by interpolation.
The restriction operation is usually defined by either the one-to-one restriction
operation or the transpose of the prolongation operator. Smoothing operators
are built based on the nodes on each levels. This approach often results in rela-
tively good hierarchies that guarantee grid independent convergence. However,
to achieve this quality, classical aggregation often leads to large coarse level
matrices and requires a substantial amount of memory, see [10] for more infor-
mation. In addition, the original classical aggregation algorithm is essentially
serial. Other variants of the algorithm, such as PMIS, HMIS, CLJS, etc. (see
[15]), do not produce hierarchies of such quality.

Another variant considered here is aggregation AMG methods [14]. These
methods rely on grouping fine level nodes to form a coarse matrix on the lower
level. Smoothing operations are also constructed on top of the formed matrices
on each level. The restriction operation usually acts as an averaging of the vari-
ables inside each group, and the prolongation operator is a transposed restriction
operator. Such an approach is much more economical in terms of memory con-
sumption on the coarse levels, however, this approach is usually not applied since
it cannot generally provide grid independent convergence rates [13]. To override
this problem, smoothed aggregation was proposed [13,14]. However, smoothed
aggregation AMG results in greater memory requirements, and grid independent
convergence is still not guarantied for some classes of problems. For a comparison
of different approaches see [12,15].

Having described one problem of selecting an appropriate setup procedure,
one faces another problem, namely, how to speed up the setup phase. To speed
up an aggregation-based algorithm, it is necessary to apply a parallel aggregation
algorithm with all variants, including smoothed aggregation (since none of them
can be universal). Modern high-performance computing architectures de facto
must have Graphics Processing Units (GPUs). Such an architecture is efficient,
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if properly programmed, and more environmentally friendly. In addition, modern
desktops can fit up to 4 (or 8) powerful GPUs capable of solving relatively large-
scale problems. It would be unwise to deprive the users of these desktops from
solving middle-sized problems of academic or engineering orientation. Hence, the
implementation of the fully GPU-accelerated AMG solver is an important task.

We tried to utilize the AMGX solver for our problems on GPUs, but failed,
see [5]. To verify our implementations of GPU-accelerated setup procedures, we
used the AMGCL library [3] by D. Demidov. It is a C++ header-only library that
heavily relies on template metaprogramming and has GPU support via CUDA
and OpenCL. It is efficient and has been tested in many applications. However,
the library is explicitly designed in such a way that the setup process is performed
on CPUs only, accelerated by either OpenMP or MPI. GPU support is localized
only in the solve stage. Besides, if the system matrix is formed on GPUs, then
the library performs CPU↔GPU memcpy. The author’s idea is that the setup
is executed only a limited number of times, and the matrix of the linear system
can be reused (by calling the rebuild process also performed on the CPU), if
applied many times, say in Newton’s method, see [4] for details. However, if the
problem being solved is complicated, and the stationary point is not easily found
(see, for example, [2]), then this strategy may lead to unsatisfactory results, e.g.
substantially decrease the CFL number in implicit methods. In this paper, we
would like to overcome this flaw. We apply the Parallel Maximal Independent
Set K (MIS(K)) on the GPU, as described in [1,7], with modifications that form
aggregates closer to the serial version. The method is implemented in CUDA
C++ using templates.

The paper is laid out as follows. First, the aggregation method, the modified
MIS(K) method and its application in AMG during the setup are described.
Next, the modifications introduced in the AMGCL library to implement this
method in the GPU-only approach are outlined. Numerical experiments on sev-
eral available and generated sparse matrices are also presented, and the perfor-
mance and convergence of the modified and original AMGCL library are mea-
sured. The paper is finalized by a conclusion.

2 Aggregation AMG on the GPU

The initial approach adopted for the AMG hierarchy build process in AMGCL
is based on constructing aggregates as noted in the introduction. Aggregates are
unions of nodes (variables) on the fine level. After aggregation, each aggregate
corresponds to one and only one node on the coarse level. Let n be the number of
nodes on the current (fine) level. We can mathematically describe the aggregate
structure by the array of numbers ai, where i ∈ {0, ..., n−1} and ai ∈ {0, ..., nc−
1}, and nc is, in turn, the number of nodes on the next (coarse) level.

Transfer operators (prolongation and restriction) are fully determined by the
aggregate structure. Regular (non-smoothed) aggregation builds the restriction
operator (matrix) R in the following way:
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Rj,i =

{
1

|{k|ak=j}| , if ai = j

0, otherwise

The prolongation matrix is defined as a transposition of the restriction
matrix: P = RT . The coarse operator matrix is defined according to the Galerkin
projection: Ac = RAP , where A is the fine level matrix. For smoothed aggre-
gation, the restriction matrix is defined as a product of the restriction matrix
defined above and the smoothing matrix I + ωAF . ω is the relaxation param-
eter, and AF is a specially filtered version of the matrix A. Further levels are
constructed in a recursive way.

One can see that in this formalism the overall aggregation algorithm is fully
determined by the method of constructing aggregates. Regardless of the choice
of a particular algorithm, a strong connections graph first needs to be con-
structed. There are several variations of strong connections criteria. The one
used in AMGCL is described, for example, in [14]. We denote the strong con-
nections graph incidence matrix by C, Ci,j = 1 means that the node with the
number i is strongly connected to the node with the number j, while Ci,j = 0
means the absence of connection. Note that the matrix C is supposed to be
symmetric in the algorithm mentioned below.

The initial algorithm in AMGCL (called plain aggregation) uses a substan-
tially serial approach that exploits a given order of nodes for their grouping. On
the other hand, our task was to implement the fully GPU workflow for the setup
phase, thus the parallelizable algorithm had to be utilized. A common choice
for constructing parallel aggregates is the Maximal Independent Set algorithm,
see, for example, [1]. A parallel version of this algorithm uses random seeds to
construct MIS(K). MIS(K) is the subset of fine level nodes, and the shortest
path length between any two MIS(K) nodes in the graph C is larger than K.
“Maximal” means that adding any other node to MIS(K) breaks this property.
Usually K = 2 is used in the context of AMG.

Our version of the MIS(K) algorithm for constructing aggregates is presented
here as Algorithm 1. Note that there are two parts that differ from the original
version of MIS(K), highlighted in colour in the Algorithm. The first one is in the
node weights (the second element of the tuples Ti). While originally only random
numbers vi were used for the weights, we added an extra term niWnb. Wnb is
the global algorithm parameter. Wnb = 0 falls back to the initial version, while
Wnb = 1 or Wnb = −1 can be used to adjust the behavior of constructing aggre-
gates. We noted that Wnb = 0 usually resulted in the lower aggregates number
compared to the original AMGCL plain aggregation. This leads to a lower con-
vergence rate, thus usually slowing down the solve phase. The Wnb = −1 choice
enlarges the aggregates number, thereby partially fixing the convergence prob-
lem. However, for some matrices (not considered in the current paper), Wnb = 1
may be the best option, since the reduced number of variables on the coarse
levels speeds up the computational wall time.
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Algorithm 1. MIS(K) parallel, with modification outlined by colour.
1: function misk aggregation(C, K, Wnb)
2: I = {0, ..., n − 1};
3: a ← −1; s ← 0; v ← random; � init states and random vector
4: while {i ∈ I : si = 0} �= ∅ do
5: for i ∈ I do � for each node in parallel
6: ni ← #{j : Ci,j �= 0, sj == 0}; � number of neighbors
7: Ti ← (si, vi+niWnb, i); � set tuple (state,value,index)

8: for r = 1, ..., K do � propagate distance K
9: for i ∈ I do � for each node in parallel

10: t ← Ti;
11: for j : Ci,j �= 0 do
12: t ← max(t, Tj); � maximal tuple among neighbors

13: T̂ ← t;

14: T = T̂ ;

15: for i ∈ I do � for each node in parallel
16: (smax, vmax, imax) ← Ti;
17: if si == 0 then � if unmarked...
18: if imax == i then � if current is maximal...
19: si ← 1; � mark as new aggregate
20: ai ← i;
21: else if smax == 1 then
22: si ← −1; � add to existing aggregate
23: ai ← imax;

24: for i ∈ I do � for each node in parallel
25: if si == −1 then � not center of aggregate
26: for j : Ci,j �= 0 do
27: if sj == 1 then � neighbor is aggregate center...
28: ai ← j; � reconnect to neighbor

29: return (a); � return list of MIS(K) aggregates

The second difference is in the post-processing part. One can consider it as
a reconnection procedure. While the original plain aggregates implementation
manually connects all closest strong neighbors to newly created aggregate cen-
ters, the MIS(K) algorithm can produce highly skewed aggregates. To overcome
this problem, additional regrouping was added after the main iterations cycle.
The point is to reconnect the nodes initially connected to the “far” aggregates
center to the close ones, if any. Together, these two improvements reduce the con-
vergence rate drop to an acceptable level of approximately 10% in the worst case
among the systems under consideration. Moreover, the initial plain aggregates
algorithm can produce different results depending on matrix ordering, while the
randomized algorithm demonstrates robustness to this factor.

All other parts of the AMG hierarchy construction (transfer operators,
Galerkin projections) are naturally parallelizable for both CPUs and GPUs.
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The most time-consuming part is the sparse matrix-matrix product, and it will
be addressed further in more detail.

3 Implementation

Algorithm 1 can be readily implemented on GPUs. Loops with the comment
“for each node in parallel” turn into CUDA kernel calls, since there are no data
dependencies inside them. There are some technical issues. First, it was not
initially clear which data layout was the best for the tuples T . Experiments
showed that the “structure of arrays” was still preferable, despite the fact that
the size of one tuple is 16 bytes in our implementation. Second, tuples initializa-
tion and maximum tuple iterations loops were merged together using the CUB
reduce by key algorithm, which resulted in better performance.

From the performance point of view, sparse matrix-matrix multiplication
was found to be the bottleneck. We first used the legacy cusparseXcsrgemm2
operation from the cuSparse library of the CUDA toolkit, however, that already
deprecated version performed badly. The new version introduced in the latest
CUDA toolkit exposed a huge speedup of this operation, but failed in terms
of extra memory consumption. Finally, we tried the SpECK library [9], which
showed the best results in both memory consumption and performance. The only
disadvantage of this library is the absence of support for Compute Capabilities
lower than 6.1. The Legacy cuSparse implementation was left for the case of
older hardware.

Another important aspect of the fully GPU AMG stack is a smoothers
(“relaxation” in terms of AMGCL) implementation without any CPU invokes.
We ported setups for three of them: spai0 (sparse approximate inversion), ilu0
(incomplete LU factorization) and damped Jacobi. Although in an algorithmic
sense there are no problems with their implementation on the GPU, some prob-
lems arise with the AMGCL architecture. Initially it was not designed for such
GPU-only usage, therefore, we needed to introduce a new setup constructor
conveyor from the top make solver class down to coarsening and smoothers ini-
tialization methods.

4 Numerical Experiments

All experiments are conducted on symmetric matrices. The following hardware is
used in all experiments: CPU – 2×Intel Xeon Gold 6248R, totally having 48 cores
(96 threads) with 512 GB of ECC host memory, GPU – Nvidia Tesla V100 with
32GB of ECC device memory. Double precision is used in all calculations. The
AMGCL setup for all experiments is the same: the conjugate gradient method
is used as the main solver, preconditioned by a single AMG V-cycle. The ilu0
smoother is used on each level of the multigrid, the exact solver is used in the
lowest level. All problems are convergent, the target relative residual is set to
1.0 · 10−14. All results are presented by three figures – wall time for the setup,
solve phases and speedup. In addition, for each matrix, a table that contains
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the minimum wall time for all runs and for all implementations is presented.
It should be noted once again that the original AMGCL implementation uses a
multi-threaded CPU setup phase in both CPU and GPU implementations. Thus,
the obtained speedup for the setup phase depends on the number of OpenMP
threads for both implementations.

The first experiment is conducted with the matrix available in the AMGCL
examples folder, i.e. a small matrix from the discretization of a Poisson equation
called poisson3Db. Its size is 8.56E4, and the number of nonzero elements is
2.37E6. The results are presented in Fig. 1 and Table 1.

Fig. 1. Results for the poisson3Db matrix depending on the number of OpenMP
threads: setup phase - left, solve phase - center, speedup - right.

It is observed that for such matrix sizes, the speedup is negligible or even
reversed. The setup of the AMG hierarchy using the MIS(K) algorithm on the
CPU is slower than the original algorithm. The GPU setup phase algorithm is
faster than the single-threaded execution of the original algorithm. However, it
is slower for 48, 64 and 80 threads. It is not recommended to use GPUs for small
matrices.

The next experiment is taken from the sparse matrix market, the matrix is
called parabolic fem. Its size is 5.26E5, and it has 3.67E6 nonzero elements.
The results are presented in Fig. 2 and Table 2.

Table 1. Minimum wall times, mean iterations and attained residuals for the pois-
son3Db matrix.

name time setup time solve total time iterations residual

original host 0.409184 0.471179 0.892288 21 3.62E-16

original cuda 0.155554 0.189926 0.346058 21 5.55E-15

mis(k) host 0.409326 0.417123 0.847573 22 3.12E-15

mis(k) cuda 0.18529 0.225905 0.416847 23 9.47E-16
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Fig. 2. Results for the parabolic fem matrix: setup phase - left, solve phase - center,
speedup - right.

Table 2. Minimum wall times, mean iterations and attained residuals for the
parabolic fem matrix.

name time setup time solve total time iterations residual

original host 0.221891 0.212528 0.453675 14 3.22E-15

original cuda 0.164093 0.055595 0.220113 14 3.22E-15

mis(k) host 0.334386 0.240353 0.597847 12 5.67E-15

mis(k) cuda 0.123283 0.05631 0.182331 11 1.17E-15

The results again indicate that the host variant of MIK(K) is slower than
the original variant in both the setup and solve phases. The GPU MIS(K) setup
phase is 2.4 times faster than the single-threaded original AMGCL implemen-
tation and about as fast as the 48-threaded version. The solve phase is slightly
slower for the GPU implementation (0.96 times in average). The convergence is
slower on 1–2 iterations. The results indicate that the CPU implementation can
be used instead of the GPU implementation with a slight penalty on the wall
time. These two matrices are small to be efficiently used on GPUs.

The next sparse market matrix is called thermal2, its size is 1.23E6 with
8.58E6 nonzero elements. The obtained speedup, presented in Fig. 3 and Table 3,
shows that the CPU MIS(K) version is slightly faster in the solve phase for 48
threads or more. However, it is almost twice slower for the setup phase.

Fig. 3. Results for the thermal2 matrix: setup phase - left, solve phase - center,
speedup - right.
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Table 3. Minimum wall times, mean iterations and attained residuals for the ther-
mal2 matrix.

name time setup time solve total time iterations residual

original host 0.759762 1.030344 1.925627 13 6.70E-15

original cuda 0.511443 0.830287 1.342058 13 6.70E-15

mis(k) host 0.914104 0.691784 1.824731 11 4.82E-15

mis(k) cuda 0.233334 0.547645 0.780979 13 1.18E-15

The GPU MIS(K) variant is 6 times faster than the single-threaded setup
phase of the original implementation. The minimum speedup of the GPU
MIS(K) implementation compared to the best multi-threaded original GPU
implementation is 1.85 times for the setup phase. The solve phase for the GPU
MIS(K) implementation is about 1.5 times faster due to the difference in the
obtained AMG hierarchy.

A set of parameterized matrices was generated to perform analysis in terms of
matrix sizes. A finite difference 7-point 3D Laplace operator was generated and
used for the Poisson equation with Neumann and a single Dirichlet boundary
condition. The cubic domain was discretized with 50, 100, 150, 200 and 250 grid
points in each direction, respectively. The results of the solution of this problem
are presented in Fig. 4 and Table 4.

Fig. 4. Results for the generated finite difference Laplace operator: setup phase - left,
solve phase - center, speedup - right, upper row - one thread, lower row - best times of
all OpenMP threads.
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First, we analyze the behavior for the case when a single thread is used in
the original AMGCL implementation. The CPU variant of our implementation
is clearly inferior compared to the original AMGCL implementation. The GPU
variant, on the other hand, is efficient. For this case, we obtain a substantial
speedup starting from a linear matrix size of 150. The maximum speedup in the
setup phase of about 7 times is achieved for the largest matrix.

Next, we analyze the behavior for the best variant of the AMGCL multi-
threaded GPU implementation. In this case, a speedup of about 3.51 times is
achieved for the largest matrix in the setup phase. The solve phase is approx-
imately the same for both implementations. The solve phase fluctuates around
one, see Table 4.

Table 4. Minimum wall times for all generated Poisson problem matrices and all
considered OpenMP threads.

setup

lin.size original host original cuda mis(k) host mis(k) cuda

50 0.160 0.167 0.146 0.094

100 0.694 0.508 0.854 0.250

150 2.239 1.554 3.401 0.607

200 4.943 4.449 8.844 1.375

250 9.754 8.253 16.345 2.346

solve

50 0.085 0.060 0.082 0.069

100 0.580 0.301 0.545 0.259

150 2.271 0.656 2.039 0.594

200 4.317 1.131 5.189 1.262

250 10.145 2.597 10.073 2.621

5 Conclusion

In this research, we presented the implementation of the AMG framework that
targets GPUs. The AMGCL header-only library, designed and implemented by
D. Demidov using C++, was used as a base framework, which was subject to
deep modifications. The whole process (both setup and solve phases) was imple-
mented and tested on multiple symmetric matrices, generated and real-world-
alike. It is concluded that for small matrices, e.g. poisson3Db, the usage of our
implementation is not recommended. The GPU load is insufficient to deliver any
speedup against modern CPUs. We also do not recommend using the CPU variant
of MIS(K) aggregates since it is clearly inferior in all numerical experiments. On
the other hand, we obtained a speedup of the setup phase for intermediate and
large matrices (matrix size starting from ∼ 1E6) by about 7 times against the
AMGCL single-threaded GPU implementation and by about 3.5 times for the best
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multi-threaded variant. The speedup of the solve phase depends on the problem
(since aggregates are generated differently for AMGCL and our implementation
using MIS(K)) and fluctuates between 0.95 and 1.15. The suggested GPU-only
implementation can be recommended if matrices are generated on GPUs for sta-
tionary problems with a time-consuming setup phase, as well as for hard transient
problems, when a matrix rebuild is required on each time step.

Variations of classical AMG aggregation algorithms, as well as support for
multiple GPUs, are to be implemented for GPUs.
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Abstract. This paper studies the problem of algebraic cryptanalysis
where state-of-the-art SAT solvers are used to invert some cryptographic
function. We define a new metric of the hardness of CNF formulas that
encode the corresponding cryptanalysis problems. The introduced met-
ric is similar to the well-known tree-like metrics used in the theory of
propositional proofs. However, unlike the latter, the new metric can be
effectively estimated in application to specific cryptographic functions.
The corresponding approach combines the Monte Carlo method and
metaheuristic black-box optimization algorithms. The proposed algo-
rithms require a large amount of computational resources, and for their
experimental evaluation we used a supercomputer. In the experiments,
we applied the proposed metrics to construct estimations of guess-and-
determine attacks on the compression function of the well-known MD4
cryptographic hash algorithm.
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1 Introduction

The present paper studies the application of parallel algorithms for solving the
Boolean satisfiability problem (SAT) to the problems of algebraic cryptanalysis.
In particular, we introduce new metrics that make it possible to estimate the
complexity of SAT-based guess-and-determine cryptographic attacks [6]. The
problem of constructing estimations of this kind is reduced to the optimiza-
tion problem of the special fitness function, which is defined at the points of a
Boolean hypercube. This fitness function is a black-box function whose values
are calculated using the Monte Carlo method. To minimize this function, we
use metaheuristic algorithms implemented in form of an MPI application. All
computational experiments are carried out on a supercomputer.
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The Boolean satisfiability problem (SAT) is a combinatorial problem with an
extremely wide range of practical applications. Like many other NP-hard prob-
lems, SAT is not always difficult in practice, and for many of its particular cases
can be solved quite effectively using various additional techniques and heuristics.
As said above, we use state-of-the-art SAT solving algorithms in application to
algebraic cryptanalysis. In more detail, we construct the so-called guess-and-
determine attacks on some cryptographic functions using SAT solvers. In this
context, we follow [6] and many other works in which SAT solvers are applied to
algebraic equations describing the calculation process of the considered cipher.

Roughly speaking, the idea of a guess-and-determine attack consists in choos-
ing (guessing) bits from a certain set, the substitution of which greatly simplifies
the original cryptanalysis problem. Such a set is called a guessed bits set. Var-
ious methods can be used to solve problems weakened by such substitutions.
For example, a substitution of bits from some guessed bits set to the Multi-
variate Quadratic (MQ) system [22] may turn it into a linear system. However,
examples of successful attacks of this kind are very rare (see, e.g., [4]). The app-
roach with a wider area of applications implies a reduction of the considered
cryptographic problem to some combinatorial problem, the algorithmic base of
which is well developed. As G. Bard notices in [6], SAT is a good example of
such a problem. In application to the SAT encodings of cryptanalysis problems,
guess-and-determine strategies can also be defined quite naturally.

The main problem that arises when using SAT in cryptanalysis is that the
runtime of a SAT solver on a specific formula is hard to predict [17]. There are a
number of serious studies of possible measures that can be used to evaluate the
hardness of concrete formulas w.r.t. concrete algorithms for solving SAT. Below
we rely on the results of [5], in which various approaches to measuring tree-like
metrics of the hardness of Boolean formulas are studied. Specifically, in this
paper, several different tree-like metrics used in propositional proof complexity
are unified. The most important result of [5] for our case is the conclusion about
the relationship between the tree-like metric and the notion of a Backdoor set
(concretely, we mean the Strong Backdoor Set), presented in [37]. This notion
in the sense of the idea is very close to that of a guessed bits set. The Strong
Backdoor Set (SBS) is a set of variables such that the substitution of any values
to the corresponding variables in the original formula results in a formula for
which SAT is solved by some polynomial algorithm A. As we will see below, only
extremely small SBSs can give a gain in complexity, but such situations are very
rare in practice.

The approach in which we do not require the algorithm A to have poly-
nomial complexity turns out to be more practical. In such a case, A can be
an arbitrary complete algorithm for solving some NP-hard problem, for exam-
ple, a SAT solver. This is exactly the approach used in a number of works on
the decomposition of hard SAT instances, including applications in cryptanal-
ysis [31–33,38]. In fact, in these papers, it is shown that one can estimate the
complexity of Boolean formulas using SBS generalizations for the case when A
is a complete SAT solver. Specifically, in such cases, a special technique that
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combines the stochastic Monte Carlo method and metaheuristic optimization is
used. In [34] there is presented a class of SAT-based cryptographic attacks that
uses the so-called Inverse Backdoor Sets (IBS). For such backdoors, the com-
plexity estimations of the corresponding attacks have convincing guarantees of
accuracy. This allows one to compare the effectiveness of attacks based on an
IBS with the effectiveness of other attacks, and in a number of cases, IBS-based
attacks have the best-known effectiveness.

In the present paper, we combine ideas from [5] with ideas from [34] and
propose new tree-like metrics of the hardness of SAT instances that encode the
inversion problems of cryptographic functions. For these metrics, it is possible
to construct estimations using probabilistic algorithms similar to those used in
[34]. We construct such estimations for the functions considered in [18–20]. For
this purpose, we use a metaheuristic optimization of a special fitness function
calculated on a computing cluster.

As a result, we construct SAT-based guessed-and-determine attacks on
reduced-round versions of the compression function of the well-known MD4 hash-
ing algorithm. Namely, we mean the functions of the kind MD4-k, where k is the
number of steps of the base algorithm (MD4-48 corresponds to the complete-
round version of the considered function). In the computational part of our work,
we present non-trivial attacks on the functions MD4-43, MD4-45 and MD4-47.
The estimations of the hardness of these attacks are significantly smaller than
those of brute-force attacks for these functions.

2 Preliminaries

All variables considered below are Boolean variables, i.e., they take values from
{0, 1}. Assume that X = {x1, . . . , xn} is a set of Boolean variables. Then the
Boolean formula F is an expression constructed with respect to special rules
over the alphabet including X, brackets, and special symbols called logical con-
nectives. The simplest Boolean formulas of the kind x or ¬x are called literals
(here ¬ is the negation connective). The Boolean Satisfiability Problem (SAT)
is a problem that requires one to determine for an arbitrary Boolean formula
F whether there exists such an assignment α of variables from X, the substitu-
tion of which [9] to F results in 1 (true). If such an α exists, then it is called
a satisfying assignment, and the formula F is called satisfiable. Otherwise, F
is called unsatisfiable. SAT is NP-complete [11,25] in the decision variant and
NP-hard in its search variant (where if the considered formula is satisfiable, it
is required to find at least one satisfying assignment). Thus, SAT is most likely
to be unsolvable in polynomial time in the general case. On the other hand,
combinatorial problems from a wide variety of subject areas can be effectively
reduced to SAT [8].

It is well known that the Tseitin transformations [35] can be used to tran-
sition from SAT for an arbitrary Boolean formula to SAT for a formula in the
Conjunctive Normal Form (CNF). With respect to this, hereinafter we consider
SAT for arbitrary CNFs. The CNF is a conjunction of elementary Boolean con-
straints called clauses. Each clause is a disjunction of different literals among
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which there are not complementary ones (remind that the literals x and ¬x are
called complementary). If x is an arbitrary Boolean variable, then the notation
xα, α ∈ {0, 1} means ¬x if α = 0 and x if α = 1.

Let C be an arbitrary CNF over the set X = {0, 1}n. Consider an arbitrary
subset B ⊆ X. Denote all possible assignments of variables from B as {0, 1}|B|.
By C[β/B] denote the CNF constructed from C by substituting an arbitrary
assignment β ∈ {0, 1}|B| to C. Let A be an arbitrary polynomial algorithm
(subsolver in terms of [37]).

Definition 1. ([37]). For a CNF C over the set of Boolean variables X, the set
B ⊆ X is a Strong Backdoor Set w.r.t. the polynomial subsolver A if for each
β ∈ {0, 1}|B|, the algorithm A outputs the solution of SAT for C[β/B].

In [37] there is described an algorithm for solving SAT with complexity

O

(
p(|C|) ·

(
2|X|√

|B|

)|B|)
under the assumption that there exists an SBS B:

|B| ≤ |X|/2. However, this algorithm can be used in practice only if the consid-
ered formula has extremely small SBSs.

It is shown in [5] that the notion of SBS can be used to evaluate the hardness
of Boolean formulas. In particular, the paper studies different approaches to
estimating this hardness using tree-like metrics employed in propositional proof
complexity. In addition, [5] demonstrates the relationship between these metrics
and the so-called Backdoor hardness (the exact notion of Backdoor hardness is
presented in [31]).

In [31], the following problem is considered: to construct such a set B, B ⊆ X
that the total time μA,B(C) of solving SAT for CNFs of the kind C[β/B] over
all possible β ∈ {0, 1}|B| by some complete SAT solving algorithm A (which is
not necessarily polynomial) is less than the runtime of A on the original CNF
C. Following the terminology from [34], let us refer to such a set B as to a
Non-deterministic Oracle Backdoor Set (NOBS). In [31], it is shown that one
can estimate the value of μA,B(C) using Monte Carlo sampling. The problem
of finding the NOBS with the smallest value of μA,B(C) can thus be viewed as
the problem of minimizing a special pseudo-Boolean black-box fitness function
[31–33,38].

Now consider the function

f : {0, 1}n → {0, 1}m (1)

defined by some cryptographic algorithm (cipher). This function is defined every-
where on {0, 1}n (in the case of a stream cipher, it corresponds to the set of
all possible secret keys). Denote the set of possible images of f as Rangef ,
Rangef ⊆ {0, 1}n. The main problem considered below is the problem of inver-
sion (or of finding preimages) of the function f : given an arbitrary γ ∈ Rangef
to find some α ∈ {0, 1}n such that f(α) = γ. It is a well-known fact that such
problems can be effectively reduced to SAT [6].
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To reduce the problem of the inversion of a specific function to SAT, one
can use a number of software tools: for example, the well-known CBMC tool for
verifying C programs [10] or the Transalg translator specialized for cryptanal-
ysis instances [29]. The advantage of Transalg consists in that it constructs
the so-called template CNF Cf for the function f [23]. Essentially, the template
CNF is a symbolic representation of the algorithm Af that specifies the func-
tion f . An important fact is that one can model how Af works on an arbitrary
input α ∈ {0, 1}n, α = (α1, . . . , αn) by the iterative application of the Unit
Propagation rule [27] to the CNF

xα1
1 ∧ . . . ∧ xαn

n ∧ Cf . (2)

In (2), the variables x1, . . . , xn form a set, which we denote as Xin. These vari-
ables encode the input of the function f .

Our first goal is to use a SAT solver to construct an attack on the crypto-
graphic function f : in particular, to learn how to effectively invert this function
at least on some portion of its images. As mentioned above, we will construct
SAT-based guess-and-determine attacks, i.e., search for such sets of guessed bits
that make it possible to substantially simplify the solution of the inversion prob-
lem for f . It is quite clear that the notions of the guessed bits set and that of
NOBS are very close in spirit. Unfortunately, as it follows from the results of
[33,34], NOBSs do not suit well to constructing runtime estimations of guess-and-
determine attacks due to the fact that in such estimations there is an unknown
variance of some random variable.

To account for this, the notion of Inverse Backdoor Sets (IBS) is proposed in
[34]. For IBS-based attacks, one can estimate their runtime with any predefined
accuracy using the Monte Carlo scheme.

Briefly, the basic idea of IBS-based attacks proposed in [34] is as follows. Con-
sider a template CNF Cf for the function f . Define a uniform distribution over

{0, 1}n and construct a random sample of inputs α1, . . . , αN , αj =
(
αj
1, . . . , α

j
n

)
,

j ∈ {1, . . . , N} for f . For each αj , j ∈ {1, . . . , N} consider CNF (2). It is well-
known [7] that one can derive from (2) the values of all variables in the CNF Cf

using only the Unit Propagation rule. We will say that such values are induced
by the input αj of the considered function. In particular, during this process the
values y1 = γj

1, . . . , ym = γj
m, such that f(αj) = γj , γj =

(
γj
1, . . . , γ

j
m

)
will be

obtained.
Assume that A is a SAT solving algorithm, B ⊆ X is an arbitrary set of

variables in Cf , α ∈ {0, 1}n is some input of f , and t is a positive constant that
limits the runtime of A. Denote by β(α) the assignment of variables from B
induced by the input α and by γ(α) the value of the function f on the input α.
Associate with an arbitrary α ∈ {0, 1}n the value of the function ξ : {0, 1}n →
{0, 1} defined as follows: ξ(α) = 1 if A in time ≤ t finds a satisfying assignment of
the CNF Cf (β(α), γ(α)), which results from substituting the assignments β(α)
and γ(α) to the template CNF Cf ; otherwise ξ(α) = 0.
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Define a uniform distribution over {0, 1}n. Then the portion of vectors from
{0, 1}n on which the random variable ξ takes the value 1 is defined by the
following probability:

ρA,t(B) =
|{α ∈ {0, 1}n | ξ(α) = 1}|

2n
(3)

Since ξ is a Bernoulli random variable, then ρA,t(B) = E[ξ], and E[ξ] can be
estimated via the Monte Carlo method [28]. In particular, one can use the sample
mean of the values of ξ observed in N independent experiments in the role of the
estimation of E[ξ]. It is important to note that this estimation does not depend
on the characteristics of the algorithm A (as in the case of the estimations for the
NOBS in [31]) and can be made arbitrarily precise by increasing the number of
observations N . In more detail, let ξ1, . . . , ξN be independent observations of the
variable ξ. Applying the Chebyshev inequality [16] (w.r.t. that ξ is a Bernoulli
variable) to ξ, we conclude that the following holds:

Pr

⎧⎨
⎩

∣∣∣∣∣∣ρA,t(B) − 1
N

N∑
j=1

ξj

∣∣∣∣∣∣ ≤ ε

⎫⎬
⎭ ≥ 1 − 1

4ε2N
(4)

Definition 2 ([34]). A non-empty set B ⊆ X : |B| = s with the properties
described above is called an Inverse Backdoor Set (IBS) with the parameters
(s, t, ρA,t(B)) for Cf w.r.t. the algorithm A.

In [34] there is described a general IBS-based guess-and-determine attack appli-
cable to any function (1). This attack is applied to a set of outputs γ1, . . . , γM

of function (1). If we consider the probability of inverting at least one γk, k ∈
{1, . . . , M} to be ≥ 95%, then the runtime of this attack for some IBS B is:

TimeA,t(B) = 2|B| · t · 3
ρA,t(B)

(5)

As outlined in [34], it is possible to view the problem of constructing an effective
guess-and-determine attack as a problem of finding a set B with the smallest
value of (5). The latter problem can be considered as a problem of minimizing
the following pseudo-Boolean fitness function:

ΦA,t(θB) = 2|B| · t · 3N∑N
j=1 ξj

(6)

In (6), by θB we denote a Boolean vector of length |X| where ones correspond
to variables from X present in B, and zeroes correspond to variables from X
absent from B. Probability (3) in (6) is replaced by its statistic estimation w.r.t.
(4). To optimize functions (6), in [30,33,34] a computing cluster is used. In the
role of optimization schemes the papers employ both local search algorithms and
evolutionary algorithms.
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3 Using Tree-Like Metrics to Estimate the Effectiveness
of SAT-Based Guess-and-Determine Attacks

In this section, we introduce new metrics of effectiveness for IBS-based algebraic
attacks. Our main motivation is inspired by the results of [5], where several
different approaches to estimating the hardness of a Boolean formula via tree-
like metrics are considered. For the measures studied in [5], it is possible to
construct estimations of hardness for several infinite families of formulas (e.g.,
for pigeonhole principle formulas [12]). These estimations are constructed ana-
lytically, and it is completely unclear how one can obtain such estimations for
arbitrary Boolean formulas. Below we introduce tree-like metrics of effectiveness
for IBS-based guess-and-determine attacks. To solve SAT for CNFs of the kind
Cf (β, γ), we use modern complete SAT solvers based on the CDCL concept [27].

Let B, |B| = s be an arbitrary IBS. The first observation consists in the fact
that a Boolean hypercube {0, 1}s can be represented by a complete binary tree
Ts(B) of the depth s: the arbitrary assignment β of variables from B corresponds
to the path π(β) in Ts(B), which goes from a root to a leaf. We can establish
some order over B = {xB

1 , . . . , xB
s } so that all paths in Ts(B) are traversed in

this order, e.g., xB
1 < . . . < xB

S (we assume that the variable xB
1 is associated

with a root of Ts(B)).
Let f be function (1), Cf be a template CNF for f over a set X of Boolean

variables, and B, B ⊆ X be an arbitrary IBS. Assume that A is a complete
deterministic SAT solving algorithm that traverses some tree or forest in the
process of its work. Note that both DPLL and CDCL are examples of such
algorithms. In particular, DPLL traverses a binary tree in which all paths follow
some common order. On the other hand, CDCL works with a forest formed by
different binary trees, and each tree corresponds to a specific restart. In general,
different paths in such a forest have different variable orderings. If C is a fixed
CNF, then by FA(C) denote the tree (in the case of DPLL) or forest (in the
case of CDCL) traversed by the considered algorithm A in order to construct an
unsatisfiability proof for C or its satisfying assignment. By FA(C, t) denote the
part of FA(C) that contains the first t paths traversed by A.

Consider an arbitrary γ ∈ Rangef . Let π(β) be an arbitrary path in Ts(B),
and l(β) be a leaf of this path. Let us connect l(β) with the root or with the set
of roots FA(Cf (β, γ), t) by a new edge or several edges. We do this for each β ∈
{0, 1}|B| and for the corresponding path in Ts(B). Denote the constructed tree as
T ∗(Cf , A,B, γ, t). Let π∗ be an arbitrary path in T ∗(Cf , A,B, γ, t). Taking into
account the nature of the DPLL and CDCL algorithms, the path π∗ corresponds
to a sequence of decision levels [27] and literals derived via UP, which either ends
in a conflict or in a derivation of an assignment that satisfies Cf (β, γ).

Definition 3. If the path π∗ ends in a derivation of a satisfying assignment for
Cf (β, γ), then we refer to π∗ as a positive path, otherwise, π∗ is a negative path.

Now let us establish the following fact.
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Theorem 1. Let α be an arbitrary input of f chosen from {0, 1}n in accordance
with a uniform distribution, and γ = f(α). Assume that B is an IBS with the
parameters (s, t, ρA,t(B)) for Cf w.r.t. a SAT solving algorithm A. Then the
probability that the tree T ∗(Cf , A,B, γ, t) contains a positive path is ρA,t(B).

Sketch Proof. As follows from the definition of ρA,t(B), this is the probability of
an event that consists in finding by the algorithm A a satisfying assignment for
Cf (β(α), γ(α)) in time ≤ t. It is supposed that α is chosen from {0, 1}n w.r.t.
the uniform distribution, and β(α), γ(α) are the assignments of variables from
B and from the output of the function f , induced by α in the sense defined
above. Denote the upper bound on the number of paths traversed by A in a
tree or forest FA(Cf (β, γ)) as t. Note that T ∗(Cf , A,B, γ, t) at the beginning is
essentially a tree-like representation of the set {0, 1}|B|. However, in this case,
the tree contains a path that starts from β(α), where α is the preimage of γ w.r.t.
f . Denote this path as π̃. From (3) it follows that ρA,t(B) is the probability that
π̃ is positive. Thus, the theorem is proved.

If we construct trees of the kind T ∗(Cf , A,B, γk, t) for k ∈ {1, . . . , M}, then
from the proven theorem and the results of [34] it follows that for M ≥ 3/ρA,t(B),
the probability that at least one of these trees has a positive path (which corre-
sponds to the successful solution of the inversion problem for a specific γk) is at
least 95%.

Definition 4. We define the hardness of a guess-and-determine attack based
on an IBS B in the context of the tree-like metric proposed above as the total
number of paths in all trees T ∗(Cf , A,B, γk, t), k ∈ {1, . . . ,M}.

Note that the approach from [34] that uses the statistic estimation of the
hardness of IBS-based guess-and-determine attacks can be naturally transferred
to the introduced tree-like metric. Thus, we can use the computational scheme
of the Monte Carlo method in combination with metaheuristic optimization for
this purpose.

4 Class of Considered Functions

In this section, we describe the functions for the inversion of which we run
computational experiments on a supercomputer. These are the variants of the
compression function of the well-known cryptographic MD4 hash function. The
MD4 function is vulnerable to the so-called collision attack [36]. However, for its
inversion problem, no attacks with realistic runtime are known so far. The best
preimage attack known to the authors is the one described in [24]. The attack
proposed in the paper has a complexity of 296 calls of the MD4 compression
function. It is noteworthy that the computational results of [24] are quite hard
to reproduce.

Our goal is to construct an estimate of the hardness of the inversion problem
of the MD4 compression function w.r.t. the tree-like metrics proposed above and
compare it with the results of [24]. We would like to highlight that it is not hard
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to reproduce our results since for this purpose one can use publicly available
software tools and a computer cluster.

In addition to the complete-round MD4 compression function, we will con-
sider the inversion problems of the variants of this function, limited in the num-
ber of steps, for which we use the notation fMD4-k, where k is the number of
compression steps, k ∈ {1, . . . , 48}, and the case k = 48 corresponds to the
complete-round compression function.

In application to functions of the kind fMD4-k, we use special techniques
for weakening their inversion problems. The basic idea of such techniques goes
back to H. Dobbertin [14] and consists in fixing the values of some chaining
variables to a constant. This step leads to the derivation of the values of some
other variables. The SAT variant of Dobbertin’s attack is described in [13], and
this attack turns out to be substantially more effective compared to the original
one. In [18], it is suggested to use the automatic search of relaxation constraints
a la Dobbertin by applying black-box optimization algorithms. As a result, new
relaxation constraints are found, they give an attack that is significantly more
effective than the attack from [13]. In particular, the attack from [18] allows
inverting the MD4-39 function in less than 1 minute on randomly selected vec-
tors from {0, 1}128 on a personal computer.

The key idea of the attacks from [18–20] is to reduce the inversion problem
of functions of the kind

fMD4-k : {0, 1}512 → {0, 1}128

to inverting functions of the kind

gλr

MD4-k : {0, 1}pr → {0, 1}128, (7)

where pr < 512. Functions (7) are built using the vectors λr, which specify
the sets of Dobbertin’s relaxation constraints. Any λr is a Boolean vector of
length 48: ones in it indicate at which step of the compression algorithm the
corresponding chaining variable is replaced by the constant 032. So, for example,
the vector λ1 used in [18] (in the paper it appears as ρ1) defines the function

gλ1
MD4-k : {0, 1}128 → {0, 1}128. (8)

As shown in [19], function (8) is defined almost everywhere on {0, 1}128. At
least half of the vectors from {0, 1}128 have gλ1

MD4-k-preimages (at least for
k ∈ {39, . . . , 45}). If for χ ∈ {0, 1}128 there exists such α′ ∈ {0, 1}128 that
gλ1

MD4-k(α′) = χ, then from such α′ we can effectively recover α ∈ {0, 1}512 for
which the following holds: fMD4-k(α) = χ.

5 Computational Experiments

In this section, we provide a description of computational experiments in which
SAT-based guess-and-determine attacks for functions of kind (8) are built.
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In these experiments, at the stage of debugging and testing software applica-
tions, the “Akademik V.M. Matrosov” cluster of Irkutsk Supercomputer Center
[2] is used. The main computational experiments are carried out on the cluster
of Peter the Great St. Petersburg Polytechnic University [3].

5.1 General Scenario

Once again let us give a brief description of the computational problem, for the
solution of which a supercomputer is used. We consider the inversion problems
of a function of kind (8) for different k, k ∈ {40, . . . , 48} (for k < 40, the
corresponding problems can be solved on a PC). For such functions, we build
IBS-based guess-and-determine attacks. In the role of a SAT solving algorithm
A, we use several state-of-the-art CDCL-based SAT solvers: MiniSat, Glucose,
Cadical, MapleLCM.

Let us construct a template CNF C
g

λ1
MD4-k

using the Transalg tool [29].
For each considered function of kind (8) we generate a sample on N random
inputs α1, . . . , αN ∈ {0, 1}128, and for each j ∈ {1, . . . , N} we generate the
assignment of all variables in C

g
λ1
MD4-k

by applying UP to CNFs of the kind

x
αj

1
1 ∧ . . . ∧ x

αj
n

n ∧ C
g

λ1
MD4-k

. An arbitrary set B ⊆ X is represented by a Boolean

vector θB of length |X|. Let us define at an arbitrary point θB ∈ {0, 1}|X| the
value of fitness function (6) as follows:

1. For a random sample α1, . . . , αN generate outputs γ1, . . . , γN of the function
gλ1

MD4-k and assignments of variables from B: β1, . . . , βN ;
2. Consider CNF formulas C

g
λ1
MD4-k

(βj , γj), j ∈ {1, . . . , N} and apply the SAT
solver A to each such a formula with a constraint on the number of conflicts
≤ t (the constant t is chosen during the experiments). If A has made more
than t conflicts, the corresponding computation is interrupted;

3. With each run of A on the CNF C
g

λ1
MD4-k

(βj , γj) we associate the observed

value ξj of the random variable ξ: if A managed to find a satisfying assign-
ment for C

g
λ1
MD4-k

(βj , γj) using ≤ t conflicts, then ξj = 1, otherwise ξj = 0;
4. Calculate the value of the fitness function at the point θB according to for-

mula (6);
5. Go to a new point θB using some metaheuristic strategy [26].

Note that a similar approach is used in several prior papers, e.g., [30,34].
However, in these papers, the runtime of the algorithm A is limited by a straight-
forward time limit in seconds, while in the present paper we impose a limit in the
number of conflicts. In addition, the cited papers employ different algorithms to
optimize the fitness function, in particular, [34] uses the tabu search algorithm,
while [30] utilizes several variants of the (1+1) Evolutionary algorithm, as well
as a special genetic algorithm (GA). It is the latter algorithm that we use in our
experiments, however, for the purposes of the present paper it is reimplemented
to fully work on clusters.
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In this work, we use a version of the algorithm from [30] implemented as an
MPI program, and thus one can run it on a computer cluster of any capacity.
Specifically, the algorithm works with several points of the hypercube forming
a population θB1 , . . . , θBQ

. Let Π be an arbitrary population of the size Q. We
associate the distribution DΠ = {p1, . . . , pQ} with it, defining the probabilities
pl, l ∈ {1, . . . , Q} as follows:

pl =
1/Φ(θBl

)∑Q
i=1 (1/Φ(θBi

))
(9)

The transition from the current population Π towards the new population Π ′ is
performed as follows. We select individuals from Π randomly w.r.t. the distribu-
tion DΠ and to each pair of selected individuals we apply the standard two-point
crossover operator [26] in a combination of the FGA-mutation operator proposed
in [15]. In such a way we construct G individuals of a new population. We also
add to the new population H individuals from Π that have the best values of
the fitness function (this step corresponds to the so-called elitism concept [26]).
As a result, we ensure that the following holds: G+H = Q. In all computational
experiments we use the following values of these parameters: Q = 10, G = 8,
H = 2.

From the definition of the fitness function, it directly follows that this func-
tion is quite costly in a computational sense. Even with the use of a powerful
supercomputer, optimizing such a function over the hypercube {0, 1}|X| would
require colossal computational resources. That is why in our experiments we
solve the optimization problems of functions (6) on some special subsets of X.
As noted in [34], we can take as a started point of our optimization process some
Strong Unit Propagation Backdoor Set (SUPBS). If B is a SUPBS, then the cal-
culation of the value Φ(θB) takes t = 0 conflicts. In our cases, a trivial SUPBS is
formed by the input variables of the considered function, and we denote this set
by Xin. For any function considered in this paper this set consists of 128 vari-
ables. In our experiments we optimize the functions of the kind Φ (θB), namely,
on 2Xin

.

5.2 Implementation and Results

As said above, we conduct computational experiments on two supercomputers,
the “Akademik V.M. Matrosov” cluster of Irkutsk Supercomputer center [2] and
the computing cluster of St. Petersburg Polytechnic University (SPPU) [3]. Each
compute node of the former is equipped with two 18-core processors Intel Xeon
E5 2695 v4 and 128 GB DDR4-2400 RAM. In our experiments, we employ up
to 10 nodes (180 cores) for up to one day. The nodes of the latter cluster are
equipped with four 14-core processors Intel Xeon E5 2695 v3 and 64 GB DDR4-
2400 RAM. In each experiment, we harness 25 nodes (1400 cores) and use the
same duration (one day).

The “Akademik V.M. Matrosov” cluster is mainly used to debug and test
the developed MPI program and the employed SAT solvers (see details further).
The major part of the computational experiments is run on the SPPU cluster.
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In our experiments, we consider the problems of inverting the functions
gλ1

MD4-k, k ∈ {43, 45, 47, 48} described above. To minimize the functions Φ (θB),
we employ the EvoGuess framework [1], specially developed for solving pseudo-
Boolean optimization problems associated with SAT. This framework imple-
ments several evolutionary algorithms, however, we mainly use the implemen-
tation of the Genetic Algorithm described above. EvoGuess can be used as an
MPI application and, thus, can harness any number of available cores. Actually,
EvoGuess can be considered as an optimization wrap-around for the PySAT
tool [21], which, in turn, is the environment for invoking SAT and MaxSAT
solvers incrementally from Python. PySAT supports a number of modern SAT
solvers (MiniSat, Glucose, Cadical, MapleLCMDist, etc.). On the testing stage,
we check all of them, but for our class of instances the best results are obtained
using MiniSat 2.2, thus in all experiments we use this solver.

The results of the computational experiments are presented in the following
table.

Table 1. Results of the experiments. In each experiment, 1400 cores of the SPPU
cluster are used (25 nodes) for 1 day (24 h). The SAT solver MiniSat 2.2 (embedded
in the PySAT tool) is applied.

MD4-43,

(inverting

gλ1
MD4-43)

MD4-45,

(inverting

gλ1
MD4-45)

MD4-47,

(inverting

gλ1
MD4-47)

MD4-48,

(inverting

gλ1
MD4-48)

Best value of

Φ (θB) in the proposed

tree-like metric

(estimation of guess-

and-determine

attack hardness)

2.489460e+13 1.770887e+21 2.415492e+28 8.222028e+36

Size of the best

backdoor (w.r.t. the

best value of Φ (θB))

19 46 70 99

Number of

visited points in

the hypercube

54312 47840 42456 41984

Let us briefly discuss the obtained results. Recall that with respect to what is
said above, we can consider one conflict as one elementary call of a special func-
tion (actually, a SAT solver), which is used to solve the corresponding cryptanal-
ysis problem. On the other hand, in brute-force attacks on each of the consid-
ered functions we make 2128 ≈ 3, 4e+38 calls of the corresponding function in the
worst case scenario and 2127 calls on average. Thus, we can conclude that the MD4
compression function has non-trivial SAT based guess-and-determine attacks for
k = 43, 45, 47. For a complete-round version of this function, i.e., for MD4-48,
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the obtained attack is comparable to a brute-force attack, and thus the use of SAT
solvers does not lead to any advantage in this case.

6 Conclusion

In this paper, we present new measures to estimate the hardness of algebraic
attacks on cryptographic functions that use state-of-the-art SAT solvers. The
proposed measures are tree-like. In fact, they are statistic estimations of the
number of paths in some tree, which corresponds to the process of enumerating
all possible assignments of variables in some guessed bits set. By estimating this
number, we construct the estimation of the corresponding attack. The problem
of constructing the best attack of this kind is viewed as a problem of minimizing
some fitness function, the values of which are calculated probabilistically using
the Monte Carlo method. To optimize such a function, we use a specially devel-
oped framework for solving black-box optimization problems associated with
SAT, which is an MPI program that can work on a supercomputer. In our com-
putational experiments, two clusters [2,3] are harnessed. As a result, we con-
struct a non-trivial SAT based guess-and-determine attack on reduced-round
versions of the compression function of the well-known MD4 hashing algorithm,
namely, for MD4-43, MD4-45, MD4-47. Using the proposed tree-like metrics,
it is shown that the constructed attacks are significantly more effective than
brute-force attacks.
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Abstract. The usage of one of the latest high-performance hardware
types (nodes with several GPUs connected by high bandwidth and low
latency communication links), requires algorithms where the CPU is used
only to manage the program execution, and GPUs are used for computa-
tions. In this work, we study an original GPU-only parallel matrix-matrix
multiplication algorithm (C = αA ∗ B + βC) for servers with multiple
GPUs. The algorithm is implemented using CUDA. The performance of
this multi-GPU GEMM algorithm and the method defining the optimal
tile size using the hardware parameters and the matrix size are consid-
ered. The usability of the developed performance model by benchmarking
two types of GPU servers is verified.

Keywords: Parallel computing · CUDA · GEMM · high-speed GPU
interconnect · multi-GPU programming

1 Introduction

Today, accelerators, especially GPUs, have arisen as an important component of
supercomputers. Therefore, many algorithms and programs have been modified
accordingly: molecular dynamics codes such as GROMACS [1], particle-in-cell
plasma simulation codes such as PICADOR [2], electronic structure calculation
codes such as Quantum Espresso [3,4], or astrophysical hydrodynamics codes such
as GPUPEGAS [5,6]. The main idea of these modifications is to offload some pos-
sible workload to be computed on GPUs. The strategy is to organize parallel com-
puting across the nodes of a supercomputer using MPI and inside the node with
GPUs using OpenCL/CUDA/HIP (see e.g. [7–9]). The common issue then is data
transfer bandwidth, which restricts the GPU utilization rate [10,11], hence, there
arises a need for very high-performance links such as NVlink or Infinity Fabric.
Servers with GPU devices connected with such links generally show high efficiency,
especially in the cases of GPU-only algorithms (e.g. [12–14]).

Many problems are based or rely on linear algebra, particularly, on matrix
operations. Matrix multiplication is a more or less costly operation that might be
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appraised as a benchmark to study the performance of computers (e.g. [15–18]).
While GPUs are used for such computations, we can distinguish cases when
only GPUs are used for it or, otherwise, other types of computing units may
participate in it. On the other hand, contemporary compute nodes have fast links
(e.g. NVlink), such as those described earlier, between GPUs and slower links
(e.g. PCIe) between the CPU and GPU. Thence, if we have to compute several
consecutive mathematically heavy operations, it will be less costly to launch
it on GPUs without giving requests to the host memory for data transfer. In
addition, during multi-GPU computing, devices have to continuously send and
receive data, therefore, the reuse of data on the units involved, if possible, will
make the process faster and less complicated.

2 Related Work

Parallel matrix multiplication algorithms have a long history of development.
For example, after the introduction of the MPI standard, a Scalable Universal
Matrix Multiplication Algorithm (SUMMA) for parallel matrix multiplication
was published [19]. Different parallel GEMM algorithm models and structures
were under research [20,21]. There were attempts to redesign the core of the
algorithm [22]. One of the recent works showing approximate peak performance
is the Communication Optimal S-partition-based Matrix multiplication Algo-
rithm (COSMA) [23]. Particular attention there is paid to the importance of
I/O operations and communications management, which is the key to reach
comparably fast performance in relation to the best existing solutions such as
ScaLAPACK [23].

Analytical models help to find optimal parameters for GPU algorithms. Such
a model for a single GPU is presented in Tran, Lee, and Choi [24].

Since we work with multiple GPUs, we also have to pay attention to the
synchronization process between the devices [25].

The optimal partitioning of a computational domain over several hetero-
geneous processors, processor load balancing and the minimization of inter-
processor communication costs are crucial for data-parallel dense linear algebra
and other applications that have a similar communication pattern in modern
hybrid servers. One of the most recent works in this field is devoted to the opti-
mal partitioning of a square computational domain over three heterogeneous
processors [26].

An algorithm showing high efficiency for hybrid platforms that have fast com-
munication links installed between the CPU and GPU is built over the PaRSEC
runtime system [27]. It stores data in the host memory, and GPUs are supplied
with the necessary data chunks by the CPU-GPU interconnect.

In our previous work [28], we introduced a matrix multiplication algorithm
for a multi-GPU node that uses only GPUs for data storage and computation.
The algorithm is aimed for the use in nodes with a fast interconnect between
GPUs. It was shown that the standard cuBLAS-XT function from Nvidia CUDA
SDK provided suboptimal performance on a multi-GPU node. The asynchronous
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data transfer and compute organization in the algorithm allowed us to get much
higher performance. In this work, we present an analytical model that estimates
the time-to-solution for the proposed algorithm using basic hardware parameters.
This analytical model can be used to optimize the algorithm verified in this work
by benchmarking two different multi-GPU servers.

3 Testing Platforms

The results reported in this study are obtained on the K-type nodes of the
cHARISMa supercomputer at HSE University [29,30]. The nodes are based on
DELL PowerEdge C4140 servers with two Intel Xeon Gold 6152 CPUs, and four
NVidia Tesla V100 GPUs (Fig. 1a). Each GPU has 32 GB of HBM2 memory,
and the four GPUs are connected by NVLINK 2.0, forming a fully connected
(‘all-to-all’) topology.

Fig. 1. Topology of the DELL PowerEdge C4140M node of the cHARISMa supercom-
puter with two CPUs and four Nvidia Tesla V100 GPUs connected by NVLINK 2.0 (a)
and the TYAN B8021G88V2HR-2T server with one CPU and four Nvidia GTX1070
GPUs connected by PCIe 3.0 (b).

The benchmarking studies presented in this work are carried out using the
standard HPC software stack based on CentOS Linux release 7.6.1810, GNU
compilers 7.3, and CUDA Version 10.2.89 with driver ver. 440.33.01.

The second platform is the TYAN B8021G88V2HR-2T server at JIHT RAS.
It has the EPYC 7351P CPU and four NVidia GeForce GTX1070 GPUs con-
nected by PCIe 3.0 (Fig. 1b). Each GPU has 8 GB of GDDR5 memory.

4 Parallel Matrix-Matrix Multiplication Algorithm
for Multiple GPUs

The studied algorithm is an improved version of the algorithm presented pre-
viously [28]. The research is based on the general matrix-matrix multiplication
algorithm for the following matrix operation

C = αA ∗ B + βC.
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The main idea of the process is to calculate the tiles of the resulting matrix C
on each device with the reuse of possible data of the input matrix bands [28].
In the research, we observe a simpler case with 2 square matrices A and B,
where N ∗ N elements are in both. Each matrix is divided into some number
of equal-sized bands to share the computational load between different GPUs.
Then, from the pairs of the bands from A and B, we calculate the appropriate
tiles of the resulting matrix C.

The GEMM function from the cuBLAS library is used as the core of the
proposed algorithm. It normally works with column-oriented matrices, but is
also available for differently oriented matrices. In our case, if we perceive the
column orientation as a default configuration, we store the data of the matrix A
transposed. This simplifies the data transfer operation because we can just send
one long data line from the source memory.

The algorithm is GPU-oriented, thus, the CPU gives only instructions. The
source data are located in GPUs, and transfers are sent only between GPUs. For
computation in devices, 2 bands are allocated for the same matrix.

The classical SUMMA algorithm [19] is developed using MPI for distributed
memory systems. SUMMA does not use asynchronous data transfers, which
could help overlapping computations and communications. The algorithm pro-
posed here works with the “rows” of the matrix A and the “columns” of the
matrix B. However, GPUs perform computational operations reasonably quickly.
To supply data in time, high-speed communication links and data division into a
sufficiently large number of chunks are required. To manage this issue, we orga-
nize asynchronous communications and computations. Then, we do not supply
the original data of the matrix C, but we add βC due to the copy kernel of the
results received in the final stage.

5 Theoretical Optimal Tile Size

For a better performance of the algorithm, we regulate the tile size one by
one and find the best one. The performance time of the GEMM kernel can be
approximated [31] as

TGEMM = max (Tmem, Tmath, Tinstructions), (1)

where Tmem is the data management time in the frame of a device, Tmath is
the time spent on mathematical operations, and Tinstructions is the time during
which instructions are given by the CPU. In the basis of the algorithm, we
assume in advance that Tinstructions � Tmath since, otherwise, a multi-GPU
implementation would slow down the execution by waiting for instructions. To
satisfy this condition, the matrices involved in GEMM should not be too small.
To understand if Tmath > Tmem, we can find the arithmetic intensity [32] of
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GEMM operations, which should be greater than the defined value for the devices
involved, i.e., the math and memory bandwidth proportion. In the case of single
precision (32-bit), it can be found by the proportion

Intensity =
FLOPS

bytes
=

2MNK

4(MN + NK + MK)
> BWmath/BWmem = kBW ,

(2)
where M,N,K are the numbers of elements in the columns or rows of the matri-
ces A,B,C; BW is the processor math or memory bandwidth, appropriately. In
our case, Eq. (2) becomes

Intensity =
N2

i N

2(NiN + NiN + N2
i )

=
NiN

4N + 2Ni
> kBW . (3)

After simple arithmetic we get (N > 2kBW )

Ni > 4kBWN/(N − 2kBW ), Tmath > Tmem. (4)

For example, for single precision of the Nvidia V100 GPU (kBW = 16.6) if
N = 212, Ni > 66.9 needed to Tmath > Tmem, if N = 213, then Ni > 66.6, if
N = 214, then Ni > 66.5. Each time can be found by the equations

Tmath = FLOPS/BWmath, Tmem = bytes/BWmem, (5)

which for the algorithm transform into

Tmath = 2N2
i N/BWmath, Tmem = (8NNi + 4N2

i )/BWmem. (6)

On the other hand, we have to keep data supply from memory storing original
matrices simultaneously. The GPU device, where the original matrix is located,
sends bands to the other GPUs, so NumGPUs − 1 data transfer operations need
be sent. If we are not dealing with a small number of tiles, the reuse of data in
the model can approximate the time needed for one kernel launch (Tkernel) as
follows:

Tkernel = max(TGEMM , (NumGPUs − 1)Ttransfer). (7)

Otherwise, the transfer time (Ttransfer) can increase by up to 3 times (3 matrices
A, B, C). This effect is conspicuously demonstrated when we store all matrices in
one device [28], where the transfer time influences the performance of the whole
task and has decreased efficiency compared to the case with the spread store of
the matrices.

Furthermore, if we suppose that we have reached a fully parallel model, then
the full task performance time (Ttask) will be approximately

Ttask = 3Ttransfer + N/(NiNumGPUs)Tkernel. (8)

Particularly, the data transfer time has a linear form [33]

Ttransfer = bytes/BWtransfer + Tlatency. (9)
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We work with sufficiently large matrices such that the term with transfer band-
width between GPUs (BWtransfer) dominates [33]

bytes/BWtransfer � Tlatency. (10)

Accordingly, expression (9) together with condition (10) in single precision can
be converted into

Ttransfer = 4NiN/BWtransfer. (11)

Today, high-performance computing environments have exceptionally fast
math bandwidth (BWmath) or in-device memory bandwidth (BWmem) compar-
ing with data transfer (BWtransfer) from another device. It means that we will
slow down the execution of the task whenever we make GPUs wait for data sup-
ply. There are two possible situations, if Intensity > kBW , we determine from
Eqs. (1), (6), (7), (11)

Tkernel = TGEMM = Tmath, Ni > 2(NumGPUs −1)BWmath/BWtransfer, (12)

and if Intensity < kBW ,

Tkernel = Tmem, Ni > N ((NumGPUs − 1)BWmem/BWtransfer − 2) . (13)

Interesting remarks can be made here from conditions (12) and (13). If for some
reason we have BWtransfer � BWmath or mem, we will also have Tkernel =
TGEMM since Ni should be a natural number; but, probably, some reversed sit-
uation can be exposed for small Ni and will have a comparably fast BWtransfer.

We also minimize the performance time in Eq. (8) by regulating Ni. With
(6), (11), (12), (13), we determine for Intensity > kBW

Ttask(Ni) = (3N/BWtransfer + 2N2/(NumGPUsBWmath))Ni, (14)

otherwise

Ttask(Ni) = (3N/BWtransfer + 4N/(NumGPUsBWmem))Ni

+ 8N2/(NumGPUsBWmem). (15)

Expressions (14) and (15) show that the performance will be better for lower
Ni. However, we still have to satisfy three conditions (12), (13), and (4) at once.

6 Tile Size Tuning for Different Platforms

To come up with the required tile size using the materials presented in Sect. 5,
we have to pay attention to arithmetical intensity (4) and conditions (12) or (13).
Importantly, we see that if the algorithm is math limited (Intensity > kBW ),
then Ni is independent from N . In the work frame, we observe only matrices
with N ≥ 8192, and both N and Ni being some natural number power of 2.
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6.1 Expected tile Size for Experimental Environments

The first computing system is composed by Nvidia V100 GPUs connected by
NVLink 2.0. The V100 GPU single precision parameters are presented in Table 1.
To find Ni, we use the maximal expected BWmath or mem, but for the transfer
one, the rate is found by the bandwidth test. We have from (4) at least Ni > 66
to have a mathematical limited condition and from (12) Ni > 616 for 2 GPUs
and Ni > 1849 for 4 GPUs. Thus, the optimal sizes are Ni = 1024 for 2 GPUs
and Ni = 2048 for 4 GPUs.

The second system is Nvidia GeForce GTX 1070 GPUs connected by PCIe 3.0
(see Table 1). From the intensity condition we get Ni > 90, from (12) Ni > 1352
for 2 GPUs and Ni > 4058 for 4 GPUs. Thus, the optimal sizes are Ni = 2048
for 2 GPUs and Ni = 4096 for 4 GPUs.

Table 1. Test platform parameters and best predicted tile sizes

Hardware Parameters Nvidia V100 Nvidia GTX1070

BWmath (Gflops/sec) 14899 5783

BWmem (Gb/sec) 900 256

test BWtransfer (Gb/sec) 48.33 8.55

ideal BWtransfer (Gb/sec) 50 16

Algorithm Parameters Nvidia V100 Nvidia GTX1070

Ni for 2 GPUs 1024 2048

Ni for 4 GPUs 2048 4096

6.2 Experimental Results

In this section, we would like to present the performance time and tile size
dependence. For each test platform, we observed 2 cases of data store, when all
square matrices with N2 elements are located in the memory of one GPU, or the
matrices A, B, C are located in 3 GPUs, one in each. We increased the testing
data by 2, thus, N and Ni have the value being some power of 2. In addition, the
size ranges are N ≥ 8192 and Ni ≥ 512. The matrix size is chosen consciously
large to avoid the influence of minor parameters such as Tinstructions (Eq. (1)),
and the tile size to show the behavior when it goes over the appointed value
in Table 1. If we do not meet extra conditions to the tile size, the largest one
we can deal with is Ni = N/NumGPUs due to equal task division between the
implemented GPUs.

Each server we tested has 4 GPUs, which we could use when launching the
program. For each, we analyzed the cases with 2 or 4 GPUs. In addition, we
wanted to present some testing profiles to describe how GPU performance relates
to the tile size (Ni). While working with CUDA, we got profiles using nvprof and
visualized them by the Nvidia Visual Profiler. In Fig. 2, we can see the involved
processor in the column on the left side and the type of operation described, such
as instructions given on the CPU, data transfer, or kernel (GEMM) execution.
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Fig. 2. Profile parts of the multi-GPU GEMM operation on V100 with the proposed
algorithm performing on 4 GPUs. Number of elements (N = 65536) in a row (column)
of matrices and different tile sizes (Ni = 4096 (a), Ni = 2048 (b), Ni = 1024 (c)). The
matrices A, B, and C are stored in devices with id 0, 1, and 2.

Four V100 Connected by NVLink. The GPUs we worked with have 32
GB of in-device memory. For our experiments, the maximum matrices with
N = 32768 fit in one device memory together and with N = 65536 separately.
However, in the second case, we met the memory limit for allocating additional
band matrices involved in the computing process, thus, the maximum tile size
we could use was Ni = 4096. In Fig. 3, we can find the best performance with
Ni = 1024 for 2 GPUs and Ni = 2048 for 4 GPUs. These numbers match with
those defined in Sect. 6.1.
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Fig. 3. Graph of the multi-GPU GEMM operation on V100 with the proposed algo-
rithm performance speed on 2 and 4 GPUs by tile size (Ni) for a different number
of elements (N) in a row (column) of matrices. The matrices A, B, and C are stored
in device 0 (a) or in devices 0, 1, 2 (b), respectively. The dashed lines show the total
single precision peak performance of 2 and 4 GPUs, respectively.

Figure 2 for N = 65536 demonstrates the execution of 4 Volta 100 GPUs
for different tile sizes (Ni). When using the appointed size Ni (see Fig. 2b), we
achieve the most frequent data transfer (for example, comparing with Fig. 2a),
not taking longer than the kernel time (see Fig. 2c). This matches with the
propositions given in Sect. 5. Therefore, the benchmark results verify the model.

Four GTX1070 Connected by PCIe 3.0. This testing platform has 8 GB
of local memory in each GPU. We could perform benchmarks up to N = 16384
for a single device located case and N = 32768 and up to Ni = 4096 for a
distributed storage case. The results are presented in Fig. 4.

The best performance with 2 GPUs is achieved with Ni = 2048 as proposed
(Fig. 4a). For 4 GPUs, we have a lack of data due to the memory limit, however,
the performance keeps growing to Ni = 4096, so we can expect it to be the
best. Hence, the found tile size according to the arithmetical model matches for
2 GPUs, and, however, the tile size for 4 GPUs is shown to be the best only on
one point due to the memory limit; the behavior of the graphs matches with the
propositions given beforehand, that is why we can assume that the results fully
comply with the mathematical algorithm.



Tuning of a Matrix-Matrix Multiplication Algorithm 167

Fig. 4. Graph of the multi-GPU GEMM operation on GeForce GTX1070 with the
proposed algorithm performance speed on 2 (a) and 4 GPUs (b,c) by tile size (Ni) for
a different number of elements (N) in a row (column) of matrices. The matrices A, B,
and C are stored in device 0 (a,b) or in devices 0, 1, 2 (c), respectively. The dashed
lines show the total single precision peak performance of 2 and 4 GPUs, respectively.

7 Discussion

The performance of the proposed multi-GPU general matrix multiplication algo-
rithm is dependent on the size of tile matrices. We determined tile size values
for definite device and communication link properties, as well as the number
of GPUs involved, to achieve the best performance in the tests. Then we per-
formed experiments with large matrices to reach the performance limited by the
computing ability of the GPU.

In the most general case, the computation of GEMM functions on a GPU
can be limited by computational performance or memory bandwidth, depending
on the matrix size. However, in our work, we observe only a computationally
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limited case. There are secondary, but still important conditions that affect the
performance. The first is the initialization latency of kernels on the GPU called
by the CPU, and the consumed time for it should be much less than the time of
the actual workload. The second is the data transfer time, which should be less
than the computing time to keep the continuous operation of multiple devices.

We propose a mathematical model to define the optimal tile size based on
known hardware parameters. The model is based on some assumptions about
the system. In particular, the system should include similar GPUs connected by
links with the same and fairly stable throughput values. In practice, determining
the real properties of communication networks may be a non-trivial task, in
particular, the behavior of these links under a certain load may require additional
tests and profiling.

The proposed algorithm with a high degree of probability will not be optimal
for exotic and specific cases (see e.g. [34]). In this paper, more typical and com-
mon cases are considered. Further development of the algorithm may include
increased flexibility and versatility to work effectively on a wide range of config-
urations.

8 Conclusion

An analytical model that takes into account the hardware parameters of the GPU
server (data transfer bandwidth and GPU performance) and predicts the optimal
tile size for the multi-GPU GEMM algorithm is developed. The benchmarks
on two different GPU servers (one with V100 GPUs and NVlink and another
with GTX1070 GPUs and PCIe links) confirm the applicability of the analytical
model. The profiling of the algorithm execution on the GPU server with NVlink
also verifies the model .
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Abstract. The article proposes an n-dimensional mathematical model
of the visual representation of a linear programming problem. This model
makes it possible to use artificial neural networks to solve multidimen-
sional linear optimization problems, the feasible region of which is a
bounded non-empty set. To visualize a linear programming problem, an
objective hyperplane is introduced, its orientation is determined by the
gradient of the linear objective function: the gradient is the normal to the
objective hyperplane. In the case of searching the maximum, the objec-
tive hyperplane is positioned in such a way that the value of the objective
function at all its points exceeds the value of the objective function at all
points of the feasible region, which is a bounded convex polytope. For an
arbitrary point of the objective hyperplane, the objective projection onto
the polytope is determined: the closer the objective projection point is to
the objective hyperplane, the greater the value of the objective function
at this point. Based on the objective hyperplane, a finite regular set of
points, called the receptive field, is constructed. Using objective projec-
tions, an image of the polytope is constructed. This image includes the
distances from the receptive points to the corresponding points of the
polytope surface. Based on the proposed model, parallel algorithms for
visualizing a linear programming problem are constructed. An analytical
estimation of its scalability is performed. Information about the software
implementation and the results of large-scale computational experiments
confirming the efficiency of the proposed approaches are presented.

Keywords: Linear programming · Multydimensional visualization ·
Mathematical model · Parallel algorithm · BSF-skeleton

1 Introduction

The rapid development of Big Data technologies [11,12] has led to the emergence
of mathematical optimization models in the form of large-scale linear program-
ming (LP) problems [24]. Such problems arise in industry, economics, logistics,
statistics, quantum physics, and other fields [3,4,8,22,25]. In many cases, the
conventional software is not able to handle such large-scale LP problems in an

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
L. Sokolinsky and M. Zymbler (Eds.): PCT 2022, CCIS 1618, pp. 172–196, 2022.
https://doi.org/10.1007/978-3-031-11623-0_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-11623-0_13&domain=pdf
http://orcid.org/0000-0001-9997-3918
https://doi.org/10.1007/978-3-031-11623-0_13


Visualizing LP Problems 173

acceptable time [2]. At the same time, in the nearest future, exascale supercom-
puters potentially capable of solving such problems will appear [6]. In accordance
with this, the issue of developing new effective methods for solving large-scale
LP problems using exascale supercomputing systems is urgent.

Until now, the class of algorithms proposed and developed by Dantzig on the
basis of the simplex method [5] is one of the most common ways to solve LP prob-
lems. The simplex method is effective for solving a large class of LP problems. How-
ever, the simplex method has some fundamental features that limit its applicabil-
ity to large LP problems. First, in the worst case, the simplex method traverses all
the vertices of the simplex, which results in exponential time complexity [35]. Sec-
ond, in most cases, the simplex method successfully solves LP problems containing
up to 50,000 variables. However, a loss of precision is observed when the simplex
method is used for solving large LP problems. Such a loss of precision cannot be
compensated even by applying such computational intensive procedures as “affine
scaling” or “iterative refinement” [34]. Third, the simplex method does not scale
well on multiprocessor systems with distributed memory. Many attempts to par-
allelize the simplex method were made, but they all failed [19]. In [14], Karmarkar
proposed the inner point method having polynomial time complexity in all cases.
This method effectively solves problems with millions of variables and millions of
constraints. Unlike the simplex method, the inner point method is self-correcting.
Therefore, it is robust to the loss of precision in computations. The drawbacks of
the interior point method are as follows. First, the interior point method requires
the careful tuning of its parameters. Second, this method needs a known point that
belongs to the feasible region of the LP problem to start calculations. Finding such
an interior point can be reduced to solving an additional LP problem. An alterna-
tive is iterative projection-type methods [23,26,31], which are also self-correcting.
Third, like the simplex method, the inner point method does not scale well on mul-
tiprocessor systems with distributed memory. Several attempts at effective paral-
lelization for particular cases were made (see, for example, [10,15]). However, it
was not possible to make efficient parallelization for the general case. In accordance
with this, research directions related to the development of new scalable methods
for solving LP problems are urgent.

A possible efficient alternative to the conventional methods of LP is optimiza-
tion methods based on neural network models. Artificial neural networks [20,21]
are one of the most promising and rapidly developing areas of modern informa-
tion technology. Neural networks are a universal tool capable of solving problems
in almost all areas. The most impressive success was achieved in image recogni-
tion and analysis using convolutional neural networks [18]. However, in scientific
periodicals, there are almost no works devoted to the use of convolutional neural
networks for solving linear optimization problems [17]. The reason is that con-
volutional neural networks focus on image processing, but there are no works on
the visual representation of multidimensional linear programming problems in
the scientific literature. Thus, the issue of developing new neural network models
and methods focused on linear optimization remains open.

In this paper, we try to develop an n-dimensional mathematical model of
the visual representation of the LP problem. This model allows one to employ
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the technique of artificial neural networks to solve multidimensional linear opti-
mization problems, the feasible region of which is a bounded non-empty set.
The visualization method based on the described model has high computational
complexity. For this reason, we propose its implementation as a parallel algo-
rithm designed for cluster computing systems. The rest of the paper is organized
as follows. Section 2 is devoted to the design of the mathematical model of the
visual representation of multidimensional LP problems. Section 3 describes the
implementation of the proposed visualization method as a parallel algorithm and
provides an analytical estimation of its scalability. Section 4 presents informa-
tion about the software implementation of the described parallel algorithm and
discusses the results of large-scale computational experiments on a cluster com-
puting system. Section 5 summarizes the obtained results and provides directions
for further research.

2 Mathematical Model of the LP Visual Representation

The linear optimization problem can be stated as follows

x̄ = arg max {〈c, x〉|Ax � b, x ∈ R
n} , (1)

where c, b ∈ R
n, A ∈ R

m×n, and c �= 0. Here and below, 〈· , ·〉 stands for the dot
product of vectors. We assume that the constraint x � 0 is also included in the
system Ax � b in the form of the following inequalities:

−x1 + 0 + · · · · · · · · · + 0 � 0;
0 − x2 + 0 + · · · + 0 � 0;

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
0 + · · · · · · · · · + 0 − xn � 0.

The vector c is the gradient of the linear objective function

f(x) = c1x1 + . . . + cnxn. (2)

Let M denote the feasible region of problem (1):

M = {x ∈ R
n|Ax � b} . (3)

We assume from now on that M is a non-empty bounded set. This means that
M is a convex closed polytope in the space R

n, and the solution set of problem
(1) is not empty.

Let ãi ∈ R
n be a vector formed by the elements of the ith row of the matrix A.

Then, the matrix inequality Ax � b is represented as a system of inequalities

〈ãi, x〉 � bi, i = 1, . . . , m. (4)

We assume from now on that
ãi �= 0. (5)
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for all i = 1, . . . , m. Let us denote by Hi the hyperplane defined by the equation

〈ãi, x〉 = bi (1 � i � m). (6)

Thus,
Hi = {x ∈ R

n| 〈ãi, x〉 = bi} . (7)

Definition 1. The half-space H+
i generated by the hyperplane Hi is the half-

space defined by the equation

H+
i = {x ∈ R

n| 〈ãi, x〉 � bi} . (8)

From now on, we assume that problem (1) is non-degenerate, i.e.,

∀i �= j : Hi �= Hj (i, j ∈ {1, . . . ,m}) . (9)

Definition 2. The half-space H+
i generated by the hyperplane Hi is recessive

with respect to the vector c if

∀x ∈ Hi,∀λ ∈ R>0 : x − λc ∈ H+
i ∧ x − λc /∈ Hi. (10)

In other words, the ray coming from the hyperplane Hi in the direction opposite
to the vector c lies completely in H+

i , but not in Hi.

Proposition 1. The necessary and sufficient condition for the recessivity of the
half-space H+

i with respect to the vector c is the condition

〈ãi, c〉 > 0. (11)

Proof. Let us prove the necessity first. Let condition (10) hold. Equation (7)
implies

x =
biãi

‖ãi‖2 ∈ Hi. (12)

By virtue of (5),

λ =
1

‖ãi‖2 ∈ R>0. (13)

Comparing (10) with (12) and (13), we obtain

biãi

‖ãi‖2 − 1
‖ãi‖2 c ∈ H+

i ;

biãi

‖ãi‖2 − 1
‖ãi‖2 c /∈ Hi.

In view of (7) and (8), this implies
〈
ãi,

biãi

‖ãi‖2 − 1
‖ãi‖2 c

〉
< bi. (14)
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Using simple algebraic transformations of inequality (14), we obtain (11). Thus,
the necessity is proved.

Let us prove the sufficiency by contradiction. Assume that (11) holds, and
there are x ∈ Hi and λ > 0 such that

x − λc /∈ H+
i ∨ x − λc ∈ Hi.

In accordance with (7) and (8), this implies

〈ãi, x − λc〉 � bi

that is equivalent to
〈ãi, x〉 − λ 〈ãi, c〉 � bi.

Since λ > 0, it follows from (11) that

〈ãi, x〉 > bi,

but this contradicts our assumption that x ∈ Hi. 
�
Definition 3. Fix a point z ∈ R

n such that the half-space

H+
c = {x ∈ R

n| 〈c, x − z〉 � 0} (15)

includes the polytope M :
M ⊂ H+

c .

In this case, we call the half-space H+
c the objective half-space, and the hyperplane

Hc, defined by the equation

Hc = {x ∈ R
n| 〈c, x − z〉 = 0} , (16)

the objective hyperplane.

Denote by πc(x) the orthogonal projection of the point x onto the objective
hyperplane Hc:

πc(x) = x − 〈c, x − z〉
‖c‖2 c. (17)

Here, ‖·‖ stands for the Euclidean norm. Define the distance ρc(x) from x ∈ H+
c

to the objective hyperplane Hc as follows:

ρc(x) = ‖πc(x) − x‖. (18)

Comparing (15), (17) and (18), we find that, in this case, the distance ρc(x) can
be calculated as follows:

ρc(x) =
〈c, z − x〉

‖c‖ . (19)

The following Proposition 2 holds.
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Proposition 2. For all x, y ∈ H+
c ,

ρc(x) � ρc(y) ⇔ 〈c, x〉 � 〈c, y〉 .

Proof. Equation (19) implies that

ρc(x) � ρc(y) ⇔ 〈c, z − x〉
‖c‖ � 〈c, z − y〉

‖c‖
⇔ 〈c, z − x〉 � 〈c, z − y〉
⇔ 〈c, z〉 + 〈c,−x〉 � 〈c, z〉 + 〈c,−y〉
⇔ 〈c,−x〉 � 〈c,−y〉
⇔ 〈c, x〉 � 〈c, y〉 .


�
Proposition 2 says that problem (1) is equivalent to the following problem:

x̄ = arg min {ρc(x)|x ∈ M} . (20)

Definition 4. Let the half-space H+
i be recessive with respect to the vector c.

The objective projection γi(x) of the point x ∈ R
n onto the recessive half-space

H+
i is a point defined by the equation

γi(x) = x − σi(x)c, (21)

where
σi(x) = min {σ ∈ R�0 | x − σc ∈ H+

i

}
.

Examples of objective projections in R
2 are shown in Fig. 1.

Fig. 1. Objective projections in the space R
2: γi(x

′) = q′; γi(x
′′) = q′′ = x′′.

The following Proposition 3 provides an equation for calculating the objective
projection onto a half-space that is recessive with respect to the vector c.
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Proposition 3. Let the half-space H+
i defined by the inequality

〈ãi, x〉 � bi (22)

be recessive with respect to the vector c. Let

g /∈ H+
i . (23)

Then,

γi(g) = g − 〈ãi, g〉 − bi
〈ãi, c〉 c. (24)

Proof. According to Definition 4, we have

γi(g) = g − σi(g)c,

where
σi(x) = min {σ ∈ R�0 | x − σc ∈ H+

i

}
.

Thus, we need to prove that

〈ãi, g〉 − bi
〈ãi, c〉 = min {σ ∈ R�0 | x − σc ∈ H+

i

}
. (25)

Consider the strait line L defined by the parametric equation

L = {g + τc| τ ∈ R} .

Let the point q be the intersection of the line L with the hyperplane Hi:

q = L ∩ Hi. (26)

Then, q must satisfy the equation

q = g + τ ′c (27)

for some τ ′ ∈ R. Substitute the right side of Eq. (27) into Eq. (6) instead of x:

〈ãi, g + τ ′c〉 = bi.

It follows that

〈ãi, g〉 + τ ′ 〈ãi, c〉 = bi,

τ ′ =
bi − 〈ãi, g〉

〈ãi, c〉 . (28)

Substituting the right side of Eq. (28) into Eq. (27) instead of τ ′, we obtain

q = g +
bi − 〈ãi, g〉

〈ãi, c〉 c,
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which is equivalent to

q = g − 〈ãi, g〉 − bi
〈ãi, c〉 c. (29)

Since, according to (26), q ∈ Hi, Eq. (25) will hold if

∀σ ∈ R>0 : σ <
〈ãi, g〉 − bi

〈ãi, c〉 ⇒ g − σc /∈ H+
i (30)

holds. Assume the opposite, i.e., there exist σ′ > 0 such that

σ′ <
〈ãi, g〉 − bi

〈ãi, c〉 (31)

and
g − σ′c ∈ H+

i . (32)

Then, it follows from (22) and (32) that

〈ãi, g − σ′c〉 � bi.

This is equivalent to
〈ãi, g〉 − bi � σ′ 〈ãi, c〉 . (33)

Proposition 1 implies that 〈ãi, c〉 > 0. Hence, Eq. (33) is equivalent to

σ′ � 〈ãi, g〉 − bi
〈ãi, c〉 .

Thus, we have a contradiction with (31). 
�
Definition 5. Let g ∈ Hc. The objective projection γM (g) of the point g onto
the polytope M is a point defined by the following equation:

γM (g) = g − σM (g)c, (34)

where
σM (g) = min {σ ∈ R�0| g − σc ∈ M} .

If
¬∃ σ ∈ R�0 : g − σc ∈ M,

then we set γM (g) = �∞, where �∞ stands for a point that is infinitely far from
the polytope M .

Examples of objective projections onto the polytope M in R
2 are shown in Fig. 2.
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Fig. 2. Objective projections onto the polytope M in R
2: γM (g′) = q′; γM (g′′) = �∞.

Definition 6. The receptive field G(z, η, δ) ⊂ Hc of the density δ ∈ R>0 with
the center z ∈ Hc and the rank η ∈ N is a finite ordered set of points satisfying
the following conditions:

z ∈ G(z, η, δ); (35)
∀g ∈ G(z, η, δ) : ‖g − z‖ � ηδ

√
n; (36)

∀g′, g′′ ∈ G(z, η, δ) : g′ �= g′′ ⇒ ‖g′ − g′′‖ � δ; (37)
∀g′ ∈ G(z, η, δ) ∃g′′ ∈ G(z, η, δ) : ‖g′ − g′′‖ = δ; (38)
∀x ∈ Co(G(z, η, δ)) ∃g ∈ G(z, η, δ) : ‖g − x‖ � 1

2δ
√

n. (39)

The points of the receptive field will be called receptive points.

Here, Co(X) stands for the convex hull of a finite point set X =
{
x(1), . . . ,

x(K)
} ⊂ R

n:

Co(X) =

{
K∑
i=1

λix
(i)

∣∣∣∣∣ λi ∈ R�0,
K∑
i=1

λi = 1

}
.

In Definition 6, condition (35) means that the center of the receptive field belongs
to this field. Condition (36) implies that the distance from the central point z to
each point g of the receptive field does not exceed ηδ

√
n. According to (37), for

any two different points g′ �= g′′ of the receptive field, the distance between them
cannot be less than δ. Condition (38) says that for any point g′ of the receptive
field, there is a point g′′ in this field such that the distance between g′ and g′′ is
equal to δ. Condition (39) implies that for any point x belonging to the convex
hull of the receptive field, there is a point g in this field such that the distance
between x and g does not exceed 1

2δ
√

n. An example of the receptive field in the
space R

3 is presented in Fig. 3.
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Fig. 3. Receptive field in the space R
3.

Let us describe a constructive method for building a receptive field. Without
loss of generality, we assume that cn �= 0. Consider the following set of vectors:

c(0) = c = (c1, c2, c3, c4, . . . , cn−1, cn);

c(1) =

⎧
⎨
⎩

(
− 1

c1

∑n

i=2
c2i , c2, c3, c4, . . . , cn−1, cn

)
, if c1 �= 0;

(1, 0, . . . , 0), if c1 = 0;

c(2) =

⎧
⎨
⎩

(
0,− 1

c2

∑n

i=3
c2i , c3, c4, . . . , cn−1, cn

)
, if c2 �= 0;

(0, 1, 0, . . . , 0), if c2 = 0;

c(3) =

⎧
⎨
⎩

(
0, 0,− 1

c3

∑n

i=4
c2i , c4, . . . , cn−1, cn

)
, if c3 �= 0;

(0, 0, 1, 0, . . . , 0), if c3 = 0;

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

c(n−2) =

⎧
⎨
⎩

(
0, . . . , 0,− 1

cn−2

∑n

i=n−1
c2i , cn−1, cn

)
, if cn−2 �= 0;

(0, . . . , 0, 1, 0, 0), if cn−2 = 0;

c(n−1) =

⎧
⎨
⎩

(
0, . . . , 0,− c2n

cn−1
, cn

)
, if cn−1 �= 0;

(0, . . . , 0, 0, 1, 0), if cn−1 = 0.

It is easy to see that

∀i, j ∈ {0, 1, . . . , n − 1}, i �= j :
〈
c(i), c(j)

〉
= 0.

This means that c0, . . . , cn−1 is an orthogonal basis in R
n. In particular,

∀i = 1, . . . , n − 1 :
〈
c, c(i)

〉
= 0. (40)

The following Proposition 4 shows that the linear subspace of the dimension
(n− 1) generated by the orthogonal vectors c1, . . . , cn−1 is a hyperplane parallel
to the hyperplane Hc.

Proposition 4. Define the following linear subspace Sc of the dimension (n−1)
in R

n:
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Sc =

{
n−1∑
i=1

λic
(i)

∣∣∣∣∣ λi ∈ R

}
. (41)

Then,
∀s ∈ Sc : s + z ∈ Hc. (42)

Proof. Let s ∈ Sc, i.e.,

s = λ1c
(1) + . . . + λn−1c

(n−1).

Then,
〈c, (s + z) − z〉 = λ1

〈
c, c(1)

〉
+ . . . + λn−1

〈
c, c(n−1)

〉
.

In view of (40), this implies

〈c, (s + z) − z〉 = 0.

Comparing this with (16), we obtain s + z ∈ Hc. 
�
Define the following set of vectors:

e(i) =
c(i)

‖c(i)‖ (i = 1, . . . , n − 1). (43)

It is easy to see that the set {e1, . . . , en−1} is an orthonormal basis of the sub-
space Sc.

The procedure for constructing a receptive field is presented as Algorithm 1.
This algorithm constructs a receptive field G(z, η, δ) consisting of

KG = (2η + 1)n−1 (44)

points. These points are arranged at the nodes of a regular lattice having the form
of a hypersquare (a hypercube of the dimension n−1) with the edge length equal
to 2ηδ. The edge length of the unit cell is δ. According to Step 13 of Algorithm 1
and Proposition 4, this hypersquare lies in the hyperplane Hc and has the center
at the point z. The drawback of Algorithm 1 is that the number of nested for
loops depends on the dimension of the space. This issue can be solved using the
function G, which calculates a point of the receptive field by its ordinal number
(numbering starts from zero; the order is determined by Algorithm 1). The
implementation of the function G is represented as Algorithm 2. The following
Proposition 5 provides an estimation of the time complexity of Algorithm 2.

Proposition 5. Algorithm 2 enables an implementation that has time
complexity1

cG = 4n2 + 5n − 9, (45)

where n is the space dimension.

1 Here, time complexity refers to the number of arithmetic and comparison operations
required to execute the algorithm.
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Algorithm 1. Building a receptive field
G(z, η, δ)
Require: z ∈ Hc, η ∈ N, δ ∈ R>0

1: G := ∅
2: for in−1 = 0 . . . 2η do
3: sn−1 := in−1δ − ηδ
4: for in−2 = 0 . . . 2η do
5: sn−2 := in−2δ − ηδ
6: . . .
7: for i1 = 0 . . . 2η do
8: s1 := i1δ − ηδ
9: s :=0

10: for j = 1 . . . n − 1 do
11: s := s + sje

(j)

12: end for
13: G :=G ∪ {s + z}
14: end for
15: end for
16: end for

Proof. Consider Algorithm 3 representing a low-level implementation of Algo-
rithm 2. The values calculated in Steps 1–2 of Algorithm 3 do not depend on the
receptive point number k and therefore can be considered constants. In Steps 3–8,
the repeat/until loop runs (n − 1) times and requires c3:8 = 5(n − 1) opera-
tions. In steps 13–16, the nested repeat/until loop runs n times and requires
c13:16 = 4n operations. In steps 10–18, the external repeat/until loop runs
(n − 1) times and requires c10:18 = (4 + c13−16)(n − 1) = 4(n2 − 1) operations.
In total, we obtain

cG = c3:8 + c10:18 = 4n2 + 5n − 9.


�
Corollary 1. The time complexity of Algorithm 2 can be estimated as O(n2).

Definition 7. Let z ∈ Hc. Fix η ∈ N, δ ∈ R>0. The image I(z, η, δ) generated
by the receptive field G(z, η, δ) is an ordered set of real numbers defined by the
equation

I(z, η, δ) = {ρc(γM (g))| g ∈ G(z, η, δ)} . (46)

The order of the real numbers in the image is determined by the order of the
respective receptive points.
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Algorithm 2. The function G calculates a receptive point by its num-
ber k
Require: z ∈ Hc, η ∈ N, δ ∈ R>0

1: function G(k, n, z, η, δ)
2: for j = (n − 1) . . . 1 do
3: ij :=

⌊
k/(2η + 1)j−1

⌋

4: k := k mod (2η + 1)j−1

5: end for
6: g := z
7: for j = 1 . . . (n − 1) do
8: g := g + (ijδ − ηδ)e(j)

9: end for
10: G := g
11: end function

The following Algorithm 4 implements the function I(z, η, δ) building an image
as a list of real numbers.

Algorithm 3. Low-level implementation of Algorithm 2
1: p := 2η + 1; r := ηδ; h := pn−2; g := z
2: j := n − 1
3: repeat
4: lj := �k/h�
5: k := k mod h
6: h := h/p
7: j := j − 1
8: until j = 0
9: j := 1

10: repeat
11: wj := ljδ − r
12: i := 1
13: repeat
14: gi := gi + wje

(j)
i

15: i := i + 1
16: until i > n
17: j := j + 1
18: until j = n

Here, [ ] stands for the empty list, and ++ stands for the operation of list con-
catenation.

Let 〈ãi, c〉 > 0. This means that the half-space H+
i is recessive with respect

to the vector c (see Proposition 1). Let there be a point u ∈ Hi ∩ M . Assume
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that we managed to create an artificial neural network DNN, which receives the
image I(πc(u), η, δ) as an input and outputs the point u′ such that

u′ = arg min {ρc(x)| x ∈ Hi ∩ M} .

Then, we can build the following Algorithm 5 solving linear programming prob-
lem (20) using the DNN.

Algorithm 4. Building an image
I(z, η, δ)
Require: z ∈ Hc, η ∈ N, δ ∈ R>0

1: function I(z, η, δ)
2: I :=[ ]
3: for k = 0 . . . ((2η + 1)n−1 − 1) do
4: gk := G(k, n, z, η, δ)
5: I := I ++ [ρc(γM (gk))]
6: end for
7: end function

Algorithm 5. Linear programming using a DNN
Require: u(1) ∈ Hi ∩ M, 〈ãi, c〉 > 0, z ∈ Hc; η ∈ N, δ ∈ R>0

1: k := 1
2: repeat
3: I := I(u(k), η, δ)
4: u(k+1) := DNN(I)
5: k := k + 1
6: until u(k) �= u(k−1)

7: x̄ := u(k)

8: stop

Only an outline of the forthcoming algorithm is presented here, it needs further
formalization, detalization and refinement.

3 Parallel Algorithm for Building an LP Problem Image

When solving LP problems of large dimension with a large number of constraints,
Algorithm 4 of building an LP problem image can incur significant runtime over-
head. This section presents a parallel version of Algorithm 4, which significantly
reduces the runtime overhead of building the image of a large-scale LP prob-
lem. The parallel implementation of Algorithm 4 is based on the BSF parallel
computation model [27,28]. The BSF model is intended for a cluster computing
system, uses the master/worker paradigm and requires the representation of the
algorithm in the form of operations on lists using higher-order functions Map
and Reduce defined in the Bird–Meertens formalism [1]. The BSF model also
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provides a cost metric for the analytical evaluation of the scalability of a parallel
algorithm that meets the specified requirements. Examples of the BSF model
application can be found in [7,30–33].

Let us represent Algorithm 4 in the form of operations on lists using higher-
order functions Map and Reduce. We use the list of ordinal numbers of inequal-
ities of system (4) as a list, which is the second parameter of the higher-order
function Map:

Lmap = [1, . . . , m] . (47)

Designate R∞ = R ∪ {∞}. We define a parameterized function

Fk : {1, . . . , m} → R∞,

which is the first parameter of the higher-order function Map, as follows:

Fk(i) =

{
ρc (γi(gk)) , if 〈ãi, c〉 > 0 and γi(gk) ∈ M ;
∞, if 〈ãi, c〉 � 0 or γi(gk) /∈ M.

(48)

where gk = G(k, n, z, η, δ) (see Algorithm 2), and γi(gk) is calculated by Eq. (24).
Informally, the function Fk maps the ordinal number of the half-space H+

i to
the distance from the objective projection to the objective hyperplane if H+

i

is recessive with respect to c (see Proposition 1), and the objective projection
belongs to M . Otherwise, Fk returns the special value ∞.

The higher-order function Map transforms the list Lmap into the list Lreduce

by applying the function Fk to each element of the list Lmap:

Lreduce = Map (Fk,Lmap) = [Fk(1), . . . ,Fk(m)] = [ρ1, . . . , ρm] .

Define the associative binary operation ©↓ : R∞ → R∞ as follows:

∞©↓ ∞ = ∞;
∀α ∈ R : α ©↓ ∞ = α;

∀α, β ∈ R : α ©↓ β = min(α, β).

Informally, the operation ©↓ calculates the minimum of two numbers.
The higher-order function Reduce folds the list Lreduce to the single value

ρ ∈ R∞ by sequentially applying the operation ©↓ to the entire list:

Reduce(©↓ ,Lreduce) = ρ1 ©↓ ρ2 ©↓ . . . ©↓ ρm = ρ.
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Algorithm 6. Building an image I by Map and Reduce
Require: z ∈ Hc, η ∈ N, δ ∈ R>0

1: input n, m, A, b, c, z, η, δ
2: I :=[ ]
3: Lmap :=[1, . . . , m]
4: for k = 0 . . . ((2η + 1)n−1 − 1) do
5: Lreduce := Map(Fk, Lmap)
6: ρ := Reduce(©↓ , Lreduce)
7: I := I ++ [ρ]
8: end for
9: output I

10: stop

Algorithm 6 builds the image I of the LP problem using higher-order func-
tions Map and Reduce. The parallel version of Algorithm 6 is based on algorith-
mic template 2 in [28]. The result is presented as Algorithm 7.

Algorithm 7. Parallel algorithm of building the image I

Master lth Worker (l=0,. . . ,L-1)

1: input n
2: I :=[ ]
3: k := 0
4: repeat
5: SendToWorkers k
6:
7:
8: RecvFromWorkers [ρ0, . . . , ρL−1]
9: ρ := Reduce (©↓ , [ρ0, . . . , ρL−1])

10: I := I ++ [ρ]
11: k := k + 1
12: exit :=

(
k � (2η + 1)n−1

)

13: SendToWorkers exit
14: until exit
15: output I

16: stop

1: input n, m, A, b, c, z, η, δ
2: L := NumberOfWorkers
3: Lmap(l) :=[lm/L, . . . , ((l+1)m/L)−1]
4: repeat
5: RecvFromMaster k
6: Lreduce(l) := Map

(
Fk, Lmap(l)

)

7: ρl := Reduce
(©↓ , Lreduce(l)

)

8: SendToMaster ρl

9:
10:
11:
12:
13: RecvFromMaster exit
14: until exit
15:
16: stop

Let us explain the steps of Algorithm 7. For simplicity, we assume that the
number of constraints m is a multiple of the number of workers L. We also
assume that the numbering of inequalities starts from zero. The parallel algo-
rithm includes L + 1 processes: one master process and L worker processes.



188 N. A. Olkhovsky and L. B. Sokolinsky

The master manages the computations. In Step 1, the master reads the space
dimension n. In Step 2 of the master, the image variable I is initialized to
the empty list. Step 3 of the master assigns zero to the iteration counter k. At
Steps 4–14, the master organizes the repeat/until loop, in which the image I of
the LP problem is built. In Step 5, the master sends the receptive point number
gk to all workers. In Step 8, the master expects particular results from all work-
ers. These particular results are folded to a single value, which is added to the
image I (Steps 9–10 of the master). Step 11 of the master increases the iteration
counter k by 1. Step 12 of the master assigns the logical value

(
k � (2η + 1)n−1

)
to the Boolean variable exit. In Step 13, the master sends the value of the Boolean
variable exit to all workers. According to (44), exit = false means that not all
the points of the receptive field are processed. In this case, the control is passed
to the next iteration of the external repeat/until loop (Step 14 of the master).
After exiting the repeat/until loop, the master outputs the constructed image
I (Step 15) and terminates its work (Step 16).

All workers execute the same program codes, but with different data.
In Step 3, the lth worker defines its own sublist. In Step 4, the worker enters
the repeat/until loop. In Step 5, it receives the number k of the next receptive
point. In Step 6, the worker processes its sublist Lmap(l) using the higher-order
function Map, which applies the parameterized function Fk, defined by (48), to
each element of the sublist. The result is the sublist Lreduce(l), which includes the
distances Fk(i) from the objective hyperplane Hc to the objective projections of
the receptive point gk onto the hyperplanes Hi for all i from the sublist Lmap(l).
In Step 7, the worker uses the higher-order function Reduce to fold the sublist
Lreduce(l) to the single value of ρl, using the associative binary operation ©↓ ,
which calculates the minimum distance. The computed particular result is sent
to the master (Step 8 of the worker). In Step 13, the worker waits for the mas-
ter to send the value of the Boolean variable exit. If the received value is false,
the worker continues executing the repeat/until loop (Step 14 of the worker).
Otherwise, the worker process is terminated in Step 16.

Let us obtain an analytical estimation of the scalability bound of parallel
Algorithm 7 using the cost metric of the BSF parallel computation model [28].
Here, the scalability bound means the number of workers at which the maximum
speedup is achieved. The cost metric of the BSF model includes the following
cost parameters for the repeat/until loop (Steps 4–14) of parallel Algorithm 7:

m : length of the list Lmap;
D : latency (time taken by the master to send one byte message

to a single worker);
tc : time taken by the master to send the coordinates of the receptive

point to a single worker and receive the computed value from it
(including latency);

tMap : time taken by a single worker to process the higher-order function
Map for the entire list Lmap;

ta : time taken by computing the binary operation ©↓ .
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According to Eq. (14) from [28], the scalability bound of Algorithm 7 can be
estimated as follows:

Lmax =
1
2

√(
tc

ta ln 2

)2

+
tMap

ta
+ 4m − tc

ta ln 2
. (49)

Calculate estimations for the time parameters of Eq. (49). To do this, we intro-
duce the following notation for a single iteration of the repeat/until loop (Steps
4–14) of Algorithm 7:

cc : quantity of numbers sent from the master to the worker and
back within one iteration;

cMap : quantity of arithmetic and comparison operations computed in
Step 5 of serial algorithm 6;

ca : quantity of arithmetic and comparison operations required
to compute the binary operation ©↓ .

At the beginning of every iteration, the master sends each worker the receptive
point number k. In response, the worker sends the distance from the receptive
point gk to its objective projection. Therefore,

cc = 2. (50)

In the context of Algorithm 6

cMap = (cG + cFk
) m, (51)

where cG is the number of operations taken to compute the coordinates of the
point gk, and cFk

is the number of operations required to calculate the value
of Fk(i), assuming that the coordinates of the point gk have already been calcu-
lated. The estimation of cG is provided by Proposition 5. Let us estimate cFk

.
According to (24), calculating the objective projection γi(g) takes (6n−2) arith-
metic operations. It follows from (19) that the calculation of ρc(x) takes (5n−1)
arithmetic operations. Inequalities (4) imply that checking the condition x ∈ M
takes m(2n − 1) arithmetic operations and m comparison operations. Hence,
Fk(i) takes a total of (2mn + 11n − 3) operations. Thus,

cFk
= 2mn + 11n − 3. (52)

Substituting the right-hand sides of Eqs. (45) and (52) in (51), we obtain

cMap = 4n2m + 2m2n + 16nm − 12m. (53)

To perform the binary operation ©↓ , one comparison operation must be executed:

ca = 1. (54)
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Let τop stand for the average execution time of arithmetic and comparison oper-
ations, and let τtr stand for the average time of sending a single real number
(excluding latency). Then, using Eqs. (50), (53), and (54) we obtain

tc = ccτtr + 2D = 2(τtr + D); (55)
tMap = cMapτop = (4n2m + 2m2n + 16nm − 12m)τop; (56)
ta = caτop = τop. (57)

Substituting the right-hand sides of Eqs. (55)–(57) in (49), we obtain the follow-
ing estimations of the scalability bound of Algorithm 7:

Lmax =
1
2

√(
2(τtr + D)

τop ln 2

)2

+ 4n2m + 2m2n + 16nm − 12m − 2(τtr + D)
τop ln 2

.

where n is the space dimension, m is the number of constraints, D is the latency.
For large values of m and n, this is equivalent to

Lmax ≈ O(
√

2n2m + m2n + 8nm − 6m). (58)

If we assume that m = O(n), then it follows from (58) that

Lmax ≈ O(n
√

n), (59)

where n is the space dimension. Estimation (59) allows us to conclude that Algo-
rithm 7 scales very well2. In the following section, we verify analytical estima-
tion (59) by conducting large-scale computational experiments on a real cluster
computing system.

4 Computational Experiments

We performed a parallel implementation of Algorithm 7 in the form of the
ViLiPP (Visualization of Linear Programming Problem) program in C++ using
a BSF-skeleton [29]. The BSF-skeleton based on the BSF parallel computation
model encapsulates all aspects related to the parallelization of the program using
the MPI [9] library and the OpenMP [13] programming interface. The source
code of the ViLiPP program is freely available on the Internet at https://github.
com/nikolay-olkhovsky/LP-visualization-MPI. Using the ViLiPP parallel pro-
gram, we conducted experiments to evaluate the scalability of Algorithm 7 on
the “Tornado SUSU” cluster computing system [16], the characteristics of which
are presented in Table 1.

To conduct computational experiments, we constructed three random LP
problems using the FRaGenLP problem generator [32]. The parameters of these

2 Let Lmax = O(nα). We say: the algorithm scales perfectly if α > 1; the algorithm
scales well if α = 1; the algorithm demonstrates limited scalability if 0 < α < 1; the
algorithm does not scale if α = 0.

https://github.com/nikolay-olkhovsky/LP-visualization-MPI
https://github.com/nikolay-olkhovsky/LP-visualization-MPI
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Table 1. Specifications of the “Tornado SUSU” computing cluster

Parameter Value

Number of processor nodes 480

Processor Intel Xeon X5680 (6 cores, 3.33 GHz)

Processors per node 2

Memory per node 24 GB DDR3

Interconnect InfiniBand QDR (40 Gbit/s)

Operating system Linux CentOS

Table 2. Parameters of test LP problems

Problem
ID

Dimension Number of
constraints

Non-zero
values in A

Receptive field
cardinality

LP7 7 4 016 100% 15 625

LP6 6 4 014 100% 3 125

LP5 5 4 012 100% 625

problems are given in Table 2. In all cases, the number of non-zero values of the
matrix A of problem (1) was 100%. For all problems, the rank η of the receptive
field was assumed to be equal to 2. In accordance with Eq. (44), the receptive
field cardinality demonstrated an exponential growth with an increase in the
space dimension.

The results of the computational experiments are presented in Table 3 and in
Fig. 4. In all runs, a separate processor node was allocated for each worker. One
more separate processor node was allocated for the master. The computational
experiments show that the ViLiPP program scalability bound increases with
an increase in the problem dimension. For LP5, the maximum of the speedup
curve is reached around 190 nodes. For LP6, the maximum is located around
260 nodes. For LP7, the scalability bound is approximately equal to 326 nodes.
At the same time, there is an exponential increase in the runtime of building the
LP problem image. Building the LP5 problem image takes 10 s on 11 processor
nodes. Building the LP7 problem image takes 5 min on the same number of
nodes. An additional computational experiment shows that building an image
of the problem with n = 9 takes 1.5 h on 11 processor nodes.

The conducted experiments show that on the current development level of
high-performance computing, the proposed method is applicable to solving LP
problems that include up to 100 variables and up to 100 000 constraints.
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Table 3. Runtime of building an LP problem image (sec.)

Number of pro-
cessor nodes

LP5 LP6 LP7

11 9.81 54.45 303.78

56 1.93 10.02 59.43

101 1.55 6.29 33.82

146 1.39 4.84 24.73

191 1.35 4.20 21.10

236 1.38 3.98 19.20

281 1.45 3.98 18.47

326 1.55 4.14 18.30

Fig. 4. ViLiPP parallel program speedup for LP problems of various sizes.

5 Conclusion

The main contribution of this work is a mathematical model of the visual rep-
resentation of a multidimensional linear programming problem of finding the
maximum of a linear objective function in a feasible region. The central element
of the model is the receptive field, which is a finite set of points located at the
nodes of a square lattice constructed inside a hypercube. All points of the recep-
tive field lie in the objective hyperplane orthogonal to the vector c = (c1, . . . , cn),
which is composed of the coefficients of the linear objective function. The tar-
get hyperplane is placed so that for any point x from the feasible region and
any point z of the objective hyperplane, the inequality 〈c, x〉 < 〈c, z〉 holds. We
can say that the receptive field is a multidimensional abstraction of the digital
camera image sensor. From each point of the receptive field, we construct a ray
parallel to the vector c and directed to the side of the feasible region. The point
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at which the ray hits the feasible region is called the objective projection. The
image of the linear programming problem is a matrix of the dimension (n − 1),
in which each element is the distance from the point of the receptive field to the
corresponding point of the objective projection.

The algorithm for calculating the coordinates of a receptive field point by its
ordinal number is described. It is shown that the time complexity of this algo-
rithm can be estimated as O(n2), where n is the space dimension. An outline of
the algorithm for solving the linear programming problem by an artificial neu-
ral network using the constructed images is presented. A parallel algorithm for
constructing the image of a linear programming problem on computing clusters
is proposed. This algorithm is based on the BSF parallel computation model,
which uses the master/workers paradigm and assumes a representation of the
algorithm in the form of operations on lists using higher-order functions Map and
Reduce. It is shown that the scalability bound of the parallel algorithm admits
the estimation of O(n

√
n). This means that the algorithm demonstrates good

scalability.
The parallel algorithm for constructing the multidimensional image of a lin-

ear programming problem is implemented in C++ using the BSF–skeleton that
encapsulates all aspects related to parallelization by the MPI library and the
OpenMP API. Using this software implementation, we conducted large-scale
computational experiments on constructing images for random multidimensional
linear programming problems with a large number of constraints on the “Tor-
nado SUSU” computing cluster. The conducted experiments confirm the validity
and efficiency of the proposed approaches. At the same time, it should be noted
that the time of image construction increases exponentially with an increase
in the space dimension. Therefore, the proposed method is applicable to prob-
lems with the number of variables not exceeding 100. However, the number of
constraints can theoretically be unbounded.

Future research directions are as follows.

1. Develop a method for solving linear programming problems based on the
analysis of their images and prove its convergence.

2. Develop and implement a method for training data set generation to create a
neural network that solves linear programming problems by analyzing their
images.

3. Develop and train an artificial neural network solving multidimensional linear
programming problems.

4. Develop and implement a parallel program on a computing cluster that con-
structs multidimensional images of a linear programming problem and calcu-
lates its solution using an artificial neural network.
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Abstract. The paper addresses to the study of the physicochemi-
cal properties of new high-energy substances: nitro derivatives of var-
ious kinds of nitrogenous heterocyclic nuclei. The enthalpy of forma-
tion of the molecules in the gas phase is obtained using quantum-
chemical calculations (Gaussian 09). Various methods for solving the
stationary Schrödinger equation are used: G4MP2, G4, CBS-4M,
CBS-QB3, ωB97XD/aug-cc-pVTZ, B3LYP/6-311+G(2d,p), M062X/6-
311+G(2d,p). The results of calculations obtained by the atomization
method and the method of isogyric reactions are comparatively assessed.
Various calculation methods are compared in terms of accuracy and time
costs.

Keywords: Enthalpy of formation · Quantum-chemical calculations ·
High-energy materials · Calculation efficiency

1 Introduction

One of the fundamental problems in the field of energy-intensive compounds
is the search for new high-energy density materials (HEDMs) and the study
of their properties. Most of the suggested new HEDMs are nitro derivatives of
various nitrogenous heterocyclic nuclei. For example, several first representatives
of a series of high-energy 5/6/5 tricyclic derivatives of 1,2,3,4-tetrazines have
been recently proposed in [1–3] and reported to possess a number of attractive
physicochemical and energetic properties. The high-energy potential of these
compounds is determined by the fact that the presence of nitro groups in their
structure provides an acceptable oxygen balance, and a large number of C −N ,
N − N and N=N bonds of the heterocyclic system sets a high level of the
enthalpy of formation. The first of these derivatives to be synthesized was 2,9-
dinitrobis([1,2,4]triazolo)[1,5-d:5’,1’-f][1,2,3,4]tetrazine (1) [1], the structure of
which combines 1,2,3,4-tetrazine and two nitro-1,2,4-triazoles annelated with it.
A preliminary assessment of the properties of this compound shows that it is not
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only characterized by a relatively high density, but is also comparable to HMX in
terms of detonation characteristics; however, at the same time it has a noticeably
lower sensitivity than both HMX and RDX. The above mentioned advantages of
compound 1 make the entire range of energy-intensive 5/6/5 tricyclic derivatives
of 1,2,3,4-tetrazines annelated with triazoles attractive for the search for new
HEDMs. In addition, since the disadvantage of compound 1 is its relatively
low thermal stability, it might be interesting to study the isomeric analogs of
5/6/5 tricyclic derivatives of unsymmetrical 1,2,3,4-tetrazine based on symmetric
1,2,4,5-tetrazine, as they can potentially provide greater thermal stability.

It should be noted that the key parameter that defines the energy capabilities
of the HEDM is the enthalpy of formation, and the reliability of the results of cal-
culating the energy characteristics of the compound depends on the accuracy of
its value. Therefore, the purpose of this work was to determine the enthalpy of for-
mation for 5/6/5 tricyclic derivatives of tetrazines annelated with nitrotriazoles
(Table 1) C4N10O4: 2,9-dinitrobis([1,2,4]triazolo)[1,5-d:5’,1’-f][1,2,3,4]tetrazine
(structure 1), 2,7-dinitrobis([1,2,4]triazolo)[1,5-b:5’,1’-f][1,2,4,5]tetrazine (struc-
ture 2), 3,8-dinitrobis([1,2,4]triazolo)[4,3-d:3’,4’-f][1,2,3,4]tetrazine (structure 3),
1,8-dinitrobis([1,2,4]triazolo)[4,3-b:3’,4’-f][1,2,4,5]tetrazine (structure 4), 1,10-
dinitrobis([1,2,3]triazolo)[1,5-d:5’,1’-f][1,2,3,4]tetrazine (structure 5) and 3,6-
dinitrobis([1,2,3]triazolo)[1,5-b:5’,1’-f][1,2,4,5]tetrazine (structure 6) and in the
gas phase at a temperature of 298 K and pressure p = 1 atm (ΔH298

f(g)) using var-
ious quantum-chemical methods and reveal regularities in the dependence of the
value of ΔHf on the structure of nitrotriazole isomers.

2 Calculation Method

At present, quantum-chemical calculations along with experimental measure-
ment methods have become widespread as a means of determining the enthalpy
of formation. The time-consuming synthetic production of the compounds under
consideration is not required for such calculations, which advantages them
greatly. Quantum-chemical calculations based on ab initio approaches (along
with experimental data) enable the most accurate determination of the enthalpy
of formation. The accuracy of such calculations by the G4 method of the Gaus-
sian quantum-chemical package is assessed by Curtiss and his coauthors [4]. They
use a test set of 454 substances to calculate thermochemical properties and com-
pare the results with experimental data. A detailed analysis shows that the devi-
ation of the calculation results from experimental data is less than 1 kcal/mol
averagely (the deviation is less than 1% for high-enthalpy substances). Another
noteworthy advantage of quantum-chemical methods is the possibility of design-
ing molecules of new compounds that have not been yet synthesized, but look
very promising. Their physicochemical characteristics (thermochemical proper-
ties, in particular) can be determined with high accuracy, and structural factors
affecting such properties can be discovered.
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Table 1. Molecules under consideration.

Formula αa N%b No Structural formula No Structural formula

C4N10O4 0.500 55.56 1 2

C4N10O4 0.500 55.56 3 4

C4N10O4 0.500 55.56 5 6
a - oxygen saturation coefficient of the CxHyNwOz molecule, α = 2z/(4x + y);
b - mass content of nitrogen.

The enthalpy of formation can be calculated by examining reactions in which
the test substance serves as a reagent or a product [5]. The standard enthalpy of
formation of a substance can be determined by considering the energy balance
equations of such reactions. This paper compares two approaches to evaluating
the enthalpy of formation: 1) analysis of the atomization reaction of a substance
(similar to our previous works [6–11]) and 2) analysis of the reaction of the
substance formation from simple substances in standard states.

3 Results and Discussion

3.1 Enthalpy of Formation

The structures and the most significant geometric parameters of the molecules
under consideration are calculated at the B3LYP/6-311+G(2d,p) level and
shown in Fig. 1. The calculated values of the enthalpy of formation of
the molecules in the gas phase, determined using various calculation meth-
ods (G4MP2, G4, ωB97XD/aug-cc-pVTZ, CBS-4M, CBS-QB3, B3LYP/6-
311+G(2d,p), M062X/6-311+G(2d,p)), are presented in Table 2.

The enthalpy of formation of various isomers of the C4N10O4 molecule are
calculated by two approaches: ΔHf (I) represents a calculation based on the
change in the enthalpy for the reaction 4C(g) + 10N(g) + 4O(g) = C4N10O4(g),
and ΔHf (II) represents a calculation based on the change in the enthalpy for
the reaction 4C(g) + 5N2(g) + 2O2(g) = C4N10O4(g). A comparison of the
two calculation approaches shows that for all levels of calculation, the values
of ΔHf (I) are greater than the values of ΔHf (II) by 7-101 kJ/mol, with the
exception of the most accurate G4 method, for which the values of ΔHf (II)
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Fig. 1. Structures (in different angles) and most significant geometric parameters (in
Å and o) of the calculated molecules (calculation level B3LYP/6-311+G(2d,p)).

are greater than the values of ΔHf (I) by 3 kJ/mol. The more accurate the
calculation is, the smaller is the difference between the ΔHf (I) and ΔHf (II)
values, thus, for the CBS-4M method this difference is 101 kJ/mol, and for
G4MP2 it is 7 kJ/mol.

All the considered C4N10O4(g) isomers (structures 1-6) show similar ten-
dencies of change in the values of the enthalpy of formation along the isomer
series (Table 2). The enthalpy-of-formation values obtained at different levels
of calculation increase in the following sequence CBS-4M < ωB97XD/aug-cc-
pVTZ < CBS-QB3 < CBS-APNO < G4 < G4MP2 < M062X/6-311+G(2d,p)
< B3LYP/6-311+G(2d,p), changing from structure 1 to structure 6 by
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approximately the same value 171-175 kJ/mol. Table 2 shows that the enthalpy
of formation of various isomers increases from 867.5 kJ/mol to 1066.8 kJ/mol
(G4).

The most important issue for the development of new high-energy materials
is to establish the relationship between the value of the enthalpy of formation
and the molecule structure. Let us consider the sequence of isomers based on
1,2,3,4-tetrazine: structures 1, 3, 5. The isomer with structure 5, which contains
a chain of eight nitrogen atoms, is characterized by the highest enthalpy of
formation (1012.8 kJ/mol), The enthalpy of formation is 41 kJ/mol lower (867.5
kJ/mol) for structure 3 with a chain of four nitrogen atoms in the tetrazine ring
and two chains of two nitrogen atoms in the triazole rings. The lowest enthalpy
of formation (867.5 kJ/mol) is that of structure 1 with a chain of six nitrogen
atoms and two separate nitrogen atoms in the triazole rings.

In the case of isomers based on 1,2,4,5-tetrazine with two oppositely located
pairs of nitrogen atoms (structures 2, 4, 6), the enthalpy of formation increases
by 43 kJ/mol (structure 2 as compared to structure 1), 37 kJ/mol (structures 3-
4), and 54 kJ/mol (structures 5-6). However, as mentioned above, the structure
with a chain of six nitrogen atoms (6) has the highest value of the enthalpy
of formation (1066.8 kJ/mol)). The enthalpy of formation of structure 4 with
two pairs of nitrogen atoms is 58 kJ/mol lower than that of structure 6, and
the lowest value is that of structure 2 with two isolated nitrogen atoms (910.8
kJ/mol).

Thus, it can be assumed that if all other structural parameters are equal:

1) the presence in the tetrazine ring of two oppositely located pairs of nitrogen
atoms is preferable to their sequential arrangement in the form of a chain;

2) lengthening the chain of nitrogen atoms by triazole rings has a positive effect
on the value of the enthalpy of formation;

3) the presence of pairs of nitrogen atoms in the triazole rings is preferable to
single atoms.

3.2 IR Spectra and Frequency Analysis

Figures 2 and 3 show the IR absorption spectra and atom displacements for the
most intense vibrations of the molecules under consideration, calculated at the
B3LYP/6-311+G(2d,p) level.
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Table 2. Enthalpies of formation of the molecules in the gas phase, calculated at
different levels.

Formula C4N10O4

Structure 1 2 3 4 5 6

CBS-4M kcal/mol 202.67a 211.79a 230.38a 239.19a 237.19a 249.76a

178.45b 187.57b 206.16b 214.98b 212.98b 225.55b

kJ/mol 847.95a 886.12a 963.89a 1000.78a 992.41a 1045.01a

746.64 b 784.81 b 862.58 b 899.47 b 891.09 b 943.70 b

ωB97XD/
aug-cc-pVTZ

kcal/mol 208.26a 218.05a 234.31a 244.39a 244.69a 256.53a

196.32b 206.11b 222.37b 232.45b 232.75b 244.59b

kJ/mol 871.37a 912.32a 980.36a 1022.52a 1023.79a 1073.34a

821.41 b 862.36 b 930.38 b 972.55 b 973.83 b 1023.38 b

CBS-QB3 kcal/mol 201.37a 211.36a 226.69a 2336.02a 235.66a 248.11a

198.56b 208.55b 223.88b 233.21b 232.85b 245.29b

kJ/mol 842.53a 884.35a 948.48a 987.52a 986.02a 1038.08a

830.76 b 872.58 b 936.71 b 975.75 b 974.25 b 1026.31 b

CBS-APNO kcal/mol 209.00a 218.89a 234.67a 242.89a 243.45a 256.40a

203.51 213.40b 229.18b 237.40b 237.96b 250.91b

kJ/mol 874.45a 915.85a 981.85a 1016.27a 1018.60a 1072.77a

851.47 b 892.87 b 958.87 b 993.29 b 995.61 b 1049.79 b

G4 kcal/mol 206.64a 216.99a 231.58a 240.39a 241.37a 254.28a

207.34b 217.69b 232.28b 241.09b 242.07b 254.98b

kJ/mol 864.57a 907.88a 968.92a 1005.80a 1009.89a 1063.89a

867.50 b 910.81 b 971.85 b 1008.73 b 1012.82 b 1066.82 b

G4MP2 kcal/mol 211.34a 222.02a 236.37a 245.90a 245.94a 258.84a

209.74b 220.42b 234.76b 244.30b 244.34b 257.23b

kJ/mol 884.27a 928.94a 988.96a 1028.85a 1029.01a 1082.97a

877.56 b 922.24 b 982.26 b 1022.15 b 1022.31 b 1076.27 b

M062X/
6-311+
G(2d,p)

kcal/mol 231.79a 241.11a 258.09a 266.42a 270.16a 281.44a

210.16b 219.48b 236.46b 244.80b 248.53b 259.82b

kJ/mol 969.81a 1008.80a 1079.84a 1114.72a 1130.34a 1177.56a

879.33 b 918.32 b 989.36 b 1024.24 b 1039.85 b 1087.08 b

B3LYP/
6-311+
G(2d,p)

kcal/mol 224.04a 232.87a 249.20a 259.62a 260.33a 270.28a

220.29b 229.12b 245.45b 255.87b 256.58b 266.53b

kJ/mol 937.37a 974.32a 1042.64a 1086.24a 1089.22a 1130.85a

921.69 b 958.64 b 1026.97 b 1070.56 b 1073.54 b 1115.17 b

aΔHf (I)
bΔHf (II)

According to Fig. 2 and 3, structure 1 is characterized by angular vibrations
of the N −O bonds of the nitro group NO2 in the region of 841 cm−1, vibrations
of the N −N bonds in the tetrazine ring in the region of 1220–1262 cm−1, vibra-
tions of the N−N bonds in the triazole rings in the region 1317 cm−1, vibrations
of the C − N bonds in the region of 1337–1377 cm−1, and the vibrations of the
N − O bonds of the nitro group correspond to a peak in the region of 1620
cm−1. Structure 2 is characterized by angular vibrations of the N −O bonds of
NO2 fragments in the region of 845 cm−1, vibrations of the C −N bonds in the
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Fig. 2. IR absorption spectra.

region of 1347–1355 cm−1, and vibrations of the N − O bonds in the region of
1621 cm−1. For structure 3, the peak at 831 cm−1 corresponds to angular vibra-
tions of the N − O bonds of the nitro groups NO2, the vibrations in the region
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Fig. 3. Atom displacements for the most intense vibrations.
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of 1357–1467 cm−1 correspond to vibrations of the C − N bonds, and the peak
at 1612 cm−1 corresponds to vibrations of the N −O bonds in the nitro groups.
Structure 4 is characterized by angular vibrations of the N − O bonds in the
region of 847 cm−1, vibrations of the C − N bonds in the region of 1369–1392
cm−1, and vibrations of the N −O bonds in the region of 1618 cm−1. For struc-
tures 5 and 6, the peaks at 852 cm−1 and 812 cm−1, respectively, correspond
to angular vibrations in the nitro groups, and the peaks at 1600 cm−1 and
1608 cm−1 for vibrations of the N − O bonds. The vibrations of the C − N
bonds on the crosslinking of the tetrazine and triazole rings correspond to peaks
at 1386 cm−1 (for structure 5) and 1409 cm−1 (for structure 6), and the vibra-
tions of the C−N bonds of the nitro groups correspond to 1400 cm−1 (structure
5) and 1370 cm−1 (structure 6).

4 Computational Details

The Lomonosov-2 compute node with the following configuration: Intel(R)
Xeon(R) Gold 6140 CPU @ 2.30 GHz, RAM 259 GB, 20 Tb disk space, was used
for calculations.

In regard to the parallelization degree of the executed calculations, it should
be noted that the Gaussian package uses its own Linda software for paralleliza-
tion. Some observations concerning the efficiency of calculations were made.
While running a number of test tasks, a stable acceleration on pools up to 8
cores was noted, but further the acceleration effect decreased (Fig. 4). Thus, we
used 8 cores per task in our calculations. The calculation speed also depends

Fig. 4. Comparison of the computational time for the standard task in the Gaussian
package on various computational configurations.
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on processors’ support of the avx2 and sse42 instructions, the former one, in
particular, can profit by 8–10 times on some tasks using processors with a close
clock rate [12]. In the calculation process, the Gaussian package creates enor-
mous intermediate files, which size up to 2TB. It can take up to 35–50 min to
write them to an SSD disk and noticeably longer to SATA arrays. Thereby, SSD
disks or high-speed SAS disks with a large amount of allocated disk memory are
very advisable for calculations.

The calculation time by the given conditions for the structures under con-
sideration varied from 300–600 core-hours (1–3 days) for the CBS-4M and
M062X/6-311+G(2d,p) methods to 3000–6000 core-hours (17–33 days) for the
most time-consuming G4 and CBS-APNO methods.

5 Conclusions

The study of quantum-chemical methods for calculating the enthalpy of forma-
tion of dinitrobistriazoletetrazines made it possible for this group of compounds
to determine the isomeric series of the increasing enthalpy of formation and
reveal structural factors affecting the value of their ΔHf , such as the structure
of the nitrotriazole fragment (1,2,4-triazoles or 1,2,3-triazole) and the type of
tetrazine nucleus (1,2,3,4- or 1,2,4,5-tetrazine). The highest value in the series
of considered isomers differs from the lowest one by 199 kJ/mol (calculation by
the G4 method). Calculations were carried out by methods of varying complex-
ity and by two different approaches for establishing the enthalpy of formation.
The results of calculation by two approaches differ by 3–101 kJ/mol, and the
observation has been made that the more accurate the calculation is, the smaller
is this difference. Analysis of IR absorption spectra and atom displacements for
the most intense vibration has been made.
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Abstract. Supernovae are the major sources of elements in the peri-
odic table, planets, and life. Type Ia supernovae (SNeIa) are not only
sources of elements, but also “standard candles” to measure distances in
the Universe. We propose a mechanism of carbon burning that causes
non-standard Type Ia supernova explosions. The mechanism is based on
intensity variations in the incomplete nuclear burning of carbon. In this
case, the explosion energy can vary significantly due to the presence of
different regimes of carbon burning during the development of turbulence
in the burning zone. The energy released during burning, sufficient for
the explosion of a white dwarf (as a type Ia supernova), can be achieved
with a smaller Chandrasekhar mass. In addition, the explosion energy of
a white dwarf with a Chandrasekhar mass can differ considerably. Such a
conclusion can be made from modern observations of incomplete burning
and chemistry of burning, which determine the explosion energy. In the
present paper, a software tool is proposed to demonstrate a significant
difference in the values of the explosion energy obtained with different
parameterizations of subgrid carbon burning. For computational experi-
ments, we use a code developed by the authors, which is extended using
an adaptive nested grid approach to achieve a more accurate reproduc-
tion of turbulent burning.

Keywords: Computational Astrophysics · Numerical Methods ·
High-Performance Computing

1 Introduction

Supernovas are the major sources of “life” elements—from carbon to iron. Type
Ia supernovas are very bright and, therefore, are used as “standard candles”
to determine distances to galaxies and the expansion rate of the Universe. The
mathematical simulation of supernova explosions is the major tool for studying
their dynamics and formation. The formation of complex flows in supernova
explosions imposes rigid requirements on the spatial resolution of the simulation.
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The major scenario [17] of supernova explosion is based on the merging of two
degenerate white dwarfs with the subsequent collapse of a new star when it
reaches the Chandrasekhar mass, ignition of the carbon burning process, and
type Ia supernova explosion.

The realistic computer simulation of SNeIa remains an unsolved problem.
However, there exist some approaches to solving this problem. These are the
collision of white dwarfs [28,37,38], violent merger [34,40], spiral instability
[18,19], and tidal heating [8], D6 [13,34,41]. In the present paper, no review
of possible scenarios is made: it is also too early to compare our preliminary
results with those of other authors; it is planned to do this in the forthcoming
paper. Here the process of the noncentral ignition of a white dwarf in a merging
close pair, first studied in [16], is considered. This model will be extended with
modern computational tools enabling a more detailed description of the process
of nuclear carbon burning. The model demonstrates that tidal heating shifts
the maximum temperature point in a degenerate dwarf from the center to the
mantle.

Noncentral explosions should be studied for the following reason: the observed
“dipole” character of SNeIa explosions is typically explained by the presence
of a close satellite of a degenerate dwarf [5], although it may be a result of a
noncentral explosion. Both scenarios are considered in the present paper. Double
detonation, which can cause a noncentral explosion, is due to other chemistry
and other masses of the explosion point [12]. Tidal heating is also studied in [8].
It should be noted that the noncentral location of the explosion point can be
caused by other reasons: helium layer detonation, magnetic field, jet formation,
etc. Therefore, a comprehensive study of possible noncentral explosions is of
great interest.

The goal of this paper is to determine the role of the ignition point in nuclear
fuel burning and in the dynamics of the remnants of a degenerate dwarf explo-
sion. For this, the nuclear burning of carbon in the development of supersonic
turbulence will be simulated directly, not as a subgrid process. The computa-
tional model is implemented by using distributed computing: the hydrodynamic
evolution of white dwarfs is simulated on nested meshes (basic calculation). As
the temperature and density reach some critical values, a new task is started on
a distributed memory architecture to simulate the development of hydrodynamic
turbulence leading to supersonic nuclear carbon burning (satellite calculation).

The present paper is devoted to the study of the pattern of 3D gas dynamical
explosions of carbon dwarfs. The main parameter of the problem is the intensity
of the nuclear burning of carbon in the explosion zone. In this case, the explosion
energy can vary considerably due to the variable carbon burning regime during
the development of turbulence in the burning region. The goal of this study is
to assess the impact of some so far undetermined parameters and factors on the
observed manifestations of explosions and on the limits to what extent SNeIa
can be considered “standard”.
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In the second section, a numerical model of white dwarfs is formulated. The
third section describes the parallel and distributed organization of calculations
for a detailed description of turbulent carbon burning and explosion hydrody-
namics. The fourth section is devoted to the results of computational exper-
iments. In the fifth section, we will discuss some important issues. The sixth
section provides conclusions to the paper.

2 Numerical Model

2.1 Hydrodynamic Equations

Consider an overdetermined conservative form of the equations of gravitational
gas dynamics: the law of conservation of mass

∂ρ

∂t
+ ∇ · (ρu) = 0, (1)

the law of conservation of momentum

∂ρu
∂t

+ ∇ · (ρuu) = −∇p − ρ∇Φ, (2)

the law of conservation of total mechanical energy

∂

∂t

[
E + ρ

u2

2

]
+ ∇ ·

([
E + ρ

u2

2

]
u
)

= −∇ · (pu) − (ρ∇Φ,u) + Q, (3)

and the equation for entropy S

∂ρS

∂t
+ ∇ · (ρSu) =

2Q

3ρ2/3
, (4)

supplemented by the Poisson equation for the gravitational potential

ΔΦ = 4πGρ, (5)

where ρ is the density, u is the velocity, p is the pressure, Φ is the gravitational
potential, E is the internal energy of the gas, G is the gravitational constant,
and Q is the energy source due to nuclear reactions.

2.2 Stellar Equation of State

The stellar equation of state consists of the pressure of a nondegenerate hot
gas, the pressure due to radiation, and a degenerate gas [42]. In the case of
a degenerate gas, relativistic and nonrelativistic regimes are considered. In the
equation of state p = (ρ, T ), p will be sought for as the sum of four components:

p = prad + pion + pdeg,nrel + pdeg,rel, (6)
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where T is the temperature, prad is the radiation pressure, pion is the pressure
of a nondegenerate hot gas (ions), pdeg,nrel is the pressure of a degenerate non-
relativistic gas, and pdeg,rel is the pressure of a degenerate relativistic gas. Let
us present formulas for each pressure type:

prad =
4σT 4

3c
, (7)

where c is the speed of light, and σ is the Stefan-Boltzmann constant. Let us
write the pressure of a cold gas in terms of an entropy function:

pion =
k

μ
Tρ = Sρ5/3, (8)

where k is the Boltzmann constant, and μ is the chemical potential,

pdeg,nrel =

{
ρ0Kdeg,nrel

(
ρ

ρ0μe

)5/3

, ρ < ρ0

0, ρ > ρ0
, (9)

where Kdeg,nrel = 1013 Erg/g, μe is the number of nucleons per electron, and
ρ0 = 106 g/cm3,

pdeg,rel =

{
ρ0Kdeg,rel

(
ρ

ρ0μe

)4/3

, ρ > ρ0

0, ρ < ρ0
, (10)

where Kdeg,rel = 1015 Erg/g. In this case, the internal energy is written as

E = Erad + Eion + Edeg,nrel + Edeg,rel (11)

= 3prad +
3
2
pion +

3
2
pdeg,nrel + 3pdeg,rel.

The formulation of pressure and internal energy in terms of the entropy function
makes it possible to calculate temperature variations without solving a nonlinear
equation.

2.3 Initial Profile

To specify the equilibrium initial data, we fix the initial temperature T and
the characteristic density. The latter is important for determining the adiabatic
index of a degenerate gas. Assume that the adiabatic index γ is determined as
a constant K at the exponential function for the pressure of a degenerate gas
(9) or (10). Let us present the balance of pressure and gravity forces in Eq.
(2) and Poisson Eq. (5) in spherical one-dimensional coordinates using ordinary
differential equations:

−dp

dr
= ρ

dΦ

dr
,

d

dr

(
r2

dΦ

dr

)
= 4πGr2ρ,
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where r is the spherical radius. With the fixed parameters, we obtain an equation
of the Emden type:

− d

dr

(
r2

ρ

d

dr

[
4σ

3c
T 4 +

k

μ
Tρ + Kργ

])
= 4πGr2ρ.

It is evident that the radiation term 4σ
3c T 4 does not depend on the radius r.

Therefore, the equation for the equilibrium density profile can be written as

− d

dr

(
r2

ρ

d

dr

[
k

μ
Tρ + Kργ

])
= 4πGr2ρ. (12)

Equation (12) can be solved numerically [43]. To speed up the iterative process,
one can linearize the equation and use the solution to the linearized problem as
an initial temperature approximation.

2.4 Carbon Burning

When burning carbon in white dwarfs, the main way to obtain heavy elements
(such as nickel and iron) is to pass the α-network [39]. Since we are primarily
interested in the explosion energy, we will consider a chain of reactions of the
form 14 ×12 C → 356Ni. Let XC be the abundance of carbon. Carbon burning
may be written as [11]

dXc

dt
= − 7

36
× ρ × NA × λ × X2

c , (13)

where ρ is the density, NA is the Avogadro number, and λ is the reaction rate,
which can be written as

λ =
1.26 × 1027 × T

5
6
9a × T

− 3
2

9 × exp
(
−84.165 × T

− 1
3

9a

)

NA ×
(
exp (−0.01 × T 4

9a) + exp
(
1.685 × T

2
3
9a

)) , (14)

where T9 is a temperature of 109 K, T9a = T9/ (1 + 0.067 × T9). The energy
release is determined as follows:

Q = −ρ × ε × dXc

dt
=

7 × ε

36
× ρ × NA × λ × X2

c , (15)

where ε = 7 × 107 Erg/g [20].
The burning rate in the above equation cannot be found with the IEEE 754

standard. Therefore, we use the following method:

1027 × exp
(
−84.165 × T

− 1
3

9a

)
= exp

(
27 × ln10 − 84.165 × T

− 1
3

9a

)
.

This expression can be represented in the IEEE 754 floating point standard and
used in calculations.
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3 Parallel & Distributed Code

To simulate the evolution of white dwarfs, supernova explosions, and turbulent
carbon burning, we will use a modification of our code published in [22,23,25].
Figure 1 shows a schematic diagram of the calculations. Nested grids are used

Fig. 1. Schematic diagram of Parallel & Distributed computing on nested grids (blue
color) and regular grids (red color). (Color figure online)

to simulate the basic process of the evolution of white dwarfs. In the subgrid
carbon burning process, the evolution of a cell where carbon burning takes place
is simulated on regular grids. Note that the simulations on the nested and regular
grids are performed with all MPI processes being used. The calculation algorithm
is as follows:

1. Construct a workable nested grid configuration to simulate the hydrodynam-
ics of a single dwarf or a system of white dwarfs. For this, a simulation cor-
responding to the simple analytics described in Sect. 2.4 can be performed
on regular grids using subgrid carbon burning. This configuration is used to
minimize the reconstruction of nested grids. The nested grid configuration
turns out to be appropriate, and the Increase/Decrease operations with the
nested grids do not require additional balancing of data loading.

2. Balance the loading of calculations on the nested grids between the MPI
processes (see Sect. 3.2 for a detailed description of the balancing).

3. Determine a single time step τWD in solving the hydrodynamic equations to
describe the evolution of white dwarfs on nested grids. For this, the maximum
velocity vmax and the sound speed cmax are determined for all cells of the
nested grids. For definiteness, let hmin be the minimum cell size of the nested
grids, and let CFL be the Courant number. In this case, the time step is
calculated from the condition

(vmax + cmax) τWD

hmin
= CFL. (16)
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This method of determining the time step provides the uniqueness of the
numerical solution on nested grids, since in this case the characteristics
obtained from the Riemann problems on the nested grid cells do not intersect.
Note that this calculation method allows using nested grids with any ratio of
the neighboring cells (not only 1:2, as described in [4]).

4. Calculate the hydrodynamics of the evolution of white dwarfs in time τWD

on nested grids (see Sect. 3.2 for a detailed description of the calculation).
5. Define nested grid cells (i, j, k, l,m, n), where (i, j, k) is the number of a root

grid cell, and (l,m, n) is the number of the nested grid cell (i, j, k); in these
cells there is a carbon burning trigger T = 109 K, and a density ρ = 107 g
cm−3. Form a list of cells Rn, n = 1, . . . , K, where K is the number of cells
with the real trigger of carbon burning.

6. For all cells Rn, n = 1, . . . ,K, to implement subgrid turbulent carbon burn-
ing, perform an individual simulation of hydrodynamic turbulence. The size
of the simulated domain is equal to that of the cell hn, τWD is the turbulence
simulation time, ρ0 = ρn is the initial density, T0 = Tn is the temperature, and
σ2

n is the velocity dispersion, which is determined from the neighboring cells
(see Sect. 3.1 for a detailed deception of turbulent carbon burning). All prob-
lems of turbulent burning are simulated sequentially on a regular grid using
all MPI processes. The percentage of burned carbon and the released energy
are returned to the corresponding cell of the nested grids (i, j, k, l,m, n). The
calculation of the hydrodynamic equations on regular grids is described in
detail in [25].

Such an organization of calculations naturally requires great computational
costs, since a single problem of hydrodynamic turbulence is calculated in a large
number of cells. Note that the calculation time needed for turbulence problems is
two orders of magnitude greater than that for the hydrodynamics of the evolution
of white dwarfs. Therefore, the speedup and scalability of Parallel & Distributed
computing are determined by the source code and coincide with those obtained
in [25]. Section 3.3 presents the estimates of the efficiency of a code modification
for the calculation on nested grids.

3.1 Turbulence Model of Carbon Burning

When the temperature in the cell reaches a critical value, T = 109 K, and the
density ρ = 107 g cm−3, distributed calculations of the hydrodynamic turbu-
lence of carbon burning are launched on a regular mesh, and the results are
returned to the main calculation of hydrodynamics. Carbon burning during the
development of turbulence [7] and in the process of a collapse [27] are considered
by many authors. We propose a method when turbulent carbon burning takes
place “on the fly” when calculating the basic hydrodynamics of the process. In
[26], we study in detail the development of hydrodynamic turbulence with and
without self-gravity forces. In the present paper, gravitation is neglected, since
the characteristic time of the process is much less than the free fall time. How-
ever, if necessary, we can take into account the collapse process (as in [27]) or
self-gravity forces in the development of hydrodynamic turbulence [26].
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The critical density ρ = 107 g cm−3 of the transition from deflagration to
detonation is taken as a characteristic density value, and the temperature T =
109 K. The initial velocity perturbation at a known turbulence energy, σ2, is
taken from [1]. Let us describe this procedure in detail. Consider the energy
spectrum E(k) = A × k−5/3 with the known turbulence energy, σ2. Then the
coefficient A can be found from the equation

∫ kmax

kmin

E(k)dk = σ2, (17)

where kmin and kmax are the minimum and maximum wave numbers, respec-
tively. The turbulent pulsation field u(x), where x is a space point, is given by
the equation

u(x) =
3σ√
2N

N∑
n=1

un(x), (18)

where N is the number of harmonics. Each of the harmonics is given by the
equation

un(x) = Q (wn) [ξnsin (kn (wn, x)) + ηncos (kn (wn, x))] , (19)

where wn = (wn
1 , wn

2 , wn
3 ) is the unit vector uniformly distributed over the sphere

to provide ∇ ·u = 0, Q (wn) is a random matrix with elements qn
ij = δij − wn

i ×
wn

j , δij is the Kronecker symbol, the coefficients ξn and ηn have the standard
Gaussian distribution N(0, 1). The wave numbers kn are distributed with the
density ρ(k) = E(k)/σ2.

The model of subgrid carbon burning based on turbulent burning being used
exactly corresponds to the model described in [10]. The main difference is as
follows: the process of subgrid turbulence starts when the critical temperature of
carbon burning is reached. This is primarily due to computational aspects. In the
present paper, the critical temperature is used to start the burning process, and
the “turbulization” of the medium increases the efficiency of burning. In [10], a
temperature starting from T = 108 K is considered, and the use of such an initial
temperature is mainly motivated by the reproduction of the initial burning front.
In our study, we use the energy component where the kinetic energy of turbulence
transforms to the internal energy and becomes an additional trigger for carbon
burning intensification and, hence, for obtaining more explosion energy with
less fuel consumption. In this way we demonstrate a possible SNeIa explosion
scenario at masses smaller than the Chandrasekhar mass.

3.2 Nested Grid

To discretize with nested grids, we introduce, in a three-dimensional solution
domain, a uniform cubic root grid with the coordinates of the centers of cells
xi = i×h−h/2, i = 1, .., Imax, yk = k×h−h/2, k = 1, ..,Kmax, zl = l×h−h/2,
l = 1, .., Lmax, where h is the root grid spacing, Imax, Kmax, Lmax is the number
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of cells in the x, y, z directions, respectively. In this implementation, for the
convenience of organizing calculations and without loss of generality of the code,
we use Imax = Kmax = Lmax = N . In a cell (i, k, l), we introduce a nested cubic
grid with the coordinates of the centers of cells xi,nested = i×hnested −hnested/2,
i = 1, ..,M , yk,nested = k × hnested − hnested/2, k = 1, ..,M , zl,nested = l ×
hnested − hnested/2, l = 1, ..,M , where hnested is the nested grid spacing, and M
is the number of nested grid cells in the x, y, z directions. The hydrodynamic
equations will be calculated for quantities in the cells of the root and nested
grids. A detailed arrangement of the hydrodynamic quantities in the calculations
is shown in Fig. 2. Solving the equations of hydrodynamics (finding solutions to
the Riemann problems) consists of the following two steps:

Fig. 2. Arrangement of hydrodynamic quantities on the root and nested grids: the
hydrodynamic parameters on the root grid (blue asterisks), the hydrodynamic param-
eters on the nested grid (red circles), nested grid nodes (yellow rhombuses), the Rie-
mann problem solution at the interfaces between the internal cells of the nested grid,
the intraboundary cells of the nested grid, and the cells of the neighboring root cell
(green rectangles). (Color figure online)

1. solving the Riemann problems at all nested grid boundaries,
2. solving the Riemann problems at all internal nested grid interfaces.

Whereas the second step of finding solutions to the Riemann problems is trivial,
the first step requires a specific method of calculations depending on the cell
sizes of two neighboring nested grids. Only three types of arrangement of the
cells of neighboring grids are possible (see Fig. 3). If the cell sizes are equal (Fig. 3
(middle)), the solution of the Riemann problem is similar to that of the Riemann
problems at the internal interfaces of the nested grid, and is trivial. If the cell of
the neighboring nested grid is larger than the one being considered (Fig. 3 (left)),
it is assumed that the quantities in the blue cell have a uniform distribution,
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Fig. 3. Three types of arrangement of the cells of neighboring nested grids: a cell for
which the Riemann problem is solved (pink color), and a cell of the neighboring nested
grid (blue color) (Color figure online)

and the Riemann problem is solved at the interface between the decreased blue
cell and the pink cell. If the pink cell borders on several cells of the neighboring
nested grid (Fig. 3 (right)), a uniform distribution of the hydrodynamic quanti-
ties in the pink cell is assumed, the Riemann problems are solved at all interfaces,
and then the fluxes are averaged. The grid is restructured according to the root
cell mass. The size of the nested grid is calculated from the condition

M = 2C1�log(ρ)�+C2 , (20)

where C1,2 are the scaling constants chosen according to the requirements of the
characteristic density and the minimum resolution of the problem. We use C1 = 1
and C2 = 5 as characteristic parameters in this work, i.e., at the characteristic
carbon combustion density ρ = 107 g cm−3, a grid with an effective resolution
of 40963 is used. At each time step, it is checked whether the grid needs to
be restructured. Therefore, the grid is changed not more than by a factor of
two. The grid restructuring scheme is shown in Fig. 4. Figure 4 illustrates the
projections of the conservative quantities (density, angular momentum, entropy
density, and total energy). Once the grid is restructured, the nonconservative

Fig. 4. Refinement (top) and coarsening (bottom) of the nested grid
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quantities (primitive in the case of relativistic hydrodynamics) are calculated
from the conservative variables. A detailed description of the calculation for the
hydrodynamic equations in nested grids can be found in [24]. To balance the
load between the processes, we use the following algorithm performed by all
MPI processes (P processes in total) located on individual nodes:

1. Calculate the number of nested grid cells in each slice (YZ plane) of the root
grid Wi, where i = 1, . . . , N and N is the number of root grid cells in the
X-direction.

2. Determine the average number of cells in the slice for the entire root grid
M =

∑
Wi/P , and distribute this value as evenly as possible between the

processes.
3. Set k = 1, where k is the number of the process for which the slice thickness

is formed.
4. Set i = 1, where 1 ≤ i ≤ N is the number of the slice.
5. Set Nk = 0, where Nk is the slice thickness of the kth process.
6. If Nk + Wi > M , Nk is the final slice thickness for the processor k. Increase

k by unity and go to step 5. Otherwise, go to step 7.
7. Increase the slice thickness Nk by Wi, increase the number of the slice i by

unity and go to step 6.

As a result, the slice thicknesses between the processes differ by no more than
unity. To perform the boundary layer exchange between the overlapping nested
grids, a plan of overlapping YZ planes for nested grids is formed.

3.3 Performance

To perform calculations and computational experiments, we use a hybrid super-
computer, NKS-1P of the Siberian Supercomputer Center at ICM & MG SB
RAS (16 nodes, RSC Tornado Phi architecture: Intel Xeon Phi 7290 1.5 GHz,
72 cores, 16 GB MCDRAM; 96 GB DDR4 DRAM; Intel Omni Path 100 Gb/s
interconnect). The performance of the solver on regular grids is estimated in
[25]. In the parallel implementation on nested grids, we use a 1283 root grid and
the following three configurations of nested grids:

1. Config 1: All nested grids have a size of 43 (a uniform grid with an effective
resolution of 5123).

2. Config 2: 75% of nested grids have a size of 23, and 25% have a size of 83 (the
effective resolution is 10243).

3. Config 3: 75% nested grids have a size of 23, 15% have a size of 83, and 10%
have a size of 323 (the effective resolution is 40963).

The code speedup for some nested grid configurations is presented in Table 1.
At a uniform distribution of calculations, we have a 38-fold code speedup; less
uniform calculations drop the speedup to 34-fold, which is achieved with fewer
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Table 1. Speedup.

Threads Config 1 Config 2 Config 3

1 1.0 1.0 1.0

2 1.9 1.9 1.9

4 3.9 3.9 3.8

8 7.9 7.9 7.8

12 11.6 11.6 11.8

16 15.7 15.5 15.7

24 21.2 22.9 22.3

32 25.4 28.0 25.6

48 30.7 37.6 34.9

64 33.1 32.5 33.6

96 38.2 27.1 32.3

128 33.6 26.2 31.1

threads. In a study of scalability when the grid configuration is doubled for a
given number of processes, it is found that the scalability corresponds to the
source code one and is about 96% with 16 Intel Xeon Phi 7290 accelerators.

4 Numerical Simulation of SNeIa Explosion

Here we consider two components of the problem of type Ia supernova explosion:
turbulent carbon burning and an experimental study of the energy released at
various perturbations, and the hydrodynamics of SNeIa explosion.

4.1 Turbulence Carbon Burning

To study various regimes of turbulent carbon burning, we will consider a 100 km3

domain with the density ρ = 107 g cm−3 and the temperature T = 109 K
with a normal velocity distribution and a Mach number of the root-mean-square
deviation MRMS . The characteristic density corresponding to the density of the
transition from deflagration to detonation in carbon burning is taken according
to [14,30,45]. Figure 5 presents the results of simulation: the relative increase in
the explosion energy versus the Mach number of the root-mean-square deviation
MRMS . One can see inFig. 5 that in considerable supersonic turbulence, the explo-
sion energy can have a relative increase of more than three times. In the present
paper, the question of whether such a turbulence regime can be achieved in the
merging of white dwarfs is not considered. In what follows, we will study how
the explosion energy affects the explosion hydrodynamics pattern. This issue has
been actively studied recently, for instance, in [2,29]. The simulation with all the
resources of the Siberian Supercomputer Center (16 Intel Xeon Phi 7290 and 72
physical cores in an accelerator on a regular 2563 calculation grid) is about 10 min.
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Fig. 5. Relative increase in the explosion energy versus Mach number of the root-mean-
square deviation MRMS . The basic explosion energy corresponds to an energy release
of 1051 Erg.

When simulating an SNeIa explosion on the basis of the merging of white dwarfs
and the asymmetric explosion of a single dwarf, the typical time step, τWD, is 10
ms. Thus, the typical calculation time of the next two problems using the approach
with the direct simulation of turbulent carbon burning is about one week. As men-
tioned earlier, the major computational load is the reproduction of turbulent car-
bon burning as an individual problem. In a series of experiments, we consider the
turbulent combustion of carbon at various perturbation velocity dispersions. The
kinetic energy obtained from the nonzero dispersion of perturbation velocities is
converted into the internal energy and, as a result, into a more intense mode of car-
bon combustion, which gives a greater energy yield compared to static combustion
used in classical methods for specifying subgrid processes. In further calculations,
we use this problem as a component for describing the subgrid process of carbon
combustion.

4.2 Hydrodynamics of SNeIa Explosion

We identified 11 possible scenarios (see Fig. 6) of a supernova explosion, which
differ in the hydrodynamics of the process:

1. The merger of white dwarfs [15] is the classical scenario of a merger of
two white dwarfs with the achievement of a mass greater than the mass of
Chandrasekhar and the subsequent explosion of a type Ia supernova (see
Fig. 6I).

2. The off-center collision of white dwarfs [37] is a collision of two white dwarfs
of arbitrary masses moving in parabolic orbits. The high kinetic energy and,
therefore, the interaction energy lead to the launch of the nuclear combustion
of the material of white dwarfs, followed by a type Ia supernova explosion
(see Fig. 6II).

3. The central collision of white dwarfs [38] is a degenerate scenario of a high-
velocity collision of two white dwarfs, followed by a type Ia supernova explo-
sion (see Fig. 6III).
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4. The close passage of white dwarfs [28] is a motion of white dwarfs along
parabolic trajectories without collision. The high speed of movement pre-
vents the dwarfs from entering the merge mode (see Fig. 6IV).

5. The forced fusion of white dwarfs of equal [34] and different masses [40] is a
merger of white dwarfs forced out of equilibrium due to a mass difference of
20% or the slowing down of the dwarf’s velocity in a tight binary pair. Both
scenarios result in dwarf fusion and Chandrasekhar mass excess, leading to
a Type Ia supernova explosion (see Fig. 6V).

6. The supernova explosion based on the development of spiral instability [18,
19] is a type Ia supernova explosion based on the development of turbulence
in spirals in merging white dwarfs. The development of turbulence in high-
density islands that are in spirals is the main explosion mechanism [10]. A
feature of such turbulent combustion can be the occurrence of any scenario
of the nuclear combustion of the material: detonation model [3], deflagration
model [32], delayed detonation model [21] (see Fig. 6VI).

7. Tidal heating [8] is a scenario of the explosion of a new super or new type
Ia based on a combination of tidal heating, accretion heating and material
nuclear burning. The location of ignition due to tidal heating is a feature of
this scenario. In the case of a surface explosion, the white dwarf degenerates
into a new star. When the detonation point is deep enough, an off-center
explosion of a type Ia supernova occurs (see Fig. 6VII).

8. The dynamic double detonation of double degenerate dwarfs of a pre-Chan-
drasekhar mass or D6 [13] is a scenario of a merging of two degenerate
dwarfs, one of which receives a shear momentum of the base relative to the
nucleus. As a result, an instability of the Kelvin-Helmholtz type develops at
the boundary between the nucleus and the shell of one of the dwarfs. Pri-
mary detonation occurs in dense waves of an unstable flow. The shock waves
from waves come on the shell surface. At this moment, a second detonation,
sufficient for the formation of a type Ia supernova, occurs (see Fig. 6VIII).

9. The tidal detonation of a white dwarf during the close passage of a black
hole [41] is a scenario of a shell detonation of a white dwarf of an arbitrary
mass and an explosion in the form of a type Ia supernova due to tidal heating
caused by the close passage of a black hole. A preliminary analysis of such
scenarios shows that a medium-mass black hole is sufficient (see Fig. 6IX).

10. The merger of a white dwarf with a star of main sequence [44] is another
classical scenario of the merging of a white dwarf with a star of main sequence
with achieving a mass greater than the Chandrasekhar mass, followed by a
type Ia supernova explosion (see Fig. 6X).

11. The collision of a white dwarf type with a terrestrial planet is a hypothetical
scenario of a collision of a white dwarf with a planet from the terrestrial
type to a gas giant. The achieved Chandrasekhar mass and, in addition,
the kinetic impulse obtained from the planet lead to a type Ia supernova
explosion (see Fig. 6XI).

The consideration of these possible scenarios from the point of view of the
hydrodynamics of the process can be reduced to three fundamentally different
scenarios:
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1. “Merger” is a scenario of stars interaction, among which three variants can
also be distinguished: evolutionary merging, central and off-center collisions
of stars.

2. “Gravity Shock” is a scenario with an explosion of a static or moving point
of detonation. The movement of the detonation point is associated with the
direction of the influence of the gravitational impact.

3. “Bubbles” is a multiple detonation when the number of detonation points
can reach hundreds [9].

Next, we will demonstrate computational experiments to study these scenarios.

Fig. 6. SNeIa Explosion Scenarios

SNeIa Explosion Scenario Based on White Dwarf Merger. We will
simulate two white dwarfs with solar masses and the temperature T = 109 K.
The angular velocity of white dwarfs, v, is obtained from an analytical solution
based on the following equality of the centripetal force and the force of gravity:

v2

r
= G

M�
r2

,

where v is the equilibrium angular velocity, M� is the mass of dwarfs, and r is the
distance between the dwarfs. The rotation speed of one of the dwarfs is decreased
by 20%. This results in the merger of the white dwarfs. Figure 7 presents the
simulation results: the initial state of the dwarfs, the beginning of the merging
of the dwarfs, the state of the merging at the time of the explosion, and an
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asymmetric supernova Ia explosion. To simulate nuclear carbon burning, we use
the perturbation rate obtained by simulating the hydrodynamics of the merging

Fig. 7. Relative density distribution in the equatorial plane during the merger of white
dwarfs and the subsequent type Ia supernova explosion at 0 s (a), 40 s (b), 60 s (c),
and 70 s (d).

of the dwarfs. The simulation results (7) show that critical densities for starting
detonation carbon burning are reached in the merger. The explosion dynamics is
subsequently determined by the results of the non-center white dwarf explosion.

SNeIa Explosion Scenario Based on White Dwarf Central Collision.
We will simulate two white dwarfs with solar masses and the temperature T =
109 K. The velocity of the central collision is equal to 1000 km s−1. Figure 8
presents the simulation results: the initial state of the dwarfs, the beginning
of the collision of the dwarfs, the late state of the collision, and an supernova
Ia explosion. To simulate nuclear carbon burning, we use the perturbation rate
obtained by simulating the hydrodynamics of the merging of the dwarfs. It can

Fig. 8. Relative density distribution in the equatorial plane during the central collision
of white dwarfs and the subsequent type Ia supernova explosion at 0 s (a), 20 s (b),
40 s (c), and 45 s (d).

be seen from the simulation results that after the explosion, two diverging shock
fronts, similar to jets, are formed. The whole simulation in general repeats the
previous scenario.
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SNeIa Explosion Scenario Based on White Dwarf Non Central Col-
lision. We will simulate two white dwarfs with solar masses and the temper-
ature T = 109 K. The velocity of the non-central collision is equal to 1000 km
s−1. Figure 9 presents the simulation results: the initial state of the dwarfs, the
beginning of the collision of the dwarfs, the late state of the collision, and an
supernova Ia explosion. To simulate nuclear carbon burning, we use the per-
turbation rate obtained by simulating the hydrodynamics of the merging of the
dwarfs. The whole simulation in general repeats the previous scenarios.

Fig. 9. Relative density distribution in the equatorial plane during the non-central
collision of white dwarfs and the subsequent type Ia supernova explosion at 0 s (a),
20 s (b), 40 s (c), and 45 s (d).

Asymmetric Explosions of White Dwarfs. Let us simulate a single white
dwarf with two solar masses and the temperature T = 109 K. The explosion
zone is specified at a distance of 20% of the radius from the center. The explo-
sion energy is specified with the values obtained in the previous subsection.
Figure 10 presents the simulation results: the density distribution at the time
when the explosion takes place in most of the star at various explosion energies.
The simulation results (10) show that when the explosion force is considerable,

Fig. 10. Relative density distribution in the equatorial plane at explosion energy values
of 1/2 × E0 (a), E0 (b), 2 × E0 (c), 4 × E0 (d).

the star collapses, and a thin shock wave from the supernova is formed. As the
explosion energy decreases, the wave dissipates over a sufficiently large distance.
It is obvious that in this case, the brightness of the supernova changes con-
siderably depending on the carbon burning mode and the subsequent explosion
energy. Increasing the explosion energy produces a hydrodynamic instability due
to the presence of a small perturbation in the white dwarf density (see Fig. 10
for relative densities at one second after the explosion).



Sub-grid Physics in SNeIa 227

Multiply Explosions of White Dwarfs. Finally, let us simulate a single white
dwarf with two solar masses and the temperature T = 109 K. The explosion
zones are specified at a distance of 20% of the radius from the center and in the
center. The explosion energy is specified with the values obtained in the previous
subsection. Figure 11 presents the simulation results. Thanks to the numerical

Fig. 11. Isolines (left) and isosurface (right) of the relative density distribution in 5 s.

simulation, we can see the result of the supernovae Ia explosion in the form of a
“horseshoe” image.

5 Discussion

1. We do not deny the concept of “standard candles” for measuring distances in
the Universe. Let us only pay attention to the fact that the energy behavior
of the process of the explosion of white dwarfs in the form of supernovae with
the incomplete combustion of the material is non-standard. We offer only one
scenario that reveals the ambiguity of the burning process.

2. The computational model has a simple adiabatic form of the stellar equa-
tion of state. Although numerous studies of the stellar equation of state are
available, we have not found any convincing arguments in favor of using more
complicated coefficients of the adiabatic density function when considering
the energy behavior. Maybe the model should be complicated considering the
concentration distributions of the elements.

3. In our model of burning, we use the alpha process of carbon burning up to
iron and nickel. The concentration distributions of the elements in supernova
explosions are not considered. The major attention is given to the explosion
energy with incomplete carbon burning and the non-standard character of
this process.
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4. To describe subgrid carbon burning, the model considered in detail in [39]
is used. The advantage of this model is that it has an analytical solution
for determining the energy released as a result of carbon burning. In the
present paper, the chemical composition of the remnant is not considered.
The chemical composition of the remnant is described in [6,31,33,35,36].

5. The main calculation time in our model of the evolution of white dwarfs and
the explosion of type Ia supernovae is spent on modeling the subgrid process
of carbon combustion in white dwarfs. We start such turbulent combustion at
each time step in each computational cell of nested grids used to simulate the
hydrodynamics of white dwarfs, provided that the required values of temper-
ature and density in the cells are reached. In fact, at each time step, we run a
fairly large number of full-fledged hydrodynamic calculations using a regular
grid on the time step of white dwarf hydrodynamics. For the calculation, we
use the already developed parallel code computing infrastructure from [25].
The calculations of the hydrodynamics of white dwarfs take negligible time
and are reduced by the use of nested grids. In connection with this way of
organizing calculations, we do not consider scalability studies on regular grids
(they are described in detail in [25]), but we present scalability results only
for nested grids.

6. It is known that the classical SNeIa supernova scenario is based on the merger
of white dwarfs, reaching the mass of Chandrasekhar, the start of the ther-
monuclear combustion of carbon, and the subsequent supernova explosion
with the almost complete combustion of the material. Professor A.V. Tutukov
proposed a hypothesis about the possibility of an explosion of SNeIa during
the combustion of a mass smaller than the mass of Chandrasekhar, which led
to the formation of many scenarios described in this article. The key point,
in our opinion, is related to the more intense combustion of the white dwarf
material. To describe such combustion, we propose the subgrid carbon com-
bustion apparatus in the form of an independent hydrodynamic problem of
turbulence development.

6 Conclusions

In this paper, a non-standard mechanism of carbon burning in type Ia supernova
explosions is proposed. The mechanism is based on intensity variations in the
nuclear burning of carbon during its incomplete combustion. In this case, the
explosion energy can vary significantly due to the presence of different regimes of
carbon burning during the development of turbulence in the burning zone. The
energy released during burning, sufficient for the explosion of a white dwarf (as a
type Ia supernova), can be achieved with a mass smaller than the Chandrasekhar
mass. In addition, the explosion energy of a white dwarf with a Chandrasekhar
mass can differ considerably.
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Abstract. The paper describes a computational model and an original
software system, UKS-Dynamic, for the analysis of dynamic interaction
between train pantographs and an overhead catenary system at high-
speed railway lines. The study focuses on the problem of reducing non-
physical high-frequency oscillations arising in dynamic simulations due
to the spatial discretization of flexible wires of the catenary. A number
of model problems are solved both analytically and numerically, and the
quality of high-frequency mode suppression is studied for several suppres-
sion techniques, including specific time integrators (beta-Newmark and
generalized-alpha methods) and Rayleigh damping. The model is vali-
dated against the solutions of etalon problems given by the EN 50318:2018
standard for alternating and direct current catenary lines at a train speed
of 320 km/h. Code parallelization employs the OpenMP library; the code
profiling results are presented for both serial and parallel implementations.

Keywords: Overhead catenary line · Dynamic simulation ·
High-frequency oscillation suppression

1 Introduction

In the design of overhead contact lines for high-speed railway tracks, it is impor-
tant to ensure a high quality of electric current collection. The analysis of the
current collection quality requires a realistic simulation of the dynamic contact
between train pantographs and contact wires. These contact interactions are
influenced by the elastic waves propagating in the catenary system. At train
speed values of 350–400 km/h, high-frequency oscillations can physically emerge
in the catenary. On the other hand, the finite element models of catenaries
also spawn non-physical high-frequency oscillation modes that occur due to
the space discretization of continuous elastic wires. These non-physical high-
frequency modes can be withdrawn from the solution using different suppression
techniques, such as specific time integrators (beta-Newmark and generalized-
alpha methods), Rayleigh damping and output filtering.
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The goals of this study are: (a) to analyze dynamic processes occurring in
the catenary system by solving a number of analytical model problems; (b) to
test the quality of numerical time integrators on model problems; (c) to examine
high-frequency suppression techniques for the degree of dissipation. After con-
sidering the model problems, we switch to real-life catenaries and demonstrate
the validation of the presented computational model against the etalon problem
solution from [1].

The UKS computational system for the design of railway overhead catenary
lines (OHL) has been being developed by the team of Universal Catenary Sys-
tems Co. and researchers from St. Petersburg Polytechnic University over the
past twenty years [2,3]. Computational models involved in OHL dynamics simu-
lations are constantly upgraded in accordance with the international standards
developed by the European Committee for Electrotechnical Standardization [1].
To the authors’ knowledge, the described computational package is the only
domestic professional software used at the industrial level and supporting all
stages of the OCL design, from the initial scratch to the final technical docu-
mentation albums for railway construction and maintenance staff.

The functionality of the software system includes:

– UKS-Static module for the non-linear static finite element analyses of cate-
nary lines, trusses and frames with large nodal displacements;

– UKS-Dynamic module for the linear dynamic finite element analyses of cate-
nary lines, including near real-time simulations of contact interaction between
pantographs and the catenary;

– statistical analysis of the simulation output (mean value, standard deviation
calculation);

– spectral analysis of the simulation output;
– output signal filtering;
– GUI pre- and post-processing modules: integration with AutoCAD, produc-

tion of design documentation, visualization of simulation results.

The presented computational system was successfully applied for design-
ing overhead catenary lines at high-speed railway lines, including the
Moscow—St. Petersburg 250 km/h line (currently in operation), the Moscow—
St. Petersburg 400 km/h line (under construction) and the Moscow—Kazan
400 km/h line (design stage competed, construction suspended).

The rest of the paper is organized as follows: Sect. 2 describes the mathemat-
ical models employed in the design of catenary lines; in Sect. 3, model problems
are stated; Sect. 4 describes the numerical time integration schemes employed
in the analyses (namely, beta-Newmark and generalized alpha method fami-
lies); Sect. 5 outlines the features of the numerical implementation; in Sect. 6,
the simulation results are presented, and the quality of high-frequency suppres-
sion is analyzed both for model problems and one etalon problem from the
EN 50318:2018 standard [1] for a train speed of 320 km/h; Sect. 7 describes the
OpenMP parallelization of the code and presents the code profiling results.
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2 Mathematical Models

2.1 Catenary Line Model

A schematic view of a section of the overhead catenary line is shown in Fig. 1:
the messenger wire and the contact wire are supported by cantilevers, which
are, in turn, mounted to supports. The contact wire is fixed by the cantilevers’
steady arms and droppers mounted between the contact wire and the messenger
wire.

Fig. 1. Catenary line with supporting elements (supports, cantilevers and fixation
arms)

In the presented model, catenary wires (contact and messenger wires and
droppers) are simulated as ideally flexible threads using finite elements of “link”
type with the account for unloading (folding) under a negative axial force.
Supporting constructions (rotating cantilevers and fixation arms) are modeled
as truss elements connected to catenary wires. Supporting constructions are
included in the model to take into account their response (for example, at rota-
tion) on the position and tension of catenary wires.

2.2 Non-linear Static Analysis

The wires of the catenary line are modeled as elastic, pre-tensioned, ideally flexi-
ble threads. At the first simulation stage, the static configuration of the catenary
line under the action of gravity, pre-tension and static pressure from pantographs
is determined. Static analysis takes into account the actual configuration of the
catenary under the acting loads (“large displacements” analysis). The 3D dis-
placement field of each wire in the catenary is described in the local coordinate
system (which is attached to the reference configuration of the wire) by the
following equations:

⎧
⎪⎨

⎪⎩

H(u′, v′, w′)d2v′
dx′2 + q′(x′) = 0

H(u′, v′, w′)d2w′
dx′2 + p′(x′) = 0

ES d2u′
dx′2 + τ ′(x′) = 0,

(1)

where x′ is the axial coordinate in the local basis, v(x′), w(x′) are the transversal
displacements, u(x′) is the axial displacement, ES is the axial stiffness of the
wire, H(x′) is the axial force, q′(x′), p′(x′) are the transversal distributed loads,
τ ′(x′) is the axial distributed load.
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After the finite element discretization of 1 and the transformation of element
matrices to the global coordinates, the resulting system of nonlinear algebraic
equations is written as:

K(U)U = Fext, (2)

where U is the vector of nodal displacements measured from the reference
(unloaded) configuration, K(U) is the stiffness matrix and Fext is the vector
of external nodal loads.

System 2 is solved using the fixed-point iteration method with the relaxation
factor r ∈ (0; 1]. The ith iteration of the method is written as follows:

K(Ui−1)ΔUi = r(Fext − K(Ui−1)Ui−1), Ui = Ui−1 + ΔUi.

2.3 Dynamic Analysis

In dynamic analysis, small oscillations of the wires around their static config-
uration are considered. In the local coordinate system, the oscillations of each
wire are modeled with the following equations:

⎧
⎪⎨

⎪⎩

m∂2v′
∂t2 + 2D ∂v′

∂t − Hstatic(x′)∂2v′
∂x′2 = q′(x′, t′)

m∂2w′
∂t2 + 2D ∂w′

∂t − Hstatic(x′)∂2w′
∂x′2 = p′(x′, t′)

m∂2u′
∂t2 + 2D ∂u′

∂t − ES ∂2u′
∂x′2 = τ ′(x′, t),

(3)

where m is the mass per unit length, g is the gravity acceleration, Hstatic(x) is
the axial tension force obtained from static analysis, D is the viscous damping
coefficient.

In the finite element formulation, a linear ODE system is solved:

MÜ + BU̇ + KU = Fext(t). (4)

Here M is the mass matrix, B is the damping matrix. The constant stiffness
matrix K is computed in the reference configuration obtained from static anal-
ysis 2.

During time integration, the tensions in the droppers are checked; in the
case of dropper unloading, the stiffness matrix is corrected, and the time step is
repeated until the stiffness matrix is stabilized (see [2] for more details).

Supporting elements (such as fixation arms or cantilevers) are modeled as
visco-elastic nodal supports at this stage.

The EN 50318:2018 standard [1] does not require using any specific struc-
tural damping model; the standard requires that the damping of the overhead
contact line is adjusted to a non-dimensional damping rate (ratio of damping vs.
critical damping) of 0.1% to 0.15% for the overhead contact line. The standard
recommends using Rayleigh damping in the discretized (finite element) model:

B = αM + βK, α = 1.25 · 102 s−1, β = 10−4 s. (5)

The Rayleigh damping model [4] was originally proposed to the mimic inter-
nal damping of materials in structures. However, it does not agree with nature
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experiments [5]: material damping does not tend to depend on the frequency [5].
Nevertheless, the Rayleigh damping model can be useful for suppressing artificial
high-frequency oscillations arising in the numerical solution due to the distor-
tion of the frequency characteristics of a continuous elastic body after spatial
discretization.

In the Rayleigh model, the damping ratio ζ depends on the mode frequency
ω as follows [4]:

ζ =
n

ω
=

1
2

(α

ω
+ βω

)
, (6)

where n is the decay ratio. The first natural frequency of the catenary line is
typically 1 Hz. The substitution of ω = 2π×1 Hz and 5 into 6 gives the damping
ratio ζ = 0.0013.

2.4 Pantograph Model. Contact Interaction Between Pantographs
and the Contact Wire

Pantographs are modeled as discrete systems containing two or three lumped
masses connected with elastic springs, dry friction elements and viscous dampers
as shown in Fig. 2.

Fig. 2. Two-mass and three-mass pantograph models

In Fig. 2, the vectors FA and F0 are the aerodynamic lift force and static
push force, correspondingly, and the vector FC is the force of contact interaction
between the contact wire and the pantograph.

Contact interaction between the pantograph and the contact wire is modeled
with the penalty method [6]: a restoring force proportional to the value of the
mutual penetration of the pantograph and the CW is applied to the contact wire
in order to eliminate the penetration of the contacting parts. More details on
applying the method to the UKS-dynamic model can be found in [2].

3 Model Problems Setup

In the model problems, small transversal oscillations of an ideally flexible pre-
tensioned wire are modeled using Eqs. 3–4. In problems 1 and 2, the oscillations
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are free (the only load is gravity). In the 3rd problem, the oscillations are driven
by the moving force of the constant magnitude. The pretension value and all
characteristics of the wire (see Table 1) represent a real-life contact wire. The
length of the wire L = 50 m is a typical railway span length.

Table 1. Parameters of the model problems

Parameter Value

Span length L 50m

Pretension T 20 kN

Mass per unit length m 1 kg/m

Viscous damping coefficient 2D/m 0.010185342 s−1

Disturbing force F in problem 1 10 N

Impact impulse S in problem 2 25 kg · m/s

Moving force F magnitude in problem 3 110 N

Moving force velocity V in problem 3 135m/s

Due to the lack of space, we omit the expressions for analytical and semi-
analytical solutions of the model problems; however, the curves representing
these solutions are presented in the Results section.

3.1 Problems 1,2: Free Oscillations Excited Statically
and Dynamically (by Impact Interaction)

In problem 1, free oscillations of the wire are excited in a static way: at x = L/2,
a lumped force is applied (quasi-statically) and then released at t = 0 s. In
problem 2, free oscillations are excited by impact interaction: at x = L/2, the
impulse s = M · V0 is applied at t = 0 s.

3.2 Problem 3: Oscillations Driven by a Constant Push Force
Moving Along the Span

In problem 3, driven oscillations of the wire are excited by the vertical force
F moving with the constant speed V along the span. In this case, the critical
(resonance) speed of the load Vcr equals to the speed of the wave propagation c

along the span: Vcr = c, where c =
√

T
m = 141 m/s.

4 Numerical Time-Integration Methods

The time-integration schemes implemented and tested in the current study
include Newmark-beta schemes [8] and the generalized alpha-method [9]. All
used methods are absolutely stable, implicit and have the 2nd order of preci-
sion except for the 1st order Newmark-beta scheme with β = 0.3025, γ = 0.6.
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Designed for Hamiltonian systems, the methods significantly differ in compu-
tational complexity, internal dissipation and wave dispersion. We performed a
comparative study of these methods to estimate the quality of numerical solu-
tions in catenary line dynamics simulations.

The generalized alpha-method for numerical time integration [9] was pro-
posed for suppressing non-physical high-frequency oscillations occurring in
numerical solutions due to spatial discretization. The method is described with
the following formulas:

⎧
⎪⎨

⎪⎩

(1 − αm)MAn+1 + αmMAn = αfFn + (1 − αf )Fn+1
Un+1−Un

τ = Vn + τ( 12 − β)An + τβAn+1
Vn+1−Vn

τ = (1 − γ)An + γAn+1,

(7)

where n + 1 is the current time layer number, τ is the time integration step,
U, V, A are the arrays of nodal displacements, velocities and accelerations,
correspondingly, and αm, αf , β, γ are the parameters of the method. The
parameters αm, αf were calculated depending on the desired dissipation of high
frequencies using the formula proposed in [9]:

αm =
2ρ∞ − 1
ρ∞ + 1

, αf =
ρ∞

ρ∞ + 1
, β =

1
4
(γ +

1
2
)2, γ =

1
2

+ αf − αm, (8)

where ρ∞ = limω→∞ ρ, ρ is the spectral radius of the transfer matrix of the
method.

The generalized alpha methods defined by formulae 7–8 are absolutely stable
and have the second order of precision [9]. The values ρ∞ = 0 and ρ∞ = 0
correspond to the total and zero dissipation of the method at high frequencies,
correspondingly. Imposing αm = αf = 0 in 7 produces the family of beta-
Newmark methods. In this study, the absolutely stable implicit first order beta-
Newmark scheme with β = 0.3025, γ = 0.6 and the second order trapezoidal
rule with β = 0.25, γ = 0.5 were tested. In all time integration schemes, the
time step was chosen so that the Courant number [10] equaled 0.5. The maximal
finite element length varied between 10 cm and 25 cm.

5 Software Implementation

The software system basically consists of two modules, UKS-Static and UKS-
Dynamic, aimed for the static and dynamic analyses of mechanical interactions
between train pantographs and an overhead catenary line. The computational
core of the system is implemented in Fortran 2018 and parallelized with the
OpenMP library [11]. The core employs the classical mathematical libraries
LAPACK and BLAS [12] for solving systems of linear algebraic equations. The
system is closely integrated with the AutoCAD software [13]: the AutoCAD sys-
tem is used for the pre- and post-processing of simulations, as well as for the
production of design documentation. Integration with AutoCAD is performed
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via AutoLISP scripts. The post-processing utilities of the system also employ
the GTK library for creating animations.

The workflow of the UKS-Dynamic computational module is presented in
Fig. 3, with the external libraries (BLAS/LAPACK and GTK) shown as blue
rectangles. The main submodules of UKS-Dynamic are listed below:

– Dat, DataFileRes—submodules defining initial data: basic global constants,
variables and data structures;

– ConvCalcVal—converts data types and performs geometric calculations;
– ToSurface—produces the graphical output using the GTK Cairo library;
– OutDataRes—sets scale factors for graphs, colors for suspension elements and

graphs;
– ToAutoCAD—translates graphical data into AutoCAD;
– MfCacl—simulates interaction between pantographs and the catenary line;
– Pantograph2, Pantograph3—calculate two-mass and three-mass pantograph

configurations;
– WithoutPantograph—simulates the dynamics of the catenary line in the

absence of pantographs;
– WithPantograph—simulates the dynamics of interaction between pan-

tographs and the catenary line within one tensioning section;
– Overlap—simulates the dynamics of interaction between pantographs and the

catenary line within two tensioning sections, taking into account the overlap
zone;

– LibFS—low-level C language library for file I/O, interacts with a Windows
API;

– FSWrappers, FortranFSWrappers—Fortran wrappers for C functions and
interfaces for lower-level functions from FSWrappers and LibFS modules,
correspondingly;

– Drawing15b, Drawing15bACAD—export catenary line views and data graphs
to PNG files and AutoCAD;

– UKSDynamic—program entry point.

6 Results

6.1 Model Problems: Free Oscillations

In model problems simulations, the finite element length was 25 cm, and the
time step value was 1 ms. In Fig. 4 and 5, the analytical solutions are shown
by red lines. The green lines correspond to the generalized alpha-method with
ρ∞ = 0.1, the blue and violet lines correspond to the beta-Newmark method
with β = 0.3025, γ = 0.6 and the beta-Newmark trapezoidal rule β = 0.25,
γ = 0.5, correspondingly.

Figure 4 shows the simulation results of problem 1 (free oscillations of the
wire excited by a static force) for a viscous damping model (with the diagonal
damping matrix B) and a Rayleigh damping model. The displacement dynamics
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Fig. 3. Workflow of the UKS-Dynamic computational module

is well mimicked by all methods, independently of the damping model (Fig. 4a, c).
In the absence of Rayleigh damping, the velocity dynamics graph (Fig. 4b) shows
intensive non-physical oscillations for all methods except beta-Newmark β =
0.3025, γ = 0.6. The latter has a very strong internal dissipation (which is
expressed in a higher oscillation decay compared to the analytical solution). Since
this beta-Newmark scheme has only the first order of precision, the accuracy of
the solution should be controlled with a sufficiently small time step.

Together with Rayleigh damping (Fig. 4c, d), all schemes show satisfactory
results, although beta-Newmark β = 0.3025, γ = 0.6 tends to overdamp the
solution.

Figure 5 shows the simulation results of problem 2 (free oscillations of the
wire excited by impact interaction). In the absence of Rayleigh damping, the
displacements (Fig. 5a) oscillate heavily in all methods except beta-Newmark
β = 0.3025, γ = 0.6. In Fig. 5b, the wave shape is shown at the time moment
t = 0.1 s (the wave crosses the span in about 0.3 s); the shape is distorted in
all time integration schemes (however, it should be noted, that all non-physical
oscillations and distortions shown in Fig. 4 and 5 tend to decay with a decrease
in the finite element size).

Together with Rayleigh damping (Fig. 4 and 5c, d), all schemes show satis-
factory results, with some overdamping in beta-Newmark β = 0.3025, γ = 0.6.
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Fig. 4. Model problem 1: free oscillations of the wire excited by a lumped force. Dis-
placement and velocity in the middle of the span, viscous damping (a, b) and Rayleigh
damping (c, d)

Fig. 5. Model problem 2: free oscillations of the wire excited by impact interaction.
Displacements in the mid-span and wave shape at t = 0.1 s, viscous damping (a, b)
and Rayleigh damping (c, d)
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6.2 Model Problem: Driven Oscillations

In the problem of driven oscillations, only the subcritical load velocity value
(135 m/s) is considered; supercritical train speeds are prohibited by design stan-
dards. According to the analytical solution, the critical load speed equals to the
wave propagation speed, which is 141 m/s for the considered wire. When the load
speed is under the critical value, the maximal displacement occurs in the point
of force application. The distribution of displacements at the moment when the
load is at the middle of the span is shown in Fig. 6. The beta-Newmark scheme
β = 0.3025, γ = 0.6 shows the smoothest results.

Fig. 6. Model problem 3: driven oscillations, load speed 135 m/s (486 km/h). Wave
shape at the moment when the force is in the middle of the span

6.3 Validation of the Model Against the Etalon Problem from EN
50318:2018

The described computational model was successfully validated against etalon
problems and experimental data for real existing overhead contact line sections
of high speed railway lines (Annex A, B of EN 50318:2018, [1]). Figure 7 presents
simulation results for the etalon problem of a catenary line containing a messen-
ger wire, one contact wire, two pantographs located at a 200 m distance (the three
lumped masses model of the pantograph is used according to [1]). The messen-
ger wire is connected to fixed points via spring-damping elements. The contact
wire is connected to fixed points via supporting elements, i.e. steady arms. The
finite element model contains 22 spans, 10 of them are reference spans (according
to [1]). Pantographs start moving at the beginning of the section. Ten referent
spans are located in the middle of the section, between supports 7 and 17. The
time integration step is 0.5 ms. The maximal finite element length is 0.1 m. The
contact stiffness in the penalty method is 50 000 N/m, in accordance with the
recommendations of EN 50318:2002. The sampling 200 Hz (the sampling interval
is 5 ms) is decoupled from the time integration step. The output signal is filtered
by band filters with bandwidths 0–20 Hz, 0–5 Hz and 5–20 Hz according to [1].
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The initial configuration of the catenary and pantographs is shown in Fig. 7a.
The dynamics of the vertical elevations of two contacts along the train trajec-
tory is presented in Fig. 7b. Figure 7c, d shows the statistical distribution of the
contact force values. The variation of the contact force along the track after
filtering with a bandwidth of 0–20 Hz is presented in Fig. 7e, f. The simulated
parameters, which are the most important for the current collection quality, are
listed in the tables in Fig. 7.

All simulation results for the etalon model fit into the reference ranges given
in [1].

Fig. 7. Etalon problem solution, train speed of 320 km/h: (a) initial configuration of
the catenary and pantographs, (b) vertical positions of two contact points along the
train trajectory, (c, d) statistical distribution of the contact force values, (e, f) variation
of the contact force along the track
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7 OpenMP Parallelization and Code Performance

To identify the bottlenecks of the UKS-Dynamics program, the profiling of the
serial version was performed using the gprof profiler. The profiling showed that
the main bottleneck was the matrix multiplication procedure: it took about 54%
of the elapsed time. In the second place, it was the linear algebraic equations
system solution in the LAPACK dpbtrs package (19%), wherein the factorization
itself did not take up significant resources (taking into account the fact that it is
taken out of the time integration loop). Parallelization was performed using the
OpenMP library. The loops containing matrix multiplications and the procedures
for simulation output filtering were parallelized. Additionally, a number of loops
were rewritten to enable automatic parallelization by the compiler.

The computational time spent on solving the etalon problem from EN
50318:2018 for a train speed of 320 km/h with a finite element length of 0.1 m
and a time step of 0.5 ms is shown in Fig. 9. The results are obtained at the opti-
mization level of the compiler -O2 on an Intel Core i5-3450 3.5 GHz computer
with two physical and four logical cores. A relatively modest speed-up is due to
the usage of an algorithmically sequential Holecky solver for the SLAE (system
of linear algebraic equations) solution. However, iterative SLAE solvers are less
preferable here due to small problem sizes (≈ 104 − 105 degrees of freedom)
(Fig. 8).

Fig. 8. Serial mode: code profiling results
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Fig. 9. Computational time spent on the etalon problem solution in serial and parallel
modes on an Intel Core i5-3450 3.5 GHz standalone computer

8 Conclusions

Several techniques of high-frequency oscillation suppression were tested and
applied to the problem of modeling the dynamics of interaction between train
pantographs and a catenary line. The techniques include three special time inte-
gration schemes (generalized-alpha with ρ∞ = 0.1, beta-Newmark β = 0.3025,
γ = 0.6 and beta-Newmark trapezoidal rule β = 0.25, γ = 0.5) and Rayleigh
damping. The simulation results indicate that Rayleigh damping alone is not suf-
ficient in high-frequency suppression. Qualitatively, beta-Newmark β = 0.3025,
γ = 0.6 is the best high-frequency suppression scheme in all computational tests,
despite the first order of precision. Quantitatively, beta-Newmark β = 0.3025,
γ = 0.6 in combination with Rayleigh damping tends to overdamp the problem
due to the lower accuracy of the scheme; appropriate time stepping should be
used. Another advantage of this scheme is lower computational costs compared to
generalized-alpha methods. The trapezoidal rule produced intensive non-physical
oscillations and cannot be recommended for wire dynamics modeling.

For the etalon problem solution, beta-Newmark β = 0.3025, γ = 0.6 was cho-
sen as the fastest and most robust integration scheme. All simulation results for
the etalon model fit into the reference ranges given in [1]. The serial optimization
and OpenMP parallelization of the program were performed; the computational
time spent on the etalon problem solution was reduced by 44%. Further work
on improving the performance of the program will be continued.
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Abstract. The article presents a parallel algorithm for the numerical
modeling of coke sediments burning from the catalyst grain. Coke sed-
iments burning from the catalyst grain is also called oxidative regener-
ation. It is one of the simplest and most effective methods for restoring
the activity of a coked catalyst. The mathematical model of this process
is a system of non-linear partial differential equations. It includes equa-
tions for describing the material and heat balance, kinetic equations for
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obtained initial-boundary value problem for a system of partial differential
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by central differences with the second order of accuracy. A well-known
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1 Introduction

At present, catalytic processes form the main part of the chemical industry. The
catalyst is inevitably covered with a layer of coke sediments during reactions.
The composition of sediments varies depending on the composition of reactants,
reaction conditions, type of catalyst, and other factors. Most often, coke is a
hydrocarbon compound. Therefore, an effective method for removing coke sed-
iments is to burn them with oxygen-containing gas from the catalyst grain. It
is convenient to take air as the reaction mixture, since this avoids additional
costs. This method of restoring catalytic activity is called oxidative catalyst
regeneration [1,2].

An intractable task is to determine the technological conditions of regener-
ation, which simultaneously provide a high burnout rate of coke sediments and
the safety of the catalyst layer. The greatest threat to the efficiency of the cat-
alyst lies in the high probability of the occurrence of “hot spots” [3,4]. This
phenomenon is explained by the ability of coal to adsorb flammable oxygen dur-
ing low-temperature combustion [5]. The burnout temperature of coke sediments
must be constantly monitored to prevent the occurrence of hot spots.

Many tasks arise during regeneration: it is necessary to remove as much coke
as possible in the shortest possible time, while maintaining the efficiency of the
catalyst. As known, the velocities of chemical reactions directly depend on the
temperature of their carrying out, however, it is necessary to take into account
the possibility of the occurrence of hot spots, i.e. coke combustion zones, lead-
ing to the irreversible deterioration of the catalyst. Full-scale experiments that
make it possible to predict the current of regeneration under various conditions
are expensive and unsafe; it is proposed to solve the emerging problems using
mathematical modeling [3].

Formally, oxidative regeneration is low-temperature carbon combustion,
therefore, the regularities accompanying such processes are valid for it. The
need to take into account many conditions affecting the process leads to com-
plex mathematical models described by partial differential equations, the ana-
lytical solution of which is impossible. In addition, the resulting models are stiff
and require calculations with a small time step due to a combination of factors
of different nature [6]. An effective method to reduce the time spent on such
calculations is to use parallel technologies [7].

The main physicochemical regularities of the coke burning process for vari-
ous types of catalysts are given in [2]. The problem of the dynamic control of
oxidative regeneration is introduced in [3]. The article [8] discusses an averaged
model of oxidative catalyst regeneration.

The article [9] investigates the regeneration of a diesel fraction hydrotreating
catalyst based on the analysis of circulating regeneration gases.

The article [10] analyzes the regeneration modes of platinum catalysts for
gasoline reforming and the dehydrogenation of higher paraffins.

The work [11] is devoted to the study of the deactivation and oxidative
regeneration of modern catalysts for deep diesel fuel hydrotreating, and the
activity of regenerated catalysts is compared with new samples.
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The investigation of nickel and vanadium catalysts and the conditions for
reducing the regeneration time are obtained in [12,13].

Currently, the investigation on the regeneration of a commercial zeolite cat-
alyst by burning coke using ozone is underway [14,15].

An analysis of the qualitative change in the catalyst coked due to the catalytic
pyrolysis of plastics is given in [16]. The process of coke formation is described
in detail, as well as irreversible changes in the catalyst, to which it leads. The
process of oxidative regeneration is modeled in terms of kinetics, taking into
account sorption processes.

Various modeling approaches are outlined in [17]. The oxidative regeneration
process is presented as part of a continuous production cycle. The article consid-
ers a function of catalyst activity, which depends on time and is related to the
reaction rate. The kinetics of coke formation is revised in accordance with new
experimental data. The production process is optimized based on the developed
models.

The regeneration of a vanadium catalyst with an oxygen-nitrogen mixture is
studied in [18]. The process is analyzed taking into account ionic interactions.

The oxidative regeneration of coked modified metal chloride catalysts as part
of the catalytic cracking process is described in [19]. On the basis of a full-scale
experiment, graphs describing the process are constructed. A conclusion about
the effectiveness of several approaches to the restoration of catalytic activity is
made. The regeneration of the flow in the helium flow with subsequent calcination
is recognized as the most effective.

The article [20] is devoted to the investigation of the effect of oxidative regen-
eration on the activity of a catalyst. It is made of the activation energy of the
destruction of surface coke-containing products on the catalyst grain. It is found
that the long stay of the catalyst under regeneration conditions reduces the
activation energy.

The above works on the investigation of oxidative regeneration do not
take into account the distribution of coke over the catalyst grain and, as a
result, the diffusion of reagents in grain pores. This article is a development
of [2,3]. The kinetic models given in them are modified in terms of the depar-
ture from the quasi-stationarity principle, and an alternative method of non-
dimensionalization of the model is also used to more effectively reduce the stiff-
ness. To investigate the obtained model, a parallel algorithm is constructed and
implemented for the numerical modeling of coke sediments burning from the
spherical catalyst grain, using which the patterns of the distribution of reagents
and coke components over the catalyst grain are obtained.

2 Mathematical Model of Coke Burning

The burning of coke sediments from the catalyst grain is a complex heterogeneous
sorption process, for the correct description of which it is necessary to take into
account the material and heat balances [21,24].
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There are a scheme of chemical transformations of burning out coke sediments
and kinetic equations [3]:

2ΘC + O2 −→ 2ΘCO, W1 = k1(T ) Θ2
3 y1;

ΘCO + O2 −→ ΘCO + CO2, W2 = k2(T ) Θ2 y1;
ΘCO −→ ΘC + CO, W3 = k3(T ) Θ2; (1)

ΘCH2 + O2 −→ ΘCO + H2O, W4 = k4(T ) Θ1 y1;
ΘCO + ΘCO −→ 2ΘC + CO2, W5 = k5(T ) Θ2

2;

ΘCH2
−−→←− ΘC + ZH2 , W6 = k6(T )

ρC
RC

(Θ∗
1 − z1);

ΘCO
−−→←− ΘC + ZO, W7 = k7(T )

ρC
RC

(Θ∗
2 − z2).

Here Wi, i = 1, 7, are the velocities of chemical interaction stages, the dimen-
sion Wr, r = 1, 5 – mole/(l·sec2), W6 and W7 – g/(m2·sec); kj(T ), j = 1, 7, are
the constants of the velocities of chemical interaction stages, the dimension kj
corresponds to ωj ; Θl, l = 1, 3, is the degree of coverage of the coke surface with
various carbon complexes (Θ1 – hydrogen-carbon complex, Θ2 – oxygen-carbon
complex, Θ3 – free carbon surface); y1 is the concentration of oxygen in the gas
phase in mole fractions; z1 and z2 are the concentrations of hydrogen and oxygen

in the coke layer in mass fractions; Θ∗
1 =

Θ1

6
and Θ∗

2 =
4Θ2

3
are the amount

of hydrogen and oxygen adsorbed by coke in relation to the current state of the
coke sediment surface; ρC and RC are the density (g/m3) and average radius of
coke granules (m). Besides,

Θ1 + Θ2 + Θ3 = 0.

The method for modeling the process of oxidative regeneration is given in
[2]. Regeneration requires a description of the material and heat balance like any
catalytic process. Material balance equations are compiled taking into account
the diffusion and Stefan flows, as well as the source member, which includes
the kinetics of the process. The heat balance equation reflects the heat transfer
in the grain and its heating due to exothermic chemical reactions. A feature of
this model is the inclusion of the Stefan flow velocity, which is required to fulfill
the mass conservation law in the model. The equation for calculating the Stefan
flow velocity is obtained from the condition that it is equal to zero at the grain
boundary. The use of spherical coordinates to describe the model is due to the
assumption of a quasi-homogeneous structure of the grain and its shape [2].

The kinetic equations included in the model reflect changes in the composi-
tion of coke sediments, sorption processes, and changes in the total mass fraction
of coke in the catalyst grain. In [2] it is proposed to use the principle of quasi-
stationarity to find the mass fractions of the constituents of coke sediments.
This assumption is due to the need to reduce the computational complexity of
the numerical algorithm, since the replacement of two differential equations by
algebraic ones, firstly, simplifies the difference analog of the system under study,
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and secondly, reduces its stiffness. The authors refuse to use the principle of
quasi-stationarity for the sake of completeness and apply an alternative variant
of non-dimensionalization of the new model.

The mathematical model for burning out coke sediments from the catalyst
grain in a dimensionless form is a nonlinear system of partial differential equa-
tions:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂Θ

∂τ
=

D∗τk
R2

z

1
ρ2

∂

∂ρ

(

ρ2
∂Θ

∂ρ

)

+
Ŝc0
Topc

5∑

j=1

Qjωj ,

∂yi
∂τ

=
D∗τk
R2

zε

1
ρ2

∂

∂ρ

(

ρ2
∂yi
∂ρ

− ρ2μ̂yi

)

+
Ŝ

ε

5∑

j=1

νijωj ,

∂

∂ρ

(
ρ2μ̂

)
= ρ2

R2
zc0Ŝ

D∗τkγ
(−ω1 + ω3 + ω5),

∂qc
∂τ

= −MCc0
γ

Ŝ(ω2 + ω3 + ω5),

∂z1
∂τ

=
c0
γqc

Ŝ(ω6 + z1MC(ω2 + ω3 + ω5)),

∂z2
∂τ

=
c0
γqc

Ŝ(ω7 + z2MC(ω2 + ω3 + ω5)),

∂θ1
∂τ

= −Ŝ

(

ω4 +
c0
γ

ω6

)

,

∂θ2
∂τ

= Ŝ

(

2ω1 − ω3 + ω4 − 2ω5 − c0
γ

ω7

)

.

(2)

Here ρ is the dimensionless catalyst grain radius, ρ ∈ [0, 1] (independent spa-
tial variable); τ is the dimensionless time, τ ∈ [0,+∞) (independent time vari-
able); Θ(ρ, τ) is the dimensionless catalyst grain temperature; yi(ρ, τ), i = 1, 4 is
the mole fraction of components in the gas phase of the reaction (index 1 corre-
sponds to oxygen, 2 to carbon monoxide, 3 to carbon dioxide, 4 to water); μ̂(ρ, τ)
is the dimensionless velocity of the Stefan flow; qc(ρ, τ) is the mass fraction of
coke on the catalyst grain; z1(ρ, τ) and z2(ρ, τ) are the mass fractions of hydrogen
and oxygen in coke sediments; θ1(ρ, τ) and θ2(ρ, τ) are the fractions of hydrogen-
carbon and oxygen-carbon complexes on the coke granule surface; Ŝ(ρ, τ) is the
dimensionless area of coke granules; ωj(ρ, τ), j = 1, 5 are the dimensionless rates
of quasi-homogeneous reactions taken from the kinetic scheme; ωj(ρ, τ), j = 6, 7
are the rates of heterogeneous reactions taken from the kinetic scheme, g/mol;
D∗ is the effective diffusion coefficient, m2/sec; τk is the contact time, sec; Rz is
the catalyst grain radius, m; ε is the catalyst grain porosity; νij , i = 1, 4 are the
stoichiometric coefficients from the reaction scheme; c0 is the gas molar density,
mol/m3; Top = 520◦ is the temperature at which the reaction rate constants are
experimentally determined, K; c is the volumetric heat capacity of the catalyst,
J/(m3· K); Qj , j = 1, 5, are the thermal effects of chemical reactions, J/mol; γ
is the catalyst bulk density, g/m3; MC is the molecular weight of coke, g/mol.
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It should be noted that there is a decrease in the volume of coke sediments
over time. This fact is taken into account in the (2) model as a decrease in

the reaction surface area Ŝ(ρ, τ) =
(

qc(ρ, τ)
qc(ρ, 0)

) 2
3

, while the catalyst grain size

remains unchanged.
The (2) system is supplemented with boundary and initial conditions chosen

on the basis of experimental conditions:

ρ = 0 : μ̂ = 0,
∂yi
∂ρ

= 0,
∂Θ

∂ρ
= 0;

ρ = 1 :
∂yi
∂ρ

= 0,
∂Θ

∂ρ
= β0

(
T0

Top
− Θ

)

; (3)

τ = 0 : qc = q0C , z1 = z01 , z2 = 0, θ1 = θ01, θ2 = 0,

Θ =
T0

Top
, y1 = 1, yi = 0, i = 2, 4,

where T0 is the initial temperature of the catalyst grain, K.

3 Constructing a Parallel Algorithm and Efficiency

The difference approximation for the initial-boundary value problem (2), (3) is
performed using the Euler scheme in time. Since the model includes one spa-
tial coordinate, i.e. the dimensionless radius, the computational domain is the
segment [0, 1]. The temperature and concentration of mixture components are
considered as integral averages in grid cells. Time derivatives are approximated
by forward differences with the first order of accuracy, and space derivatives are
approximated by central differences with the second order of accuracy.

The developed algorithm is implemented in the C++ language using
OpenMP parallel programming technology. The choice of OpenMP technology
is dictated by a relatively small number of computational cells, which is an indis-
putable advantage of the dimensionless model. It is inappropriate to use systems
with distributed memory in this case, since interprocessor exchange will require
enormous time costs. In the future, MPI technology will be used to model the
catalyst layer, since the size of the computational domain will be set on the basis
of experimental problems.

The issue of convergence is resolved in the formulation of refining grids due
to the lack of an exact solution to the problem. The calculations are carried
out for a different number of cells in space with the preservation of the Courant
number. The convergence is preserved when the computational grid is refined.

The system of difference equations approximating the initial-boundary value
problem (2), (3) has the following form:
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Ŝ

ε

7∑

j=1

νijωj

⎞

⎠

n

k

)

,

μ̂k+1/2 =
1

r2k+1/2

⎛

⎝r2k−1/2μ̂k−1/2 + hrr
2
k

⎛

⎝
ϕc0Ŝ
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Here Δt is the time step, hr is the space step, rk = k hr.
The software package includes several modules corresponding to the parts of

the block diagram. The main procedures and functions are placed in a separate
file to optimize the execution time of the program. The calculations of the source
terms, the Stefan flow velocity, the diffusion part and the resulting flow are
implemented using parallel computations. The distribution of streams is carried
out by the standard Omp parallel for directive. The computational algorithm
can be represented as a block diagram (Fig. 1).

The capacity of the software package that implements the developed parallel
algorithm for the model (2) is estimated as follows. The calculations are per-
formed using a different number of threads for a given number of computational
cells (10, 100, 1000), acceleration (ratio of the computation time for several
threads to the computation time for one) and efficiency (ratio of acceleration
to the number of threads) are calculated. The calculation time (in seconds) is
shown in Table 1.
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Fig. 1. Block diagram of the software

Table 1. Calculation time for a different number of cells

10 cells 100 cells 1000 cells

1 processor 54 438 5424

2 processors 44 436 3644

4 processors 50 429 3586

8 processors 54 411 3578

Table 2 shows the acceleration and efficiency data of the developed algorithm.
The tables demonstrate that the highest parallelization efficiency is observed

when switching from one stream to two with a large number of cells. The effi-
ciency is not so high with a small number, since the time spent on creating
several threads is not justified in the case of a small number of iterations in the
cycles.
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Table 2. Acceleration and efficiency of the parallel algorithm

Acceleration Efficiency

10 cells 100 cells 1000 cells 10 cells 100 cells 1000 cells

1 processor 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

2 processors 1.2273 1.0046 1.4885 0.6137 0.5023 0.7443

4 processors 1.0800 1.0210 1.5125 0.2700 0.2553 0.3781

8 processors 1.0000 1.0657 1.5159 0.1250 0.1332 0.1895

4 Results of a Computational Experiment

A computational experiment is conducted with the selected technological param-
eters and values corresponding to real conditions for the process of oxidative
regeneration of the hydrocracking catalyst given in [3]:

MC = 12 g/mol, RC(0) = 0.0025 m, ρC = 1.8 t/m3, γk = 0.6 t/m3, εk = 0.3,
ck = 1.13 J/(m3·K), c0 = 15.72 mol/m3, Q1 = 83.7 kJ/mol, Q2 = 394 kJ/mol,

Q3 = 67.6 kJ/mol, Q4 = 303 kJ/mol, Q5 = 311 kJ/mol.

Coke sediments burning is carried out with air (the volume fraction of oxygen
is 21%), heated to 520 ◦C. Burning is quite effective, but the catalyst does not
overheat at this temperature [3]. The catalyst grain is cooled to room temper-
ature 20 ◦C at the initial time. The above model takes into account that when
heated air passes through the catalyst layer on the surface of the grain and in
its pores, exothermic reactions occur. Thus, the heat balance equation reflects
the heat transfer from the gas layer to the catalyst layer and the heating of the
grain due to reactions.

Figure 2 shows the result of the numerical experiment.

Fig. 2. Graphs of the concentrations of gas mixture components (left) and the mass
fractions of coke sediment components (right). (Color figure online)
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The graphs are built for normalized values, since the calculated quantities
have a different order. The normalization is carried out by dividing each quantity
by its maximum value in the integration interval. Figure 2 illustrates the change
in the concentrations of substances in the gas phase of the process (left-hand
graphs) and the mass fractions of the components of coke sediments (right-hand
graphs).

The blue line corresponds to the oxygen concentration in the gas phase of
the reaction. The oxygen concentration decreases in accordance with the reaction
scheme: in the first stage, oxygen is adsorbed in the layer of coke sediments, in the
second and fourth stages, it is consumed during the oxidation of oxygen-carbon
and hydrogen-carbon complexes.

The orange line on the graphs indicates the concentration of carbon monox-
ide. It is formed as a result of oxygen desorption (the third reaction in the
scheme) and then remains in the reaction zone.

The gray line corresponds to the concentration of carbon dioxide. During
oxidative regeneration, it is formed as a result of the oxidation and recombination
of the oxygen-carbon complex. These processes correspond to the second and
fourth stages.

The yellow line on the graph indicates the dynamics of water vapor con-
centration, its increase is associated with the oxidation of the hydrogen-carbon
complex.

It can be seen from Fig. 2 that the rate of formation of water vapor exceeds
the rate of formation of carbon oxides. This phenomenon is explained by the fact
that the hydrogen-carbon complex, which determines the presence of water in
the reaction products, is a highly combustible component of coke sediments. The
oxidation of the pure carbon surface and the oxygen-carbon complex requires
much more time.

The change in the composition of coke sediments reflects the dynamics of
their constituents. Coke consists of a hydrogen-carbon complex and pure car-
bon at the beginning of the process. Low-temperature coal combustion begins
with the adsorption of oxygen around the active centers in accordance with its
laws [2]. This process is described by the first stage in the reaction scheme, i.e.
the formation of an oxygen-carbon complex. The dynamics of its mass fraction
is shown on the graph by the green line. At the same time, the combustible
hydrogen-carbon complex begins to oxidize and break down, which leads to a
decrease in its share (red line).

The main purpose of oxidative regeneration is to burn out coke sediments.
A quantitative characteristic of this process is the mass fraction of coke on
the catalyst grain (black line in Fig. 2). As can be seen from the graphs, the
mass fraction of coke decreases rather quickly, however, with some delay at the
beginning of the process. This delay is a consequence of the adsorption of oxygen
in the layer of coke sediments.

It should be noted that the above graphs are valid for processes in the
area close to the grain surface. Combustion in the center of the grain proceeds
extremely slowly for the selected regeneration conditions due to the relatively
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low diffusion coefficient of air in the pores of the grain and the high heat capac-
ity of the catalyst material. It is necessary to increase the gas flow rate in the
reactor to accelerate the removal of coke from the center of the grain.

5 Conclusion

The article presents the parallel algorithm for the numerical modeling of coke
sediments burning from the catalyst grain. The process model is a system of par-
tial differential equations reflecting the material and heat balance. The integro-
interpolation method is used to construct the computational algorithm. The
developed algorithm is implemented in C++ using OpenMP parallel computing
technology.

A well-known issue of applying numerical methods to problems that combine
diffusion and chemical transformations is the high level of stiffness of the systems
of equations included in the model of the phenomenon. The reduction of the
computational complexity of the developed algorithms is carried out on the basis
of several approaches.

Non-dimensionalization, which reduces the stiffness of the problem, is applied
for the mathematical model of the real process.

In turn, the multifactor nature of real practical processes leads to difficulties
in the theoretical investigation of the stability and convergence of the developed
numerical algorithms, and in the determination of integration steps over time
and grid. Multiple-step refinement in space is carried out with stability and
convergence checks for each new mesh to solve these issues.

The last step in reducing the computational complexity of the algorithm is
the use of parallel computing technology. The computational algorithm includes
a large number of iterative processes due to the smallness of the time step and
a sufficiently large number of variables in the problem. Parallel computing is
used to speed up the cycles. At the same time, the geometry of the problem is
quite simple due to the assumptions used in modeling the burning of coke from
the catalyst grain, the spherical shape of the grain, and the homogeneity of the
distribution of coke over the grain. This causes the use of OpenMP technology,
since the interprocessor MPI exchange will lead to significant time costs, which
are not justified in this case. An analysis of the efficiency of using parallel tech-
nologies shows that the greatest acceleration is achieved when switching from
one stream to two with an increase in the number of computational cells. Paral-
lelization does not provide a significant acceleration of calculations with a small
number, since the costs of creating several threads are high.

Patterns of the distribution of gas phase components and the mass fractions
of coke sediment components are obtained. It describes real processes on the
catalyst grain during oxidative regeneration.

An analysis of the obtained patterns demonstrates that, for the selected
regeneration conditions, in the area close to the surface of the catalyst grain,
coke burning is quite active, however, deep burning requires an increase in the
reaction mixture flow rate.
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This conclusion will be used in further investigation of the oxidative regen-
eration process, namely, the development and implementation of algorithms for
modeling the catalyst layer.
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Abstract. The description of the parallel solver of the Particle Finite
Element Method, 2nd generation (PFEM-2), is given. Strategies for the
parallelization of both mesh-related and particle-related substeps are out-
lined. The software implementation is based on the open-source FEM
code deal.II. The parallel solution of incompressible Navier–Stokes
equations with the excluded convective term is performed with the out-
of-box tools of deal.II using additional libraries such as Trilinos and
p4est. Several MPI-based subroutines are developed for particle transport
processing, as well as for particle/mesh field projection operations. The
presented PFEM-2 solver allows for simulating convection-dominated
flows with a high CFL number on relatively coarse meshes. The submesh
resolution of the velocity field is maintained by particles. The results of
simulation and speed-up of computations for test problems using multi-
core/multi-processor systems are shown.

Keywords: Computational fluid dynamics · finite element method ·
particle methods · parallel algorithms · MPI

1 Introduction

Contemporary mechanical and engineering problems require complex solutions
with numerical simulation, often using considerable computational resources.
Mathematically, these problems are often formulated in the 3D case, can have
a complicated domain shape, very fine meshes, and take into account various
physical effects (in CFD: turbulence, buoyancy, heat transfer, etc.). The problem
may also require the application of a multidisciplinary approach. The evolution
of numerical methods partially helps to cope with the initial complexity of the
problem. In many cases, it turns out that it is possible to build a specific method
that has a narrower applicability, but is significantly more efficient for a certain
class of problems than a universal approach. In CFD, for a class of convection-
dominated problems, such a method, i.e. the Particle Finite Element Method, 2nd

generation [1,2], PFEM-2, was proposed in 2013. The main idea behind PFEM-2,
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which reduces computational costs, is to split the original problem into Eulerian
(mesh-related) and Lagrangian (particle-related) parts. In this case, Lagrangian
particles simulate convection, and the reduced hydrodynamical problem is solved
on a fixed mesh using the conventional finite element method. The mesh remains
fixed for the whole process of computing, as opposed to the original Particle
Finite Volume Method [3], or PFEM, where it is rebuilt after each time step
using particle locations (for a detailed comparison of these two methods see also
[4]). Equations solved on the mesh are devoid of the convective term—the one
that requires a high-resolution capability to achieve a reasonable accuracy of the
result—and, therefore, the mesh can be coarser, and a larger time step is allowed
in the case of convection-dominated problems.

Despite this intrinsic potency of the PFEM-2 method, the solution of prac-
tical problems often implies the use of a mesh with hundreds of thousands or
millions of cells and a large number of particles, which altogether leads to a
considerable computational load. It seems natural that the application of paral-
lelization algorithms can speed up computations. However, different parts of the
PFEM-2 method (solution on the Eulerian mesh and transport of Lagrangian
particles) are completely different algorithmically and, therefore, require spe-
cific approaches to parallelization. In this paper, we give a detailed description
of these techniques for both parts of PFEM-2 and present the results of their
software implementation. It should be noted that there exists only one publicly
available implementation of PFEM-2, namely, within the KRATOS software
framework [5]. Its parallelization is bounded by the usage of OpenMP technol-
ogy, and the properties of the solver itself are disputable, based on the authors’
experience of its application to the solution of model problems. Thus, the devel-
opment of a robust parallel implementation of PFEM-2 is an urgent problem.

A general description of the PFEM-2 method is given in Sect. 2, the par-
allel implementation is covered in Sect. 3. In Sect. 4, we present the results of
numerical simulation for a test case of viscous flows past a cylindrical body. The
possibilities for further improvement of the parallel solver are outlined in the
conclusion.

2 PFEM-2 Method

2.1 Main Concepts and Solution Algorithm

In this paper, flows of incompressible viscous fluids are considered. The governing
equations for such flows include the Navier–Stokes equations, as well as the
incompressibility equation:

⎧
⎪⎨

⎪⎩

ρ

(
∂V

∂t
+ (V · ∇)V

)

= ∇p + ∇ · τ + f ,

∇ · V = 0,

(1)
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where V and p are the velocity and pressure fields, respectively, ρ = const is the
density, f represents the outer forces, and τ is the deviatoric stress tensor with
the following components (μ is the dynamic viscosity):

τij = μ

(
∂Vi

∂xj
+

∂Vj

∂xi
− 2

3
δij

∂Vk

∂xk

)

. (2)

In the case of flows past cylindrical bodies (as the one for which the results
of numerical simulation are presented below), the mathematical model involves
a number of typical boundary conditions, including the fixed velocity of the flow
at the channel inlet and the no-slip condition on the body surface and channel
walls.

The Particle Finite Element Method, 2nd generation, is especially efficient
in the case of convection-dominated problems (although it can also be applied
to problems where viscosity prevails). For such problems, conventional mesh-
based approaches, such as the Finite element method and the Finite volume
method, often require excessively fine meshes, as well as small time steps, in
order to correctly approximate the convective term in Eq. (1) and yield results
of reasonable accuracy. PFEM-2 is a hybrid Eulerian-Lagrangian approach that
is based on traditional FEM, but also includes particles moving along velocity
streamlines. In this case, particle transport simulates convection in an explicit
way, therefore, the convective term is excluded from the momentum equation,
and the reduced system of differential equations must be solved using FEM on
a mesh. For the same level of accuracy, a coarser mesh is now sufficient, and a
larger time step is allowed. This will obviously lead to a certain loss of accuracy
for effects simulated on the mesh—viscosity, pressure difference, outer forces
(such as buoyancy),—however, for convection-dominated problems, it will not
significantly affect the overall accuracy of the results, since their influence on the
parameters of the flow is much weaker than that of convection.

The solution for the Eulerian mesh and Lagrangian particles is obtained
separately, at different steps of the algorithm. The PFEM-2 method implies
that the mesh is fixed and the particles are transported on top of it (this is
the main difference between PFEM-2 and the original Particle Finite Element
Method, which is purely Lagrangian). It eliminates the need to rebuild the mesh
at each time step, but results in two separate sets of variables (namely, velocity
fields)—at the mesh nodes and associated with the particles, which have to
be kept consistent at each simulation step. For this purpose, two operations are
performed: projection of the velocity field from the particles onto the mesh nodes
and correction of the velocities associated with the particles using the values at
the mesh nodes.

The whole PFEM-2 solution algorithm includes preliminary steps, as well as
a number of operations performed at each simulation time step. The algorithm is
shown in Fig. 1 with indication of the Eulerian and Lagrangian steps. The former
and latter imply different approaches to parallelization, however, it appears that
it can be done efficiently in both cases. The details of these steps are discussed
below.
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Fig. 1. Implemented PFEM-2 solution algorithm

2.2 FEM Solution on the Eulerian Mesh

Thanks to the utilization of particles simulating convection, the following mod-
ified system has to be solved on the fixed Eulerian mesh:

⎧
⎨

⎩

ρ
∂V

∂t
= ∇p + ∇ · τ + f ,

∇ · V = 0.

(3)

(4)

This system is linear and makes the use of coarser meshes possible. Different
methods for its solution can be applied. In the implementation described in
this paper, we use a “segregated” approach, which means that the pressure and
velocities are decoupled and solved separately. More precisely, the fractional-step
approach is used [6]; it includes 3 steps, and only 1 unknown field is obtained
per step. For its implementation, the velocity predictor field Ṽ is introduced.
It is found as a result of solving the velocity prediction equation (hereinafter
k, l = 1, . . . , d, where d is the problem dimension)
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ρ
Ṽk − Vk

Δt
=

∂τn+θ
kl

∂xl
+ fk. (5)

The pressure field is then obtained as a solution of the pressure equation

∂2p̂

∂xk∂xk
=

ρ

Δt

∂Ṽk

∂xk
. (6)

The velocity predictor field Ṽ is not required to be divergence-free, therefore,
the right-hand side of Eq. (6) is generally non-zero. The new velocity field V̂ is
obtained after the following velocity correction equation is solved:

ρ
V̂k − Ṽk

Δt
= − ∂p̂

∂xk
. (7)

The whole fractional-step strategy (5), (6), (7) ensures that reduced Navier–
Stokes Eqs. (3) are solved, and the resulting velocity field satisfies incompress-
ibility Eq. (4).

A slightly different fractional-step scheme, which includes the known pres-
sure field p in the velocity prediction equation (the pressure equation and the
velocity correction equation are modified accordingly), can be used. Although
it may appear that extra information will provide better results, it is generally
recommended [7] to use Scheme (5)–(7) as a more robust one. Our numerical
experiments [8] proved the same.

2.3 Operations with Lagrangian Particles

Particles in PFEM-2 serve the purpose of simulating convection by means of their
transport along velocity streamlines. To provide numerical stability, the Courant
– Friedrichs – Lewy (CFL) number for this operation should be relatively small
(below 0.1..0.15), which leads to the transport of particles being performed in a
number of substeps. The velocity field at the mesh nodes is considered “frozen”
during this process, and the explicit Euler method is used:

xk+1
p = xk

p + τvn
p (xk

p), k = 0, . . . , K − 1. (8)

vn
p (xk

p) here is calculated by interpolating the velocities at the mesh nodes
(denoted un

i ) of the cell in which the particle with the index p is currently
located (xk

p being its coordinates):

vn
p (xk

p) =
M∑

i=1

ϕi(xk
p)un

i , (9)

where ϕi are the values of the shape functions of the corresponding mesh cell,
M is the number of mesh cell nodes.

Since we use the velocity values at the nodes of the mesh cell surrounding
the current particle location in Formula (9), we need to update the ascription
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of particles to cells after each substep of particle transport. This is a relatively
computationally expensive procedure, which implies the analysis of several cases
for each particle. The details of the operation of particle resorting will be covered
in the next section. After the particles are resorted, we perform a check for each
mesh cell whether it contains a sufficient number of particles. If a specific part
of the cell is empty, a new particle is created and placed there, with its velocity
being initialized using the velocities of the surrounding mesh nodes. At the same
time, if the cell part contains too many particles close to each other, this will
not enhance the accuracy as their velocities are normally the same, but will
inevitably increase computational costs. Therefore, we discard all particles in
close adjacency, except a certain number, and delete them from the computation.

Once the particles have been transferred to new locations, we perform the
projection of the velocity field from them onto the mesh nodes. Since the particles
represent the submesh scale and provide additional information, as opposed to
the mesh nodes, we reset the velocities at the mesh nodes to zero and use the
velocities associated with the particles for recalculating the former. The velocity
of the mesh node with the index j is calculated using the contribution from all
particles located in the mesh cells to which this node belongs. Technically, we
use the mean value weighted by the shape functions (ϕj(xp) is the value of the
shape function corresponding to this mesh node):

uj =

P∑

p=1
upϕj(xp)

P∑

p=1
ϕj(xp)

. (10)

A similar procedure is performed in the opposite direction after the solution
is obtained using FEM on the Eulerian mesh. However, instead of resetting the
velocities associated with the particles, we only adjust them by the increment
of the velocities at the nodes of the surrounding mesh cell so as not to lose
the resolution capability provided by the particles. The correction of particle
velocities is done using the following interpolation procedure with the shape
function values as coefficients (M is the number of mesh cell nodes):

δun
p (xk

p) =
M∑

i=1

ϕi(xk
p)(un+1

i − un
i ). (11)

3 Parallel Software Implementation of PFEM-2

The original PFEM-2 method algorithm was earlier implemented [9] in a frame-
work based on the deal.II library [10]. The latter is an open-source finite ele-
ment method toolkit with a wide range of capabilities. For the FEM solution of
the hydrodynamic problem (3), (4), the internal features of deal.II were mostly
used. The handling of particles also utilizes the mechanisms of this library, how-
ever, this functionality was originally intended by the deal.II authors for other
classes of problems and required specific modification by the authors of this paper.
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The shares of time costs differ for different parts of the PFEM-2 method
algorithm. An example for solving the test problem covered further in Sect. 4 in
a serial mode is shown in Fig. 2. One can see that among the recurrent oper-
ations performed at each time step, the FEM solution and particle transport
occupy the majority of the computation time. These procedures, as well as the
particle velocities projection and correction, were chosen as primary objects for
parallelization. However, as the Eulerian and Lagrangian parts of the PFEM-2
algorithm are very different algorithmically, different approaches to paralleliza-
tion were applied.

Fig. 2. Shares of time costs of main operations in PFEM-2 (test problem)

3.1 Parallel Version of the FEM Solution in PFEM-2

We implemented a fairly conventional approach to the parallelization of the finite
element solution of the hydrodynamic problem. It is mainly based on the features
of the deal.II library and a number of auxiliary tools. Running computations
on several processor cores leads to the need for domain decomposition, for which
the METIS or p4est libraries can be used in compatibility with deal.II. The
p4est library was chosen because it is generally recommended as a more “con-
temporary” alternative to METIS. This library performs the partitioning of the
mesh and its storage as a hierarchical arrangement of a forest of quad- or octtrees
(hence its name). Partitioning is not aimed to minimize the size of interprocess
boundaries, but rather creates subdomains of such form so as to make storing,
addressing and manipulating the cells as efficient as possible. This operation
is performed by the algorithm within p4est, and the resulting subdomain can
even be disconnected and consist of two (but not more) fragments. An example
of applying p4est to the mesh from the test problem in Sect. 4 is shown in Fig. 3.
For this case, the number of subdomains, which are indicated by different colors,
is 16.

The partitioning of the mesh in deal.II has one specific aspect: each process
stores its “own” part of the mesh, as well as one adjacent row of its neighboring
domains. These cells are called “ghost” cells and are used for auxiliary purposes,
which will be shown later.

After the domain is decomposed, the FEM substep of each time step of com-
putation includes the consequent assembly of the system matrix and the right-
hand side vector for all unknown fields in Eqs. (5)–(7) (both components of the
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Fig. 3. Example of domain decomposition

velocity prediction field, pressure field and both components of the final velocity)
and the solution of the corresponding linear systems. During the assembly, each
compute node processes cells belonging to its subdomain and calculates its part
of the system matrix and the right-hand side. The boundary conditions are also
taken into account during this process. After this procedure is finished by all pro-
cesses, they perform communication with neighboring processes and exchange
the necessary data. Handling the vectors and sparse matrices is maintained by
the Trilinos library [11]. An alternative parallel linear algebra library, PETSc,
could have been used, but was rejected due to memory leakage issues when used
together with deal.II. The parallel solution of linear systems is also performed
by Trilinos, including the solver (the generalized minimal residual method was
used with a preconditioner—based on the Jacobi method for velocity fields and
the algebraic multigrid for the pressure field).

Despite the computation time for calculating aerodynamic loads being neg-
ligibly small (see Fig. 2), it was also parallelized, as different parts of the body
surface can belong to different nodes. Therefore, each process calculates its con-
tribution to the drag force FD and the lift force FL as parts of the corresponding
integrals over their parts of the body surface S:

FD =
∫

S

(

μ
∂vt

∂n
ny − Pnx

)

dS, FL = −
∫

S

(

μ
∂vt

∂n
nx + Pny

)

dS, (12)
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where n and t are the normal vector and tangential vector on S, respectively.
After these contributions are computed, the summation is performed over all
processes using MPI, and then the resulting values of the corresponding aero-
dynamic coefficients CD and CL are output into the file. Although the load of
different compute nodes is unbalanced during this operation, it can be neglected
because its share in the whole amount of the computation time is incredibly
small.

Finally, the output of the results is also performed by all compute nodes in
a parallel way. Mostly out-of-box deal.II features were used in the case of the
FEM solution on a mesh: each node writes out data for its part of the domain to
a separate .vtu file (XML-type replacement of the legacy VTK format, which
is considered more efficient than the latter) in binary form. The governing node
then produces a .pvtu file that contains a centralized record for the whole group
of VTU files for the correct visualization of the global solution.

3.2 Parallel Version of Operations with Particles in PFEM-2

The parallelization of particle handling in PFEM-2 is also connected with domain
decomposition. Particle transport, which is the main operation, is performed
independently by all compute nodes for particles located in the cells of their
subdomain. However, this set of particles changes after each substep of particle
transport (see Formula (8)) as the particles are resorted. This procedure is dif-
ferent in the parallel case and includes three stages. At first, each process checks
all the particles that are currently ascribed to the cells of its subdomain. At
this substep, we check whether the particle is still in the cell it was before being
transferred. In case the particle has left the cell, we check all its neighboring
cells (sorting them according to the direction in which the particle was moved).
Some of these cells may be “ghost” cells, i.e. belonging to another process. This
check may have three outcomes: the particle is found in another cell belonging
to the same compute node; the particle is found in a “ghost” cell or not found in
any of the neighboring cells. In the first case, its processing in the resorting pro-
cedure is completed; in the second case, it is marked for further data exchange
with the corresponding compute node; in the third case, it is deleted from the
computation. The latter case mostly happens when the particles leave the entire
domain, other cases (such as particle moving across more than one cell at one
substep) are extremely rare due to the choice of time steps.

The second stage of the resorting procedure is communication between the
nodes and the exchange of respective particle data. Each particle is handed over
with its global and local coordinates, as well as the velocity vector. Finally, after
the particles received from other processes are placed into the corresponding
cells, a check is performed for each cell whether its parts contain at least one
particle. If needed, new particles are created and placed in empty cell parts with
their velocity initialized using the values at the surrounding mesh cell nodes.
This check is done independently by all compute nodes for their subdomains.

The correction of particle velocities is executed in a similar way: each pro-
cess performs a correction for all particles inside the cells of its subdomain
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according to Eq. (11). The value required for the adjustment of the particle
velocity depends only on the velocities at the nodes of its cell, therefore, no
exchange between the neighboring nodes is needed here. The procedure of the
projection of particle velocities onto the mesh nodes, on the contrary, requires
such communication between processes. All compute nodes calculate the sums
in the nominator and denominator in Formula (10), but for the mesh nodes
belonging simultaneously to two or more processes, the contribution from the
latter should also be summed up (see Fig. 4). For this reason, the summation
of these two quantities is performed using MPI, and after that the value of the
mesh node velocity is finally calculated.

Fig. 4. Projection of particle velocities onto the mesh nodes in the parallel case

The procedure of initial particles “seeding”, which precedes the solution cycle
over time, is parallelized in a natural way: each compute node performs the
placement of the required number of particles inside the cells of its part of the
mesh, which is followed by the initialization of the velocities associated with
these particles using the velocity values at the mesh nodes.

It should be noted that the ratio between time costs for the FEM solution
and particle-related steps does not remain constant throughout the computa-
tion. Figure 2 shows only the aggregated shares for different operations over a
considerable period of simulation. However, the quantity of particles at a spe-
cific time step changes and significantly affects the execution time of different
procedures. First, after the initial “seeding” of particles has been performed,
they start to move along velocity field streamlines, and free parts of mesh cells
or particles are frequently encountered during the check mentioned above. New
particles are added, and this process typically continues until the limit of par-
ticles per cell (or per cell part) is reached, after which the overall quantity of
particles more or less stabilizes (an example of how the number of particles per
cell can vary during the computation is shown in Fig. 5). As a result, the share
of the FEM step generally decreases for a certain period of time after the start
of the computation.



MPI-Based PFEM-2 Method Solver 271

Fig. 5. Number of particles per mesh cell at different time steps of the test computation

4 Numerical Experiment

4.1 Test Problem

The parallel solver for the PFEM-2 method was tested on the model problem for
an unsteady viscous flow past the NACA-0012 airfoil, which is a widely known
test [12]. A low Reynolds number of 1 × 104 is considered when the flow is
laminar, and the airfoil is placed at a small angle of attack α = 4◦. The physical
and numerical parameters of the problem are listed in Table 1.

Table 1. Parameters of the test problem

Parameter Value

Density ρ 1

Dynamic viscosity ν 0.001

Free-stream velocity V∞ 10

Reynolds number Re 1 × 104

Time step Δt 0.001

The configuration of the domain is shown in Fig. 6. Different boundary condi-
tions are applied to the velocity field on different parts of the boundary: Dirichlet-
type condition V = V ∞ at the boundaries Γ1 and Γ4 and Neumann-type con-

dition
∂V

∂n
= 0 at the boundaries Γ2 and Γ3.

Two different meshes were built using the SALOME Platform containing
174,000 and 562,500 cells. The mesh fragment near the airfoil is demonstrated
in Fig. 7. The flow was simulated for 5.0s of model time. The distribution of
the velocity field at time t = 5s is shown in Fig. 8. A numerical experiment was
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Fig. 6. Domain geometry for the test case

carried out on HPC systems of two different types. The total time, as well as the
FEM step time and the particle step time, was measured for all computations
(particle transport and projection/interpolation procedures).

Fig. 7. Eulerian mesh near the airfoil

The first series of computations was performed on the multi-core system of
Bauman Moscow State Technical University, equipped with two 18-core Intel
Xeon Gold 6254 processors and 40 gigabytes of RAM. A coarser mesh (174,000
cells) was used. The speed-up of the computation for a different number n of
processor cores is shown in Fig. 9. The total time for a single-core computation
in this case was 11 h 40 min. One can see that, despite the use of shared memory,
the efficiency of parallelization is far from its theoretical limit. This remains true
for different parts of the PFEM-2 algorithm (FEM and particle operations).
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Fig. 8. Velocity field distribution at time t = 5 s

The second and third series of computations were carried out on a cluster
system located at the Applied Mathematics Department of BMSTU. This sys-
tem comprises 6 compute nodes, each with one 18-core Intel Core i9-10980XE
processor and 128 gigabytes of RAM (a total of 108 cores and 768 gigabytes of
distributed memory). Communication between the compute nodes is organized
via the InfiniBand FDR network (Mellanox SX6036 switch and ConnectX-3 Pro
adapters) for data exchange, as well as conventional 5-gigabit Ethernet for con-
trol commands. The speed-up of the computation for a different number n of
nodes (from 1 to 6) for a coarser mesh and a finer mesh is demonstrated in
Fig. 10. Computations on a single 18-core node take up 50 min and 3 h 15 min
for these two meshes, respectively. Particle operations scale reasonably well as it
can be expected. At the same time, the efficiency of parallelization of the FEM
step enhances with an increase in the number of mesh cells per compute node.
This results in remarkable overall scalability for the case of the finer mesh, which
almost reaches the theoretical limit.
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Fig. 9. Speed-up of computations on the multi-core system

Fig. 10. Speed-up of computations on the cluster system for a coarser mesh (a) and a
finer mesh (b)

5 Conclusion

An MPI-based solver for the PFEM-2 method was developed. It is implemented
within an open-source software framework with the deal.II library at its core.
The Eulerian (mesh-related) and Lagrangian (particle-related) steps of the algo-
rithm required different approaches to parallelization. Numerical experiments
for a test case show that an acceptable speed-up of computations is achieved.
The PFEM-2 method solver scales especially well on a cluster system, and the
efficiency of parallelization, as usually, tends to grow together with the size of
the problem.

At the same time, the share of time costs for the FEM step remains relatively
large compared to other operations. Two ways of improvement can be seen here:
optimization of the FEM procedure itself and further parallelization. The FEM
step still has a number of possible bottlenecks, with most of the time spent
on the assembly of matrices and right-hand side vectors (the solution of linear
systems takes considerably less time). Another way to reduce time costs is the
application of high-performance computations on GPUs using CUDA technology.
The latest versions of deal.II already have several classes and subroutines for
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different operations over CUDA, therefore, it appears to have a certain potential
for accelerating manipulations with matrices and vectors during the FEM step
and is planned as a stage of further development of the solver.
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Abstract. The modeling of the mass transfer of a two-phase fluid in a
fractured-porous reservoir is considered. The porous reservoir and frac-
tures have their own filtration-capacity properties, which complicates
filtration processes. To describe the problem, a four-block mathematical
model with splitting by physical processes is used. For the numerical
solution of the problem in the one-dimensional case, an original implicit
difference scheme on a non-uniform grid is proposed. The problem feature
is a large pressure drop, which requires the use of detailed grids and, as
a result, leads to high computational costs. One of the ways to solve the
problem is to use parallel computing. The paper proposes an algorithm
based on the parallel sweep method, which allows one to significantly
speed up calculations and is generalized to the multidimensional case
within the framework of using additional splitting in spatial coordinates.
A series of calculations, confirming the effectiveness of the developed
numerical algorithm and its parallel implementation, are carried out.

Keywords: Mathematical modeling · System of equations for
two-phase filtration · Fractured-porous reservoir · Piezoconductivity
and dual porosity · Implicit difference schemes · Parallel algorithms
based on sweep

1 Introduction

The oil and gas industry is the most important component of the world economy.
The development of the industry requires the solution of issues of a different nature.
One of the main issues is the opening and efficient development of fields. The the-
ory of field development is based on fundamental research in the fields of physics,
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chemistry, mathematics, information technology, geology, as well as applied sci-
ences. It is important to know geological processes, both in a specific oil and gas
region and the region as a whole, the physics of oil and gas reservoirs in the reser-
voir, their structure, physicochemical processes occurring in the reservoir during
the development of reserves [1,2]. Modern field development technology is based
on a comprehensive study of the properties of productive formations and the fluids
contained in them, as well as the study of complex processes occurring in forma-
tions during their operation. At this stage, it is crucial to understand the filtra-
tion characteristics of the reservoir, the nature of the movement of fluids in the
reservoir, the spatial distribution of zones of high and low permeability values. As
before, the most significant and important issue is the increase in the complete-
ness of the production of hydrocarbon reserves from deposits. This issue remains
especially relevant for carbonate reservoirs, in which the presence of fracturing is
confined to the natural geological process of reservoir formation [3]. The relevance
of studying filtration processes in fractured reservoirs is due to the fact that more
than 60% of the world’s proven reserves of hydrocarbons are contained in such
fields. The main problem in the development of such reservoirs is a complex struc-
ture [4,5], in which, along with intergranular pores, there are always fractures and
caverns. The filtration of oil and gas is primarily caused by the presence of fractures
and caverns. Despite the presence of a large volume of fractures, the development
of such deposits is an extremely complex technological process, often accompanied
by difficulties, and can be ineffective [3,6].

A fractured formation is characterized by discrete properties due to the pres-
ence of two types of voids. The pore reservoir (or matrix) has smaller pores
(voids) and is distinguished by a significant holding capacity, but low filtration
properties. The fracture system, on the contrary, is characterized by low capac-
itive, but high filtration properties.

The process of fluid filtration in fractured reservoirs also changes significantly,
since there are two pore systems, which are a system of fractures and a system of
matrices with different values of geometric dimensions and reservoir properties.
The calculation of flow characteristics under special conditions of sharp reservoir
heterogeneity was carried out by different authors [7,8]. However, the most uni-
versal model describing the process of mass transfer in these types of reservoirs
is the Warren-Root model [7]. According to this model, pores (or matrix) in a
fractured-porous reservoir are represented by rectangular parallelepipeds, where
the matrix has high porosity and low permeability and is separated by a set of
natural fractures that have high permeability and low porosity. The filtration of
fluid in the reservoir is carried out along the set of fractures, and the matrix is a
reservoir that continuously feeds the set of natural fractures. Thus, the Warren-
Root model was chosen to calculate the fractured-matrix fluid exchanges.

The process of fluid filtration in carbonate reservoirs is characterized by a
combination of various complex processes and is of a general nature. In this case,
computer modeling becomes an integral part of the development of carbonate
fields. The features of the problem are a large pressure drop and the presence of
a multiphase fluid system (water, oil) in a complex structured fractured-matrix
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porous medium. Thus, for a two-phase system of immiscible fluids in a fractured-
matrix reservoir, taking into account the processes of mass transfer between
fractures and the matrix, it is in demand to develop a new mathematical model
and a corresponding numerical algorithm for its solution. Even in the spatially
one-dimensional case, this leads to a large amount of computation due to the
use of detailed grids. One of the ways to overcome this difficulty is to develop
an efficient parallel algorithm that adapts to the architecture of modern high-
performance systems.

The most common parallel programming technologies are the Message Pass-
ing Interface (MPI) and Open Multi-Processing (OpenMP) standards. They are
used in the form of library functions (MPI) and special comments (OpenMP) in
traditional sequential programming languages C, C++, Fortran, Java and allow
one to get efficient parallel programs.

For computers with shared memory, OpenMP technology is more commonly
used. The OpenMP interface is conceived as a standard for creating parallel
applications for scalable SMP systems (SSMP, ccNUMA, etc.) within the shared
memory model. The OpenMP standard includes specifications for a set of com-
piler directives, helper functions, and environment variables. OpenMP imple-
ments parallel computing using multithreading, in which a “master” thread cre-
ates a set of “slave” threads, and the task is distributed among them. It is
assumed that the threads are executed in parallel on several processors (cores,
threads of cores), and the number of processes does not necessarily have to
coincide with the number of hardware threads [9].

The MPI standard is one of the most widely used tools for creating parallel
and distributed applications using network communications. The MPI standard
specifies an interface that both the programming system on each computing
platform and the user must follow when creating their programs. Regardless of
which physical computing device the MPI program is running on, this technology
implements a distributed memory model. Within this model, it is assumed that
an MPI program is executed by a group of so-called MPI processes, each of which
has its own local memory. All operations in an MPI program are performed in
parallel by all MPI processes with each MPI process using data from its own local
memory. Obtaining data from the local memory of other processes is organized
explicitly with the help of special exchange procedures that constitute the core
of MPI technology [9].

The use of parallel technologies significantly reduces the time for solving
problems and improves the efficiency of using RAM. In this work, it is pro-
posed to use a more modern version of the above standards, namely, a hybrid
that combines distributed parallel computing in a network and multithreading,
which is conditionally called as MPI + OpenMP. This option adapts well to the
architecture of modern computing clusters. In the work, on its basis, an effective
numerical algorithm and its parallel implementation were developed to solve the
problem of modeling the processes of the mass transfer of a two-phase system of
immiscible liquids in a fractured-porous reservoir.
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2 Formulation of the Problem

The mathematical description of the distribution of mass transfer in the “fracture
set – matrix” system is presented by differential equations of the second order.
The classical functions proposed in the work of Warren-Root [7] are used as the
functions of fluid exchange between the set of fractures and the matrix.

∂(φαρoS
α
o )

∂t
+ ∇(ρoU
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The generalized Darcy’s law is used to describe the filtration velocity. Accord-
ing to this law, the oil and water filtration velocities are equal to:

Uα
o = −kαkro(Sα

o )
μo

gradPα
o , Uα

w = −kαkrw(Sα
w)

μw
gradPα

w . (4)

Here α = f,m, wheref is the fracture system, m is the matrix system, i = o, w,
where o is the oil, w is the water, P f is the formation pressure in the fracture
system (Pa), Pm is the formation pressure in the matrix (Pa), φf is the porosity
in the fracture system, φm is the porosity in the matrix, ρo is the density of
oil (g/m3), ρw is the density of water (g/m3), Sf

i is the saturation of oil or
water in the fracture system, Sm

i is the saturation of oil or water in the matrix,
Uα

i is the flow velocity of oil or water, qj is the fluid rate (m3/day), qα
i is the

coefficient of redistribution of the fluid between the matrix and the fractures,
σ is the coefficient of fractured rock (1/m2), kα is the absolute permeability
(m2), krw and kro are the relative phase permeabilities of water and oil, μo is
the viscosity of oil (Pa·s), μw is the viscosity of water (Pa·s).

For the problem posed, the following initial and boundary conditions are
considered:

Pm|t=0 = P0, P
f |t=0 = P0, P

f |x=0 = Pw,
∂P f

∂x
|x=l = 0. (5)

System (1)–(4) with initial and boundary conditions (5) is a complex system
of equations of mathematical physics of mixed type. At the initial stage, a com-
plete splitting of the system by physical processes is carried out [10]. Splitting
occurs into four equations, which include two equations (for the matrix and the
system of fractures) with respect to the saturation transfer of one of the phases
(namely, water) and two equations (for the matrix and the set of fractures) of
piezoconductivity. First, we perform splitting and obtain a system of equations
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for the first functional block in terms of piezoconductivity. Further, the system
of equations is linearized according to the chord method. The resulting differen-
tial equations, boundary and initial conditions are approximated by their grid
counterparts according to the implicit scheme [11–14]. As a result of the approx-
imation, we obtain a system of linear algebraic equations, which are reduced to
the general form [15,16]:

− ApkδP f
k−1 + CpkδP f

k − BpkδP f
k+1 = Φpk, (6)

where the coefficients are as follows:

Φpk = −F fs − τ

{
(ρm

w σ̄λm
w )s

(ρf
w)(δ1f)≈ +

(ρm
o σ̄λm

o )s

(ρf
o )(δ1f)≈

}
Φms, (7)

Apk =
τ[

(ρf
w)(δ1f)

]≈

k

{
1

hk−1/2

(
ρf

wkf

μf
w

)s
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kups
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}

+
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(ρf
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k
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(
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okf
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o
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}
, (8)

Bpk =
τ[

(ρf
w)(δ1f)

]≈

k
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1
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(
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wkf

μf
w

)s
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(
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(9)

Cpk =
(Sf

w)(δ1f)≈

(ρf
w)(δ1f)≈
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φ̄fρf

w

)′S
Pf
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τ

(ρf
w)(δ1f)
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w σ̄λm

w )s(1 − πs
m)

}
k

+

{
τ

(ρf
o )(δ1f)

≈ (ρm
o σ̄λm

o )s(1 − πs
m)

}
k

.

(10)
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Here F fs is the difference approximation (multiplied by the time step τ), in
grid approximations a≈, the values on the implicit time layer t̂ are taken at s+1
of the already calculated iteration, φ̄ = hφ, δ1 is the weight by time, a is the
pressure derivative, δP is the pressure increment, σ̄ = hσ, kupΛ

rwΩ are the relative
phase permeabilities of water in the cell Ω taken from the node ω(Ω) of this cell,
located upstream (up) from the implicit time layer (Λ).

To solve the system of linear algebraic equations with a tridiagonal matrix,
the scalar sweep method is used. As a result of solving system (6), we obtain an
array of pressures, which describes the dynamics of pressure in time and space in
the environment of the well. The obtained pressure values allow one to proceed
to the solution of the second block of saturation transfer.

Having constructed the solution for the piezoconductivity block, having
determined the pressures in the fractures and the matrix, a transition to the
calculation of the second block, which is responsible for the transfer of matter,
takes place. It is accepted that the saturations of water and oil add up to one,
therefore, the saturation for oil is expressed through the saturation for water,
and all calculations are carried out with respect to water. For the numerical solu-
tion of this system, the finite difference method is used. An implicit difference
scheme is considered. A difference grid is constructed in time and space.

− Af
SwkδSf

wk−1 + Cf
SwkδSf

wk − Bf
SwkδSf

wk+1 + ESwkδSm
wk = 0 − Lf≈, (11)

where the coefficients are as follows:
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k−1)
s+1

[
(krw)

′

Sf
wk−1

]s

upink

}
, (12)

if P f
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f
Swk ≥ 0,

Bf
Swk = τ

{[
ρf

w

kf

μf
w

1
h

]s+1

k+1/2

(P f
k+1 − P f

k )s+1

[
(krw)

′

Sf
wk+1

]s

upink

}
, (13)

if P f
k < P f

k+1, B
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k− 1
2

(P f
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Sf
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]s

upink

}
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Here, the expression in the first square bracket is considered for P f
k > P f

k+1,
and the expression in the second square bracket is considered for P f

k > P f
k−1.

Obviously, for sufficiently small time steps, the following condition is satisfied
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Cf
Swk −Af

Swk −Bf
Swk > 0. Lf is the difference approximation (multiplied by the

time step τ), (krw)′
Sm
w

is the saturation derivative.
The resulting equation is similar to the piezoconductivity equation and is

solved using a scalar sweep at each time layer.

3 Parallel Implementation

The computational problem formulated above is highly laborious even in the spa-
tially one-dimensional case. This is especially evident when modeling filtration
processes in long reservoirs. In this case, it is necessary to use grids with a large
number of nodes. As a result, the computational time can significantly increase.
The most general approach to solving this problem is the parallelization of the
algorithm and the use of parallel computations [17]. Within the chosen hybrid
technology MPI + OpenMP, it is required to monitor the uniform distribution of
the computational load of both individual nodes of the cluster (supercomputer)
and between threads within each node. This problem can be solved by choosing
a suitable distribution of grid nodes between the calculators. This is usually done
based on the principle of geometric parallelism.

Since the explicit scheme for solving the formulated problem imposes too
stringent requirements on the integration step in time, in this work, an implicit
algorithm that presupposes the inversion of the corresponding matrix is chosen.
When solving this problem, it is proposed to use the parallel sweep algorithm
[18]. To adapt it to the selected problem, we assume that in the space of nodes
of a one-dimensional grid, a partition into p adjacent disjoint subdomains is
introduced; their number is equal to the number of processes corresponding to
the number of hardware threads of all nodes of the computing cluster.

For the convenience of considering the parallel algorithm, we choose the case
of a linear discrete equation of type (6). In the operator form, (6) is a linear
system of equations with a tridiagonal matrix. A system of this type can be
written in the following standard (canonical) form [19]:

− Aiyi−1 + Ciyi − Biyi+1 = Fi, 1 ≤ i ≤ N − 1. (15)

At the boundaries, we obtain, respectively:

C0y0 − B0y1 = F0, CNyN − ANyN−1 = FN . (16)

To describe the details of the parallel algorithm, we introduce a uniform
partition of the set of numbers of grid nodes Ω = {0, 1, ..., N} into adjacent
disjoint subsets Ωm = {im1 , ..., im2 }(m = 0, ..., p − 1 is the logical number of the
process).

As a result of such a partition, the process with the number m will process
(i(m)

2 − i
(m)
1 + 1) points. Let us represent the solution on each internal process

(0 < m < p − 1) in the form:

yi ≡ y
(m)
i = y

(I,m)
i + y

i
(m)
1

y
(III,m)
i + y

i
(m)
2

y
(II,m)
i , (17)
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where y
(α,m)
i (α = I, II, III) are defined on Ωm and play the role of a basis, and

the values of the function on the boundary Ωm − y
i
(m)
1

and y
i
(m)
2

are not yet

known. At the internal nodes Ωm, the function y
(I,m)
i is found from Eq. (15),

and the functions y
(II,m)
i , y

(III,m)
i are found from Eq. (15) with zero right-hand

side.
The boundary conditions for y

(α,m)
i are as follows:

y
(I,m)

i
(m)
1

= 0, y
(I,m)

i
(m)
2

= 0, y
(II,m)

i
(m)
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= 0, y
(II,m)

i
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2
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i
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i
(m)
2

= 0. (18)

On the zero and last processes:

y
(0)
i = y

(I,0)
i + yi02

y
(II,0)
i , yp−1

i = y
(I,p−1)
i + y

i
(p−1)
1

y
(III,p−1)
i . (19)

The boundary conditions are:

C0y
(I,0)
0 − B0y

(I,0)
1 = F0, y

(I,0)

i
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2
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Finding the values at the boundary nodes of subdomains leads us to the so-called
“short” system:
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If we take into account the obvious connections in these equations:
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we get:
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with the coefficients
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As a result, we obtain the following system of 2p−2 equations for 2p−2 unknowns

− Ãiyi−1 + C̃iyi − B̃iyi+1 = F̃i, i ∈ Ω̃ = {i
(0)
2 , i

(1)
1 , i

(1)
2 , ..., i

(p−1)
1 }, (23)

where the index i ± 1 means the transition to the corresponding neighboring
element from the set Ω̃. At the boundary nodes i

(0)
2 and i

(p−1)
1 , Eq. (23) take a

form similar to (16). Let us now note the properties of the basis functions [20]:

‖y(I,m)‖C ≤ ‖D−1F‖C , 0 ≤ y(II,m) ≤ 1, 0 ≤ y(III,m) ≤ 1,m = 0, ..., p − 1, (24)

0 ≤ y
(II,m)
i + y

(III,m)
i ≤ 1, for all i,m.

These properties ensure the stability of calculations by formulas (17).
Due to the properties of basis (24), the coefficients of the short system of

equations also satisfy the conditions of the maximum principle. Therefore, the
solution to system (23) exists and is unique. Having determined it by the con-
ventional sweep method, the solution of the original problem can be calculated
using formulas (17).

Let us present the sequence of actions of the parallel sweep algorithm.

1. Each calculator using the sequential sweep algorithm solves three (or two)
problems to find the basis functions y(α,m).

2. Each calculator finds its part of the coefficients of the short system relative
to the unknowns y

(m)
i1

, y
(m)
i2

(m = 0, ..., p − 1).
3. All calculators carry out a collective exchange of the coefficients of the short

system.
4. Each calculator solves the short system and chooses the y

(m)
i1

and y
(m)
i2

values
that it needs.

5. Each calculator uses the y
(m)
i1

and y
(m)
i2

values to calculate its part of the
solution by formulas (17).

The general algorithm for solving the problem is that an explicit-implicit
scheme (explicit in terms of nonlinearity and implicit in the spatial operator) is
used in a cycle in time and is implemented using the parallel sweep method.

To study the properties of the developed parallel algorithm and compare it
with the sequential algorithm, we use such characteristics as speedup (Sm) and
efficiency (Em) coefficients.

Sm =
T1

Tm
, (25)

Em =
Sm

m
· 100%, (26)

where Sm is the speedup, Em is the efficiency, T1 is the execution time of the
sequential program, Tm is the execution time of the parallel program on m
processes.

When theoretically estimating the speedup (usually done before the devel-
opment of the program), one can use the approximate formula
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Sm ≈ Q1

Qm
, (27)

where Q1 is the number of generalized arithmetic operations (GAO) of the
sequential algorithm, Qm is the maximum number of generalized arithmetic
operations of one calculator when implementing the algorithm on m devices.

When solving a dynamic problem, it is sufficient to estimate the speedup and
efficiency for one time step, since further these calculations are repeated many
times according to the same scheme. Therefore, the quantities Q1 and Qm will
be related to one step of the cycle in time.

Each step of the time cycle consists of two main steps:

– calculation of the coefficients of the discrete problem (15), (16);
– calculation of the solution at a step using the sweep algorithm.

Considering these circumstances, we estimate the values Q1 and Qm. We
assume that the first stage of calculations in the sequential algorithm is estimated
by the value C0N , where C0 is the number of operations per element of the
computational grid. The second stage of the sequential algorithm is estimated
by the value C1N . As a result, the value is Q1 = (C0 + C1)N .

When executing one time step of the algorithm in parallel mode, the first
stage is estimated by the value C0N/m. The second stage is estimated by the
value 3C1N/m+C2m log2 m+C1(2m−2)+C3N/m. In the latter case, it is taken
into account that each calculator first determines 3 basis functions using the
sequential sweep algorithm, then calculates 8 or 4 coefficients of the short system,
participates in the collective exchange of these coefficients, and finally solves the
short problem (also using the sequential sweep algorithm) and calculates the final
solution. It should be noted that the constants C1 and C3 are related by the ratio
7:5, and they can conditionally be considered equal. The constant C2 depends
on the frequency of processors and the throughput of network communications.
Therefore, in the end, the value is Qm = 4C1N/m + 2C1m + C2m log2 m.

If we now evaluate the theoretical speedup, then we get

Sm ≈ (C0 + C1)N
(C0 + 4C1)N/m + 2C1m + C2m log2 m

=

(1 + α)m
[1 + 4α + 2αm2/N + m2β log2 m/N ]

, (28)

where α = C1/C0, β = C2/C0.
The analysis of formula (28) shows that for a very large number of grid nodes,

the speedup is estimated from above by the value Sm,max = (1 + α)m/(1 + 4α),
i.e., the proposed algorithm has the necessary asymptotics. The value of the
parameter α in the worst case (a problem with constant coefficients and a linear
right-hand side) takes the value 7/4, but most often the situation α � 1 is real-
ized. The value of the coefficient β can be small, but it can also exceed 1 (when
using low-speed communications). However, more often than not, the overall
speedup is affected by the entire combination m2/N(2α + β log2 m). Therefore,
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in specific calculations, the effect of limited maximum speedup is manifested.
The consequence of this fact is that for a fixed number of grid nodes, there is an
optimal number of nodes of a particular computing system.

To implement the parallel algorithm, a C language program was developed
using the MPI standard [9]. Multithreading was ensured by placing additional
MPI processes inside the compute nodes of the cluster. The main calculations
were performed on the K100 supercomputer at the Center for Collective Usage
of the Keldysh Institute of Applied Mathematics of the RAS [21].

When developing a parallel program, in addition to the main part of the
application, auxiliary functions were written, they are mentioned below.

Here are the main stages of work and sections of the parallel program.
Stage 1. Initialization of the parallel part of the application.

The initialization is carried out in the MyNetInit function, including:

• initialization of the MPI application (MPI Init);
• determination of the total number of parallel processes in the group

(MPI Comm size);
• determination of the process number in the group (MPI Comm rank);
• returning the name of the processor on which the call was made

(MPI Get processor name);
and other auxiliary actions.

Stage 2. Initialization of the data for the applied problem.
The initialization is carried out by the Initia Data function, including:

• opening, reading and closing the initial data file (parameters of Eq. (1)–(5)
and parameters of the numerical method) on the master process (m == 0);

• filling in the fields of the data structure and broadcast (MPI Bcast) to other
processes.

Stage 3. Subdivision of the computational domain.
The subdivision is carried out using the MyRange function, allocating memory
for arrays of the grid and coefficients of system (6), as well as buffers for data
exchange, including:

• the range of numbers of nodes of the computational grid is (i1(m), i2
(m));

• the number of calculation points for each process is (n = i2
(m) − i1

(m) + 1);
• memory allocation for arrays with length of n and clipboards;
• filling the arrays with initial data.

Stage 4. Time Loop.
It is carried out in the body of the main program and includes the following at
each step:

• data exchange of the process m with neighboring processes (m−1) and (m+1)
using the BndAExch1D procedure;

• calculation of the coefficients A, B, C, F of scheme (6) on the next layer in
time;
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• calling the algorithm of the right sequential (prog right s) or right parallel
(prog right p) sweep depending on the number of processes;

• calculation of pressure on a new layer in time according to the increment
obtained from the run;

• saving the next portion of the results to the disk (output solution);
• checking the conditions of the end of the time cycle.

Note that in the function (BndAExch1D) the following happens:
• receiving/sending messages without blocking between neighboring processors

(MPI Isend/MPI Irecv);
• blocking the work of processes until all exchange operations are completed

(MPI Waitall).
Thus, using the BndAExch1D function, the values ρf

o , ρf
w, kf , μf

o , μf
w, P f , Sf

i

from (7)–(10) will be transferred.

In the parallel sweep procedure, the collective interaction of processes is
carried out using the MPI Allreduce function.

4 Calculation Results

The mathematical model (1)–(5) is implemented numerically so far only for the
one-dimensional case. Table 1 lists the parameters required for the calculation
for all processors.

Having set the parameters and initial conditions of the model (see Table 1),
the space-time dynamics of the pressure change processes was obtained and
analyzed. Figure 1 shows the pressure dynamics versus time in the matrix and
the fracture system. It is noted that after the well is put into operation, the
pressure in the fractures decreases faster than in the matrix. However, after
80 min, the drop curves approach each other, this is due to the fact that there
is a redistribution of fluid from the matrix into the fractures, and the pressure
is equalized between them.

Fig. 1. Dynamics of pressure in time in the fractures (Pf) and the matrix (Pm)
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Figure 2 shows the dynamics of pressure in space at different points in
time. With an increase in the operating time of the well, the drawdown fun-
nel increases, which is associated with fluid withdrawals.

Table 1. Model parameters

Name of parameter Variable Value (dimension)

Well radius Xa 0.1 (m)

Research radius Xb 10...100 (m)

Time step tau 0.01 (s)

Time time 1000...10000 (s)

Accuracy Epst 0.001

Polynomial coefficients for determining kr wi, 0.03, 0.002, 0.0002

the relative permeability of water i=1,...,3

Polynomial coefficients for determining kr oi, 7.7,−12.1, 6.9,−1.8

the relative permeability of oil i=1,...,4

Density of oil at the surface Ro0 730 (kg/m3)

Density of oil in the reservoir Ro1 870 (kg/m3)

Density of water at the surface Rw0 1000 (kg/m3)

Density of water in the reservoir Rw1 1118 (kg/m3)

Initial pressure in the fracture set P0 25 (MPa)

Pressure on the left in the fracture set P0l 22 (MPa)

Atmosphere pressure Pa 101325 (Pa)

Weight coefficient d1f 0.5

Porosity m 1 0.01

Fracture permeability kf 1 10−12(m2)

Matrix permeability km 1 10−16(m2)

Water viscosity Mw 1 0.67 · 10−3 (Pa · s)
Oil viscosity Mo 1 0.86 · 10−3 (Pa · s)
Water saturation Sw 1 0.36

Number of points in space Nx 1000...10000
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Fig. 2. Dynamics of pressure in space at different times

In order to be convinced of the expediency of solving the problem using
parallel technologies, let us consider the calculation time for a small number
of time steps ntv = 100000. Table 2 shows the calculation time for a different
number of parallel processes (m) for the variant with Time = 100 seconds and
the number of points in space Nx = 1000 (the physical grid step in this case
is 10 m). The data in Table 2 illustrate that at m <= 12 the calculation time
decreases, and at m > 12 it starts to increase. Thus, the optimal number of
processes with this choice of the spatial grid is 12.

Table 2. Calculation time for a different number of parallel processes

Number of
processors

Time, s

1 2.193175e+01

2 1.089155e+01

3 7.157851e+00

6 4.692821e+00

8 4.125761e+00

12 3.493805e+00

13 6.374054e+00

14 3.542320e+00

16 7.087328e+00

24 7.430083e+00

Figures 3 and 4 show the graphs of speedup and efficiency depending on
the number of processes. We see that up to m = 12 the speedup increases, and
the efficiency decreases moderately. Then the situation deteriorates significantly.
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Therefore, it is inappropriate to divide the calculation area by the number of
processes more than 12.

Note that if the grid is more detailed, then, in accordance with our theoreti-
cal estimates (see Sect. 3), the results of parallelization improve significantly. For
example, if, for methodological purposes, we take the dimensions Nx = 10000
and 100000, then the optimal speedup value will be achieved in 18 and 48 pro-
cesses. Another thing is that in real calculations it is more important to consider
already two-dimensional and three-dimensional versions of the problem, where
the practically significant sizes of different-scale grids will be, respectively, on
the order of 10000 × 100 and 10000 × 100 × 100 and more.

Fig. 3. Parallel speedup graph

Fig. 4. Graph of parallelization efficiency
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5 Conclusion

Thus, using the methods of mathematical physics, a system of mass-energy bal-
ances, which describes the process of the mass transfer of a two-phase fluid in a
fractured-porous reservoir, was studied. To describe mass transfer in a reservoir
with dual porosity, a four-block mathematical model with splitting by physi-
cal processes was used. For the numerical solution of the mathematical prob-
lem, an original implicit finite-difference scheme on a non-uniform spatial grid
was proposed. The resulting system of equations was solved using the parallel
scalar sweep algorithm. To test the proposed approach, a series of computational
experiments were carried out. The calculation results confirmed the effectiveness
of the developed numerical algorithm and its parallel implementation. Graphs
of the speedup and efficiency of parallel algorithms were given depending on
the number of processors. The optimal number of processors (equal to 12) was
obtained for the considered formulation problem. As a result of the calculation,
pressure curves were obtained as a function of time in the matrix and fractures,
they showed the behavior of pressure after the well was put into operation. In
addition, pressure curves depending on the spatial coordinate were plotted, they
demonstrated the behavior of pressure at a distance from the well at different
points in time.

Acknowledgments. The work was funded by the Russian Science Foundation
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Abstract. The paper considers the application of parallel computing
technology to the simulation of a catalytic chemical reaction, which is
widely used in the modern automobile industry to produce gasoline with
a high octane number. As a chemical reaction, the process of alkylation of
isobutane with mixed C4 olefins, catalyzed by sulfuric acid, is assumed.
To simulate a chemical process, it is necessary to develop a kinetic model
of the process, i.e., to determine the kinetic parameters. To do this, the
inverse problem of chemical kinetics is solved; it predicts the values of the
kinetic parameters based on laboratory data. From a mathematical point
of view, the inverse problem of chemical kinetics is a global optimization
problem. A parallel asynchronous information-statistical global search
algorithm was used to solve it. The use of the asynchronous algorithm
significantly reduced the search time to find the optimum. The found
optimal parameters of the model made it possible to adequately simulate
the process of alkylation of isobutane with mixed C4 olefins catalyzed
by sulfuric acid.

Keywords: Global optimization · Multi-extremal functions · Parallel
computing · Chemical kinetics · Inverse problems

1 Introduction

Currently, there is a tendency to improve the environmental characteristics of
automobile fuel while maintaining a high octane number. Sulfuric acid alkylation
of isobutane with olefins makes it possible to obtain a high-octane component of
gasoline with a minimum content of aromatic hydrocarbons. The alkylate, which
is produced by alkylation of isobutane with C3 – C5 olefins in the presence of
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strong acid, has the advantages of a high octane number, low vapor pressure,
and zero content of olefins and aromatics, making it a desirable blending com-
ponent for high-quality gasoline. Alkylates will continue to act as a desirable
blending component for high-quality gasoline as the quality of gasoline contin-
ues to increase [3]. Therefore, it is a significant process for a modern refinery.
To optimize the chemical process in industry, it is necessary to develop first its
model, which in this case means building a mathematical model of the chemi-
cal process, and then its kinetic model, i.e., to numerically calculate the kinetic
constants of the reaction.

As a rule, it is impossible to find out the kinetic constants of reactions ana-
lytically. Therefore, there is a need in the development and application of numer-
ical methods for finding the kinetic constants (see, e.g., [5–7,13,22–24]). In this
case, the quality criteria of the solution found (objective function) do not have
an explicit analytical description, but enable an algorithmic representation and
require considerable computational resources. Moreover, in the inverse problems
of chemical kinetics, the objective function can be essentially multi-extremal,
i.e., can have many local extrema along with the global one.

Numerical methods for solving such multi-extremal problems (global opti-
mization methods) differ significantly from local search methods (see, e.g.,
[16,19]). As a rule, local optimization methods cannot escape the local extremum
attraction region and do not find the global optimum. At the same time, the use
of model parameters corresponding to the found local solution may appear to be
insufficient since the global solution can provide a considerable advantage over
local ones.

The diversity of emerging global optimization problems entails various
approaches to their solution. Methods for solving global optimization problems
can be divided into two classes: metaheuristic and deterministic. Metaheuristic
algorithms are usually based on the simulation of processes occurring in nature.
Some examples of metaheuristic algorithms are simulated annealing, evolution
and genetic algorithms, etc. (see, e.g., [2,4]). Due to their relative simplicity,
metaheuristic algorithms are more popular among researchers than deterministic
methods. However, the problem solution found by the metaheuristic algorithm
is, generally speaking, local and may be far from the global solution [14].

The possibility to construct deterministic global search methods different
from grid search and metaheuristic methods is related to the availability and
consideration of some a priori assumption on the properties of problem func-
tions. Such assumptions play a key role in the development of efficient global
optimization algorithms and serve as the main mathematical tool for estimating
global solutions.

The assumption on limited relative variations of objective function values is
one of the natural assumptions of the problem. Such an assumption is related to
the ratio of the function increment to the respective increment of its argument,
which is usually limited by some threshold defined by the limited energy of
variations in the simulated system. In this case, the functions are known as
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Lipschitz ones, and the problem itself is called the Lipschitz global optimization
problem.

This paper presents the results of applying parallel Lipschitz optimization
methods for solving the inverse problems of chemical kinetics. The main part of
the paper has the following structure. The description of the mathematical model
of the investigated chemical reaction is presented in Sect. 2. The formal state-
ment of Lipschitz global optimization problems and the asynchronous parallel
algorithm for solving them are described in Sect. 3. The results of the numerical
solution of the inverse problem of chemical kinetics are discussed in Sect. 4.

2 Problem Statement

Let us consider a mathematical model of the isobutane alkylation reaction with
olefins in the presence of sulfuric acid, which is a system of ordinary nonlinear
differential equations (1)–(12).

dc1
dt

= −k1c1 + k2c3 − k3c1c3 − k7c1c2c4 − k11c1 + k14c11 (1)

dc2
dt

= −k4c2c4 − k6c2c5 − k7c1c2c4 − k15c11c2c4 (2)

dc3
dt

= k1c1 + k4c2c5 − k3(c1 + c11)c3 − k5c12c3 − k2c3 + k7c1c2c4 + k15c11c2c4

(3)
dc4
dt

= k3(c1 + k11)c3 − k4c2c4 − k7c1c2c4 − k15c11c2c4 (4)

dc5
dt

= k5c12c3 − k6c2c5 (5)

dc6
dt

= k4c2c4 (6)

dc7
dt

= k6c2c5 − k10c7 (7)

dc8
dt

= k7c1c2c4 + k15c11c2c4 + k9c9c10 − k8c8 (8)

dc9
dt

= k8c8 − k9c9c10 (9)

dc10
dt

= k8c8 − k9c9c10 (10)

dc11
dt

= −k3c11c3 − k15c11c2c4 + k11c1 + k12c12 − k13c11 − k14c11 (11)

dc12
dt

= −k5c12c3 + k13c11 − k12c12 (12)

The initial conditions are t = 0, c1 = c01; c2 = c02; c3 = 0; c4 = 0; c5 = 0; c6 =
0; c7 = 0; c8 = 0; c9 = 0; c10 = 0; c11 = c011; c12 = c012. The corresponding species
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in Eqs. (1)–(12) are 1, iC4H8; 2, iC4, 3, iC4+; 4, TMPs+; 5, DMHs+; 6, TMPs;
7, DMHs; 8, HEs; 9, iCx+; 10, iCy=; 11, 2-C4H8; 12, 1-C4H8.

Information that represents a change in the concentrations of the reaction
components over time at different temperatures is taken as experimental data
from [3]; the data in Table 1 are presented as an example of experimental data
at a temperature of 276.2 K.

Table 1. Experimental data

time, min 1 2 5 10 15 20

DMH 0.12 0.11 0.1 0.1 0.095 0.09

TMP 0.54 0.65 0.69 0.69 0.7 0.705

Thus, solving the system (1)–(12) with the corresponding initial data, we will
get a change in the calculated concentrations of the reaction components over
time.

However, it is necessary to take into account the fact that the reaction rate
constants k1, k2, ..., k15 included in Eqs. (1)–(12) are parameters depending on
the reaction temperature, this dependence is the Arrhenius equation and has the
following form:

ki(T ) = k0
i exp

(
− Ei

RT

)
, (13)

where ki(T ) is the constant of the i-th stage of the reaction rate, k0
i is the pre-

exponential factor of the i-th reaction stage, Ei is the activation energy, J/mol,
R is the universal gas constant, J · (K·mol), T is the temperature, K. Thus,
to fully develop the kinetic model of the reaction, it is necessary to calculate
the activation energies Ei and the pre-exponential factors k0

i of all stages of the
chemical reaction. There are two formulations of the problems of searching for
kinetic parameter data E and k0. The first one is to solve the inverse problem of
selecting the kinetic parameters, included in Eq. (13), which during the solution
allow us to calculate all the reaction rate constants ki. With the found rate
constants of the reaction stages, the system of differential equations (1)–(12) is
solved, then the calculated concentrations are compared with the corresponding
experimental data. Mathematically, this problem has the following formulation:
it is necessary to minimize the following objective function

F1 =
I∑

i=1

J∑
j=1

K∑
k=1

∣∣∣cexpijk − ccalcijk

∣∣∣ −→ min, (14)

where cexpijk and ccalcijk are the experimental and calculated values of the k-th
observed component at the i-th experiment, respectively, I is the number of
observed temperatures for the reaction, (I = 4 in this case), K is the number



Kinetic Modeling of Isobutane Alkylation 297

of experiments conducted at one temperature (K = 3), M is the number of
observed components of the reaction (M = 2).

The second formulation of the inverse problem of chemical kinetics implies
the search for the rate constants of the stages ki included in the system (1)–(12),
separately for each temperature, then on the basis of Arrhenius equation (13),
the activation energies Ei and the pre-exponential multipliers k0

i are calculated
using the least squares method. Mathematically, this statement of the problem
coincides with Eq. (14), except for the first summation by temperatures:

F2 =
J∑

j=1

K∑
k=1

∣∣∣cexpijk − ccalcijk

∣∣∣ −→ min . (15)

Thus, both formulations of the problem (14) and (15) are optimization prob-
lems, and the next section will describe the method used to solve these mini-
mization problems.

3 Parallel Algorithm for Solving Global Optimization
Problems

3.1 Global Optimization Problem

As mentioned above, from a formal point of view, we consider the inverse prob-
lem of chemical kinetics as a global optimization problem. In the specific problem
under consideration, the values of the objective function are calculated by solving
the stiff ODE system (1)–(12). Since the right parts of the system are contin-
uous functions with bounded derivatives, theoretically its solution will also be
continuous and bounded. Therefore, discrepancy (15) will satisfy the Lipschitz
condition with a priori unknown constant.

In the general form, the problem of the class specified above can be formu-
lated mathematically as follows:

ϕ∗ = ϕ(y∗) = min {ϕ(y) : y ∈ D}, (16)

D =
{
y ∈ RN : ai ≤ yi ≤ bi, 1 ≤ i ≤ N

}
, (17)

where a, b are the given vectors, a, b ∈ RN , and the objective function ϕ(y)
satisfies the Lipschitz condition

|ϕ(y1) − ϕ(y2)| ≤ L ‖y1 − y2‖ , y1, y2 ∈ D. (18)

The function ϕ(y) is assumed to be multi-extremal and defined in the form
of “black box” (i.e., in the form of some computing procedure, into the input of
which the vector of parameters is supplied, and the corresponding function value
is taken from the output). Moreover, each trial (i.e., the computation of the func-
tion value at a point of the search domain) is assumed to be a time-consuming
operation. As noted in Introduction, such a problem statement corresponds to
the inverse problem of chemical kinetics completely.
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Lipschitz condition (18) can be utilized to estimate the global minimum of
a function within an interval, and knowing the Lipschitz constant allows con-
structing global search algorithms and proving the convergence conditions for
them (see, e.g., [21]).

The growth of computational costs with increasing the problem dimensional-
ity is one of the main difficulties in solving multidimensional global optimization
problems. Decreasing the number of trials at preserving the solution accuracy is
possible by the complete utilization of some a priori assumptions on the objective
function, which leads to adaptive serial optimization algorithms.

For example, the non-uniform space covering method [9] and the simplicial
partitions method [17] are such methods. These approaches were successfully
applied for the development of parallel optimization methods as well [8,18].
Another adaptive approach to solving multidimensional problem (16) is its reduc-
tion to a single one-dimensional problem or to several ones followed by the
application of one-dimensional algorithms. Such a reduction can be made, for
example, using the nested optimization scheme [10] or Peano-Hilbert curves [1].
The latter approach was used in the present work.

Using the continuous unambiguous mapping (Peano-Hilbert curve) y(x) of
the interval [0, 1] of the real axis on the hypercube D from (17), one can reduce
multidimensional problem (16) to a one-dimensional problem

ϕ(y∗) = ϕ(y(x∗)) = min {ϕ(y(x)) : x ∈ [0, 1]},

where the function ϕ(y(x)) will satisfy the uniform Hölder condition

|ϕ(y(x1)) − ϕ(y(x2))| ≤ H |x1 − x2|1/N

with the Hölder constant H linked to the Lipschitz constant L by the relation
H = 2L

√
N + 3. The issues of the numerical construction of various approxima-

tions of the Peano-Hilbert curve were considered in [20,21].
So far, a search trial at some point x′ ∈ [0, 1] will include first the construction

of the image y′ = y(x′) and then the computation of the value of the function
z′ = ϕ(y′).

3.2 Parallel Asynchronous Global Search Algorithm

In the approach proposed, the parallelization scheme corresponds to the “mas-
ter/worker” principle. In the master process, the global search algorithm is exe-
cuted, it accumulates search information, evaluates the Lipschitz constant for
the objective function on its base, determines new trial points and distributes
them among worker processes.

Worker processes receive the trial points from the master process, perform
new trials at these points and send the trial results to the master process.

Let us assume that the master process computes one point of the next trial
at each iteration and sends it to the worker process for executing the trial. At
the same time, the execution of the trial by the worker process is a much more
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computationally expensive operation than the choice of a new trial point by
the master that excludes idle worker processes. In this case (unlike synchronous
parallel algorithms), the total number of trials executed by each worker process
will depend on the computational costs of executing a particular trial and cannot
be estimated in advance.

In the description of the parallel algorithm, let us assume that p + 1 compu-
tational processes are at our disposal: one master process and p worker ones.

At the beginning of the search, the master process (let us assume it to be
Process No 0) initiates the parallel execution of p trials at p different points of
the search domain. Two of these points are boundary, while the rest are internal,
i.e., at the points {y(x1), y(x2), ..., y(xp)} where x1 = 0, xp = 1, xi ∈ (0, 1), i =
2, ..., p − 1.

Now let us assume that k ≥ 0 trials (in particular, k can be equal to 0) are
completed, and worker processes perform trials at the points

y(xk+1), y(xk+2), ..., y(xk+p).

Each worker process, having completed its trial at some point (without any loss
of generality, let us assume this point to be y(xk+1) corresponding to Process
No 1), sends the trial result to the master process. In turn, the master process
selects a new trial point xk+p+1 for the worker process according to the rules
described below. Note that in this case we will have a set of preimages of the
trial points

Ik =
{
xk+1, xk+2, ..., xk+p

}
,

at which the trials have already started, but have not yet been completed.
Step 1. Renumber the set of preimages of the trial points

Xk =
{
x1, x2, ..., xk+p

}
,

containing all preimages at which the trials either have been completed or under-
way in the increasing order (by the lower index) so that

0 = x1 < x2 < ... < xk+p = 1.

Step 2. Compute the values

M1 = max
{ |zi − zi−1|

(xi − xi−1)1/N
: xi−1 /∈ Ik, xi /∈ Ik, 2 ≤ i ≤ k + p

}
,

M2 = max
{ |zi+1 − zi−1|

(xi+1 − xi−1)1/N
: xi ∈ Ik, 2 ≤ i < k + p

}
,

M = max{M1,M2},

where zi = ϕ(y(xi)) if xi /∈ Ik, 1 ≤ i ≤ k +p. The values zi at the points xi ∈ Ik
are undefined since the trials at the points xi ∈ Ik have not yet been completed.
If the value of M equals 0, then set M = 1.
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Step 3. Juxtapose each interval (xi−1, xi), xi−1 /∈ Ik, xi /∈ Ik, 2 ≤ i ≤ k + p
to the quantity R(i), which is called the characteristic of the interval and is
computed according to the formula

R(i) = rMΔi +
(zi − zi−1)2

rMΔi
− 2(zi + zi−1), (19)

where Δi = (xi − xi−1)
1/N and r > 1 is the reliability parameter of the method.

Step 4. Select the interval [xt−1, xt], which the maximum characteristic cor-
responds to, i.e.,

R(t) = max {R(i) : xi−1 /∈ Ik, xi /∈ Ik, 2 ≤ i ≤ k + p} .

Step 5. Define a new trial point yk+p+1 = y(xk+p+1), the preimage of which
is xk+p+1 ∈ (xt−1, xt) according to the formula

xk+p+1 =
xt + xt−1

2
− sign(zt − zt−1)

1
2r

[ |zt − zt−1|
M

]N

.

Upon computing the next trial point, the master process adds it to the set
Ik and sends it to the worker process, which initiates a new trial at this point.

The master process terminates the algorithm if one of two conditions is sat-
isfied: Δt < ε or k + p > Kmax. The real number ε > 0 and the integer number
Kmax > 0 are the parameters of the algorithm and correspond to the solution
search precision and to the maximum number of trials, respectively.

The parallel asynchronous algorithm described above is based on the serial
information global search algorithm. The theoretical substantiation of the algo-
rithm convergence is given in [21]. The synchronous parallelization schemes used
earlier in solving a number of applied problems [12,15] are also presented here.
The novelty of the present work lies in the practical implementation and appli-
cation of the asynchronous parallelization scheme featured by a higher efficiency
in solving problems with different computational costs for performing trials at
different points of the search domain. It was confirmed by the results of the
experiments described in the next section.

4 Numerical Experiments

According to problem statements (14) and (15), the corresponding calculations
were carried out in this work. The UNN supercomputer “Lobachevsky” (CentOS
7.2, SLURM, two CPUs Intel Sandy Bridge E5-2660 2.2 GHz and 64 Gb RAM
on the node) was used for numerical experiments. The asynchronous global opti-
mization algorithm was implemented using C++ (GCC 5.5.0 and Intel MPI were
used); the objective function values were computed using Python 3.9. The accu-
racy of solving the ODE system (1)–(12) was set small enough so that the final
error of the solution was much less than the accuracy of the stopping criterion
of the optimization method and did not affect the method used.
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4.1 Search for Activation Energies and Pre-exponential Multipliers
of the Reaction

First, the problem of searching for activation energies and pre-exponential mul-
tipliers of all reaction stages was solved. The number of optimized parameters is
30, i.e., two parameters for each of the fifteen reaction stages. For the activation
energies, the search range was set to 0 ≤ Ei ≤ 100 kJ/mol, and 0 ≤ Ei ≤ 1012 for
the pre-exponential multipliers based on physicochemical considerations. How-
ever, based on the stiffness of the system of differential equations (1) and (12),
no solution was found in such a wide range; this is due to the too high degree
of pre-exponential multipliers included in the Arrhenius equation. Therefore,
during the calculations, the value of the upper bound of the pre-exponential
multipliers was reduced, and the solution was obtained at the upper bounds of
105. The kinetic parameters found are presented in Table 2.

Table 2. Calculated rate constants of the reaction

k1 k2 k3 k4 k5 k6 k7

E, kJ / mol 98.60 98.22 99.07 2.29 97.61 94.30 8.67

k0 1.46 · 103 1.53 · 102 1.03 · 104 1.10 4.99 · 102 1.31 · 102 5.45 · 102
k8 k9 k10 k11 k12 k13 k14 k15

11.57 73.16 65.54 13.86 4.93 2.69 21.19 0.63

2.60 · 102 3.95 · 104 3.24 · 104 1.73 · 10 3.43 1.78 1.42 · 103 5.57 · 10

To evaluate the efficiency of the implemented optimization method, the
results obtained were compared applying the serial algorithm, the parallel syn-
chronous and parallel asynchronous algorithms with the use of 8 nodes when
solving the problem in the above statement. The minimum values of the objec-
tive function found by the respective methods, the time of solving the problem
(in hours), and the values of speedup in time are presented in Table 3. During
the experiments, the parameter of the method r = 3.0 from (19) and the accu-
racy ε = 10−3 ‖b − a‖ in the termination condition were used. Once the global
search method achieved the preset accuracy, the solution was refined by the
Hook-Jeeves local method [11] with the accuracy ε = 10−5 ‖b − a‖.

The results show that both parallel algorithms demonstrated a moderate
speedup, but found better solutions than the serial method. At that, the asyn-
chronous algorithm found a better solution than the synchronous one. This also
explains a smaller speedup of the asynchronous algorithm as compared with the
synchronous one, since the asynchronous method executed more trials in the
course of search for the optimal kinetic parameters of the problem.
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Table 3. Indicators achieved when solving the problem with 30 parameters

Method Minimum Time (h.) Speedup

Serial 7.6 3.8 —

Synchronous 5.9 0.9 4.3

Asynchronous 4.8 1.1 3.6

With the help of the obtained kinetic parameters, the direct problem of chem-
ical kinetics was solved. However, the calculated kinetic curves poorly described
the experimental data, which is confirmed by Fig. 1. It can be seen that the
character of the calculated curve does not match the experimental dependence.

Fig. 1. Concentration profiles of key components when calculating the activation ener-
gies and pre-exponential reaction multipliers according to problem statement 14. Tem-
perature: 276.2K. Symbols, experimental data; line, calculated values.

Therefore, it was decided to carry out calculations according to the second
formulation of the problem (15), namely, to calculate the constants of each reac-
tion stage separately, then, according to the Arrhenius dependence, find the
kinetic parameters Ei and k0

i .

4.2 Searching for Rate Constants Separately for Each Temperature

Next, the problem of finding the constants ki of the reaction stages included in
the system (1)–(12) was solved. Velocity constants were calculated for each of
the temperatures (Table 4).

When solving this problem, the operation performances of the serial algo-
rithm, of the parallel synchronous and parallel asynchronous algorithms were
also compared. The minimum values of the objective function found by the
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Table 4. Calculated rate constants

T, K k1 k2 k3 k4 k5 k6 k7

276.2 1.66 0.13 2.09 0.08 0.11 1.83 8.82

279.2 1.94 0.33 2.19 0.32 0.16 1.96 14.15

282.2 2.14 0.99 5.43 2.77 0.56 2.13 45.85

286.2 2.43 0.99 5.51 2.81 0.56 2.35 58.97

k8 k9 k10 k11 k12 k13 k14 k15

0.87 13.38 13.71 12.57 4.20 18.54 2.70 58.61

1.05 13.39 14.50 24.26 7.67 19.41 3.86 74.64

1.09 18.92 17.41 33.73 6.07 19.24 9.61 77.37

1.50 24.09 17.88 34.22 4.35 23.04 16.38 94.45

respective methods, the time of solving the problem (in hours), and the speedup
in time with the use of 8 nodes are presented in Table 5. All the parameters of
the method were the same as in the previous run.

Table 5. Indicators achieved when solving the problem with 15 parameters

Method Minimum Time (h.) Speedup

Serial 0.35 3.4 —

Synchronous 0.36 0.4 8.6

Asynchronous 0.35 0.2 16.6

The results show that all algorithms found good solutions (in the values
of the objective function). At that, the asynchronous algorithm demonstrated
twice as much speedup than the synchronous one. The good speedup of the
asynchronous algorithm remains with a larger number of nodes; the results of
its work are presented in Table 6.

Note that when solving the global optimization problem, the number of iter-
ations of the parallel algorithm (and hence its speedup) significantly depends on
the estimation of the Lipschitz constant of the objective function. The constant is
adaptively estimated during the work of the algorithm and may vary depending
on the accumulated search information. With a correct estimate of the Lipschitz
constant, the method can converge to the global optimum point faster than in
the case of its incorrect estimate. This explains the effect of superlinear speedup
observed in the experiments.
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Table 6. Speedup of the asynchronous parallel algorithm

Nodes Minimum Time (h.) Speedup

1 0.35 3.4 —

8 0.35 0.2 16.6

16 0.36 0.1 34.3

32 0.35 0.06 59.5

The direct problem of chemical kinetics was solved with the found rate con-
stants, the results of comparison with the experimental data are shown in Fig. 2
(an experiment at a temperature of 276.2 K is presented). We see that this time
the description of the data turned out to be rather accurate.

Fig. 2. Concentration profiles of key components when calculating the rate constants
according to problem statement 15. Temperature: 276.2K. Symbols, experimental data;
line, calculated values.

After calculating the rate constants for different temperature values, it is
possible to calculate the parameters Ei and k0

i . Thus, for example, for the first
stage of the reaction E1 = 24.65 kJ/mol, k0

1 = 6.85 · 104 min−1, for the third
stage E3 = 75.57 kJ/mol, k0

3 = 2.62 · 1014 kg ·mol−1·min−1. However, for some
stages, the parameter values k0 were fairly high: for the second stage k0

2 =
8.52·1025 min−1, for the seventh stage k0

7 = 2.82·1026 kg mol−2 min−2. Therefore,
in future works, the constants corresponding to these kinetic parameters will
be recalculated. Since the problem is multidimensional, there may be several
solutions that describe experimental data within a certain deviation error. The
solution may change if, for example, additional experimental data are found.
However, the algorithm proposed in the paper provides a single solution within
the search range, and the high values of the pre-exponential multipliers explain



Kinetic Modeling of Isobutane Alkylation 305

the presence of complex stages, which, in turn, consist of several stages that can
be refined by chemists. The traditional scheme of assessing the quality of the
problem solution as a deviation of the found solution from the exact one is not
applicable here since the exact solution is not known.

5 Conclusions and Future Work

The article describes the search for the kinetic parameters of the industrial chem-
ical reaction of isobutane alkylation with olefins in the presence of sulfuric acid.
The search was carried out for the rate constants of all reaction stages, and the
activation energies and pre-exponential multipliers were calculated. The opti-
mization method allowed us to find a fairly accurate description of the experi-
mental data. In the future, it is planned to use this method and parallelization to
eliminate the high values of the pre-exponential reaction multipliers and search
for optimal conditions for the alkylation reaction using the developed kinetic
model.
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project No. 21-11-00204, and the Russian Foundation for Basic Research, project
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16. Paulavičius, R., Žilinskas, J.: Simplicial Global Optimization. Springer, New York
(2014). https://doi.org/10.1007/978-1-4614-9093-7
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Abstract. The paper is aimed to develop and investigate efficient paral-
lel algorithms for solving heat-transfer equations in a three-dimensional
domain. Applying the alternating-direction finite-difference scheme, the
problem is reduced to solving multiple SLAEs with tridiagonal matrices.
In this work, several approaches to computing the coefficients of these
systems are implemented. To solve the systems, the sweep method is
used. Parallel algorithms are implemented for multicore processors using
OpenMP technology. The results of numerical experiments and the eval-
uation of the algorithms efficiency are presented. A comparison of the
computing times shows that the new implementation is up to two times
faster than the earlier one.

Keywords: Heat Transfer · Stefan Problem · Mathematical
Modeling · Parallel Computing · OpenMP

1 Introduction

This paper aims to construct efficient parallel algorithms for solving the initial
boundary problem for a heat equation considering a phase change [1] (also known
as the Stefan problem). This problem can be utilized for simulating engineering
constructions in the Arctic region, for example, the thawing of the permafrost
soil around oil and gas production wells. To capture various factors, such as heat
exchange at the Earth’s surface and engineering constructions, specifics of the
soil structure, complicated boundary conditions should be considered [2–7].

The problem is described by a three-dimensional heat equation with discon-
tinuous coefficients. It is approximated using the implicit three-point difference
scheme and reduced to solving a set of systems of linear algebraic equations with
tridiagonal matrices for each spatial direction at each subsequent time step. The
long-term simulation of real objects requires time and spatial grids of large size,
which leads to the large computing time. One way to reduce it is to use parallel
computing [8–11]. Several parallel implementations are developed for simulating
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thermal fields in the permafrost soil [12–14]. In [15], an approach to paralleliza-
tion using OpenMP technology is proposed. It is based on the possibility to solve
several SLAEs independently, allowing one to distribute work between OpenMP
threads.

In this work, we present a new efficient approach to the distribution of the
work of forming and solving SLAEs, which allows utilizing the vectorization
and SIMD instruction of modern processors, as well as multiple cores, using
OpenMP technology. We present the results of computational experiments, com-
pare the new approach with the previous one, and estimate the parallel algorithm
effectiveness.

The paper is organized as follows. In Sect. 2, the mathematical model is
presented, and the considered problem is formulated. Section 3 describes the
numerical methods used for solving the problem. In Sect. 4, parallel algorithms
are constructed and implemented, the results of numerical experiments are pre-
sented, and the performance of parallel implementations is studied. Section 5
concludes our work.

2 Problem Statement and Mathematical Model

To simulate heat propagation processes, an adequate mathematical model is
needed. This model should take into account multiple factors, such as soil com-
position, yearly weather changes, and the characteristics of technical systems.
These factors are taken into account in the model developed in [6,15].

Fig. 1. Computational domain.

Let us describe this model. Consider a Carthesian grid with the x and y axes
parallel to the ground surface and the z axis directed upwards as shown in Fig. 1.
The computational domain Ω is a rectangular parallelepiped of sizes Lx, Ly, Lz.
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Thus, Ω = {x, y, z} : 0 � x � Lx, 0 � y � Ly, −Lz � z � 0. T = T (t, x, y, z) is
the sought soil temperature at the point (x, y, z) at the instant t.

The two-phase Stefan problem in the area Ω can be formulated as a single
generalized nonlinear heat equation [1]

ρ (cv(T ) + κδ(T − T ∗))
∂T

∂t
= div(λ(T )grad T ), (1)

where ρ = ρ(x, y, z) is the density [kg/m3], T ∗ = T ∗(x, y, z) is the phase transi-
tion temperature, κ = κ(x, y, z) is the specific heat of phase transition, δ is the
Dirac delta function.

The specific heat capacity cv(T ) [J/(kg · K)] and the thermal conductivity
λ(T ) [W/(m·K)] depend on the phase and are defined by discontinuous functions

cv(T ) =

{
c1(x, y, z), for T < T ∗,
c2(x, y, z), for T > T ∗,

λ(T ) =

{
λ1(x, y, z), for T < T ∗,
λ2(x, y, z), for T > T ∗.

The initial condition is

T (0, x, y, z) = T0(x, y, z), x, y, z ∈ Ω, (2)

and the boundary conditions are

T (t, x, y, z) = g(t, x, y, z), x, y, z ∈ δΩ t0 � t � t. (3)

In this formulation, the explicit phase transition boundary is not considered.
Heat release or absorption during phase transition is represented by the delta
function term. The most popular approach to construct numerical methods for
solving problem (1)–(3) is to smooth the coefficients. The delta function δ(u) is
approximated by some function δ̃(u,Δ) that has a zero value outside the inter-

val [−Δ,Δ] and satisfies
Δ∫

−Δ

δ̃(u,Δ)du = 1. In our implementation, we use the

piecewise linear function δ̃(u,Δ) = max
{

0,
Δ − |u|

Δ2

}
. The discontinuous coef-

ficient λ(T ) can also be approximated by some function λ̃(T,Δ). The accuracy
of the solution of (1) does not depend on the choice of a specific approximation
function, however, it depends on the smoothing parameter Δ.

Thus, we reduce (1) to the classical heat equation

ρ · c̃(T )
∂T

∂t
= div(λ(T ) · grad T ), (4)

where c̃(T ) = cvT + κδ̃(T − T ∗,Δ) is the effective thermal capacity. These
coefficients ρ, k, cv, λ can vary inside the domain due to soil heterogeneity and
the presence of engineering structures.
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The system of boundary conditions (3) is constructed as follows. On the
lateral and lower boundaries of the domain, we have

∂T

∂x

∣∣∣∣
x=±Lx

= 0,
∂T

∂y

∣∣∣∣
y=±Ly

= 0,
∂T

∂z

∣∣∣∣
z=−Lz

= 0. (5)

At the ground surface (upper boundary), we need to balance several heat
fluxes, namely, incoming solar radiation, internal heat, air conduction, and soil
emission. This leads to the condition

αq + b(Tair − T |z=0) = εσT 4
z=0 + λ

∂T

∂z

∣∣∣∣
z=0

, (6)

where q(t) is the total incoming solar radiation, α(t, x, y) is the absorption coef-
ficient, Tair(t) is the air temperature, b(t, x, y) is the heat exchange coefficient, σ
is the Stefan–Boltzmann constant, ε(t, x, y) is the emissivity coefficient. These
coefficients can represent climatic and weather conditions, as well as the charac-
teristics of the surface layer of soil.

To represent engineering objects as heat sources, we consider their surfaces
as internal boundaries Ωl, l ∈ {1, ..., L}. This gives us more boundary conditions

T |Ωl
= Tl(t), l ∈ {1, ..., L}. (7)

Fig. 2. Example of computing the grid in the XZ plane.
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3 Numerical Method

To solve the initial boundary problem for Eq. (4) with initial condition (2) and
boundary conditions (5)–(7), we use the finite difference method with split-
ting by spatial variables [1,6]. A non-uniform orthogonal grid {xi, yj , zk} :
i ∈ {0, ..., Nx}, j ∈ {0, ..., Ny}, k ∈ {0, ..., Nz} is introduced for the domain
Ω. The grid points are condensed near the boundaries Ω|z=0 and Ωl as shown
in Fig. 2. Denote the temperature values Ti,j,k = T (xi, yj , zk), and let us use a
similar notation for the coefficients ρ, λ(T ), c̃(T ). An implicit additive locally
one-dimensional finite difference three-point scheme is used for each spatial direc-
tion for each subsequent instant t = t0 + rτ , r ∈ {0, ..., Nt}, τ = (t − t0)/Nt.

For clarity, let us consider the x direction. We need to construct and solve a
system of difference equations for each fair pair (j, k), iterating over the index i.

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

b0 c0

a1 b1 c1

. . . . . . . . .

a(Nx−2) b(Nx−2) c(Nx−2)

a(Nx−1) b(Nx−1)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

·

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

T0,j,k

T1,j,k

...

T(Nx−2),j,k

T(Nx−1),j,k

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

d0

d1

...

d(Nx−2)

d(Nx−1)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (8)

The coefficients for the inner points i ∈ {1, ..., (Nx − 2)} are found by the
following formulae

ai =
λ(i−0.5),j,k

2δiΔi−1
, bi =

ρi,j,k · c̃i,j,k

τ
+ ai + ci,

ci =
λ(i+0.5),j,k

2δiΔi+1
, di =

Ti,j,k · ρi,j,k · c̃i,j,k

τ
,

(9)

where

Δi−1 = xi − xi−1, Δi+1 = xi+1 − xi, δi = min{Δi−1,Δi+1}/2,

λ(i±0.5,j,k) = λ(T (xi ± δi, yj , zk), xi ± δi, yj , zk).

The coefficients λ(i±0.5),j,k for the internodal points are obtained by linear
interpolation. Note that this interpolation also approximates the discontinuous
function λ(T ), relieving us from doing this explicitly.

The boundary points i = 0 and i = (Nx − 1) correspond to condition (5).
Therefore, the coefficients are

a0 = 0, b0 = 1, c0 = −1, d0 = 0,
a(Nx−1) = −1, b(Nx−1) = 1, c(Nx−1) = 0, d(Nx−1) = 0.

To solve systems (8), the sweep method [16] (also known as the Thomas
algorithm) is used. Again, for clarity, let us consider the x direction and iterate
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over the index i. The sweep method consists of two stages. In the forward sweep,
we calculate the coefficients αi, βi by recursive formulae

α0 = −c0
b0

, β0 =
d0
b0

,

αi+1 = − ci

bi + αiai
, βi+1 =

di − βiai

bi + αiai
,

i ∈ {0, ..., (Nx − 2)}.

(10)

Then, the sought values are found by backward substitution

T(Nx−2),j,k = βNx−1,

Ti,j,k = αi+1T(i+1),j,k + βi+1,

i ∈ {(Nx − 2), ..., 1}.

(11)

For the z direction, when we iterate over the index k, the last equation in
system (8) corresponds to the ground surface z(Nz−1) = 0. From condition (6),
we obtain

−λi,j,(Nz−1)

ΔNz−1
Ti,j,(Nz−2) +

(
b +

λi,j,(Nz−1)

ΔNz−1

)
Ti,j,(Nz−1) + εσT 4

i,j,(Nz−1)

= αq + bTair.

(12)

After the forward sweep, we should find the value TNz−1 from this nonlinear
equation. The iterative Newton method is used to solve it. Then, other values
are computed by backward substitution (11).

To take into account condition (7), dummy nodes are introduced at the inter-
sections of the boundary of Ωl and the scanline {x, y, z} : x ∈ R, y = yj , z = zk.
For example, let the body Ωl begin exactly at x. We have some grid point xh,
such as xh−1 < x < xh, {xh, yj , zk} ∈ Ωl. Then, for calculating the coefficients
ah−1, bh−1, ch−1, dh−1, we replace the value xh with x. The coefficients for the
index h will be ah = 0, bh = 1, ch = 0, dh = Tl.

4 Parallel Implementation and Numerical Experiments

Let us describe the test problem. The size of the domain is Lx = 41 m,
Ly = 21 m, Lz = 26 m. The grid size is 200 × 96 × 56. The time interval
t0 = 0, t = 10 years with a step τ = 86 400 s (one day). The smoothing coeffi-
cient is Δ = 1 K.

The thermal characteristics of soil are

λ1 = 1.82 W/(m · K), c1 = 2.13 · 106 J/(kg · K) for frozen soil;

λ2 = 1.58 W/(m · K), c2 = 3.14 · 106 J/(kg · K) for melted soil;

ρ = 1.6 · 103 kg/m3, κ = 1.386 · 108 J/(kg · K), T ∗ = 0 ◦C.
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Two object configurations are considered. The former one consists of two ver-
tical boreholes with the internal temperature T1 = T2 = 50 ◦C with a diameter
of 1 m going vertically through the entire domain z ∈ [0, Lz]. The latter one adds
four vertical cooling devices around each borehole. They have the temperature
T2 = −20 ◦C, a diameter of 0.2 m and end at the depth of 12 m.

Figures 3 and 4 show the 3D voxel images of thermal fields after 10 years of
simulation. Figures 5 and 6 illustrate the sections at y = 10. For the first con-
figuration, almost the entire area is melted, while cooling devices in the second
configuration keep shallow layers frozen.

The experiments are performed on the 8-core Intel i7-10700k CPU. The pro-
gram is written in C++ and compiled using Intel C++ Compiler 19.2.

The simplest approach for implementing a parallel algorithm using
OpenMP technology is proposed in [15,17,18]. For each direction, we need to
form and solve a set of SLAEs, one SLAE per one “scanline”. Apparently, these
SLAEs can be formed and solved independently. Thus, to parallelize the com-
putational algorithm, we just need to place ‘#pragma omp for’ for the outer
loop.

Note that in this approach, each thread forms and solves SLAEs one by one.
This way, the usage of SIMD capabilities of modern processors is limited, since
the sweep method (10)–(11) has flow dependencies (the coefficients αi+1 and
βi+1 depend on the values αi and βi).

In this work, to avoid this issue, we form multiple systems at once and solve
them simultaneously. This means that we calculate the coefficients ai,(j,k), bi,(j,k),
ci,(j,k), di,(j,k) using formulae (9) and store them in three-dimensional arrays.
Then, we solve the systems using formulae (10)–(11), also storing the auxil-
lary coefficients αi,(j,k) and βi,(j,k) in three-dimensional arrays. Note that the
coefficients for different (j, k) do not depend on each other. If we arrange the
index order as [i] [k] [j] for storing the coefficients, then all these calculations
and memory accesses can be vectorized automatically. To provide the optimized
storage alignment and efficient automatic vectorization, we use the Intel SDLT
library [19] instead of standard C arrays or C++ containers.

Note that we can use any of these approaches for each direction x, y, or z. For
a particular direction, we will use the approach that gives the best performance,
obtaining a combined algorithm. Let us further investigate these two approaches
by performing numerical experiments.

We want to study the performance of the most expensive part of the algo-
rithm, which is the formation and solution of systems (8). Thus, we do not
consider the time taken by solving nonlinear equation (12) or modifying the
coefficients for the dummy nodes.
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Fig. 3. Simulation results. Temperature around the boreholes without cooling devices
after 10 years.

Fig. 4. Simulation results. Temperature around the boreholes with 8 cooling devices
after 10 years.
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Fig. 5. Simulation results. Temperature around the boreholes without cooling devices
after 10 years.

Fig. 6. Simulation results. Temperature around the boreholes with 8 cooling devices
after 10 years.
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Table 1. Computing time of various subroutines for three variants of the serial algo-
rithm on the 200 × 96 × 56 grid

Subroutine
Computing time, seconds

Single system Multiple systems Combined

Form systems
along the x axis

6 55 6

Form systems
along the y axis

16 12 12

Form systems
along the z axis

27 12 12

Solve the systems 79 27 44

Total 128 106 74

Table 1 shows the computing time for solving the test problems using three
variants of the serial algorithm. It also demonstrates the time taken by individual
subroutines of the algorithm. The second column (“Single system”) shows the
results of the simplest algorithm implemented in [15] – forming and solving the
system one by one. The third column (“Multiple systems”) illustrates the result
of the algorithm that attempts to utilize vectorization – forming and solving
multiple systems at once. We see that the time taken by a SLAE solver is nearly
3 times less than the time of the unvectorized variant. The time taken by forming
the systems and saving the results is also reduced for the y and z directions. This
is caused by a more efficient memory access pattern. At the same time, the time
of forming the systems along the x axis is greatly increased. This is also caused
by the memory access pattern. The 3D array of temperatures is flattened with
the index order [k] [j] [i]. Thus, when forming along the x direction one by one,
memory access is contiguous. However, if we want to form several systems, we
need to perform an operation similar to matrix transposition, which is expensive.

The solution is to use a combined approach, i.e., to form and solve SLAEs one
by one for the x direction and use the new approach for the y and z directions.
The result of this technique is presented in the fourth column (“Combined”).
The total computing time using this approach is 1.7 times less than using the
naive one.

Table 2 shows the results of the parallel algorithms. The table presents the
results of the naive approach, as well as the new combined approach described
above. It contains the computing times Tn by a various number n of OpenMP
threads. It also contains the speedup Sn = T1/Tn and efficiency En = Sn/n
coefficients. The performance is limited by the memory bandwidth, therefore,
the maximal speedup is less than 4 for both methods.
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Table 2. Computing time, speedup and efficiency for parallel variants of the algorithm
on the 200×96×56 grid

Number n

of threads

Single system Combined

Time, s Speedup Efficiency Time, s Speedup Efficiency

1 128 — — 74 — —

2 68.1 1.88 0.94 43.5 1.7 0.85

4 43.2 2.96 0.74 24.4 2.8 0.7

8 33.1 3.87 0.48 21 3.52 0.44

5 Conclusion

Parallel algorithms for solving the three-dimensional heat equation are imple-
mented for multicore processors using OpenMP technology. The algorithm is
based on the three-point difference scheme for each spatial direction. This reduces
the process of finding the sought temperature distribution to solving a set of
systems of linear algebraic equations with tridiagonal matrices. In this work, a
more memory-efficient algorithm for forming and solving these systems is con-
structed. Numerical experiments are performed to evaluate the performance of
the developed algorithms. The new implementation is up to 2 times faster than
the previous one. The parallel program achieves up to 4 times speedup using an
8-core processor.
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Abstract. Pollen grains contained in the atmosphere have the ability
to cause allergic diseases. Plant pollen is a strong allergen: sensitization
to it is registered in 30–75% of cases. People who are allergic to pollen
usually use plant flowering tables. Our work is in the way of studying
the transfer of allergenic pollen using mathematical modeling methods,
more exactly, modeling atmospheric fluxes from plant pollen sources on
the surface boundary layer. The quasi-two-dimensional model of impurity
propagation, early designed elsewhere, is modified to transport allergenic
plant pollen from spreader forested areas in the vicinity of a large city.
The model includes the consideration of mesoscopic scale hydro- and
thermodynamic processes in the lower atmosphere with account for the
thermal nonuniformity of the underlying surface in the urban and subur-
ban environs. Some results of numerical calculations are presented. The
parallel computational algorithm is implemented on Intel Fortran 12 in
Intel Cluster Studio for Linux. The calculations are carried out on the
basis of a system of equations with initial and boundary conditions. The
great expenditure of processor time, on the one hand, and the natural
parallelism of the processed data, on the other hand, have led to building
a parallel version of the computer program.

Keywords: High-performance calculations · Transfer of impurity ·
Atmospheric boundary layer · Allergenic plant pollen

1 Introduction

This paper discusses mesoscale models of the transfer of biological aerosol com-
ponents, both for individual species of plant pollen and in the aggregate with
inert impurities. For calculations, the equations of momentum transfer, temper-
atures, impurity concentrations are used. In the calculations of concentrations,
we use a quasi-two-dimensional model of the pollen grain transfer of various
fractions representing the most common types of plant aerosol allergens: birch,
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alder, poplar, maple, willow, at micro- and mesoscales. For a numerical imple-
mentation, a finite-difference explicit calculation method is used. The software
implementation of the model is made to analyze and predict the state of pollu-
tion in Kirov and its environs on a 20× 20 km area with a resolution of up to
200 m. The parallel implementation of the calculation algorithm is made on Intel
Fortran 12 in Intel Cluster Studio for Linux in Open MP. The parallel version
of the calculation algorithm is built on the basis of the principle of geometric
decomposition of the grid region. At the same time, the entire calculation area
is divided into parts equal in the number of grid nodes, in which the calculations
are carried out simultaneously and independently. The results are given as dis-
tributions of pollen concentrations at different time periods, taking into account
seasonality.

2 Medical Aspects for the Problem of the Propagation
of Allergenic Plant Pollen

The problem of spreading allergic diseases among children is very acute. Table 1
presents WHO data on allergic diseases (AD).

Table 1. Distribution of ADs in various countries over the past 30 years, percent

Country Children Adults

Russia 2–4 1–6

Norway 12 10

Sweden 5 —

Switzerland — 17

Italy 3–6 8

Finland 6 14

Germany 10 9–19

Great Britain 12 11

Portugal — 7

USA 11 19

Ukraine 3–5 8–10

First of all, the inaccuracy of the data is due to significant divergence between
the registered cases and the actual ones. Thus, if one relies on official information,
the cases of allergic diseases in our country do not exceed 1.5%, while according
to the Institute of Immunology of Russia this figure reaches 30%. Judging by the
number of visits to medical institutions, no more than 0.4% of the population
suffers from allergic rhinitis, and only every 100 Russians suffer from asthma.

The following diagrams (Figs. 1 and 2) show the dynamics of allergic diseases
in the Kirov region for three population groups: children, teenagers and adults.
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Fig. 1. Dynamics of the asthma prevalence and asthmatic status among teenagers, chil-
dren, adults of the Kirov region for 2009–2017 (per 100 thousand of the corresponding
population).

3 Analysis of the Methods of Propagating Allergenic
Plant Pollen

Moreover, there are much fewer people with allergies among villagers, while in
Moscow every third suffers from hay fever, in Berlin – every fourth, in New
York – every sixth. The reason is that allergies are caused not so much by the
plants themselves as by their pollen, which absorbs all the harmful emissions
and polluting particles that are presented in catastrophic amounts in the air
of the metropolis. A sharp increase in the number of ADs occurs in April-May
in the conditions of central Russia, when the flowering of alder, birch, willow,
maple and poplar begins. During this period, pollen calendars are formed for
most large cities, the patterns of the pollen content of certain plant species
in the atmosphere are investigated, the influence of meteorological factors is
determined, a network of permanently operating stations for monitoring pollen
is created [4,18].

The most informative services for users are special sites [18], however, these
sites function irregularly and not for all regions. The well-known information
search engine Yandex daily publishes a map of the distribution of pollen emis-
sions of various origins in the vicinity of large cities. Yandex.Pogoda generates
a special map for those who are allergic to pollen. The map covers the Euro-
pean part of Russia, Moldova, as well as certain regions of Belarus, Ukraine and
Kazakhstan.

People who are allergic to pollen usually use plant flowering tables. However,
they provide only approximate data. Plants bloom not strictly according to the
calendar, but in the presence of appropriate conditions. Birch catkins begin to
intensively secrete pollen when a positive temperature is established; it happens
in different years at different times.

The flowering time also depends on the region: earlier in the south, later
in the north. The map contains data for 15 common allergen plants: ragweed,
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Fig. 2. Dynamics of the allergic rhinitis prevalence among teenagers, children, adults
of the Kirov region for 2009–2017 (per 100 thousand of the corresponding population).

birch, elm, oak, spruce, cereals, willow, maple, nettle, alder, hazel, wormwood,
weed grass, pine and ash.

However, these distributions are not confirmed numerical parameters and can
be considered as an illustrative material of possible occurrences of aerosol pollen
components. An important factor in assessing the degree of pollution of aerosol
pollen is the knowledge of physical parameters during the transfer of pollen.
Data on the mass proportion of grains of various tree species and the procedure
of measuring them are given in [11]. Table 2 shows the data on the distribution
of masses of grains and the corresponding proportion of the main tree species
for the European part of Russia.

Table 2. Pollen grains parameters of various wood species

Wood species Mass of grains, ng Percent in distribution

Fir 82,4 0,06

Spruce 63,1 0,24

Pine 15,5 0,18

Linden, oak, 10,7 0,02

maple, elm

Aspen 4 0,1

Birch 3,9 0,26

Alder 3,5 0,09

Poplar 3,5 0,03

Willow 2,5 0,02
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One can see that the presented data are grouped by grain weight in three
main groups: heavy (spruce, fir, pine), medium (linden, oak, maple, elm) and
light (aspen, birch, alder, poplar, willow). Taking into account the presented
data, attention should be paid to the fact that the mass of allergenic pollen
grains has the greatest influence on transfer processes, and this is a group of
light fractions. It is the group that represents the most dangerous impact on the
development of ADs in large cities.

If we define a certain, rather small neighborhood of the impurity distribution
region over a finite period of time, then it is quite reasonable to use simplified
(including stationary) models that allow exact solutions. But it is necessary to
take into account the complex dynamics of the velocity and temperature fields,
surface inhomogeneity and boundary conditions in the case of problems with
extended geometry or with sufficiently powerful pollutant sources, for example,
when estimating emissions from large industrial enterprises. In [1,7], mesoscale
models of the bioaerosol component transport are considered both for individual
types of plant pollen [1] and in the aggregate of inert impurities [7]. The equa-
tions of momentum, temperature, impurities and moisture transfer are used for
calculations. In [21], the mesoscale model of the surface layer is used to calcu-
late the transfer of fungal mold and estimate its interaction with atmospheric
flow moisture. This work presents a mesoscale quasi-two-dimensional model of
the transfer of pollen grains of various fractions, which are the most common
types of plant aerosol allergens: birch, alder, poplar, maple, willow, on micro-
and mesoscales [20]. A finite-difference explicit calculation method is used for a
numerical implementation.

The construction of a parallel version of the calculation algorithm is based
on the principle of geometric decomposition of the grid domain.

4 Mathematical Model and Its Computer Implementation
of the Problem

Let us consider the lower-atmosphere boundary layer restricting ourselves to
mesoscale processes for which the layer height D and the horizontal scale L
satisfy the relation much less than 1. Take the three-dimensional equations of
the hydrothermodynamics of dry atmosphere in a rotating Cartesian coordinate
system as the original equations [2–15]
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The initial and boundary conditions are as follows:

u = −cg sin(dd), v = −cg cos(dd), θ = θS , ϕ = 0, t = 0, (7)

∂u

∂z
=

∂v

∂z
= w = 0,

∂θ

∂z
= 0,

∂ϕ

∂z
= 0, z = D, (8)

u = v = w = 0,
∂θ

∂z
= γ(θ − θS),

∂ϕ

∂z
= αϕ − fS , z = 0. (9)

In Eqs. (1–9), t is the time, Δ is the Laplace operator, Ox, Oy, and Oz are
the eastward, northward, and upward coordinate axes, (u, v, w) is the air flow
velocity vector, Φ = RTmp′/p is the geopotential fluctuation, where R is the
specific gas constant and Tm is the mean air temperature in the layer, p is the
atmospheric pressure, p′ = p − p0, where p is the potential pressure dependent
only on the altitude, l is the Coriolis parameter, β = g/θ is the buoyancy parame-
ter, θ = T (p0/p)

R
Cp is the potential temperature, where T is the air temperature,

p0 is the atmospheric pressure near the ground, and Cp is the specific heat at
constant pressure; ϕ is the impurity concentration, σ is the impurity absorption
coefficient in the atmosphere, θS is the air temperature at the roughness level of
the underlying surface, cg is the geostrophic wind velocity [3] at the upper free
boundary of the atmospheric boundary layer, dd is the geostrophic wind azimuth,
γ is the heat transfer coefficient, α is the coefficient of impurity absorption by
the underlying surface, AM , AT , AS , kM , kT , kS are the coefficients of gorizontal
and vertical turbulent diffusion and fS =

∑m
i=1 fiδ(x − xi)δ(y − yi) is the inten-

sity of impurity sources, xi and yi are the source coordinates, m is the number
of sources.

Consider an L × L area. The geostrophic wind velocity cg above the atmo-
spheric boundary layer and its direction, as well as the boundary layer height
D, are assumed to be known. The horizontal wind velocity fields are calculated
from the formulae [3] u = −cg sin(dd) and v = −cg cos(dd), where dd = 0 cor-
responds to the north wind and dd = π/2 to the east wind. The wind can also
be preassigned as the layer-average velocity field (mean across the layer). At the
lateral boundaries, it is assumed that

∂v
∂n

= 0,
∂θ

∂n
= 0,

∂ϕ

∂n
= 0, (10)
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n is the external normal vector. For the mathematical modeling of the impurity
transport from a ground source, we introduce a quasi-two-dimensional model
based on the locally equilibrium approach. This technique is presented in [2,
15,16,20]. Restricting our consideration to mesoscale processes, we assume that
t � tr, where t is the characteristic time of equilibrium states, and tr is the time
of air flow relaxation to the equilibrium state when the external conditions are
varied. Introduce the dimensionless variable ζ = z/D, denote the layer-average
quantity as

〈g〉 =

1∫

0

g(t, x, y, ζ) dζ (11)

and integrate Eqs. (1–6) using boundary conditions (7–10). Then, with account
for the condition of air incompressibility in the lower atmosphere, we obtain

∂〈u〉
∂t

+
∂〈uu〉

∂x
+

∂〈uv〉
∂y

= −∂〈Φ〉
∂x

+ l〈v〉 + AMΔ〈u〉 +
kM

D2

∂u

∂ζ

∣
∣
∣
ζ=1

ζ=0
, (12)

∂〈v〉
∂t

+
∂〈uv〉
∂x

+
∂〈vv〉
∂y

= −∂〈Φ〉
∂y

− l〈u〉 + AMΔ〈v〉 +
kM

D2

∂v

∂ζ

∣
∣
∣
ζ=1

ζ=0
, (13)

∂〈θ〉
∂t

+
∂〈uθ〉
∂x

+
∂〈vθ〉
∂y

= AT Δ〈θ〉 − γkT

D
(θ|ζ=0 − θS), (14)

∂〈ϕ〉
∂t

+
∂〈uϕ〉

∂x
+

∂〈vϕ〉
∂y

+ σ〈ϕ〉 = ASΔ〈ϕ〉 − kS

D
(αϕ|ζ=0 − fS). (15)

To close the system of equations (12–15), it is necessary to express 〈uu〉, 〈uv〉,
〈vv〉, 〈uθ〉, 〈vθ〉, 〈uϕ〉, 〈vϕ〉,∂u

∂ζ

∣
∣
∣
ζ=1

ζ=0
〈vϕ〉, ∂v

∂ζ

∣
∣
∣
ζ=1

ζ=0
, θ|ζ=0, and ϕ|ζ=0 in terms of

the layer-average impurity concentration 〈ϕ〉 and the mean velocity 〈u〉 and 〈v〉
and temperature 〈θ〉 fields. For this purpose, we use the exact solution of the
original problem, which can be obtained for a linear air temperature distribution
at the roughness level of the underlying surface. We seek the solution in the form:
u = u(ζ), v = v(ζ), w = 0, θ = θS + θ(ζ), and ϕ = ϕ(ζ). Then the problem
from Eqs. (1–6, 8–10) becomes a linear boundary value problem for ordinary
differential equations with constant coefficients. Its solution gives the following
representation for the velocity

M(ζ) = f1(ζ)〈M〉 − 2f2(ζ)U, (16)

where

f1 =
1

1 − tanh(λ)/λ

[
1 − cosh(λ(ζ))

cosh(λ)

]
, (17)

f2 = f1(ζ)
[cosh(λ) − 1

λ2 cosh(λ)

]
− sinh(λζ)

λ cosh(λ)
+ ζ. (18)
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The mean values of these functions 〈f1〉 = 1 and 〈f2〉 = 0. Here λ =
(1 + i)/

√
2Ek is a parameter dependent on the Ekman number Ek = kM/lD2,

M(ζ) = u(ζ) + iv(ζ), U = ux + ivy, Ux = −βD ∂〈θ〉
∂y , Uy = βD ∂〈θ〉

∂x , i =
√−1.

The subscripts denote the partial derivatives in regard to x and y, respectively.
Assume that the potential temperature θ = 〈θ〉

ϕ = 〈ϕ〉 +
fSD

αD cosh(S) + S sinh(S)

[
cosh(S(1 − ζ)) − sinh(S)

S

]
, (19)

where S2 = (σD2)/kS is the dimensionless parameter.
In [7,21], similar solutions are called locally equilibrium. Assuming that pro-

vided the conditions of Eqs. (1) and (12) are fulfilled, formulae (16)–(21) fairly
adequately (asymptotically correctly in the small parameter δ1) describe the
structure of a thermally nonuniform mesoscale air flow at each point of the layer
and at each moment of time [16], we use these conditions as closing relations of
the system of Eqs. (12–15). Applying the curl operation to Eqs. (12) and (13),
we arrive at an evolutionary equation for the vorticity

ω(t, x, y) =
∂〈v〉
∂x

− ∂〈u〉
∂y

. (20)

Bearing in mind that the layer-average velocity is divergence-free,

∂〈u〉
∂x

+
∂〈v〉
∂y

= 0,

we introduce the stream function ψ(t, x, y) such that

〈u〉 = −∂ψ

∂y
, 〈v〉 = −∂ψ

∂x
, (21)

∂ω

∂t
+ k1{ψ, ω}+ k3Rt[{θ, ω}+ {ψ, Δθ}]− k5Rt2{θ, Δθ} =

1

Re
Δω −μ(k7ω − k8RtΔθ),

(22)

Δψ = ω, (23)

∂θ

∂t
+ {ψ, θ} =

1
Pe

Δθ − q̄(θ − θ̄S), (24)

∂ϕ

∂t
+ {ψ,ϕ} =

1
PeS

Δϕ − σ̄ϕ + A

m∑

i=1

f̄iδ(x − xi)δ(y − yi). (25)

We take the quantities L, cg, L/cg, θ0 = max θS , and ϕMPC (maximum
permissible impurity concentration) as length, velocity, time, temperature, and
impurity concentration scales. Then in terms of the vorticity ω, the stream
function ψ, the layer-average potential temperature taken in the units of the
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stream function, θ∗(t, x, y) = (βd)/(2l)〈θ〉, and the layer -average concentration
ϕ∗(t, x, y) = 〈ϕ〉ϕMPC (for brevity, the symbols “*” will be omitted), the equa-
tion of the model describing mesoscale processes in the lower atmosphere can be
brought into the following dimensionless form.

Here in Eqs. (22–25):

{ψ, ω} =
∂ψ

∂x

∂ω

∂y
− ∂ψ

∂y

∂ω

∂x

is the Jacobian operator;

Rt =
βDθ0
2lcgL

is the counterpart of the thermal Rossby number [15];

Re =
cgL

AT

is the Reynolds number;

μ =
lcg

L

is the dimensionless coefficient of the friction on the underlying surface,

Pe =
cgL

AT

is the Peclet number;
q̄ = qcg/L

is the dimensionless coefficient of cooling, where q = γkT /D;

PeS =
cgL

AS

is the solutal Peclet number;
σ̄ = σ1L/cg is the dimensionless impurity absorption coefficient, where σ1 =

σ + αkS/D;

f̄ ′
S =

f ′
SkSL

ϕMPCcgD
;

A = 1 − αD

αD cosh(S) + S sinh(S)

(
cosh(S) − sinh(S)

S

)
;

and k1 = �(〈f1f1〉), k3 = �(〈f1f2〉), k5 = �(〈f2f2〉), k7 = �(f ′
1), k8 = �(f ′

2)
are the Ekman-number-dependent coefficients (here � is the real part of the
number).

In the case under consideration Ek = 1, and these coefficients are as follows:
k1 = 1.199, k3 = 0.00077, k5 = 0.0005909, k7 = 3.0057, and k8 = 0.000952. In
terms of the vorticity ω, the stream function ψ, and the reduced, layer-average
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potential temperature, the initial and boundary conditions are brought into
the form:

t = 0 : ψ = y sin(dd) − x cos(dd), ω = 0, θ = θS , φ = 0, (26)

∂ψ

∂n
= 0, ω = 0,

∂θ

∂n
= 0,

∂φ

∂n
= 0. (27)

The discretization of the continuous model (22–25) is described in [13].
The finite-difference approximation of differential equations on a two-

dimensional grid is represented by a five-point template.
The analysis of transport models in a turbulent boundary layer using parallel

calculations is given in [19].
The one-dimensional decomposition of the grid domain for three processor

elements is shown in Fig. 3.

5 Results of Modeling

The parallel computational algorithm is implemented on Intel Fortran 12 in the
Intel Cluster Studio Package for Linux, installed on the Vyatka State University
HPC Enigma X000 cluster supercomputer. The calculations are carried out on
the basis of the system of Eqs. (22–25) with initial and boundary conditions (26–
27). The explicit difference scheme [14] is used on a 1000 × 1000 grid. The
program complex used is based on certificate of the Russian State Registration
for Computer Programs No. 2015662922 on 07.12.2015 (Rychkov S.L. et al.).

In accordance with the theory of Monin and Obukhov [6,12,18], the coeffi-
cients of vertical and horizontal turbulent viscosity, thermal conductivity, and
diffusion for mesoscale turbulent processes in the lower atmosphere are assumed
the same, namely, kM , T, S = lD2, where D = 400m and AM , T, S = 400m2/s.

In the selected reference frame, the westward wind blew from left to right.
The wind velocity cg varied from 1 to 10 m/s. In most calculations, the velocity
was 2–5 m/s; in this case, the temperature inhomogeneity effect on the wind flow
in the vicinity of a heat source is most clearly expressed. The interaction between
aerosol impurity and the underlying surface was taken into account on the basis
of information on the nonuniformities of the temperature and absorption coeffi-
cient distributions from the map of land utilization of the computational domain.
The air temperature θS varied from 18 ◦C outside populated areas to 23 ◦C in the
city of Kirov. The minimum temperature was observed at the north boundary
of the area. The coefficient of impurity absorption by the underlying surface was
assumed to be α = 0.0139mm−1 outside populated areas and α = 0.00139m−1

on their territories. A point impurity source was located on the underlying sur-
face, in the center of the region under consideration (within the city territory). In
the calculations, it was also taken that l = 1.24× 10−4 s−1, σ = 5.67× 10−8 s−1,
γ = 0.25×10−3 m−1, fS = 0.9996×10−7 kg/m4, and ϕMPC = 0.5×10−7 kg/m3.

The results of pollen concentration distribution calculations for some wind
directions are presented in Figs. 4–5.



High-Performance Calculations 329

Fig. 3. Decomposition of the grid domain

Figure 6 shows the distribution of birch pollen concentration (number of
grains per cubic meter) in the vicinity of Kirov in the period from April 20
to May 30.

An increase in the number of disease cases in the period April – June is
revealed.

A visible increase in concentration in May correlates with an increase in the
number of diseases at this time.
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Fig. 4. 20-km zone near the city of Kirov, south wind

Fig. 5. 20-km zone near the city of Kirov, north wind

Fig. 6. Distribution of birch pollen concentration
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6 Conclusion

Our work is in the way of studying the transfer of allergenic pollen using math-
ematical modeling methods, more exactly, modeling atmospheric fluxes from
plant pollen sources on the surface boundary layer.

A detailed description of these methods is presented, for example, in [5,8–
10]. In [10], a model of the propagation of pathogenic strains by atmospheric
flows is considered. The authors assess the impact of the pathogen phenotype on
the environment and the relationship of spatial sources with the anthropogenic
environment. This paper also takes into account the effects of the interaction
of various pathogenic strains with each other. The authors consider that such
mechanisms can work in many natural systems.

The continuation and development of such an approach is in [5]. This paper
presents a three-dimensional model of the atmospheric transportation of plant
pollen, taking into account the flow turbulence.

The problem of impurity propagation in the interaction of the flow in the
atmospheric boundary layer with a homogeneous forest canopy is numerically
studied on the basis of the method of large vortices simulation (LES). The impu-
rity contained in the atmosphere can not only be carried away by the flow and
spread due to diffusion, but also enter the flow due to the interaction of the
flow with the plant elements of the forest canopy and the “leaching” of the
accumulated impurity.

With regard to these publications, it should be noted that when using a
three-dimensional model for elliptic differential equations, the question of setting
boundary conditions remains open, especially on the upper boundary.

It is well known that incorrectly set boundary conditions result in errors
within the computational domain, sometimes exceeding many times the errors
at the boundaries. In the works mentioned above, “soft” boundary conditions,
meaning that the derivatives are equal to zero, are used.

Extensive and detailed information about the use of cartographic and bio-
physical data in mathematical modeling is provided in [8,9]. These papers
describe a mathematical model for the transfer of allergens (birch pollen) and
fungal impurities based on the WRF climate model. The proposed model is
considered to be mesoscale, however, its suitability for regional forecasts is lim-
ited by the minimum size of the calculation cell of 15 km, which does not allow
obtaining reliable regional forecasts.

The aim of our work is to create a computational set of programs that allow us
to obtain a forecast of the spread of allergenic pollen based on the mathematical
modeling of the transfer processes of allergenic impurities on a regional scale.

For example, there are given the results of calculating the distribution of
birch pollen concentration in the period of the highest emission from April 20 to
May 30 in the vicinity of the city of Kirov, located in the Volga Federal District
of the Russian Federation.

As follows from the previous section, data of most web sites designed to
monitor the distribution of plant pollen do not provide a detailed analysis of the
distribution and production of impurities.



332 O. Medveditsyna et al.

They mainly provide estimated information based on palynological bioindi-
cation methods, which reflect the local characteristics of the place where the
precipitating impurity is measured.

Other methods use allergen sensitivity coefficients, which means that the
data are based on individual feelings of allergy sufferers.

Below is a brief overview of some specialized sites in the Russian segment
of the Internet that provide information on the situation with the transfer of
allergenic pollen.

The Allergotop.com website (www.allergotop.com/files/terms-of-use.pdf) is
created by practicing allergic doctors and employees of the Faculty of Biology of
Moscow State University named after M.V. Lomonosov. The Pollen.club web-
site (www.pollen.club) is based on health indicators provided by service users
themselves. The forecast of the dust level for the current day, according to the
site, is carried out on the basis of mathematical modeling taking into account
the weather factors of the SILAM model [17]. The creators of the site notify
about the limited possibilities of forecasts for which data are taken from the
national pollen monitoring sites www.pollenwarndienst.at, www.norkko.fi, www.
silam.fmi.fi. All information is of evaluation nature. There may be omissions and
inaccuracies in the data due to the irregular nature of observations.

The www.silam.fmi.fi website [17] is developed by the Finnish Meteorologi-
cal Institute and offers forecasts of pollen distribution for 3 days. At the same
time, the developers warn that all forecasts are created for scientific use only
and cannot be used as accurate data. The Polleninfo.org website is developed by
the Medical University of Vienna and is multifunctional. Polleninfo.org includes
several indicators: the average risk of an allergy to pollen based on the inten-
sity of the dusting of several allergens and weather parameters (including air
pollution); a symptom map that enables a comparison of the intensity of reac-
tions manifested in patients; dust maps in Europe that show the dynamics of
the pollen content of more than 300 monitoring stations across Europe.
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