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Abstract. Ontology matching is a core task when creating interoperable
and linked open datasets. In this paper, we explore a novel structure-
based mapping approach which is based on knowledge graph embeddings:
The ontologies to be matched are embedded, and an approach known as
absolute orientation is used to align the two embedding spaces. Next to
the approach, the paper presents a first, preliminary evaluation using
synthetic and real-world datasets. We find in experiments with synthetic
data, that the approach works very well on similarly structured graphs;
it handles alignment noise better than size and structural differences in
the ontologies.
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1 Introduction

Ontology matching describes the complex process of finding an alignment A
between two ontologies O1 and O2. An alignment is a set of correspondences
where a correspondence is, in its simplest form, a tuple of 〈e1, e2, R〉 where
e1 ∈ O1 is an element from one ontology, e2 ∈ O2 is an element from the other
ontology, and R is the relation that holds between the two elements. Typically,
R is equivalence (≡).

In this paper, we examine the use of embedding two ontologies for finding an
alignment between them. Given two embeddings of the ontologies, we use a set
of anchor points to derive a joint embedding space via a rotation operation.

2 Related Work

Knowledge Graph Embeddings. Given be a (knowledge) graph G = (V,E)
where V is the set of vertices and E is the set of directed edges. Further given be
a set of relations R, E ⊆ V xRxV . A knowledge graph embedding is a projection
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E ∪ R → R
d1. In this paper, we use the RDF2vec approach, which generates

multiple random walks per vertex v ∈ V . An RDF2vec sentence resembles a
walk through the graph starting at a specified vertex v. Those random walks are
fed into a word2vec algorithm, which treats the entities and relations as words
and the random walks as sentences, and consequently outputs numeric vectors
for entities and relations.

Absolute Orientation. Multiple approaches exist for aligning embeddings.
In this paper, the extension by Dev et al. [2] of the absolute orientation app-
roach is used. The approach showed good performance on multilingual word
embeddings. The calculation of the rotation matrix is based on two vector sets
A = {a1, a2, ...an} and B = {b1, b2, ...bn} of the same size n where ai, bi ∈ R

d.
In a first step, the means ā = 1

n

∑n
i=1 ai and b̄ = 1

n

∑n
i=1 bi are calculated. Now,

ā and b̄ can be used to center A and B: Â ← (A, ā) and B̂ ← (B, b̄). Given the
sum of the outer products H =

∑n
i=1 b̂iâ

T
i , the singular value decomposition of

H can be calculated: svd(H) = [U, S, V T ]. The rotation is R = UV T . Lastly, B̂

can be rotated as follows: B̃ = B̂R.

Matching with Embeddings. Embedding-based matching approaches have
gained traction recently, mostly using embeddings of the textual information
contained in ontologies [7]. OntoConnect [1], for example, uses fastText within a
larger neural network to match ontologies; DOME [3] exploits doc2vec; TOM [5]
and F-TOM [4] use S-BERT. With the exception of ALOD2vec Matcher [8],
knowledge graph embeddings are rarely used. The work presented in this paper
is different in that it does not rely on labels or an external knowledge graph.
Instead, an embedding is learnt for the ontologies to be matched.

3 Approach

We first train two separate embedding spaces for the two ontologies to be
matched (i.e., O1 and O2). This is done in two independent RDF2vec training
processes. In a second step, we then perform the absolute orientation operation
to rotate one embedding space onto the other.

For the matching operation, we assign for each node in e ∈ O1 the closest
node e ∈ O2 according to Euclidean distance (Fig. 1).

4 Experiments

For the experiments, jRDF2vec2 [6] was used to obtain RDF2vec embeddings.
We chose the following hyper parameter values: dimension = 100, window = 6,
1 Variations of this formulations are possible, e.g., including different dimensions for

the vector spaces of E and R, and/or using complex instead of real numbers.
2 see https://github.com/dwslab/jRDF2Vec.

https://github.com/dwslab/jRDF2Vec
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Fig. 1. High-level overview of the absolute orientation approach.

depth = 6, walks = 150. The code together with the complete set of figures and
results is available online3.

4.1 Synthetic Experiments

In a first step, we perform sandbox experiments on synthetic data. We generate a
graph G with 2,500 nodes V . For each node v ∈ V , we draw a random d number
using a Poisson distribution f(k;λ) = λke−λ

k! with λ = 4. We then randomly
draw d nodes from V \ v and add the edge between v and the drawn node to G.
We duplicate G as G′ and generate an alignment A where each v ∈ V is mapped
to its copy v′ ∈ V ′. We define the matching task such that G and G′ shall be
matched. The rotation is performed with a fraction α from A, referred to as the
anchor alignment A′. In all experiments, we vary α between 0.2 and 0.8 in steps
of size 0.2.

Training Size. In order to test the stability of the performed rotation, also
referred to herein as training, we evaluate varying values for α. Each experiment
is repeated 5 times to account for statistical variance. The matching precision
is computed for each experiment on the training dataset A′ and on the testing
dataset A \ A′. The split between the training and the testing datasets is deter-
mined by α. We found that the model is able to map the entire graphs regardless
of the size of the training set A′ (each run achieved a precision of 100%).

3 see https://github.com/guilhermesfc/ontology-matching-absolute-orientation.

https://github.com/guilhermesfc/ontology-matching-absolute-orientation


156 J. Portisch et al.

Alignment Noise. In order to test the stability in terms of noise in the anchor
alignment A′, we distort a share of the training correspondences by randomly
matching other than the correct nodes. We vary this level of alignment noise
between 0 (no noise introduced) and 0.9 (90% of the alignments are randomly
matched) in steps of size 0.1. Figure 2 (left) shows the performance with α = 0.2.
We observe that the test performance declines with an increasing amount of
noise. Interestingly, this relation is not linear. It is visible in Fig. 2 (left) that the
approach can handle 40% of noise before dropping significantly in terms of test
performance.

Graph Heterogeneity. In order to test the stability in terms of graph hetero-
geneity, we randomly remove triples from the target graph G′ after setting up
the alignment between the source graph G and the target graph G′. We vary
the fraction of randomly removed triples in G′ between 0 (no triples removed)
and 0.9 (90% of the triples removed) in steps of size 0.1. In Fig. 2 (right) it can
be observed that with a size deviation of 30%, the performance starts to drop
rapidly. Comparing the two plots in the figure, it can be seen that the approach
handles noise significantly better than size and structure deviations in graphs.

Fig. 2. The effect of distortions. (1) alignment noise (left) and (2) size differences
(right). Graphs are given for α = 0.2.

4.2 Experiments on Real Data

We also test our approach on the OAEI4 multifarm dataset. Here, multilingual
ontologies from the conference domain have to be matched. Since the absolute
orientation approach does not use textual data, we only evaluate the German-
English test case. This is sufficient because the other language combinations of
the multifarm dataset use structurally identical graphs. With a sampling rate
of 20%, our approach achieves micro scores of P = 0.376, R = 0.347, and

4 The Ontology Alignment Evaluation Initiative (OAEI) provides reference alignments
and carries out yearly evaluation campaigns since 2004. For more information, see
http://oaei.ontologymatching.org/.

http://oaei.ontologymatching.org/
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F1 = 0.361. Compared to the systems participating in the 2021 campaign [11],
the recall is on par with state of the art systems; an overall lower F1 is caused by
a comparatively low precision score. While not outperforming top-notch OAEI
systems in terms of F1, the performance indicates that the approach is able to
perform ontology matching and may particularly benefit from the addition of
non-structure-based features.

5 Conclusion

In this paper, we showed early work on aligning graphs through a graph embed-
ding algorithm combined with an absolute orientation rotation approach. In
multiple experiments we showed that the approach works for structurally simi-
lar ontologies. It handles alignment noise better than varying sizes and structures
of graphs. In the future, we plan to conduct experiments with different variants
of embedding approaches [9,10], as well as to combine the approach with further
text-based features in a hybrid matching system.
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