
Chapter 4 
Theory of Three-Dimensional Plasticity 

Andreas Öchsner 

Abstract This chapter presents a summary of the classical three-dimensional plas-
ticity theory for rate-independent material behavior. The continuum modeling of 
plastic material behavior in relation to the constitutive equation comprises a yield 
condition, a flow rule, and a hardening rule. A special emphasis is given on the rep-
resentation of yield conditions in the so-called invariant space. As typical examples 
in the context of classical plasticity theory, the conditions according to von Mises, 
Tresca, and Drucker-Prager are discussed in detail. 

4.1 Comments on the Stress Matrix 

Let us consider a three-dimensional body which is sufficiently supported and loaded 
(i.e., by any point or distributed loads) as schematically shown in Fig. 4.1a. Con-
sidering the symmetry of the stress matrix, six independent stress components, i.e., 
three normal and three shear stresses, can be identified, see Fig. 4.1b. 

The stress components acting on a differential volume element may have, for 
example, the values as shown in Eq. (4.1) for the given (x, y, z) coordinate system. 
A coordinate transformation from the original (x, y, z) to the (x ', y', z') coordinate 
system results in a stress matrix with different stress components, while a principal 
axis transformation (PAT) calculates the principal stresses σi , (i = 1, 2, 3). 

σi j  = 

⎡ 

⎣ 
50 0 20 
0 80  20  
20 20 90 
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(x,y,z) 

rotation⇒ 
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⎣ 
65 15 28.28 
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28.28427 0 90 

⎤ 
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(x ',y',z') 

PAT⇒ 
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⎣ 
110 0 0 
0 70  0  
0 0  40  

⎤ 

⎦ 

(1,2,3) 

. (4.1) 
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Fig. 4.1 a Three-dimensional body under arbitrary load and boundary conditions; b infinitesimal 
volume element with acting normal and shear stress components [see Altenbach and Öchsner 
(2020)] 

Looking at this simple example, the following characteristics of the stress matrix can 
be summarized: 

• The components of the stress matrix depend on the orientation of the user-defined 
coordinate system. 

• There is a specific coordinate system (1, 2, 3) where the shear stresses vanish and 
only normal stresses remain on the main diagonal, i.e., the so-called principal 
stresses σi (i = 1, 2, 3). 

• The six or three stress components cannot easily be compared to experimental 
values from uniaxial tests (e.g., the initial yield stress in tension k init t ). 

• A graphical representation of any surface is much easier in a principal stress space 
(1, 2, 3) with three coordinates than in a space with six coordinates (σi ). 

Further information on continuum mechanics and plasticity theory can be taken from 
the classical textbooks by Backhaus (1983), Chen and Han (1988), Altenbach (2012), 
Altenbach et al. (1995), Betten (1987), Itskov (2009), and Itskov and Belyaev (2005). 
Let us review in the following the determination of the principal stresses and the axes 
directions of the corresponding (1, 2, 3) coordinate system. From a mathematical 
point of view, this question can be answered by determining the eigenvalues of 
the stress matrix (principal stresses) and the corresponding eigenvectors (principal 
directions). The solution of the so-called characteristic equation, i.e., 

det
(
σi j  − σi I

) = 0, (4.2) 

gives the three principal stresses σi (i = 1, 2, 3). Equation (4.2) can be written in 
components as:
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det 

⎛ 

⎝ 

⎡ 

⎣ 
σxx  σxy  σxz  

σyx  σyy  σyz  

σzx  σzy  σzz  

⎤ 

⎦ − σi 

⎡ 

⎣ 
1 0 0  
0 1  0  
0 0 1  

⎤ 

⎦ 

⎞ 

⎠ = det 

⎛ 

⎝ 

⎡ 

⎣ 
σxx  − σi σxy σxz  

σyx σyy  − σi σyz  

σzx σzy σzz  − σi 

⎤ 

⎦ 

⎞ 

⎠ = 0. 

(4.3) 
The calculation of the determinant (‘det’) results in the following cubic equation in 
σi : 

σ 3 i − (σxx  + σyy  + σzz
)

. .. .
I1 

σ 2 i 

+ (σxx  σyy  + σxx  σzz  + σyyσzz  − σ 2 xy  − σ 2 xz  − σ 2 yz
)

. .. .
I2 

σi 

− (σxx  σyyσzz  − σxx  σ 2 yz  − σyyσ 2 xz  − σzzσ 2 xy  + 2σxyσxzσyz
)

. .. .
I3 

= 0, (4.4) 

or in short: 
σ 3 i − I1σ 2 i + I2σi − I3 = 0, (4.5) 

where the three roots (σ1, σ2, σ3) of Eq. (4.5) are the principal stresses. Equation (4.4) 
can be used to define the three scalar so-called principal invariants I1, I2, and I3. 
These tensor invariants are independent of the orientation of the coordinate system 
(objectivity) and represent the physical content of the stress matrix. 

The coordinates of the i th eigenvector (xi , yi , zi )—which correspond to the direc-
tion of one of the new (1, 2, 3) coordinate axes—result from the following system 
of three equations: 

⎡ 

⎣ 
σxx  − σi σxy σxz  

σyx σyy  − σi σyz  

σzx σzy σzz  − σi 

⎤ 

⎦ 

⎡ 

⎣ 
xi 
yi 
zi 

⎤ 

⎦ = 

⎡ 

⎣ 
0 
0 
0 

⎤ 

⎦ . (4.6) 

Let us mention at this point that the determination of the eingenvalues and eigenvec-
tors is also common in applied mechanics for other tensors or matrices. The second 
moment of the area tensor (or the moment of inertia tensor) has similar properties as 
the stress matrix: 

⎡ 

⎣ 
Ixx  Ixy  Ixz  
Iyx  Iyy  Iyz  
Izx  Izy  Izz  

⎤ 

⎦ 

(x,y,z) 

PAT⇒ 

⎡ 

⎣ 
I1 0 0  
0 I2 0 
0 0  I3 

⎤ 

⎦ 

(1,2,3) 

. (4.7) 

Let us look in the following a bit closer at the stress invariants1. Another interpretation 
of the principal stress invariants is given by Chen and Han (1988): 

1 It is useful for some applications (e.g., the calculation of the derivative with respect to the stresses) 
to not consider the symmetry of the shear stress components and to work with nine stress compo-
nents. These invariants are denoted by I i and J i .
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Table 4.1 Definition of the three principal (Ii ) and basic (Ji ) stress invariants of the stress matrix 

First stress invariant of σi j  
I1 = σxx  + σyy  + σzz  
J1 = σxx  + σyy  + σzz  
Second stress invariant of σi j  
I2 = σxx  σyy  + σxx  σzz  + σyy  σzz  − σ 2 xy  − σ 2 xz  − σ 2 yz  
J2 = 1 2

(
σ 2 xx  + σ 2 yy  + σ 2 zz

)
+ σ 2 xy  + σ 2 xz  + σ 2 yz  

Third stress invariant of σi j  
I3 = σxx  σyy  σzz  − σxx  σ 2 yz  − σyy  σ 2 xz  − σzz  σ 2 xy  + 2σxy  σxz  σyz  

J3 = 1 3
(
σ 3 xx  + σ 3 yy  + σ 3 zz  + 3σ 2 xy  σxx  + 3σ 2 xy  σyy  + 3σ 2 xz  σxx  + 3σ 2 xz  σzz  

+3σ 2 yz  σyy  + 3σ 2 yz  σzz  + 6σxy  σxz  σyz
)

– I1 = sum of the diagonal terms of σi j  : 

I1 = σxx  + σyy  + σzz . (4.8) 

– I2 = sum of the two-row main subdeterminants: 

I2 =
||||
σxx  σxy  

σxy  σyy

||||+
||||
σyy  σyz  

σyz  σzz

||||+
||||
σxx  σxz  

σxz  σzz

|||| . (4.9) 

– I3 = determinant of σi j  : 

I3 =
||||||
σxx  σxy  σxz  

σxy  σyy  σyz  

σxz  σyz  σzz

||||||
. (4.10) 

Besides these principal invariants, there is also often another set of invariants used. 
This set is included in the principal invariants and called basic invariants [see Back-
haus (1983)]: 

J1 = I1, (4.11) 

J2 = 1 2 I 
2 
1 − I2, (4.12) 

J3 = 1 3 I 
3 
1 − I1 I2 + I3. (4.13) 

The definition of both sets of invariants is given in Table 4.1. 
It is common in the framework of the plasticity theory of isotropic materi-

als to decompose the stress matrix σi j  into a pure volume changing (spherical or 
hydrostatic) matrix σ o i j  and a pure shape changing (deviatoric) stress matrix si j  (cf. 
Fig. 4.2)2: 

2 It should be noted that in the case of anisotropic materials, a hydrostatic stress state may result in 
a shape change (Betten 2001).
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Fig. 4.2 Decomposition of the stress matrix a into its spherical b and the deviatoric c part 

σi j  = σ o i j  + si j  = σmI + si j  . (4.14) 

In Eq. (4.14), σm = 1 3 (σxx  + σyy  + σzz) denotes the mean normal stress3 and I the 
identity matrix. Furthermore, Einstein’s summation convention was used [see Moore 
(2013)]. 

Equation (4.14) can be written in components as 

⎡ 

⎣ 
σxx  σxy  σxz  

σxy  σyy  σyz  

σxz  σyz  σzz  

⎤ 

⎦
. .. .

stress matrix σi j  

= 

⎡ 

⎣ 
σm 0 0  
0 σm 0 
0 0  σm 

⎤ 

⎦
. .. .
hydrostatic matrix σ o i j  

+ 

⎡ 

⎣ 
sxx  sxy  sxz  
sxy  syy  syz  
sxz  syz  szz  

⎤ 

⎦
. .. .
deviatoric matrix si j  

. (4.15) 

It can be seen that the elements outside the diagonal terms, i.e., the shear stresses, 
are the same for the stress and the deviatoric stress matrix 

si j  = σi j  for i /= j, (4.16) 

si j  = σi j  − σm for i = j, (4.17) 

and it can be shown that the so-called deviator equation 

sxx  + syy  + szz  = 0 (4.18) 

holds. The following list summarizes the calculation of the stress deviator compo-
nents: 

3 Also called the hydrostatic stress; in the context of soil mechanics, the pressure p = −σm is also 
used.
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Table 4.2 Definition of the three principal (I ◦i ) and basic (J ◦i ) stress invariants of the hydrostatic 
stress matrix σ ◦i j  
First stress invariant of σ ◦i j  
I ◦1 = 3σm 

J ◦1 = 3σm 

Second stress invariant of σ ◦i j  
I ◦2 = 3σ 2 m 

J ◦2 = 3 2 σ 2 m 

Third stress invariant of σ ◦i j  
I ◦3 = σ 3 m 

J ◦3 = σ 3 m 

Table 4.3 Definition of the three principal (I '
i ) and basic (J

'
i ) stress invariants of the deviatoric 

stress matrix si j  
First stress invariant of si j  
I '
1 = 0 
J '
1 = 0 

Second stress invariant of si j  
I '
2 = sxx  syy  + sxx  szz  + syyszz  − s2 xy  − s2 xz  − s2 yz  
J '
2 = −I '

2 

Third stress invariant of si j  
I '
3 = sxx  syyszz  − sxx  s2 yz  − syys2 xz  − szzs2 xy  + 2sxysxzsyz  
J '
3 = I '

3 

sxx  = σxx  − σm = 
2 

3 
σxx  − 

1 

3 
(σyy  + σzz), (4.19) 

syy  = σyy  − σm = 2 

3 
σyy  − 1 

3 
(σxx  + σzz), (4.20) 

szz  = σzz  − σm = 2 

3 
σzz  − 1 

3 
(σxx  + σyy), (4.21) 

sxy  = σxy, (4.22) 

syz  = σyz, (4.23) 

sxz  = σxz . (4.24) 

The definitions of the principal and basic invariants can be applied directly to the 
hydrostatic and deviatoric part of the stress matrix to obtain a similar representation 
as provided in Table 4.1, see summary in Table 4.2 for the hydrostatic matrix and the 
summary in Table 4.3 for the deviatoric matrix.
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The hydrostatic part of σi j  has in the case of metallic materials (full dense materials) 
for temperatures approximately under 0.3 Tmt (Tmt: melting temperature) nearly no 
influence on the occurrence of inelastic strains since dislocations slip only under 
the influence of shear stresses (for higher temperatures from 0.3 till 0.5 Tm also 
non-conservative climbing is possible) (Suzuki et al. 1985). On the other hand, the 
hydrostatic stress has a considerable influence on the yielding behavior in the case 
of soil mechanics, cellular materials or in damage mechanics (formation of pores, 
e.g., Gurson (1977)). 

The evaluation of the basic invariants for the stress matrix, as well as the hydro-
static and deviatoric part is presented in Table 4.4, expressed in components of σi j  

and the principal stresses σ1, σ2, σ3. 
It can be seen in Table 4.4 that the spherical matrix is completely characterized 

by its first invariant because the second and third invariant are powers of it. The 
stress deviator matrix is completely characterized by its second and third invariant. 
Therefore, the physical contents of the stress state σi j  can be described either by the 

Table 4.4 Basic invariants in terms of σi j  and principal values 

Invariants Components of σi j Principal stresses σ1, σ2, σ3 

Stress matrix 

J1 σxx  + σyy  + σzz σ1 + σ2 + σ3 

J2 

1 
2

(
σ 2 xx  + σ 2 yy  + σ 2 zz

)

+ σ 2 xy  + σ 2 xz  + σ 2 yz  

1 
2

(
σ 2 1 + σ 2 2 + σ 2 3

)

J3 

1 
3

(
σ 3 xx  + σ 3 yy  + σ 3 zz  + 3σ 2 xy  σxx  

+ 3σ 2 xy  σyy  + 3σ 2 xz  σxx  + 3σ 2 xz  σzz  
+ 3σ 2 yz  σyy  + 3σ 2 yz  σzz  + 6σxy  σxz  σyz

)
1 
3

(
σ 3 1 + σ 3 2 + σ 3 3

)

Spherical matrix 

J o 1 σxx  + σyy  + σzz σ1 + σ2 + σ3 
J o 2 

1 
6

(
σxx  + σyy  + σzz

)2 1 
6 (σ1 + σ2 + σ3)2 

J o 3 
1 
27

(
σxx  + σyy  + σzz

)3 1 
27 (σ1 + σ2 + σ3)3 

Stress deviator matrix 

J '
1 0 0 

J '
2 

1 

6

[
(σxx  − σyy  )

2 + (σyy  − σzz  )2 

+(σzz  − σxx  )2
]

+ σ 2 xy  + σ 2 yz  + σ 2 zx  

1 

6

[
(σ1 − σ2)2 + (σ2 − σ3)2 

+(σ3 − σ1)2
]

J '
3 

sxx  syyszz  + 2σxy  σyz  σzx  

− sxx  σ 2 yz  − syy  σ 2 zx  − szz  σ 2 xy  
s1s2s3 

With sxx  = 1 3 (2σxx  − σyy  − σzz  ) s1 = 1 3 (2σ1 − σ2 − σ3) 
syy  = 1 3 (−σxx  + 2σyy  − σzz  ) s2 = 1 3 (−σ1 + 2σ2 − σ3) 
szz  = 1 3 (−σxx  − σyy  + 2σzz  ) s3 = 1 3 (−σ1 − σ2 + 2σ3) 
sxy  = σxy , sxz  = σxz , syz  = σyz
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Table 4.5 Basic invariants for the σ1 − σ2 and σ − τ space 
Invariants σ1 − σ2 space σ − τ space 
J o 1 σ1 + σ2 σ 
J '
2 

1 
3

(
σ 2 1 + σ 2 2 − σ1σ2

) 1 
3 σ 2 + τ 2 

J '
3 

1 
27

(
2σ 3 1 + 2σ 3 2 − 3σ1σ2(σ1 + 

σ2)
)

2 
27 σ 3 + 1 3 στ 2 

Table 4.6 Basic invariants for a uniaxial (normal) stress (σ ) state and a pure shear stress state (τ ) 
Invariants Only σ Only τ 
J o 1 σ 0 

J '
2 

1 
3 σ 2 τ 2 

J '
3 

2 
27 σ 3 0 

three basic stress invariants Ji or if we use the decomposition in its spherical and 
deviatoric part by the first invariant of the spherical matrix and the second and third 
invariant of the stress deviator matrix. In the following, we will only use these three 
basic invariants to describe yield and failure conditions. Thus, the physical content 
of a state of stress will be described by the following set of invariants: 

σi j  → J o 1 , J
'
2, J

'
3. (4.25) 

To derive important special cases of yield conditions, it is also useful to specify the 
stress invariants for a plane stress state σ1 − σ2 and a stress state σ − τ where only 
one normal and one shear stress is acting. Thus, the stress invariants reduce to the 
given form in Table 4.5. 

Finally, Table 4.6 summarizes the stress invariants for a uniaxial or pure shear 
stress state. 

The representation of a tress state in terms of invariants is also very useful in the 
context of the implementation of yield conditions into commercial finite elements 
codes. This significantly facilities the calculation of derivatives [see Öchsner (2003)]. 

4.2 Graphical Representation of Yield Conditions 

Plastic flow starts in a uniaxial tensile test as soon as the acting tensile stress σ 
reaches the initial yield stress k init, see Öchsner (2016). In the case of a multiaxial 
stress state, this simple comparison is replaced by the yield condition. To this end, a 
scalar value is calculated from the acting six stress components and compared to an 
experimental scalar value. The yield condition in stress space can be expressed in its 
most general form (IR6 × IRdim(q) → IR) as:
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F = F(σ , q). (4.26) 

For further characterization, we assume in the following the special case of ideal 
plastic material behavior (vector of hardening variables q = 0) so that for (IR6 → IR) 

F = F(σ ) (4.27) 

depends now only on the stress state. The values of F have—as in the uniaxial 
case—the following4 mechanical meaning: 

F(σ ) = 0 → plastic material behavior, (4.28) 

F(σ ) <  0 → elastic material behavior, (4.29) 

F(σ ) >  0 → invalid. (4.30) 

A further simplification is obtained under the assumption that the yield condition 
can be split in a pure stress part f (σ ) and an experimental material parameter k: 

F(σ ) = f (σ ) − k. (4.31) 

The yield condition F = 0 represents in a n-dimensional space a hypersurface that is 
also called the yield surface or the yield loci. The number n is equal to the independent 
stress matrix components. A direct graphical representation of the yield surface 
is not possible due to its dimensionality, i.e., six variables. However, a reduction 
of the dimensionality is possible to achieve if a principle axis transformation [see 
Eq. (4.2)] is applied to the argument σi j  . The components of the stress matrix reduce 
to the principal stresses σ1, σ2, and σ3 on the principal diagonal of the stress matrix 
and the non-diagonal elements are equal to zero. In such a principal stress space, 
it is possible to graphically represent the yield condition as a three-dimensional 
surface. This space is also called the Haigh-Westergaard stress space [see Chen and 
Zhang (1991)]. A hydrostatic stress state lies in such a principal stress system on the 
space diagonal (hydrostatic axis). Any plane perpendicular to the hydrostatic axis 
is called an octahedral plane. The particular octahedral plane passing through the 
origin is called the deviatoric plane or π -plane [see Chen and Han (1988)]. Because 
σ1 + σ2 + σ3 = 0, it follows  from Eq.  (4.14) that σi j  = si j  , i.e., any stress state on 
the π -plane is pure deviatoric. 

The possibility of a representation of a yield condition based on a set of inde-
pendent stress invariants (e.g., according to Eq. (4.25)) is the characteristic of any 
isotropic yield condition, regardless of the choice of coordinate system. Therefore, 
Eq. (4.27) can also be written as 

F = F(J o 1 , J
'
2, J

'
3). (4.32) 

4 Under the restriction of rate-independent plasticity.
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O σ1 

σ2 

σ3 
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σ3 
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3 = 120◦ 
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θ(J '

2, J '
3) 
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√
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2 
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3 
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2)

3/2 

(a) (b) 

Fig. 4.3 Geometrical interpretation of basic stress invariants: a principal stress space; b octahedral 
plane 

On the basis of the dependency of the yield condition on the invariants, a descrip-
tive classification can be performed. Yield conditions independent of the hydro-
static stress (J o 1 ) can be represented by the invariants J '

2 and J
'
3. Stress states with 

J '
2 = const. lie on a circle around the hydrostatic axis in an octahedral plane. A depen-

dency of the yield condition on J '
3 results in a deviation from the circle shape. The 

yield surface forms a prismatic body whose longitudinal axis is represented by the 
hydrostatic axis. A dependency on J o 1 denotes a size change of the cross section of 
the yield surface along the hydrostatic axis. However, the shape of the cross section 
remains similar in the mathematical sense. Therefore, a dependency on J o 1 can be 
represented by sectional views through planes along the hydrostatic axis. 

The geometrical interpretation of stress invariants [see Chen and Han (1988)] is 
given in Fig. 4.3. 

It can be seen that an arbitrary stress state P can be expressed by its position along 
the hydrostatic axis ξ = 1 

3 
√ J o 1 and its polar coordinates (ρ = 2J '

2

√ 
, θ  (J '

2, J '
3)) in the 

octahedral plane through P . For the set of polar coordinates, the so-called stress Lode 
angle θ is defined in the range 0 ≤ θ ≤ 60◦ as [see Nayak and Zienkiewicz (1972)], 

cos(3θ)  = 
3 3 

2 

√
· J '

3 

(J '
2)

3/2 
. (4.33) 

It can be concluded from Eq. (4.33) that 

3θ = 3θ(  J '
2, J

'
3), (4.34) 

or that 
θ = θ(J '

2, J
'
3). (4.35)
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J◦ 
1 
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Fig. 4.4 Schematic representation of basic tests in the J o 1 - 3J '
2 

√ 
invariant space 

Fig. 4.5 Identification of the 
shape of a yield condition in 
an octahedral plane 
(σm = const.) 

0 

σ3 σ1 

pure shear 

uniax. 
tension 

uniax. 
compression 

σ2 

The trigonometric identity cos(3θ)  = 4 cos3(θ ) − 3 cos(θ ) may be used for  some  
transformations. 

The set of coordinates (ξ, ρ, cos(3θ))  is known in the literature as the Haigh-
Westergaard coordinates. To investigate the shape of the yield surface, particular 
experiments, including multiaxial stress states, must be realized and the initial yield 
points marked and approximated in the Haigh-Westergaard space, the J o 1 - 3J '

2 

√ 
invariant space, and octahedral planes, see Figs. 4.4 and 4.5.
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Table 4.7 Definition of basic tests in the J o 1 - 3J '
2 

√ 
invariant space 

Case J o 1 3J '
2

√ 
Comment 

Uniax. tension (σ ) σ σ Slope: 1 

Uniax. compression 
(−σ)  

−σ σ Slope: −1 

Biax. tension (σ ) 2σ σ Slope: 0.5 

Biax. compression 
(−σ)  

−2σ σ Slope: −0.5 

Triax. tension (σ ) 3σ 0 Horiz. axis 

Triax. compression 
(−σ)  

−3σ 0 Horiz. axis 

Pure shear (τ ) 0 3 
√

τ Vertical axis 

The loading path, for example, for the biaxial tension case in the J o 1 - 3J '
2 

√ 
invariant 

space (see Fig. 4.4) is obtained as follows (see Table 4.5 for the evaluation of the 
invariants): 

3J '
2 

√ 
= σ = 

1 

2 
J ◦ 
1 (4.36) 

Further load paths for basic experiments in the J o 1 − 3J '
2 

√ 
invariant space are sum-

marized in Table 4.7. 

4.3 Yield Conditions 

The yield condition can generally be expressed as 

F(σ , q) ≤ 0, (4.37) 

where q = [κ α
]T 

is the column matrix of internal variables describing the harden-
ing behavior of the material. Parameter κ relates to isotropic hardening, while the 
matrix α contains the kinematic hardening parameters. The mechanical meaning of 
F remains as indicated by Eqs. (4.28)–(4.30). 

Restricting to isotropic hardening, Eq. (4.37) can be expressed as 

F(σ , κ)  ≤ 0. (4.38)
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4.3.1 Mises Yield Condition 

The total deformation energy per unit volume of a three-dimensional body can be 
generally expressed as [see Öchsner (2016)]: 

w = 
1 

2

(
σxx  εxx  + σyyεyy  + σzzεzz  + τxyγxy  + τxzγxz  + τyzγyz

)
. (4.39) 

Following the decomposition of the stress matrix in its spherical and deviatoric part 
as indicated in Fig. 4.2, this deformation energy can be split in its volumetric (w◦) 
and distortional (ws) part as: 

w = 
1 − 2ν 
6E

(
σxx  + σyy  + σzz

)2
. .. .

w◦ 

+ 

+ 
1 + ν 
6E

[
(σxx  − σyy)

2 + (σyy  − σzz)
2 + (σzz  − σxx  )

2 + 6(τ 2 xy  + τ 2 yz  + τ 2 xz)
]

. .. .
ws 

. 

(4.40) 

The von Mises yield condition states now that plastic deformation starts as soon as 
the distortional deformation energy per unit volume, i.e., 

ws = 
1 + ν 
6E

[
(σxx  − σyy)

2 + (σyy  − σzz)
2 + (σzz  − σxx  )

2 + 6(τ 2 xy  + τ 2 yz  + τ 2 xz)
]
, 

(4.41) 
reaches a critical value (k2 t /(6G)) [see Asaro and Lubarda (2006), Nash (1998)]. 
This yield condition is commonly applied for ductile metals. The expression in units 
of stress is given for a general three-dimensional stress state as 

F(σi j  ) = 

1 

2

(
(σx − σy)2 + (σy − σz)2 + (σz − σx )2

)+ 3
(
σ 2 xy  + σ 2 yz  + σ 2 xz

)
√ 

. .. .
σeff 

−kt = 0, 

(4.42)



66 A. Öchsner

Fig. 4.6 Graphical representation of the yield condition according to von Mises in the principal 
stress space 

or in the principal stress space (σ1, σ2, σ3) with σxy  = σyz  = σxz  = 0: 

F(σi j  ) = 1 

2

(
(σ1 − σ2)2 + (σ2 − σ3)2 + (σ3 − σ1)2

)
√ 

. .. .
σeff 

−kt = 0. (4.43) 

The graphical representation in the principal stress space is given in Fig. 4.6, where 
a cylinder with its longitudinal axis equal to the hydrostatic axis is obtained. 

Expressed with the second invariant of the stress deviator (see Table 4.4), one can 
write the following formulation: 

F( J '
2) = 3J '

2 

√ 
− kt = 0. (4.44) 

The representation in the 3J '
2

√ 
-J ◦1 space (see Fig. 4.8) shows that the yield con-

dition is independent of the hydrostatic stress (Fig. 4.7). 
The view along the hydrostatic axis is shown in Fig. 4.8 where it can be seen that 

there is no difference under tension and compression for uniaxial stress states.
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Fig. 4.7 Graphical 
representation of the yield 
condition according to von 

Mises in the 3J '
2

√ 
-J ◦1 space 

any θ 
kt 

0
J◦ 
1 

3J '
2 

Fig. 4.8 Graphical 
representation of the yield 
condition according to von 
Mises in the octahedral plane 

θ

√  
2 
3 kt 

0 

σ3 σ1 

σ2 

A representation in the two-component principal σ1–σ2 space is obtained by sub-
stituting the particular basic invariant formulations from Table 4.5 into Eq. (4.44) as  
(see Fig. 4.9): 

Fσ1−σ2 = σ 2 1 + σ 2 2 − σ1σ2 − k2 t = 0, (4.45) 

or represented in a standard form to easier identify an ellipse (see Fig. 4.9) as  

Fσ1−σ2 =
(

x 

2 kt
√

)2 

+
(

y 

2 ks
√

)2 

− 1 = 0, (4.46)
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Fig. 4.9 Graphical 
representation of the yield 
condition according to von 
Mises in the σ1-σ2 space 

kt 

kt 

x 

y 

kt√
3 

σ1 

σ2 

where x = (σ1 + σ2)/ 2 
√

and y = (σ2 − σ1)/ 2
√

. 
The transformation of Eq. (4.45) into Eq. (4.46) can be obtained in the following 

way: 

σ 2 1 + σ 2 2 − σ1σ2 = k2 t , (4.47) 

4σ 2 1 + 4σ 2 2 − 4σ1σ2 = 4k2 t , (4.48) 

σ 2 1 + 2σ1σ2 + σ 2 2 + 3(σ 2 1 − 2σ1σ2 + σ 2 2 ) = 4k2 t , (4.49) 

1 

4 
(σ1 + σ2)

2 + 
3 

4 
(σ2 − σ1)

2 = k2 t , (4.50)
(

σ1 + σ2 

2 kt

)2 

+
(

σ2 − σ1 

2 ks 
3

√

)2 

= 1. (4.51) 

A representation in the two-component normal/shear σ -τ space is obtained by sub-
stituting the particular basic invariant formulations from Table 4.5 into Eq. (4.44) to  
finally give the following ellipse (see Fig. 4.10): 

Fσ−τ =
(

σ 
kt

)2 

+
(

3 τ 
kt

√ )2 

− 1 = 0. (4.52) 

The last formulation allows to identify the relationship between the shear and tensile 
yield stress. Setting σ = 0, which means then τ → ks, gives:
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Fig. 4.10 Graphical 
representation of the yield 
condition according to von 
Mises in the σ -τ space 

kt 

kt√
3 

σ 

τ 

ks = 
kt 

3 
√ . (4.53) 

Based on this relation, it is possible to express the yield condition in terms of the 
shear yield stress, for example, as: 

F(J '
2) = J '

2 

√ 
− ks = 0. (4.54) 

Table 4.8 illustrates the fact that it is not the right approach to look on single stress 
components if one has to judge if the stress state is in the elastic or already in the 
plastic domain. Only the equivalent stress based on a yield condition can answer this 
question in the case of multiaxial stress states. 

4.3.2 Tresca Yield Condition 

The Tresca yield condition, also known as the maximum shear stress theory, postu-
lates yielding as soon as the maximum shear stress reaches an experimental value. 
This yield condition is commonly applied for ductile metals. The expression is given 
for the principal stresses as 

max
(1 
2 

|σ1 − σ2| , 1 
2 

|σ2 − σ3| , 1 
2 

|σ3 − σ1|
)

= ks, (4.55)
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Table 4.8 Equivalent von Mises stress for different stress states 

Stress matrix Von Mises stress Domain 

σi j Eq. (4.43) (kinit t = 150)⎡ 

⎢⎣ 
100 0 0  

0 100 0 

0 0  0  

⎤ 

⎥⎦ 100 Elastic 

⎡ 

⎢⎣ 
100 0 0  

0 −100 0 

0 0 0  

⎤ 

⎥⎦ 173.2 Plastic 

⎡ 

⎢⎣ 
200 0 20  

0 80  20  

20 20 90 

⎤ 

⎥⎦ 125.3 Elastic 

⎡ 

⎢⎣ 
200 0 20 

0 80  20  

20 20 200 

⎤ 

⎥⎦ 129.3 Elastic 

⎡ 

⎢⎣ 
100 0 20 

0 80  20  

20 20 −80 

⎤ 

⎥⎦ 177.8 Plastic 

or 

F(σi ) = max
(1 
2 

|σ1 − σ2| , 1 
2 

|σ2 − σ3| , 1 
2 

|σ3 − σ1|
)

− ks = 0. (4.56) 

Expressed with the second and third invariant of the stress deviator, the following 
formulation is obtained: 

F(J '
2, J

'
3) = 4

(
J '
2

)3 − 27
(
J '
3

)2 − 36k2 s
(
J '
2

)2 + 96k4 s J
'
2 − 64k6 s = 0. (4.57) 

The graphical representation in the principal stress space is given in Fig. 4.11, where 
a prism of six sides with its longitudinal axis equal to the hydrostatic axis is obtained. 
The view along the hydrostatic axis is shown in Fig. 4.12, where a hexagon can be 
seen. In addition, it can be concluded that the tensile and compressive yield stresses 
have the same magnitude. 

The representation in the 3J '
2

√ 
-J ◦1 space (see Fig. 4.13) shows that the yield 

condition is independent of the hydrostatic stress. 
For a representation in the two-component principal σ1-σ2 space, the following 

six straight-line equations can be derived from Eq. (4.55) (see Fig.  4.14):
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Fig. 4.11 Graphical representation of the yield condition according to Tresca in the principal stress 
space 

Fig. 4.12 Graphical 
representation of the yield 
condition according to 
Tresca in the octahedral 
plane 

θ 

0 

σ3 σ1 

J◦ 
1 

σ2
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Fig. 4.13 Graphical 
representation of the yield 
condition according to 

Tresca in the 3J '
2

√ 
-J ◦1 space 

θ = 0◦ ∨ 60◦(|kt|) 

θ = 30◦(0.866kt) 

0
J◦ 
1 

3J '
2 

σ (1) 2 = σ1 − 2ks = σ1 − kt, 

σ (2) 2 = σ1 + 2ks = σ1 + kt, 

σ (3) 2 = 2ks = kt, (4.58) 

σ (4) 2 = −2ks = −kt, 

σ (5) 1 = 2ks = kt, 

σ (6) 1 = −2ks = −kt. 

The principal stresses5 σ1 and σ2 result from Mohr’s circle as 

σ1 = 
σ 
2 

+
(

σ 
2

)2 

+ τ 2 

┌||√ ; σ2 = 
σ 
2 

−
(

σ 
2

)2 

+ τ 2

┌||√ 
. (4.59) 

Substituting Eq. (4.59) into Eq. (4.55)1 yields the yield condition in the σ − τ space 
as 

Fσ−τ =
(

σ 
2

)2 

+ τ 2 = k2 s (4.60) 

or (Fig. 4.15): 

Fσ−τ =
(

σ 
kt

)2 

+
(
2τ 
kt

)2 

− 1. (4.61) 

5 Mohr’s circle gives σ1 > 0 and σ3 < 0 with σ2 = 0.
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Fig. 4.14 Graphical 
representation of the yield 
condition according to 
Tresca in the σ1–σ2 space 

kt 

kt 

σ1 

σ2 

Fig. 4.15 Graphical 
representation of the yield 
condition according to 
Tresca in the σ –τ space 

kt 

kt 
2 

σ 

τ
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The last formulation allows to identify the relationship between the shear and tensile 
yield stress as: 

ks = 
kt 
2 
. (4.62) 

4.3.3 Drucker-Prager Yield Condition 

The Drucker-Prager yield condition is an extension of the formulation according to 
von Mises [see Eq. (4.54)], which considers the influence of the weighted (factor α) 
hydrostatic stress (J o 1 ): 

F(J o 1 , J
'
2) = α J o 1 + J '

2 

√ 
− ks, (4.63) 

where the α and ks are the material parameters. It should be noted here that the von 
Mises yield condition is included in Eq. (4.63) for  α = 0. This condition is usually 
applied as a failure condition for soils, rocks, and concrete. 

The representation in the J '
2

√ 
-J ◦1 space (see Fig. 4.16) shows that the yield con-

dition is linearly dependent on the hydrostatic stress. This behavior would represent 
in the principal stress space a right-circular cone. 

The view along the hydrostatic axis is shown in Fig. 4.17 where it can be seen 
that, as in the case of von Mises, a circle is obtained. However, the radius is now 
a function of the hydrostatic stress, i.e., r = 2

√
(ks − α J ◦1 ). This radius reduces in 

the π -plane, meaning for J ◦1 = 0 or σm = 0, to  r = 2
√

ks, which is identical to the 
constant radius of the von Mises yield condition, see Fig. 4.8 and relation (4.53). 

Fig. 4.16 Graphical 
representation of the yield 
condition according to 
Drucker-Prager in the 

J '
2

√ 
-J ◦1 space 

any θ 

ks 

0 
ks 
α 

J◦ 
1 

J
'
2
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Fig. 4.17 Graphical 
representation of the yield 
condition according to 
Drucker-Prager in an 
octahedral plane 
(σm = const.) 

θ 

√
2(ks − αJ◦ 

1 ) 

0 

σ3 σ1 

σ2 

Substituting the equations from Table 4.5 for the basic invariants into Eq. (4.63), 
the representation in the two-component principal σ1–σ2 space is obtained as 

Fσ1−σ2 =
(
1 − 3α2

) (
σ 2 1 + σ 2 2

)− (1 + 6α2
)
σ1σ2 + 6αks (σ1 + σ2) − 3k2 s , (4.64) 

or after some transformations the equation of a shifted and rotated ellipse in the 
σ1 − σ2 space is obtaind as (see Fig. 4.18): 

Fσ1−σ2 =
(
x + 6 2ksα 

1−12α2 

6ks 
1−12α2

√

√

)2 

+ 

⎛ 

⎝ y 
2ks 

1−12α2 

√
√

⎞ 

⎠ 
2 

− 1, (4.65) 

where 

x = 
1 

2 
√ (σ1 + σ2) , y = 

1 

2 
√ (σ2 − σ1) . (4.66)



76 A. Öchsner

Fig. 4.18 Graphical 
representation of the yield 
condition according to 
Drucker-Prager in the σ1-σ2 
space kt 

kt 

kc 

kc 

√
3ks 

1−√
12α 

√
3

k
s 

1
+

√
1
2

α
 

σ1 

σ2 

The transformation of Eq. (4.64) into Eq. (4.65) can be obtained in the following 
way: 

1 

3

(
σ 2 1 + σ 2 2 − σ1σ2

) = k2 s − 2ksα (σ1 + σ2) + α2 (σ1 + σ2)
2 | × 12, 

4
(
σ 2 1 + σ 2 2 − σ1σ2

) = 12k2 s − 24ksα (σ1 + 12σ2) + 12α2 (σ1 + σ2)
2 , 

σ 2 1 + 2σ1σ2 + σ 2 2 + 3
(
σ 2 1 − 2σ1σ2 + σ 2 2

) = 12k2 s − 24ksα (σ1 + 12σ2) + 
+ 12α2 (σ1 + σ2)

2 , 
(σ1 + σ2)

2 + 3 (σ1 − σ2)
2 = 12k2 s − 24ksα (σ1 + 12σ2) + 12α2 (σ1 + σ2)

2 , 
(σ1 + σ2)

2 + 3 (σ1 − σ2)
2 + 24ksα (σ1 + 12σ2) − 12α2 (σ1 + σ2)

2 = 

=
(

12k2 s 
1 − 12α2 

− 
12α2k2 s 
1 − 12α2

)
, 

3
(
1 − 12α2

)
(σ1 − σ2)

2 + (1 − 12α2
)2 

(σ1 + σ2)
2 + 

+ 2 × 12ksα
(
1 − 12α2

)
(σ1 + σ2) + 122 α2 k2 s = 12k2 s , 

3
(
1 − 12α2

)
(σ1 − σ2)

2 + ((1 − 12α2
)
(σ1 + σ2) + 12ksα

)2 = 12k2 s ,(
1 − 12α2

)
(σ1 − σ2)

2 

4k2 s 
+
((
1 − 12α2

)
(σ1 + σ2) + 12ksα

)2 
12k2 s 

= 1. (4.67)
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Fig. 4.19 Graphical 
representation of the yield 
condition according to 
Drucker-Prager in the σ -τ 
space 

ktkc 

ks 

−ks 

ks√
1−3α2 

√
3ks 

1−3α2 

σ 

τ 

The same procedure yields under consideration of k2 s = k2 s 
1−3α2 − 3α

2k2 s 
1−3α2 also to a 

shifted ellipse in the σ − τ space (see Fig. 4.19):

(
σ + 3ksα 

1−3α2 

3ks 
1−3α2

√

)2 

+
(

τ 
ks 

1−3α2
√

)2 

− 1. (4.68) 

Setting τ → 0 in the last relation allows to extract the relation between the 
tensile/compressive yield stress and the shear limit (σ → kt ∧ σ → kc) as: 

kt = 3 

1 + 3α 

√
√ ks, kc = 3 

1 − 3α 

√
√ ks. (4.69) 

Finally, it should be noted here that also the formulation 

F( J o 1 , J
'
2) = α J o 1 + J '

2 

√ 
− 

σ 
3 

√̄ , (4.70) 

where 
σ ¯ = (1 + α 3

√
)kt (4.71) 

and the alternative term linear Mohr-Coulomb can be found in literature.
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4.4 Flow Rule 

The flow rule, which allows the evaluation of the plastic strain increments, in its 
general form is given by 

dεpl = dλ r(σ , q), (4.72) 

where dλ is a scalar called the plastic multiplier or consistency parameter and func-
tion r(σ , q) : (IR6 × IRdim(q) → IR6 ) is the plastic flow direction. The plastic flow 
direction is often stated in terms of a plastic potential function Q, and the plastic 
strain increments are given by dεpl = dλ ∂ Q 

∂σ . The flow is said to be associated if 
Q = F , otherwise non-associated. 

The evolution equation for the internal variables q can be specified in its general 
form as 

dq = dλ h(σ , q), (4.73) 

where the function h : (IR6 × IR7 → IR7 ) describes the evolution of the hardening 
parameters. 

4.5 Hardening Rule 

The hardening rule allows the consideration of the influence of material hardening 
on the yield condition and the flow rule. 

4.5.1 Isotropic Hardening 

In the case of isotropic hardening, the yield stress is expressed as being dependent 
on an inner variable κ: 

k = k(κ). (4.74) 

This results in the effect that the size of the yield surface is scaled but the origin 
remains unchanged. If the equivalent plastic strain6 is used for the hardening variable 
(κ = εpl eff), then one talks about strain hardening. 

Another possibility is to describe the hardening being dependent on the specific7 

plastic work (κ = wpl = ∮ σ dεpl). Then one talks about work hardening. 

6 The effective plastic strain is in the general three-dimensional case the function ε
pl 
eff : (IR6 → IR+) 

with εpl eff = 2 
3 ε

plεpl
√ 

. 
7 This is the volume-specific definition, meaning

[
wpl
] = N 

m2 
m 
m = kg m 

s2m2 
m 
m = kg m

2 

s2m3 = J 
m3 .
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Fig. 4.20 Flow curve for 
different isotropic hardening 
laws. The abscissa is drawn 
for the case of strain 
hardening 

κ = εpl eff 

k 

kinit 

arbitrary 

linear 

ideal 

Epl 

1 

Figure 4.20 shows different modeling approaches for the flow curve, meaning the 
graphical illustration of the yield stress being dependent on the inner variable for 
different hardening approaches. 

4.5.2 Kinematic Hardening 

In the case of pure kinematic hardening, the yield condition is expressed as being 
dependent on a set of inner variables: 

F(σ , α) = f (σ − α) − k = 0, (4.75) 

where the material parameter k is constant and the kinematic hardening parameters 
α are dependent on inner variables. These hardening parameters represent the center 
of the yield surface and result in the effect that the surface translates as a rigid body 
in the stress space. 
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