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Chapter 7
Artificial Food and the Future of Nutrition 
for Kidney Health

Fabiana Baggio Nerbass and Denise Mafra

7.1 � Introduction

With estimates of the global population reaching a plateau at nine billion in 2050, a 
significant increase in food production over the next three decades is imperative. 
Concurrently, enormous quantities of food must be produced to protect the environ-
ment and create resistance to climate change.

In addition, dietary habits are strongly linked to health status. High intake of 
ultra-processed food (UPF) and processed meat with food termed as “ready-to-go-
food” or “fast food” causes damage to both human and planetary health. People are 
at high risk of developing non-communicable diseases (NCDs), such as type II dia-
betes mellitus, obesity, hypertension, and kidney diseases, when the intake of 
unhealthy food is high. An unhealthy diet is closely related to kidney health, and the 
concept of food as medicine should be used to prevent or mitigate poor health [1]. 
Thus, the future of food production should also favor people’s access to dietary pat-
terns that improve the overall health and quality of life.

In this chapter, we have discussed some aspects related to dietary patterns, neph-
rotoxins from the diet, and agricultural production in terms of kidney diseases. We 
have also discussed the current practices and future trends of food production, espe-
cially artificial food, mainly the most studied cultured meat. Finally, we have exam-
ined how the future of nutrition and food production can better promote both human 
and planetary health.
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7.2 � The Present

7.2.1 � Dietary Patterns and Kidney Diseases

In nutritional epidemiology, dietary pattern analysis has emerged as an approach to 
investigate the relationship between the effects of the overall diet and synergistic 
effects of nutrients resulting in cumulative effects on health and disease instead of 
evaluating individual nutrients or foods [2].

From 1960 to 2015, agricultural production was more than tripled, with signifi-
cant expansion in the use of water, land, and other natural resources. In the same 
period, there was remarkable industrialization of food, and the consumption of pro-
cessed, packaged, and prepared food has increased worldwide [3]. Although these 
technologies have advantages such as increasing shelf life, microbiological safety, 
and increased access due to lower cost, they negatively impact diet quality.

The Global Burden of Disease Study 2017 reported that unhealthy diets might 
cause most of the burden of chronic, NCDs, such as hypertension, cardiovascular 
disease, cancer, diabetes mellitus, and chronic kidney disease (CKD) [4].

Approximately 10% of the world’s population lives with CKD, and its main risk 
factors are hypertension and diabetes mellitus [5], which are related to unhealthy 
Western diets [6], characterized by high consumption of UPF, salt, and sugar. This 
dietary pattern is well known for its pro-inflammatory properties. Several research-
ers have shown an association between this diet and a decline in renal function [7, 
8]. In contrast, healthy dietary patterns, characterized by higher intake of fruit and 
vegetables, fish, legumes, cereals, whole grains, and fiber and lower intake of red 
meat, salt, and refined sugars, are associated with nephroprotective outcomes [9, 
10]. A meta-analysis including 630,108 adults who were followed up for 
10.4 ± 7.4 years has shown that healthy dietary patterns are associated with a lower 
incidence of CKD [9]. The DASH diet (low intake of red meat, processed food, 
sodium, and fat and high intake of nuts, fruits, legumes, vegetables, and whole 
grains) is associated with a low incidence or prevalence of CKD. This association 
has been shown in prospective studies such as the Atherosclerosis Risk in 
Communities study [11], Tehran Lipid and Glucose Study [12], and Korean National 
Health and Nutrition Examination Survey [13]. In addition, a healthy dietary pattern 
is associated with a lower mortality risk in patients with CKD [14].

Nephrolithiasis or kidney stones is another very prevalent kidney disease. A 
review of epidemiological data from seven countries found a prevalence rate of 
1.7%–14.8%, which seems to be rising [15]. The etiology of kidney stones is multi-
factorial and involves the interaction of environmental and genetic factors. The cur-
rent dietary guidelines recommend increasing fluid intake, maintaining a balanced 
calcium intake, and similar to CKD, reducing dietary intake of sodium and animal 
proteins and increasing intake of fruits and fiber [16, 17].

Reducing healthy diet intake (food rich in dietary fiber, bioactive compounds, 
minerals, and vitamins) leads to loss of antioxidants and anti-inflammatory proper-
ties of food [1]. In addition, as diet is the primary modulator of the gut microbiota, 
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unhealthy diets promote gut dysbiosis, which has been linked to inflammation and 
cardiovascular disease in patients with CKD [18, 19].

Taken together, changes in food system production provoked an impaired quality 
pattern of diets, leading to high consumption of processed food and UPF, including 
high saturated fats, sugar, salt, additives, and pesticides. In addition to the influence 
of dietary patterns on kidney health, an unhealthy diet can affect kidney disease.

Food additives are widely used in the food industry to improve safety, shelf-life, 
taste, texture, and appearance. Here, we have focused on two widely consumed ele-
ments present in many processed foods—sodium and phosphate. Excessive sodium 
and phosphate intake is associated with a high risk of hypertension and kidney dis-
eases. It is also directly and indirectly associated with cardiovascular events [20].

Despite existing dietary guidelines, sodium intake is usually higher than the rec-
ommended value (1.5–2.3 g/day) in populations worldwide [21, 22]. In 2010, the 
average world consumption was 3.95 g Na/day, equivalent to 10 g of salt daily. The 
world’s largest sodium consumers are in Asia, Eastern Europe, and tropical Latin 
America, where the daily average exceeds 4 g Na/day. This is exemplified in coun-
tries such as China (4.8 g), Thailand (5.3 g), Turkey (4.1 g), and Brazil (4.1 g) [23].

High sodium intake has also been observed in CKD populations [24, 25]. 
However, there is good evidence supporting the positive effects of decreasing 
sodium intake on surrogate markers of cardiovascular events (blood pressure) and 
progression of kidney disease (albuminuria) [26, 27]. Positive effects are also found 
for kidney stone prevention using dietary approaches that include low sodium 
intake. This results in a reduced incidence of kidney stones [28] as sodium intake is 
directly associated with urinary calcium excretion.

In low- and middle-income countries, most of the sodium consumed comes from 
salt added during cooking or from sauces. In most high-income countries, however, 
sodium intake can be reduced by a gradual and sustained reduction in the amount of 
sodium added in processed food since it is the main sodium source of their diet [29]. 
Therefore, high-income countries that invested in public campaigns to decrease 
added salt and implemented a gradual and sustained reduction in the amount of salt 
added to food by the food industry have shown positive results in reducing sodium 
consumption [29, 30].

Phosphate additives are also present in various food products. However, due to 
the high consumption of processed food in the last century, there are concerns 
regarding whether chronic high consumption of phosphate may be toxic and impact 
kidney health [31].

The recommended dietary allowance (RDA) of phosphate for adults is 700 mg/
day [32], which is easily achieved by a varied diet. However, phosphate consumption 
can exceed this amount by two or more times in individuals and populations who 
consume a significant quantity of industrialized food items. Estimation of phosphate 
consumption by dietary recalls is challenging and largely underestimated, especially 
in population consuming high amounts of processed food. Such estimations are dif-
ficult since phosphate content is not available in industrialized food item labels. In 
addition to increasing the total intake, the bioavailability of inorganic phosphate 
from additives is higher than that of organic phosphate present in natural sources [17].
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High phosphate intake (from red meat and processed food) appears to be associ-
ated with kidney damage, although the exact biochemical mechanism has not been 
fully elucidated [33]. However, it is well documented that high phosphate plasma 
levels are associated with a higher risk of overall mortality in patients with CKD 
[34, 35].

7.2.2 � Nephrotoxins from Diet and Agricultural Production

Nephrotoxins present in consumed water, food, and the environment may also play 
a role in kidney diseases. This concern was raised due to the current epidemic of 
CKD of non-traditional cause (CKDnt) leading to kidney failure mainly in young 
male agricultural workers without traditional risk factors, mainly in Central America 
and Asian countries such as Sri Lanka [36, 37].

Although the etiology has not been fully elucidated in any region [38], the research 
has focused on consumption of contaminated water as the primary risk factor in Asian 
hotspots. The possible contaminants include heavy metals, glyphosate, and other 
agrochemicals [39, 40]. However, contamination of food has been poorly investi-
gated. Some studies have found hazardous amounts of lead and cadmium in a typical 
diet of a region; however, these contaminants were not found in other studies [41–43].

In Latin America, heat stress and dehydration are the most frequently studied 
causative risk factors of kidney disease [44–46]. However, a recent longitudinal 
study conducted in Mexico that assessed kidney functioning of migrant and seasonal 
farmworkers pre- and post-harvest found a significant decrease in kidney function 
that was more pronounced in those who worked in the conventional field than in 
those who worked in the organic field. Thus, the authors suggest that pesticide expo-
sure should be considered in combination with heat stress and dehydration [47].

Cases of acute kidney injury, mainly in Brazil and China, have been linked to 
Haff disease, a type of human rhabdomyolysis characterized by the sudden onset of 
unexplained muscular rigidity and an elevated serum creatine kinase level within 
24 h after consuming cooked aquatic products [48].

Toxins from tropical plants, such as Djenkol beans [49], star fruit (Averrhoa 
carambola) [50], poisonous mushrooms (Amanita phalloides) [51], and cotton seed 
oil (gossypol), can also cause acute kidney injury [52].

7.3 � The Future

7.3.1 � Food Production and Introduction of Artificial Food

Food systems can nurture human health and support environmental sustainability; 
however, they are currently causing adverse effects. It has been estimated that more 
than 820 million people have insufficient food and many more consume low-quality 
diets that cause micronutrient deficiencies and contribute substantially to 
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diet-related NCDs [53]. The currently expanding food production and economic 
growth have resulted in a huge economic burden on the natural environment. 
“Almost one-half of the forests that once covered the Earth are now gone. 
Groundwater sources are being depleted rapidly. Biodiversity has been deeply 
eroded. Every year, the burning of fossil fuels emits billion of tons of greenhouse 
gases into the atmosphere, which are responsible for global warming and climate 
change” [3].

The world’s growing population and increasing human welfare will necessitate a 
30%–70% increase in food production over the next three decades. Concurrently, 
large quantities of food must be produced to protect the environment and create 
resistance to climate change. However, it is unclear whether we can sustainably feed 
a global population of 11 billion in 2100. This question has been extensively 
explored in FAO’s report—The future of food and agriculture: Trends and chal-
lenges, 2017. The consensus view is that current systems are likely capable of pro-
ducing enough food, but to do so in an inclusive and sustainable manner will require 
major transformations involving international agencies, local governments, scien-
tists, agricultural and food industries, consumers, and others [3].

The food industry successfully introduced different artificial foods and ingredi-
ents in the last century to substitute natural sources, including sweeteners, color-
ings, and flavorings. Foods from non-meat sources (soybeans or wheat), such as 
seitans and tofu, have existed for many centuries, whereas cellular agriculture has 
been introduced in the last decade. Artificial meat production may be a more sus-
tainable alternative for producing high-protein sources using technologies such as 
genetic modification and cloning. Although in vitro meat culturing techniques have 
been explored, they are presently under discussion.

Approximately 70% of all agricultural land is used for livestock production, and 
artificial meat products may help reduce greenhouse gas emissions compared to 
conventional meat production [54]. The other benefits include those regarding ani-
mal welfare issues, food safety, public health, and the need to face the increasing 
worldwide population and associated protein demand [53]. In 2020, this novel prod-
uct was approved for sale in Singapore, and only the future will tell whether it will 
meet complex consumer demands [55].

The National Aeronautics and Space Administration designed artificial meat 
from myoblasts in suspension culture in 2002. In 2014, Dr. Mark Post developed 
cultured meat [56], and Maastricht University produced the first cultured beef 
burger. Cellular agriculture is also linked to the production of starch and cellulose, 
such as amylose and amylopectin, hyaluronic acid, chitosan, soy protein, and bread-
derived scaffolds [57].

Studies have shown how to construct steak-like meat using several sources of 
bovine cells such as adipose-derived stem cells, pluripotent stem cells, and satellite 
and muscle stem cells. With cell fiber synthesis from tendon-gel-integrated bio-
printing, a bioreactor is used to increase cell number [58, 59]. The popularization of 
this meat produced in vitro, also called cultured meat or clean meat, is growing 
rapidly; however, the cost of production is still high. Another problem is the low 
acceptance of cultured meat. A systematic review (including 91 articles on con-
sumer acceptance of different sources of proteins) showed that in addition to uptake 
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of insects, the acceptance of cultured meat is also low [60]. Negative acceptance is 
related to neophobia [61].

According to Djisalov et al. (2021), cultured meat is also beneficial because there 
is no treatment with hormones or antibiotics. In addition, it reduces food-borne ill-
nesses and diseases such as avian and swine influenza [62]. In addition, the compo-
sition and flavor can be modulated by controlling fat, mineral, and vitamin content 
and can be customized according to different nutritional requirements [57, 63]. 
Another interesting point is that “designer meat” can be produced using 
nanotechnology-based methods to improve the nutritional value, flavor, and bio-
availability of nutrients [64].

The organoleptic properties and regulations regarding production, labeling, and 
marketing deserve more discussion. Furthermore, more studies on the risks regard-
ing food safety, ethical perspectives, and health are needed. The nutritional equiva-
lence between traditional and cultured meat is debatable. However, the next step in 
food production involves artificial food production, and studies showing the pros 
and cons of their use are needed urgently.

It is important to note that many biochemical metabolisms, such as conversion of 
glycogen to lactate in the post-mortem of the anima and muscle contraction by actin 
and myosin using calcium, do not exist in cultured meat. More research is needed to 
determine whether these differences interfere with the nutritional composition of 
cultured meat [64].

Regarding nutritional composition, protein is the most important nutrient in red 
meat and cultured meat is made with the best protein source, such as muscle cells or 
cytoskeletal proteins [63].

Concerning the dietary protein recommendation for patients with CKD, it is 
important to recommend a low protein diet to patients with CKD on pre-dialysis 
treatment [17]. Cultured meat is a good source of protein, and therefore, studies 
evaluating the effects of cultured meat on these patients need to be conducted.

7.3.2 � Future of Nutrition for Kidney Health

Healthy dietary patterns, usually characterized by higher intake of vegetables, fruits, 
legumes, nuts, whole grains, fish, and low-fat dairy and lower intake of red and 
processed meats, sodium, and sugar, have been associated with CKD prevention, 
progression, and mortality [9, 14, 65]. Healthy dietary patterns reduce the risk of 
albuminuria and CKD [9]. Thus, based on current knowledge, nutrition experts rec-
ommend a plant-dominant low-protein diet for conservative management of CKD 
[66]. The best scenario seems to be the one that promotes and supports universal 
access to a healthy dietary pattern based on organic foods, more fruits and vegeta-
bles, and less red meat and processed foods. In addition, personalized nutrition is a 
promising approach at an individual level, which manages and integrates heteroge-
neous and patient-specific molecular, clinical, and anamnestic data to achieve indi-
vidual well-being [67].
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High red meat intake is linked to many cardiovascular diseases, cancer, and kid-
ney diseases, in addition to high greenhouse gas emissions. Therefore, reducing its 
consumption is urgently required. Cultured meat intake could reduce the risk of 
these chronic diseases and reduce food-borne illness and nutrition deficiency, thus 
making it a promising candidate for a sustainable diet [68]. Artificial food can 
reduce significantly greenhouse gas emissions, water use, and energy consumption 
[69]. However, controlling nutritional composition is very important and is unclear, 
mainly regarding micronutrients such as vitamin B12 and iron. Another discussion 
is regarding cell multiplications as some dysregulation can occur and lead to adverse 
effects on human health [70, 71].

Overall, this chapter reinforced the findings of previous studies that an unhealthy 
diet is harmful to human and planetary health and included the negative conse-
quences for patients with kidney diseases. Therefore, these changes should be 
urgently proposed and implemented. This chapter discussed the introduction of arti-
ficial food, cellular agriculture, and cultured food as an alternative strategy to 
replace the unhealthy diet (Fig. 7.1).

In terms of technical issues, methods to increase the production of cultured food 
are being optimized, but industrial-scale production is not yet possible. However, 
this research is in the infancy stage in the health field, and many gaps in knowledge 
exist. These gaps cannot be resolved if there are adverse effects on human health, 
and no study has been performed in patients with kidney diseases. In addition, it is 
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Fig. 7.1  Future of nutrition for kidney health. The food production system and high red meat and 
ultra-processed food intake lead to alteration in the environment equilibrium and increased risk of 
non-communicable diseases, including kidney diseases. Therefore, discussions and actions for the 
future of nutrition are urgently necessary. (Image created with Biorender)
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unclear whether cultured meat will be a food option in the future, and whether this 
food is good for human health.

For many people, cultured meat is still science fiction, and it can also be seen as 
an unnatural food. Finally, considering that unhealthy food consumption needs to 
change urgently in patients with kidney diseases, we need more educational pro-
grams to encourage healthy and sustainable diet consumption.
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