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Chapter 16
PathoSpotter: Computational Intelligence 
Applied to Nephropathology

Luciano Oliveira, Paulo Chagas, Angelo Duarte, Rodrigo Calumby, 
Emanuele Santos, Michele Angelo, and Washington dos Santos

16.1  Introduction

Kidney is among the human organs with the most clearly demarcated compart-
ments at the histological level of glomeruli, tubules, interstitium, and blood vessels 
(arteries and veins). These structures are organized in functional units, called neph-
rons, based on the flow of the blood through afferent arterioles, glomeruli, efferent 
arterioles, and the flow of the liquid ultra-filtrated from the blood, through the 
tubules (proximal convoluted tubule, Henle’s loop, and distal convoluted tubule). 
Diseases affecting any of these compartments progressively extend to the other 
structures. Most of the known nephrologic diseases affect primarily the glomeruli 
with inflammation, fibrosis, anomalous deposits, or degenerative changes. A 
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continuous effort has been made by pathologists toward establishing a consensus 
on histological markers to be used in renal disease classification and to predict the 
outcome of renal diseases. Although most of these markers have shown to be useful 
in defining diagnosis and prognosis of renal diseases, the criteria adopted to define 
these markers are time consuming, labor intensive, and sometimes have poor agree-
ment among pathologists. Automatizing the process of renal disease classification 
would contribute to improve the accuracy and reduce the time spent with this 
process.

The dissemination of digital image acquisition systems, for collecting either 
snapshot images or large whole slide image (WSI), opened possibilities to facilitate 
the transit of the information about the biopsies among pathologists. In this sense, 
a new field of research has arisen, which was coined as digital pathology. With 
advances of hardware and software to digitize WSIs, large histological image 
libraries emerge to improve diagnostic performance and the course of consensus. 
One perceived soon that the information contained in these images would remain 
largely unexplored without a proper effort to automatize the analysis of the histo-
logical images. Such large collection of digital histological images, gathered in 
different laboratories with different hardware devices, provided resources for 
supervised learning, directly considering the training of increasingly accurate intel-
ligent systems able to recognize lesions in WSIs. This made possible the emer-
gence of a new area of research called computational pathology. Computational 
pathology systems rely on the extraction and recognition of visual patterns from 
images and are used in multiple tasks. In the nephrology context, intelligent sys-
tems are applied, for instance, in the segmentation of renal structures and lesion 
classification.

16.2  Digital × Computational Pathology

The use of computers as a tool for assisting in cell analysis is not new. Tolles [1] 
introduced some basic tools and techniques for image acquisition and image analy-
sis. Henceforth an expressive evolution of computational techniques for this field 
has driven the rise of digital pathology, which is a broad term that encompasses 
tools and systems to digitize pathology slides and associated metadata, their stor-
age, review, analysis, and infrastructure [2].

The increasing application of artificial intelligence (AI) and machine learning 
(ML) techniques for image analysis in digital pathology drove the emergence of a 
new field called computational pathology, which guides its efforts to the pattern 
recognition from digitized histology images and their associated meta-data. 
Although in the pathology community there are no formal definitions neither for 
digital pathology, nor for computational pathology, we could define the main tasks 
for the first as to acquire, process, storage, and distribute digital histology images, 
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while for the second as to analyze digital histology images with the purpose of rec-
ognizing image patters and ultimately aid pathologist with the diagnosis. From the 
information technology perspective, digital pathology infrastructure and methods 
are related to the quality of acquired images, the reliability of the stored images, and 
the image distribution and security. Besides, methods for computational pathology 
are related to the detection, segmentation, labeling, retrieval, and classification of 
structures presented in the images.

Figure 16.1 illustrates the digital and computational pathology procedures and 
tasks. Activities in digital pathology encompass the tissue sampling and slide prepa-
ration, which is usually followed by scanning to turn them into high-resolution 
images that must be stored in secure repositories. Complementarily, the computa-
tional pathology exploits the image collections to perform the many artificial intel-
ligence tasks for medical decision support. A common method relies on visual 
feature extraction and representation through image descriptors.

Fig. 16.1 Digital and computational pathology procedures. Digital pathology is a broad term that 
encompasses tools and systems to digitize pathology slides and associated meta-data, their storage, 
review, analysis, and infrastructure. Computational pathology guides its efforts to the pattern rec-
ognition from digitized histology images and their associated meta-data across tasks of image 
classification, object detection, image and per-instance segmentation, labeling and retrieval

16 PathoSpotter: Computational Intelligence Applied to Nephropathology
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16.3  How Do Computers Find Patterns in Histology Images?

The importance of finding patterns in several human activities has stimulated the 
development of computational systems that have the goal of automatizing tasks, 
ultimately reducing classification errors prone to be achieved when done exclu-
sively by humans.

Computational techniques have been a commonplace to aid in diagnoses based 
on radiological images [3–5] and dermatology [6–8], while the use of such tech-
niques on biopsies is rapidly increasing, particularly in nephropathology [9–14].

A computational system used for histology image classification is usually built 
upon the pipeline depicted in Fig. 16.1. Although image acquisition takes place via 
any proper device to the considered task, the pre-processing stage is specifically 
responsible to make the image appropriately uniform to the next stage, where fea-
tures sufficiently representative to help the image classification task are extracted. 
Broadly speaking, image classification should be understood here either as object 
classification where an image is labeled to pertain to a specific class, or as semantic 
or per-instance segmentation where a pixel or a set of pixels are classified to belong 
to a specific class, respectively. Each stage presents its own set of challenges to be 
overcome, and classification error may occur individually or as a result of interac-
tion among all phases.

In computational nephropathology, the acquisition phase captures an entire slide 
that is converted into a digital image using some type of optical-electronic transduc-
tor. Aspects such as image resolution (number of pixels), noise filtering, scale 
adjustments, and color spectrum are strongly influenced by the quality of the lamp 
used to light the slide, as well as the accuracy of the transductor. The result of this 
phase is a digital colored image composed by the combination of three channels 
(R-red, G-green and B-blue), computationally represented as a matrix of integer 
numbers associated to the color intensity at each image point (pixel), which was 
captured by the transductor. Once the image has been digitized, the next step is to 
guarantee image uniformity regarded lighting, bright, and other essential aspects 
inherited to histology images. Image classification can be regarded to the level of a 
pixel, a set of pixels, or an object. The first two are related to semantic or instance 
segmentation, respectively, while the last one is the traditional object classification 
where a box is labeled as a specific known class. Image segmentation is the process 
of partitioning a digital image into multiple segments in order to separate the parts 
of interest from all other parts. For the sake of computer algorithms, image segmen-
tation is the process of assigning a label to every pixel in an image, such that pixels 
with the same label share certain characteristics. Figure 16.2 illustrates an example 
of how image segmentation works over a cropped image containing a glomerulus. 
Feature extraction and image classification are very interdependent and critical to 
the overall quality of the system. Given a specific image classification problem, the 
most difficult challenge is accurately selecting and extracting the best features, and 
then choosing a classification supervised model that is capable of correctly separat-
ing the classes. Due to the complexity in translating which features are the most 
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Fig. 16.2 (a) Original image, (b) preprocessed image, (c) segmented image containing a 
glomerulus

appropriate and how they best represent the object of interest in computer language 
is that the whole task is challenging. Several algorithms have been developed to 
extract features based on color, edges, corners, shape, and textures when analyzing 
images with different performance levels.

To be able to make predictions, ML-based algorithms must first rely on data in 
order to build a mathematical model [15]. This stage is called training, which is by 
itself a complex, time-consuming task, as several models and parameters must be 
tuned to reach the best classifier. Each model built must be “trained” with a sample 
data set in order to “learn” how to classify samples with an acceptable degree of 
error, in the prediction phase. For each context, a specific set of features will be 
relevant, and a certain model of the classifier will yield optimal results when analyz-
ing these features. Since there is no way to a priori determine either the best feature 
set or the best classifier model, for many years, computer scientists struggled with 
the development of mathematical functions that could represent images as features 
in order to obtain the best result possible in the classification stage.

For several years, computer scientists attempted to tackle those limitations until 
a major breakthrough occurred in the field of the computer vision: The use of con-
volutional neural networks (CNN) to automatize the feature extraction process dur-
ing the training stage. A CNN is a combination of convolutional filters designed to 
achieve trainable feature extractors, followed by a fully connected artificial neural 
network (ANN) to perform image classification. Figure 16.3 illustrates an earlier 
form of a CNN architecture, which is comprised of a backbone and a top layer, the 
latter formed by a multi-layer perceptron (MLP). In the 1990s, this architecture was 
shown to work well for recognizing hand-written digits [16]. In recent years, thanks 
to the increasing use of graphics processing units (GPU) to speed up computational 
processes, and the rise of large image data sets [17], it has been possible to develop 
larger, more complex computational vision models based on CNNs. These models 
favor the creation of a new ML approach, called deep learning (DL) [18], which led 
to the widespread use of deeper networks [2] in computer vision, mainly after the 
success of the AlexNet model [19], which won the 2012 edition of ImageNet Large 
Scale Visual Recognition Challenge [20].

16 PathoSpotter: Computational Intelligence Applied to Nephropathology
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Fig. 16.3 An example of an earlier CNN architicture [16] that is comprised of a backbone and a 
top layer. The backbone is formed by convolutional layers followed by pooling layer, this latter is 
in charge of dimensionality reduction and consequently control of the parameter degree-of- 
freedom in the process of training. The top layer is usually laid out by a multilayer perceptron 
(MLP). Before feeding the fully connected (FC) MLP, data from backbone is vectorized through 
1D transformations; after passing through the MLP, 𝐾 neurons are outputted according to the 
number of classes to be classified

In computational pathology, the conception of CNN architectures in association 
with the increasing availability of digital biopsy data sets, stimulated by the adop-
tion of slide scanners, has created momentum in the development of computational 
systems capable of assisting pathologists. A very useful feature of CNN is the pos-
sibility of transfer learning [21]. In this technique, a CNN is initially trained with as 
large data set as possible, enabling it to adjust its filters to correctly extract the best 
features from images. Then, using the previously trained feature extractor, a new 
data set of interest (usually with a few number of training image samples) is submit-
ted to the network, which will then quickly converge on the classification. Transfer 
learning has proven to be a useful technique for developing effective CNN models 
even using small training data sets.

There has been a steady increase in the use of computational image classification 
systems in computational pathology, mainly in the detection of cellular lesions to 
assist in diagnosis [22–24]. Every day new techniques and methods are being devel-
oped to improve the quality of these systems. We believe that in the near future, 
computational systems capable of performing automatic image analysis will become 
an important tool for pathologists, and these will foster significant evolution in 
evidence- based medicine.

16.4  The PathoSpotter Project

Histological images bear a variety of information about patient disease. Frequently, 
patients with similar forms of clinical disease have different histological presenta-
tions and differing prognoses (see Fig.  16.4). Take, for example, a situation fre-
quently faced by pediatricians: A child with high proteinuria leading to 
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Fig. 16.4 Examples of glomeruli with lesions. (a) Minimum change disease, (b) glomerular scle-
rosis, (c) diffuse interstitial

hypoalbuminemia, edema and dyslipidemia presents a condition known as nephrotic 
syndrome. If the renal biopsy of this patient reveals normal glomeruli, as shown in 
Fig.  16.4a, the pathologist knows that child has a benign disease and will com-
pletely recover under treatment with corticosteroids [25]. However, if a child with 
similar clinical presentation shows scars in the glomeruli, as seen in Fig. 16.4b, this 
patient has a progressive disease that will not respond to corticosteroid treatment 
[26]. Then histological lesions contain information that is relevant to defining a 
diagnosis and, consequently, to disease prognosis. Fig. 16.4c depicts a kidney with 
diffuse interstitial widening due to fibrosis, as well as tubular atrophy. Interstitial 
fibrosis and tubular atrophy are considered among the most relevant histological 
markers of renal disease chronicity [27]. Histological images also contain informa-
tion regarding the activity, chronicity, and progression of diseases [25].

Although one is able to recognize many signs that predict the course of disease, 
pathologists are constantly revising the histological criteria used to define disease 
activity, chronicity, progression, and even diagnosis [28]. It is not uncommon that 
pathologists find variations in the characteristics of ordinary lesions in their day-to- 
day practice or encounter lesions that are rare or of unknown relevance [9].1 Due to 
the relevance of images used in anatomopathological diagnoses, pathologists typi-
cally will maintain records of the images of lesions received in their routines. The 

1 https://pathospotter.bahia.fiocruz.br
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emergence of digital image collection and storage has allowed for the creation of 
huge data sets consisting of histology images. Despite that, no tools have been fully 
developed that permit the exploration of the information contained in these images. 
Accordingly, the elaboration of a system capable of automatically detecting and 
comparing histological lesions would be of great interest and could be used to:

• Support pathologists in their routines, mainly those residing in remote areas with 
limited access to specialists in different areas of anatomical pathology;

• Teach young pathologists by providing access to a variety of images of the same 
histological lesion across different cases;

• Perform large-scale clinical-pathological correlations, accelerating research into 
new treatments and the definition of consensuses.

Hence several research groups around the world have been working in the devel-
opment of intelligent systems for automatic classification of histological lesions of 
breast, prostate, skin, and other organs using different approaches [3, 10, 23].2 In 
2014, a group of pathologists and computer science experts started the PathoSpotter 
project [3] in an effort to build a system to perform automatic identification of his-
tological lesions. The most significant developments produced by PathoSpotter to 
date have been in the area of renal pathology, due to the availability of a robust digi-
tal image library of histological renal lesions. This library, stored at the Gonçalo 
Moniz Institute of the Oswaldo Cruz Foundation, [4] began in 1997 and contains all 
biopsies received for diagnosis from all public referral nephrology services in the 
municipality of Salvador (Bahia, Brazil). The digital image library was built by Dr. 
Washington LC dos-Santos. Unlike most of the data sets built for experimental 
research, this library possesses a diversity that likely reflects that found in everyday 
life of pathologists. The library contains more than 110,000 images of more than 
3000 biopsies, mostly of native kidneys stained with hematoxylin and eosin (H&E), 
periodic acid–Schiff (PAS), periodic acid-methenamine silver stain (PAMS), 
Mallory’s trichrome (AZAN) or picrosirius red stain, as well as immunofluores-
cence for IgA, IgG, IgM, kappa and lambda chains of immunoglobulins, C1q, C3, 
and fibrinogen, in addition to images obtained by transmission electron microscopy. 
Lesions are the main focus of the images, which employ different magnifications. 
These images were generated using at least five different digital image capture sys-
tems. Most are in JPEG format with a resolution of 1024 × 768 pixels. Additionally, 
the library contains 400 WSIs. The clinical characteristics of the patients from 
whom the biopsies originated have been previously reported [29]. Most patients 
were adults, with similar male vs. female distribution, and 50% had nephrotic syn-
drome. The main biopsy diagnoses were focal and segmental glomerulosclerosis, 
lupus nephritis, and membranous glomerulopathy. The library also contains about 
2000 images donated by colleagues from four other laboratories at the Federal 
Universities of Piaui (Teresina, Brazil) and Minas Gerais (Belo Horizonte, Brazil), 

2 The Brazilian Health Ministry Research Agency. https://portal.fiocruz.br/en/
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the Kidney Hospital of the Federal University of São Paulo (São Paulo, Brazil), and 
Imagepat, a private service in Salvador, Bahia.

16.4.1  A Map of Kidney Histological Lesions

As mentioned before, histological images bear a variety of information about the 
patient’s disease. Having a way of organizing and visualizing the images under dif-
ferent points of view is essential for pathologists and computer science specialists 
to glance through the histological patterns of renal diseases and to grasp the distinc-
tive presentation of the same category of the lesion in different diseases. To solve 
this problem, we developed an interactive web-based visualization tool that accesses 
a database of images and displays the information in a circular hierarchical form 
(see Fig. 16.5).

The compact visualization of the hierarchy is built on the fly based on the avail-
able information for each image: Staining, nosological diagnosis, pathological ana-
tomical diagnosis, renal compartment, and morphological changes. By using this 
tool, the pathologists can navigate the hierarchy, including zooming and panning, 
collapse and expand branches, search for a specific keyword, and change the hierar-
chy order. Additionally, the pathologists can see and change the details of each 
image displayed on the right panel. This flexibility allows the pathologists to reor-
ganize the images based on different aspects and explore how the images are related.

Fig. 16.5 Visualizing kidney histological lesions as a tree

16 PathoSpotter: Computational Intelligence Applied to Nephropathology
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16.4.2  A Content-Based Image Retrieval System

Anatomopathological diagnosis is performed through visual findings of lesions in 
WSIs. A type of lesion can emerge with variations in visual presentation, which are 
diagnostically relevant. Quite often, the pathologists need to find previous cases that 
are similar to the one under analysis. This process is usually conducted by manually 
inspecting the previous cases to search for similar lesion variations, which is a labo-
rious, time-consuming task, especially considering large image repositories. 
Therefore a system capable of automatically retrieving histological images that 
present similar characteristics to a target image is of great importance for the refine-
ment of the anatomopathological diagnosis and for the research of histological 
markers for diagnostic purposes. In computer science, such task is known as 
content- based image retrieval (CBIR). A typical CBIR system performs two pri-
mary tasks: (a) extraction of visual features for the representation of the images and 
(b) computation of the similarity between the query image and the other images in 
the database using their feature descriptors, which is followed by ranking them 
accordingly (Fig. 16.6).

The effectiveness of a CBIR system strongly bears in the quality of the features 
adopted to describe the images [30]. To select and extract representative features, 
traditional CBIR systems have to deal with several specificities of image objects, 
such as scale and rotation variances. Some algorithms like SIFT [31], SURF [32], 
and HOG [33] have been traditionally used to deal with these issues. For medical 
purposes, the development of effective feature extractors has been considered a 
challenging problem [4, 34].

The evolution of the CNN-based architectures facilitated the feature extraction 
by automatizing the learning and extraction of invariant features [35], while allow-
ing its use as feature extractors for CBIR systems [34, 36–39], including some 
works in histopathology [40, 41].

Images

Query image

Feature
extractor

Retrieved images

Image
descriptors

11000111
00110011
11111111
00001100

11101111
Query descriptor

Comparison
and ranking

Feature
extractor

Fig. 16.6 Typical CBIR system. A feature extraction method creates image descriptors that are 
stored in a database. Such descriptors allow comparison and indexing of 𝑡h images. When a query 
image is submitted, a descriptor is built and compared to the stored ones. Finally, the images are 
ranked according to a similarity score and the most similar are presented to user
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In CBIR systems applied in nephropathology, the images may be indexed by 
their visual content (color, texture, shape) and by metadata representative of the 
histopathological findings (characterization of renal structures). Both information 
can be used for image indexing and retrieval. Although many systems used in medi-
cal practice are capable of comparing images based on their global appearance, 
subsequently list them according to some similarity score, they are not capable of 
finding relevant images based on the particular features presented in specific nephro-
logical findings. A system able to perform such specialized retrieval depends on the 
development of methods for extracting specific discriminative visual patterns in 
images from renal biopsies.

The PathoSpotter Search3 service is the first initiative for a CBIR system devoted 
to nephropathology. It uses a feature extraction algorithm based on CNNs (trained 
with the nephropathology images) to compute visual descriptors for the set of 
images that will be used as the retrieval repository and save them in a database for 
future querying. To search for images in this set that are similar to a query image, 
the pathologist submits this query image to the system and select the database to be 
used for retrieval. The system uses the same feature extraction algorithm to extract 
a descriptor for the query image and compare such descriptors to all descriptors in 
the database. Each comparison yields a number that express the similarity between 
the query image and the compared image (similarity score). Finally, the system 
ranks the images in the database according this similarity score and shows the ones 
that present the higher similarity score with the query image.

16.4.3  How PathoSpotter Finds Patterns in Histology Images

Detection of renal lesions in histology images is the ultimate goal of nephropathology. 
When considering the analyzed renal structure along with the clinical data, the pathol-
ogist and the nephrologist are capable to provide a nosological diagnosis as accurate 
as possible. Likewise, the main goal of PathoSpotter is to pursue precision in the 
detection of lesions over biopsy images by using ML and computer vision techniques. 
The PathoSpotter system is fed with WSIs or cropped images, and to accomplish that 
goal, our team has been working with two fundamental tasks: image classification and 
segmentation. We consider segmentation as pixel classification when dealing with the 
semantic or the per-instance forms of this task. Here however we differentiate both 
tasks as to label an object (considering a bounding box) or to label a pixel, respec-
tively, inside the specific concepts of object classification and image segmentation.

The first classification system developed in PathoSpotter was based on hand-
crafted features and a K-nearest neighborhood classifier to label images of no-lesion 
or with hypercellularity glomerulus [9]. The input is a cropped image containing a 
glomerulus, and the data set was comprised of digitized images fixed in formalin (to 

3 https://pathospotter.bahia.fiocruz.br/pathospottersearch
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preserve their histological structure), embedded in paraffin, cut into 2–3 μm thick 
sections, and finally stained using one of the following techniques: H&E, PAS, 
PAMS, AZAN, or picrosirius red stain. In total, 811 images were used, considering 
300 images of no-lesion (normal) glomeruli and 511 images of glomeruli from kid-
neys with hypercelullarity. A binary classification was performed, yielding 88% of 
accuracy in small image samples used to assess the performance of the system.

Lately an evolved system was conceived, [11] grounded on an own CNN archi-
tecture and support vector machine (SVM). As mentioned before, CNNs provide 
features that are found in the process of training the classifier. After training, these 
features are appropriated to be used in any other classifier rather than the MLP on 
top of the CNN; in our case, an SVM was used. Over the same data set used in the 
work of Barros et al. [9], using a tenfold cross-validation evaluation procedure, this 
new classification method found near perfect results in hypercellularity/normal 
binary problem. Considering four classes—endocapillary, mesangial, both, and nor-
mal–this new classifier achieved 82% of mean F1-score and accuracy.

CNN-based classifiers commonly output the probability of classifying an object 
via a softmax function placed in the last layer. The softmax function assures that the 
scores of all classes sum up to 1, then guaranteeing that the highest score is given to 
the “most probable” class. Since these softmax scores are also nonnegative, by defi-
nition, we can say they represent probabilities, although these cannot be interpreted 
as reliable confidence scores. Hein et  al. [42] showed that CNNs almost always 
return high confidence predictions even for inputs far away from the training distri-
bution. Since the scores tend to be high regardless of the input, they are not a suit-
able measure of uncertainty.

An uncertainty metric should indicate whether the model is “certain” or “uncer-
tain” about its prediction, being mostly useful for high-risk applications such as 
autonomous driving or computer-aided diagnoses (CAD). Ideally, when evaluating 
a model, the incorrect predictions should have higher uncertainty scores than cor-
rect predictions. This way, when a model is uncertain about a given image, we can 
consider that the prediction is probably wrong. As the classification cannot be fully 
trusted, the sample should be properly assessed by specialists. Recently research on 
uncertainty estimation is gaining more relevance [43]. Specifically for CAD appli-
cations, Begoli et  al. [44] highlight the need for uncertainty measurements in 
machine-assisted, medical systems. Indeed several works studied how uncertainty 
can be applied in medical imaging classification approaches [45, 46] even for 
nephropathology [47].

Diving into this issue, Chagas et al. [12] proposed to evolve the PathoSpotter 
classification system by combining CNN architectures with an uncertainty estima-
tion method for membranous nephropathy classification. Besides achieving com-
petitive classification results (average F1-score of 93.6%), their uncertainty scores 
showed high relation with correctness on predictions (higher uncertainty scores rep-
resented mostly incorrect predictions). For practical applications, the uncertainty 
score works as additional support information for the pathologist. If a model returns 
results with high uncertainty, the pathologist can reevaluate, ignore the prediction, 
or mark the image for further inspection.

L. Oliveira et al.
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Starting from the uncertainty estimation, Chagas et  al. [13] also increased 
PathoSpotter potential by tackling the problem of out-of-distribution (OOD) detec-
tion for membranous nephropathy classification. OOD detection aims to determine 
whether the input image belongs or not to the training distribution. Considering the 
overconfidence problem of neural networks, it might be troublesome to analyze the 
output of a model when the target image belongs to a different domain (e.g., a non- 
glomerulus image) or to an unknown or novel class of the same domain (e.g., a 
glomerulus with an unknown or novel lesion). This OOD detection was based on an 
unbounded open-set setup, i.e., when there are no constraints to the unknown classes 
(novel glomerular classes and non-glomerular classes are considered OOD in the 
same way) [48]. OOD detection ensures the safety and robustness of the evaluation 
pipeline, as OOD samples might represent an outlier or noisy data.

A whole pipeline can be depicted considering uncertainty estimation and OOD 
detection, as Fig. 16.7 suggests. An ideal pipeline is based on a model that performs 
class prediction, uncertainty score, and OOD detection. Figure 16.7 details how we 
propose using these model outcomes. Firstly, one must determine whether the input 
image is an OOD sample or not. Depending on the OOD method and implementa-
tion, this step could be achieved automatically or via threshold. If the image is clas-
sified as OOD data, the sample could represent a non-glomerulus or a novel class, 
thus should be assessed in another pipeline defined by specialists. We propose dis-
carding the image, reevaluate it, or mark it for further analysis, but this phase 
depends on the application and specialists involved. Alternatively, if the sample is 
not classified as OOD data, one must determine how reliable the class prediction is. 
With the uncertainty score, we can define (automatically or via threshold) whether 
the model is “certain” or “uncertain” about the class prediction. If the model is 
“uncertain,” the sample should be investigated, using an assessment similar to the 
OOD case. If the model is “certain,” we can trust the class prediction and use it as 
our final classification label. Knowing when the model “does not know” is of 

model

input image

class prediction

uncertainty score

OOD detection

is OOD 
sample?

classify as 
OOD data

discard, reevaluate, 
further analysis, 

etc.

yes classify as 
in-distribution 

data

no define 
uncertainty 
of prediction

is model 
uncertain?

make final 
prediction

no
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reevaluate, further 

analysis, etc.
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Fig. 16.7 Uncertainty-aware open-set classification pipeline proposal. Instead of predicting a 
single label, the model performs class prediction, uncertainty score, and OOD detection. Each 
model outcome is used as input (represented by dashed lines) for other steps. Depending on 
whether the input image is an OOD data and whether the model is “uncertain,” a different end for 
the pipeline can be reached (represented by dark blue boxes): Discarding the image or further 
assessment or using regular class prediction for glomerular classification
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underlying importance because not only the image might not be related to the data 
domain, but also the model could return an overconfidence score for any given 
image. Regardless, in a safe evaluation pipeline, the pathologists should be aware of 
when any of those situations occur.

In the classification works by Barros et al. [9] and Chagas et al. [11], the glom-
eruli were cut manually by the pathologist, making the classification task still with 
some degree of human interference. Thus, with the aim of improving the injury 
classification capabilities of the PathoSpotter system, Rehem et al. [14] propose a 
glomerulus detection method on renal histology images. For that, we evaluated two 
state-of-the-art deep-learning techniques: single-shot multi-box detector with 
InceptionV2 (SI2) and faster region-based convolutional neural network with 
InceptionV2 (FRI2). As a result, we reached 0.88 of mAP and 0.94 of F1-score, 
when using SI2, and 0.87 of mAP and 0.97 of F1-score, when using FRI2. On aver-
age, to process each image, FRI2 required 30.91s, while SI2 just 0.79s. In the exper-
iments, we found that SI2 model is the best detection method for the particular task 
as it is 64% faster in the training stage and 98% faster to detect the glomeruli in 
each image.

16.5  Achievements, Challenges, and Future Prospects

We have seen several groundbreaking achievements in computational pathology 
and nephropathology in the literature, mainly due to the advances in the DL meth-
ods to classify and segment images. Some examples can be found in detecting skin 
cancer [23] or classifying glomerular lesions in WSIs [11, 49]. Although much has 
been done toward solving fundamental problems in the field, unfortunately very few 
studies exploit large and heterogeneous data sets with substantial cohorts that might 
validate the clinical usefulness of some pre-clinical prospective works. This situa-
tion may result in some skewed opinions from what is hype and what is effectively 
promised in the state-of-the-art works. This is so because many challenges are 
involved in the development of systems capable of automatically integrating expert 
knowledge pertaining to specific histological lesions, such as:

• The number of existing histological lesions in a given organ. It is very difficult to 
precisely define the exact number of existing lesions in a given organ. For 
instance, in renal pathology, the concept of a histological lesion is vague. These 
are considered to be discrete, specific, and defined as elementary changes in a 
histological structure (e.g., mesangial hypercellularity), but can also be a combi-
nation of distinct lesions, also referred as a lesion pattern (e.g., membranous, 
membranoproliferative). The denominations used are sometimes misleading, 
due to associations with nosological entities [50]. In some cases, due to the ori-
gin and progression of a structural change in a tissue, it will not always be 
 possible to stratify a complex pattern of structural changes into different elemen-
tary lesions. Some elementary lesions may become evident only through the use 
of histochemical techniques that highlight specific structures or chemical com-
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ponents [50]. Although this strategy is helpful for the pathologist to perform a 
diagnosis, it also expands numerous possible representations of a given lesion. 
Additionally, the histochemical staining technique used to highlight specific 
structures varies greatly among laboratories. Although H&E is the most widely 
used stain, it is also used together with various other stain combinations. Thus, 
efforts to establish a comprehensive classification of all lesions within a given 
organ may prove unsuccessful.

• Lack of agreement in lesion definition. In their daily routine, pathologists must 
decide whether a given histological structure is normal or if it presents a lesion. 
Most of the time these decisions are easily made, and most pathologists would 
share the same opinion. Difficulty emerges when faced with early stage or not 
fully-developed lesions. Decision-making can be further complicated by the 
existence of lesions that, at early stages, bear some resemblance to artifacts that 
appear during histological preparation (sectioning or staining for instance). In 
fact, these issues are a frequent topic of debate among specialists, with consensus 
generally achieved through the exclusion of borderline lesions. For instance, the 
definition of glomerular mesangial hypercellularity varies between the MEST-C 
classification of IgA nephropathy and the lupus nephritis classification revised 
by Bajema et al. [27] and Markowitz [51]. Furthermore, the definition of mesan-
gial hypercellularity used in MEST-C classification excludes nonclustered 
adjoining mesangial cell nuclei [52].

• Low frequency of lesions. Reports on the frequency of biopsy-confirmed glo-
merular diseases attribute more than 50% of cases to focal and segmental glo-
merulosclerosis, membranous glomerulopathy IgA nephropathy or lupus 
nephritis, while amyloidosis and Alport syndrome are less frequent (about 1% 
each) and fibrillary glomerulopathy and fabry glomerulopathy are rarely observed 
[29, 53]. Consequently, the elementary lesions associated with these diseases are 
represented differently in most histological image libraries. Since the current 
supervised approaches used in computer vision require large amounts of images, 
it may prove difficult to find suitable sets of images for analysis.

• The emergence of new histological lesions. One of the most interesting observa-
tions in pathology meetings is shifting relevance attributed to structural changes 
in tissues. These fluctuations profoundly impact disease classification and patient 
treatment. Great effort is expended in the identification and validation of the 
relevance attributed to a given lesion. For instance, tubulitis attained high rele-
vance in the context of kidney transplant rejection [28].

• Tissue processing. Although a trend exists toward the use of phosphate-buffered 
formalin as a preserving medium for renal biopsies, the choice of fixative varies 
among pathology laboratories. In practice, formalin acetic alcohol and Bouin’s 
fluid are used by many laboratories. These fixatives preserve molecular residues 
differently, affecting tissue morphology and staining properties. At least four 
different staining techniques are used for highlighting different structures. 
Although most pathology laboratories commonly use H&E, PAS, and PAMS, 
staining and counter-staining techniques vary widely among pathology labora-
tories [54].

16 PathoSpotter: Computational Intelligence Applied to Nephropathology



268

• Image capture and processing. Although much emphasis has been given to whole 
slide scanners, systems based on portable image capture devices, such as smart-
phones, could facilitate rapid consultations among pathologists. This practice 
requires an adequate normalization step prior to conducting image analysis.

• The obtainment of a diversified, annotated data set of images, validated by 
pathologists, presents a major challenge for computational pathology. This is 
largely due to a shortage of professionals with high levels of expertise in specific 
areas or diagnostic pathology.

• One of the expected uses of a system capable of identifying histological lesions 
is to perform clinical-pathological correlations on large scale. This approach 
may require flexibility in order to quickly learn new lesions as well as the capa-
bility to combine images acquired by different sources and methods (immuno-
fluorescence, electron microscopy) with meta-data obtained clinically.

Based on the challenges cast before, we can dig in some future prospects to the 
field of computational nephropathology until pathologists are able to effectively use 
CAD-based systems in their daily laboratory routines. They are:

• Classification systems must provide true reliability when examine WSIs in the 
wild. For that, methods should provide a consistent uncertainty score.

• Supervised methods must provide appropriated generalization either to accom-
plish any kind of classification or even to segment renal structures. Due to lim-
ited availability of data for all types of renal lesions, it is hard to guarantee broad 
generalization in the process of training supervised methods. An interesting topic 
of research that is gaining enough attention lately is the self-learning methods, 
which should be capable to recognize patterns even if it was not trained for this 
purpose.

• AI/ML-based methods should work on stain-free biopsy images or learn how to 
generalize from one stain over the others. Each stain highlight characteristics of 
the image edges, which usually skew the generalization performance of an ML 
technique. Working on stain-free biopsy images, it is possible to subsequently 
stain the histology image according to generalization purposes; another way 
could be to conceive powerful methods that could generalize from a unique stain 
to rule images stained by other methods.

• Integrate clinical data with histology images. One way to provide more informa-
tion to ML-based systems is across specialized text, which would create more 
powerful workflows in computational nephropathology. Broadly speaking, tex-
tual data would bring large possibilities to build systems to recognize timely 
patterns, rather than spatial patterns as it is commonly done by DL methods, 
nowadays.

• The computational nephropathology would benefit considerably if there was an 
integration of data from clinical sources and images, but particularly with data 
from genomics and proteomics. These two types of information would favor, for 
instance, the identification of new histological markers of disease previously 
unrecognized by pathologists.
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To reach these future milestones, there is an avenue to improve current research 
in computational nephropathology, considering since data set gathering to how 
researchers measure the performance and generalizability of the proposed methods.

16.6  Concluding Remarks

Computational pathology is a fast-developing area with a wide scope and research 
agenda full of opportunities and challenges that must be overcome to allow its full 
adoption by pathologists in their daily practice. The new techniques and tools 
yielded by computational pathology may improve the way that the pathologists per-
form their tasks, allowing them to dedicate more time to the integration and analysis 
of clinical, morphological, and molecular information collected from tissue speci-
mens. Even though much has been done in the field, the proposed solutions in the 
scientific literature are far from the point where they can be applied in preclinical 
trials. Weaknesses in terms of analytical and clinical validation still need to be 
bridged so that such solutions are robust and reliable enough to be deployed to be 
used by the pathologists in their daily routine.
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