
165

Chapter 11
Innovations in Maintenance Dialysis 
Therapy

José A. Moura-Neto, Jyoti Baharani, Sudhir Bowry, Carsten Hornig, 
Christian Apel, Arduino Arduini, José Carolino Divino-Filho, 
and Bernard Canaud

11.1 � Introduction

Innovation in dialysis aims to bring about clinical benefits and better outcomes 
when compared to current state-of-the-art treatment practices. In other words, inno-
vation may be a novel idea, product, service, or care pathway that has the capacity 
to improve patient outcomes to facilitate care while containing costs and creating 
value in the provision of renal replacement therapy [1, 2]. In this perspective, inno-
vation must primarily fulfill an unmet medical need and must be considered as an 
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effective tool and be widely applied in clinical practice to the point it induces a 
therapeutic paradigm shift.

11.2 � Hemodialysis Innovations from a Value-Based 
Care Perspective

In hemodialysis (HD) therapies, innovation includes many components that involve 
patient experience, scientific evidence, technical advances, skills of care givers as 
well as care support, and delivery practices [3]. In this section, we pointedly focus 
on the major innovations in HD that have been shown to improve patient outcomes 
and to create value in renal care [2]. These innovative tools belong schematically to 
five main pathways that need to be considered toward the delivery of dialysis 
therapies.

11.2.1 � Enhance Dialysis Efficacy

11.2.1.1 � Convective-Based Therapies (Enhanced External 
and Internal Filtration)

In prescribing HD therapy, the choice is between three main treatment modalities: 
low-or high-flux HD and hemodiafiltration (HDF). HDF can be delivered in differ-
ent configurations, high volume hemodiafiltration (HV-HDF) being currently rec-
ognized as the most efficient blood purification method per unit time [4]. The solute 
removal capacity of all HDF versions is higher than high-flux HD, allowing effi-
cient removal of a broad spectrum of uremic retention solutes that are also referred 
to as uremic toxins. Schematically, reduction rates of hv-HDF is 10–5% higher for 
low molecular weight compounds (e.g., urea, creatinine), 20–30% higher with 
peculiar compounds (e.g., inorganic phosphate, free light-chain immunoglobulin) 
[5–7], and 100% higher for middle molecular weight compounds (e.g., ß2M, myo-
globin) [8–10]. Furthermore, solute removal capacity is positively correlated to the 
total ultrafiltration volume delivered, used as surrogate of dialytic convective dose 
[11–13]. Therefore, relying on the law of conservation of mass within the dialysis-
patient system on a weekly basis by increasing solute mass removal by HDF ther-
apy, considering a constant generation rate, and circulating concentration of solute 
of interest should decrease accordingly at steady state [14, 15].

In this context, circulating levels of ß2M offer a highly clinically relevant uremic 
marker that needs to be considered as used more widely by nephrology community 
[16, 17]. ß2M results from cell activation (expressing HLA), is triggered by inflam-
mation, oxidative stress, and complement activation, contributes to endothelial dys-
function, and finally is cleared by kidney functions [16]. In dialysis patients, ß2M 
circulating level has an added importance since it reflects both efficacy of renal 
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replacement treatment (RRT) and toxicity risk particularly for the cardiovascular 
system [18–20]. Clinical interest of monitoring ß2M circulating levels is highlighted 
by several scientific reports [17, 21]. Using ß2M as the paradigmatic marker of RRT 
efficacy has been emphasized in some recent reports [22] and implemented in the 
guidelines of the Japanese Society of Dialysis and Transplantation (JSDT) [23]. 
Incorporating ß2M in the panel of biomarkers required for assessing HDF dialysis 
dose delivery was also proposed by the EUDIAL working group [24].

Recent studies have shown that by using more open membranes, and forcing 
internal backtransport phenomenon (internal filtration) through increasing flow 
resistance [25–27], comparable ß2M removal rates to HDF could be achieved [28, 
29]. This is an interesting finding that confirms superiority of convective transport 
on ß2M clearances and other middle MW compounds, but at the expense risk of 
increase albumin loss due to higher and uncontrolled membrane stress [29].

Based on the most recent studies, it is suggested that maintaining a predialysis 
serum ß2M concentrations ≤25 mg/L is achievable with standard HDF and particu-
larly hv-HDF and is an optimal target toward reducing mortality in dialysis patients 
[22, 23]. To comply with such key parameter indicator, dialytic convective dose 
needs to be probed and adjusted individually to patient ß2M kinetics [30]. As indi-
cated by recent studies, using currently available high-flux membranes, that could 
be achieved in a majority of patients in postdilution HDF mode with 23–28 L per 
session of total convection volume [15]. In these cases, ß2M reduction rate per ses-
sion is ≥80%, a value equivalent to a ß2M Kt/V ≥ 1.5 that provides a ß2M mass 
removal ranging between 150 and 200 mg/session for a thrice weekly 4 h treatment 
schedule [10, 31, 32]. Such treatment schedule is then able to remove 450–600 mg 
per week out of the 1000–1500 mg mass generated per week.

11.2.1.2 � Intensive Dialysis

The conventional prescription of HD is three sessions/week, each of 4 h duration 
(12 h). Increasing weekly treatment time either through longer individual session 
(long or home HD, nocturnal) or through more frequent sessions (daily, alternate 
day), so-called intensive dialysis, has significant benefits on patient outcomes [33–
35]. Intensive dialysis enhances clinical performances and treatment efficacy, 
reduces intradialytic morbidity and treatment burden, and improves mid-and long-
term patient outcomes [32, 36, 37]. In this context, HDF has been shown to bring 
additional values on patient outcomes and patient perception [38–40].

Clinical benefits of intensive dialysis rely on different mechanisms. Firstly, it is 
associated with higher solute removal capacity and better homeostasis control of 
specific solutes (inorganic phosphate, ß2M, indoxyl sulphate, para-cresol sulfate). 
Increased treatment time is currently the only way to overcome slowly moving 
intracorporeal compounds (low intracorporeal mass transfer coefficient or body 
clearance) during intermittent treatment [30, 41]. This is clearly shown in kinetic 
studies. Secondly, it is also coupled with a reduction of ultrafiltration rate, a condi-
tion that facilitates vascular refilling capacity, reduces hypovolemia, and then 
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improves hemodynamic response. In other words, slow ultrafiltration rate tends to 
minimize dialysis-induced systemic hemodynamic stress [42–47]. Thirdly, it 
restores a more physiological profile to short intermittent treatment schedule on 
kinetic and volume changes of solutes. This is confirmed and substantiated by 
reduction of time-averaged changes (solute concentration, fluid overload, pressure) 
as well as time-averaged deviations (up, down) [48–50]. Fourthly, it tends to reduce 
cardiovascular burden (left ventricular hypertrophy) as well as end organ damage 
(brain) and overall mortality [35, 42]. Finally, it is associated with a better patient 
perception, reduced impact on quality of life, and facilitated life and professional 
rehabilitation [34, 51, 52].

11.2.2 � Improve Cardiovascular Outcomes

11.2.2.1 � Fluid Management

Optimal fluid management has emerged over the last few years as a crucial compo-
nent to minimize systemic hemodynamic stress and to reduce mortality in dialysis 
patients [53–55]. Fluid management has two pathways that need to be considered 
[56–58]: one, reflecting chronic fluid overload accumulated during the interdialytic 
period and not adequately or timely corrected by dialysis; the other one, reflecting 
fluid volume depletion induced during dialysis and the systemic hemodynamic 
response. Interestingly, both the factors have negative impact on the cardiovascular 
system through different pathways. Chronic fluid overload is responsible for hyper-
volemia, systemic and pulmonary hypertension, cardiac stretching with functional 
and structural remodeling, leading to left ventricular hypertrophy, cardiac dysfunc-
tion (systolic and diastolic), arrhythmia eventually associated with sudden cardiac 
death [47, 59]. On the other side, fluid depletion induced by ultrafiltration during the 
dialysis procedure exposes patient to various degrees of hypovolemia; too rapid 
ultrafiltration may induce critical hypovolemia and being likely responsible for 
relapsing intradialytic hypotension episodes causing ischemic insults and leading to 
repetitive end organ damages (cardiac stunning, brain injury, kidney injury) [47].

Fluid management, currently summed up by the dry weight probing approach, 
remains for clinicians a delicate between correcting fluid overload while preventing 
severe fluid depletion [58]. Several biomarkers have been proposed to ensure safer 
fluid management and reviewed recently. Multifrequency bioimpedance (BIA) has 
gained large clinical acceptance in supporting clinical dry weight probing [60, 61]. 
Recent large observational or controlled studies have confirmed the significant 
value of BIA in guiding more precisely and safely fluid management in dialysis 
patients to reduce mortality [61–63]. Lung ultrasound (LUS), by scoring B-lines 
number, used as surrogate marker of extravascular pulmonary edema (thickening of 
interlobular septa), has also been shown useful in guiding clinical decision [64, 65]. 
In recent controlled studies, LUS has proved its value in reducing dry weight and 
controlling hypertensive refractory patients [66, 67]. Further outcome studies are 
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required to confirm cardioprotective effect of these tools on a long-term basis. 
Cardiac biomarkers have been also used to evaluate fluid status either fluid overload 
(BNP, Nt pro-BNP), fluid depletion (copeptin), or cardiac damage (troponin) to 
guide clinical decision-making in fluid management [53, 68, 69]. In addition, these 
biomarkers used either alone or in combination may provide interesting predictive 
cardiac risk [70, 71]. Unfortunately, utilization of these biomarkers is associated 
with increased costs that often preclude their regular use as monitoring tool and are 
not part of best clinical practices.

11.2.2.2 � Feedback-Controlled Tools

Feedback-controlled tools integrated in dialysis machine may provide additional 
options to facilitate dialytic fluid management and to improve hemodynamic stabil-
ity. Among dialysis tools, two have been extensively studied: firstly, blood volume-
controlled ultrafiltration; secondly, hypothermic or isothermic dialysis. Blood 
volume (BV)-controlled ultrafiltration is associated with improved hemodynamic 
stability [72, 73] as indicated by a significant reduction of incidence of hypotensive 
episodes and cardiac wall motion abnormalities [74]. However, this clinical benefit 
has not been confirmed in interventional large studies, meaning that volume control 
is not the only hemodynamic parameter to be considered [75]. Hypothermic or iso-
thermic dialysis achieved either manually or automatically via blood temperature 
monitoring option has been shown beneficial in unfavorable patients (hypotensive-
prone, cardiac, diabetic patients) and uniformly across all hemodynamic instability 
conditions as summarized in recent meta-analyses [76–78].

Automatic sodium management has been recently integrated in modern dialysis 
machines. Sodium control module loop incorporate dialysate sensors (e.g., conduc-
tivity cell) and processor unit that integrates conductivity data and dialysis fluid 
conductivity adjustment according to dialysate-plasma sodium prescribed [79, 80]. 
Validation studies have shown that zero-diffusive sodium or isonatremic condition 
could be achieved very reliably with less than 1.0 mmol/L plasma sodium concen-
tration changes [81]. Furthermore, the sodium control module provides an estimate 
of the sodium mass balance and allows monitoring of plasma sodium concentration 
throughout the dialysis session. Further studies are needed to identify clinical ben-
efits as well as long-term cardiovascular outcome improvement of this new tool [82].

11.2.3 � Facilitate Acceptance of Alternative HD Delivery Modes

11.2.3.1 � Home Therapy

Despite proven clinical and economic benefits, home hemodialysis (HHD) remains 
still marginal (<3% of share) as compared to in-center HD, except in few countries 
(e.g., New Zealand, Australia, Canada, Denmark, Finland, Sweden, UK) that have 
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initiated programmes to promote this therapeutic option [83]. A renewed interest for 
HHD is emerging due to the availability of new specifically designed, more friendly 
and connected dialysis machines target to meet the needs of patient autonomy and 
mobility, and attractivity of daily treatment and healthcare regulatory policies [84, 
85]. Several manufacturers have developed new, innovative, and well featured HHD 
machines that includes NxStage System One, Quanta SelfCare+, Physidia S3, and 
Tablo Outset Medical [86]. These HHD machines have been approved by appropri-
ate notified bodies and are being currently implemented and assessed worldwide for 
home dialysis treatment. Presently, it is too early to draw any conclusions on the 
prevalent acceptance and use of HHD, but it seems that this new technology has 
already triggered an upswing for home dialysis therapy.

11.2.3.2 � Personalized Therapy

Incremental dialysis and more flexible dialysis treatment schedules are currently 
being developed not only to facilitate transitioning from end stage kidney disease to 
dialysis and improve patient’s treatment acceptance [87–89], but also to solve renal 
care issues in fast-developing countries (e.g., China, India) [90–92]. Incremental or 
flexible dialysis relies mainly on the preservation and support of residual kidney 
function [93–95], or by adding an additional oral component acting on the gut and 
reducing uremic toxins generated [96, 97] by means of adsorber (ST120) or pro-or 
antibiotics mixtures [98]. In this context, several recent reports have shown poten-
tial clinical benefits, cost-effectiveness, and usefulness of such individualized 
approaches. However, it remains to be proved by controlled studies that such incre-
mental or flexible dialysis schedules are applicable and generalizable to unselected 
populations.

11.2.4 � Ensure Vascular Access Sustainability

Vascular access sustainability remains source of concern in most dialysis patients. 
Failure or dysfunction of arteriovenous fistula or graft is one of the first causes of 
hospitalization and morbidity in HD patients. In this context, tunneled central 
venous catheters represent an easy and comfortable alternative, although unfortu-
nately associated with additional risks (inadequate dialysis, infection, vein stenosis) 
[99, 100]. Vascular access management represents a highly ranked priority in most 
best practice clinical guidelines [101]. Over the last few years, various new options 
have emerged to improve vascular access outcomes [102]: firstly, increased success 
of native arteriovenous fistula creation by pre-or intra-operative vasculature assess-
ment [103–107]; secondly, percutaneous creation of proximal arteriovenous fistula 
[108–111]; thirdly, the use of bioengineered blood vessel in patients with exhausted 
vasculature [112–115]; fourthly, better handling of tunneled central venous catheter 
or implanted port devices and use of locking solutions [116–119].
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11.2.4.1 � Implement Continuous Quality Improvement Programs 
with Support of Digital, Advanced Analytics, 
and Artificial Intelligence

Outcomes of dialysis patients result from a complex equation involving individual 
patient profiles, renal replacement modality, multiple dimensional measures [120], 
skills of care givers, and therapy delivery practices. In this complex therapeutic 
chain involving several stakeholders with multiple sources of data, implementation 
of a continuous quality improvement process supported by digital and advanced 
analytic tools providing balanced scorecard is an attractive way to achieve targets 
and to improve patient outcomes in a more structured and comprehensive manner 
[121, 122]. The benefits of such a strategic approach has been reported in a recent 
study developed in a large dialysis chain provider [123]. In this study involving a 
cohort of 4270 incident dialysis patients, 2-year mortality was analyzed according 
to achievement of key performance indicators (KPI) prior (group A, 2397 patients) 
to and after (group B, 1873 patients) medical peer review involving continuous 
quality improvement (MPR CQI) onset. After MPR-CQI implementation, a signifi-
cant improvement in KPI targets was achieved associated with a 30% risk reduction 
of mortality [123].

11.2.5 � Final Considerations for HD Innovations

In the last decade, industry has developed a number of innovative technologies that 
support the nephrological community in monitoring and individualizing therapies 
toward the overall target of improving outcomes and well-being. For example, esti-
mation of sodium levels is crucial toward maintaining fluid status and hyperten-
sion–both of which impact cardiovascular outcomes in HD patients; the automated 
sodium management tool of the 6008-dialysis machine (FMC, Bad Homburg, 
Germany) helps achieve an individualized and precise sodium prescription without 
adding any workload to the dialysis care staff. Such strategies that enable clinical 
decision-making to improve patient well-being without additional organizational 
effort are examples of the new trend toward value-based healthcare. This concept 
is graphically summarized in Fig. 11.1. In this section, we have attempted to delin-
eate various “innovations”—grouped in five pathways—that have the potential to 
fulfill the aim of improving the hitherto poor outcomes associated with the dialysis 
patient populations (Fig. 11.1). Collectively, each of the five pathways (enhanced 
dialysis efficacy through convective-based therapies and intensive dialysis; 
improved cardiovascular outcomes through active fluid management, feedback-
controlled loops and automated sodium management; facilitated patient acceptance 
of treatment through home-based and personalized therapies; ensured vascular 
access sustainability through non-invasive pre-implantation vasculature assess-
ment, availability of bioengineered blood vessels, and better handling of tunneled 
central venous catheters or port devices; implementation of continuous quality 
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improvement program with support of digital, advanced analytics, and artificial 
intelligence) has a higher probability of achieving better therapy outcomes and 
increased patient well-being, rather than addressing each pathway separately and 
fragmented manner.

11.3 � Peritoneal Dialysis Innovations

The advent of Continuous Ambulatory Peritoneal Dialysis (CAPD) in 1976 can be 
considered as a simple and fabulous innovation in the home dialysis therapy sce-
nario [124–126], leading to a significant increase in peritoneal and home dialysis 
utilization. Since those days, innovations mainly in the area of peritoneal dialysis 
(PD) bag designs, connectivity and monitoring have kept a steady pace of develop-
ment, opposite to what happens in the area of the base PD solutions and its mostly 
used osmotic agent, glucose.

11.3.1 � Innovations in PD Access, Catheter Design, 
and Insertion Techniques

It is correct to say that functional peritoneal dialysis access remains the cornerstone 
and Achilles’ heel for successful initiation and time on therapy. If catheter insertion 
is free of complications, then it goes to follow that patients will most likely have a 
successful time on peritoneal dialysis.

Catheter type and the tendency of catheter migration therefore influence failure 
potential. Many innovative PD catheter designs have been produced along the years. 
Here, we highlight two of them:

	(a)	 The weighted catheter designed by Di Paolo [127, 128] to overcome the prob-
lem of catheter dislocation. It is a straight catheter, weighted at the end with 
12 g of silastic coated tungsten, an inert biocompatible element which is denser 
than dialysate and gravitates into the pre-rectal peritoneal pouch (Fig. 11.2). 
The weighted catheter’s first reported use was in 1996 with further publications 
in 2004 of a series of 746 patients with fewer complications and dislocations 
when compared with Tenckhoff catheters. In 2019, Stonelake et al. presented 
results that the weighted catheter was associated with lowest failure rates when 
compared with surgically inserted non-weighted catheters in a group of patients 
with increased risk factors for adverse catheter outcome [129].

	(b)	 A new catheter design by Al-Hwiesh [130], the new triple-cuff PD catheter has 
demonstrated a zero rate of catheter migration, improved catheter survival, and 
lower peritonitis rates (Fig. 11.3)
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a b

Fig. 11.2  The weighted PD catheter designed by Di Paolo. (a) PD catheter with weighted tip 
“flipped” secondary to constipation; (b) Same PD catheter 2 days after constipation treatment–
weighted element back in satisfactory position. (Courtesy of Dr. Jyoti Baharani, Birmingham 
Heartlands Hospital, Birmingham, United Kingdom)

Fig. 11.3  The triple-cuff 
PD catheter designed by 
Al-Hwiesh. (Courtesy of 
Dr. Abdulla Al-Hwiesh, 
Al-Khobar, Saudi Arabia)

11.3.2 � Connectology Assistance

Although assisted PD has increased the repertoire and numbers being enabled to 
have therapy, there are practical measures that need to be taken into consideration 
before an assisted service can be offered. Efforts to create devices that further 
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facilitate the management of the PD exchanges by patients and/or by healthcare 
professionals assisting the therapy are needed, for example, new connectors for PD 
exchanges as well as devices to manage patient training, prescriptions, therapy out-
comes, and even bi-directional communication.

PeriSafe, a new connectology device, connects the transfer set and the PD bag 
system inside of a protected area. Manual contact of the patient with the open trans-
fer set is prevented, and breaking the frangible or clamping the tubes can be per-
formed by pushing a button. The PeriSafe system removes the old protective cap, 
and the pull-ring connects the transfer set and PD bag system, guiding the patient 
through the therapy with buttons. After dialysis, the transfer set is disconnected 
from the PD bag system and protected with a new protective cap. All the steps are 
performed inside of the protected device [131].

11.3.3 � Peritonitis Diagnosis

Point of care (POC) devices for peritonitis provide useful, rapid, and inexpensive 
screening test for diagnosing peritonitis and may be helpful for patients who live in 
rural areas or patients who have difficulty getting to their clinics.

A leukocyte esterase strip test such as Peri-Screen/Peri-Plex may provide a point 
of care test for peritonitis. Preliminary results from a European study show a sensi-
tivity of 100% and a specificity of 96%, along with the ability to detect as few as 50 
leukocytes/mm3, this test can detect as few as 100 leukocytes/mm3 (with a neutro-
phil count of not less than 50%) [132].

11.3.4 � Patient-Directed Therapy

In some healthcare settings, delivery of PD has focused on achieving the small sol-
ute targets suggested in the 2006 International Society for Peritoneal Dialysis 
(ISPD) prescription guidelines without considering the impact of increasing dialy-
sis exchanges or hours on a cycling machine on quality of life.

However, since 2006, those in need of dialysis have changed considerably with 
increasing multimorbidity associated with higher proportions of people with diabe-
tes and/or in older age groups. At the Kidney Disease Improving Global Outcomes 
(KDIGO) Controversies Conference on Dialysis Initiation, Modality Choice & 
Prescription in January 2018, it was proposed that there should be a change in ter-
minology from “adequate” to “goal-directed” dialysis defined as “using shared 
decision-making between the patient and care team to establish realistic care goals 
that will allow the patient to meet their own life goals and allow clinicians to pro-
vide individualized, high quality dialysis care.”

This approach concurs with the findings from the Standardised Outcomes in 
Nephrology–PD initiative (https://songinitiative.org/projects/song-pd/), which 
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identified core outcomes for PD chosen by patients, caregivers, and healthcare pro-
fessionals, namely PD infection, cardiovascular disease, mortality, PD failure, and 
life participation. There is no evidence that small solute clearance on its own directly 
affects these outcome measures, except in a small proportion of individuals in whom 
transfer from PD to HD has been attributed to insufficient small solute removal.

11.3.5 � Enhancing Uptake and Maintaining Numbers on PD

Innovation is not limited to material invention. A revolution happening in the last 
decade of translating patient experience into patient insights calls for its inclusion as 
the new global standard for therapeutic and device approvals as well as reimburse-
ment decisions. This must be considered as an innovation, not earlier even imagined.

Another real-life evidence of an “abstract” innovation is the implementation of a 
quality improvement process. This implementation at the University Hospitals 
Birmingham NHS Foundation Trust successfully increased the number of incident 
and prevalent PD patients. PD uptake increased from 37 to 84 patients per year, giv-
ing a PD penetration increase from 8.4% to 19.1% between April 2014 and January 
2018. Catheter insertions increased from 94 to 185 per year. Peritonitis rates 
remained stable, and PD drop out to HD, reduced from 52% to 41% during the 
same period.

Changes introduced as part of the QI process can take time to develop, introduce, 
and embed. Pathway mapping, patient education, and utilization of lean methodol-
ogy can positively impact PD growth. The multidisciplinary team focus on growing 
home therapies can in conjunction with peer educators offers a new approach to 
patient education and treatment decision-making.

Pivotal to this process of enabling a philosophy of informed patient choice, 
resulting in the growth of home therapies, is a clinical champion “Home Therapies 
Lead” clinician. Continued research and audit can identify the longer-term impact 
of the cultural shift within renal services on growth and maintenance of home-based 
dialysis and more specifically PD numbers.

A key change for future state mapping is to move from thinking about patient 
preference for modality of dialysis, to patient preference for location of dialysis. By 
implementing a rapid improvement process and embedding continuous quality 
improvement process, an increase in the incidence and prevalence of PD should 
become apparent [133].

11.3.6 � What About Innovation in PD Solutions and Its Mostly 
Used Osmotic Agent (Glucose)?

Paradigmatic of such condition is the case of one of this chapter’s authors (AA), 
who spent most of his academic and professional medical life in researching and 
developing new anti-diabetic treatments, with no contact with the nephrology/
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dialysis world. He was not aware that glucose, administered intraperitoneally in 
relatively large amounts, was the main osmotic agent used in PD therapy. This came 
as a surprise particularly in consideration that diabetes is the leading cause of kid-
ney failure; the obvious next question was: is there a way to replace glucose as the 
base osmotic agent?

One possibility to mitigate the potential metabolic side effects of glucose would 
be to formulate PD solution containing a mixture of different osmotic agents, allow-
ing to reduce the concentration of the single one and possibly to take advantage of 
a combination of favorable pharmaco-metabolic properties that may address not 
only the main dialytic objective of a PD solution along with a better preservation of 
the peritoneal membrane, but also common comorbidities such as diabetes mellitus, 
a disease that dramatically increases the already high preexisting risk of cardiovas-
cular disease (CVD)/deaths in PD patients.

PD patients are potentially exposed to a constant hyperinsulinemic state because 
of the continuous intraperitoneal load of glucose, the most potent insulin-
secretagogue [134, 135]. On the other hand, the hyperinsulinemic state in diabetic 
PD patients is most likely linked to insulin dipeptidyl peptidase-4 inhibitors or 
glucagon-like peptide 1 analog treatment [136]. An emerging concept for the etiol-
ogy of CVD and the atherometabolic risk of diabetic and non-diabetic IR individu-
als is organ-and/or pathway-specific insulin resistance (IR), also known as selective 
IR [137–139]. This is based on the observation that IR does not occur for all insulin 
signaling pathways, with the result that those pathways still responding to insulin 
normally may be overstimulated because either of the concomitant compensatory 
hyperinsulinemic condition experienced by non-diabetic IR subjects and during the 
earlier stages of type-2 diabetes or in type 1 and 2 diabetics treated with insulin. 
This clearly indicates that glucose and insulin are the main culprits of some of the 
pathological sequelae occurring in PD therapy.

If insulin cannot be replaced in diabetic PD patients, it should be possible to 
reduce its use by improving glycemic control intervening at two levels: replacing 
most of the glucose present in the PD solution with osmo-metabolic agents able to 
improve glucose uptake and/or disposal. Two of these osmo-metabolic agents are 
l-carnitine and d-xylitol [140]. In addition to their good safety profile and great 
chemical stability, these two naturally occurring compounds are not only involved 
in major metabolic pathways involved in glucose and lipid homeostasis, but they 
may also improve insulin sensitivity and glucose uptake/disposal by modulating 
mitochondrial acetyl-CoA levels (i.e., l-carnitine) and via transcriptional and post-
transcriptional interventions (i.e., d-xylitol) [141–144].

A combination that is currently under clinical investigation foresees the use of 
d-xylitol, as the major osmo-metabolic agent, along with l-carnitine and less than 
70 to 85% d-glucose present nowadays in commercially available PD solutions 
[145]. Furthermore, in vitro studies conducted with this glucose-sparing PD solu-
tion are very encouraging as they do not seem to induce fibrosis and angiogenic 
effects in human mesothelial and endothelial cells, respectively [146]. Even more 
interesting is the recent renaissance of metabolism and metabolic reprogramming in 
the field of fibrosis that may see the involvement of the same osmo-metabolic agent 
in combatting the mesothelial-to-mesenchymal transition (MMT) too. Indeed, one 
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of the above osmo-metabolic agents, l-carnitine, may be extremely competent in 
mitigating the hyperglycolytic phenotype, also known as the “Warburg effect,” 
commonly present in MMT [147]. The well-recognized intervention of supra-
physiological concentration of l-carnitine within mitochondria in lowering acetyl-
CoA and, hence, reactivating pyruvate dehydrogenase [141] is as efficient as 
glycolytic inhibitors in inhibiting TGF-b1 induced MMT [148]. An important 
implication of this finding is that to slow down the progression of fibrosis, it is not 
necessary to inhibit glycolysis, which may carry serious side effects, but only 
requires an efficient coupling of glycolysis with the Krebs cycle.

PD solution innovations such as pharmaco-metabolic intervention with a combi-
nation of osmo-metabolic agents in PD therapy may lead to beneficial effects both 
at systemic and peritoneal levels, improving the so-called global biocompatibil-
ity of PD.

11.3.7 � Final Considerations for PD Innovations

Innovation must also be global. It is interesting to note and important to try under-
standing why a greater number of the innovations introduced in the PD space have 
actually been focused on further development of the Automated PD (APD). It seems 
like CAPD is the poor cousin of APD; however, sound evidence favoring APD ther-
apy as superior to CAPD does not exist today. With innovation also focused on 
CAPD, expansion of assisted PD may become a perfect combination with CAPD: a 
simple, cheaper, and safe home dialysis option.

11.4 � Future Perspectives

What can we expect from dialysis therapy in the years to come? Although there are 
different forms of innovation within the field, the idea of having smaller and porta-
ble dialysis devices, above all, brings hope and some excitement to the kidney com-
munity. The concept of portable dialysis is definitely not new; there are a few reports 
in medical literature from the 1970s and 1980s [149–151]. However, there is still a 
fine and little-known boundary between the dream, the myth, and effective develop-
ments in the area. Only recently, with the advent of miniaturization and nanotech-
nology, have we had actual innovative advances in order to possibly achieve a safe, 
economically viable and efficient treatment with portable devices in the near future 
[152, 153].

In this regard, the WAK (Wearable Artificial Kidney)–a wearable blood-based 
renal replacement device–is a potential innovative advance. It is a lightweight 
(<5  kg), battery-powered, that is used like a vest or belt (Fig.  11.4). Due to the 
potential risk for accidental disconnection, the WAK is more likely to be connected 
to an HD catheter instead of arteriovenous fistula (AVF) needles. The used dialysate 
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Fig. 11.4  The WAK (wearable artificial kidney). (Reproduced with permission from Salani 
et al. [154])

is regenerated using sorbent technology with the excess redirected through an ultra-
filtration pump to a waste bag. The WAK pump has a double channel pulsatile coun-
ter phase flow, described in detail elsewhere [154–156].

A 2007 pilot landmark study by Davenport et al. showed some promising effi-
cacy and safety results. Eight patients with end-stage kidney disease on regular HD 
were fitted with a WAK device for 4–8 h. Unfractionated heparin was administered 
to avoid coagulation, as it would be for conventional HD. Mean blood flow was 
58.6 mL/min, with a dialysate flow of 47.1 mL/min, and the mean plasma creatinine 
clearance rate was 20.7 mL/min. There was no evidence of hemolysis, as well as no 
significant cardiovascular changes and no adverse changes in acid-base balance. 
Clotting of the vascular access occurred in two patients due to a decrease in the 
unfractioned heparin dose. As discussed above, AVF needle disconnection was an 
issue in this pilot study; one patient suffered a temporary disconnection due to his 
AVF needle becoming dislodged. The device’s safety mechanisms ensured a quick 
interruption of the blood pump, avoiding blood loss, and the treatment continued 
with no clinical consequence to the patient [156].

A portable device also has been produced for PD; the AWAK (automated wear-
able artificial kidney–AWAK Technologies Pte, LTD). It is a tidal PD-based arti-
ficial kidney, battery operated, that uses regeneration of the dialysate in order to 
reduce fluid requirements. The system–composed of a disposable storage mod-
ule, tubing set, and system controller–is even lighter (weight less than 2 kg) than 
the WAK and can be used like a bag [157] (Fig.  11.5). In the AWAK system, 
1–1.5 L of dialysate is initially instilled into the peritoneal cavity, such as in con-
ventional PD. Again, sorbents are used; a tidal volume of 0.5 L of equilibrated 
dialysate is then drained from the patient into the storage module and pumped 
through the sorbent cartridge for clearance. After filtration, supplementation 
(with glucose and electrolytes) and degassing of the spent dialysate, the regener-
ated dialysate returns to the peritoneal cavity. The tidal exchange lasts about 
7–8 min, resulting in eight exchanges per hour. The sorbent cartridge can be uti-
lized for 6–8  h, before being discarded and replaced–so the process can com-
mence again [154, 157].
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Fig. 11.5  The AWAK (automated wearable artificial kidney). (Reproduced with permission from 
Salani et al. [154])

A study conducted with 20 patients using the AWAK system reported a urea 
clearance of 31.5 mL/min. The AWAK was worn for 4–24 h, and the treatment was 
based on the tidal PD mode of dialysate delivery. Although no adverse event was 
reported, the consequences of the regenerated dialysate and the continuous fluid 
exchange and how this influence risk of peritonitis, membrane failure, hyperglyce-
mia, and encapsulating peritoneal sclerosis are not yet fully understood [154, 158].

Another innovation–this one in earlier stages of research and with no clinical 
trial in humans so far–that arouses curiosity beyond hope to both patients and 
healthcare professionals is being developed by the Vanderbilt University Medical 
Center and the University of California, San Francisco: the IAK (Implantable 
Artificial Kidney). The device mimics a native kidney, incorporating tissue engi-
neering and silicon nanotechnology, and is designed to be surgically implanted 
[154]. The IAK system closely replicates the nephron physiology through a combi-
nation of a high-efficiency filter (the HemoCartridge) and a bioreactor of cultured 
kidney tubule epithelial cells (the BioCartridge). Originally, the IAK does not 
require electrical pumps since it is meant to be connected to the arterial vasculature, 
allowing blood to be pumped by the force of the patient’s own blood pressure. The 
ultrafiltrate produced in the HemoCartridge is processed by the BioCartridge, which 
returns water, salt, and glucose to the blood and concentrates toxins into a small 
amount of fluid similar to urine in a progressive manner (Fig. 11.6). Originally, the 
IAK does not require electrical pumps since it is meant to be connected to the arte-
rial vasculature, allowing that the patient’s blood pressure to pump blood through 
the filter [157].
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Fig. 11.6  The IAK (Implantable Artificial Kidney). (Reproduced with permission from Salani 
et al. [154])

In addition to research and development of the aforementioned portable (WAK 
and AWAK) and implantable devices (IAK), the nephrology community desires–
and requires–innovations to turn dialysis more equitable and globally accessible. 
A few years ago, Kotanko et al. suggested a rather controversial, yet only theoreti-
cal, model in order to solve this issue. In summary, the authors proposed a model 
in which a healthy human being (called the “buddy”) could somehow replace the 
function of a HD machine (Fig. 11.7). This concept, known as allo-hemodialysis 
(the Greek prefix “allo” means “other”), is a paradigm-breaking innovative model 
of renal replacement therapy. In allo-hemodialysis, blood from the “buddy” flows 
in counter-current direction to the patient’s blood, functioning as the dialysate. 
Uremic toxins diffuse from the ill patient across the dialyzer membrane into the 
“dialysate” (which in this case is the “buddy’s” blood). Then, the buddy’s blood is 
transported back to the buddy, where solutes and fluid received from the ill patient 
will be finally excreted by the buddy’s healthy kidneys [159, 160]. A 2019 cross-
sectional survey conducted in Mexico aimed to investigate acceptance of allo-
hemodialysis among caregivers and nephrology healthcare professionals. 
Although only 60% of the healthcare professional accepted it, this new technique 
was mainly accepted by caregivers–both related (87%) and non-related (90%) to 
kidney patients [161]. Despite several bioethics and clinical unresolved issues, 
allo-hemodialysis, among all potential innovation, maybe the only one that could 
truly make the renal replacement therapy significantly cheaper and consequently 
more accessible especially in the poorest settings, where dialysis is not universally 
available.
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Fig. 11.7  Allo-hemodialysis model. The pediatric patient with kidney failure and the “buddy” 
(adult with healthy kidneys). The blood of the adult “buddy” is pumped through the dialysate 
compartment in countercurrent flow, serving as the dialysate. Ultrafiltration is due to speed dif-
ferentials of the patient-sided pumps. (Reprinted with permission from Kotanko et al. [159, 160])

Despite all the promising research for innovations in dialysis therapy–at different 
stages of development, in fact–future perspectives for real breakthroughs may not 
lie in novel peritoneal or blood-based therapies. Otherwise, it would somehow be 
“more of the same” for the patient’s experience and outcomes. Paradoxically, the 
future of dialysis may not be in dialysis therapy itself… rather, it may be related to 
paradigm-changing innovations that are based on demands and expectations of kid-
ney disease patients, such as preventive (i.e., lifestyle education) or curative action 
on kidney disease (i.e., SGLT2i in diabetic kidney disease), or regenerative medi-
cine to correct kidney injury, or xenotransplantation and/or biomedical engineering 
developing hybrid concept. Only time will tell us, and (hopefully) very soon what is 
the best pathway to follow.

Finally, the past and present of dialysis are filled with remarkable technical 
advances. Through history and looking to the future, we shall never forget the main 
driver of innovation: the patient. All efforts and progress are only meaningful when 
associated with superior outcomes, better patient perception and/or benefits for 
health systems. This is the only way to guarantee that innovation is a tangible reality 
that has the potential to change treatment paradigms and not just novelties restricted 
to private research or corporate interests.
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