
Hans-Georg Fill
Marten van Sinderen
Leszek A. Maciaszek (Eds.)

16th International Conference, ICSOFT 2021
Virtual Event, July 6–8, 2021
Revised Selected Papers

Software Technologies

Communications in Computer and Information Science 1622

Communications
in Computer and Information Science 1622

Editorial Board Members

Joaquim Filipe
Polytechnic Institute of Setúbal, Setúbal, Portugal

Ashish Ghosh
Indian Statistical Institute, Kolkata, India

Raquel Oliveira Prates
Federal University of Minas Gerais (UFMG), Belo Horizonte, Brazil

Lizhu Zhou
Tsinghua University, Beijing, China

https://orcid.org/0000-0002-5961-6606
https://orcid.org/0000-0002-7128-4974

More information about this series at https://link.springer.com/bookseries/7899

https://springerlink.bibliotecabuap.elogim.com/bookseries/7899

Hans-Georg Fill ·Marten van Sinderen ·
Leszek A. Maciaszek (Eds.)

Software Technologies
16th International Conference, ICSOFT 2021
Virtual Event, July 6–8, 2021
Revised Selected Papers

Editors
Hans-Georg Fill
Digitalization and Information Systems
Group
Universität Fribourg
Fribourg, Switzerland

Leszek A. Maciaszek
Institute of Business Informatics
Wrocław University of Economics
Wrocław, Poland

Department of Computing
Macquarie University
Sydney, Australia

Marten van Sinderen
Department of Computer Science
Information Systems Group
Enschede, The Netherlands

ISSN 1865-0929 ISSN 1865-0937 (electronic)
Communications in Computer and Information Science
ISBN 978-3-031-11512-7 ISBN 978-3-031-11513-4 (eBook)
https://doi.org/10.1007/978-3-031-11513-4

© Springer Nature Switzerland AG 2022
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors, and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, expressed or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://doi.org/10.1007/978-3-031-11513-4

Preface

The present book includes extended and revised versions of a set of selected papers
from the 16th International Conference on Software Technologies (ICSOFT 2021), held
as an online event due to the COVID-19 pandemic, during July 6–8, 2021.

ICSOFT 2021 received 117 paper submissions from authors in 36 countries, of
which 9% were included in this book.

The papers were selected by the event chairs and their selection was based on
a number of criteria that include the classifications and comments provided by the
ProgramCommitteemembers, and the assessments providedby the session chairs and the
program chairs. The authors of selected papers were then invited to submit a revised and
extended version of their papers having at least 30% innovative material. The revisions
and extensions were verified by the event chairs during this final stage.

The purpose of the ICSOFT conference series, which started in 2006, is to bring
together researchers, engineers, and practitioners interested in software technologies.
The conference areas are “Software Engineering and Systems Development”, “Software
Systems and Applications”, and “Foundational and Trigger Technologies”.

The papers included in this book contribute to the understanding of relevant trends
of current research on software technologies, including

– Model-driven software engineering approaches for cyber-physical systems and
Internet of Things (IoT) systems;

– Artificial intelligence applications for optimization and coordination of complex
software systems;

– Code refactoring methods for software energy consumption and software architecture
recovery;

– Frameworks and methodologies for context-aware reconfigurable software
applications and socio-technical systems; and

– Software engineering tools for automated software engineering and software
evaluation.

We would like to thank all the authors for their contributions and also the reviewers
who have helped in ensuring the quality of this publication.

July 2021 Hans-Georg Fill
Marten van Sinderen

Leszek Maciaszek

Organization

Conference Chair

Leszek Maciaszek Wroclaw University of Economics and Business,
Poland, and Macquarie University, Australia

Program Co-chairs

Hans-Georg Fill University of Fribourg, Switzerland
Marten van Sinderen University of Twente, The Netherlands

Program Committee

Vincent Aranega University of Lille, France
Pasquale Ardimento University of Bari, Italy
Marco Autili University of L’Aquila, Italy
Soumyadip Bandyopadhyay BITS Pilani, K K Birla Goa Campus, India and

Hasso Plattner Institute, Germany
Davide Basile ISTI CNR, Italy
Yann Ben Maissa INPT, Morocco
Kwabeno Ebo Bennin Wageningen University and Research,

The Netherlands
Jorge Bernardino Polytechnic Institute of Coimbra, Portugal
Marco Bernardo University of Urbino, Italy
Dominique Blouin Telecom Paris, France
Dominik Bork TU Wien, Austria
Thomas Buchmann University of Bayreuth, Germany
Fergal Caffery Dundalk Institute of Technology, Ireland
Alejandro Calderón University of Cádiz, Spain
Ana Castillo Universidad de Alcalá, Spain
Anis Charfi Carnegie Mellon University, Qatar
Estrela Cruz Instituto Politécnico de Viana do Castelo, Portugal
Lidia López Cuesta Universitat Politècnica de Catalunya, Spain
João Cunha Polytechnic Institute of Coimbra, Portugal
Sergiu Dascalu University of Nevada, Reno, USA
Cléver Ricardo de Farias University of São Paulo, Brazil
Steven Demurjian University of Connecticut, USA
Amleto Di Salle University of L’Aquila, Italy

viii Organization

Francisco Domínguez Mayo University of Seville, Spain
Gencer Erdogan SINTEF, Norway
Morgan Ericsson Linnaeus University, Sweden
Anne Etien Université Lille 1, France
Letha Etzkorn University of Alabama in Huntsville, USA
João Faria University of Porto, Portugal
Eduardo Fernandez Florida Atlantic University, USA
Massimo Ficco University of Campania Luigi Vanvitelli, Italy
Tarik Fissaa INPT, Morocco
Amit Ganatra Charotar University of Science and Technology,

India
Vinicius Garcia Federal University of Pernambuco, Brazil
Felix Garcia Clemente University of Murcia, Spain
Hamza Gharsellaoui Arab Open University, Saudi Arabia
Paola Giannini University of Piemonte Orientale, Italy
Christiane Gresse von

Wangenheim
Federal University of Santa Catarina, Brazil

Hatim Hafiddi INPT, Morocco
Stefan Hanenberg University of Duisburg-Essen, Germany
Jean Hauck Universidade Federal de Santa Catarina, Brazil
Mercedes Hidalgo-Herrero Universidad Complutense de Madrid, Spain
Andreas Hinderks Universidad de Sevilla, Germany
Ralph Hoch TU Wien, Austria
Andreas Holzinger Medical University of Graz, Austria
Jang-Eui Hong Chungbuk National University, South Korea
Miloslav Hub University of Pardubice, Czech Republic
Thomas Hupperich University of Münster, Germany
Zbigniew Huzar Wroclaw University of Science and Technology,

Poland
Ivan Ivanov SUNY Empire State College, USA
Clemente Izurieta Montana State University, USA
Slinger Jansen Utrecht University, The Netherlands
Judit Jasz University of Szeged, Hungary
Bharat Jayaraman State University of New York at Buffalo, USA
Andres Jimenez Ramirez University of Seville, Spain
Hermann Kaindl TU Wien, Austria
Carlos Kavka ESTECO SpA, Italy
Dean Kelley Minnesota State University, USA
Takashi Kobayashi Tokyo Institute of Technology, Japan
Jun Kong North Dakota State University, USA
Herbert Kuchen University of Muenster, Germany
Rob Kusters Open Universiteit Nederland, The Netherlands

Organization ix

Pierre Laforcade LIUM, Le Mans Université, France
Youness Laghouaouta INPT, Morocco
Giuseppe Lami Consiglio Nazionale delle Ricerche, Italy
Yu Lei University of Texas at Arlington, USA
Pierre Leone University of Geneva, Switzerland
Letitia Li BAE Systems, USA
Horst Lichter RWTH Aachen University, Germany
Daniel Lucrédio Federal University of São Carlos, Brazil
Ivan Lukovic University of Novi Sad, Serbia
Chung-Horng Lung Carleton University, Canada
Tomi Männistö University of Helsinki, Finland
Andreas Meier Zurich University of Applied Sciences,

Switzerland
Antoni Mesquida Calafat Universitat de les Illes Balears, Spain
Gergely Mezei Budapest University of Technology and

Economics, Hungary
Antao Moura Federal Universisty of Campina Grande, Brazil
Takako Nakatani The Open University of Japan, Japan
Elena Navarro University of Castilla-La Mancha, Spain
Paolo Nesi University of Florence, Italy
Sebastiano Panichella Zurich University of Applied Sciences,

Switzerland
Jennifer Pérez Universidad Politécnica de Madrid, Spain
Dana Petcu West University of Timisoara, Romania
Dietmar Pfahl University of Tartu, Estonia
Giuseppe Polese Università degli Studi di Salerno, Italy
Mohammad Mehdi Pourhashem

Kallehbasti
University of Science and Technology of

Mazandaran, Iran
Herbert Prähofer Johannes Kepler University Linz, Austria
Stefano Quer Politecnico di Torino, Italy
Traian Rebedea University Politehnica of Bucharest, Romania
Werner Retschitzegger Johannes Kepler University, Austria
Filippo Ricca University Genoa, Italy
Andres Rodriguez LIFIA, Universidad Nacional de La Plata,

Argentina
Colette Rolland Université Paris 1 Panthéon-Sorbonne, France
António Rosado da Cruz Instituto Politécnico de Viana do Castelo, Portugal
Gustavo Rossi LIFIA, Universidad Nacional de La Plata,

Argentina
Matteo Rossi Politecnico di Milano, Italy
Gunter Saake Otto-von-Guericke-Universität Magdeburg,

Germany
Gwen Salaün Grenoble INP, Inria, France

x Organization

Johannes Sametinger Johannes Kepler University Linz, Austria
Maria-Isabel Sanchez-Segura Carlos III University of Madrid, Spain
Nickolas Sapidis University of Western Macedonia, Greece
Istvan Siket Hungarian Academy of Science, Research Group

on Artificial Intelligence, Hungary
Harvey Siy University of Nebraska at Omaha, USA
Kari Smolander Aalto University, Finland
Ketil Stolen SINTEF, Norway
Hiroki Suguri Miyagi University, Japan
Rosa Sukamto Universitas Pendidikan Indonesia, Indonesia
Francesco Tiezzi University of Camerino, Italy
Claudine Toffolon Université du Maine, France
Porfirio Tramontana University Federico II of Naples, Italy
Michael Vassilakopoulos University of Thessaly, Greece
Roberto Verdecchia Vrije Universiteit Amsterdam, The Netherlands
László Vidács University of Szeged, Hungary
Tony Wasserman Carnegie Mellon University, Silicon Valley, USA
Dietmar Winkler Vienna University of Technology, Austria
Michalis Xenos University of Patras, Greece
Jinhui Yao Xerox Research, USA
Murat Yilmaz Gazi University, Turkey

Additional Reviewers

Peter Alexander RWTH Aachen University, Germany
Selin Aydin RWTH Aachen University, Germany
Jorge Barreiros Polytechnic Institute of Coimbra, Portugal
Jaganmohan Chandrasekaran University of Texas at Arlington, USA
Róisín Loughran Dundalk Institute of Technology, Ireland
Mateus Mendes Polytechnic Institute of Coimbra, Portugal
Breno Menezes University of Münster, Germany
Rakshit Mittal Telecom Paris, France
Hana Mkaouar Telecom Paris, France
Christian Plewnia RWTH Aachen University, Germany
Gilbert Regan Dundalk Institute of Technology, Ireland
Alex Sabau RWTH Aachen University, Germany
Nils Wild RWTH Aachen University, Germany
Hendrik Winkelmann University of Münster, Germany

Organization xi

Invited Speakers

Jan Recker University of Hamburg, Germany
Philippe Cudré-Mauroux University of Fribourg, Switzerland
Johann Eder Alpen-Adria Universität Klagenfurt, Austria
Douglas Schmidt Vanderbilt University, USA

Contents

Linked Data as Medium for Stigmergy-based Optimization
and Coordination . 1
Torsten Spieldenner and Melvin Chelli

Object Parsing Expressions for Unplanned, Unmodified, and Incremental
Grammar Reuse . 24
Stefan Sobernig

A Methodology for Organizational Data Science Towards Evidence-based
Process Improvement . 41
Andrea Delgado, Daniel Calegari, Adriana Marotta, Laura González,
and Libertad Tansini

Feedback Generation for Automatic User Interface Design Evaluation 67
Jenny Ruiz and Monique Snoeck

Tales from the Code #2: A Detailed Assessment of Code Refactoring’s
Impact on Energy Consumption . 94
Zakaria Ournani, Romain Rouvoy, Pierre Rust, and Joel Penhoat

Towards Power Consumption Optimization for Embedded Systems
from a Model-driven Software Development Perspective . 117
Marco Schaarschmidt, Michael Uelschen, and Elke Pulvermüller

Materializing Microservice-oriented Architecture from Monolithic
Object-oriented Source Code . 143
Pascal Zaragoza, Abdelhak-Djamel Seriai, Abderrahmane Seriai,
Anas Shatnawi, Hinde-Lilia Bouziane, and Mustapha Derras

A Personalized Code Formatter: Detection and Fixing . 169
Thomas Karanikiotis, Kyriakos C. Chatzidimitriou,
and Andreas L. Symeonidis

Software Framework of Context-Aware Reconfigurable Secure Smart Grids 193
Soumoud Fkaier, Mohamed Khalgui, and Georg Frey

A Novel Neural Network-Based Malware Severity Classification System 218
Miles Q. Li and Benjamin C. M. Fung

Author Index . 233

Linked Data as Medium for Stigmergy-based
Optimization and Coordination

Torsten Spieldenner1,2(B) and Melvin Chelli1

1 German Research Center for Artificial Intelligence (DFKI),
Saarland Informatics Campus D3 2, 66123 Saarbrücken, Germany
{torsten.spieldenner,melvin.chelli}@dfki.de

2 Saarbrücken Graduate School of Computer Science,
Campus E1 3, 66123 Saarbrücken, Germany

Abstract. Optimization through coordination of processes in complex systems
is a classic challenge in AI research. A specific class of algorithms takes for this
inspiration from biology. Such bio-inspired algorithms achieve coordination and
optimization by transferring, for example, concepts of communication in insect
swarms to typical planner problems in the AI domain. Among those bio-inspired
algorithms, an often used concept is the concept of stigmergy. In a stigmergic
system, actions carried out by members of the swarm (or, in AI domains, by sin-
gle agents), leave traces in the environment that subsequently work as incentive
for following agents. While there is a noticable uptake of stigmergy as coordi-
nation mechanism in AI, we see the common understanding of one core element
of stigmergic systems still lacking: The notion of the shared digital stigmergic
medium, in which agents carry out their actions, and in which traces left by
these actions manifest. Given that the medium is in literature considered the ele-
ment “that underlies the true power of stigmergy”, we believe that a well-defined,
properly modelled, and technically sound digital medium is essential for correct,
understandable, and transferable stigmergic algorithms. We therefore suggest the
use of read-write Linked Data as underlying medium for decentralized stigmergic
systems. We first derive a set of core requirements that we see crucial for stigmer-
gic digital media from relevant literature. We then discuss read-write Linked Data
as suitable choice by showing that it fulfills given the requirements. We conclude
with two practical application examples from the domains of optimization and
coordination respectively.

Keywords: Linked data · Resource Description Framework · Stigmergy ·
Nature-inspired algorithm · Digital medium · Optimization · Coordination

1 Introduction

The problem of coordination of agents, tasks, resources, and more, is an ever popular
and challenging topic in Artificial Intelligence (AI) research. The need for coordination
by this arises in most various domains [1,8,12,24,36]. The desired effect that is sought

This work has been supported by the German Federal Ministry for Education and Research
(BMBF) as part of the MOSAIK project (grant no. 01IS18070-C).

c© Springer Nature Switzerland AG 2022
H.-G. Fill et al. (Eds.): ICSOFT 2021, CCIS 1622, pp. 1–23, 2022.
https://doi.org/10.1007/978-3-031-11513-4_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-11513-4_1&domain=pdf
http://orcid.org/0000-0003-3034-9345
http://orcid.org/0000-0001-5260-9393
https://doi.org/10.1007/978-3-031-11513-4_1

2 T. Spieldenner and M. Chelli

by coordinating a system is thereby most often optimization, under the assumption that
a perfectly coordinated system behaves optimal with respect to utilization of resources,
or time it takes for processes implemented in the system to finish.

A specific trend in research seeks inspiration in biology, and tries to transfer con-
cepts from nature to AI systems [5,9,39]. A biological concept that has gained specific
attention as basis for nature-inspired algorithms is the concept of stigmergy [22], the
core concept by which, for example, insect swarms achieve coordination among their
members. In a stigmergic system, an action carried out by an individual member of the
swarm leaves an observable trace within the environment. These traces constitute an
incentive for other swarmmembers to carry out specific actions, leading to an influence-
reaction cycle that ultimately leads to the achievement of a common goal by coordinated
behavior. In AI, stigmergy-based algorithms have been found a promising approach for
more flexible, fault-tolerant, and scalable coordination of complex systems in various
domains [13,23,26,33,35].

Stigmergic systems discussed in literature, however, are often very specific to the
considered use-case, and focus on models of agents and their behavior in the system,
or are very implementation-specific with respect to the discussed system. This makes
it hard to identify core concepts in the different algorithms, and transfer them to differ-
ent use-cases and domains. It is in particular noticeable, that while focusing on specific
algorithms and their implementations, existing work marginalizes or ignores the impor-
tance of a proper medium.

The medium in a stigmergic system is the element in which agents dwell, per-
form their actions, that is shaped by agents and where agents ultimately leave traces
as byproduct of their actions. This gives the medium a central role within the overall
system, which is why the medium is in literature also considered the “the mediating
function that underlies the true power of stigmergy” [21].

Gaining understanding of the concept of the medium is particularly interesting in the
world of AI optimization and coordination, where the medium has no tangible physical
manifestation, but where agents operate entirely in an environment that is completely
digital, while having only abstract correspondences to real world entities. We see a
great benefit in a consise common understanding of a digital stigmergic medium for
stigmergy-based algorithms, and AI research in general: A well-defined medium as core
concept of a stigmergic AI system would support clearer and better explainable designs
and algorithms, and increase transferability of published solutions. This medium should
be provided by employing widely accepted open standards to be independent of specific
use-cases, domains, or technologies that implement the algorithm. It should be based on
a well-defined, thoroughly formalized and established foundation to allow for soundly
defined, general, transferable solutions.

Such a set of standardized and well-defined tools comes from the world of the
Semantic Web [4]. Based on the notion of Linked Data [6] and typically modeled in
terms of the Resource Description Framework (RDF) [28]1, the Semantic Web is com-
monly promoted as a generic integration layer for applications from various domains.

Unnoticed by many, one digital stigmergic medium built on concepts of Web and
Semantic Web is accessed by billions of users on a daily basis: the Internet is widely

1 RDF 1.1 Primer document (Jan. 2021): https://www.w3.org/TR/rdf11-primer/.

https://www.w3.org/TR/rdf11-primer/

Linked Data as Medium for Stigmergy-based Optimization and Coordination 3

relies on stigmergic concepts by the way content is provided and selected to presented to
individual users [16]. That given, one may expect that a machine readable and writable
Linked Data layer (read-write Linked Data) in the Semantic Web may as well pro-
vide a widely standardized, established, domain-independent interactive medium for
stigmergy-based coordination [14,34].

To this end, this paper makes the following contributions:

– We derive from relevant literature a set of requirements towards digital media to
serve as proper stigmergic medium.

– We establish read-write Linked Data as suitable medium for stigmergic systems.
– We demonstrate the application of read-write Linked Data as stigmergic medium
in two scenarios: An optimization scenario from an abstract planner domain, and a
multi-agent coordination scenario from the domain of cyber-physical production.

The remainder of the paper is structured as follows: We review relevant related lit-
erature in Sect. 2. In Sect. 3, we recapture core concepts of Linked Data architectures,
as well as stigmergic systems. In Sect. 4, we derive requirements towards digital stig-
mergic media and discuss Linked Data as suitable choice. We demonstrate the applica-
tion of Linked Data as stigmergic medium in Sects. 5 and 6: Sect. 5 demonstrates how
to employ stigmergy in Linked Data to solve the optimization challenge of the Mini-
mize Number of Open Stacks Problem (MOSP) [20]. In Sect. 6, we demonstrate how to
achieve multi agent coordination in a cyber-physical production setting. We conclude
our work and provide an outlook upon future challenges in Sect. 7.

This paper is an extended version of the paper “Linked Data as Stigmergic Medium
for Decentralized Coordination” as presented at the 16th International Conference on
Software Technologies (ICSOFT 2021) [38]. The original paper was extended with the
application demonstration of Linked Data as stigmergic medium in Sect. 5, including
all demonstrations of environment and agent models, experiments, and evaluation.

2 Related Work

Stigmergic systems have been thoroughly described and analyzed [14,22], and also
been discussed with respect to applicability in Web-based environments [15,34].

Stigmergic agent systems vary from conventional agents in that they communicate
indirectly via a shared medium/data space. This is also termed in some literature as a
generative communication paradigm [11,19]. Some implementations of this paradigm
are realized in Linda, based on Tuple Spaces [19].

Applications of stigmergy in various domains for coordination can be found in liter-
ature, including robotics [23,26,31] and cyber-physical manufacturing [12,36]. Inspi-
ration from the concepts of evaporation and replenishment of pheromones in the ant
world have led researchers to explore ways of managing the dynamic requirements of
telecommunication networks [7]. It has also been shown that the data aggregated from
vehicles plying in a city can be used to predict traffic hot-spots and thus plan optimal
routes for navigation [1,24].

Ant inspired optimization techniques have been a focus of research since the early
1990 s, and various variations have been developed ever since [17,22]. Bio-inspired

4 T. Spieldenner and M. Chelli

algorithms like stigmergy have shown to achieve good performance in decentralized
decision making tasks [23]. They also perform well in situations where agents need to
recruit peers and coordinate with them for task accomplishment [26]. High dimensional
numerical optimization has also been approached using stigmergy (using the Differ-
ential Ant-stigmergy Algorithm, DASA) [25]. A distributed variant of the Hungarian
Method for solving the Linear Sum Assignment Problem (LSAP) was shown by [10],
where multiple agents cooperate to find an optimal solution to LSAP without sharing
memory, or a central command structure. The field of Multi-Agent Systems (MAS) has
also seen a growing interest in stigmergic concepts in recent years [12,13,35,41].

Among the bio-inspired works that have been discussed in this section, the concept
of the stigmergic medium is not given particular emphasis as described by [22]. The
fundamental idea behind the medium being a shared environment where agents can
sense its state, leave traces or act on it, has not been significantly explored. Some works
discussed above, like the one from the domain of traffic planning, completely overlook
the medium and rely on direct agent-to-agent communication instead.

The observation that the environment (or medium) is not fully taken advantage of
in the context of stigmergy has already been observed in [35]. The need for a common
understanding of the environment, as well as the difficulty to map concepts from the
real-world to concepts seen in nature to best leverage these algorithms has also been
highlighted in [8,40]. In this paper, we discuss and present with appropriate examples,
that read-write Linked Data layer is a suitable general stigmergic medium for said pur-
poses.

3 Background

3.1 Resource-oriented Architectures

A Resource Oriented Architecture (ROA) is built around the notion of a Resource as
common representation for any kind of virtual or real-world entities [18,30]. A resource
is typically characterized by a name (identifier), its representation and links between
resource representations [30]. Fielding [18] defines a representation as a sequence of
bytes and metadata describing those bytes. A resource may have multiple representa-
tions, which means they can provide the same content but in different serializations.
Detailed considerations of ROA can be found in [18].

3.2 Linked Data Systems

Linked Data2 is a way to share and structure information using links. Linked Data
implements an ROA, and it is built on the Hypermedia as the Engine of Application
State (HATEOAS) and HyperText Transfer Protocol (HTTP) principles. By this, Linked
Data enables software applications and user-agents to discover necessary information
to perceive and understand data, explore ways of interacting with resources etc., by
following links provided by a server [18]. Semantic annotations describe different data

2 https://www.w3.org/standards/semanticweb/data.

https://www.w3.org/standards/semanticweb/data

Linked Data as Medium for Stigmergy-based Optimization and Coordination 5

fields to data consumers which leads to a uniform understanding of data among different
applications.

The Resource Description Framework (RDF) is used to model these semantic
descriptions [28], (see also footnote 1). Statements about resources can be formulated
using RDF in terms of triples that follow a subject-predicate-object structure. The sub-
ject denotes a resource, the predicate is a qualitative aspect of said resources and/or
describes the relationship between a subject and an object. A set of RDF triples consti-
tutes a labeled graph, where the subject and object form nodes, connected by a directed
edge (from subject to object) that is labeled via the predicate.

3.3 Stigmergic Media

Heylighen concisely summarizes research in the field of stigmergy-based self-
organization in [22]. Our discussions of stigmergy is exclusively based on the findings
of this paper. However, we would like to emphasize that though the work by Heylighen
in [22] covers reseach over several decades, we will also point out work carried out by
many different researchers who have a differing view on the stigmergic concept.

Heylighen derives from his findings his own definition of stigmergy as an:
“indirect, mediated mechanism of coordination between actions, in which the trace

of an action left on a medium stimulates the performance of a subsequent action” [22,
p. 5].

The core compoents of stigmergy as described in [22] are defined as follows. A
causal process that produces a change in the world is the action. The part of the world
that undergoes changes because of the action, whose state can be sensed by other agents
to incite further actions, is the medium. The perceivable change in the medium due to
the action, which can trigger subsequent actions is the trace.

A trace that stimulates agents to perform a specific action, i.e. affords the action, is
called Affordance. Affordances typically encode condition-action rules, which causes
an agent to perform a action on the fulfilment of a certain condition. Traces that prevents
the agents from performing actions are called Disturbances.

Heylighen further identifies different variations of stigmergy, depending how the
agents interact with the medium (pp. 19–27).

Among them, are individual and collective stigmergy, depending on whether the
medium is worked on by either a single or a team of agents. Another criteria for clas-
sifying variations in stigmergy, is if the agents perceive the mere existence of features
in the medium (qualitative stigmergy) or also take into account the quantities of those
features (quantitative stigmergy). Another variation is based on if agents react to the
direct results of their work in the environment (sematectonic stigmergy) or to mark-
ers deliberately left by other agents (marker-based stigmergy). In addition, a variation
also exists depending on if traces left by agents in the medium persist unless they are
actively removed (persistent stigmergy) or if they dissipate and vanish over time (tran-
sient stigmergy). Finally, we can also differentiate based on the scope of the traces in
the medium, i.e. if they are observable by every agent in the medium (Broadcast), or
only to specific agents (Narrowcast)

For a very thorough elaboration on the various aspects that we covered here in a
very shortened manner, we refer the reader to the original paper [22].

6 T. Spieldenner and M. Chelli

4 Linked Data as Digital Stigmergic Medium

In nature, the notions of agent and medium are determined by nature itself: Ants
“agents” are attracted by pheromone traces which are left by other ants and lead towards
lucrative sources of food. Here, the ground is the medium over which the agents nav-
igate, and which carries the traces that lead the ant agents to their goal. Termites use
clay as medium: not only do they form the medium to build their nest, but the perceived
shape of the clay – the progress in construction so far – steers the subsequent actions of
the termites. Bees use the air as medium to guide their fellow bees to food sources by
dance patterns.

In optimization and coordination scenarios, “agents” are usually considered to be
software AI user-agents. These AI agents perceive and interact with digital represen-
tation of the to-be-coordinated concepts, which may correspond to real-world physical
artifacts (e.g. physical production machines or robots in manufacturing scenarios, cars
and traffic lights in traffic). This distinction between digital and real world is common
in agent-based coordination algorithms [15]. The digital representation is also referred
to as Agent Space, whereas the physical space is referred to as Artifact Space [8].

4.1 Requirements for (Digital) Stigmergic Media

From the notions and variations of stigmergic systems in the Sect. 3.3, we derive the
following requirements that a digital medium should fulfill to be suited for use in
stigmergy-based algorithms:

R1 (Representation:) The medium must be capable of representing entities of the
coordination or optimization domain. The representation capabilities must more-
over not only be limited to represent individual entities, but also relations between
entitites. The medium thus serves as Agent Space. If artifacts in Artifact Space are
target of coordination or optimization, the medium must provide a representation
of the physical entity in the Agent Space. Moreover, access to the physical entity
must be provided from within the medium, e.g. for agents to switch a real-world
traffic light, or start a production process on a production machine via the respec-
tive entity representation in the Agent Space.

R2 (Accessibility:) The medium must be accessible to the agent. This means, an agent
must be able to enter the medium, access representations of entities, and per-
form actions on them. Furthermore, the agent must be able to navigate through
the medium to the point where an action is to be performed.

R3 (Observability:) The medium must be observable (readable) for the agent to per-
ceive and identify conditions of condition-action rules in the medium. For this, the
agent needs to be able to at least observe the existence of effects (for qualitative
stigmergy). The medium should further provide:

R3.1 (Interpretability) of observed effects in the medium in the context of the opti-
mization or coordination domain, so that an agent can correctly set the observed
effects into relation with each other.

R3.2 (Quantities): The medium must be able to express quantities for coordination
by quantitative stigmergic effects.

Linked Data as Medium for Stigmergy-based Optimization and Coordination 7

R4 (Consistency:) For collective stigmergy, the information delivered by the medium
must be consistent to different agents at the same point in time. In particular after
changes induced by agents as results of their actions, other agents must observe
the changed state as actual state of the medium.

R5 (Malleability:) Agents must be able to form and change elements in the medium
as result of their action. This covers both interaction with existing entities and
changing their state via their representation in the medium, as wells adding new
entities, or removing entities from the medium (comparable to leaving pheromone
markers, or dissipating markers over time). Such changes should be inflicted to the
medium in a controlled manner, leading us to the requirement of Stability:

R5.1 Stability: It must be possible to perform changes to any entity within the medium
without inflicting unwanted side-effects to resources outside the scope of a per-
formed action. “Unwanted” is in this case not to be confused with changes that
an agent “unintentionally” left as a trace, but to be understood as an effect that
changes the state of an entity beyond what was intended by the algorithm.

R6 (Scopes:) The medium must be able to limit visibility of entities and effects in
terms of scopes to allow Narrowcast of stigmergic effects.

4.2 Linked Data as Stigmergic Medium

We in the following show that the above requirements are fulfilled by read-write Linked
Data as digital stigmergic medium.

Representation: is covered by the notion of representation space of resources (see
Sects. 3.1 and 3.2): Read-write Linked Data being built around resource oriented archi-
tectures provides both the tools and best practices of how to represent both real-world
and virtual entities in terms of addressable resources. Physical artifacts can be accessed
from Linked Data media by having callable HTTP endpoints represented as resources
within the medium.

Accessibility: is achieved by building Linked Data around HATEOAS principles.
Agents can interact with resources and via HTTP requests. All information about how
to interact with a resource is provided by the server that manages the resource. Fur-
thermore, Linked Data defines query interfaces as a common interaction method with
Linked Data graphs. Graph query engines like SPARQL3 allow agents to identify rele-
vant resources as a result of the queries. The capability to explore Linked Data graphs
autonomously is provided by links between related resources, which agents can follow
to identify relevant related resources. For following links via HTTP operations, it is not
necessary to host the medium on a single physical server instance to ensure accessi-
bility: Linked Data principles state that the resolution of URIs is transparent to clients,
and agents are not required to make assumptions where the actual data is hosted. When
it comes to agent-medium interaction via queries, SPARQL supports the integration
of data from different distributed endpoints via federated queries using the SERVICE
keyword.4

3 W3C SPARQL 1.1 Query Language Recommendation (Apr. 2021): https://www.w3.org/TR/
sparql11-query/.

4 SPARQL Federated Queries: (Apr.2021): https://www.w3.org/TR/sparql11-federated-query/.

https://www.w3.org/TR/sparql11-query/
https://www.w3.org/TR/sparql11-query/
https://www.w3.org/TR/sparql11-federated-query/

8 T. Spieldenner and M. Chelli

Observability: “Existence” of an effect can be encoded in Linked Data by the existence
of a respective triple pattern in the Linked Data graph. By this, the existence of an
effect as precondition for an action can be verified by matching expected triple patterns
against the Linked Data graph via SPARQL queries. The statements encoded by triples
are moreover semantically interpretable by software agents, as commonly established
for Linked Data.

Quantities can be expressed in Linked Data graphs in two ways: either, by explicitly
stating a quantity by a numerical value and a fitting data type in a literal node, or by the
number of triples rendered to a respective resource. The latter approach is more suitable
to determine quantities of the same effect appearing multiple times within the medium
(for example, number of markers left on a resource within the medium).

Consistency: is achieved by the notion of state and representation of resources in
Linked Data architectures, as outlined in Sects. 3.1 and 3.2. The Linked Data server
hosting a resource is in control of providing access to resources, as well as its contents.
By the communication between clients and server being stateless (by following REST
and HATEOAS principles), the state of the resource as communicated by the server
towards clients is independent of the particular client that requests the resource, and by
this, consistent among all clients, resp. agents.

Malleability: is a direct result of write-capabilites of read-write Linked Data. Agents
may request to change the state of a resource by HTTP PUT/POST/DELETE requests.
Agents may moreover employ SPARQL UPDATE requests with INSERT and DELETE
statements to modify Linked Data graphs that describe a resource in the medium. The
WHERE body of SPARQL UPDATE queries allows to take into account preconditions
that need to be fulfilled when performing the update.

Stability during updates is ensured by unambiguous identification of relevant resources
via IRIs. By Linked Data design principles, operations on resources do not have side-
effects on other resources, and by this, will not inflict undesired changes to resources
other than those that the action was performed on. Stability on RDF graph level dur-
ing write operations is ensured by that adding triple statements to a resource does not
change existence or expressiveness of triples already present: by adding triples, state-
ments about a resource may only become more specific, but never eliminate statements
that were present before new triples were added.

Scope: can be expressed in read-write Linked Data implicitly by specific triple state-
ments on resources. While all information is still available to every agent without limi-
tation, individual agents may filter for specific resources, based on these resources, and
by this scope their perception of the medium w.r.t. certain effects. Scope can moreover
be provided by using mechanics of Linked Data datasets and named graphs.5 Different
scopes, i.e. named graphs, are then accessed by agents for example by using FROM and
FROM NAMED clauses in the respective SPARQL queries.

By finding all requirements R1–R6 fulfilled by and materialized via concepts of
read-write Linked Data systems, we derive that read-write Linked Data is without lim-
itations a suitable generic digital medium for stigmergy-based coordination.

5 https://www.w3.org/TR/rdf-sparql-query/#rdfDataset.

https://www.w3.org/TR/rdf-sparql-query/#rdfDataset

Linked Data as Medium for Stigmergy-based Optimization and Coordination 9

5 Optimization: Minimize Open Stacks Example

In the following, we present how to employ stigmergy in a Linked Data medium to
solve an abstract scheduling problem, the planner domain of the Minimize Number of
Open Stacks problem (MOSP). We will model the problem domain in terms of a Linked
Data representation, and define three different agent types with increasing complexity
of stigmergic principles applied for evaluation. The approach will finally be evaluated
by comparing the performance with respect to the commonly employed metric, number
of open product stacks created, against the verified optimal solutions as published in
[3].

5.1 The Minimize Number of Open Stacks Problem

The Minimize Number of Open Stacks Problem (MOSP) is a common scheduling prob-
lem to evaluate planner tools, and was one of the planner domains in the Constraint
Modelling Challenge 20056 and International Planner Competition 5 [20]. The prob-
lem is known to be NP hard [29].

This problem assumes a fictional factory that is capable of producing products of
different kinds. For items of same kind, it can produce batches of arbitrary size. How-
ever, there can always only be one product kind produced at the same time. Initially,
the factory receives a number of orders that demand for one or more kinds of prod-
ucts. Whenever the factory produced a kind of product that was requested by one of the
orders, a stack is opened for the respective order. Subsequent items for this order are
added to the stack until all items requested by the order have been added to the stack,
which is when the stack of the order will be removed. The goal is now to find an order
in which the factory produces batches of product kinds, such that the number of open
stacks is minimal.

5.2 Medium Model

We model the scenario in the Linked Data medium as follows: We employ the RDF
namespaces stig: for elements from the domain of stigmergic principles and effects
(i.e., markers and traces), classes from the schema.org Ontology7 with namespace
schema: to refer to elements specific to order processes (e.g. orders and prod-
ucts), and mosp: as namespace to refer to instances within the minimize open stacks
problem. A class of orderable products can then be described by triples of the form
(mosp:RedBox a schema:Product).

We employ the notion of situated tropistic agents as we described in [37], i.e., agents
reside on (virtual) locations (or “topoi”), and react based only on perception of their
direct surroundings. As discussed in the original publication, this model relates closely
to stigmergic principles in nature, and is a very suitable choice to model stigmergic
media in Linked Data.

6 http://www.dcs.st-and.ac.uk/ipg/challenge/.
7 https://schema.org.

http://www.dcs.st-and.ac.uk/Ëœipg/challenge/
https://schema.org

10 T. Spieldenner and M. Chelli

In the presented case, we for this describe orders as instance of schema:Order,
as well as a stigmergic topos, i.e., a resource in the Linked Data medium that can be
visited and inspected by a tropistic stigmergic agent. Orders that share at least one type
of product are perceived as adjacent by the agent (see also Listing 1.1). Adjancency
implies both that an agent can perceive state of the adjacent resource, and move from a
resource to an adjacent one as result of its perception.

Listing 1.1. Example of two orders in the minimize open stacks domain that share one common
product.

1 mosp:order_1 a schema:Order , stig:Topos ;
2 st:adjacentTo mosp:order_2 ;
3 schema:orderedItem mosp:RedBox , mosp:PurpleBox .
4
5 mosp:order_2 a schema:Order , stig:Topos ;
6 st:adjacentTo mosp:order_1 ;
7 schema:orderedItem mosp:BlueBox , mosp:PurpleBox .

Open stacks for orders are encoded as triples (<urn> a mosp:Stack), with <urn>
a unique resource identifier that was randomly created when the stack was opened, the
respective order linked to it via a relation mosp:forOrder, and contained products
linked to it via the schema:orderedItem relation (see also Listing 1.2).

Listing 1.2. Example of two orders in the minimize open stacks domain that share one common
product.

1 <urn:> a mosp:Stack ;
2 mosp:forOrder mosp:order_1 ;
3 schema:orderedItem mosp:PurpleBox .

5.3 Agent Models

The presented problem can be solved by a single agent. The general algorithm works
as follows: The agent is situated on a schema:Order resource o as indicated by a
triple mosp:agentstig:locatedAt <Order>, where <Order> is an order as
described above. From here, the agent will perform the following steps:

1. Pick from order o any product p with (<o> schema:orderedItem <p>);
(<p> a schema:Product) that is not yet part of any mosp:Stack, i.e., any
type of product that has not yet been produced.

2. For each schema:Order < oi > that requires this product as indicated by a triple
(<oi> schema:orderedItem <p>), add p to the respective stack si: <si >
a mosp:Stack ; mosp:forOrder <oi> ; schema:orderedItem
<p>.

3. For every order that is completed, i.e., for o, s with (<s> a mosp:Stack ;
mosp:forOrder <o>) , ∀pk : (<o> schema:orderedProduct < pk >)
⇒ (<s> schema:orderedProduct < pk >), remove the stack s, the order o,
and their corresponding triples.

Linked Data as Medium for Stigmergy-based Optimization and Coordination 11

4. If there is no order o left, terminate. Otherwise, move to another order o and restart
from 1.

The number of open stacks is counted before step 3, i.e., before finished stacks are
closed.

We will show how the above behavior can be optimized by influencing the agent
in its choice of the subsequent order in step 4. We use stigmergic markers to support
the agent in preferring certain orders over others, such that the number of open stacks
remains minimal. The approach can thus be classified as a hybrid marker-based and
sematectonic stigmergic system (by the agent reacting both to markers, and results of its
own work: the types of products already produced), in an individual stigmergic system,
as there is only one agent that is steered by the results of its own action. For compari-
son, we have created three different agent behaviours with increasing selectiveness of
subsequent orders as follows:

Random Selection: In the simplest case, the agent selects the next order randomly
among those that are labeled as stig:adjacentTo, i.e., the agent selects any open
order that shares at least one kind of product, but neglecting whether the order has
already a stack open. The selection of orders in Step 4 of the algorithmworks as follows:

4.1 If the order that the agent was situated at was removed in step 3, i.e. there is no
triple (mosp:Agent stig:locatedAt <o>), choose any order o at ran-
dom.

4.2 Otherwise, select an adjacent oa with <o> stig:adjacentTo <oa> .
4.3 Restart from 1.

Favoring Orders with Stacks: A simple heuristic is to favor orders for which a stack
is already open. Producing for an order with an already open stack eliminates the risk
that a new stack is created for this specific order. In order to identify orders with open
stacks, the agent marks in step 2 of the algorithm every order for which it already created
a product:

2.1 For each schema:Order oi for which a product was created, create a marker as
indicated by the triple (<oi> stig:carries [a stig:Marker]).

When moving to another order after step 3, the agent favors orders that carry the
highest amount of markers, i.e., for which it already produced the most products:

4.1 If the order that the agent was situated at was removed in step 3,
i.e. there is no triple (mosp:Agent stig:locatedAt <o>), choose
any order o as order with the highest amount of markers: o =
argmax(o)
count(<m>)

(<o> stig:carries <m>)

4.2 Otherwise, select an adjacent oa with <o> stig:adjacentTo <oa> and oa =
argmax(oa)
count(<m>)

(<oa> stig:carries <m>) .

4.3 Restart from 1.

12 T. Spieldenner and M. Chelli

Favoring almost Completed Orders: The efficiency of the previous heuristic can be
further improved if among those orders with already open stacks, the agent prefers those
that are close to being finished. Preferring almost closed orders increases the probability
that the agent will pick an order of which the stack can be closed in the next step, while
reducing the risk of an agent choosing a product kind that opens several new stacks
from an order with many open products. To identify respective orders, the agent leaves
a marker as follows:

2.1 For each schema:Order oi for which a product was created, create a marker
as indicated by the triple <oi> stig:carries [a stig:Marker ;
stig:level ?lvl] .

?lvl refers to the concentration level of the marker, and is equal to the number of
remaining products in the stack.

In step 4, when selecting an order to continue with, the agent chooses as follows:

4.1 If the order that the agent was situated at was removed in step 3, i.e.
there is no triple (mosp:Agent stig:locatedAt <o>) , choose
any order o as order with the lowest concentration of markers: o =
argmin(o)

∑
(?lvl)

(<o> stig:carries [a stig:Marker ; stig:level

?lvl])
4.2 Otherwise, select an adjacent oa with <o> stig:adjacentTo<oa>, and oa

carrying the lowest concentration of markers, as given in 4.1.
4.3 Restart from 1.

5.4 Evaluation

Implementation of Stigmergic Principles. The presented algorithm implements a sin-
gle agent. This agent reacts to both markers that were deliberately left on resources,
and to results of its work in the environment by checking which kinds of products
have already been produced in step 1 of the algorithm. By this, the presented algorithm
implements individual stigmergy in a marker-based and sematectonic stigmergic sys-
tem. The agent does neither maintain memory, nor does it plan or anticipate any future
steps, but reacts solely on current observations of its current environment.

Table 1. Dimensions of orders and products per problem domain.

Miller NWRS 1 NWRS 2 NWRS 3 NWRS 4 NWRS 5 NWRS 6 NWRS 7 NWRS 8

Orders 20 10 10 15 15 20 20 25 25

Products 40 20 20 25 25 30 30 60 60

Linked Data as Medium for Stigmergy-based Optimization and Coordination 13

Empirical Results. We evaluate above agent models by having them solve 9 instances
of MOSP as given in the Constraint Programming Challenge 2005. The problems have
increasing complexity. Table 1 lists the numbers of orders and different product types
per problem.

The sequence that an agent chooses in a single execution of a particular problem is
non-deterministic. Typically, in one step, the agent will face several equally attractive
resources as next candidates for a visit in step 4, in which case it will choose one at
random. As the agent does not plan ahead, while being equally attractive at the instant,
the choice of particular paths may have adverse effects later in the execution. We have
therefore executed the experiment for each test instance 10 times. Figure 1 shows the
best solution found by the agent out of 10 runs. Figure 2 shows the arithmetic average
over the stack sizes as found by a particular agent type over all runs. Both figures also
include the proven optimal solution as given in [3].

M
ill

er

N
W

R
S1

N
W

R
S2

N
W

R
S3

N
W

R
S4

N
W

R
S5

N
W

R
S6

N
W

R
S7

N
W

R
S8

0

10

20

30

14

6 8

13 13

18 20 22 24

14

4 6 8

11

15 16 14

20

13

4 5

8 8

12 12 11

18

13

3 4

7 7

12 12 10

16

Random Markers Only By Concentration Optimal

Fig. 1. Minimal stack size found by the different agent models over 10 runs compared to the
verified optimal solution.

The experiments show that with increasingly expressive markers, the results of the
algorithm improve for all problems, up to very noticable improvements in the more
difficult problem instances NWRS 5 to NWRS 8.

In the simpler examples, even the random walk provides results close to the optimal
solution. In these examples, orders have only few products in common, and by this
share only few connections with other orders. This leaves only few choices to all of the
agents which order to visit next, and reliably guides all types of agents over a close to
optimal path.

In the more complex examples with larger and denser orders, in which orders share
many products with many other orders, the random agent is more likely to pick a subop-
timal path. However, with taking more information about its surrounding into account,
the quality of the solution improves significantly, up to the most complex agent finding
the close to optimal, or even optimal, solution in all cases.

14 T. Spieldenner and M. Chelli

M
ill

er

N
W

R
S1

N
W

R
S2

N
W

R
S3

N
W

R
S4

N
W

R
S5

N
W

R
S6

N
W

R
S7

N
W

R
S8

0

10

20

30
15

.1

8 9

14 13
.8

19
.1

20

23
.7 24
.9

15
.4

4.
7 7.
2 9.

8 13
.2 17

.3

17
.6

17
.2

22
.6

14
.2

4.
1 5.
2

9.
3

9.
4

13
.9

13
.1

13
.3

18

13

3 4

7 7

12 12

10

16

Random Markers Only By Concentration Optimal

Fig. 2. Arithmetic average of stack sizes out of 10 solutions found by the different agent models
compared to the verified optimal solution.

These experiments show that with a sufficiently elaborate interpretation of, and
interaction with the environment, stigmergic agents are able to find good quality solu-
tions to complex optimization problems without the need to keep memory, plan ahead,
or know the optimization goal at all, as are known benefits of stigmergic systems [22,
pp. 13–14].

5.5 Implementation

The above agents were entirely implemented in terms of SPARQL queries that encode
the different actions that agents can take. The respective queries are published on
GitHub, alongside with the application domain model, and a Postman collection that
allows to execute the SPARQL queries against any triple store of choice: https://github.
com/dfki-asr/stigmergy-mosp

For evaluation, we used an Apache Fuseki standalone installation.

6 Coordination: Make-to-Order Production

We now show how to employ a read-write Linked Data layer as stigmergic medium
for coordination by an application example from the domain of digital manufacturing.
The chosen scenario is loosely based on the use case presented in [36]: A (simulated)
factory receives orders for simple IoT modules on a “batch size 1” production line as
commonly envisioned in Industry 4.0 [27,32]. Received orders trigger the production of
the respective customized IoT module, using machines which provide the capabilities to
perform manufacturing steps necessary for particular steps during the production pro-
cess. These steps may include for example the provisioning of plastic casts for casings,
soldering electric circuits, or fixing the final model (see Fig. 3).

https://github.com/dfki-asr/stigmergy-mosp
https://github.com/dfki-asr/stigmergy-mosp

Linked Data as Medium for Stigmergy-based Optimization and Coordination 15

Fig. 3. Process of IoT module production used as example.

Finding and executing the necessary sequence of production steps is done by AI
agents. The need for coordination arises as machines are shared between simultaneously
executed orders.

The presented coordination algorithm aims at finding a suitable workload distribu-
tion among machines for different agents executing different orders, with the goal to
complete each order in the shortest possible time.

6.1 Domain Model

Fig. 4. Domain model of the chosen application example.

The domain model of the application scenario is shown in Fig. 4: An order encodes a
request for production of a certain product. Recipes describe the assembly of a product,

16 T. Spieldenner and M. Chelli

and specify other products that are required as supply, as well as which manufactur-
ing step is necessary to assemble these supply products to a higher level product. The
required manufacturing steps are provided by machines on the shop floor. Machines
offer HTTP endpoints by which their respective production program can be executed,
a common assumption for units in automated production [8,36]. These endpoints are
offered to user agents via the Linked Data medium. The use of a certain interaction
endpoint, and by this, the use of a specific machine on the shop floor, is encouraged
or discouraged by stigmergic affordance- and disturbance markers on the interaction
endpoint in the Linked Data medium.

Listing 1.3. Example of a production recipe using schema and steps vocabularies.

1 recipes:main-module rdf:type schema:HowTo ;
2 schema:about mainboard:product ;
3 schema:step steps:solder ;
4 schema:supply [
5 rdf:type schema:HowToSupply ;
6 schema:item cpu:product] ,
7 [rdf:type schema:HowToSupply ;
8 schema:item ram:product] .

Within the RDF description of a recipe in the Linked Data medium, the
schema:about predicate specifies the artifact that results from executing the respec-
tive recipe. The required supply from which the product is created is indicated by the
schema:supply predicate, whereas the production step that needs to be performed to
combine the specified supplies to the resulting product is given via the schema:step
predicate (see Listing 1.3). schema: thereby denotes the namespace of the schema.org
ontology8. We assume a set of supply materials to be provided to the factory without
the need for specific production. These supply materials will be provided by dispenser
units, and do not require any additional supplies.

Finished products that are available as supplies for subsequent production
steps are described in terms of an RDF class, e.g. <#product>, rdf:type,
cpu:product.

(Callable)
execution endpoint of shopfloor units are provided as td:InteractionPattern
in a set of triples that is referenced via td:providesInteractionPattern. The
Interaction Pattern further specifies the step carried out by the respective unit (see also
Listing 1.4).

Units that dispense products describe the product that they provide via a triple
<#unit>, schema:yield, <#productClass>, with <#productClass>
referring to the RDF class of the produced product. Dispenser units can dis-
pense more than one class of products. Machines that assemble products from sup-
plied products provide information about the offered production step via a triple
<#unit>,schema:step, steps:<type>. An example of a simple soldering
unit is shown in Listing 1.4.

8 https://schema.org/.

https://schema.org/

Linked Data as Medium for Stigmergy-based Optimization and Coordination 17

Agents may perform the production step that is offered by a machine and
its respective Interaction Pattern by resolving the URI that is provided by the
respective Interaction Pattern resource. This URI is identified by the property path
td:isAccessibleThrough/td:href, with td: denoting the namespace of the
Web Thing Description ontology9.

Listing 1.4. Example of a simple description of a workstation that performs a soldering step. The
soldering action is executed by calling the respective referenced URI.

1 sol:station-1 a td:Thing ;
2 td:thingName "Soldering Station 1"ˆˆxsd:string ;
3 td:providesInteractionPattern sol:soldering .
4
5 sol:soldering a td:InteractionPattern ;
6 td:interactionName "solder"ˆˆxsd:string ;
7 schema:step steps:solder ;
8 td:isAccessibleThrough [
9 td:href <http://10.2.100.17/solder/>
10] .

Affordances and Disturbances.

Listing 1.5. Example of an affordance marker resource that advertises a steps:soldering
interaction as relevant for the current order

1 <urn:uuid:a526>
2 a stigmergy:marker lef ;
3 stigmergy:marked sol:soldering ;
4 stigmergy:scope order:module ;
5 schema:supply cpu:product,
6 ram:product ;
7 schema:yield mm:product .

We call a resource that advertises the use of a specific Interaction Pattern endpoint to
some executing agent an Affordance. In our stigmergic system, we model affordances
as markers that are left on a td:InteractionPattern within the Linked Data
medium.

Listing 1.5 provides an example of such a marker: The RDF descrip-
tion of the marker resource specifies which Interaction Pattern it marked (via
stigmergy:marked), which order will be progressed by executing the respec-
tive Interaction Pattern (via stigmergy:scope), whether or not the respective
step needs particular supplies to be present to be executed (schema:supply), and
finally, which product will be the result of calling the respective Interaction Pattern
resource (schema:yield). Multiple Interaction Patterns can be advertised by the
same marker. If more than one interaction pattern is marked, it is up to an executing
agent to choose which of the endpoints to call.

9 https://www.w3.org/2019/wot/td.

https://www.w3.org/2019/wot/td

18 T. Spieldenner and M. Chelli

The decision which of the advertised endpoints to choose is further influenced by
disturbance markers. These markers will discourage agents from visiting a marked
resource. If an affordance marker links to several resource endpoints, an executing
agent will decide for an endpoint that is the least influenced by disturbance markers.
The algorithm will be furthered detailed out in Sect. 6.2.

6.2 Algorithm and Agent Models

The stigmergic algorithm to coordinate a production process within a Linked Data
medium as described in the previous section is implemented in two steps by two classes
of agents: marker agents and builder agents.

Marker agents traverse graphs in the Linked Data medium and generate produc-
tion markers as affordances on resources that describe machines in the Artifact space.
An example of a production marker is shown in Listing 1.5. These production mark-
ers attract builder agents to the respective advertised endpoints. Builder agents execute
advertised production endpoints as soon as the production requirements (supplies) are
met.

Marker Agents. A marker agent’s goal is to identify all suitable production units that
will be involved in the process of producing a particular order. The agent maintains a
list “unvisited” that contains nodes it would like to visit, but has not yet. To lay out
markers on every relevant resource, the agent will traverse recipe resources and leave
markers in the Linked Data medium as follows:

1. Check for any order resources that does not yet carry a handled mark. Find the
resource that represents the class of the ordered product by following the link given
via the schema:orderedItem property. Add this resource to unvisited.
Mark the order as handled.

2. From a resource r in unvisited, find a respective recipe blueprint b that contains
a triple (b, schema:about, r), i.e., the recipe for the respective product.

3. Visit all interaction patterns imatching the schema:step given by b; if the step is
steps:dispense, find the respective interaction patterns of dispenser units that
schema:yield r .

4. Leave a mark on each visited i (for both production and dispenser, cf. Listing 1.5).
5. For each resource s in schema:supplies of b, add s to unvisited. If no

schema:supply is specified, or the link points to an empty set (rdf:nil), do
nothing. Remove the current resource r from unvisited.

6. If unvisited is empty, terminate; else, go to 2.

The mark that the agent leaves in Step 4. is of the format given in Listing 1.5. It
provides information about the scope in terms of the order for which it was placed if the
marker should only be visible for a specific group of agents (Narrowcast), and moreover
specifies the required supplies s for this step. By the presented algorithm, a marker agent
is solely driven by the structure of the knowledge graphs about products and recipes
as provided by the Linked Data medium. Each subsequent step is solely decided by
the state of the currently visited resource. Its behavior can by this be classified as a
sematectonic stigmergic agent.

Linked Data as Medium for Stigmergy-based Optimization and Coordination 19

Builder Agents. Builder agents are attracted to markers left by marker agents and
call the respective InteractionPattern endpoints. A Builder agent proceeds as
follows:

1. Find markers m left by marker agents. If the builder agent is bound to a specific
scope (i.e. fulfilling a particular order), it will only follow markers in its scope (i.e.,
with a matching (m, stig:scope, order) triple present.

2. For eachm, check, e.g. via a fitting SPARQL query, if for each supply s specified by
the marker via (m, schema:supply, s), there exists a product p that is a product
of class s, as encoded by a triple (p, rdf:type, s).

3. For each marker m for which supplies are fulfilled, visit the Interaction Pattern
resource i that is marked via (m, stig:marked, i) and that carries the least
amount of disturbance markers, Execute the action endpoint that is identified via
td:isAccessibleThrough/td:href.

4. Leave a disturbance marker on the interaction pattern resource, and remove the affor-
dance marker.

6.3 Evaluation

Implementation of Stigmergic Principles. In the presented algorithm, several agents
with different competences (marker and builder agents) jointly solve the given problem.
Agents react to both markers left by other agents, and traces that occur as byproduct of
work: Builder agents are attracted by markers left by both marker agents (affordance
markers), and other builder agents (disturbance markers), and their reaction is further
influenced by the existence of supply products as result of previous production steps.

The presented algorithm can thus be classified as collective stigmergy in a stigmer-
gic system with marker-based and sematectonic elements.

We will now further analyse the emergence of benefits of stigmergic systems (see
also [22, pp.13–14]) by the use of Linked Data as stigmergic medium for the presented
algorithm:

Agents in the presented algorithm do not maintain long-term memory, but only react
and follow links based on observation of their immediate environment, resp. the seman-
tic information that describes the resources that they currently inspect. The condition-
action-rules by which agents react to resources are generic, and do not include situation-
specific decisions that would explicitly model a given goal. By this, agents do not plan
or anticipate, nor do they maintain any notion of higher objective or goal.

Agents do not require to keep memory as all necessary information to execute the
algorithm is written to and provided by the resources in the medium. So is informa-
tion to establish communication between agents. The need for direct communication
is eliminated by modelling interaction through following markers left by other agents.
Agents are moreover not aware of each other. They only interact with the Linked Data
medium, in which the agents themselves are not, and do not need to be, represented.
This also implies that agents do not need to be simultaneously present.

The correct sequence of steps arises from the a production marker describing pre-
conditions that need to be fulfilled before executing the endpoint that carries the marker.
There is no requirement to encode the sequence of steps explicitly in the model of the

20 T. Spieldenner and M. Chelli

markers in terms of explicitly stating an order sequence in which markers should be
visited by agents.

Non-necessity for commitment is achieved by having no explicit assignment of tasks
to agents. Agents decide autonomously and spontaneously which resource to visit solely
from the state of resources in the medium. Any agent can react to any marker at any
point of time, and by this decide to continue a production task according to the agents’
competence from any arbitrary step.

Finally, there is no centralized coordination or control authority that agents need to
consult, or by which they are controlled. Coordination arises solely from resource states
and markers left in the medium.

Correctness of the Algorithm. The algorithm models the process of handling one
order, with the ordered product defining the expected result of running the algorithm.
Marker agents start their program from the resource that describes the ordered prod-
uct, and recurse into following links to resources describing the production of required
results. By this, it is ensured that over the total production process, all needed supplies
will be available eventually. It can easily be shown that the marker agent’s algorithm
will terminate as soon as all dispenser units that provide dispensable supplies (leaf
nodes in the graph in Fig. 3) are assigned with a marker. Builder agents will execute
their algorithm until the last production marker is consumed. Consuming a production
marker and executing the respective Interaction Endpoint will always lead to producing
a product that is required to achieve the set production goal, either in terms of required
supplies, or eventually, with more and more supplies met, the ordered final product.

For several orders executed in parallel, production units will be marked with inde-
pendent markers for each order. By having separate markers per order, and having
builder agents removing the marker they followed after executing the production step,
it is ensured that for every order, every production step is executed exactly once. The
concept may be extended for products to require more than one instance of a supply
product. In this case, a marker agent would leave a marker per required instance of a
supply.

The opportunity for coordination arises in Step 3. of the builder agent algorithm:
For every production step, markers are left on every machine that provides the neces-
sary step to carry out the respective production step as specified by the recipe. Builder
agents that follow the marker trace choose independently which of the marked inter-
action endpoints they actually execute. This decision is based on the number of distur-
bance markers left on the resource. The more agents visit and execute the same end-
point, the more disturbance markers are left on the machine, and agents will be more
likely to divert to less busy machines to complete their order.

The algorithm at this point ignores transport of products on the shop floor. A more
sophisticated heuristic may take into account also transport times between machines
between the different steps.

6.4 Implementation

We implemented the example using the Unity 3D game engine to simulate the factory,
a Fuseki triple store to host the read-write Linked Data medium, and the AJAN agent

Linked Data as Medium for Stigmergy-based Optimization and Coordination 21

platform1011 [2] to implement the behaviors of both marker and builder agents. All
related resources will be published on GitHub: https://github.com/dfki-asr/stigmergy-
demo

7 Conclusion and Future Work

In this paper, we have thoroughly analyzed read-write Linked Data as a digital medium
for stigmergy-based optimization and coordination mechanisms. This analysis was
based on common general characteristics of stigmergic systems in literature. We have
identified direct correspondences between these characteristics, and central features of
Linked Data systems. By this, we showed that read-write Linked Data provides a suit-
able digital medium for stigmergy-based coordination algorithms.

We demonstrated the effectiveness of Linked Data as stigmergic medium by demon-
strating the application of it in two practical use-cases: One from the domain of plan-
ning, and one from the domain of multi-agent coordination in a cyber-physical manu-
facturing scenario for customized digital production. The experiments from the planner
domain showed that stigmergic Linked Data systems are in principle capable of solving
planning problems. The more information the agent is able to derive from the envi-
ronment and markers left during the process, the higher the quality of the solution,
up to solution qualities as found by classic planner approaches. We plan to strengthen
Linked Data as medium for stigmergy-based optimization by applying the concepts of
stigmergy to a variety of additional planner domains. The example from the coordi-
nation domain demonstrated that by proper employment of Linked Data as stigmergic
medium, coordination arises in a self-organized fashion.

The given examples are intended to be conceptual examples of how these and sim-
ilar problems may be tackled using Linked Data as underlying medium. We plan to
apply the approach to additional planner problems and application domains to show
generality.

Central features of stigmergic systems are robustness and resilience towards dis-
turbance in the optimization domain during execution. Experiments that demonstrate
these features for the presented Linked Data medium are currently carried out, and are
planned to be published as future work.

References

1. Alfeo, A.L., Cimino, M.G., Egidi, S., Lepri, B., Vaglini, G.: A stigmergy-based analysis of
city hotspots to discover trends and anomalies in urban transportation usage. IEEE Trans.
Intell. Transp. Syst. 19(7), 2258–2267 (2018). https://doi.org/10.1109/TITS.2018.2817558

2. Antakli, A., et al.: Optimized coordination and simulation for industrial human robot collab-
orations. In: Bozzon, A., Domı́nguez Mayo, F.J., Filipe, J. (eds.) WEBIST 2019. LNBIP, vol.
399, pp. 44–68. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-61750-9 3

3. de la Banda, M.G., Stuckey, P.J.: Dynamic programming to minimize the maximum number
of open stacks. INFORMS J. Comput. 19(4), 607–617 (2007)

10 https://github.com/aantakli/AJAN-service.
11 https://github.com/aantakli/AJAN-editor.

https://github.com/dfki-asr/stigmergy-demo
https://github.com/dfki-asr/stigmergy-demo
https://doi.org/10.1109/TITS.2018.2817558
https://doi.org/10.1007/978-3-030-61750-9_3
https://github.com/aantakli/AJAN-service
https://github.com/aantakli/AJAN-editor

22 T. Spieldenner and M. Chelli

4. Berners-Lee, T., Hendler, J., Lassila, O., et al.: The semantic web. Sci. Am. 284(5), 28–37
(2001)

5. Binitha, S., Sathya, S.S.: A survey of bio inspired optimization algorithms. Int. J. Soft Com-
put. Eng. (IJSCE) 2(2), 137–151 (2012). http://citeseerx.ist.psu.edu/viewdoc/download?
doi=10.1.1.458.811&rep=rep1&type=pdf

6. Bizer, C., Heath, T., Idehen, K., Berners-Lee, T.: Linked data on the web (ldow2008). In: Pro-
ceedings of the 17th International Conference on World Wide Web, pp. 1265–1266 (2008)

7. Bonabeau, E., Henaux, F., Guérin, S., Snyers, D., Kuntz, P., Theraulaz, G.: Routing in
telecommunications networks with ant-like agents. Lect. Notes Comput. Sci. (including sub-
series Lect. Notes Artif. Intell. Lect. Notes Bioinform.) 1437(1), 60–71 (1998). https://doi.
org/10.1007/bfb0053944

8. Charpenay, V., et al.: Mosaik: a formal model for self-organizing manufacturing systems.
IEEE Pervasive Comput. 20(1), 9–18 (2020)

9. Chiong, R.: Nature-Inspired Algorithms for Optimisation, vol. 193. Springer, Berlin (2009).
https://doi.org/10.1007/978-3-642-00267-0

10. Chopra, S., Notarstefano, G., Rice, M., Egerstedt, M.: A distributed version of the Hungarian
method for multirobot assignment. IEEE Trans. Robot. 33(4), 932–947 (2017). https://doi.
org/10.1109/TRO.2017.2693377

11. Ciancarini, P., Gorrieri, R., Zavattaro, G.: Towards a calculus for generative communica-
tion. In: Najm, E., Stefani, J.-B. (eds.) Formal Methods for Open Object-based Distributed
Systems. IAICT, pp. 283–297. Springer, Boston (1997). https://doi.org/10.1007/978-0-387-
35082-0 21

12. Cicirello, V.A., Smith, S.F.: Wasp-like agents for distributed factory coordination.
Auton. Agent. Multi-Agent Syst. 8(3), 237–266 (2004). https://doi.org/10.1023/B:AGNT.
0000018807.12771.60

13. De Nicola, R., Di Stefano, L., Inverso, O.: Multi-agent systems with virtual stigmergy. Sci.
Comput. Program. 187, 102345 (2020). https://doi.org/10.1016/j.scico.2019.102345

14. Dipple, A., Raymond, K., Docherty, M.: Stigmergy within web modelling languages : posi-
tive feedback mechanisms. eprints.qut.edu.au (2013)

15. Dipple, A., Raymond, K., Docherty, M.: General theory of stigmergy: modelling stigma
semantics. Elsevier (2014). https://doi.org/10.1016/j.cogsys.2014.02.002

16. Dipple, A.C.: Standing on the shoulders of ants: stigmergy in the web. In: Proceedings of the
20th international conference companion on World Wide Web, pp. 355–360 (2011)

17. Dorigo, M., Blum, C.: Ant colony optimization theory: a survey. Theoret. Comput. Sci.
344(2–3), 243–278 (2005)

18. Fielding, R.T., Taylor, R.N.: Architectural styles and the design of network-based software
architectures, vol. 7. University of California, Irvine Irvine (2000)

19. Gelernter, D.: Generative communication in linda. ACM Trans. Program. Lang. Syst.
(TOPLAS) 7(1), 80–112 (1985)

20. Gerevini, A.E., Haslum, P., Long, D., Saetti, A., Dimopoulos, Y.: Deterministic planning
in the fifth international planning competition: PDDL3 and experimental evaluation of the
planners. Artif. Intell. 173, 619–668 (2009). https://doi.org/10.1016/j.artint.2008.10.012

21. Heylighen, F.: Mediator evolution: a general scenario for the origin of dynamical hierarchies.
Worldviews Sci. Us. (Singapore: World Sci.) 44, 45–48 (2006)

22. Heylighen, F.: Stigmergy as a universal coordination mechanism: components, varieties and
applications. Human Stigmergy: Theoretical Developments and New Applications; Springer,
New York (2015)

23. Jevtić, A., Gutierrez, Á., Andina, D., Jamshidi, M.: Distributed bees algorithm for task
allocation in swarm of robots. IEEE Syst. J. 6(2), 296–304 (2012). https://doi.org/10.1109/
JSYST.2011.2167820

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.458.811&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.458.811&rep=rep1&type=pdf
https://doi.org/10.1007/bfb0053944
https://doi.org/10.1007/bfb0053944
https://doi.org/10.1007/978-3-642-00267-0
https://doi.org/10.1109/TRO.2017.2693377
https://doi.org/10.1109/TRO.2017.2693377
https://doi.org/10.1007/978-0-387-35082-0_21
https://doi.org/10.1007/978-0-387-35082-0_21
https://doi.org/10.1023/B:AGNT.0000018807.12771.60
https://doi.org/10.1023/B:AGNT.0000018807.12771.60
https://doi.org/10.1016/j.scico.2019.102345
https://doi.org/10.1016/j.cogsys.2014.02.002
https://doi.org/10.1016/j.artint.2008.10.012
https://doi.org/10.1109/JSYST.2011.2167820
https://doi.org/10.1109/JSYST.2011.2167820

Linked Data as Medium for Stigmergy-based Optimization and Coordination 23

24. Kanamori, R., Takahashi, J., Ito, T.: Evaluation of traffic management strategies with antic-
ipatory stigmergy. J. Inf. Process. 22(2), 228–234 (2014). https://doi.org/10.2197/ipsjjip.22.
228

25. Korošec, P., Šilc, J., Filipič, B.: The differential ant-stigmergy algorithm. Inf. Sci. (2012).
https://doi.org/10.1016/j.ins.2010.05.002

26. Krieger, M.J., Billeter, J.B., Keller, L.: Ant-like task allocation and recruitment in cooperative
robots. Nature 406(6799), 992–995 (2000). https://doi.org/10.1038/35023164

27. Lasi, H., Fettke, P., Kemper, H.-G., Feld, T., Hoffmann, M.: Industry 4.0. Bus. Inf. Syst. Eng.
6(4), 239–242 (2014). https://doi.org/10.1007/s12599-014-0334-4

28. Lassila, O., Swick, R.R., et al.: Resource description framework (RDF) model and syntax
specification (1998)

29. Linhares, A., Yanasse, H.H.: Connections between cutting-pattern sequencing, vlsi design,
and flexible machines. Comput. Oper. Res. 29(12), 1759–1772 (2002)

30. Lucchi, R., Millot, M., Elfers, C.: Resource oriented architecture and rest. European Com-
munities, Assessment of impact and advantages on INSPIRE, Ispra (2008)

31. Matarić, M.J., Sukhatme, G.S., Østergaard, E.H.: Multi-robot task allocation in uncertain
environments. Autonom. Robot. 14(2–3), 255–263 (2003)

32. Mrugalska, B., Wyrwicka, M.K.: Towards lean production in industry 4.0. Procedia Eng.
182, 466–473 (2017)

33. Nguyen, A.A.: Scalable, decentralized multi-agent reinforcement learning methods inspired
by stigmergy and ant colonies, pp. 1–50 (2021). http://arxiv.org/abs/2105.03546

34. Privat, G.: Phenotropic and stigmergic webs: the new reach of networks. Univ. Access Inf.
Soc. 11(3), 323–335 (2012). https://doi.org/10.1007/s10209-011-0240-1

35. Ricci, A., Omicini, A., Viroli, M., Gardelli, L., Oliva, E.: Cognitive stigmergy: towards a
framework based on agents and artifacts. In: Weyns, D., Parunak, H.V.D., Michel, F. (eds.)
E4MAS 2006. LNCS (LNAI), vol. 4389, pp. 124–140. Springer, Heidelberg (2007). https://
doi.org/10.1007/978-3-540-71103-2 7

36. Schraudner, D., Charpenay, V.: An http/rdf-based agent infrastructure for manufacturing
using stigmergy (01), 197–202 (2020). https://doi.org/10.1007/978-3-030-62327-2 34

37. Schubotz, R., Chelli, M., Spieldenner, T.: stigld: stigmergic coordination of linked data
agents. In: Pan, L., Cui, Z., Cai, J., Li, L. (eds.) Bio-Inspired Computing: Theories and
Applications. BIC-TA 2021. Communications in Computer and Information Science, vol.
1566, pp. 174–190. Springer, Singapore. https://doi.org/10.1007/978-981-19-1253-5 13

38. Spieldenner., T., Chelli., M.: Linked data as stigmergic medium for decentralized coor-
dination. In: Proceedings of the 16th International Conference on Software Technolo-
gies - ICSOFT, pp. 347–357. INSTICC, SciTePress (2021). https://doi.org/10.5220/
0010518003470357

39. Tzanetos, A., Fister, I., Jr., Dounias, G.: A comprehensive database of nature-inspired algo-
rithms. Data Brief 31, 105792 (2020)

40. Valckenaers, P., Hadeli, Germain, B.S., Verstraete, P., Van Brussel, H.: Mas coordination and
control based on stigmergy. Comput. Ind. 58(7), 621–629 (2007). https://doi.org/10.1016/j.
compind.2007.05.003

41. Yu, X., Cheng, T.: Research on a stigmergy-driven &MAS-based method of modeling intelli-
gent system, pp. 1042–1047 (2020). https://doi.org/10.1109/cisp-bmei51763.2020.9263567

https://doi.org/10.2197/ipsjjip.22.228
https://doi.org/10.2197/ipsjjip.22.228
https://doi.org/10.1016/j.ins.2010.05.002
https://doi.org/10.1038/35023164
https://doi.org/10.1007/s12599-014-0334-4
http://arxiv.org/abs/2105.03546
https://doi.org/10.1007/s10209-011-0240-1
https://doi.org/10.1007/978-3-540-71103-2_7
https://doi.org/10.1007/978-3-540-71103-2_7
https://doi.org/10.1007/978-3-030-62327-2_34
https://doi.org/10.1007/978-981-19-1253-5_13
https://doi.org/10.5220/0010518003470357
https://doi.org/10.5220/0010518003470357
https://doi.org/10.1016/j.compind.2007.05.003
https://doi.org/10.1016/j.compind.2007.05.003
https://doi.org/10.1109/cisp-bmei51763.2020.9263567

Object Parsing Expressions for Unplanned,
Unmodified, and Incremental Grammar Reuse

Stefan Sobernig(B)

Institute for Information Systems and New Media,
WU Vienna, Welthandelsplatz 1, 1020 Vienna, Austria

stefan.sobernig@wu.ac.at

Abstract. Developing families of software languages requires, among oth-
ers, composable grammar definitions. Object Parsing-Expression Grammars
(OPEGs) serve as such grammars that can be composed without preplanning and
in an unmodified manner, either via grammar unions or via fine-grained gram-
mar transformations. In addition, OPEGs help avoid typical pitfalls (abstraction
mismatches) of using intermediate parse representations (e.g., parse trees) when
parsing to object graphs. The paper documents the design and implementation of
OPEGs on top of a packrat parser as well as advanced features of OPEGs (e.g.,
handling multi-value properties, non-positional parsing). An OPEG implemen-
tation is available as part of DjDSL, a development system for domain-specific
languages (DSLs).

Keywords: Parsing expression · Object grammar · Language-product line ·
Language family · Grammar reuse · Grammar composition · Grammar
transformation · Domain-specific language · DSL

1 Introduction

Language-product line engineering [15,18,20,23,30] shift emphasis from developing
and analysing a single software language to developing and to analysing a language
family. Known language families are expression languages [35] and state-machine mod-
elling languages [5,36]. Shared goals are to minimise preplanning effort as well as, at
the same time, to reuse development artefacts and language tooling when creating and
maintaining a language family in an unmodified manner.

Within a language family, as an offspring, a given language is defined via compos-
ing language-definition artefacts such as definitions of abstract and concrete syntaxes,
context conditions, behaviour, and test cases. This composition must be tackled at dif-
ferent levels of language definition and language processing (abstract syntax, context
conditions, behaviour implementation; [31]).

Reusing existing syntax definitions without preplanning and without modification is
the key objective. This way, tracking any modification in the source definitions comes
for free; there is no need to propagate changes explicitly. The resulting grammar is
ideally formed by referencing the source grammars, rather than cloning them. There are

c© Springer Nature Switzerland AG 2022
H.-G. Fill et al. (Eds.): ICSOFT 2021, CCIS 1622, pp. 24–40, 2022.
https://doi.org/10.1007/978-3-031-11513-4_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-11513-4_2&domain=pdf
https://doi.org/10.1007/978-3-031-11513-4_2

Object Parsing Expressions for Unplanned, Unmodified 25

two barriers to syntax definitions becoming reusable without preplanning and without
modification: parsing ambiguity and mapping ambiguity [4,31].

Parsing ambiguity is defined as the (typically, unwanted) property of a syntax def-
inition causing a corresponding parsing procedure (parser, interpreter) to produce no
parse at all; or more than one parse, all valid under a given definition. This ambiguity
can arise as an unwanted consequence of a composition: Two unambiguous grammars
may enter a composition and turn into an ambiguous composed grammar [7,33].

Mapping ambiguity is the (unwanted) property of a syntax definition leading to
constructing higher-level parse representations (abstract syntax graphs, ASG) from one
initial valid lower-level parse that are not fit for a given task (e.g., analysing the abstract-
syntax structure). This ambiguity can arise from abstraction mismatcheswhen mapping
a concrete syntax to an object-oriented language model as the abstract syntax [17] (e.g.,
representing non-terminals as classes). Ambiguous parsing then adds to an ambiguous
mapping, with alternative valid parses not mapping to one and the same abstract-syntax
structure.

This paper extends [31] by reporting on critical design and implementation deci-
sions on Object Parsing-Expression Grammars (OPEGs) which address both parsing
and mapping ambiguity. The fine-grained grammar transformations introduced first
in [31] include rule extractions with and without symbol rewriting, transitive symbol
rewriting as well as rule removals (see Sect. 4). Adding to [31], this extended paper
elaborates on the challenge of mapping ambiguity (abstraction mismatches, Sect. 2.2)
and additional details of object parsing expressions (multi-valued properties in Sect. 3.2,
non-positional parsing in Sect. 3.3). Section 4.1 adds a discussion on the necessary com-
position operations. Furthermore, the design and the proof-of-concept implementation
as an extended packrat parser are documented in Sect. 5.

The implementation, the running examples as well as the code listings are available
from a supplemental Web site.1

2 Background

2.1 Parsing Expressions

A parsing expression defines a pattern to match (recognise) and, if matched, to consume
a specified fragment of input. A Parsing-Expression Grammar (PEG; [10]) is defined
as a 4-tupleG = (N,T,R, eS).N denotes the finite set of non-terminals, T is the finite
set of terminals, R is the finite set of rules, and eS is the start expression. Each rule
r ∈ R is a pair (A, e) typically written as a maplet A ← e, with A ∈ N and e being
(another) parsing expression. For a comprehensive introduction to parsing expressions,
please refer to [31].

A characteristic operator of parsing expressions is the choice operator for defin-
ing alternate sub-expressions. The alternate sub-expressions are tried in their definition
order. The first one to succeed wins, the others are discarded. The choice operator gives
rise to important difficulties when composing parsing expressions such as language hid-
ing (see Sect. 6).

1 https://github.com/mrcalvin/djdsl.

https://github.com/mrcalvin/djdsl
https://github.com/mrcalvin/djdsl

26 S. Sobernig

2.2 Parsing to Objects: Abstraction Mismatches

Syntax-driven developer tools for software languages and their different (“parsing”)
pipelines for processing program text produce and, subsequently, operate on differ-
ent representations of the processed input: parse representations. Parse representations
abstract from the concrete-syntax structure to render a program text or script more eligi-
ble to run tooling operations on them. Parse representations in their role as abstractions
can be qualified along different dimensions, for example, their purpose for tooling,
their characteristics as data structures, and selected (including non-functional) quality
attributes.

Tooling operations on parse representations include analysis operations, code gen-
eration, visualisation, debugging, and syntax rendering. Each of these operations can be
further divided into sub-activities (e.g., syntax rendering can result in a pretty-printed
string or an editable projection). Along this dimension, parse representations are com-
monly grouped into parse trees and abstract-syntax trees (AST; [25], Chap. 4). As data
structures, parse representations can be devised as trees, graphs with/ without direction,
graphs with/ without cycles, as well as COMPOSITE [12] structures with homogeneous
vs. heterogeneous elements [25].

An important objective is to avoid introducing abstraction mismatches when pro-
cessing a character-based input into a parse representation [17]. An abstraction mis-
match ([37]; Chap. 3) of a given parse representation denotes a misfit of a chosen parse
abstraction given a modelling or processing operation on a program or script (e.g., for
some analysis operation, code generation, visualisation, debugging, and syntax ren-
dering). Commonly applied representation choices are non-terminals as object-classes,
(unnamed, nested) rule sub-clauses as subclass hierarchies, or factoring out shared
sub-clauses as subclasses. Generally speaking, mismatches result from ill-choosing
inheritance-based, decomposition-based, or mixed encodings of parsing structures in
terms of object graphs [2,17].

A misfit is then observed in terms of violations of three quality attributes of the
chosen representation for this operation ([25]; Sect. 4.2):

– Density (a.k.a. compactness): Does the parse representation contain elements unnec-
essary for a given operation?

– Meaningfulness (a.k.a. robustness): Is the parse representation robust to changes of
the concrete-syntax definition or of the syntax processor?

– Convenience (a.k.a. traversability): Can the parse representation be efficiently and
conveniently walked for a given operation?

The presence of an abstraction mismatch requires some compensation action. Com-
pensations include additional transformation steps on an ASG or providing additional
safety belts (e.g., abstract-syntax constraints for disambiguation). The extended parsing
expressions introduced in Sect. 3 help avoid abstraction mismatches.

3 Advanced Object Parsing Expressions

Object-Parsing Expression Grammars (OPEGs) contain extended parsing expressions
to process the consumed syntactic structure into an object graph. The basic object-
parsing expressions include instantiation generators for object generation (including

Object Parsing Expressions for Unplanned, Unmodified 27

alternates) and assignment generators. They have been introduced in [31] and are
briefly summarised in Sect. 3.1. They become enriched by handling multi-valued prop-
erties (collections; see Sect. 3.2) and non-positional parsing of object properties (see
Sect. 3.3).

As in [31], these advanced object parsing expressions are presented by referring to
the running example of modelling the state machine driving “Miss Grant’s Controller”
(see Listing 1), for the sake of allowing cross-reading.

2 start idle
3

4 state idle
5 on doorClosed go active
6

7 state active
8 on lightOn go waitingForDrawer
9 on drawerOpened go

waitingForLight
10

11 state waitingForDrawer
12 on drawerOpened go unlockedPanel
13

14 state unlockedPanel
15 go idle on panelClosed
16

17 state waitingForLight

Listing 1.Miss Grant is told to maintain a secret compartment in her bedroom. This compartment
requires a particular sequence of actions from her side to become unlocked for her to open. The
corresponding state-machine models the modal behaviour of the software-based compartment
controller, reacting to Miss Grant’s input actions (see [11], Section 1.1.1). This is reproduced
from [31] to allow for cross-reading.

3.1 Basics

Instantiation Generators: compute one or several instantiations of object-classes when
their rule is applied, based on the matched input. Listing 2 shows a grammar excerpt
with two rules E and ON, with WS handling and discarding whitespace characters.
Rule E consumes trigger-event definitions for state machine transitions of the form
ondoorClosed (line 5, Listing 1). It features the rule element Event enclosed by
single grave accents (`...`) as an instantiation generator. Upon matching input, the
generator will instantiate an object-class Event.

Instantiation generators fully integrate with alternate sub-expressions and the
semantics of ordered choices, that is, each alternate sub-expression can contain a differ-
ent instantiation generator. The instantiation generators can point to the same or differ-
ent object-classes. Listing 3 demonstrates how two alternative writing styles for transi-
tions (i.e., on-go vs. go-on) could be defined as alternates.

28 S. Sobernig

E ← `Event` ON NAME ;
NAME ← name:<alnum>+;
ON ← WS 'on' WS;

Listing 2. An excerpt from an Object Parsing-Expression Grammar (OPEG), showing three pars-
ing rules in EBNF-like notation. The first rule exemplifies the use of an instantiation-generator
expression.

Assignment Generators: complement an instantiation generator to mark recognised
and consumed values from the processed input as values to become assigned to the
properties of objects created by an instantiation generator. Listing 2 shows the example
of an assignment generator for a property name. The so-generated assignment binds
any value returned from applying the parsing expression <alnum>+, that is, a string of
at least one alphanumerical character.

T ←
`Transition` trigger:E GO target:<

alnum>+ /
`Transition` GO target:<alnum>+

trigger:E;

Listing 3. Alternate sub-expression using instantiation generators; taken from [31].

Assignment generators allow objects to become related in two ways: (1) When an
assignment generator refers to a bare parsing expression, the result computed by this
parsing expression will become assigned directly. (2) Assignment generators can be
used to relate objects independently from the parse. This is required because an abstract-
syntax graph typically involves some form of circular initialisation [28]. This refers
to associations (references) established between objects beyond those induced by the
parse, i.e., at different times of a parse. Circularity requires, to be fully resolved, that all
objects to enter circular relationships have been fully initialised before. This is achieved
by query generators (see [31] for the details).

3.2 Multi-valued Properties

Parsing expressions can contain repetition operators for consuming zero-or-more (e∗)
and one-or-more (e+) occurrences of input matched by the operand expression. At
the level of the abstract-syntax graph, these collections of consumed matches naturally
map to multi-valued object properties (collections). Object parsing expressions allow
for defining multi-valued assignments, across multiple definition levels of assignment
generators, to bind value collections to multi-valued properties of objects.

M ← `StateMachine` START start:<alnum>+
states:S+ ;

S ← `State` STATE name:<alnum>+ transitions:T*
;

Listing 4.

Object Parsing Expressions for Unplanned, Unmodified 29

Listing 4 contains the two top-level parsing rules for the small state-machine lan-
guage. The RHS of rule M contains an assignment generator states with its parsing
expression S+ that will bind one or more instantiations of the State class. This
defined by the corresponding rule for the S non-terminal (see line 2 of the same list-
ing). The parsing expression of rule S itself collects zero or more instantiations of the
Transition class returned by the T rule (see Listing 3).

In accordance with standard normalisation rules for the two repetition operators,
their desugared forms using multiple occurrences of the same-named assignment oper-
ator or using right-recursive refactorings are supported to the same effect.

Key to appreciate this idea is that the repeated occurrences of an assignment gen-
erator in the (intermediate) parse tree are muxed into single, multi-valued assignment
calls; and not repeated single-valued ones. The latter would effectively redefine the
object state, rather than setting a multi-valued property once.

M ← `StateMachine` START start:<alnum>+ states:S
states:S* ;

S ← `State` STATE name:<alnum>+ TRANS? ;
TRANS ← transitions:T TRANS*;

Listing 5.

3.3 Non-positional Parsing

Parsing rules and their decomposition into alternates and non-terminals are orthogonal
to the placement of instantiation and assignment generators. Parsing rules can be freely
re-structured. For example, a refactoring can introduce or factor out sub-expressions
into new non-terminals and it can remove non-terminals. The aims are to best organ-
ise the syntax definition and to improve ill-defined grammars (e.g., left recursion in
parsing grammars), however, without affecting the object graph to be generated. Relo-
cating assignment generators into separate rules also has the benefit of reusing syntax
and assignment fragments for different instantiation generators (e.g., name or identifier
patterns).

Consider the rule defining non-terminal E of Listing 2 (line 1) and the subordinate
rule NAME (line 2). The first contains the instantiation generator, the second features the
assignment generator.

The result of two separate expressions will be exactly the same as using a single
parsing expression featuring both generators. That is, an instance of class Event of
name doorClosed. This is despite the fact that the structure of the parse tree differs.
Relocating assignment generators into separate rules also has the benefit of reusing syn-
tax and assignment fragments for different instantiation generators (and the language-
model concepts). For instance, name or identifier patterns can so be defined in one rule
and shared by different language-model elements. This is possible even in the case that
the elements are not in a reuse relationship in their language model.

30 S. Sobernig

4 Composing Parsing Expressions

A grammar composition relates a receiving parsing grammar and one or more composed
parsing grammars, yielding a resulting parsing grammar. The fundamental unit of com-
position are parsing rules [31]. Composition operations on the rules include overriding,
combination, and restriction (see Sect. 4.1). In OPEGs, they are realised by so-called
merges and transforms (see Sect. 4.2). This way, a developer can realise non-trivial
syntax-level compositions such as syntax unification (see Sect. 4.3).

4.1 On Composition Operations

There are three basic operation types for composing production and parsing grammars:
overriding, combination, and restriction (see also [16]).

Overriding: yields a resulting definition in which rules, non-terminals, or alternates
of the receiving grammars entirely replace rules, non-terminals, or alternates of the
composed grammar. This leaves the resulting grammar without access to the overridden
rules. Formally, overriding is realised as a union with override operation between the
receiving and the composed rules sets ([29], Sect. 5). This union operation does not
qualify non-terminals at the LHS (or, RHS for that matter) for their origin (i.e., receiving
or composed grammars), but considers just the unqualified non-terminal names. In case
of same-named non-terminals between matching pairs of rules, the rule of the receiving
grammar is carried over into the resulting grammar. The composed grammar’s rule
is effectively lost. union with override is the default composition operation, e.g., in
ANTLR (grammar imports; [26], pp. 257) and Ensō [33].

Combination: differs from pure overriding by preserving and by linking the potentially
overridden (composed) rules or rule elements with the overriding (receiving) ones. For
example, the two RHS of a matching pair of receiving and composed rules are com-
bined as alternates to each other in a combined rule in the resulting grammar. Hence,
this is sometimes referred to as (simple) union with override/ combine. Special care
must be given to combinations when the alternation is non-commutative as in parsing
expressions (ordered choices; see Sect. 4.2).

Restriction: refers to the receiving grammar being able to selectively mark composed
rules or their rule elements for not entering the resulting grammar. Restrictions can be
implemented in different manners, assuming the following composition procedure: (1)
A (disjoint) union of the rules from the receiving and from the composed grammars is
formed, (2) overriding and combination operations are performed, and (3) any useless
rules (non-terminals) are removed to form the resulting grammar.

Against this background, the following variants of restriction can be realised:

– Renaming: As part of step (2), a dedicated renaming of a non-terminal by the receiv-
ing grammar can be used to render the non-terminal unreachable in the resulting
definition. This effectively removes the entire corresponding rule from the resulting
definition in step (3). SDF allows for this renaming [34].

Object Parsing Expressions for Unplanned, Unmodified 31

– Filtering: As a new step (4), after having computed the resulting grammar, filters
may be applied to suppress rules or rule elements based on filtering conditions. Fil-
tering conditions can range from exact matching of rule-element labels (alternates
in Rats!) to matching rule patterns (applied to RHS in Art [16]).

Object Parsing-Expression Grammars (OPEGs) support overriding, combination,
and restriction (via filtering) in accordance with requirements of parsing grammars. In
Sect. 4.2, concrete composition operations for OPEGs are introduced. This also high-
lights specifics to PEGs (as opposed to production grammars).

Fig. 1. A procedural overview of creating a resulting grammar including transforms in four steps
(a–d): (a) narrow: non-terminals in the input rules-sets are turned into qualified symbols; (b)
compose: the (disjoint) union of the input rules-sets is formed; (c) modify: the transformation
operations (e.g., append, removal) are performed; (d) clean: cleaning operations on unrealisable
and unreachable non-terminals are performed. Taken from [31].

4.2 Merges and Transforms

Two or more OPEGs can enter a merges relationship. Figure 1 defines a merge relation-
ship between two grammars: G1 acts as the receiving, G0 as the composed one. The
merges relationship does not directly determine which kind of composition operation
is to be performed between receiving and composed grammars. For this, the receiving
grammar can also define grammar transforms to implement different composition oper-
ations. These include simple union with override in the absence of transforms, as well
as different variants of extraction and of restriction in the presence of transforms.

The composition behaviour in presence of transformations is implemented on the
procedure illustrated in an informal manner in Fig. 1 (steps a–d; [31]).

In step (c), the actual transforms are applied. An overview of the available operators
is presented in Table 1. As an example, an extract w/o rewrite (⇐, (1) in Table 1) selects
the RHS expression of the referenced rule (e.g., G0::A) and introduces it into the
receiving rules set. Introduction refers to either creating a new rule G1::A with the
extracted RHS or appending the selected RHS as an additional alternate to an existing
rule. For a comprehensive presentation of transforms, please see [31].

The generators for instantiations, assignments, and queries become combined,
extracted, and removed with the surrounding parsing expressions or sub-expressions

32 S. Sobernig

Table 1. Overview of OPEG transforms; taken from [31].

Op Type Description Example

1 ⇐ Binary Extract w/o rewrite A ⇐ G0::A

2 ⇔ Binary Extract w/ rewrite A ⇔ G0::A

3
∗⇐⇒ Binary Transitive extract w/rw A

∗⇐⇒ G0::A

4 ⇒ Unary Remove G0::B ⇒
5 ← Binary Op. 1 w/o generators A ← G0::A

6 ↔ Binary Op. 2 w/o generators A ↔ G0::A

None N/A Union with override G1 merges set G0

(alternates) according to the stipulated behaviour of the first four transforms (1–4 in
Table 1). To reuse parsing (sub-)expressions without their generators (e.g., to attach
matches to an alternative generator), there are two transform operators that operate
on the plain expressions, effectively excluding the generators (see operators 5 and 6
in Table 1). An (5) extract w/o rewrite w/o generators operator (←) selects the RHS
expression of the referenced rule (e.g., G0::A), omitting any generators, and intro-
duces it into the receiving rules set (see also operator 1). An (6) extract w/ rewrite w/o
generators operator (↔) performs the extraction/ introduction and patches the names-
pace prefixes (see also operator 2), again, omitting any generators.

OPEG merges and transforms support developers in realising the entire range of the
syntax-level language compositions [8] including syntax extension, extension compo-
sition, extension unification, and restriction [31]. Section 4.3 exemplifies syntax unifi-
cation.

state active
on lightOn go waitingForDrawer
on drawerOpened go

waitingForLight
[counter > 3]

Listing 7. One guarded transition for Miss Grant’s Controller; taken from [31].

4.3 Application (ex.): Syntax Unification

Consider two separately developed languages. These are a Boolean and comparison
expression language (BCEL) and a state-machine-definition language (SMDL), with
the later capable of modelling “Miss Grant’s Controller”. The BCEL is a candidate of
a functional kernel language [35] to become unified with SMDL to implement guarded
transitions. This is known as an example of language unification [31].

A guarded transition is a transition that is annotated by a guard expression and
whose firing is controlled by the prior evaluation of the attached guard expression. If the
guard is evaluated to true at that time, the transition is enabled, otherwise, it is disabled
and will not fire. Listing 7 shows two transitions, one with and the other without a guard
expression.

Object Parsing Expressions for Unplanned, Unmodified 33

A unification is marked by two or more composed grammars being merged by a
receiving (unifying) grammar. The running example requires the developer to define a
receiving grammar that merges the BCEL’s grammar and the SMDL grammar. Guard
expressions are attached to the rules responsible for Transition instantiations,
namely by “injecting” an assignment generator to associate guard expressions with
transitions. This leaves the two source grammars untouched. Please refer to [31] for
the details. OPEGs with transforms allow for the unanticipated, the unmodified, and the
controlled reuse of two independently developed syntaxes to form a unified syntax.

5 Design and Implementation

5.1 Packrat Parsing

A Parsing-Expression Grammar (PEG) acts both as a specification of a software lan-
guage and the specification of a top-down parser for that language [21]. The PEG opera-
tors (e.g., choice) and the resulting PEG properties (unambiguity, unlimited look-ahead,
limited backtracking) allow for a linear-time implementation of a corresponding parser.
This parsing style has been referred to as packrat parsing. This extends without restric-
tions to OPEG-based parsers and interpreters.

A packrat parse can be modelled as top-down, left-right walk of a recognition table
([14], Sect. 15.7.2). Implementation-wise, a packrat parser is a recursive-descent parser
that avoids repeated calls to its parsing procedures for already visited input positions
and memoizes (caches, “hoards”) intermediate parsing results. Cached results are the
matches for given input positions. As the size of the former dimension can be considered
fixed (number of non-terminals and the input length) and the cached matches are of
constant size (position and range), parsers settle at a linear time complexity.

When considered in combination, the characteristics of PEGs, as well as their oper-
ator types and behaviours yield important properties of a PEG and its corresponding
parser:

A PEG (PEG-based parser) is inherently unambiguous in that a recognition program
derived from it will produce one parse or parsing result. This is a consequence of the
ordered choice and the greediness of expressions when consuming input. While this
property makes them unsuitable for natural-language processing, it fits the requirements
of defining syntaxes of software languages (e.g., general-purpose and domain-specific
ones) and to derive efficient as well as practical parser implementations.

A PEG (PEG-based parser) has unlimited look-ahead. This results from the avail-
ability of not- and and-predicates and from the operators’ greediness. This is also ben-
eficial to avoid certain types of ambiguity (e.g., longest-match ambiguity).

A PEG (PEG-based parser) limits the rolling-back from unsuccessful (failing) alter-
nates when attempted in top-down, depth-first visits through nested expressions with
alternates. The use of ordered choice, as well as the unlimited look-ahead, result in this
limited backtracking.

Apart from handicraft parsers for a given PEG, PEG-based frameworks have
devised different implementation techniques, incl. grammar interpreters and genera-
tors for stack-based packrat parsers. The latter accept a PEG as input and generate a

34 S. Sobernig

Fig. 2. Overview of the processing pipelines in djdsl::opeg: (a) parser generation and (b)
parsing.

derived parser against a VIRTUAL MACHINE [1,19,22]. This is also the case the OPEG
implementation accompanying this paper. This is also the case for the for the parsing
tools (PT) component reused by the proof-of-concept implementation. The VIRTUAL

MACHINE for packrat parsers is called PARAM and offers different programming inter-
faces. These include an object-oriented one that allows for the generative and composi-
tional reuse of stack-based parsing methods (see also Sect. 5).

5.2 DjDSL

The OPEG implementation of DjDSL, the proof-of-concept, is realised as an exten-
sion to the Tcl package PT (for “Parsing Tools”) that forms part of the Tcl Library
(tcllib). The extension is itself organised as a Tcl package: djdsl::opeg. The
required package pt provides, among others, an NX-based parsing runtime shared by
all generated parsers. In this approach, a PEG or an OPEG is not associated with a
specific recursive-descent parser [27] or a grammar interpreter [6]. Rather, a grammar,
first, is processed to produce a parser program made up of parsing instructions. Parsing
instructions deal with character testing, input handling, status as well as error handling.
Second, a VIRTUAL MACHINE [1] executes the parsing instructions of a parser program
that, in turn, changes the machine’s state. The machine’s state (in a simplified form)
is implemented by a number of stacks for managing the current input position, back-
tracking positions etc. In addition, the machine’s state contains stores for non-terminal
and terminal caches. In pt, this stack-based virtual parsing machine is called PARAM
for “PAckRAtMachine”. The NX implementation of the PARAM realises the grammar-
specific and the basic parsing instructions as methods. With this, the PARAM be refined
via NX composition techniques (e.g., mixins).

The proof-of-concept implementation extends the parser generator and the PARAM
to support object parsing expressions as introduced in Sect. 4. This is achieved with-
out modifying the underlying NX PARAM implementation, nor the implementation of
pt. To produce a PARAM parsing program from an OPEG (see parser generation in
Fig. 2), the OPEG is rewritten to break apart generators and parsing expressions. This is

Object Parsing Expressions for Unplanned, Unmodified 35

the responsibility of the djdsl::opeg::Rewriter component (see Fig. 3) which
acts as a post-processor on a parsed OPEG. The results are a collection of generators
(instantiation and assignment) and an ordinary PEG. The latter is the used by the pt
parser generator to create a Parser class. This parser is associated with the collection
of generators and instruments the virtual parsing machine to indirect selected instruc-
tion calls (e.g., when executing choices) to enact the respective generators. For this pur-
pose, the generated Parser class inherits from djdsl::opeg::Engine (see also
Fig. 3). When clients present input to the generated Parser (see parsing in Fig. 2), a
parse is created that carries embedded annotations about enacted generators. The parse
is then consumed in a bottom-up pass to create a language-model instantiation. The
actual instantiation is managed by indirection to a ModelFactory (see Fig. 3).

Clients defining an OPEG and requesting a parse based on some input interact
with three components of djdsl::opeg: djdsl::opeg::Grammar, djdsl::
opeg::Engine, and djdsl::opeg::ModelFactory (see Fig. 3).

Fig. 3. Structural overview of infrastructure for object parsing-expression grammars (OPEG).

Grammar. The class djdsl::opeg::Grammar is used by clients to define an
OPEG. Grammar definition can be achieved by submitting a collection of parsing rules
(via new), a complete OPEG script (newFromScript), or by pointing to a grammar
file (newFromFile). From this Grammar instantiation, the generation of a parser
can then be requested. In addition, Grammar instantiations can be related to each
other via the merges attribute. This relationship between Grammar instantiations lays

36 S. Sobernig

the foundation for the grammar-composition techniques presented in Sect. 4. Besides,
Grammar provides for utilities to inspect on an OPEG (e.g., rules set) and the resulting
parses (e.g., a pretty printer).

Engine. The class djdsl::opeg::Engine defines and implements the basic inter-
face of all generated PARAM parsers. Most importantly, it offers different methods to
submit input text to parsing. Whatever the parsing facility used by a client, the type of
result value is determined by a ModelFactory. Internally, the Engine class is also
responsible for instrumenting the PARAM to set instantiation and assignment genera-
tors in motion.

ModelFactory. When instantiation generators are dispatched, this is achieved by indi-
rection via a djdsl::opeg::ModelFactory. This allows for plugging-in a dif-
ferent STRATEGY [12] of assembling a language-model instantiation, or a custom post-
processor. A client can pick from a set of predefined subclasses of ModelFactory
(e.g., one for DjDSL’s language models, one for plain NX classes) or define a custom
subclass or factory object. In absence of a specific ModelFactory, the default is
to employ a generic TEMPLATE METHOD indirection [32]: Non-terminal matches are
turned into pre-formatted calls to deferred method implementations, to be provided by
the client developer.

6 Discussion

Preplanning: Anticipated versus Unanticipated Composition. Preplanning means
anticipating future uses of a syntax definition. Preplanning effort can be reduced by
adopting adequate techniques that allow a language developer to leave the existing defi-
nitional assets unmodified. Indicators of unmodified reuse are repeatedly stated in chal-
lenges and tasks raised for the series of Language-Workbench Competitions [9].

Unmodified reuse is particularly relevant for syntax definitions such as parser def-
initions and grammars. Consider the example of syntax migrations. In concrete-syntax
migration, a requirement might emerge that a purely syntactic change to a textual nota-
tion is committed (e.g., renaming of a keyword) that leaves the produced parse repre-
sentation (abstract syntax) untouched. In the reverse case, an abstract-syntax migration,
source text should be carried over unmodified on an evolved abstract syntax (e.g., an
abstract-syntax entity is split in two related entities). OPEGs do not require any pre-
planning for such syntax migrations.

Language Hiding. Language hiding is caused by a (greedy) alternate of a choice expres-
sion preventing any later alternate from being applied to inputs that it could otherwise
match [10,27]. This is the flip side of the otherwise beneficial property of PEGs preclud-
ing ambiguity under composition. Language hiding has implications for composition
operations as introduced in Sect. 4.2, in that alternates become automatically (combina-
tion) or selectively added (extraction with and without insertion position). OPEGs take
precautionary counter-measures to avoid unintended language hiding: For example,
alternates introduced by DSL extensions are prepended to those of the receiving gram-
mar. This follows from the assumption that, in extensions, the aim is to capture longer

Object Parsing Expressions for Unplanned, Unmodified 37

prefixes. Beyond that point, fine-grained control during composition by the developer
are supported (e.g., explicit alternate positioning).

7 Related Work

Object-Parsing Expression Grammars (OPEGs) are inspired by object (production)
grammars [33], and their take on realising composable and modular grammars. The
relationship between object grammars and grammar reuse in language-product line
development [8], however, has first been elaborated on in [30,31]. As for domain-
specific languages (DSLs), Fowler gives a short excursus on the grammar-based com-
position for DSLs [11, Sect. 31.2]. This is discussed mainly regarding the trade-off
between succinctness and (extended) expressiveness in the design of a single DSL.
Rather than bloating the language model and syntax of a single DSL, composing a
derived one from language-model fragments is proposed (i.e., syntax extension).

Early approaches addressed selected limitations of grammar composition as per-
ceived at the time, such as lexer conflicts or closed grammar definitions. A first con-
tribution to opening up grammar definitions included syntax modules of the series of
Syntax Definition Formalisms (SDF, SDF2, SDF3; [34]). SDF also resolved known
composability issue by operating on scannerless and generalised parsing (i.e., scanner-
less GLR).

The grammar-inclusion mechanism by TXL [3] allowed a developer to scatter rule
definitions over different files, rooted under one start symbol. In addition, TXL provided
for a refine to replace or add a new alternate to a given rule.

Of practical importance are grammar imports by ANTLR ([26], pp. 257) ANTLR
applies a union-with-override technique, with particularities regarding different types of
definition artefacts. As ANTLR serves as the parsing infrastructure for several language
development systems such as Xtext [2], MontiCore [17], MetaDepth [24], grammar
imports have seen uptake.

Rats! [13] set the ground for basic compositions of Parsing-Expression Grammars
(PEGs). These are realised for rules and alternates using dedicated transformations (add,
delete, append). In addition, Rats! was the first to document practical barriers to com-
posing PEG-based syntax definitions (e.g., due to ordered choices).

8 Concluding Remarks

Object Parsing-Expression Grammars (OPEGs) define a concrete syntax and the map-
ping to an object-oriented primary abstract syntax (language model). This is further
facilitated by allowing for parsing input directly to multi-valued object properties (col-
lections) and by parsing to object properties in a non-positional manner. This way,
abstraction mismatches of parse representations (e.g., decomposition mismatches) are
avoided. In addition, OPEGs are composable via different composition techniques,
ranging from simple grammar unions and to fine-grained grammar transformations.
This way, the advanced grammar compositions relevant for realising language-product
lines become possible: extensions, unification, extension composition, and derivative

38 S. Sobernig

grammars (see also [31]). OPEGs are shown to be implementable on top of a pack-
rat parser (commonly used to implement parsers for parsing grammars). OPEGs are
available as an integral part of the language-development system DjDSL.

References

1. Avgeriou, P., Zdun, U.: Architectural patterns revisited: A pattern language. In: Proceedings
of 10th European Conference on Pattern Languages of Programs (EuroPlop 2005), pp. 1–39.
Irsee, Germany, July 2005

2. Bettini, L.: Implementing Domain-Specific Languages with Xtext and Xtend. 2nd edn. Packt
Publishing, Birmingham (2013)

3. Cordy, J.R.: The TXL source transformation language. Sci. Comput. Program. 61(3), 190–
210 (2006). https://doi.org/10.1016/j.scico.2006.04.002

4. Degueule, T.: Composition and Interoperability for External Domain-Specific Language
Engineering. Theses, Université de Rennes 1, [UR1], December 2016. https://hal.inria.fr/
tel-01427009

5. Degueule, T., Combemale, B., Blouin, A., Barais, O., Jézéquel, J.M.: Melange: a meta-
language for modular and reusable development of dslsa meta-language for modular and
reusable development of DSLs. In: Proceedings of 2015 ACM SIGPLAN International Con-
ference on Software Language Engineering (SLE 2015), pp. 25–36. ACM (2015). https://
doi.org/10.1145/2814251.2814252

6. Dejanović, I., Milosavljević, G., Vaderna, R.: Arpeggio: a flexible peg parser for python.
Knowl.-Based Syst. 95, 71–74 (2016). https://doi.org/10.1016/j.knosys.2015.12.004

7. Diekmann, L., Tratt, L.: Eco: a language composition editor. In: Combemale, B., Pearce,
D.J., Barais, O., Vinju, J.J. (eds.) SLE 2014. LNCS, vol. 8706, pp. 82–101. Springer, Cham
(2014). https://doi.org/10.1007/978-3-319-11245-9 5

8. Erdweg, S., Giarrusso, P.G., Rendel, T.: Language composition untangled. In: Proceedings
of Twelfth Workshop on Language Descriptions, Tools, and Applications (LDTA 2012), pp.
7:1–7:8. ACM (2012). https://doi.org/10.1145/2427048.2427055

9. Erdweg, S., et al.: Evaluating and comparing language workbenches: Existing results and
benchmarks for the future. Comput. Lang. Syst. Struct. 44(Part A), 24–47 (2015). https://
doi.org/10.1016/j.cl.2015.08.007

10. Ford, B.: Parsing expression grammars: a recognition-based syntactic foundation. In: Pro-
ceedings of 31st ACM SIGPLAN-SIGACT Symposium on Principles of Programming Lan-
guages (POPL2004), pp. 111–122. ACM (2004). https://doi.org/10.1145/964001.964011

11. Fowler, M.: Domain Specific Languages. 1st edn. Addison-Wesley, Boston (2010)
12. Gamma, E., Helm, R., Johnson, R.E., Vlissides, J.: Design Patterns - Elements of Reusable

Object-Oriented Software. Addison Wesley Professional Computing Series, Addison-
Wesley, Boston, October 1995

13. Grimm, R.: Better extensibility through modular syntax. In: Proceedings of 27th ACM SIG-
PLAN Conference on Programming Language Design and Implementation (PLDI 2006), pp.
38–51. ACM (2006). https://doi.org/10.1145/1133981.1133987

14. Grune, D., Jacobs, C.J.H.: Parsing Techniques. MCS, Springer, New York (2008). https://
doi.org/10.1007/978-0-387-68954-8

15. Jézéquel, J.-M., Méndez-Acuña, D., Degueule, T., Combemale, B., Barais, O.: When systems
engineering meets software language engineering. In: Boulanger, F., Krob, D., Morel, G.,
Roussel, J.-C. (eds.) Complex Systems Design & Management, pp. 1–13. Springer, Cham
(2015). https://doi.org/10.1007/978-3-319-11617-4 1

https://doi.org/10.1016/j.scico.2006.04.002
https://hal.inria.fr/tel-01427009
https://hal.inria.fr/tel-01427009
https://doi.org/10.1145/2814251.2814252
https://doi.org/10.1145/2814251.2814252
https://doi.org/10.1016/j.knosys.2015.12.004
https://doi.org/10.1007/978-3-319-11245-9_5
https://doi.org/10.1145/2427048.2427055
https://doi.org/10.1016/j.cl.2015.08.007
https://doi.org/10.1016/j.cl.2015.08.007
https://doi.org/10.1145/964001.964011
https://doi.org/10.1145/1133981.1133987
https://doi.org/10.1007/978-0-387-68954-8
https://doi.org/10.1007/978-0-387-68954-8
https://doi.org/10.1007/978-3-319-11617-4_1

Object Parsing Expressions for Unplanned, Unmodified 39

16. Johnstone, A., Scott, E., van den Brand, M.: Modular grammar specification. Sci. Comput.
Program. 87, 23–43 (2014). https://doi.org/10.1016/j.scico.2013.09.012

17. Krahn, H., Rumpe, B., Völkel, S.: Monticore: a framework for compositional development
of domain specific languages. Int. J. Softw. Tools. Technol. Transfer 12(5), 353–372 (2010).
https://doi.org/10.1007/s10009-010-0142-1

18. Kühn, T., Cazzola, W., Olivares, D.M.: Choosy and picky: configuration of language product
lines. In: Proceedings of 19th International Conference on Software Product Line (SPLC
2015), pp. 71–80. ACM (2015). https://doi.org/10.1145/2791060.2791092

19. Kuramitsu, K.: Nez: Practical open grammar language. In: Proceedings of 2016 ACM
International Symposium on New Ideas, New Paradigms, and Reflections on Programming
and Software (Onward! 2016), pp. 29–42. ACM (2016). https://doi.org/10.1145/2986012.
2986019

20. Liebig, J., Daniel, R., Apel, S.: Feature-oriented language families: a case study. In: Proceed-
ings of 7th International Workshop on Variability Modelling of Software-intensive Systems
(VaMoS 2013), pp. 11:1–11:8. ACM (2013). https://doi.org/10.1145/2430502.2430518

21. Mascarenhas, F., Medeiros, S., Ierusalimschy, R.: On the relation between context-free gram-
mars and parsing expression grammars. Sci. Comput. Program. 89, 235–250 (2014). https://
doi.org/10.1016/j.scico.2014.01.012

22. Medeiros, S., Ierusalimschy, R.: A parsing machine for PEGs. In: Proceedings of 2008 Sym-
posium on Dynamic Languages (DLS 2008), pp. 2:1–2:12. ACM (2008). https://doi.org/10.
1145/1408681.1408683

23. Méndez-Acuña, D., Galindo, J.A., Degueule, T., Combemale, B., Baudry, B.: Leveraging
software product lines engineering in the development of external DSLs: a systematic liter-
ature review. Comput. Lang. Syst. Struct. 46, 206–235 (2016). https://doi.org/10.1016/j.cl.
2016.09.004

24. Meyers, B., Cicchetti, A., Guerra, E., de Lara, J.: Composing textual modelling languages in
practice. In: Proceedings of 6th International Workshop on Multi-ParadigmModeling (MPM
2012), pp. 31–36. ACM (2012). https://doi.org/10.1145/2508443.2508449

25. Parr, T.: Language Implementation Patterns: Create Your Own Domain-Specific and General
Programming Languages. 1st edn. Pragmatic Bookshelf, Raleigh (2009)

26. Parr, T.: The Definitive ANTLR 4 Reference. 2nd edn. Pragmatic Bookshelf, Raleigh (2013)
27. Redziejowski, R.R.: Some aspects of parsing expression grammar. Fundamenta Informaticae

85(1–4), 441–454 (2008)
28. Servetto, M., Mackay, J., Potanin, A., Noble, J.: The billion-dollar fix. In: Castagna, G. (ed.)

ECOOP 2013. LNCS, vol. 7920, pp. 205–229. Springer, Heidelberg (2013). https://doi.org/
10.1007/978-3-642-39038-8 9

29. Simons, A.J.H.: The theory of classification, part 9: Inheritance and self reference. J. Object
Technol. 2(6), 25–34 (2003)

30. Sobernig, S.: Variable Domain-specific Software Languages with DjDSL. Springer (2020).
https://doi.org/10.1007/978-3-030-42152-6

31. Sobernig, S.: Object parsing grammars with composition. In: Proceedings of 16th Interna-
tional Conference on Software Technologies (ICSOFT’2021), pp. 373–385. SCITEPRESS
(2021). https://doi.org/10.5220/0010558303730385

32. Sobernig, S., Zdun, U.: Inversion-of-control layer. In: Proceedings of 15th Annual European
Conference on Pattern Languages of Programming (EuroPLoP 2010), ACM (2010). https://
doi.org/10.1145/2328909.2328935

33. van der Storm, T., Cook, W.R., Loh, A.: The design and implementation of object grammars.
Sci. Comput. Program. 96, 460–487 (2014). https://doi.org/10.1016/j.scico.2014.02.023

34. Visser, E.: Syntax Definition for Language Prototyping. Ph.D. thesis, University of Amster-
dam (1997). http://eelcovisser.org/wiki/thesis

https://doi.org/10.1016/j.scico.2013.09.012
https://doi.org/10.1007/s10009-010-0142-1
https://doi.org/10.1145/2791060.2791092
https://doi.org/10.1145/2986012.2986019
https://doi.org/10.1145/2986012.2986019
https://doi.org/10.1145/2430502.2430518
https://doi.org/10.1016/j.scico.2014.01.012
https://doi.org/10.1016/j.scico.2014.01.012
https://doi.org/10.1145/1408681.1408683
https://doi.org/10.1145/1408681.1408683
https://doi.org/10.1016/j.cl.2016.09.004
https://doi.org/10.1016/j.cl.2016.09.004
https://doi.org/10.1145/2508443.2508449
https://doi.org/10.1007/978-3-642-39038-8_9
https://doi.org/10.1007/978-3-642-39038-8_9
https://doi.org/10.1007/978-3-030-42152-6
https://doi.org/10.5220/0010558303730385
https://doi.org/10.1145/2328909.2328935
https://doi.org/10.1145/2328909.2328935
https://doi.org/10.1016/j.scico.2014.02.023
http://eelcovisser.org/wiki/thesis

40 S. Sobernig

35. Voelter, M.: The design, evolution, and use of KernelF. In: Rensink, A., Sánchez Cuadrado,
J. (eds.) ICMT 2018. LNCS, vol. 10888, pp. 3–55. Springer, Cham (2018). https://doi.org/
10.1007/978-3-319-93317-7 1

36. Wille, D., Schulze, S., Schaefer, I.: Variability mining of state charts. In: Proceedings of
7th International Workshop on Feature-Oriented Software Development (FOSD 2016), pp.
63–73. ACM (2016). https://doi.org/10.1145/3001867.3001875

37. Zdun, U.: Language Support for Dynamic and Evolving Software Architectures. Doctoral
thesis, University of Essen, January 2002

https://doi.org/10.1007/978-3-319-93317-7_1
https://doi.org/10.1007/978-3-319-93317-7_1
https://doi.org/10.1145/3001867.3001875

AMethodology for Organizational Data Science
Towards Evidence-based Process Improvement

Andrea Delgado(B), Daniel Calegari, Adriana Marotta, Laura González,
and Libertad Tansini

Instituto de Computación, Facultad de Ingenierı́a, Universidad de la República,
11300 Montevideo, Uruguay

{adelgado,dcalegar,amarotta,lauragon,libertad}@fing.edu.uy

Abstract. Organizational data science projects provide organizations with
evidence-based business intelligence to improve their business processes (BPs).
They require methodological guidance and tool support to deal with the complex-
ity of the socio-technical system that supports the organization’s daily operations.
This system is usually composed of distributed infrastructures integrating hetero-
geneous technologies enacting BPs and connecting devices, people, and data.
Obtaining knowledge from this context is challenging since it requires a unified
view capturing all the pieces of data consistently for applying both process min-
ing and data mining techniques to get a complete understanding of the BPs execu-
tion. We have presented the PRICED framework in previous works, which defines
a general strategy for performing data science projects. In this paper, we propose
a methodology with phases, disciplines, activities, roles, and artifacts, providing
guidance and support to navigate from getting the execution data, through its inte-
gration and quality assessment, to mining and analyzing it to find improvement
opportunities.

Keywords: Process mining · Data mining · Data science · Methodology ·
Organizational improvement · Business intelligence

1 Introduction

Business Processes (BPs) are at the center of organizations’ daily operation, supported
by a combination of traditional information systems (IS) and Process-Aware Infor-
mation Systems (PAIS) [17] usually managing structured and unstructured data. The
complexity of this socio-technical system composed of distributed infrastructures with
heterogeneous technologies enacting business processes, connecting devices, people,
and data, adds many challenges for organizations. Obtaining valuable information and
knowledge from this context is challenging. It requires a unified view capturing all the
pieces of data consistently for applying both process mining [1] and data mining [32]
techniques to get a complete understanding of the business process execution.

Supported by project “Minerı́a de procesos y datos para la mejora de procesos en las organiza-
ciones” funded by Comisión Sectorial de Investigación Cientı́fica, Universidad de la República,
Uruguay.

c© Springer Nature Switzerland AG 2022
H.-G. Fill et al. (Eds.): ICSOFT 2021, CCIS 1622, pp. 41–66, 2022.
https://doi.org/10.1007/978-3-031-11513-4_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-11513-4_3&domain=pdf
https://doi.org/10.1007/978-3-031-11513-4_3

42 A. Delgado et al.

Organizational data science projects provide organizations with evidence-based
business intelligence to improve their business processes. Data science [1,23] emerged
as an interdisciplinary discipline responding to the problem of management, analysis,
and discovery of information in large volumes of data. Data science projects require
methodological guidance and tool support to deal with the complexity of such socio-
technical systems. There are methodologies guiding both kind of projects, e.g., PM2

[18] for process mining, and CRISP-DM [31], and SEMMA [29] for data mining. How-
ever, they consider them separate initiatives due to a compartmentalized vision of the
process and organizational data. Process data is usually managed within a Business
Process Management Systems (BPMS) [9]. In contrast, organizational data is stored in
distributed heterogeneous databases, not wholly linked to the BPMS.

In [15] we proposed the PRICED framework (for Process and Data sCience for
oRganIzational improvEment) guiding organizational data science projects to find
improvement opportunities within an organization. It involves methodologies, tech-
niques, and tools to provide organizations with key elements to analyze their processes
and organizational data in an integrated manner. It considers three main aspects: inte-
grating process and organizational data into a unified view [8] for applying process
and data mining techniques over the same data set [2,12], corresponding data quality
assessment [4], and evaluating compliance requirements for business processes [19].
In [14], we introduced a concrete methodology defining phases, disciplines, activities,
roles, and artifacts to provide guidance and support for concrete projects. The method-
ology covers the extraction of systems execution data and its integration and quality
assessment to evaluate the results of mining and analysis techniques to find improve-
ment opportunities. We also provide an example of the application of the methodology
as proof of concept, and in [12] we applied it in the context of E-government.

In this paper, we provide a substantially extended and thoroughly revised version of
[14]. We extend the work mentioned above by providing:

1. a description of two models that are part of the conceptual dimension that sup-
ports the methodology: the Business Process and Organizational Data Quality
Model (BPODQM) [4], and the Business Process Compliance Requirements Model
(BPCRM) [19] (Sect. 3);

2. a detailed description on how process and data mining techniques can be applied,
from the integration of process and organizational data to its combined application
based on developed tools (Sect. 3);

3. an extension of the application of the methodology presented, including the inte-
grated process and data mining analysis and evaluation view, and a new example
with focus on compliance requirements evaluation (Sect. 4).

The rest of the paper is structured as follows. In Sect. 2 we introduce the methodol-
ogy by presenting its static and dynamic views. In Sect. 3 we provide a deeper descrip-
tion of the conceptual, technical, and tool dimensions supporting the methodology.
In Sect. 4 we describe examples of application. In Sect. 5 we present methodological
approaches related to our proposal. Finally, in Sect. 6 we provide conclusions and an
outline of future work.

A Methodology for Organizational Data Science 43

2 Methodological Dimension of the PRICED Framework

In [14,15] we introduced the methodological dimension of the PRICED framework,
composed of a static and a dynamic view. The static view defines the different ele-
ments involved within the methodology, i.e., phases, disciplines, activities, roles, and
artifacts. It helps to understand what needs to be done (artifacts), how it should be done
(activities), and by whom (roles and responsibilities). The dynamic view describes a
lifecycle guiding the efforts from getting the execution data to mining and evaluating
the results to find improvement opportunities. In other words, it defines when the activ-
ities that must be performed. In what follows, we present both views, as done in [14].

2.1 Static View

Figure 1 summarizes the static view that is presented in detail next. It shows the disci-
plines and their activities, and, for each activity, the roles involved and the input and
output artifacts used and generated by the activity, respectively.

Fig. 1. Summary of the static view of the methodology (from [14]).

Disciplines and Activities. Disciplines are usually used for grouping related activities
regarding the topic they deal with, e.g., data quality assessment. We define five disci-
plines to tackle the different issues, with associated activities to guide the work to be
carried out.

Process and Data Extraction and Integration (PDE). This discipline groups activities
that deal with the identification, definition of goals, and extraction of process and orga-
nizational data from associated sources and its integration within a unified metamodel
[11].

44 A. Delgado et al.

PDE1 - Select Business Processes. To identify and select business processes from the
organization that will be the object of mining efforts to identify improvement oppor-
tunities. To define the mining/analysis effort goals, including the selection of execu-
tion measures when applicable.

PDE2 - Define Mining/Analysis Goals. To define the purposes of the mining/analysis
efforts for the selected business processes and integrated process and organizational
data, such as the need to know process variants that behave differently regarding the
data they manage, the process model that better explains the process data, partici-
pants and roles involved in types of traces or managing specific types of data, among
others. Also, execution measures such as duration of traces and/or activities and/or
compliance requirements such as message interaction order in choreographies or
tasks execution patterns between different process participants in collaborative pro-
cesses can be defined/selected.

PDE3 - Identify Process and Data Sources. To identify the sources of process and
organizational data that must be integrated to serve as the mining effort’s input. It
includes evaluating and analyzing the availability of elements needed to access and
obtain data from the corresponding sources (i.e., BPMS process engine, organiza-
tional databases with their history logs).

PDE4 - ETL Process and Organizational Data. To carry out the ETL process to
extract process data from the BPMS process engine and heterogeneous organiza-
tional databases and corresponding history logs to the metamodel, we have defined
[11]. The metamodel includes four quadrants: process definition, process instances
(i.e., cases), data definition, and data instances.

PDE5 - Integrate Process and Organizational Data. To execute matching algorithms
over the data loaded in the metamodel, find and define relationships between pro-
cess instance variables (in the process instances quadrant) and organizational data
attributes (in the process instances quadrant). Several options can be used to dis-
cover these relationships. We implemented a basic algorithm [11] based on values
and timestamps.

Process and Data Quality (PDQ). This discipline groups activities that deal with the
selection, evaluation, and improvement (cleaning) of quality characteristics of the inte-
grated data (i.e., integrated metamodel and generated extended log). In [6] the authors
identify four main categories for quality issues in event logs: missing data, incorrect
data, inaccurate data, and irrelevant data. We have defined a Business Process, and
Organizational Data Quality Model (BPODQM) [4] in which specific dimensions, fac-
tors, and metrics for the integrated data from process and organizational databases are
provided (c.f. Sect. 3). It is based on previous quality models we have defined for other
contexts [10,34], and on [35].

PDQ1 - Specify Data Quality Model. To instantiate the BPODQM, select which qual-
ity characteristics will be evaluated over which data and how the evaluation is done.
A quality model defines which quality dimensions and factors are considered, which
data they apply and how they are measured. The dimensions, factors, and metrics
defined in BPODQM are specific to the context of process logs and associated orga-
nizational data, but not necessarily all these elements must be present in every par-

A Methodology for Organizational Data Science 45

ticular case. Also, the selected metrics may be adapted to the particular needs and
available tools for processing data.

PDQ2 - Evaluate Quality Characteristics. To evaluate the selected quality character-
istics over the integrated process and organizational data, detecting quality problems
that should be resolved before the mining/analysis effort. To do this, the specified
data quality model metrics are measured over the extended event log (or the inte-
grated metamodel). Results are obtained for each one that gives insight regarding
the quality of the dataset.

PDQ3 - Improve Quality Characteristics. To take the necessary corrective actions
to eliminate the detected quality problems, cleaning the event log and associated
organizational data. It can include removing data, i.e., unwanted outliers, duplicates,
null values, correcting data according to a specific domain of possible values, etc.

Process and Data Preparation (PDP). This discipline group activities dealing with the
preparation of the integrated data to be used as input for the mining/analysis effort.
It includes taking data to the format that will allow mining (i.e., extended event log)
or performing the analysis (i.e., data warehouse). We have defined two extensions to
the event log format for i) including corresponding organizational data in events; ii)
including participants in events and messages exchanged for collaborative processes
and including data regarding message interaction participants for choreographies.

PDP1 - Build Extended Event Logs. To automatically generate the extended log from
the integrated metamodel as input for the mining/analysis effort. It includes gather-
ing all integrated process and organizational data for each corresponding event when
it applies, the involved participants in collaborations and messages exchanged, and
messages interactions in choreographies. We have defined two extensions for the
eXtensible Event Stream (XES) [24] following the definitions of the standard (c.f.
Sect. 3).

PDP2 - Build Integrated Data Warehouse. To generate the integrated data warehouse
from the integrated metamodel, be used as input for the analysis effort. We defined
dimensions directly related to the metamodel quadrants, i.e., process-definition,
process-instance, data-definition, and data-instance, adding a user dimension, a time
dimension, and an entity relations dimension to capture entities references. It is
based solely on the relationships between process and organizational data that we
previously discovered in the metamodel using matching algorithms. The fact table
relates the dimensions mentioned before. We include process duration and element
duration to analyze execution times for both process and elements, and we also
included the value of attributes. The data warehouse allows crossing processes and
organizational data to provide an integrated view of the BPs execution.

PDP3 - Filter Event Log and Data. To filter the extended event log to be able to per-
form additional perspective mining over the data, e.g., to partition the log in process
variants with similar behavior based on control flow or on the type of organiza-
tional data they manage, or by applying compliance rules, or selecting cases based
on duration, among others.

Process and Data Mining and Analysis (PDMA). This discipline groups activities that
select, execute, and evaluate approaches and tools for the mining/analysis effort. We

46 A. Delgado et al.

also provide a catalog of existing techniques and algorithms of process and data mining
approaches and existing tools implementing them, and new definitions and tools to
support integrated analysis. It helps organizations use the methodology to find all the
information and guidance they need in one place, to carry out the mining/analysis effort,
easing its adoption.

PDMA1 - Select Mining/Analysis Approach. To select the mining and/or analysis
approach to apply to the data, i.e., discovering process models (based on algorithms
such as inductive miner, heuristic miner, or BPMN miner, among others), confor-
mance and/or enhancement of process models for process mining approaches, and/or
descriptive (clustering, decision trees, association rules) or predictive (classification,
regression) for data mining approaches, crossing data from the business process per-
spective with the organizational data perspective (c.f. Sect. 3). Also, compliance
requirements and execution measures can be selected as the desired approach to
applying to the data. We provide a catalog of existing techniques and algorithms
with a summary and corresponding links for each one.

PDMA2 - Select Mining/Analysis Tools. To select the mining tool to be used cor-
responding to the chosen approach since different tools and/or plug-ins implement
different algorithms. Also, for analysis, the tool depends on the approach selected,
i.e., the data warehouse can be used to cross-process and organizational data, or the
execution measures can be evaluated in a specific tool. We provide a catalog of tools
and the support they provide.

PDMA3 - Execute Mining/Analysis Approach. To carry out the selected mining/anal-
ysis approaches in the selected tools over the integrated data, including execution
measures analysis and compliance requirements evaluation. It includes dealing with
data input issues and tool execution problems, i.e., significant execution times, that
would need to return to previous activities to correct the data’s problems or change
the approach or tool selected.

PDMA4 - Evaluate Mining/Analysis Results. To evaluate the results of the mining/-
analysis effort from different perspectives, including the answers to goals and infor-
mation needs to be defined by the business area, and more technical elements such
as the correctness of results (i.e., measures such as fitness or recall, precision, over-
fitting, and underfitting), assessing of statistical significance, and other elements to
evaluate the technical soundness of the results obtained. The business evaluation of
mining/analysis results will lead to valuable information and knowledge on the orga-
nization’s actual execution of business processes, identifying improvements oppor-
tunities to be carried out to generate a new version of the process.

Process and Data Compliance (PDC). This discipline groups activities that deal with
the identification and evaluation, business process compliance requirements. We have
defined a Business Process Compliance Requirements Model (BPCRM) [20] in which
specific dimensions, factors and controls for collaborative BPs are defined (c.f. Sect. 3).
It is mainly based on the compliance perspectives proposed in [27] as well as on the
pattern vision presented in [30].

PDC1 - Identify Compliance Requirements. To instantiate the BPCRM to select
specific dimensions, factors, and corresponding controls to evaluate compliance

A Methodology for Organizational Data Science 47

requirements for the process selected for the mining/analysis effort. It includes
collaborative and choreography processes, which are the focus of the compliance
model. The BPCRM, as the BPODQM quality model, defines specific dimensions,
factors, and controls to evaluate compliance requirements over collaborative BPS.
The compliance requirements modeling language [19] is used for specifying pro-
cess compliance requirements over the process to be evaluated.

PDC2 - Evaluate Compliance Requirements. To evaluate the results of the compli-
ance requirements specified over the process within the extended event log, includ-
ing process and organizational data, to analyze violations in traces that do not com-
ply with the requirements specified. We define a post mortem compliance evaluation
over the extended event logs from BPs execution. Compliance requirements evalu-
ation will get valuable information and knowledge on the actual execution of BPs,
focusing on collaborations and choreographies, detecting violations to norms and
business rules that should be corrected in a new version of the process.

Roles and Artifacts. There are four roles within the methodology. The Business Man-
ager supervises and leads a company’s operations and employees. Since it is interested
in improving business processes, it selects the business processes that will be analyzed.
From there, the BP Responsible (also known as Process Owner) is in charge since it is
responsible for managing such process from end-to-end. In this context, it participates in
providing domain information and requirements, e.g., providing access to data sources,
defining analysis goals, and also on the evaluation activities of the methodology. The
Business Analyst also participates in the same activities as the BP Responsible, bridging
the gaps between IT and the business. Finally, the Data Scientist represents the more
technical role responsible for making value out of data, from getting and integrating the
source information to analyzing it.

Concerning the artifacts, the primary artifacts of the methodology are the integrated
metamodel that integrates process and organizational data, the extended event log and
the data warehouse used for the analysis, and the data quality and compliance require-
ments models that are refined for each specific process. Also, there are other documents
describing business needs, business process and data mining and analysis, and tools
catalog, among others.

2.2 Dynamic View

Figure 2 presents a summary of the dynamic view of the methodology, showing for
each phase and corresponding sub-phase, the activities that are performed, and their
order, i.e., previous activities. The dynamic view is composed of three iterative phases:
Enactment, Data, and Mining/Analysis. The Enactment phase corresponds to the actual
execution of processes from which data is registered. The Data phase involves the incep-
tion, extraction, integration, preparation, and cleaning of data. Finally, the Mining/Anal-
ysis phase considers the selection and execution of the mining/analysis approaches and
the evaluation of their results.

We also integrated an existing Improvement phase from the Business Process Con-
tinuous Improvement Process (BPCIP, [16]) methodology to carry out the improvement

48 A. Delgado et al.

Fig. 2. Summary of the dynamic view of the methodology (from [14]).

effort over the selected processes. This phase consists of defining the specific improve-
ments that are going to be integrated into the improvement phase of the BP lifecycle,
a diagnosis of the maturity of the BP process involved to assess the appropriateness of
such improvement, a refinement of the improvements that need to be done, and the final
assessment of such improvement effort.

3 PRICED Dimensions Supporting the Methodology

The conceptual dimension of the PRICED framework defines concepts for process
and data mining, data quality, and process compliance that support the methodologi-
cal dimension presented in the last section. Also, the methodology requires the defini-
tion of technical and tool dimensions, techniques, algorithms, and tools for its concrete
application.

In what follows, we firstly present the general approach for process and organi-
zational data integration, including the extensions for event logs we have defined to
deal with integrated process and organizational data and collaborative BPs. Then, we
present two main concepts of the conceptual dimension: the Business Process and Orga-
nizational Data Quality Model (BPODQM) [4], and the Business Process Compliance
Requirements Model (BPCRM) [19], which allow us to select quality characteristics
and compliance requirements to be evaluated over the extended event logs. Finally, we

A Methodology for Organizational Data Science 49

describe the approach for integrated process and data mining techniques over the inte-
grated data.

3.1 Process and Data Integration Approach

During the Data phase of the methodology, we extract process and organizational data
and integrate it into a unified view. Data is structured based on a generic metamodel
called Business Process and Organizational Data Integrated Metamodel (BPODIM),
and an algorithm matches process and organizational data exploiting their data values,
and timestamps [8].

As shown in Fig. 3, we envision a general mechanism to extract data from hetero-
geneous databases at two levels: i) the process level, from different BPMS and cor-
responding process engines databases (i.e., Activiti BPMS with PostgreSQL, Bonita
BPMS with MySQL, etc.); ii) organizational data level, from different and heteroge-
neous databases (relational or NoSQL, i.e., PostgreSQL, MySQL, MongoDB, Cassan-
dra, Neo4j, etc.). We are currently defining this ETL process. It is based on extending
a previous definition of a Generic API for BPMS [13] and a new Generic API for
databases (SQL/NoSQL) [22,26], allowing us to decouple the ETL process from a spe-
cific implementation of the sources.

Fig. 3. ETL for process and organizational data (from [14]).

Once the data is integrated within a database whose schema is based on the
BPODIM metamodel, it is prepared to be used within the mining/analysis phase. For
this, we build a generic data warehouse [2] and extended event logs based on the eXten-
sible Event Stream (XES) standard [24]. An XES log represents events grouped in
traces (cases) for a given process. They are used as input for applying integrated pro-
cess and data mining techniques, as is described in Sect. 3.4. XES provides an extension
mechanism for defining new attributes to events, e.g., organizational, representing roles,

50 A. Delgado et al.

and time, representing timestamps. We have defined two extensions to deal with orga-
nizational data and collaborative BPs, not just process orchestrations as usual.

The Organizational Data extension [4] defines string attributes representing orga-
nizational data associated with each event. For each event, we describe the list of
variables and entities, which contains a list of the attributes related to the event. Vari-
ables correspond to process variables handled by an event, i.e., an activity within the
BPMS execution (top-right quadrant of the BPODIM metamodel). Entities, and their
corresponding attributes, correspond to the organizational data registered in the orga-
nizational database. They are linked to the variables through the matching algorithm
(bottom-left and right quadrants). For each element in the list, we register its value and
its type. In the case of attributes that matched a specific variable, we register a refer-
ence to such variable. The Collaborative BPs extension [20] define string attributes to
identify the participants associated with the events, in two scenarios: the owner of the
event within a collaboration between two or more participants and the sender/receiver
for message elements, and within a choreography which is focused on the interchange
of messages, only the sender/receiver for message elements. We also represent the type
of element in both extensions, e.g., user task, service task, send or receive message task,
etc.

We automatize all the processes from the data extraction to the generation of the
extended event logs and data warehouse, following a model-driven approach. In partic-
ular, we have defined a chain of model transformations that takes the information within
the database registering the metamodel information and generating a model conform-
ing to the BPODIM metamodel, and then an Acceleo model-to-text transformation for
generating the XES file.

3.2 Business Process and Organizational Data Quality Model

As said before, we defined the BPODQM data quality model to manage data quality
issues in log data, first evaluating and then cleaning. It is based on previous quality
models we have defined for other contexts [10,34], and on [35]. This model comprises
all the quality aspects that should be considered, how these aspects should be measured,
and the elements of the log data corresponding to process events and the organizational
databases, over which the quality aspects apply. These quality aspects are organized in
quality dimensions, which in turn are composed of quality factors. One or more metrics
are defined for each quality factor, which specifies how the factor is measured. Each
metric is defined for a certain data granularity, which is the data unit whose quality will
be measured and to which the quality measures will be associated.

Considering the log data, whose quality should be measured, and its format, specific
granularities are defined as follows: attribute value, which is the particular value of an
attribute, attribute, which refers to the set of values corresponding to the same key,
event, which involves all data included in an event data, and log, which is used for
metrics that refer to the whole log.

The data quality dimensions and factors included in BPODQM are presented in the
following. A more detailed description of the metrics can be found in [4].:

A Methodology for Organizational Data Science 51

– Accuracy dimension, which is related to the correctness of the data with respect to
a referential value. The quality factors that compose this dimension are syntactic
accuracy, semantic accuracy and precision.

– Consistency dimension, which addresses the problem of consistency between data.
The quality factors corresponding to this dimension are domain consistency, inter-
element consistency and intra-element consistency, the first one representing consis-
tency of a data value concerning a particular domain, and the second and third ones
representing consistency between two data values of the same data element, and two
data values of different elements, respectively.

– Completeness dimension, which refers to the absence of data that should be present.
Two factors are defined for this dimension: coverage and density. The first one
explores what portion of the real-world entities are represented in the data. The
second one focuses on how many data values that should be present are not, for
example, appearing as NULL values.

– Uniqueness dimension, which addresses the problem of duplicate data. The quality
factors considered in this dimension are duplication free and contradiction free, each
one evaluating if the data is not duplicated and, in the case, it is duplicated, if it has
no contradictions, respectively.

– Freshness dimension, which is related to the consistency of the log data timestamps.
– Credibility dimension, which is composed of two factors: provenance and trustwor-

thiness. The first one refers to the credibility of the responsible of the log data and
the event origin, and the reproducibility of a log, and the second one is related to the
believability of data.

– Security dimension, which is composed by three factors: user permissions,
encrypted data, and anonymity, each one addressing the problems of user rights,
data encryption and data anonymization, respectively.

We have developed a ProM plug-in that uses the extended event log with integrated
process and organizational data as input to support the automated evaluation of event
log data quality with the BPODQM (Sect. 4).

3.3 Business Process Compliance Requirements Model

The Bussiness Process Compliance Requirements Model (BPCRM) aims to provide
a library of built-in compliance elements in order to facilitate the specification and
validation of compliance requirements over collaborative BPs The model comprises
a set of more than seventy predefined compliance controls, which are organized in five
dimensions and twenty-one factors. These elements are mainly based on the compliance
persepectives proposed in [27] as well as on the pattern vision presented in [30].

The set of generic compliance controls apply to both the collaboration and choreog-
raphy views of collaborative BPs. In addition, they can be instantiated over a concrete
process in order to specify particular compliance requirements, and used as input to
evaluate violations with process mining. Therefore, the proposed model constitutes a
catalogue of compliance controls (patterns), which can be used for two purposes: the
specification of compliance requirements and the validation of compliance rules.

52 A. Delgado et al.

Next, the compliance dimensions and factors that conform the BPCRM and exam-
ples of compliance factors for each dimension are presented. For a complete description
of the model and its components refer to [20].

– Control Flow dimension deals with compliance aspects related to the occurrence
and order of tasks as well as their flow [28]. This dimension has eleven controls
which are organized into five factors: Tasks, Sequence Flow, Parallel Flow, Exclusive
Flow and Alternative Flow. For example, one of the compliance controls within this
dimension enables the specification of requirements such as “if activity A is not
present, then activity B must not be present”.

– Interaction dimension deals with compliance aspects related to message exchanges
between participants as well as their flow [28]. This dimension has eleven controls
which are organized into two factors: Send/Receive Messages and Message Flow.
For example, one of the compliance controls within this dimension enables the spec-
ification of requirements such as “if message M is exchanged, then message N must
not be exchanged, and vice versa”.

– Time dimension deals with compliance aspects related to points in time as well as
time intervals and conditions [28]. This dimension has twelve controls which are
organized into three factors: Point in Time, Interval and Duration. For example,
one of the compliance controls within this dimension enables the specification of
requirements such as “if activity A occurs then activity B must occur within interval
I”.

– Resources dimension deals with compliance aspects related to the resources used
in processes as well as their relations [28]. This dimension comprises controls
which are organized into seven factors: Roles, Staff Members, Groups, Organiza-
tional Units, Participants, Resource Relations, and Performer Relations. For exam-
ple, one of the compliance controls within this dimension enables the specification
of requirements such as “if activity A is performed by user U and activity B is per-
formed by user V, then U and V are assigned to organizational unit O”.

– Data dimension deals with compliance aspects related to data elements used in pro-
cesses as well as their relations and flows [28]. This dimension has twenty controls
which are organized into four factors: Data Objects, Data Containers, Data Relations
and Data Flow. For example, one of the compliance controls within this dimension
enables the specification of requirements such as “data object DO written by activity
A must be contained in message M”.

We have developed a ProM plug-in that uses the extended event log for collaborative
BPs as input, to support the automated evaluation of compliance requirements over the
event log data with the BPCRM (Sect. 4).

3.4 Integrated Process and Data Mining Approach

The integrated process and data mining approach we have defined operates over the
Organizational Data extension for the event logs. Organizational data is included in the
corresponding event as described above. We apply data mining techniques over orga-
nizational data from the events to view the process traces that manipulated such data.

A Methodology for Organizational Data Science 53

We use process mining techniques over process data to discover traces with different
behavior and relate it to the data they manage.

For example, in the Loan request process from a bank, clients can submit their
request, including identification data and the requested amount. The process registers
these data in an external organizational database where loan requests are maintained,
apart from the process data. Traditionally data is analyzed without linking it to the
process, and the process is analyzed without connecting it to the data it managed. For
example, with data mining, patterns regarding the loan request data can be discovered,
relating different attributes, but not with the process execution that managed the data.

With our integrated approach, apart from grouping traces regarding control flow
behavior (i.e., process variants), we can group them by values of the organizational
data. For example, regarding the result of the loan request: was it approved or rejected?
Who managed the approval? or the ranks of the amount requested. Then we can ana-
lyze each group of traces to find common elements that could have led to one or the
other outcome using the control flow behavior, i.e., discovering the process for each
group. Without including organizational data in the event log, this type of analysis is
not possible. Also, we can analyze each process variant based on the behavior it groups,
i.e., which activities are executed and in what order, and analyze the organizational data
related to this specific type of path over the process to discover common data elements
that are related with the variant.

We have developed a ProM plug-in that uses the extended event log with integrated
process and organizational data as input and implements the integrated process and
data mining approach. It provides the most common data mining techniques for anal-
ysis: decision trees, clustering, and association rules, as well as the process mining
techniques that are already provided in the framework (Sect. 4).

4 Applications of the Methodology

This section presents two examples of applying the methodology on actual BPs regard-
ing our university and e-Government processes from the Uruguayan digital services.
The “Students Mobility” BP, has been introduced in [11] and corresponds to the appli-
cation for students’ scholarships to take courses at other universities. The “Passport
request” BP has been introduced in [19] and corresponds to the collaborative BP for
requesting a passport by a citizen. In the first case, we present a step-by-step application
of the methodology showing the integrated process and organizational data approach,
data matching, quality evaluation, process mining tools, and data warehouse for anal-
ysis, but with no compliance requirements evaluation. In the second case, we focus on
the compliance evaluation approach, showing the use of the compliance requirements
specification, execution, and evaluation.

4.1 Students Mobility BP with Organizational Data Extension

The simplified BPMN 2.0 process depicted in Fig. 4a begins when a new mobility call
is defined and the period for receiving student’s applications is opened. Students present
their applications with the required documentation within the Registration Office. After

54 A. Delgado et al.

15 days, the period is closed, and all submitted applications go through an assessment
to see if they comply with the call. Those complying go through an evaluation panel
evaluation, where applications are ranked and scholarships are assigned. Finally, the
School board approves the assignments, notifies applicants about the results, and asks
the selected ones to sign a contract for the scholarship and get paid.

Fig. 4. Students mobility proof of concept (from [14]).

The data model shown in Fig. 4b presents an excerpt of the organizational data
model extended from [11]. In the left side (a), there are specific tables to support the
“Students mobility” process, i.e., the mobility Program, Application (with refer-
ence to the Student) and Validation (with reference to Course) tables, as well
as the Mobility table to register the scholarships that were assigned. The State

A Methodology for Organizational Data Science 55

table registers the states that the application goes through the process control flow. In
the right side (b), there are tables containing organization’s master data, i.e., Student
that apply to the call, their Career and Course to validate the courses selected which
are associated to an Institute and with a Teacher responsible of it.

This process was implemented and executed in Activiti 6.0 BPMS1 community edi-
tion using a PostgreSQL2 database for the organizational data. We applied process and
data mining techniques using Disco3 and ProM4, and built a data warehouse using Pen-
taho Platform5.

Execution of the Methodology. Since the methodology covers any mining/analysis
effort, some activities may not apply to specific scenarios. In this case, we describe the
activities we performed for each phase defined in Sect. 2.

Enactment Phase. The Enactment Phase does not have any concrete activity within
the methodology. It consists of the organization’s actual operation, where processes
are executed, and process and organizational data are registered in their corresponding
databases. In Fig. 4, comments in the “Student Mobility” show when an activity access
the data model to insert, query or modify data, e.g., within the “Register Application”
task, the Application table is accessed to create a new application for a specific
student with State “Initiated”.

Data Phase. The Data Phase is essential for the mining/analysis efforts since the final
outputs of this phase are the integrated process and organizational data, improved,
cleaned, and with a minimum quality level to be used as a valuable input for the Min-
ing/Analysis Phase.

Inception In this sub-phase, we define the basis for the mining/analysis efforts.

PDE1 - Select Business Processes. We select the “Student mobility” process already
introduced.

PDE2 - Define Mining/Analysis Goals. Business people (e.g., the process owner)
define several business questions about the domain with a mixed perspective of data
and processes, such as:

– Which organizational data were managed by cases that took the longest to exe-
cute?

– Which organizational data are involved in cases where no successful results
were obtained?

– Which cases in the successful path are related to specific organizational data?

1 https://www.activiti.org/.
2 https://www.postgresql.org/.
3 https://fluxicon.com/disco/.
4 https://www.promtools.org/.
5 https://www.hitachivantara.com/en-us/products/data-management-analytics/pentaho-

platform.html.

https://www.activiti.org/
https://www.postgresql.org/
https://fluxicon.com/disco/
https://www.promtools.org/
https://www.hitachivantara.com/en-us/products/data-management-analytics/pentaho-platform.html
https://www.hitachivantara.com/en-us/products/data-management-analytics/pentaho-platform.html

56 A. Delgado et al.

– Which users are involved in the cases that took the longest to execute or the ones
that correspond to the successful path?

– Are there paths defined in the process model that are never executed in the actual
operation?

PDC1 - Identify Compliance Requirements. We did not perform this activity since
there were no compliance requirements defined for the process.

PDQ1 - Specify Data Quality Model. We selected basic quality characteristics from
the BPODQM model, to be checked over the integrated data:

– Dimension: Accuracy, Factor: Syntactic accuracy, Metric: Format
– Dimension: Completeness, Factor: Density, Metric: Not null
– Dimension: Uniqueness, Factor: Duplication-free, Metrics: Duplicate

attribute/event

Extraction and Integration. In the Extraction and Integration sub-phase, we perform
activities for extracting and loading process and organizational data into the metamodel
and integrating data by finding the corresponding relationships between events (i.e.,
activities) and organizational data that they handled.

PDE3 - Identify Process and Data Sources. With the information of the “Stu-
dents mobility” process technical infrastructure, we identify the BPMS process
engine database and the organizational database and corresponding access data (i.e.,
machine and SID) and permits. As it is common practice in the configuration of
databases, it should have been configured to allow historical logging, which we use
to get all organizational data related to the process execution under evaluation in the
defined period.

PDE4 - ETL process and Organizational Data. In Fig. 3, we describe the process
for performing this activity. We used two databases in this proof of concept (within
the ellipsis on the figure’s left side): the Activiti BPMS engine database and a rela-
tional PostgreSQL database for the organizational data. We also implemented the
metamodel in a PostgreSQL database.

PDE5 - Integrate process and organizational data. After the process and organiza-
tional data are loaded into the metamodel, we executed the matching algorithm to
find the relations between the metamodel’s process-instance and data-instance quad-
rants. Our basic data matching algorithm is based on discovering matches between
variables (from the process-instance quadrant) and attributes instances (from the
data-instance quadrant) by searching similar values within a configurable period
near the start and complete events timestamps. The initial definitions for integrat-
ing data can be seen in [11].

Preparation. In this sub-phase, we focus on putting the data in a suitable format to use
as input for the mining/analysis effort.

PDP1 - Build Extended Event Logs. We automated this activity with a model-to-text
transformation from the integrated metamodel to the extended event log, including
the organizational data related to each process event.

A Methodology for Organizational Data Science 57

PDP2 - Build Integrated Data Warehouse. We defined a generic data warehouse that
has no domain-specific elements regarding the process or organization involved. We
also automated the loading process from the integrated metamodel. The data ware-
house has a star schema representing the four metamodel quadrants as dimensions
and others such as users and time. We also define several measures regarding dura-
tion and values in the fact table.

Cleaning. In this sub-phase, we performed the following activities.

PDQ2 - Evaluate Quality Characteristics. We checked some of the primary factors
selected, such as date format, not null for timestamps, not null, and no duplicates for
event names. To do so, we used the ProM plug-in we have developed that automat-
ically analyzes the extended event log with integrated data evaluating quality issues
as defined in the BPOQM model. In Fig. 5 we present an example of the results of
the analysis for Dimension Accuracy, Factor Syntactic accuracy, and Metric Format
applied to date.

PDQ3 - Improve Quality Characteristics. As it can be seen in Fig. 5 we found some
inconsistencies in the date format for timestamps that were corrected, no nulls were
found, and some duplicates on event names were corrected based on domain infor-
mation.

Fig. 5. ProM quality plug-in for extended event logs with integrated data.

Mining/Analysis Phase. The Mining/Analysis Phase is the core of the mining/analysis
effort, where an integrated view of process and data mining is applied. Approaches and
tools are selected, and the integrated data is analyzed to discover valuable information
on process execution and improvement opportunities.

58 A. Delgado et al.

Inception. In this sub-phase, we select approaches and tools for the mining/analysis
effort.

PDMA1 - Select Mining/Analysis Approach. As an analysis approach, we used the
data warehouse to answer some of the questions included in the mining/analysis
effort goals. We also use process and data mining approaches over the extended
event log to provide another view of the integrated data. In addition, we also used
our approach for integrated process and data mining over process and organizational
integrated data.

PDMA2 - Select Mining/Analysis Tools. We selected the Pentaho platform to imple-
ment the data warehouse and the mining tools Disco and ProM to analyze the
extended log, including our ProM plugin for integrated process and data mining
for the extended log. The same data was loaded in every tool, i.e., integrated process
and organizational data from the metamodel. However, as the analysis focus is dif-
ferent, it allows us to analyze data from different perspectives, providing a complete
view on process execution.

Execution. In this sub-phase, we inspected and filtered the extended event log and data
and executed the mining/analysis activities.

PDP3 - Filter Event Log and Data. We inspected the extended event log to analyze
the process cases, the organizational data that was integrated with their data, and
different process variants. Figure 6 shows Disco the frequency of selected elements
in the extended event log: a) entities and b) corresponding attributes from the orga-
nizational data; and c) associated process variables. In Fig. 6 a), it can be seen that
organizational tables: Application, Program, and Validation are present
in the extended event log, which were defined in the data model presented in Fig. 4b.

PDMA3 - Execute Mining/Analysis Approach. Regarding process mining, we used
the extended event log we generated as input to discover the process model in
Disco and with the BPMN miner plug-in in ProM, to analyze the execution against
the defined model. Figure 6 d) shows the model discovered in ProM, and Fig. 6
e) shows the model discovered in Disco. Activities do not completely correspond
to the model presented in 4a. We also worked with the data warehouse, crossing
data from different dimensions to answer the questions defined, e.g., which courses
and from which careers have been involved in cases that took more than 15 days to
complete? (in the example, 15 days equals 200.000 milliseconds). We filtered data
by the relation validation-course, which defines the courses included in the appli-
cations with the case id and the corresponding attributes. As rows, we included
attributes from dimensions “Entityrelation”, “ProcessInstance”, “DataDefinition”
and “DataInstance”. We selected the “Process duration” measure and filtered it by
duration over 200.000 milliseconds. Figure 7 shows the results in Pentaho.
Regarding the integrated process and data mining approach that is implemented in
our ProM plug-in, we analyzed the extended event log based on organizational data
to know the cases that were associated with these data, for example, cases that have
scholarships approved and rejected, cases that manage different ranks of amounts
for scholarships, teachers that were involved in evaluating the scholarships, etc. We

A Methodology for Organizational Data Science 59

can then analyze the resulting cases to see whether there is a different or specific
behavior associated with the organizational data. In Fig. 8 we present an example of
the results for clustering cases based on approved and rejected scholarships. It can
be seen that when selecting one case in the cluster on the left panel, on the main
panel, the path of the case over the process model is highlighted.

Fig. 6. Extended event log analysis: a) entities; b) attributes; c) process variables; d) ProM model;
and e) Disco model.

Evaluation. In this sub-phase, we perform the activities to evaluate mining/analysis
results obtained using the selected tools.

PDMA4 - Evaluate Mining/Analysis Results. Regarding the process models discov-
ered by ProM and Disco, although this process is elementary, several issues were
detected. For instance, the activity “Notify applicants” was absent in both mod-
els, pointing to an implementation problem. Concerning the data warehouse and the
example question, a career with id 80 presented the most cases with process dura-
tion over the defined limit, leading to an analysis of the type of courses that students
select, which can cause the delays. The integrated analysis over the extended log also
gave us insight into the execution of the process and the relation with organizational
data, particularly for the approved and rejected results for scholarships.

PDC2 - Evaluate Compliance Results. We omitted this activity since there were no
compliance requirements defined for this particular process.

Improvements regarding issues discovered were not performed since new iterations
over the data need to be done to obtain a deeper analysis of the results.

60 A. Delgado et al.

Fig. 7. Data warehouse result for courses and careers involved in cases that took more than
15 days to complete.

Fig. 8. ProM plug-in for integrated process and data mining over integrated data.

A Methodology for Organizational Data Science 61

4.2 Passport Request BP with Collaborative Extension

The Passport request BP allows a citizen to request a passport interacting with sev-
eral e-Government organizations. In the first place, the e-Government National Agency
(AGESIC) receives the request and interacts with the National Identification Agency
(DNIC) to schedule a meeting for issuing the passport. The DNIC interacts with the
National Police office (DNPT) to check the Judicial record’s background of the citi-
zen. If there is none, the meeting is carried out, and the passport can be issued or not,
depending on the defined criteria. If the citizen has judicial records or the response is
not received within 24 h, the meeting is canceled. Figure 9a shows the collaborative BP
[20] using BPMN 2.0, and Fig. 9b its choreography [19].

Fig. 9. Passport request proof of concept.

Execution of the Methodology. In this case, we focus only on the activities we per-
formed for identifying, executing, and evaluating compliance requirements. The rest of
the activities for each phase defined in Sect. 2 are the same as in the previous example,
i.e., selecting BPs, evaluating data quality, etc.

62 A. Delgado et al.

PDC1 - Identify Compliance Requirements. We selected compliance requirements
from the BPCRM model to be evaluated over the choreography:

– Dimension: Interaction, Factor: Send/Receive Messages, Control: M coabsent
N

– Dimension: Interaction, Factor: Message flow, Control: R between M and N
The first control M coabsent N is instantiated over the choreograpy as: If Judi-
cial records response is not exchanged, then Notify appointment result must not
be exchanged, and the second control R between M and N is instantiated as: Judicial
records response is exchanged between Has judicial records and Notify appointment
result.

PDMA3 - Execute Mining/Analysis Approach. The compliance analysis over the
extended collaborative event log is implemented in our ProM plug-in, taking as input
the compliance requirements for the process, i.e., the instantiation of controls for the
specific messages, tasks, etc., and the extended event log for the collaborative BP
(collaboration, choreography). In Fig. 10 we present an example of the results. Non-
compliant traces are shown in the summary panel with the number and percentage of
trace violations. Different control results for the choreography can be seen in [20].

PDC2 - Evaluate Compliance Results. Several traces presented violations regarding
the two selected controls. In the first case, a message appeared in some traces where
it should not occur since the first message was not present. In the second case, a
message was not exchanged in the correct order. It requires looking deeper into the
violating traces to gain insight into the causes.

Fig. 10. ProM plug-in for compliance requirements evaluation choreography view.

A Methodology for Organizational Data Science 63

5 Related Work

CRISP-DM [31], KDD [7], and SEMMA [29] are the most common methodologies
for performing classical data-centric analysis. None of them include detailed guidelines
on identifying and incorporating data useful to analyze organizations’ processes and
improve them. CRISP-DM was initially developed in IBM for data mining tasks, and
it is used for a wide variety of projects. It consists of a cyclic model with the follow-
ing defining stages that can be reversed: Business understanding, Data understanding,
Data Preparation, Modeling, Evaluation, and Deployment. KDD is a method to guide
specialists in extracting patterns and required information from data. It consists of five
stages: Selection, Preprocessing, Transformation, Data Mining, and Interpretation/E-
valuation. Finally, SEMMA is also a cyclic method that does not focus as heavily on
data-specific stages. In this case, a wide range of algorithms or methods are used.

From the business process perspective, in [18], the authors propose PM2, a method-
ology to guide the execution of process mining projects with different goal levels. It
consists of six stages with their corresponding activities: planning, for setting up the
project and defining the research questions; extraction, for extracting data and process
models; data processing, for creating appropriate event logs; mining & analysis, for
applying process mining techniques; evaluation, for relating the analysis findings to
improvement ideas; and process improvement & support, for modifying the actual pro-
cess execution. This methodology is consistent and complementary with ours. Plan-
ning, extraction, and data processing stages are considered within the data phase of our
methodology. They also consider enriched event logs with external data, but they neither
pay special attention to organizational data nor related problems as quality assessments.
Mining & analysis and evaluation stages are also considered within the Mining/Anal-
ysis phase, but in this case, they provide deeper information that ours can use. Finally,
the process improvement stage is considered by integrating an Improvement phase from
the BPCIP methodology [16].

Although there are many data quality proposals on data quality methodologies and
frameworks, e.g., [3,33], to the best of our knowledge, none of them are focused on inte-
grated process and organizational data quality management for process mining activi-
ties. In our work, we select and adapt the main tasks of existing approaches to our
needs, obtaining the three proposed tasks (definition of data quality model, evaluation,
and improvement of the quality characteristics).

Various approaches propose activities for business process compliance [21]. The
COMPAS project defines a life cycle with four phases (e.g., evaluation) [5]. The C3 Pro
Project describes a design-time methodology for compliance of collaborative workflows
[28]. The MaRCo Project defines activities for compliance management [25] (model-
ing, checking, analysis, enactment). However, they neither consider these activities in
the context of an integrated methodology nor leverage process and data mining for
compliance control and analysis.

6 Conclusions

We have presented the PRICED methodology to carry out process and data mining and
analysis efforts over integrated process data and organizational data. The static view of

64 A. Delgado et al.

the methodology includes the definition of disciplines, tasks, roles, and artifacts, and
the dynamic view comprises phases and sub-phases to guide the work within the frame-
work. Key elements of our proposal include: (i) a metamodel-based integration of pro-
cess and organizational data from process engines and distributed organizational DBs;
(ii) a quality model for quality assessment over the integrated data; (iii) a compliance
requirements model for compliance assessment over collaborative BPs; (iv) extended
event logs and a data warehouse to be used for mining/analysis over the integrated data;
(v) and integrated process and data mining/analysis approaches over the integrated data
to provide a complete view of the organization’s actual operation.

Also, we have provided two applications of the methodology. The first one focused
on integrated process and organizational data, and the second focused on collaborative
BPs. Both applications allowed us to show the utility of the elements defined in the
methodology.

We believe it is a valuable tool to guide organizations’ mining/analysis efforts
towards evidence-based process improvement, with a complete and integrated data
view. Nevertheless, we are still improving the whole framework, applying it over more
complex processes and heterogeneous organizational data to assess its capabilities. We
are also performing further analysis over the integrated data, with different process and
data mining approaches.

Acknowledgement. We would like to thank students: Alexis Artus, Andrs Borges, Federico
Prez, Francisco Betancor, Fabin Gambetta, Juan Canaparo, Martn Rubio, for their work in the
PRICED framework and prototypes.

References

1. van der Aalst, W.M.P.: Process Mining - Data Science in Action, 2nd Edn. Springer, Berlin
(2016). https://doi.org/10.1007/978-3-662-49851-4

2. Artus, A., Borges, A., Calegari, D., Delgado, A.: Integrated process data and organizational
data analysis for business process improvement. In: Golfarelli, M., Wrembel, R., Kotsis, G.,
Tjoa, A.M., Khalil, I. (eds.) DaWaK 2021. LNCS, vol. 12925, pp. 207–215. Springer, Cham
(2021). https://doi.org/10.1007/978-3-030-86534-4 19

3. Batini, C., Scannapieco, M.: Data and Information Quality. DSA, Springer, Cham (2016).
https://doi.org/10.1007/978-3-319-24106-7

4. Betancor, F., Pérez, F., Marotta, A., Delgado, A.: Business process and organizational data
quality model (BPODQM) for integrated process and data mining. In: Paiva, A.C.R., Cavalli,
A.R., Ventura Martins, P., Pérez-Castillo, R. (eds.) QUATIC 2021. CCIS, vol. 1439, pp. 431–
445. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-85347-1 31

5. Birukou, A., D’Andrea, V., Leymann, F., Serafinski, J., Silveira, P., Strauch, S., Tluczek, M.:
An integrated solution for runtime compliance governance in SOA. In: Maglio, P.P., Weske,
M., Yang, J., Fantinato, M. (eds.) ICSOC 2010. LNCS, vol. 6470, pp. 122–136. Springer,
Heidelberg (2010). https://doi.org/10.1007/978-3-642-17358-5 9

6. Bose, R.P.J.C., Mans, R.S., van der Aalst, W.M.P.: Wanna improve process mining results?
In: 2013 IEEE Symposium on Computational Intelligence and Data Mining (CIDM), pp.
127–134 (2013)

7. Brachman, R.J., Anand, T.: The process of knowledge discovery in databases. In: Advances
in Knowledge Discovery and Data Mining, pp. 37–57. MIT Press, Cambridge (1996)

https://doi.org/10.1007/978-3-662-49851-4
https://doi.org/10.1007/978-3-030-86534-4_19
https://doi.org/10.1007/978-3-319-24106-7
https://doi.org/10.1007/978-3-030-85347-1_31
https://doi.org/10.1007/978-3-642-17358-5_9

A Methodology for Organizational Data Science 65

8. Calegari, D., Delgado, A., Artus, A., Borges, A.: Integration of business process and orga-
nizational data for evidence-based business intelligence. CLEI Electron. J. 24(2), 7:1-7:19
(2021)

9. Chang, J.: Business Process Management Systems: Strategy and Implementation. CRC
Press, Boca Raton (2016)

10. Cristalli, E., Serra, F., Marotta, A.: Data quality evaluation in document oriented data stores.
In: Woo, C., Lu, J., Li, Z., Ling, T.W., Li, G., Lee, M.L. (eds.) ER 2018. LNCS, vol. 11158,
pp. 309–318. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01391-2 35

11. Delgado, A., Calegari, D.: Towards a unified vision of business process and organizational
data. In: XLVI Latin American Computing Conference (CLEI), pp. 108–117. IEEE (2020)

12. Delgado, A., Calegari, D.: Discovery and analysis of e-government business processes with
process mining: a case study. In: 55th Hawaii International Conference on System Sciences,
(HICSS) (2022)

13. Delgado, A., Calegari D., Arrigoni A.: Towards a generic BPMS user portal definition for the
execution of business processes. In: XLII Latin American Computer Conference - Selected
Papers, CLEI 2016 Selected Papers, Valparaiso, Chile, 10–14 October 2016, pp. 39–59. Else-
vier (2016)

14. Delgado, A., Calegari, D., Marotta, A., González, L., Tansini, L.: A methodology for inte-
grated process and data mining and analysis towards evidence-based process improvement.
In: Proceedings of the 16th International Conference on Software Technologies (ICSOFT),
pp. 426–437. ScitePress (2021)

15. Delgado, A., Marotta, A., González, L., Tansini, L., Calegari, D.: Towards a data science
framework integrating process and data mining for organizational improvement. In: 15th
International Conference on Software Technologies (ICSOFT), pp. 492–500. ScitePress
(2020)

16. Delgado, A., Weber, B., Ruiz, F., de Guzmán, I.G.R., Piattini, M.: An integrated approach
based on execution measures for the continuous improvement of business processes realized
by services. Inf. Softw. Technol. 56(2), 134–162 (2014)

17. Dumas, M., van der Aalst, W.M., ter Hofstede, A.H.: Process-Aware Information Systems:
Bridging People and Software through Process Technology. Wiley, Hoboken (2005)

18. van Eck, M.L., Lu, X., Leemans, S.J.J., van der Aalst, W.M.P.: PM2: a process mining project
methodology. In: Zdravkovic, J., Kirikova, M., Johannesson, P. (eds.) CAiSE 2015. LNCS,
vol. 9097, pp. 297–313. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-19069-
3 19

19. González, L., Delgado, A.: Towards compliance requirements modeling and evaluation of
e-government inter-organizational collaborative business processes. In: 54th Hawaii Interna-
tional Conference on System Sciences, (HICSS), pp. 1–10. ScholarSpace (2021)

20. González, L., Delgado, A.: Compliance requirements model for collaborative business pro-
cess and evaluation with process mining. In: XLVII Latin American Computing Conference
(CLEI) (2021)

21. Hashmi, M., Governatori, G., Lam, H.P., Wynn, M.T.: Are we done with business process
compliance: state of the art and challenges ahead. Knowl. Inf. Syst. 57(1), 79–133 (2018)

22. Hecht, R., Jablonski, S.: Nosql evaluation: a use case oriented survey. In: 2011 International
Conference on Cloud and Service Computing, pp. 336–341 (2011)

23. IEEE: Task Force on Data Science and Advanced Analytics. http://www.dsaa.co/
24. IEEE: IEEE standard for extensible event stream (XES) for achieving interoperability in

event logs and event streams. In: IEEE Std 1849–2016, pp. 1–50 (2016)
25. Kharbili, M.E., Ma, Q., Kelsen, P., Pulvermueller, E.: CoReL: policy-based and model-

driven regulatory compliance management. In: IEEE 15th International Enterprise Dis-
tributed Object Computing Conference, IEEE, August 2011

https://doi.org/10.1007/978-3-030-01391-2_35
https://doi.org/10.1007/978-3-319-19069-3_19
https://doi.org/10.1007/978-3-319-19069-3_19
http://www.dsaa.co/

66 A. Delgado et al.

26. Khasawneh, T.N., AL-Sahlee, M.H., Safia, A.A.: Sql, newsql, and nosql databases: a com-
parative survey. In: 2020 11th International Conference on Information and Communication
Systems (ICICS), pp. 013–021 (2020)

27. Knuplesch, D., Reichert, M.: A visual language for modeling multiple perspectives of busi-
ness process compliance rules. Softw. Syst. Model. 16(3), 715–736 (2016). https://doi.org/
10.1007/s10270-016-0526-0

28. Knuplesch, D., Reichert, M., Ly, L.T., Kumar, A., Rinderle-Ma, S.: Visual modeling of busi-
ness process compliance rules with the support of multiple perspectives. In: Ng, W., Storey,
V.C., Trujillo, J.C. (eds.) ER 2013. LNCS, vol. 8217, pp. 106–120. Springer, Heidelberg
(2013). https://doi.org/10.1007/978-3-642-41924-9 10

29. Mariscal, G., Marbán, O., Fernández, C.: A survey of data mining and knowledge discovery
process models and methodologies. Knowl. Eng. Rev. 25(2), 137–166 (2010)

30. Papazoglou, M.P.: Making business processes compliant to standards and regulations. In:
15th International Enterprise Distributed Object Computing Conference, IEEE, August 2011

31. Shearer, C.: The CRISP-DM model: the new blueprint for data mining. J. Data Warehouse.
5(4), 13–22 (2000)

32. Sumathi, S., Sivanandam, S.N.: Introduction to Data Mining and its Applications, Studies in
Computational Intelligence, vol. 29. Springer, Berlin (2006)

33. Tepandi, J., et al.: The Data Quality Framework for the Estonian Public Sector and Its Evalu-
ation. In: Hameurlain, A., Küng, J., Wagner, R., Sakr, S., Razzak, I., Riyad, A. (eds.) Trans-
actions on Large-Scale Data- and Knowledge-Centered Systems XXXV. Lecture Notes in
Computer Science(), vol. 10680, pp. 1–26. Springer, Berlin (2017). https://doi.org/10.1007/
978-3-662-56121-8 1

34. Valverde, M.C., Vallespir, D., Marotta, A., Panach, J.I.: Applying a data quality model to
experiments in software engineering. In: Indulska, M., Purao, S. (eds.) ER 2014. LNCS, vol.
8823, pp. 168–177. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-12256-4 18

35. Verhulst, R.: Evaluating quality of event data within event logs:an extensible framework.
Master’s thesis, Eindhoven University of Technology (2016)

https://doi.org/10.1007/s10270-016-0526-0
https://doi.org/10.1007/s10270-016-0526-0
https://doi.org/10.1007/978-3-642-41924-9_10
https://doi.org/10.1007/978-3-662-56121-8_1
https://doi.org/10.1007/978-3-662-56121-8_1
https://doi.org/10.1007/978-3-319-12256-4_18

Feedback Generation for Automatic User
Interface Design Evaluation

Jenny Ruiz1(B) and Monique Snoeck2

1 University of Holguin, 80100 Holguin, Cuba
jruizp@uho.edu.cu

2 KU Leuven, 3000 Leuven, Belgium
monique.snoeck@kuleuven.be

Abstract. During the last decades the interest to study User Interfaces (UI) has
increased. However, the learning of UI design is a difficult process. To obtain
better results, novel UI designers need guidance through this process. Feedback
is among the most important factors to improve knowledge and skill acquisition.
Nevertheless, the complexity of providing individual feedback is remarkable: it
is a time-consuming task and requires a fair amount of expertise. This paper
presents the Feedback ENriched user Interface Simulation (FENIkS) as a solution
to this problem. FENIkS is a UI design simulation tool, based on model-driven
engineering. The students design the UI through different models while automat-
ically receiving feedback on how design principles have been applied through
several options. From the models it is possible to generate a working prototype,
enriched with feedback that explains the application of design principles. This
paper describes the foundations of FENIkS for the automatic UI design evalua-
tion that further allowsgenerating automatic feedback. It explainsFENIkS’ design:
the meta-model and how design options, design principles and types of feedback
are used to automatically generate feedback. The perceived usability was positive
evaluated. The results of the experimental evaluation demonstrated that FENIkS
improves students’ understanding of design principles.

Keywords: Automated feedback · User Interface design · Presentation model ·
Model-driven engineering · User interface generation

1 Introduction

Software applications are highly used in everyday life. The importance ofUser Interfaces
(UI), as the means that allows the interaction between the end user and the application
[1], has increased. As a consequence, there is a need to evaluate usability, defined by
ISO 9241–11 as the degree to which a system can be used by specified users to achieve
specified goals with effectivity, efficiency and satisfaction in a given context of use.
Evaluation methods and technology that supports UI design are also required.

The design ofUIs is a complex process that ideally results in a usable and useful inter-
active system. The difficulties are associated to its interdisciplinary nature, the need for
designing for several contexts of use and for understanding a wide range of approaches.

© Springer Nature Switzerland AG 2022
H.-G. Fill et al. (Eds.): ICSOFT 2021, CCIS 1622, pp. 67–93, 2022.
https://doi.org/10.1007/978-3-031-11513-4_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-11513-4_4&domain=pdf
http://orcid.org/0000-0002-1371-6353
http://orcid.org/0000-0002-3824-3214
https://doi.org/10.1007/978-3-031-11513-4_4

68 J. Ruiz and M. Snoeck

The complexity brings difficulties for the usability evaluation that also requires time,
effort and experts. Therefore, any degree of automation brings benefits.

Novel UI designers need guidance through the learning process of UI design includ-
ing the usability evaluation of the UIs. To improve their design skills, they require a
large amount of practice and clues about their efforts. Feedback has proved its value to
improve knowledge and skill acquisition [2].

In general, providing individual feedback is a complex and time-consuming task
and requires a fair amount of expertise. Providing feedback for UI design is particularly
challenging because of its inherent complexity. Giving personal feedback is even more
complex and time consuming, especially when a student addresses a difficult exercise.
The fact that the student can address a problem through many valid solutions calls for
individual feedback. Technology can be used to provide more frequent and immediate
feedback [3]. There are a few approaches to support the learning of UI design [4–6],
although without providing for automated feedback.

In order to cope with the need for providing feedback for UI design, and, at the same
time, automatic usability evaluation, we proposed Feedback ENriched user Interface
Simulation (FENIkS). FENIkS is a UI design simulation tool able to automatically
provide instant feedback to the students about how they apply UI design principles.

This paper extends previous work [7] by describing the foundations of FENIkS by
presenting a Systematic Literature Review (SLR) on automatic usability evaluation to
select themost appropriate techniques to build FENIkS.We also present an analysis ofUI
design principles to make a selection of those used for the automatic usability evaluation
and for the generation of feedback. This paper also presents more details about the
experimental evaluation. The remainder of this paper is as follows: Sect. 2 examines the
related work on automated feedback and UI design teaching support. Section 3 presents
the selection of techniques for the automatic usability evaluation. Section 4 describes
FENIkS. Section 5 presents the evaluation and Sect. 6 concludes the paper.

2 Related Work

This section analyzes the approaches related to our work from four perspectives: auto-
mated feedback generation for learning support, teaching support forUI design, feedback
to non-usability experts at design time and pattern-driven approaches.

Automated Feedback for Learning Support. There is a growing body of knowledge
on automated feedback. In [8] the authors reviewed 109 papers on automated feedback.
While they were able to derive a general framework (TAF-ClaF), generally speaking,
the approaches are as diverse as the learning topics that are supported by automated
feedback. In terms of the TAF-ClaF dimensions, our aim is to develop expert-driven
and task-adaptive automated feedback using both expert-knowledge on UI design best
practices and student answers. Students will have access to the feedback on request.
The feedback is both corrective and suggestive as the student will receive additional
information besides the correctness of their choices.

Teaching Support for UI Design. The authors of [6] propose a hypertext module
called UID tutorial. This UID tutorial presents good and bad examples, i.e. UI that

Feedback Generation for Automatic User Interface Design 69

are compliant with design principles or not. The author of [5] propose an approach with
examples to give recommendations about which media is appropriate for different cases.
An example of a game is proposed by [4] to support the teaching of usability engineer-
ing life cycle, prototyping and heuristic evaluation. This game shows examples of web
interfaces, where the student needs to select which heuristics are applied.

Feedback to Non-usability Experts at Design Time. The authors of [9] propose an
approach to elicit usability requirements at early stages of the software development
process providing feedback to non-experts. This approach provides the non-usability
experts with interface design and usability guidelines through questions that need be
asked to the end-user. Usability requirements are obtained from the answers.

Pattern-driven Approaches. Patterns transmit experience about recurrent problems,
while making expert knowledge explicit to novices. In [10] there is an approach with
examples of abstract UI patterns. It can be seen as a form of feedback that docu-
ments problems and the corresponding solutions. OO-Method [11] uses patterns in a
presentation model to capture user’s preferences, in a similar way to our approach.

The approach presented in this paper differs from prior works in several ways. The
approaches that support the generation of automated feedback for learning support are
very diverse, and thus not always fit for UI design. Those approaches that support UI
design by providing example-based help do not provide feedback related to a real design,
something possible in FENIkS. Themost significant difference is, therefore that FENIkS
allows testing the compliancy of UI design principles in an actual UI that is designed by
the student through the specification of domain and presentation models.

3 Techniques for the Automatic UI Design Evaluation

To select the foundations for the automatic UI design evaluation we focus on usabil-
ity evaluation. Subsection 3.1 presents a SLR on automatic usability evaluation. Sub-
section 3.2 presents the selection of design principles to be further incorporated in
FENIkS.

3.1 Automatic Usability Evaluation

We performed an SLR to determine relevant works in the field of automatic usability
UI evaluation, following the guidelines proposed by Kitchenham and Charters [12]. The
guidelines propose three phases: planning, conducting and reporting.
Planning the SLR. The main research questions that need to be answered are:

• RQ1: Which general techniques are used in the automatic usability evaluation?
• RQ2: Which usability techniques are used in the automatic evaluation?
• RQ3: What automation level is achieved by the researchers?
• RQ4: What kind of UI are evaluated?

70 J. Ruiz and M. Snoeck

We performed our search on the Scopus database, one of the largest databases of the
peer reviewed literature covering all important publishers such as ACM, IEEE, Springer,
Elsevier and many more. We identified key words from the research questions. A tra-
ditional search was performed that allowed determining the most appropriate search
terms. The terms were validated by two experts in the field. The final search string used
was: TITLE-ABS-KEY ((automatic) AND usability AND (evaluation OR study OR
experiment)) AND (LIMIT-TO (SUBJAREA, “COMP”) OR LIMIT-TO (SUBJAREA,
“ENGI”)). To assess the quality of the query, we checked that the studies we already
knew to be relevant (such as [13, 14]) appeared in the results.
Reporting the SLR. The query resulted in a collection of 418 papers dating from
2009 to 2019. The inclusion and exclusion criteria should allow the identification of
existing literature reviews on usability evaluation, methods, techniques, tools used for
the automatic evaluation of UIs. The inclusion and exclusion criteria were as follows
(Table 1):

Table 1. Inclusion and exclusion criteria.

Inclusion criteria Exclusion criteria

Papers presenting a literature review on
usability evaluation

Papers analyzing methods, techniques or tools in
an initial development phase

Papers describing a method for usability
evaluation

Papers analyzing methods, techniques or tools for
the non-automatic usability evaluation

Papers describing a technique for usability
evaluation

Proceedings

Papers describing a tool for usability
evaluation

Papers presenting works to improve the usability

Unique paper Duplicated paper

We analyzed the 418 papers: we discarded 373 papers, 45 papers were retained. Table 2
shows the details of the papers discarded according to the exclusion criteria.

Table 2. Number of discarded papers according to the exclusion criteria.

Criteria Amount

Non-automatic usability evaluation 262

To improve the usability but not for usability evaluation 62

Proceeding 39

Initial development phase 8

Duplicated paper 2

Total 373

Feedback Generation for Automatic User Interface Design 71

The SLRwas focused on the evolution of usability evaluation. Evenwhen several authors
publish many papers about usability, very few focus on automatic evaluation: 262 papers
investigate usability evaluation without any level of automation. The average per year
of papers investigating non-automatic evaluation is 26.2 papers, while the average for
automatic evaluation is 4.09: a maximum of 6 papers in 2009, 2017 and 2018.

In order to answer the research questions we analyzed every paper in detail. The full
list of papers and their classification can be found here: https://zenodo.org/record/557
8029.

We analyzed the information to answer RQ1: Which general techniques are used
in the automatic usability evaluation? Not all 45 papers propose general techniques for
automatic usability evaluation. Figure 1 shows the breakdown for the relevant papers.
Next, we describe a selection of the approaches to illustrate the used techniques.

A model-based technique is used the most. In [14], the authors propose a tool based
on PALADINmodels. It defines a common notation to describe the interaction in several
multi-modal contexts, comparing usability of the different systems. In [15], the authors
propose a solution to monitor the interaction between the users and the systems based on
a continuous, real-time usability evaluation. The tool registers the user’s activities using
Petri nets. Usability deviations are detected assuming a task model previously defined
to be compared with the user’s activities. In [16], the authors propose the necessary
requirement for the usability formalisms in model-based approaches based on specifica-
tion of structured UI. The authors of [17] propose a predictive usability evaluation with
an approach that uses usability metrics. The metrics are the key to predict the usability
and can be adapted to task, user and conceptual models.

Fig. 1. General techniques used in the automatic usability evaluation.

The authors of [18, 19] use log analysis to make a remote usability evaluation from
a daily behavior analysis of the registered users. The tools identify potential usability
issues, for example in web applications [18]. The tool proposed by [19] also allows
adding new behaviors to be analyzed that were not included in the original set.

In [20] opinion mining is proposed as an automatic technique to evaluate usability.
The model obtains knowledge from the user opinions to improve the usability. In [13],
there is a methodology to build tools. The authors train a set of classifiers to extract
usability problems and compare them with those found with heuristic evaluation.

Aspect oriented programing has been used for usability evaluation. The authors of
[21] propose the tool AJMU to evaluate user tasks on desktop applications In [22], the
authors describe the development of a tool that can be dynamically configured to capture

https://zenodo.org/record/5578029

72 J. Ruiz and M. Snoeck

specific events. This kind of approach helps to the non-programmers in the automatic
usability evaluation process without modifying the software.

Fuzzy logic is used by [23, 24]. In [23] there is a combination of automatic usability
evaluation with manual evaluation to calculate measures, e.g. the structural complexity
of web sites. Using these results the authors propose a fuzzy model to evaluate the
usability. In [24] a tool evaluates complex interactive systems based on fuzzy logic.

Model-driven engineering is only used by [25]. The authors propose to reduce the
quality fails detected from the evaluation of quality attributes evaluation. This approach
uses a requirement meta-model. The approach is focused on the extension of conceptual
models used by web engineering methodologies to consider the usability requirements.

Regarding RQ2: Which usability techniques are used in the automatic evaluation?,
usability guidelines aremore used (11), followed by user testing (8), usabilitymetrics (5),
heuristics (4), and patterns (4). The next paragraph illustrates the different approaches
by means a few selected papers.

A first example of automatic evaluation via guidelines is A4U [26], which analyzes
results from usability tests. It allows human evaluation and includes results of semi-
automatic guideline-based evaluation. MAUVE evaluates web application usability [27]
by specifying and updating guidelines to be validated. In [28] the authors use Web page
analyzer and GTMetrix that use guidelines for didactic applications. MenuErgo [29]
allows the automatic evaluation of menu bars for graphical UI using guidelines. In [30]
there is a tool for the automatic evaluation of interactive web systems. The tool is based
onweb services using a set of guidelines to evaluate graphic controls. The authors of [31]
evaluate the guidelines and make annotations to indicate how they have been applied for
web applications for blind users.

The approach proposed by [32] combines the use of guidelines with usability test
for automatic evaluation. These authors present an approach that defines strategies of
generic tests to evaluate the usability guidelines. To that end, they extend the language
PBGT’s PARADIGMwith test usability patterns. It is possible to build test models from
usability tests that can be generated and executed automatically in a web site.

The authors of [28] combine user testing with automated tools for the evaluation
of web applications, while in [13] user testing and heuristics are combined with data
mining. In [33], the authors propose an automatic evaluation plugin to detect defects
related to the quality of mobile user interface. This plugin allows the measurement of
several usabilitymetrics to predict the quality of interfaces from the usability perspective.

The automation level was analyzed on every found approach in order to answer RQ3:
What automation level is achieved by the researchers? In this case, we found that the
majority of the analyzed works (40 works) achieve full automation in the evaluation,
while only 5 works report semi-automatic usability evaluation.

Finally, the last RQ4:What kind of UI are evaluated?was analyzed. The majority of
the analyzed works evaluates the usability of UI for web applications (21), followed by
UI for mobile (3), desktop (3), devices applications (3) and multi-modal (2). There are
less approaches that evaluate usability of multimedia applications, user manual, multi-
agent systems, adaptiveUI, advance humanmachine interface, and biometric recognition
applications with only one work. Some works propose approaches to evaluate more than
one kind of UI. There are 8 works that evaluate UIs in general.

Feedback Generation for Automatic User Interface Design 73

Identified Challenges. There is an evolution in the automatic usability evaluation.
Some challenges identified by [34], for example the lack of quantitative data and sub-
jective information, have been tackled by [20]: it uses data mining to extract knowledge
from user opinions. Another challenge was the combination of heuristics with automatic
usability evaluation. This has been tackled with artificial intelligence by [35].

There are potential uses for automatic usability evaluation that should be further
explored such as the simulation of the interaction: there is an initial work in [17]. The
use of MDE should be further explored, only used by [25]. This kind of approaches
provides several benefits where the creation of models as primary artifacts that allow
describing the UI in an abstract way. Then it allows obtaining specific implementations
through model transformations, facilitating the interoperability between systems.

Considering the results of previous approaches proposed in the analyzed litera-
ture, we propose an approach which combines the techniques most used in the lit-
erature for the automatic usability evaluation with model-driven engineering. Model-
based is the general technique most used for automatic usability evaluation. In previous
work we analyzed how, in UI design, model-based approaches are evolving to model-
driven approaches [36]. We propose to integrate a model-driven approach with usability
guideline validation, which is the usability technique most used with good results.

In order to build the proposed approach, we identified which usability guidelines
could be used in an automatic usability evaluation for a didactic approach. The next
subsection identifies first the UI design principles, then the associated guidelines.

3.2 UI Design Principles for the Automatic Usability Evaluation

A proper UI should be designed in a way that satisfies the users’ needs, capabilities
and limitations [37]. The study of the human interaction with computers has led to the
generalization of some design principles that help to design usable UIs. These principles
allow guiding the software design, with a positive effect on usability [38].

Due to the fact that UI design principles are high level concepts and beliefs and there
is a need for a concrete way to apply them, the authors also used guidelines associated
to the principles. As presented in the previous section, the use of guidelines is the most
used technique for the automatic usability evaluation. This section analyzes theUI design
principles and guidelines to be incorporated in the tool proposed in this paper.

To be able to incorporate design principles in an automatic way by means of MDE
transformations it is necessary to select principles that can be translated into testable
rules. Training in design involves learning about principles [39], but the wide variety
of design principles can make it very difficult for novel designers to understand where
their focus should be. Therefore, we focused on a core set of UI design principles.

In previous work [40] we made an analysis of the definition of design principles. We
looked for authors that propose UI design principles [41, 42] in the literature to select the
most important principles. We found 41 authors of design principles from a set of 475
papers. We extracted 16 authors that are cited at least twice in the set of found papers.
We analyzed their three most cited works. This allowed us extracting 257 principles that
included variations of the same principle. We unified the variants (principles similar by
name, by concept, etc.), and, considering their scientific influence (their citation number
in the literature), we derived a set of 36 design principles.

74 J. Ruiz and M. Snoeck

While citation number gives an idea of the impact a work has, there is still a need
for evidence of the use of the design principles. Empirical validation plays an important
role by providing evidence of the use in reality. The authors of [43] proposed ergonomic
criteria (some of them divided into sub-criteria) to define dimensions of usability that can
be matched to design principles. Ergonomic criteria can also be helpful for UI teaching
purposes. According to [44], Bastien and Scapin’s ergonomic criteria have an impact
on their use to elicit usability problems, and are objectively applicable by designers,
while benefiting the novices more than experts. The proposed criteria were empirically
validated for reliability [45] and their effectiveness for UI evaluation [46].

Ergonomic criteria are dimensions of usability that encompass heuristics and prin-
ciples. As [47] explains, “usability guidelines are often indistinguishable from design
principles, but they must be formulated in a way so as to be testable”. The level of how
trustable a guideline is, is not equal [48]. It can be related to the validation by experi-
mental results to the associated principles or heuristics. We use examples of associated
guidelines to the matching between principles, ergonomic criteria and guidelines.

Some of the principles could be directlymatched to ergonomic criteria or sub-criteria
(11), while others could be matched to guidelines (7) that were presented alongside the
ergonomic criteria. Out of the total, 18 could not be matched. Table 3 presents the
matching of the principles to the ergonomic criteria in the validation proposed by [43].

Table 3. Design principles with their corresponding ergonomic criteria.

Principle Ergonomic criteria Guideline

Offer informative feedback Guidance: Immediate
feedback

Strive for consistency Consistency

Prevent errors Error management: error
protection

Minimize user’s memory load Workload

Simple and natural dialog Compatibility Dialogues should reflect data
structures that correspond to
their mental models

Provide good error messages Error management: quality of
error messages

Allow users to use the
keyboard or mouse

Adaptability: user experience Allow experienced users to
by-pass a series of menu
selections with equivalent
shortcuts

Speak the user’s language Compatibility Labels, prompts, and
guidance messages should
be familiar to users and
task-oriented

(continued)

Feedback Generation for Automatic User Interface Design 75

Table 3. (continued)

Principle Ergonomic criteria Guideline

Significance of codes

Help and documentation Guidance: prompting Provide on-line help,
guidance

Make things visible Guidance:
grouping/distinction of items.
Grouping/distinction by
format

Actions should be reversible Explicit control: explicit user
action

Provide a cancel option with
to erase any changes

Give the user control Explicit control: user control

Help users recognize,
diagnose, recover from errors

Error management: error
correction

Flexibility and efficiency of use Adaptability: flexibility

Structure the user’s interface Guidance:
grouping/distinction of items
+ Grouping/distinction by
location

Allow users to change focus Explicit control: user control Users should have the
control over the screen pages

Allow users to customize the
interface

Adaptability: flexibility Provide means to control
display configuration

Provide means to change the
data entry sequence to
respect user preferred
sequence

Provide visual cues Guidance: prompting

Each guideline should be assigned to one ergonomic criteria. As the abstraction level
of the analyzed principles is not always the same, in some cases an ergonomic criterion
is matched to more than one principle but at a different level. For the principles matched
to an ergonomic criterion, the associated guidelines are considered subsumed by it.

We note that some principles can be incorporated in an MDE tool with a manage-
able amount of effort while for other principles this would require a lot of effort, for
demanding the implementation of difficult techniques. We studied several guidelines
per principle and analyzed how many could be implemented. The more guidelines can
be implemented, the easier we consider its implementation. Table 4 shows the list of
principles and their level of implementation difficulty (Easy: E, Medium: M, Hard: H).

76 J. Ruiz and M. Snoeck

Table 4. Design principles and implementation difficulty.

Design principle E M H

Total: 8 4 6

Prevent errors X

Provide good error messages X

Allow users to use the keyboard or mouse X

Provide visual cues X

Offer informative feedback X

Strive for consistency X

Make things visible X

Structure the user’s interface X

Actions should be reversible X

Help users recognize and recover from errors X

Allow users to change focus X

Help and documentation X

Minimize user’s memory load X

Simple and natural dialog X

Give the user control X

Speak the user’s language X

Flexibility and efficiency of use X

Allow users to customize the interface X

In this first version we implemented feedback for the easiest to implement principles:
Prevent errors, Provide good error messages, Allow users to use the keyboard or mouse,
Provide visual cues, Offer informative feedback, Strive for consistency, Make things
visible and Structure the UI.

4 FENIKS

FENIkS is an extended version of JMermaid: a tool for teaching conceptual modeling,
based on MERODE. MERODE is an MDE method that allows the specification of an
enterprise system from a conceptual domain model. The model is platform independent
and sufficiently complete for the automatic generation of the system’s code from it.
The generated prototype is enriched with didactic feedback supporting the learning of
conceptual modeling, the effectiveness of which has been proven [49].

JMermaid was extended with FENIkS to support the learning process of UI design
including the usability evaluation of the UIs, for novel UI designers. FENIkS focuses on
the learning of UI design principles for the functional aspects of graphical UIs. FENIkS
incorporates two extramodels: theAbstractUser Interface (AUI)model (describes theUI

Feedback Generation for Automatic User Interface Design 77

in a technology-agnostic way) and the presentationmodel (captures the characteristics of
theUI layout and components and the user preferences [50]). Subsection 4.1 describes the
models. Subsection 4.2 presents how the feedback provided by FENIkS was conceived.
Subsection 4.3 presents details of the implementation.

4.1 Models

FENIkS is a UI design simulation tool, based on model-driven engineering. This kind of
approaches are capable of generating UIs (semi) automatically from models of different
abstraction levels. This section presents the models of FENIkS.

Conceptual Domain Model. MERODE uses a conceptual domain model for the defi-
nition of the classes of objects in an enterprise. In UI design a domain model describes
the classes of objects manipulated by a user while interacting with a system. FENIkS
merged those two definitions to improve the generation of a fully functional prototype.

The conceptual model of MERODE is composed of a class diagram, an object event
table, and finite state machines that allow capturing the enterprise object behavior. The
domain classes including structure (attributes) and behavior (methods) are described
by the class diagram. This diagram also describes the associations between the classes.
The object event table indicates which business events create, update or delete objects.
When an event affects objects of a certain type, this gives –accordingly- rise to create,
modify or end methods in the corresponding class. This information is captured in a
table associating object types and event types. The life cycle of objects of a given class
is specified by the finite state machine. There is a correspondence between the events
triggering the transitions in the finite state machine and those that are represented in the
object event table [51]. With the supporting tool is possible to model different views of
the system. The consistency of the three views is managed: all the specifications that
can be derived from one view to other are automatically generated by the tool.

Presentation Model. In UI design a presentation model is used to specify the UI by
describing “the constructs that can appear on an end user’s display, their layout charac-
teristics, and the visual dependencies among them” [52]. The presentation model has a
static part and a dynamic part. The static part describes the design of the UI as a compo-
sition of standard widgets like buttons, menu, etc. The dynamic part displays application
dependent data that typically changes at run-time.

In some approaches the presentation model is mainly used as abstract or concrete
UI model. Others, like OO-Method [11], use the presentation model to capture the
user preferences by means of patterns. A presentation model allows personalizing the
UI using user preferences. The presentation model of FENIkS is in line with this last
definition. FENIkS’ presentation model captures code generation options that define
how the generated prototype will show the information and how the interaction will be.

With JMermaid it was only possible to generate a default UI composed of a window
showing a list of instances of a single domain class, a window to view the details of one
object and a default input window to trigger the execution of a business event. FENIkS
allows defining the UI of these default services and allows defining extra output services

78 J. Ruiz and M. Snoeck

(or reports) to show information the user wants to see. An example of extra output
services is combining data from many domain objects.

Windows and input aspects are defined by the presentation meta-model of FENIkS
[53]. The additional output services are captured through the meta-object type Report
and the associated meta-object types. A Report is composed of a selection of object
types that need to be shown and a selection of their attributes and associations.

The definition of the dynamic aspects of the reports requires relevant parts of the
MERODE meta-model related to the presentation meta-model. Rather than showing
all objects, attributes and association, for each report it can be defined which objects,
attributes and associations need to be presented to the user in the report. The presentation
model retrieve the required information from the class diagram.

The preferences related to how elements of the UI should be configured are captured
by the meta-classes ‘Window aspect’ and ‘Input aspect’. ‘Window aspects’ capture
the preferences related to the static layout of the top level containers of the generated
prototype and how the information is displayed. Some examples are: how the pagination
will be, if there will be shortcuts for interacting with the system. The preferences for
input services are captured by ‘Input aspect’. These preferences are related to the way
users will input the information into the generated prototype. Examples are what kind of
widgets are needed for inputting the information, how the validation of the inputs will
be performed (or not) and what kind of error messages will be shown.

Abstract User Interface Model. AUImodels are important due to the fact that software
applications can be accessed by users from a huge variety of contexts of use [54]. The
AUI model defines the UI independent from modality, user interaction or platform. In
FENIkS, the AUI model is generated from the presentation and domain models.

The fact that the AUI represents the UI without considering any modality of inter-
action or platform is important to help designers in understanding the main principles
behind the generation of the UI. An AUI for a default UI can be obtained by means
of a model to model transformation from the conceptual model of MERODE. Figure 2
shows the process for obtaining the final UI for just one context of use.

To keep the scope of the research manageable this research considers the target
platform for which code will be generated as the only dimension of the context of
use. The other context aspects not considered have been grayed out in Fig. 2. Future
translation for other contexts of use are possible thanks to the use of an AUI model.

Fig. 2. Models used in FENIkS for one context of use [7].

FENIkS’ AUI meta-model is based on the AUI meta-model of the User Interface eXten-
sible Markup Language (UsiXML), proposed by [54]. FENIkS uses concepts of the

Feedback Generation for Automatic User Interface Design 79

MERODE domain model (for the default output and input services) and the presentation
model (for the reports), to generate the AUI model. The AUI meta-model is linked to
the relevant concepts of the MERODE meta-model [55].

Capturing the preferences for the UI generation in a single place, the presentation
meta-model, allows FENIkS applying the chosen options in a consistent way through
the UI. The student mandatorily has to define the Window and Input aspects. For each
of these aspects the student can set a number of options. Some of the options are at the
abstract level and other are at the concrete level. The abstract level features are used to
generate the AUI model. The concrete level features are used to generate the final UI.

4.2 FENIkS Feedback

The UI is designed by setting a number of options in the presentation model. The student
receives feedbackwhile setting the options in the presentationmodel and in the generated
prototype. Next we describe the design and implementation of the feedback.

UI Design Principles for Feedback. FENIkS supports UI design based on the set of
UI design principles presented in Subsect. 3.2: Prevent errors, Provide good error mes-
sages, Allow users to use the keyboard or mouse, Provide visual cues, Offer informative
feedback, Strive for consistency, Make things visible and Structure the UI.

The use of MDE makes possible that certain principles are automatically applied. In
FENIkS a number of principles were chosen to be taken care of by the UI designer by
choosing the right UI design options: ‘to actively observe’ principles. Other principles
were chosen to be automatically supported: ‘observed by default’ principles.

FENIkS provides corrective feedback about compliance with these two categories
of principles. There are four ‘to actively observe’ principles, whose compliance is influ-
enced by the designer’s choices in the presentation model. Depending on the chosen
options, the principles are well applied or violated in the generated prototype. Three
additional principles are ‘observed by default’ in FENIkS. The feedback explains the
reasons why they are well applied. Table 5 shows the selected UI design principles and
the way they are applied in the generation process.

Table 5. UI design principles applied in the generation process.

Principle ‘To actively observe’ ‘Observed by default’

Prevent errors X X

Provide good error messages X X

Allow users to use either keyboard or mouse X

Provide visual cues X X

Offer informative feedback X

Strive for consistency X

Make things visible X

Structure the UI X

80 J. Ruiz and M. Snoeck

For the principles that need to be actively observed the designer selects the options as
defined by Windows and Input aspects. Each principle can have one or many options
with correct or incorrect values. If the designer selects a correct value for an option this
implies that the generated UI will be compliant with the guidelines of the associated
principle. If the designer selects an incorrect value the principle will be violated. For a
better understanding, Table 6 shows the principles, options and associated values.

Table 6. Design principles and associated features [7].

Principle Option Correct value Incorrect value

Prevent errors Validate boolean data True (Compliant) False (Not compliant)

Validate integer data True (Compliant) False (Not compliant)

Validate empty data True (Compliant) False (Not compliant)

Generate components
by the attribute data
type

True (Components
are generated
according to
attribute data type)

False (All the
components are
generated as input text
boxes)

Provide good error
messages

Errors according to
the type of error

True (Messages
generated according
to the type of error)

False (Generic
message generated
without specifying the
type of error)

Allow users to use the
keyboard or mouse

Generate shortcuts for
methods

True (Shortcuts for
the methods are
generated)

False (Impossible to
access to the methods
through the keyboard)

Generate shortcuts for
tabs

True (Shortcuts for
the tabs are
generated)

False (It is not possible
to Access to the tabs
through the keyboard)

Generate shortcuts for
general menu

True (Shortcuts for
the general menu are
generated)

False (No access to the
general menu through
the keyboard)

Provide
visual cues

Format data type
information

True (The format of
the data type is
shown next to the
attribute)

False (Only the name
of the attribute is
shown)

Attribute data type
information

True (Data type
information of the
attribute shown next
to its name)

False (Only the name
of the attribute is
shown)

Most of the features of theWindow and Input aspects have been included for educational
purposes: they are used to show the learner how to apply design principles and generate
the UI accordingly. An example in the ‘Window aspects’ is ‘Generate shortcuts for
tabs’. An example in the ‘Input aspects’ is ‘Validate Empty data’. Other features have

Feedback Generation for Automatic User Interface Design 81

been included to give flexibility to the prototype generation process. Examples of such
features are mainly in the ‘Window aspects’: ‘Table pagination’, ‘Empty table’, etc.

Designing the Feedback. The authors of [56] propose a framework to conceptualize
the factors that need to be taken into account when automating feedback. FENIkS’
feedback features are based on this framework. The feedback in FENIkS includes factors
associated to the design and for automatically creating and delivering the feedback.

At the general level there are six most important factors for building the feedback:
1) Content Design, to represent the relevant factors for automatically designing the
feedback content; 2)Delivery, to describe the relevant factors for automatically delivering
feedback; 3) Context, the contextual aspects to consider for automatic feedback; 4)
Usage, to describe the possible usages of feedback; 5) Impact: to express the factors
that can be measured or observed to determine the impact of automated feedback and 6)
Technique: the techniques, algorithms, etc. usedor implemented for automating feedback
[56]. The factors can be further broken down in several aspects.

The most important factors of the feedback provided by FENIkS are shown in Table
7. The goal of FENIkS is to improve the learning of UI design principles. Therefore, its
feedback is oriented to help the student’s in order to accomplish this goal.

Table 7. Applying the framework to FENIkS [7].

Factor Aspect FENIkS feedback

Content Purpose Corrective, explanatory, formative

Level Task-level

Nature Possitive and negative

Domain User Interface design principles

Delivery Format Textual and visual

Timing Anytime on demand to the student

Learner control Taken by the student

Context Recipient Individual learner

Device Desktop

Learning task Simple and complex tasks

Educational setting University

Usage Check if the learning is on track

Impact Measured by student’s scores

Technique Template-based MDE technique for the derivation of
feedback from defined constraints about the compliancy of
design principles showing the specific details of the error or
the correct solution

The purpose of the feedback is corrective and explanatory: it provides knowledge about
the correct response related to the application of the design principles. The feedback is

82 J. Ruiz and M. Snoeck

formative: it informs the compliancy of the design principles with guidelines to improve
the answers, or reinforce the correct answers. It is possible to revise the design while
performing the learning task, allowing to change them and receiving new feedback. The
feedback is provided at task-level, addresses how well tasks are understood, performed
or applied. This feedback focuses on faults in the interpretation of design principles.

For a principle with feedback generation options FENIkS explains if all the guideline
constraints have been satisfied or not and why. The principle is considered well applied if
all the options associated to the principle have the correct value. If at least one guideline
constraint is not satisfied, the principle is considered violated.

The chosen format is textual (factor delivery), with messages embedded in FENIkS.
It is also visual when showing the generated UI and while interacting with the generated
prototype.With regard to the timing the student can check it anytime. The level of learner
control is taken by the student who decides when and where to see the feedback.

The recipient of the feedback is an individual learner (context factor). The used
device is a desktop computer. The feedback is provided for simple and complex learning
tasks. The educational setting is at university level. There are different possible usages
for the feedback: it can be used for motivation purposes; for verifying learning progress,
etc. The feedback helps the learner to check if the learning is on track and improve it.
We chose to measure the impact factor by means of student’s scores.

FENIkS builds the feedback with a template-based model-driven development tech-
nique according to two types of feedback to explain: 1) whether the design choices are
compliant with design principles or not and why; and 2) why the UI is generated in a
specific way tracing the application’s appearance back to the presentation model [53].
The FENIkS feedback meta-model is shown in Fig. 3.

The main meta-class FeedbackModel is composed of two meta-classes that corre-
spond to the two types of feedback FENIkS provides: for the compliancy of the design

Fig. 3. Feedback meta-model [7].

Feedback Generation for Automatic User Interface Design 83

principles (didactic purposes features) and for the options to give flexibility (flexibility
features). The DefaultPrincipleFeedback meta-class represents the provided feedback
about the principles automatically applied by default. The OptionPrincipleFeedback
meta-class expresses the feedback is provided according to how the design principles
have been correctly applied or not. To deliver this feedback it is necessary to check the
constraints associated to the options of each principle (captured by Window or Input
aspects) in the presentation model. The upper part of the figure includes the relevant
meta-classes of the presentation meta-model, and shows how the GuidelineConstraints
link InputApects to OptionPrincipleFeedback. The features related to the Window and
Input aspects which give flexibility are used to build the FlexibilityOptionFeedback.

Example of FENIkS’ Use. This section presents an example of the FENIkS’ use.
Figure 4 shows the class diagram of a student’s grade system where teachers teach
classes of certain subject. Students are enrolled in those subjects and obtain grades for
each of them. Several grades can be obtained as the student is allowed at least two
attempts, the best of which counts as final grade.

Fig. 4. Student’s grade system class [7].

The UI designer elaborates the presentation model based on the diagram. The tab
corresponding to the ‘Input aspect’ of the presentation model is shown in Fig. 5.

A UI Help option is included in the main menu of the generated prototype where the
UI designer can check the UI feedback. In the first part of the help, the designer can see
the preferences captured by the Window and Input aspects and the feedback given for
the flexibility options. This feedback allows selecting the options and seeing why the UI
is generated in certain way. The designer sees a preview of how the prototype will be
generated according to the selected options. Before the generation the designer can also
check the feedback on whether the UI design principles are satisfied by the options.

84 J. Ruiz and M. Snoeck

Fig. 5. Input aspects of the presentation model [7].

A second type of feedback about compliance with the UI principles is included in
the UI Help. An example of this feedback is shown in Fig. 6. This feedback is split in
two parts to show: 1) the principles the generated prototype is compliant with and the
principles the generated prototype violates and 2) the principles the generated prototype
implements by default. The rationale for (non-) compliance is always given.

Fig. 6. Different types of feedback generated by FENIkS [7].

Feedback Generation for Automatic User Interface Design 85

4.3 Implementation

As shown in Fig. 7, the transformation engine constitutes the heart of FENIkS. Using
the conceptual domain and presentation models a transformation to the AUI model is
executed. Then, transformation to the UI and application code are executed. Mapping
rules define how to transform the domain model into the AUI model. This step combines
the coding templates with the conceptual, presentation and AUI models, and generates
the prototype. The code generator uses Java and Velocity Templates Engine.

Fig. 7. FENIkS transformation process [7].

There are two kinds of templates: project templates for generating the application code
and feedback templates to generate the feedback. The feedback messages are generated
in the prototype using two templates. For the feedback associated to the compliancy of
the design principles, the feedback shows the details of the error (why the principle is
violated), or the correct solution. The other type of feedback shows the chosen prefer-
ences for the presentation model, what the consequences are for the generated prototype
and how the preferences can be changed in the Window or Input aspects.

FENIkS extension has been implemented over a period of two years of non-fulltime
work. Table 8 shows measures of volume of code. It required incorporating new classes
to JMermaid and modifying existing classes. The modified classes are not shown.

Table 8. Measures of the implementation [7].

Project Lines of code Comment lines Number of classes

JMermaid 44085 509 572

With FENIkS 50117 568 607

Code generator 10618 1458 35

Templates 27781 353 26

86 J. Ruiz and M. Snoeck

Principles are generally expressed at a high level of abstraction. Each principle
needed to be translated into a more concrete form. We matched some principles and
their guidelines to options for code generation while others to guidelines applied by
default.

Table 9 reports on the complexity of the principles. To calculate the complexity we
counted the number of guidelines applied by means of design options and those applied
by default. A weight of 1 was given for each guideline with options. A weight of .5 was
given for each guideline applied by default. The total complexity is the sum of the effort
of implementing the guidelines (guidelines with options +.5*(guidelines by default)).

Table 9. Complexity of implemented principles [7].

Principle ‘To actively observe’ ‘Observed by default’ Complexity

Prevent errors 4 2 5

Good error messages 1 4 3

Allow users to use the keyboard or
mouse

3 0 3

Provide visual cues 2 2 3

Structure the UI 1 1

Strive for consistency 6 3

Offer informative feedback 1 1

Make things visible 2 1

5 Evaluation

This section presents the description of the performed evaluation of the FENIkS
approach. Then discusses the limitations of the experimental evaluation.

5.1 Experimental Evaluation

During the first semester of the academic year 2015–2016 we performed a pilot usability
experiment to assess FENIkS. Then, a full experiment was conducted during the second
semester of the academic year 2016–2017. Table 10 shows details of both experiments.

The pilot experiment evaluated the perceived usability of FENIkS by 12 novel devel-
opers with no prior knowledge about the tool. We used the Computer System Usabil-
ity Questionnaire [57]. The tool was perceived positively: the users believe FENIkS
improves their design work and facilitates the creation of the presentation model. The
quality of the information, the interface and the utility was well perceived as well [50].

A quasi-experiment was executed at the University of Holguin with 34 students of
the Informatics Engineering program, 4th year. The goal was to assess the benefits of
the feedback generated by FENIkS about design principles during a UI design course.

Feedback Generation for Automatic User Interface Design 87

Table 10. Sequence of the experiments.

Experiment Pilot usability CSUQ Full experiment crossover design

Academic year 2015–2016 2016–2017

Participants 12 novice developers 34 students, 4th year, Informatics
Engineering program

Details Performed a set of tasks in FENIkS
and filled CSUQ

UI design course
- Lessons
- Teach FENIkS
- Randomized crossover design

The experiment used a crossover design. The dependent variable was the learning of
design principles while the treatment consisted of creating a UI with FENIkS (starting
with an already developed conceptual model). During the course, the students received
lectures about UI design principles and learned how to use FENIkS. Then, in the same
day, they completed Exercises A/B. Both exercises had the same goal: answering ques-
tions about specific choices in UI design, and whether these are in line with principles
or not. Following the crossover design, students were randomly assigned to Group 1 or
Group 2. Group 1 first made Exercise A without using FENIkS and then Exercise B with
FENIkS, while Group 2 made first Exercise A with FENIkS and Exercise B without
FENIkS [58]. Both tests were composed of equivalent sets of true/false questions about
the design principles. The students were asked to motivate the answers.

The results of a paired t-test to determine if the support given byFENIkSwas effective
is shown in Table 11. The results shows a significant improvement for the scores obtained
by the students when using FENIkS support, with 95% confidence interval. The results
provide evidence that FENIkS is effective in helping the students understanding design
principles. See [58] for the full experiment.

Table 11. Paired T-test for means of scores [7].

score without score with difference
p-value

24.06 26.85 −2.79 .000

After the previous evaluation we assessed the perceived usefulness of FENIkS. Per-
ceived usefulness is an important factor for contributing to user acceptance for computer-
assisted learning environments [59]. In this research, we used a questionnaire composed
of 15 items. The questionnaire collects information about the perceived usefulness of
FENIkS for learning the application of design principles as a way to evaluate the usabil-
ity of UIs. The items have 7-point Likert scales, anchored at the endpoints with the terms
“Strongly disagree” for 1 and “Strongly agree” for 7. We assessed the reliability and
validity of the acceptance measures using Cronbach’s alpha (.93) and factor analysis,
which indicated a high level of internal consistency for our scale.

88 J. Ruiz and M. Snoeck

At the end of the experiment presented in the previous section we asked the students
to fill out the questionnaire. The results from the questionnaire used to collect the user
acceptance are presented in Table 12.

Table 12. Questionnaire to measure perceived usefulness: items and scores.

Question statement Mean Std. dev Mode

Using the prototype improves my understanding of UI principles 5.79 1.15 7

Using the prototype makes me understand UI principles much
faster

5.70 1.09 6

Using the prototype improves my understanding of the relations
between the conceptual model and the generated prototype
components

5.64 1.04 6

Using the prototype makes me understand the relations between
the conceptual model and the generated prototype much faster

5.21 1.25 6

Using the prototype improves my interpretation of usability
results from the generated prototype

5.09 1.24 5

Using the prototype makes me interpret usability results from the
generated prototype much faster

5.18 1.31 5

Previewing the UI facilitated the creation of the presentation
model

5.09 1.33 5

Previewing the UI showed me the effects of the chosen options
on the final UI, before UI generation

5.48 1.33 7

Previewing the UI helped me to decide better about design
options

5.30 1.22 5

Previewing the UI allowed me to visualize how the generated UI
will look like and assessing the result

5.21 1.34 6

Previewing the UI facilitated performing a “what-if” analysis 5.15 1.35 6

If had the choice, or opportunity I would use this tool to learn UI
design principles

5.48 1.18 6

If I had to vote, I would vote in favor of using prototyping in the
classroom

5.33 1.22 6

I am enthusiastic about using the prototyping in this kind of
courses

5.33 1.22 6

Using the prototype was a positive experience 6.06 1.18 7

The scores per item rank well above 5 on 6, indicating a positive evaluation. The highest
mean values were obtained for items 1 and 15: the students agree that using FENIkS
was a positive experience and that it improves their understanding of UI principles.
The lowest mean was obtained for items 5 and 7, although still high values. The mode
represents what the majority of the participants score in of the participants in the test.
The mode of only four items was 5, while for all the other items the mode was 6 or

Feedback Generation for Automatic User Interface Design 89

7. After analyzing the results of the questionnaire it can be noticed that the proposed
simulation method is suitable for novice UI designers.

5.2 Discussion

The experimental evaluation has some validity threats. Regarding to the internal validity
we can say that a control group is not included. We took into account the psychological
risk present in classroom studies where the students may worry about whether their
participation or non-participation in the experiment will affect their grade. In this kind of
experiment there is the risk of denyinghalf of the group access to a tool thatmight improve
their learning with is also impossible/unethical. In line with the ethical considerations,
in this research we conducted a quasi-experiment instead of a classic experiment. To
mitigate the problems we used a crossover design with two groups. The students did not
receive feedback after completing the tests to avoid a maturation effect.

The validity of the results is limited to the course we described. However, the experi-
ment’s external validity improved by making the subject population similar to the target
population: in this study, novice designers.We performed a power analysis on our experi-
mental design parameters. The sample size was adequate to identify significant improve-
ment on the learning of design principles, with a large effect size in the performed tests
in general and a statistical power of 0.99 for the entire group.

6 Conclusions

This paper has presented FENIkS, a feedback enriched UI simulation MDE tool for
improving the learning of UI design. With FENIkS is possible to define the conceptual
and presentation models. These models are used for the generation of an AUI model and
further used to generate a full working prototype, with the UI code integrated.

FENIkS combines the techniques most used in the literature for the automatic usabil-
ity evaluationwith the challenge of usingMDE. In order to build FENIkS itwas necessary
to identify which usability principles and corresponding guidelines could be used in an
automatic usability evaluation for a didactic approach. FENIkS supports the UI design
process based on the following principles which have been empirically validated and
can be translated into testable rules: Prevent errors, Provide good error messages, Allow
users to use the keyboard or mouse, Provide visual cues, Offer informative feedback,
Strive for consistency, Make things visible and Structure the UI.

FENIkS incorporates a feedback technique to assist novice UI designers during
the learning of UI design. This paper presents the design of FENIkS’ feedback. The
used technique allows generating automatic feedback about UI design. The feedback
can be seen while elaborating the models. The feedback explains if the options in the
presentation model ensures compliancy with design principles. FENIkS incorporates
a preview to simulate how the UI will be generated. This preview allows checking
the consequences of the selected options in the presentation model. The feedback is
also incorporated in the generated prototype. The feedback automation technique uses
template-based code generation. It incorporates visual and textual feedback and helps

90 J. Ruiz and M. Snoeck

understanding how the design principles have been applied and what the consequences
are.

We performed an experimental evaluation with students. The results of the experi-
ment prove FENIkS’ effectiveness and improves their understanding of UI design prin-
ciples. The tool was evaluated for its perceived usability and positively perceived by
novice developers. We assessed the perceived usefulness of FENIkS for learning the
application of design principles as a way to evaluate the usability of UIs novice UI
designers by means of a questionnaire. After analyzing the results it can be noticed that
the proposed simulation method is suitable for novice UI designers.

Besides applying usability principles, the proposed technique could be extended to
other areas, such as programming or requirements engineering. A similar approach for
other areas could be based on best practices reflecting either good or bad application of
those best practices. Concrete and testable rules per practice should be formulated. The
work we presented can be expanded to further develop the UI generation by:

– Incorporatingmore design options and newdesign principles to the presentationmodel
to improve flexibility. This would allow providing new feedback.

– Specifying a user model: A user model is not taken into account in this version. It
would allow enhancing the support for UI design in a way that novice learners can
check the consequences of choices according to user’s characteristics.

– Allowing the generation of UIs for other contexts of use: Currently, FENIkS generates
a prototype for one context of use. The fact that FENIkS relies on MDE and already
incorporates an AUI model it is possible to develop future versions for other contexts
of use and new feedback can be generated for that.

References

1. Akiki, P.A., Bandara, A.K., Yu, Y.: Adaptive model-driven user interface development
systems. ACM Comput. Surv. 47(1), 2015. https://doi.org/10.1145/2597999

2. Shute, V.J.: Focus on formative feedback. Rev. Educ. Res. 78(1), 153–189 (2008). https://doi.
org/10.3102/0034654307313795

3. Merrill, M.D.: First principles of instruction. Educ. Technol. Res. Dev. 50(3), 43–59 (2002).
https://doi.org/10.1007/BF02505024

4. Benitti, F.B.V., Sommariva, L.: Evaluation of a game used to teach usability to undergraduate
students in computer science. J. Usability Stud. 11(1), 21–39 (2015)

5. Sutcliffe, A.G., Kurniawan, S., Shin, J.-E.: A method and advisor tool for multimedia user
interface design. Int. J. Hum. Comput. Stud. 64(4), 375–392 (2006). https://doi.org/10.1016/
j.ijhcs.2005.08.016

6. Barrett, M.L.: A hypertext module for teaching user interface design. ACM SIGCSE Bull.
25(1), 107–111 (1993). https://doi.org/10.1145/169073.169359

7. Ruiz, J., Snoeck, M.: Automatic feedback generation for supporting user interface design. In:
16th International Conference on Software Technologies (2021). https://doi.org/10.5220/001
0513400230033

8. Deeva, G., Bogdanova, D., Serral, E., Snoeck, M., DeWeerdt, J.: A review of automated feed-
back systems for learners: Classification framework, challenges and opportunities. Comput.
Educ. 162, 104094 (2021). https://doi.org/10.1016/j.compedu.2020.104094

https://doi.org/10.1145/2597999
https://doi.org/10.3102/0034654307313795
https://doi.org/10.1007/BF02505024
https://doi.org/10.1016/j.ijhcs.2005.08.016
https://doi.org/10.1145/169073.169359
https://doi.org/10.5220/0010513400230033
https://doi.org/10.1016/j.compedu.2020.104094

Feedback Generation for Automatic User Interface Design 91

9. Ormeño, Y.I., Panach, J.I., Condori-Fernández, N., Pastor, Ó.: A proposal to elicit usability
requirements within a model-driven development environment. Int. J. Inf. Syst. Model. Des.
5(4), 1–21 (2014)

10. Molina, P.J., Meliá, S., Pastor, O.: User interface conceptual patterns. In: Forbrig, P., Lim-
bourg, Q., Vanderdonckt, J., Urban, B. (eds.) DSV-IS 2002. LNCS, vol. 2545, pp. 159–172.
Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-36235-5_12

11. Pastor, O., Molina, J.C.: Model-driven architecture in practice. In: A Software Production
Environment Based on Conceptual Modeling, Springer, Berlin (2007). https://doi.org/10.
1007/978-3-540-71868-0

12. Kitchenham, B., Charters, S.: Guidelines for performing systematic literature reviews in
software engineering (2007)

13. Hedegaard, S., Simonsen, J.G.: Mining until it hurts: automatic extraction of usability issues
from online reviews compared to traditional usability evaluation. In: Proceedings of the 8th
Nordic Conference on Human-Computer Interaction: Fun, Fast, Foundational, pp. 157–166
(2014). https://doi.org/10.1145/2639189.2639211

14. Mateo Navarro, P.L., Hillmann, S., Möller, S., Sevilla Ruiz, D., Martínez Pérez, G.: Run-time
model based framework for automatic evaluation of multimodal interfaces. J. Multimodal
User Interfaces 8(4), 399–427 (2014). https://doi.org/10.1007/s12193-014-0170-3

15. Jarraya, M., Moussa, F.: Proxy oriented approach for evaluating usability of a resilient life-
critical interactive systems. In: 2018 IEEE 32nd International Conference on Advanced Infor-
mation Networking and Applications (AINA), pp. 464–471 (2018). https://doi.org/10.1109/
AINA.2018.00075

16. Kristoffersen, S.: A preliminary experiment of checking usability principles with formal
methods. In: 2009 Second International Conferences on Advances in Computer-Human
Interactions, pp. 261–270 (2009). https://doi.org/10.1109/ACHI.2009.26

17. de Oliveira, K.M., Lepreux, S., Kolski, C., Seffah, A.: Predictive usability evaluation: align-
ing HCI and software engineering practices. In: Proceedings of the 26th Conference on
l’Interaction Homme-Machine, pp. 177–182 (2014). https://doi.org/10.1145/2670444.267
0467

18. Santana, L.T.E., Pansanato, G.A.: Identifying usability problems in web applications through
analysis of user interaction logs using pattern recognition. In: Proceedings of the IADIS
International Conference WWW/Internet 2011, ICWI 2011, pp. 587–590 (2011).

19. Paternò, A., Schiavone, F., Conte, A.G.: Customizable automatic detection of bad usability
smells in mobile accessed web applications. In: 19th International Conference on Human-
Computer Interaction with Mobile Devices and Services, MobileHCI 2017 (2017). https://
doi.org/10.1145/3098279.3098558

20. El-Halees, A.M.: Software usability evaluation using opinion mining. J. Softw. 9(2), 343–350
(2014). https://doi.org/10.4304/jsw.9.2.343-349

21. Casas, S., Trejo, N., Farias, R.: AJMU: an aspect-oriented framework for evaluating the
usability of wimp applications. J. Softw. Eng. 10, 1–15 (2016). https://doi.org/10.3923/jse.
2016.1.15

22. Shekh, S., Tyerman, S.:Developing adynamic usability evaluation frameworkusing an aspect-
oriented approach. In: ENASE, pp. 203–214 (2009)

23. Chaudhary, N., Sangwan, O.P.: Multi criteria based fuzzy model for website evaluation.
In: 2015 2nd International Conference on Computing for Sustainable Global Development
(INDIACom), pp. 1798–1802 (2015)

24. Kallel, I., Jouili, M., Ezzedine, H.: HMI fuzzy assessment of complex systems usability. In:
Abraham, A., Muhuri, P.K., Muda, A.K., Gandhi, N. (eds.) ISDA 2017. AISC, vol. 736,
pp. 630–639. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-76348-4_61

https://doi.org/10.1007/3-540-36235-5_12
https://doi.org/10.1007/978-3-540-71868-0
https://doi.org/10.1145/2639189.2639211
https://doi.org/10.1007/s12193-014-0170-3
https://doi.org/10.1109/AINA.2018.00075
https://doi.org/10.1109/ACHI.2009.26
https://doi.org/10.1145/2670444.2670467
https://doi.org/10.1145/3098279.3098558
https://doi.org/10.4304/jsw.9.2.343-349
https://doi.org/10.3923/jse.2016.1.15
https://doi.org/10.1007/978-3-319-76348-4_61

92 J. Ruiz and M. Snoeck

25. Molina, F., Toval, A.: Integrating usability requirements that can be evaluated in design
time into model driven engineering of web information systems. Adv. Eng. Softw. 40(12),
1306–1317 (2009). https://doi.org/10.1016/j.advengsoft.2009.01.018

26. do Amaral, L.A., de Mattos Fortes, R.P., Bittar, T.J.: A4U-an approach to evaluation consid-
ering accessibility and usability guidelines. In: Proceedings of the 24th Brazilian Symposium
on Multimedia and the Web, pp. 295–298 (2018). https://doi.org/10.1145/3243082.3264666

27. Schiavone, A.G., Paternò, F.: An extensible environment for guideline-based accessibility
evaluation of dynamicweb applications.Univ.Access Inf. Soc. 14(1), 111–132 (2015). https://
doi.org/10.1007/s10209-014-0399-3

28. Benaida, A., Namoun, M.: Technical and perceived usability issues in Arabic educational
websites. Int. J. Adv. Comput. Sci. Appl. 9(5), 391–400 (2018). https://doi.org/10.14569/IJA
CSA.2018.090551

29. Khaddam, D., Bouzit, I., Calvary, S., Chêne, G.: MenuErgo: computer-aided design of menus
by automated guideline review. In: IHM 2016 - Actes de la 28ieme Conference Francophone
sur l’Interaction Homme-Machine, pp. 36–47 (2016). https://doi.org/10.1145/3004107.300
4130

30. Dhouib,H.B., Trabelsi, A.,Abdallah,A.: EiserWebs: an evaluation tool for interactive systems
based on web services. In: 4th International Conference on Information and Communication
Technology and Accessibility, ICTA 2013 (2013). https://doi.org/10.1109/ICTA.2013.681
5297

31. Vigo, F., Leporini, M., Paternò, B.: Enriching web information scent for blind users. In:
ASSETS’09 - Proceedings of the 11th International ACM SIGACCESS Conference on
Computers and Accessibility, pp. 123–130 (2009). https://doi.org/10.1145/1639642.1639665

32. Dias,A.C.R., Paiva, F.: Pattern-based usability testing. In: 10th IEEE InternationalConference
on Software Testing, Verification and Validation Workshops, ICSTW 2017, pp. 366–371
(2017). https://doi.org/10.1109/ICSTW.2017.65

33. Soui, M., Chouchane, M., Gasmi, I., Mkaouer, M.W.: PLAIN: PLugin for predicting the
usAbility of mobile user INterface. In: VISIGRAPP (1: GRAPP), pp. 127–136 (2017)

34. Ivory, M.Y., Hearst, M.A.: The state of the art in automating usability evaluation of user
interfaces. ACM Comput. Surv. 33(4), 470–516 (2001). https://doi.org/10.1145/503112.
503114

35. Ponce, A., Balderas, P., Peffer, D., Molina, T.: Deep learning for automatic usability evalua-
tions based on images: a case study of the usability heuristics of thermostats. Energy Build.
2(162), 111–120 (2018). https://doi.org/10.1016/j.enbuild.2017.12.043

36. Ruiz, J., Serral, E., Snoeck,M.: Evaluating user interface generation approaches:model-based
versus model-driven development. Softw. Syst. Model. 18(4), 2753–2776 (2018). https://doi.
org/10.1007/s10270-018-0698-x

37. Galitz, W.O.: The Essential Guide to User Interface Design: an Introduction to GUI Design
Principles and Techniques. Wiley, Hoboken (2007)

38. Folmer, E., Bosch, J.: Architecting for usability: a survey. J. Syst. Softw. 70(1–2), 61–78
(2004). https://doi.org/10.1016/S0164-1212(02)00159-0

39. Kimball, M.A.: Visual design principles: an empirical study of design lore. J. Tech. Writ.
Commun. 43(1), 3–41 (2013). https://doi.org/10.2190/TW.43.1.b

40. Ruiz, J., Serral, E., Snoeck, M.: Unifying functional user interface design principles. Int. J.
Human-Computer Interact. (2020). https://doi.org/10.1080/10447318.2020.1805876

41. Nielsen, J.: Enhancing the explanatory power of usability heuristics. In: Conference onHuman
Factors in Computing Systems, pp. 152–158 (1994). https://doi.org/10.1145/191666.191729

42. Shneiderman, B., Plaisant, C.: Designing the User Interface: Strategies for Effective Human-
Computer Interaction, 5th ed. Pearson Addison-Wesley, Boston (2009)

43. Bastien, J.M.C., Scapin, D.L.: Ergonomic criteria for the evaluation of human-computer
interfaces. Inria (1993)

https://doi.org/10.1016/j.advengsoft.2009.01.018
https://doi.org/10.1145/3243082.3264666
https://doi.org/10.1007/s10209-014-0399-3
https://doi.org/10.14569/IJACSA.2018.090551
https://doi.org/10.1145/3004107.3004130
https://doi.org/10.1109/ICTA.2013.6815297
https://doi.org/10.1145/1639642.1639665
https://doi.org/10.1109/ICSTW.2017.65
https://doi.org/10.1145/503112.503114
https://doi.org/10.1016/j.enbuild.2017.12.043
https://doi.org/10.1007/s10270-018-0698-x
https://doi.org/10.1016/S0164-1212(02)00159-0
https://doi.org/10.2190/TW.43.1.b
https://doi.org/10.1080/10447318.2020.1805876
https://doi.org/10.1145/191666.191729

Feedback Generation for Automatic User Interface Design 93

44. Law, E.L.-C., Hvannberg, E.T.: Analysis of strategies for improving and estimating the
effectiveness of heuristic evaluation. In: Proceedings of the third Nordic conference on
Human-computer interaction, pp. 241–250 (2004). https://doi.org/10.1145/1028014.1028051

45. Bastien, J.M.C., Scapin, D.L.: A validation of ergonomic criteria for the evaluation of human-
computer interfaces. Int. J. Human-Comput. Interact. 4(2), 183–196 (1992). https://doi.org/
10.1080/10447319209526035

46. Scapin, D.L., Bastien, J.M.C.: Ergonomic criteria for evaluating the ergonomic quality of
interactive systems. Behav. Inf. Technol. 16(4–5), 220–231 (1997). https://doi.org/10.1080/
014492997119806

47. R. M. Baecker, Readings in Human-Computer Interaction: Toward the Year 2000. Morgan
Kaufmann, San Francisco (2014)

48. Mariage, C., Vanderdonckt, J., Pribeanu, C.: State of the art of web usability guidelines. In:
The Handbook of Human Factors in Web Design (2005)

49. Sedrakyan, G., Snoeck, M.: Feedback-enabled MDA-prototyping effects on modeling
knowledge. In: et al. Enterprise, Business-Process and Information Systems Modeling.
BPMDS EMMSAD 2013 2013. Lecture Notes in Business Information Processing, vol 147,
pp. 411–425. Springer, Berlin (2013). https://doi.org/10.1007/978-3-642-38484-4_29

50. Ruiz, J., Serral, E., Snoeck, M.: UI-GEAR: User interface generation prEview capable to
adapt in real-time. In: Modelsward, pp. 277–284 (2017). https://doi.org/10.5220/000611540
2770284

51. Snoeck, M.: Enterprise Information Systems Engineering: The MERODE Approach.
Springer, New York (2014). https://doi.org/10.1007/978-3-319-10145-3

52. Schlungbaum, E.: Model-based user interface software tools current state of declarative
models. Georgia Institute of Technology (1996)

53. Ruiz, J., Serral, E., Snoeck, M.: Technology enhanced support for learning interactive soft-
ware systems. In: Hammoudi, S., Pires, L., Selic, B. (eds.) Model-Driven Engineering and
Software Development. MODELSWARD 2018. Communications in Computer and Informa-
tion Science, vol. 991, pp. 185–210. Springer, Cham (2019). https://doi.org/10.1007/978-3-
030-11030-7_9

54. Limbourg,Q.,Vanderdonckt, J.,Michotte,B.,Bouillon,L., Florins,M.:USIXML: auser inter-
face description language supporting multiple levels of independence. In: ICWEWorkshops,
pp. 325–338 (2004)

55. Ruiz, J., Sedrakyan, G., Snoeck, M.: Generating user interface from conceptual, presentation
and user models with JMermaid in a learning approach. In: Interaction 2015 (2015). https://
doi.org/10.1145/2829875.2829893

56. Serral Asensio, E., Ruiz, J., Elen, J., Snoeck, M.: Conceptualizing the domain of automated
feedback for learners. In: Proceedings of the XXII Iberoamerican Conference on Software
Engineering, CIbSE 2019 (2019)

57. Lewis, J.R.: IBM computer usability satisfaction questionnaires: psychometric evaluation and
instructions for use, Boca Raton (1993)

58. Ruiz, J., Serral, E., Snoeck, M.: Learning UI functional design principles through simulation
with feedback. IEEE Trans. Learn. Technol. 13(4), 833–846 (2020). https://doi.org/10.1109/
TLT.2020.3028596

59. Poelmans, S., Wessa, P.: A constructivist approach in an e-learning environment for statistics:
a students’ evaluation. Interact. Learn. Environ. 23(3), 385–401 (2015)

https://doi.org/10.1145/1028014.1028051
https://doi.org/10.1080/10447319209526035
https://doi.org/10.1080/014492997119806
https://doi.org/10.1007/978-3-642-38484-4_29
https://doi.org/10.5220/0006115402770284
https://doi.org/10.1007/978-3-319-10145-3
https://doi.org/10.1007/978-3-030-11030-7_9
https://doi.org/10.1145/2829875.2829893
https://doi.org/10.1109/TLT.2020.3028596

Tales from the Code #2: A Detailed Assessment
of Code Refactoring’s Impact on Energy

Consumption

Zakaria Ournani1,2,3, Romain Rouvoy2,3, Pierre Rust1, and Joel Penhoat1(B)

1 Orange Labs, Rennes, France
{pierre.rust,joel.penhoat}@orange.com

2 INRIA Lille Nord-Europe, Lille, France
{zakaria.ournani,romain.rouvoy}@inria.fr

3 University of Lille, Lille, France

Abstract. Energy consumption has been a prominent question in the last decade
that concerns both hardware and software dimensions. Source code refactoring
is a widespread activity among developers that includes a set of well-known
changes to improve the code quality without impacting the functional aspects.
Hence, the concern of the impact that may those changes induce on the software
energy consumption is legitimate, in order to identify whether and which refac-
torings have a significant impact on the evolution of the energy consumption. In
particular, while the state of the art investigated the impact of some specific code
refactorings on dedicated benchmarks, we miss an assessment that those apply to
more comprehensive and complex software.

To address this threat, this paper studies the evolution of the energy consump-
tion of 7 open-source software developed for more than 5 years. Then, by focus-
ing on the impact on energy consumption of changes involving code refactorings,
we intend to assess the effects induced by computational code refactorings. For
all these software systems we studied, our empirical results report that the code
refactorings we mined do not substantially impact energy consumption. Inter-
estingly, these results highlight that i) structural code refactorings bring energy-
preserving changes to the code, and ii)major energy variations seem to be related
to computational code refactorings and/or functional changes.

Keywords: Software energy consumption · Code refactoring · Energy
consumption evolution

1 Introduction

Software energy consumption has gained a substantial significance in the last decade,
both for research and industrial contexts [5,10,27,29,34]. Hence, many researchers and
practitioners started caring about the energy efficiency of software, beyond performance
and hardware concerns [6,19,20,26]. Being integrated into mobile or cloud environ-
ments, software systems are trying to minimize their resource consumption to reduce
battery consumption or operational cost. Source code refactoring is one of the most
c© Springer Nature Switzerland AG 2022
H.-G. Fill et al. (Eds.): ICSOFT 2021, CCIS 1622, pp. 94–116, 2022.
https://doi.org/10.1007/978-3-031-11513-4_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-11513-4_5&domain=pdf
https://doi.org/10.1007/978-3-031-11513-4_5

Tales from the Code #2 95

famous and used software development techniques. It can be described as the appli-
cation of acknowledged rules to improve one or many aspects of a software system,
such as its clarity, maintenance, code smells, without impacting its functional behav-
ior [2,14].

Yet, code refactoring have also been considered as a mean to improve the perfor-
mance and/or energy efficiency in a more or less automated way [3,4,6,7,12,21] Most
of the works that investigated the impact of code refactoring on energy consumption
[3,12,18,25] based their studies on predefined set of refactoring rules, design patterns,
or code smells.

While this process may deliver interesting insights on the impact of specific code
refactorings on the energy consumption of a code snippet, there is still no guarantee that
the identified code refactorings are frequently applied during the lifespan of a software
system. Some refactorings could be very advantageous but are rarely applied which lim-
its their impact on the energy efficiency of the software. Moreover, most of these works
[22] reported on a very small impact (usually less tan 5%) and concluded on the sig-
nificance of those refactoring. However, this is not always valid, especially for server-
side/desktop applications where jobs’ energy consumption may significantly vary (more
than %10) even on the same node/device [23].

In this paper, we extend our previous study [24] that explores an alternative way to
study the impact of code refactorings on the energy efficiency of legacy software sys-
tems. We focus on acknowledged refactoring rules mostly issued from Martin Fowler’s
book [11], which are mostly structure-oriented rules (such as Extract Method) dealing
with code architecture and organization for server-side applications. Instead of select-
ing a set of code refactorings a priori and evaluate them against some dedicated bench-
marks, we extract these code refactorings from established open-source projects. More
specifically, we mine the history of code refactorings that have been applied to these
projects in the past, and we measure the impact of the commits that include acknowl-
edged code refactorings on the overall energy consumption. This approach aims to
detect the code refactorings that have been broadly applied, and their observable impact
on energy efficiency in practice. By doing so, we believe that mined code refactorings
are most likely to reflect an effective impact of code refactoring on energy consumption,
compared to the study of a fixed set of refactoring candidates. Moreover, we investigate
the total evolution of these legacy software systems’ energy consumption to deduce
the impact of structural code refactoring on this evolution. We also asses the impact of
some than implementation and computation refactoring (such as Substitue Algorithm)
to conclude on the impact of code refactoring on software energy consumption. This
study, therefore, aims to answer the following research questions:

RQ1:How do structural code refactorings contribute to the evolution of software energy
consumption?

RQ2: How does the energy consumption of software evolve over time?

The remainder of this paper is organized as follows. Section 2 introduces the exper-
imental protocol (hardware, projects, tools, and methodology) we adopted in this study.
Section 3 analyzes several experiments we conducted to mine the code refactorings and
evaluate their impact on the energy consumption, as well as the results we observed

96 Z. Ournani et al.

during these experiments. Section 5 discusses the related work about source code refac-
toring contributions to reduce software energy consumption. Finally, Sect. 6 cover our
conclusions.

2 Experimental Protocol

This section introduces our detailed experimental environment, including the hardware
configuration, the studied projects/benchmarks and a detailed description of our exper-
imental methodology.

2.1 Hardware Environment

We used during our experiments a Core i7machine (i7-6600U CPU@ 2.60GHz) with
a total of 4 processing units to measure the energy consumption and an installed 18.04.4
LTS Ubuntu, with a 4.15.0-88-generic Linux kernel. We also used OPENJDK,
version 1.8.0 242, to run most of our Java experiments except for the OkHttp project
where we had to use OPENJDK, version 11.0.6. The execution environment has been
configured according to guidelines [23] to mitigate the energy consumption variation
and report on robust and accurate measurements, especially to measure small differ-
ences in energy consumption.

2.2 Projects Under Study

The main criterion of this study was to select well-known projects with a decent commit
history, that have been existing for years, and with an active community. The study
exclusively focuses on Java projects in order to unify the experimental protocol with
no ambiguities due to languages/paradigms differences. The choice of the datasets also
aimed at covering a large spectrum of features and operations such as: JSON and XML
conversions, HTTP client, graph processing, data collections, etc. The advantage of
choosing these projects is also related to them having an overall stable interface in
which the main functionalities of the projects are non-ambiguously identified, so we
can run our Longitudinal measurements across the many versions and releases.

Table 1 describes the projects that we considered for this study, including commits
count and creation date. We note that all the projects we selected have been hosted on
GitHub since at least 2015. The Git creation date only gives an overview of how long
has the project been on GitHub and is different from the project creation date. Some
projects, such as Gson, exists on GitHub since March 2015, but we still can checkout
commits from 2003.

2.3 Methodology and Tools

Our experimental methodology is a process that includes extraction, evaluation, and
validation steps. Figure 2 depicts the main steps we followed during our analysis. We
start our process by cloning the public repository of the project from GitHub. Then, for

Tales from the Code #2 97

Table 1. List of selected open-source projects [24].

Project Description # commits 1st commit

OkHttp Java HTTP client 4, 684 05-2011

JGraphT Graph objects and algorithms provider 3, 158 07-2003

XStream XML↔ Java objects serialization 2, 736 10-2003

JFlex Java lexical analyzer generator 1, 741 02-2003

Gson JSON↔ Java objects serialization 1, 485 08-2008

Eclipse-Collections Eclipse Java collections 1, 374 12-2015

Google-Http Google HTTP client library for Java 868 05-2011

each commit, we mine the code refactorings of the project using the REFACTORING-
MINER. REFACTORINGMINER is an open-source tool [32,33] that analyses a project
commit by commit and extracts the type and count of refactorings for each commit in
a JSON format. The tool is capable of detecting up to 55 different types of refactoring
in its version 2.0 (the later version by the time this study was conducted) used in this
study.1

Once we extract the code refactorings that have been applied per commit on the
master branch, we select the commits to be reproduced to measure their energy con-
sumption. The selection method takes into account the refactorings count and types in
each commit. We consider commits with at least 20 refactorings so we can expect a
significant impact of the refactorings on the energy consumption. Figure 1 depicts the
cumulative distribution function (CDF) that shows the frequency of commits per refac-
torings count (commits with more than 200 refactorings have been omitted for clarity).
One can see that 20% of the commits have more than 20 refactorings on most of the
studied projects, which constitutes a decent amount of commits on which code refac-
torings can be evaluated. The commits containing exclusively one type of refactoring
are very rare. Thus, we will also consider commits containing different types of code
refactoring even if it is not trivial to divide the recorded differences that we may record
in our evaluation on the code refactorings.

The next step is to rebuild the project Java archive (JAR) for each of the previ-
ously selected commits in order to run them and measure the energy consumption
before and after code refactoring. To be able to run and evaluate the compiled JAR,
we need to provide a task to execute for each project. Unfortunately, we couldn’t trust
running the tests provided within each project. The reason behind this is that projects
do substantially change and evolve from a commit to another, including the provided
tests. Evaluating commits based on those tests might include/exclude functionalities
that appear/disappear between commits, which does not constitute a fair compari-
son criterion. To remedy to this problem, we wrote our own JMH benchmarks “Java
Microbenchmark Harness for building, running, and analyzing nano/micro/milli/macro
benchmarks written in Java and other languages targeting the JVM”.2 for each project.

1 https://github.com/tsantalis/RefactoringMiner.
2 https://openjdk.java.net/projects/code-tools/jmh/.

https://github.com/tsantalis/RefactoringMiner
https://openjdk.java.net/projects/code-tools/jmh/

98 Z. Ournani et al.

Fig. 1. CDF of code refactorings per commit [24].

Using JMH for writing benchmarks has many advantages, such as the easy manage-
ment of run and warm-up iterations, and the prevention of dead code removal from the
JIT using the concept of blackhole [30]. The purpose of each benchmark is to stress
the main functionality of each project to ensure the same measurement conditions for
all commits. Hence, through JMH benchmarking, we can deliver—for each project—
experiments to compare the energy consumption of commits, while testing the main
functionalities of the project. The main test functionality for Gson and XStream is
JSON and XML to Java objects serialization and deserialization, respectively. For both
OkHttp and Google-Http projects, we consider the core HTTP verbs (GET, POST,
DELETE) with a local server to eliminate any network bias. For JGraphT, we consider
the operations of graph creation, shortest path computation, max-flow computation, and
discarding random edges. We also tested JFlex with lexical analyzer generation, and
Eclipse-Collections with the core operations on the different mutable and immutable
collections (lists, maps, sets), inspired from [27,31].

Once the JMH benchmark was written , we compute the coverage of the project by
the benchmark using Jacoco (https://www.eclemma.org/jacoco). The purpose is not to
cover all of the project classes and methods but only to test the main functionality of
the project. Thus, only the commits with refactoring on the classes and methods that
constitute the main functionality we are testing are considered for the evaluation. Of
course, this operation requires applying additional checks to ensure that the changes of
the commit x are limited to the extracted refactorings and nothing else susceptible to
affect the performance or the energy consumption. Hence, this step ensures that the
selected commits only contains refactoring that are being stressed by our benchmark.

The next step is to run the benchmarks for each of the JAR files compiled from
relevant commits. To highlight the effect that code refactorings may have on energy
consumption, we build and run the commit x that includes the code refactorings, but

https://www.eclemma.org/jacoco

Tales from the Code #2 99

also the commit x−1 on the main branch, so we can compare the energy consumption
and infer the impact of refactorings.

The percentage of reproduced commits, which designates the ratio of successfully
built and ran commits in regards to the total count of selected commits (Gson: 95%,
XStream: 80%, OkHttp V3 & V4: 90%, Google-Http: 15%, JGraphT: 25%, JFlex:
40%, Eclipse-Collections: 50%). Most of the unsuccessful projects’ rebuilds are due
to deprecated and invalid references.

During the execution of the experiments, we use Intel RAPL to report on the global
energy consumption of CPU and DRAM consumption [8,15]. We thus evaluate the
energy consumption of every commit x and we compare it to its x−1 commit. We run
every JMH benchmark for multiple iterations on a fixed amount of time (enough time to
run the benchmark at least once), and we extract between 100 and 1, 000 energy mea-
surements depending on the duration of each iteration. The reason why we consider the
energy consumption of iterations rather than the whole benchmark is to have an accu-
rate estimation of the energy consumption of the execution rather than a fixed execution
time that could represent a variable amount of iterations.

Then, we use the bootstrap method [9] to randomly build 100 subsets from the main
set of measurements, and we compute the mean and standard deviation of these subsets.
We end-up with 100 measures of averages and we use the median of these values for
better accuracy and less bias.

The checked results are then used to build global statistics of the most efficient refac-
toring rules across the selected commits of all projects. We also pay special attention to
the commits of each project that exhibit the most energy difference, when exceeding a
threshold of 5%. This threshold is computed from the minimum CPU energy consump-
tion variation and the computed standard deviation of the experiments [23].

This additional checks of those commits consists of applying a more detailed auto-
matic and manual git diff analysis on the results of the previous step (using the
code coverage that we computed earlier for the main functionalities) to understand every
single occurrence of the detected refactorings and project the results and that there is
no other changes that may affect the energy efficiency. Another check consists of an
extra micro-benchmarking phase, where we prepare and execute the extracted refac-
torings to confirm and validate the effect they could have on the energy efficiency of
the project/software. We also applied the Wilcoxon rank sum test (or Student test when
possible) to check the statistical significance of the registered difference in the energy
consumption between the commit x and the commit x−1, with a null hypothesis of the
energy consumption of the commit x and x−1 being equal with a 5% certainty. Dur-
ing our experiments, we were careful not to fall in the benchmarking crimes described
in [16], so we can conduct robust and reproducible experiments and evaluations with a
focus on energy consumption.

Most of our experimental setup is made available on GitHub, including all the used
JMH Benchmarks, JSON extraction results, micro-benchmarks, CSV of measurements,
scripts, etc.3

3 https://anonymous.4open.science/r/c3d38dca-1ab2-4814-ba07-b182120c5739.

https://anonymous.4open.science/r/c3d38dca-1ab2-4814-ba07-b182120c5739

100 Z. Ournani et al.

3 Refactoring Impact Analysis

In this section, we aim at answering our research questions with a clear conclusion
on whether refactoring has a substantial impact on the evolution of software energy
consumption over time. We, therefore, conducted a set of experiments and validations
to investigate the effect of structural refactoring on the evolution of software energy
consumption.

Fig. 2.Methodology of refactoring analysis [24].

Tales from the Code #2 101

4 Refactoring Rules Impact

To dive into the effective impact that code refactoring may have on software energy
consumption, we further tracked and analyzed the evolution of the energy consumption
on commits where code refactorings were detected. Thus, in our study, we consider the
full commit history of 7 open-source projects, and we analyze the impact on energy
consumption of commits including code refactorings, as described in Sect. 2.

Once we select commits with code refactorings and rebuild them, we run the JMH
benchmarks that have been prepared for each project to compare the energy consump-
tion of a commit x that came with the refactorings and the previous commit x−1 of the
master branch.

Then, we report on global statistics from the raw measurements we obtained from
each project, thus establishing a summary of the most used code refactorings and their
impact.

Global Code Refactoring Statistics. The purpose of this step is to highlight the most
used/impactful code refactorings. While it is easy to identify the most used code refac-
torings by counting the number of occurrences of each refactoring rule and the commits
they appear in, there is no consensus on how to measure the effective impact of code
refactorings on energy consumption, if any. The large majority of commits comes with
a set of code refactorings of many types, and even if these refactorings can impact the
energy consumption, there is no trivial way to isolate such an impact for each type of
refactoring. Thus, we consider 3 indicators to capture the energy impact of refactoring.
The first indicator, Impact in Commits (IC), is the ratio between the number of commits
where the refactoring had a positive or negative impact—i.e., the commit x containing
this refactoring consume more or less energy than the previous commit x−1—and the
total number of commits containing this refactoring. Equation 1 therefore computes IC
for a rule r ∈ R by exploring all the commit history C of a given project:

IC(r) =
∑

c∈C count positive negative(c, r)
∑

c∈C count(c, r)
(1)

This indicator can be then enhanced by taking into account the occurrences—or
weights—of each refactoring rule in a commit. In other words, considering the refactor-
ing weight consists of using the number of occurrences of each refactoring type within
a commit rather than only counting the commit as 1 if it contains at least a refactoring.

WIC(r) =
∑

c∈C count positive negative(c, wr)
∑

c∈C count(c, wr)
(2)

Nevertheless, this indicator is not enough to evaluate the energy impact of refac-
toring. Indeed, including the weight of refactorings in commits supposes that all refac-
torings impact energy consumption equally, which may not be true, as we assume that
the occurrence of a refactoring r1 can have a bigger impact than many occurrences of a
refactoring r2.

102 Z. Ournani et al.

The 2nd and 3rd indicators are δ% and δ|%| that indicate the mean of the energy
consumption of every commit x containing the refactoring minus the energy consump-
tion of commits x−1, and the mean of the absolute value of the energy consumption of
every commit x containing the refactoring minus the energy consumption of commits
x−1, respectively, ‖Cr‖ being the commits in the commit history C where refactoring
r occurred.

δ%(r) =
∑Cr

x=1(Ex − Ex−1)
‖Cr‖ (3)

δ|%|(r) =
∑Cr

x=1|Ex − Ex−1|
‖Cr‖ (4)

where Ex and Ex−1 represent the mean energy consumption of the commit x that
includes at least the refactoring r, and the energy consumption of the commit x−1,
respectively. These indicators are complementary to reflect the impact of the code refac-
torings on the energy consumption. Therefore, we consider an aggregate indicator that
combines the previous indicators to capture the energy impact of refactorings across
commits. This indicator, named Refactoring Impact (RI) builds on the previous indi-
cators: the higher WIC and δ|%|, the most impactful the refactoring r is. However, if
the difference δ|%|−δ% is high, it means that the refactoring r has an unpredictable
effect on the energy consumption and may affect the energy consumption positively or
negatively. This is a negative effect and could mean that the refactoring does not have
any impact at all. On the other hand, the more commits we have with the refactoring r,
the more certain we are of the effect that it could have. Thus, we use the exponential
function in Eq. 5 so the denominator cannot be null.

RI(r) =
WIC(r) × δ|%|(r)

eδ|%|(r)−δ%(r)
× ‖Cr‖ (5)

Table 2 shows the computed indicators for a total of 25 mined refactoring rules. We
note that the commits that could not be reproduced and those where the refactorings are
parts of classes that are not tested by our benchmark have already been discarded and
not displayed in Table 2. Before analyzing the results we excluded all the code refactor-
ings with a low number of occurrences and/or commits (less than 20 CountxCommits).
For example, code refactorings that occurred only a couple of times and/or only in one
or two commits cannot be faithfully studied due to insufficient data. Then, we highlight
(in Cyan) the refactoring rules that have the best values for the previous indicators,
which are very likely the refactorings with the most impact on energy consumption.
The 4 refactoring rules with the most number of occurrences and commits, with a min-
imal IC of 30%, are “add method annotation”, “rename parameter”, “add class
annotation”, and “move class”. These refactoring rules are also those that exhibit the
highest RI, and thus, are most likely to be the most impactful on energy consumption.
However, we still have to assess that these refactoring rules have an effective impact on
the evolution of energy consumption. Thus, we conducted a more detailed study on the
commits with the highest impact to validate the effect of code refactorings on energy
consumption.

Tales from the Code #2 103

Table 2. The observed impact of mined refactoring rules [24].

Refactoring Count CountxCommits IC WIC δ%(r) δ|%|(r) RI

add method annotation 10120 80960 30.77% 43.41% 1.13% 2.14% 7.34

change variable type 101 606 16.67% 14.95% 0.24% 1.32% 1.17

rename parameter 45 180 33.33% 71.69% −0.07% 1.82% 5.12

change parameter type 42 168 11.76% 17.07% −0.03% 1.20% 0.81

change attribute type 26 130 16.67% 9.39% 0.12% 1.35% 0.63

add class annotation 63 216 33.33% 63.53% 1.30% 2.20% 2.77

move class 40 120 30.00% 54.28% 0.77% 2.21% 3.55

change return type 28 112 14.81% 19.93% 0.14% 1.11% 0.88

move method 33 99 21.43% 19.10% 0.59% 1.76% 1.00

rename variable 21 84 25.00% 18.24% 0.46% 1.44% 1.04

move attribute 18 54 25.00% 18.81% −0.07% 1.92% 1.06

extract method 37 37 20.00% 71.87% 0.08% 1.24% 0.88

pull up method 32 32 33.33% 38.90% 0.03% 1.97% 0.75

rename class 6 24 25.00% 13.71% 1.14% 1.51% 0.82

add attribute annotation 8 16 20.00% 15.12% 0.64% 1.14% 0.34

rename attribute 5 15 30.00% 8.77% 0.55% 1.62% 0.42

add parameter 6 12 16.67% 6.55% 0.82% 1.47% 0.19

merge parameter 6 6 100.00% 100.00% 6.00% 6.00% 6.00

extract class 2 4 33.33% 11.14% 0.72% 2.62% 0.57

extract variable 3 3 11.11% 10.52% 0.49% 0.91% 0.10

remove method annotation 1 1 11.11% 0.77% 0.71% 1.40% 0.01

rename method 1 1 11.11% 2.20% 0.32% 1.10% 0.02

modify method annotation 1 1 33.33% 7.99% 2.50% 2.50% 0.20

move & rename method 1 1 20.00% 13.17% −0.32% 2.32% 0.30

merge attribute 1 1 100.00% 100.00% 6.00% 6.00% 6.00

Diving into the Most Impactful Commits. With the most impactful commits, we
refer to commits where we observed the most substantial energy differences between
the commits x and commit x−1. To select these commits, we fix a threshold of 5% in
energy consumption difference. This threshold was fixed based on the CPU energy con-
sumption variation [23] and the standard deviation of the many executions we ran on
the same test, which is often around 4% to 5%. A total of 7 commits have been retrieved
from the projects Gson, JFlex, Eclipse-Collections and JGraphT (no other refactor-
ing commit with a minimal impact of 5% has been observed among the other projects).

104 Z. Ournani et al.

We note that our experimental setup would highlight any effect that these refactoring
could have caused on energy consumption. Indeed, the execution of a JMH code, which
uses the compiled JAR for the commit x, is composed of numerous warmup and stan-
dard iterations. Each iteration itself consists of running the benchmark many thousands
of times for several seconds, so the effect that difference between the commits x and
x−1 could be noticed, if any.

Table 3 reports on the most impactful commits including code refactorings. For each
commit, we can see the type and number of refactorings extracted using REFACTOR-
INGMINER [32,33], the measured energy consumption difference, a short description
of the refactoring-related changes that have been observed within the commits, and the
computed p-value of the Wilcoxon test.

First, the commit ID is the first 6 digits of the git hash that can be used to access the
commit and reproduce our experiments/results. The energy consumption (EC) differ-
ence represents the percentage of differences between the average measure of commits
x and x−1 (after applying the bootstrapping as we compute the average of multiple
subsets built from the main set of values). The next 2 columns contain the extraction
results of the REFACTORINGMINER tool. They include the type and count of each refac-
toring the tool was able to extract. We notice that the rules that we identified as most
impactful in the previous phase (add method annotation, rename parameter, add
class annotation, andmove class) are—most of the time—part of the extracted rules
in theses commits that have shown the highest differences in energy consumption, with
add annotation and move class being the most common. Sometimes, they are the
only detected code refactorings, that we could suspect to be responsible for the energy
consumption variation, as in commit #b9dfbc of Eclipse Collections.

We apply 3 different validation measures to confirm whether the impact is effec-
tively caused by the refactoring. The first validation is through detailed git di checks
of the 7 selected commits to assess that the refactorings have been faithfully applied.
We remind that we already made sure that these refactorings only concerns classes
and methods that are being stressed by the JMH benchmarks, and do not contain other
changes that can be responsible for the energy consumption difference. For example,
we do not suspect adding some code documentation to alter the energy consumption,
yet we do suspect changing a data structure, a loop, or a code snippet to do so.

In the second validation step, we conduct a statistical validation through Wilcoxon
rank sum test (as Student test could not be applied due to variables not following a
Gaussian distribution) to compare the commits x and x−1 averages. With a risk of
5%, we reject the null hypothesis of the means of the executions of commits x and
x−1 being equal. For the p-value commit #f1074b being higher than 0.05, we cannot
reject the possibility that the average is equal in both commits. The same goes for the
commits #033164, #b34361, #b9dfbc where we cannot accept that the means of
the commits x and x−1 are statistically different.

The remaining commits—being #827717, #45bf2d, and #298b7a—mainly
contain the add annotation and move class refactorings. We thus achieve
our third validation step through dedicated micro-benchmarking. We first build a
micro-benchmark to check the effect that every encountered annotation may have
(@override,@SuppressWarnings("unchecked"), @SuppressWarnings

Tales from the Code #2 105

Table 3. A deeper look into the most impactful commits [24].

Project Commit ID EC diff Refactoring Count Git diff p-value

Gson #82771f 5.5% add method
annotation

23 Adding @SuppressWarnings(‘‘unused’’) and
@SuppressWarnings(‘‘unchecked’’) to methods, classes
and variables that appear in the call trace of the JMH code with no
other changes that might impact the energy consumption.

0.018

Add class
annotation

3

Modify method
annotation

1

Add attribute
annotation

1

#45bf2d 6.8% Add method
annotation

3 Adding @SuppressWarnings(‘‘unchecked’’) to methods
and moving classes (project reorganization) that appear in the call
trace of the JMH code.

0.000

Move class 30

JGraphT #033164 6% Merge attribute 1 Some code restructuring, reorganization and class movement that that
appear in the call trace of the JMH code. No other changes suspected
of impacting the energy consumption were detected

0.056

Change
parameter type

1

Rename
parameter

9

Move method 22

Rename class 1

Extract class 1

Move attribute 15

Move class 8

Merge parameter 6

Change variable
type

19

Change attribute
type

1

#f1074b 5% Add method
annotation

1 Adding @Override annotation and the renaming of some
attributes/parameters. However these changes does not appear in the
call trace of the JMH code.

0.2

Add class
annotation

60

Rename class 2

Rename attribute 1

Change variable
type

16

Rename
parameter

4

JFlex #b34361 5% Add method
annotation

53 Adding @Override annotation to methods that appear in the call
trace of the JMH code with no other changes that might impact the
energy consumption.

0.054

Move & rename
method

1

Rename class 1

Eclipse
Collections

#b9dfbc 6% Add method
annotation

9944 Adding @override annotation to methods that appear in the call
trace of the JMH code with no other changes.

0.4

#298b7a 5% Add method
annotation

73 Adding @override annotation to methods that appear in the call
trace of the JMH code, but too many changes unrelated to refactoring
were found.

0.01

106 Z. Ournani et al.

("unused")) and ran hundreds of millions times each, on classes, methods and vari-
ables to check whether it has an effect on the energy consumption. The results—as
expected—did not have any effect (about 1% difference that we cannot consider due
to CPU energy variations [23]) on energy consumption, as annotations are not sup-
posed to have a substantial impact on the generated bytecode that would be executed
by the JVM. This would invalidate the fact that the observed energy consumption dif-
ference is mainly related to the add annotation refactoring in the commits that only
contain this type of refactoring, such as #827717, #b9dfbc, and #298b7a. The
second micro-benchmark concerns the move class refactoring, where we measured
the energy consumption for several scenarios, after moving some classes/interfaces
around and reorganizing the structure of the micro-benchmark. The results showed a
difference in energy consumption of up to 8%, with an average standard deviation of
5%. The move class refactoring—which is often accompanied with the rename
refactorings—indicates a code reorganization that might have an impact. While the
observed impact through the JMH experiments or with micro-benchmarking might
not be substantial, it would be beneficial to be aware that restructuring/reorganizing a
project could have an impact on energy consumption, and thus compare the before/after
energy consumptions to track that effect. Unfortunately, we could not detect any specific
pattern or guidelines on when the code reorganization or restructuring would impact
positively or negatively the energy consumption. Hence, we can only faithfully retain
the commit #45bf2d of the Gson project among the commits of Table 3, where the
30 move class refactoring could have been responsible of 2% of energy consumption
difference as the standard deviation of the measures is 5%.

We finally conclude that structure-oriented refactoring has no substantial impact on
the energy consumption of the main functionality of 7 projects that have been existing
for at least 5 years with a total of 16, 046 commits. We argue that it could be applied
to improve the code quality with no negative impact on software energy consumption.
Although, comparing the energy consumption before and after the changes is always a
good practice to keep track of its evolution.

To answer RQ1, we conclude that code refactoring rules are mostly “safe” opera-
tions that have no substantial impact on software energy consumption. Develop-
ers should not fear structure-oriented refactorings, especially regarding how little
is the impact they could have compared to the real energy consumption evolution
of projects, registered while answering RQ1.

4.1 Software Energy Consumption Evolution

The first step is to investigate the evolution of software energy consumption over time.
Figure 3 depicts the evolution of energy consumption for the projects Google-Http,
XStream, JGraphT, and Eclipse Collections, for which we run the main releases
and report on the energy consumption measured over time, by focusing on the main
functions stressed by our JMH benchmarks.

Tales from the Code #2 107

Fig. 3. Energy consumption evolution of Google-Http, XStream, JGrapht, and Eclipse Col-
lections [24].

Except for JGraphT, one can observe that energy consumption tends to decrease
over time for most of the projects. One can mention a 10% decrease in 12 months
for the Google-Http project (cf. Fig. 3a), a 10% decrease in 4 years for the Eclipse
Collections project (cf. Fig. 3c), and a very substantial decrease of 50% in 6 years for
the XStream project (cf. Fig. 3d).

Then, to have a more concrete look on the evolution of energy consumption per
commit, we select the Gson project to reproduce the evolution of its energy consump-
tion along the full commit history. Given the large number of involved commits, we
consider the full set of commits of the Gson project (12 years) with a span of 25—
i.e., we build, run, and measure the energy consumption every 25th commits. Figure 4
depicts the evolution of energy consumption for the Gson project with a total of 57
successfully reproduced commits, out of 60. The line plot validates and confirms the
results shown in Fig. 3. Most notably, one can observe a reduction of 82% from the
highest to the lowest consumption commit within 12 years of the project’s lifespan—
i.e., the energy consumption became 5 times lower.

108 Z. Ournani et al.

Fig. 4. Gson energy consumption across for every 25th commit [24].

One can also see a more sudden energy consumption reduction between commits
600 and 850. To investigate this, we thus run a similar experiment to measure the energy
consumption of a all commits between 600 and 850 depicted in Fig. 5. The results
clearly show that the decrease in energy consumption of the Gson project is not lin-
ear across commits, but is rather due to some specific commits. In fact, two specific
commits are responsible of dropping the energy consumption of the Gson project tested
functionality. These two commits (626 and 691) decrease the energy consumption from
4.5 J to 3.0 J and from 3.0 J to 2.0 J respectively.

In order to understand the kind of changes that can be responsible of such reduction
in energy consumption, we meticulously analyzed one of the two previous commits
(commit 691 for-which the test consumed 2686 KJ) and compared it to the previous
commit (commit 690 for-which the test consumed 3563 KJ). Hence, we analyzed the
Git diff of the commit 691 to spot the main changes. The analysis results showed that
the changes are mainly related to the serialization Jsonwriter method, called in the
TypdeAdapter class as shown Fig. 6. Concretely, the 690th commit uses a parser
that is responsible for handling a buffer of objects and recursively (for arrays and com-
plex objects) parse them as string to be written, while the 691st commit uses a more
straightforward Jsonwriter and JsonElementWriter methods with a call to
the Stringwriter method, to write objects one-bye-one with a simple cast to Json
primitive Types.

Tales from the Code #2 109

Fig. 5. Gson energy consumption for commits between 600 and 850.

Fig. 6. Git diff main changes of the Gson commit 691.

To prove the impact of this change on the Jsonwriter on the energy consumption
of the Gson serialization, we use an asynchronous code profiler.4 The purpose of the

4 https://github.com/jvm-profiling-tools/async-profiler.

https://github.com/jvm-profiling-tools/async-profiler

110 Z. Ournani et al.

profiler is to frequently sample the Java execution stack to collect stack traces and to
track memory allocation. The expected result is thus to see the Jsonwriter method
executed much longer with the 690th commit compared to the 691st as it is the only
section that has been modified between commits to achieve 25% reduction in energy
consumption.

We thus draw two flame-graphs to illustrate and compares the stack traces of the
690th and 691st commits tests, shown in Fig. 7a and Fig. 7b respectively.

One can see that the Jsonwriter method lasted 7 times more in the commit 690
than 691 (in blue in both flame-graphs). In fact, the profiler recorded 138 samples of
Jsonwriter method against using the Gson Commit 690, and only 20 samples for tr
commit 691. The Jsonwriter was thus responsible of 30% of the energy consump-
tion for the commit 690 against only 6% for the commit 691. The flame-graphs prove
that the changes on the Jsonwriter method are responsible for about 25% of extra
energy consumption on the commit 690 compared to 691st commit.

This kind of code changes are not structure-oriented refactoring but compu-
tational refactorings such as algorithm/method substitution. In the previous exam-
ple, we recorded 25% reduction in energy consumption by substituting the logic to
write the Json data. To showcase this, we run another experiment with Javax.Crypto
library5 to decrypt a 1.5 GB file using different read methods issued from mul-
tiple classes (IOStream: java.io.InputStreamReader, Channel: java.nio.FileChannel,
FileReader: java.io.FileReader, BIOStream: java.io.BufferedInputStream and NIOF:
java.nio.Files). The results in Fig. 8 clearly show that substituting different read meth-
ods can result in up to 100% in energy consumption to read the same data. Compu-
tational refactoring can thus have a substantial impact on the energy consumption of
software, and should be wisely monitored. In fact, such changes should be either vali-
dated and widely adopted (to extract changes pattern that can be applied to other code
portions within the software of other software) or seriously questioned if they decrease
or increase software energy consumption respectively.

To answer RQ1, we can conclude that software energy consumption can evolve
drastically over time. For the analyzed target systems, in spite of fluctuations, the
energy consumption has decreased non-negligibly for 4 systems and grown for
one.

Moreover, computational refactoring can have a substantial impact on energy
consumption. Monitoring the energy consumption after such changes is very
important to spot any increase or decrease in software energy consumption.

Given the previous results reported by the literature, the remainder of this paper aims
to closely study and assess the impact of code refactoring on such observed evolutions.

5 https://docs.oracle.com/javase/7/docs/api/javax/crypto/package-summary.html.

https://docs.oracle.com/javase/7/docs/api/javax/crypto/package-summary.html

Tales from the Code #2 111

Fig. 7. Stack trace flame-graphs of the test execution on commits 690 and 691.

112 Z. Ournani et al.

Fig. 8. Energy consumption of the Java Crypto library to decrypt a 1.5GB file using different I/O
methods.

5 Related Work

In this section, we review the state of the art of green software design efforts related to
code refactorings.

Desktop Applications. Achieving software energy efficiency through refactorings has
been studied for desktop applications and server-side applications. Pinto et al. discuss
12 contributions taken from the state of the art on the refactoring that can be applied
to improve software energy efficiency [28]. This literature review was conducted on
the papers that were published in 8 of the top software engineering conferences prior
to 2015 such as ICSE and ASPLOS. It summarizes some interesting information and
practices relating to CPU offloading, HTTP requests, I/O operations, DVFS techniques,
etc. Sahin et al. studied the impact of 6 different refactoring rules on a total of 197
selections from 9 Java applications. Their results showed that the impact of applying
the refactoring could be statically significant, but is not very consistent across the soft-
ware and platform versions. They suggested that knowledge on the energy consumption
impact of refactoring rules could be integrated within IDEs to help developers building
less energy-bleeding software.

In a more detailed study of the impact of only one refactoring rule “inline method”
on 3 Java applications, [35] reported that the impact on the execution time and energy
consumption that was expected to be positive, was not always energy efficient.

Rather than looking for green refactoring rules reducing software energy consump-
tion, some practitioners chose to conduct wider studies that apply on a much larger set of
refactorings to capture a subset of “green” rules. This is exactly what the authors of [13]
pursued: They prepared C++ micro-benchmarks of 63 refactoring techniques/design

Tales from the Code #2 113

patterns suggested by Martin Fowler [1], then ran experiments and isolated a set of
green refactoring rules based on the micro-benchmarks for C++. However, the conclu-
sion cannot even be generalized on C++ applications, as they were built on specific tests
that were executed on specific microbenchmarks.

The authors of [17] focused on investigating the impact of Java coding practices,
which include primitive data types, operations on strings, usage of exceptions, loops,
and arrays. Using RAPL [15], they measure the energy consumption of code snippets
and micro-benchmarks and presented some minor observations, such as string concate-
nation consuming less than StringBuilder and StringBuffer, static variables
consume 60% more energy compared to instance variables, etc.

Mobile Applications. In another context, the reduction of software energy consumption
through refactoring actions has also been explored in the context of mobile applications.
EARMO proposes a multi-objective refactoring approach to automatically improve the
architecture of mobile applications [21]. The authors conducted an empirical study to
measure the negative impact of 8 anti-patterns on 20 open-source applications. They
then used a multi-objective search-based approach, called EARMO, to correct up-to
84% of the anti-patterns on the tested applications and increase the battery lifespan by
up-to 29min. However, their statistical analyses with a significance level of 5% only
showed that half of the rules can impact energy efficiency in some cases. Moreover, the
CPU/chip energy variation has not been taken into account for the significance level of
the comparaisons.

Other works also considered energy efficient refactoring for mobile applica-
tions [12]. In particular, the authors of [29] presented some early experiments on differ-
ent micro-benchmarks and discussed many coding aspects with a focus on implemen-
tation techniques, such as how to iterate on a matrix, avoid operations with immutable
data types, evaluating strings, or the use the more specific numeric data types to save
battery life. Anwar et al. [3] also gave concrete examples on how to save some bat-
tery time through refactoring. They achieved a maximum of 10% of energy savings by
refactoring the DuplicatedCode and TypeChecking code smells.

In the same context, Cruz et al. [7] studied the effect of 8 of the best performance-
based practices on the energy efficiency of 6 Android applications. The results of the
experiments showed that some patterns, such as ViewHolder, DrawAllocation,Wake-
Lock, ObseleteLayoutParam need to be taken into account for a better design of
energy-efficient applications, with a reported impact of 4.5% for the Writeily Pro app.
The authors also proposed the LEAFACTOR tool to improve the energy efficiency of
Android applications by automatically refactoring the source code to fix the above pat-
terns [6]. The process was applied on a set of 140 open-source Android applications
and yielded a total of 222 refactorings, which were submitted as pull requests, with 16
successfully merged pull requests.

114 Z. Ournani et al.

6 Conclusion

This paper introduces an investigation of the effective impact of code refactoring on
software energy consumption. The investigation includes the analysis of at least 7 Java
open-sources well-established projects with more than 10k commits, and deals with 55
different types of source code refactoring.

The results showed that structure-oriented refactorings have no substantial impact
on the energy consumption of Java server-side software. Which means that structure-
oriented code refactorings can be safely applied to improve source code maintainability
and readability with no significant drawbacks on the energy consumption. However,
functional and computational oriented code refactoring showed to play a significant
role and can substantially impact software energy consumption. We argue that devel-
opers’ efforts should be directed towards these refactorings (such as the choice of data
structures, algorithms, I/O methods, etc.) rather than structure-oriented refactorings to
reduce energy consumption. Such Computational refactorings can alter the energy con-
sumption of software by a large margin in a positive or a negative way and should be
wisely monitored. We were able for instance to register up to 100% of energy consump-
tion differences just by refactoring/substituting the I/O read method for the Java Crypto
library.

We believe that our approach is the major contribution of this paper, as it allows
a more concrete way to study the impact of code refactoring rules on the energy con-
sumption of real projects. This can also be extended to other projects and programming
languages. Most importantly, this should motivate future works to validate that refactor-
ings can be safely applied with no drawbacks on the energy consumption, yet investigate
the commits and the nature of code changes that increase/decrease energy consumption.

References

1. Refactoring: Improving the Design of Existing Code. Addison-Wesley Longman Publishing
Co., Inc. (1999)

2. Abid, C., Alizadeh, V., Kessentini, M., do Nascimento Ferreira, T., Dig, D.: 30 years of
software refactoring research: a systematic literature review. CoRR abs/2007.02194 (2020).
https://arxiv.org/abs/2007.02194

3. Anwar, H., Pfahl, D., Srirama, S.N.: Evaluating the impact of code smell refactoring on
the energy consumption of android applications. In: 2019 45th Euromicro Conference on
Software Engineering and Advanced Applications (SEAA), pp. 82–86. IEEE, Kallithea-
Chalkidiki, August 2019. https://doi.org/10.1109/SEAA.2019.00021

4. Bree, D.C., Cinnéide, M.Ó.: Inheritance versus delegation: which is more energy efficient?
In: ICSE 2020: 42nd International Conference on Software Engineering, Workshops, Seoul,
Republic of Korea, 27 June–19 July 2020, pp. 323–329. ACM (2020). https://doi.org/10.
1145/3387940.3392192

5. Chowdhury, S.A., Hindle, A., Kazman, R., Shuto, T., Matsui, K., Kamei, Y.: GreenBundle:
an empirical study on the energy impact of bundled processing. In: Atlee, J.M., Bultan, T.,
Whittle, J. (eds.) Proceedings of the 41st International Conference on Software Engineering,
ICSE 2019, Montreal, QC, Canada, 25–31 May 2019, pp. 1107–1118. IEEE/ACM (2019).
https://doi.org/10.1109/ICSE.2019.00114

https://arxiv.org/abs/2007.02194
https://doi.org/10.1109/SEAA.2019.00021
https://doi.org/10.1145/3387940.3392192
https://doi.org/10.1145/3387940.3392192
https://doi.org/10.1109/ICSE.2019.00114

Tales from the Code #2 115

6. Cruz, L., Abreu, R., Rouvignac, J.: Leafactor: improving energy efficiency of android apps
via automatic refactoring. In: 2017 IEEE/ACM 4th International Conference on Mobile Soft-
ware Engineering and Systems (MOBILESoft), pp. 205–206, May 2017. https://doi.org/10.
1109/MOBILESoft.2017.21

7. Cruz, L., Abreu, R.: Performance-based guidelines for energy efficient mobile applications.
In: 4th IEEE/ACM International Conference on Mobile Software Engineering and Systems,
MOBILESoft@ICSE 2017, Buenos Aires, Argentina, 22–23 May 2017, pp. 46–57. IEEE
(2017). https://doi.org/10.1109/MOBILESoft.2017.19

8. Desrochers, S., Paradis, C., Weaver, V.M.: A validation of DRAM RAPL power measure-
ments. In: Proceedings of the Second International Symposium on Memory Systems, MEM-
SYS 2016, pp. 455–470. Association for Computing Machinery, New York (2016). https://
doi.org/10.1145/2989081.2989088

9. Efron, B.: The bootstrap and modern statistics. J. Am. Stat. Assoc. 95(452), 1293–1296
(2000)

10. Fonseca, A., Kazman, R., Lago, P.: A manifesto for energy-aware software. IEEE Softw.
36(6), 79–82 (2019). https://doi.org/10.1109/MS.2019.2924498

11. Fowler, M.: Refactoring: Improving the Design of Existing Code. Addison-Wesley, Boston
(1999)

12. Gottschalk, M., Jelschen, J., Winter, A.: Energy-efficient code by refactoring.
Softwaretechnik-Trends 33(2), 23–24 (2013). https://doi.org/10.1007/s40568-013-0030-4

13. Park, J.-J., Hong, J.-E., Lee, S.-H.: Investigation for software power consumption of code
refactoring techniques. In: SEKE (2014)

14. Kerievsky, J.: Refactoring to Patterns. Pearson Higher Education (2004)
15. Khan, K.N., Hirki, M., Niemi, T., Nurminen, J.K., Ou, Z.: RAPL in action: experiences in

using RAPL for power measurements. ACM Trans. Model. Perform. Eval. Comput. Syst.
3(2), 1–26 (2018)

16. van der Kouwe, E., Andriesse, D., Bos, H., Giuffrida, C., Heiser, G.: Benchmarking crimes:
an emerging threat in systems security. CoRR abs/1801.02381 (2018)

17. Kumar, M., Li, Y., Shi, W.: Energy consumption in Java: an early experience. In: 2017 Eighth
International Green and Sustainable Computing Conference (IGSC), pp. 1–8. IEEE, Orlando,
October 2017. https://doi.org/10.1109/IGCC.2017.8323579

18. Linares-Vásquez, M., Bavota, G., Bernal-Cárdenas, C., Oliveto, R., Di Penta, M., Poshy-
vanyk, D.: Mining energy-greedy API usage patterns in Android apps: an empirical study.
In: Proceedings of the 11th Working Conference on Mining Software Repositories - MSR
2014, pp. 2–11. ACM Press, Hyderabad (2014). https://doi.org/10.1145/2597073.2597085

19. Manotas, I., et al.: An empirical study of practitioners’ perspectives on green software
engineering. In: Proceedings of the 38th International Conference on Software Engineer-
ing - ICSE 2016, pp. 237–248. ACM Press, Austin (2016). https://doi.org/10.1145/2884781.
2884810

20. Manotas, I., Sahin, C., Clause, J., Pollock, L., Winbladh, K.: Investigating the impacts of web
servers on web application energy usage. In: 2013 2nd International Workshop on Green and
Sustainable Software (GREENS), pp. 16–23. IEEE, San Francisco, May 2013. https://doi.
org/10.1109/GREENS.2013.6606417

21. Morales, R., Saborido, R., Khomh, F., Chicano, F., Antoniol, G.: EARMO: an energy-aware
refactoring approach for mobile apps. IEEE Trans. Software Eng. 44(12), 1176–1206 (2018).
https://doi.org/10.1109/TSE.2017.2757486

22. Moreira, E., Correia, F.F., Bispo, J.: Overviewing the liveness of refactoring for energy effi-
ciency. In: Conference Companion of the 4th International Conference on Art, Science, and
Engineering of Programming. pp. 211–212. ACM, Porto, March 2020. https://doi.org/10.
1145/3397537.3397538

https://doi.org/10.1109/MOBILESoft.2017.21
https://doi.org/10.1109/MOBILESoft.2017.21
https://doi.org/10.1109/MOBILESoft.2017.19
https://doi.org/10.1145/2989081.2989088
https://doi.org/10.1145/2989081.2989088
https://doi.org/10.1109/MS.2019.2924498
https://doi.org/10.1007/s40568-013-0030-4
https://doi.org/10.1109/IGCC.2017.8323579
https://doi.org/10.1145/2597073.2597085
https://doi.org/10.1145/2884781.2884810
https://doi.org/10.1145/2884781.2884810
https://doi.org/10.1109/GREENS.2013.6606417
https://doi.org/10.1109/GREENS.2013.6606417
https://doi.org/10.1109/TSE.2017.2757486
https://doi.org/10.1145/3397537.3397538
https://doi.org/10.1145/3397537.3397538

116 Z. Ournani et al.

23. Ournani, Z., Belgaid, M.C., Rouvoy, R., Rust, P., Penhoat, J., Seinturier, L.: Taming energy
consumption variations in systems benchmarking. In: Proceedings of the ACM/SPEC Inter-
national Conference on Performance Engineering, ICPE 2020, pp. 36–47. Association for
Computing Machinery, New York (2020). https://doi.org/10.1145/3358960.3379142

24. Ournani, Z., Rouvoy, R., Rust, P., Penhoat, J.: Tales from the code #1: the effective impact
of code refactorings on software energy consumption. In: Fill, H., van Sinderen, M., Maci-
aszek, L.A. (eds.) Proceedings of the 16th International Conference on Software Technolo-
gies, ICSOFT 2021, Online Streaming, 6–8 July 2021, pp. 34–46. SCITEPRESS (2021).
https://doi.org/10.5220/0010517900340046

25. Palomba, F., Nucci, D.D., Panichella, A., Zaidman, A., Lucia, A.D.: On the impact of code
smells on the energy consumption of mobile applications. Inf. Softw. Technol. 105, 43–55
(2019). https://doi.org/10.1016/j.infsof.2018.08.004

26. Pinto, G., Castor, F., Liu, Y.D.: Understanding energy behaviors of thread management con-
structs. In: Proceedings of the 2014 ACM International Conference on Object Oriented Pro-
gramming Systems Languages & Applications - OOPSLA 2014, pp. 345–360. ACM Press,
Portland (2014). https://doi.org/10.1145/2660193.2660235

27. Pinto, G., Liu, K., Castor, F., Liu, Y.D.: A comprehensive study on the energy efficiency of
Java’s thread-safe collections. In: 2016 IEEE International Conference on Software Mainte-
nance and Evolution (ICSME), pp. 20–31. IEEE, Raleigh, October 2016. https://doi.org/10.
1109/ICSME.2016.34

28. Pinto, G., Soares-Neto, F., Castor, F.: Refactoring for energy efficiency: a reflection on the
state of the art. In: 2015 IEEE/ACM 4th International Workshop on Green and Sustainable
Software, pp. 29–35. IEEE, Florence, May 2015. https://doi.org/10.1109/GREENS.2015.12

29. Rodriguez, A.: Reducing energy consumption of resource-intensive scientific mobile appli-
cations via code refactoring. In: 2017 IEEE/ACM 39th International Conference on Software
Engineering Companion (ICSE-C), pp. 475–476. IEEE, Buenos Aires, May 2017. https://
doi.org/10.1109/ICSE-C.2017.33

30. Rodriguez-Cancio, M., Combemale, B., Baudry, B.: Automatic microbenchmark genera-
tion to prevent dead code elimination and constant folding. In: Proceedings of the 31st
IEEE/ACM International Conference on Automated Software Engineering, ASE 2016, pp.
132–143. Association for Computing Machinery, New York (2016). https://doi.org/10.1145/
2970276.2970346

31. Hasan, S., King, R., Hafiz, M.: Energy profiles of java collections classes. In: ICSE (2016)
32. Tsantalis, N., Ketkar, A., Dig, D.: RefactoringMiner 2.0. IEEE Trans. Softw. Eng. (2020).

https://doi.org/10.1109/TSE.2020.3007722
33. Tsantalis, N., Mansouri, M., Eshkevari, L.M., Mazinanian, D., Dig, D.: Accurate and effi-

cient refactoring detection in commit history. In: Proceedings of the 40th International Con-
ference on Software Engineering, ICSE 2018, pp. 483–494. ACM, New York (2018). https://
doi.org/10.1145/3180155.3180206

34. Verdecchia, R., Procaccianti, G., Malavolta, I., Lago, P., Koedijk, J.: Estimating energy
impact of software releases and deployment strategies: the KPMG case study. In: 2017
ACM/IEEE International Symposium on Empirical Software Engineering and Measurement
(ESEM), pp. 257–266 (2017). https://doi.org/10.1109/ESEM.2017.39

35. Silva, W.G.P., Brisolara, L., Corrêa, U.B., Carro, L.: Evaluation of the impact of code refac-
toring on embedded software efficiency. Unpublished (2010). https://doi.org/10.13140/2.1.
1481.8249

https://doi.org/10.1145/3358960.3379142
https://doi.org/10.5220/0010517900340046
https://doi.org/10.1016/j.infsof.2018.08.004
https://doi.org/10.1145/2660193.2660235
https://doi.org/10.1109/ICSME.2016.34
https://doi.org/10.1109/ICSME.2016.34
https://doi.org/10.1109/GREENS.2015.12
https://doi.org/10.1109/ICSE-C.2017.33
https://doi.org/10.1109/ICSE-C.2017.33
https://doi.org/10.1145/2970276.2970346
https://doi.org/10.1145/2970276.2970346
https://doi.org/10.1109/TSE.2020.3007722
https://doi.org/10.1145/3180155.3180206
https://doi.org/10.1145/3180155.3180206
https://doi.org/10.1109/ESEM.2017.39
https://doi.org/10.13140/2.1.1481.8249
https://doi.org/10.13140/2.1.1481.8249

Towards Power Consumption Optimization
for Embedded Systems from a Model-driven

Software Development Perspective

Marco Schaarschmidt1(B) , Michael Uelschen1 , and Elke Pulvermüller2

1 Faculty of Engineering and Computer Science, Osnabrück University of Applied Sciences,
Osnabrück, Germany

{m.schaarschmidt,m.uelschen}@hs-osnabrueck.de
2 Software Engineering Research Group, University of Osnabrück,

Osnabrück, Germany
elke.pulvermueller@uos.de

Abstract. A power consumption optimization for battery-powered and resource-
constrained embedded systems is typically performed on the hardware layer
while the application layer is often neglected. Because software applications
affect the hardware behavior directly, power-related optimizations can result in
major application design and workflow changes. Such in-depth modifications
should be considered in early design phases, where they are most effective. For
embedded software development, current trends in software engineering such as
Model-Driven Development (MDD) can be used for an early power consump-
tion analysis and optimization even if the hardware platform is not yet final-
ized. However, power consumption aspects on the application layer are currently
not sufficiently considered in MDD. In this paper, we present an approach to
abstract hardware components of an embedded system using the Unified Model-
ing Language (UML) and annotate UML-based models with power characteris-
tics. Additionally, we define a novel UML profile to capture the dynamic behavior
of hardware components while interacting with software applications. With our
approach, energy profiles can be derived to make the impact of software on power
consumption in early design stages visible. Energy profiles are also suitable for
software optimization and energy bug detection, which is demonstrated using a
sensor node use case example.

Keywords: Model-Driven Development · Embedded systems · UML ·
MARTE · Power consumption · Energy bug

1 Introduction

As forecasts show, the ongoing trends of Internet of Things (IoT) and Industrial Internet
of Things (IIoT) will lead to a high increase of embedded systems deployed. A study
presented in [23] expects a growth from 8 billion devices in the year 2020 to more than
25 billion until the year 2030. Another forecast published by Gartner [20] predicts the
number of IoT-connected devices to reach tens of billions by the year 2023. For the
same year, Cisco [11] forecasts IoT devices to represent 50% of all networked devices
c© Springer Nature Switzerland AG 2022
H.-G. Fill et al. (Eds.): ICSOFT 2021, CCIS 1622, pp. 117–142, 2022.
https://doi.org/10.1007/978-3-031-11513-4_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-11513-4_6&domain=pdf
http://orcid.org/0000-0001-8260-5326
http://orcid.org/0000-0002-0841-6954
https://doi.org/10.1007/978-3-031-11513-4_6

118 M. Schaarschmidt et al.

while using short-range technologies, such as WiFi, Bluetooth, and Zigbee [22]. The
standby energy consumption of all IoT-connected devices is expected to reach 46 TWh
in 2025 [15]. Typically, embedded systems in IoT and IIoT are used in environmental
monitoring, smart cities, agriculture, and smart factories applications [1,14,45] with an
expected operational lifetime between weeks and decades. If those devices are battery-
powered and placed in harsh environments or buried underground [19,44], the supply of
power is a major challenge. In many cases, maintenance (e.g., recharging or replacing
batteries) is not possible, impractical, or results in higher costs.

At the hardware level, power consumption is well-addressed by developers and
researchers resulting in more energy-efficient hardware components. However, this
topic is often neglected at the software level because software developers are in many
cases unaware of how energy-efficient applications may be specified, implemented,
and evaluated [34,36]. However, especially for battery-powered devices, power-related
Non-Functional Requirements (NFRs) are gaining importance. In addition to the
increased functionality of modern software applications and the growing complexity
of algorithms, the variety of microcontroller units (MCUs), sensors, actuators, and
communication interfaces lead to additional challenges for software developers when
power-related NFRs need to be specified and evaluated. Furthermore, the detection and
elimination of energy bugs are also important while analyzing software applications.
As described in [6], an energy bug is defined as a behavior causing an unexpected
energy drain that is not necessary to perform the actual task. Typical sources for energy
bugs are complex software-hardware interactions, incorrect use of peripheral devices,
and flaws in the software design [6,35]. While conventional software bugs are caus-
ing errors in the program flow or system crashes, energy bugs do not necessarily lead
to the misbehavior of the software itself. Because field or burn-in tests are not able to
detect such application-based misbehavior [40], energy bugs have to be addressed dur-
ing early development stages using accurate simulations or detailed power consumption
measurements on a fully functional hardware platform in a laboratory setting.

When battery-powered devices are used, the energy consumption of software appli-
cations can be a significant bottleneck [5] causing up to 80% of the total energy con-
sumption through software-hardware interactions [16]. Since the impact of the software
application on energy consumption is often unknown, it is essential to consider power-
related NFRs in early design phases, where changes are more effective [42]. Typically,
a power consumption analysis is carried out at the end of the development process when
the software application and hardware platform are close to their final states. While the
hardware platform is often not modified at this late stage of the development process,
the software application is going into a re-design and optimization phase, causing time
delays and increasing costs. Additionally, there exist no approaches or tool support to
evaluate the software application regarding power-related NFRs, to estimate the power
consumption, and to detect possible energy bugs in early design phases where the hard-
ware platform may not be available or defined yet.

Model-Driven Development (MDD) allows multiple levels of abstraction when used
in software engineering and reduces the overall complexity of software applications to
its essential complexity. In general, software models are not bound to the underlying
implementation by definition. This can help to overcome some of the aforementioned

Towards Power Consumption Optimization for Embedded Systems 119

challenges during software development. The Unified Modeling Language (UML) [31]
is typically used to describe aspects like the general structure and behavior of the soft-
ware application. Software developers using MDD can focus on applications logic,
behavior, and program flow. By this, most of the aforementioned sources of energy bugs
are already taken into account. Code generators can be used to transform UML models
into source code for the specific target platform. By this, automatic processes can be
used to generate energy-optimized source code, which increases the quality of software
applications. As an extension for UML, the Modeling and Analysis of Real-time and
Embedded systems (MARTE) profile [32] describes Non-Functional Properties (NFPs)
like time behavior or schedulability and provides power consumption and dissipation
modeling for hardware components in a simplified way. However, stereotypes provided
by MARTE are not sufficient to model dynamic power consumption and power-related
behavior in a granular way. To the best of our knowledge, there exists no approach
to combine software application models with hardware models to obtain an early and
straightforward power consumption estimation for given hardware configurations. Fur-
thermore, current MDD tools do not provide any analysis of energy bugs. This work
addresses the gap of power consumption estimation in MDD and tries to answer the
following Research Questions (RQs):

RQ1: How can hardware behavior be abstracted and described using UML?
RQ2: How can hardware models be coupled with the software model?
RQ3: How can hardware models be annotated with energy-related NFPs?
RQ4: How can software-hardware interactions be simulated in MDD?

Furthermore and beyond answering RQ 1–4, this paper extends the work in [37] and
comes with a set of novel contributions that can be summarized as follows:

– An extended description of the model transformations used in this approach.
– A revised description of how our concepts can be integrated into MDD.
– A more detailed evaluation of the hardware component modeling concepts and the
proposed UML profile.

The remainder of this article is organized as follows: Sect. 2 discusses related research
and their conceptual differences compared to our approach. Section 3 introduces the
overall methodology and the tools used to answer RQ 1–4. Section 4 describes the con-
cept of hardware component models, while Sect. 5 provides an overview of our UML
profile for a power consumption estimation. Section 6 describes the model transforma-
tion process, while Sect. 7 deals with the integration of our approach into the MDD
workflow. Section 8 describes the evaluation of our approach. Finally, Sect. 9 covers the
discussion of our approach and Sect. 10 concludes our work.

2 Background and Related Work

In this section, related work to our approach is introduced. With a focus on power
consumption analysis and estimation, this includes approaches for hardware component
and systems modeling as well as NFR modeling.

120 M. Schaarschmidt et al.

Concepts for power consumption estimation have been proposed in a set of research
approaches based on workflow models [47], Petri nets [2], and mathematical models
[9,28,46]. Unfortunately, the authors do not consider the impact of software applica-
tions and the integration into software development. In [4], a low-level device modeling
and power estimation solution is described. The approach uses the IP-XACT standard
[25] to describe hardware models, while state machines define power-related behavior.
In MDD however, low-level hardware component models (e.g., clock generators) are
not suitable for an evaluation of software application models in early design phases,
due to the high complexity and amount of submodels needed to specify a model of
a sensor or MCU. Especially if the analysis has to take the interaction and impact of
the software application on single components (e.g., sensors) or the entire system into
account. Moreover, their approach does not consider the dynamic behavior of periph-
eral devices. Due to the requirement of high-level knowledge about architectures and
lengthy simulation times, low-level approaches such as Instruction-level Power Analy-
ses (ILPA) are generally not suitable for an evaluation of software application models in
early design phases. For ILPA, platform-dependent assembly code is required for esti-
mating the cost of each instruction and is therefore not close to the abstraction level of
UML-based models [27]. Additionally, these approaches are primarily used to simulate
processors, which makes them also not suitable for a system-wide analysis.

Several approaches are using UML and MARTE to model software applications
and hardware aspects of embedded systems for a power consumption estimation. The
work presented in [26] describes an approach for a model-driven energy-aware timing
analysis based on UML and MARTE. Design models are obtained through a reverse
engineering process, where source code is transformed to UML classes and operations.
MARTE is used to annotate the software model with timing and power-related proper-
ties. Afterwards, the UML model is transformed into a timing-energy analysis model,
where UML classes are mapped to tasks and UML operations to runnable representa-
tions. In the final step, this model is used for power analysis. The approach takes only
the processor of the system into account and does not consider peripheral devices. Addi-
tionally, UML models are derived by a reverse engineering process, which is not appli-
cable in early design phases because the source code used as an input for the reverse
engineering process does not exist yet. A multi-view power modeling approach for dif-
ferent functional and structural system views based on UML, SysML, and MARTE
is proposed in [17]. Unfortunately, the authors focused on connections between views
and do not consider a power analysis of single components nor the impact of software
applications.

Other works proposed extensions for MARTE to improve modeling and analysis
of power characteristics. The authors in [3] defined a UML profile based on MARTE
to model system-wide dynamic power management aspects of embedded systems. For
each hardware component, a state machine is defined and states are annotated with
power specifications to represent supported operation modes. Additionally, the concepts
of power modes and power configurations are introduced. Power modes are mapped to
power configurations and describe the application behavior. As a property of the exe-
cution platform, power configurations are composed of a set of hardware component
states which remain active as long as the configuration is selected. Use cases allocating

Towards Power Consumption Optimization for Embedded Systems 121

configurations are defined to generate and analyze workflows. However, the presented
concept assumes hardware configurations to be constant for a power mode. Therefore,
dynamic behavior is not taken into account. A MARTE-based power consumption anal-
ysis profile with new stereotypes to specify power-related characteristics is introduced
in [21]. The profile is used in simulations to find an optimal power solution when taking
dynamic voltage scaling into account. The annotation of processors includes switching
capacitance, leakage power consumption, as well as voltage and frequency parameters
while tasks are annotated with their execution interval, the worst-case execution time,
and worst-case execution cycles.

However, when modeling and analyzing power consumption, the aforementioned
works focus on hardware-centric approaches. Software application aspects are simu-
lated by using tasks and predefined use cases with fixed execution times. Software
developers have hardly any possibilities to quantify the impact of a software model
on power consumption. Furthermore, a power-related software optimization is not pos-
sible and energy bugs remain undetected. In contrast, our approach is integrated into
the development process while focusing on software execution and software-hardware
interactions.

3 Methodology and Tools

This chapter describes the methodology of our approach for a power consumption
optimization of software applications in MDD. Furthermore, the tools used to model
and analyze software applications are introduced. Our approach aims to combine soft-
ware and hardware models to achieve an early power consumption optimization in
MDD. As shown in Fig. 1, application requirements can be used as one of many sources
to deduce the structure and behavior of the software application model. Hardware prop-
erties, taken from data sheets, existing drivers, and APIs, are used to derive basic hard-
ware component models, which are extended with power consumption aspects. Hard-
ware component models are defined as a combination of a UML class for the basic
structure and a state machine used as a behavior model. To extend the behavior model
with power-related properties, we implemented a UML profile (c.f. Sect. 5) which is
also used in the analysis process. In our approach, hardware component models are

Fig. 1. Overview of the approach to optimize power consumption in MDD [37].

122 M. Schaarschmidt et al.

represented as black boxes and only those behavior aspects are modeled, which have a
direct impact on the power consumption and can be accessed or influenced by the soft-
ware application model. The combination of software and hardware models is defined
as a system model, which is not limited to a specific group of hardware components. By
using UML as a description for both system aspects, hardware component models can
be completely integrated into the software domain which addresses RQ 1–3. To make
the impact of the software application on the system visible and answer RQ4, the system
model can be used to derive energy profileswhen simulated. An energy profile describes
the power-related impact of the software application on an embedded system. Software
developers may utilize energy profiles to optimize the workflow and design of the appli-
cation as well as the used algorithms. Additionally, energy profiles may also be used as
an indicator for energy bugs. Moreover, by providing detailed feedback, the concept
of energy transparency [16] can lead to energy-aware decisions to meet power-related
requirements.

As an MDD tool, IBM Engineering Systems Design Rhapsody - Developer1 [24] in
Version 9.0 is used. IBM Rhapsody also provides a simulation environment for UML-
based models which is used in our approach for the defined software and hardware
models. The analysis is done with MathWorks MATLAB R2020a [43]. For this, exten-
sions were developed to parse hardware component models (c.f. Sect. 6) and process
traces (c.f. Sect. 8.2).

4 Hardware Component Models

To address RQ 1–3, this section describes the concept of hardware component mod-
els for a model-based power consumption optimization of embedded systems. This
includes the abstraction of hardware components and dynamic behavior modeling.
Section 4.1 gives a brief overview of the formal definition of hardware component mod-
els. Section 4.2 addresses the integration of hardware models into the software model
domain and describes the realization of software-hardware interactions.

4.1 Formal Definition of Hardware Component Models

In [28,47], the dynamic behavior for different system states with varying levels of power
consumption has been analyzed. Furthermore, according to [7,46], each hardware com-
ponent may be described with a set of states defining operating modes and transitions to
switch between modes. This concept can be described as a power state machine [7,12],
where the states and transitions are annotated with meta-information related to power
consumption. As a formal notation in our approach, we denote hardware component
models of an embedded system as HSys with the tuple (SM,OP,A), defined as:

– SM : Finite set of all states S, transitions T , and events E of a hardware component
described as {S, T,E}. States S represent a list of operation modes, transitions T a
list of possible state changes, triggered by events of the event list E.

1 To improve readability, the abbr. IBM Rhapsody is used for the rest of this article.

Towards Power Consumption Optimization for Embedded Systems 123

– OP : Finite set of operations used by a software model, e.g., to change the configu-
ration and trigger events.

– A: Finite set of attributes defining the inner state of the hardware component.

A state change of the hardware component model HSys
n from a state s1 ∈ Sn to state

s2 ∈ Sn can be achieved by executing the transition t12 ∈ Tn, triggered by and event

e12 ∈ En, so that s1
t12|e12−−−−→ s2. In general, SM corresponds to the previously men-

tioned power state machine, containing all states, transitions, and events to model the
power-related behavior of a hardware component. However, our approach extends these
concepts by including dynamic power characteristics in states and transitions. For this,
attributes in A are used, representing the current device configuration. To model hard-
ware components inMDD, we are using UML class elements. Power state machines can
be directly mapped to UML behavioral state machines [31] which in turn can be applied
as classifier behavior to UML class elements. Due to this, a UML class element Chw

is suitable to represent a hardware component model so that HSys → Chw. Software
models can interact with hardware representations and simulate real hardware accesses.
By this, our approach is able to take the interaction of software models and hardware
representations into account and enables a simulation of real hardware accesses as a
crucial part of the power consumption estimating process [16].

4.2 Integration into the Software Model Domain

The integration of hardware models into the software model domain is an impor-
tant step to evaluate software models in terms of power consumption and to detect
energy bugs. In early development phases, the evaluation can be performed by software
developers without fully finalized and existing hardware platforms. Figure 2 shows the
proposed concept to integrate hardware component models into the software model
domain. As a central interface between the software models and hardware component
models, the system model (c.f. Fig. 1) is extended with an instance of the SystemBuilder
class to manage and monitor all hardware models of the embedded system. All hardware
models are derived from one of the two abstract device base classes PeripheralDevice
and ProcessingUnit. To provide a minimal interface for software application models,
the introduced predefined classes provide basic power-related operations. This type of
generalization follows the Hardware Proxy Pattern described in [13]. PeripheralDevice

Fig. 2. Concept of hardware component model integration [37].

124 M. Schaarschmidt et al.

is used, e.g., for sensors, actors, and communication interfaces. To extend the provided
interface and make specific functionalities of a hardware component accessible for the
software model, existing driver descriptions can be considered as a source for function
signatures, data types, and parameter names. By this, a Hardware Abstraction Layer
(HAL) is defined. If source code is generated by MDD tools in later steps, hardware
component models can be replaced with existing driver implementations due to identi-
cal function signatures while the generated source code of the software model does not
require additional manual adjustments.

Each MCU family provides a different number of operating modes and strategies
when CPU cores, flash units, SRAM banks, and oscillators are powered, throttled, or
tuned off. Because of this, the consideration of MCUs is a special challenge, and hard-
ware component models representing MCUs require further abstraction. Unlike periph-
eral devices, changing the power mode of an MCU directly affects the execution time
and life cycle of the software model. Secondly, to keep the software model platform-
independent, a HAL for MCUs must be implemented. To provide a consistent interface
for software application models, the abstract class ProcessingUnit offers a set of prede-
fined power states, namely:

– ACTIVE: Normal state with all configured peripherals powered.
– SLEEP: The system clock is stopped, no instructions are executed. Peripherals are
powered and can generate interrupts. If configured, registers, SRAM and flash mod-
ules, DMA, and GPIOs are maintained.

– DEEP SLEEP: Like SLEEP mode but with disabled main and peripheral clocks.
Flash modules are put in standby mode or turned off.

– DEEP POWER DOWN: With exception of the Real Time Clock (RTC), the MCU
is completely turned off and can be waked up by RTC generated interrupts. SRAM
and registers are not maintained.

– OFF: The MCU is completely turned off.

Each power mode has to be mapped to an existing power mode of the specific MCU.
Because of this, a HAL implementation for an MCU must at least support the afore-
mentioned power modes.

5 Power Analysis Profile (PAP)

This section describes the UML profile which is used to extend hardware component
models (c.f. Sect. 4) with power-related properties. For a power consumption optimiza-
tion of embedded systems in MDD, existing model descriptions have to be extended
with the required information (e.g. non-functional aspects). UML can be used for object
and component-based modeling but the specification lacks the ability to express NFPs.
MARTE makes use of the UML extension mechanism and provides a UML profile
specifically to describe real-time-related aspects of embedded systems. The specifica-
tion also provides descriptions of software and hardware execution platforms, including
non-functional properties to address power consumption aspects. In general, MARTE
has only limited support for power-related characteristics and does not provide accurate
descriptions of important base and derived SI metrics like voltage and electrical current.

Towards Power Consumption Optimization for Embedded Systems 125

As a first step toward the Power Analysis Profile (PAP), we extendedMARTE for a more
detailed and dynamic characterization of hardware behavior when used from a software
perspective. Based on the MARTE specification [32,39], Fig. 3 shows the descriptions
of the defined metrics and the corresponding NFP types. The ElectricCurrentUnitKind
measurement unit in Fig. 3 represents the SI metric for current with the physical base
dimension I. As a derived SI metric, the VoltageUnitKind consists of the base dimen-
sions for mass (M), length (L), time (T), and electric current (I). The tags baseUnit and
convFactor in the upper part of Fig. 3 can be used for conversions within the same unit.
With NFP Voltage and NFP Current, additional data types for the two measurement
units are defined and added to theNFP Types section of the MARTE library.NFP Types
can be used for tag specifications of stereotypes, which are later applied on states and
transitions of hardware component models to describe non-functional aspects such as
current consumption in a dynamic and detailed manner. Figure 4 gives an overview of
the PAP. While the profile is based on MARTE, it extends the specification by adding
new tags specifically to describe dynamic behavior and power consumption, as well
as using the introduced NFP Types shown in Fig. 3. The profile is divided into two
main packages HardwareAbstraction and HardwareBehavior. Stereotypes of the Hard-
wareAbstraction package are designed to describe abstract hardware components while
stereotypes of the HardwareBehavior package can be used to express power-related
behavior. A UML class can be annotated with the HardwareDeviceAbstraction stereo-
type of the HardwareAbstraction package if it corresponds to a base representation of a
hardware component model HSys, expressed as Chw. By this, general properties such
as the supply voltage and supported frequencies can be added to the model description.
With HWBehavioralImpact and HWPowerAttribute of the HardwareAbstraction pack-
age, operations and attributes can also be annotated, if these elements are influencing
the hardware behavior in terms of power consumption. To realize behavior changes of
hardware components as defined in Sect. 4.2, software models can change the configu-
ration or single attributes annotated with the HWPowerAttribute stereotype. By this, the
connection between software models and the hardware component models is defined.

Stereotypes of the HardwareBehaviour package (c.f. lower part of Fig. 4) can be
applied on state machines (HWDeviceBehavior), states (HWDeviceBehavioralState),
and transitions (HWDeviceBehavioralTransition) to extend the modeled behavior with
power-related characteristics. For tags like current and execTime, the Value Specifica-
tion Language (VSL) [32,39] is used to take dynamic behavior into account. However,
the basic VSL concept was slightly adapted to express relations between tags of the
stereotypes provided by our profile. In general, values for NFP Types of the MARTE
specification are expressed as the tuple (value, expr, unit, source, precision, statQ, dir)
[32], where:

– value: Contains the actual value expressed as numerical quantity or string.
– expr (optional): Contains a VSL Expression, if expressions instead of fixed values

are used.
– unit: Contains the physical measurement unit.
– source (optional): Describes the origin of the value (e.g. measured, estimated, cal-
culated).

– precision (optional): Defines the standard deviation of the measurement to obtain
the value.

126 M. Schaarschmidt et al.

Fig. 3. Voltage and electrical current descriptions as extensions for MARTE [37].

– statQ (optional): Used to qualify the value for statistical analyses (e.g., max, min,
mean).

– dir (optional): Used to enable a qualitative comparison between values of the same
type.

As a basic example for the tuple notation, the tagged value current (c.f. Fig. 4) can
be expressed as (value = 5, unit = mA), (5,−,mA,−,−,−,−), or (5,mA)2

as a shortened notation. In related approaches described in Sect. 2, a fixed number
is used to describe the power, execution time, and other tagged values within states
and transitions. However, changing the number of repeated measurements to obtain an
average value may affect the power consumption for a specific state or transition of
a sensor. As another example, if the software application varies the amount of data
to be transmitted by a communication interface, the execution time for the transmis-
sion state is affected. Due to the usage of expressions to model dynamic behavior,
our approach does not have this limitation. Modifiable configurations are supported
so that software-hardware interactions can be evaluated. If an expression is used, the
tag hasDynamicConsumption = true. Expressions are composed of elements from
the sets V , C, and O, where:

– V : Contains all variables used to express dynamic behavior for a given state or tran-
sition.

– C: Represents a list of constants.
– O: Represents a finite set of mathematical operators.

2 For a better readability, the shortened notation (value|expr, unit) is used in the following
sections.

Towards Power Consumption Optimization for Embedded Systems 127

Fig. 4. Power Analysis Profile packages with stereotypes and basic tags [37].

While variables in V are still based on VSL and use the Variables type from the
VSL::Expressions package [32,39], their definition and usage are slightly adapted
and differ from the MARTE specification to enable cross-references between tags
of UML elements of a class Chw (e.g., states, transitions, attributes). The MARTE
specification describes a methodological rule, that analysis tools have to compute
the VSL::Expressions::Variables and return them to the UML model at the start of
a VSL evaluation. As a first difference, whenever tagged values are modified during
simulation, affected expressions are re-evaluated. Instead of explicit declarations for
VSL::Expressions::Variables, our approach uses a specific naming scheme to achieve a
linkage between the variable definition and the tagged value it is linked to. Examples
for the use of the implicit naming scheme are:

– $ � tag �: Denotes a tagged value for a tag in the scope of the current UML
element.

– $SM. � NameOfState � . � tag �: Represents a tag of a state within a state
machine.

– $SM. � NameOfTransition � . � tag �: Represents a tag for a transition
within a state machine.

– $ATTR. � attributeId �: Denotes an attribute annotated with HWPowerAt-
tribute. The tagged value id must match � attributeId �.

Figure 5 introduces an example of a hardware component model for a
DimmableLED to demonstrate the basic concepts and the usage of the PAP. The upper
part of Fig. 5 shows the class definition of the DimmableLED, derived from the base
class PeripheralDevice (c.f. Sect. 4.2). The behavior is expressed as a state machine and
described in the lower part of Fig. 5. The class definition includes an internal attribute
brightnessLevel as a configuration parameter of the current brightness and a method

128 M. Schaarschmidt et al.

Fig. 5. Basic example of a hardware component model annotated with PAP [37].

to change the brightnessLevel. The stereotype HWDeviceAbstraction is applied to the
attribute brightnessLevel to define a unique id as well as a specification about the value
range and probability distribution, which may be used by simulation environments if
return values have to be generated. When the functions powerOff() and powerOn() are
executed, events are emitted initiating state transitions. The state machine consists of
two states Off and On, which are extended with the HWDeviceBehavioralState stereo-
type. For the Off state, the tagged value of the current tag is set to a fixed value. Since
the actual consumption depends on the brightnessLevel, the current tagged value of the
On state is defined as an expression. The value of the brightnessLevel can be included
in the expression by using the aforementioned implicit naming scheme resulting in the
variable name $ATTR.brightness. The value for the tag current of the On state can
thereby be declared as (($ATTR.brightness/100) · 5,mA). As a result, the value
can vary between 0.05 and 5 mA. By calling the method setBrightness, this attribute
can be modified by software models, which affects the power consumption when the
DimmableLED is enabled.

6 Model Transformation

UML is able to define and describe Platform Independent Models (PIMs). A PIM
defines a highly abstract model and contains the formal specification of the structure
and functionality of a system while being independent of any specific implementation
technologies. A Platform Specific Model (PSM) on the other hand defines a model
using a specific technology to implement the functionalities defined by a PIM [33].
The transformation process between models, e.g., PIM to PIM and PIM to one or more
PSMs, represents an important feature of MDD and is called model-to-model (M2M)

Towards Power Consumption Optimization for Embedded Systems 129

transformation or model mapping. According to [10], the model m of the system s
described with the formalism (metamodel) f can be defined as m(s)/f . The transfor-
mation from a source model ms(s)/fs into a target model mt(s)/ft can be written as
ms(s)/fs → mt(s)/ft. In MDD, this process is used to transform PIMs (e.g., UML
models) into language-specific PSMs (e.g., C/C++), which, in turn, are translated into
an executable program using model-to-text transformations. For this approach, we per-
form an exogenous transformation m(s)/UML → m(s)/MATLAB of hardware
component models (c.f. Sect. 4) annotated with the PAP (c.f. Sect. 5) from a UML-
based MDD tool (e.g., IBM Rhapsody) to an analysis tool (e.g., MATLAB) for a power
consumption optimization of the software model based on trace analysis. The transfor-
mation of UML classes and state machines in this work does not cover the complete
definition and is limited to elements defining the behavior, power-related tagged values,
and attributes of hardware component models. For the transformation of UML-based
models like classes and state machines, we provide a lightweight JSON-based inter-
change format [29].

Fig. 6. Example of a JSON-based hardware component model [37].

130 M. Schaarschmidt et al.

Figure 6 shows a basic example description of a single hardware component model
for the DimmableLED introduced in Sect. 5. To take the dynamic behavior of hardware
components into account, the description includes the basic state machine structure,
power-related tagged values, and class attributes, structured as follows:

– Name: The name of the hardware component.
– Attr: Contains all attributes annotated with the stereotype HWPowerAttribute. The
inner structure of a single attribute is not fixed but may contain the following ele-
ments:

• Id: The attribute’s unique id used for variables in equations.
• Type: The data type of the attribute.
• Value (optional): Probability distribution provided by the MARTE
NFP CommonType [32,39]. Used if values have to be generated, e.g., as external
input or to define test cases.

– States: Contains operational states of a hardware component. Every state can be
described with the following elements:

• Id: The attribute’s unique id.
• Behavior: Describes the energy-related behavior of the state. The hasDynam-
icConsumption flag indicates if the power consumption of the transition is static
(e.g., fixed value) or dynamic (e.g., equation). The execution time (execTime)
can be a fixed value, equation, or left empty if a state change is not initialized
automatically.

– Transitions: Contains state transitions of a hardware component. Every transition
can be described as follows:

• DefaultTransitions: True, if the current transition is a default transition, false
otherwise.

• FromState: The unique id of the source state. Not defined if the transition is a
default transition.

• ToState: The unique id of the destination state.
• Behavior: Describes the energy-related behavior of the transition. The hasDy-

namicConsumption flag indicates if the power consumption of the transition is
static (e.g., fixed value) or dynamic (e.g., equation). The execution time (exec-
Time) can be a fixed value, equation, or 0 if the transition is instantaneous with-
out any delays.

For the evaluation of our approach (c.f. Sect. 8), we implemented an extension for IBM
Rhapsody to map a hardware component model to the JSON-based interchange descrip-
tion. The algorithm of the extension is described in the UML activity diagram in Fig. 7.
In case of the hardware component model for theDimmableLED (c.f. Fig. 5) introduced
in Sect. 5, the JSON-based description shown in Fig. 6 can be generated. For this, the
UML class definition of the DimmableLED is analyzed and metadata like the name are
temporally stored. In the next step, all attributes annotated with the HWPowerAttribute
are analyzed and the content of the tags id, type, and value are saved. Afterwards, the
algorithm checks if a state machine with theHWDeviceBehavior exists. If a correspond-
ing state machine is found, the analysis of states and transitions is performed. In the last
step, the JSON-based interchange description based on the stored information is gener-
ated. If no state machine exists, the algorithm terminates without producing an output.

Towards Power Consumption Optimization for Embedded Systems 131

The resulting JSON file is used inMATLAB for tracing purposes. For other UML-based
MDD tools, this process might be different.

7 Model-Driven Development Workflow Integration

This section discusses the integration of our approach (c.f. Sect. 4–6) into an MDD
workflow. In Fig. 8, the extended MDD workflow is described using a UML activ-
ity diagram. The workflow starts with the definition of functional and non-functional
requirements for the software application model. The next steps 2–5 can be processed
simultaneously by the software developer. In step 2, the software model is defined while
in step 3 all hardware components are identified, which can be accessed or influenced
by the software model, e.g., MCUs, sensors, actuators, and communication interfaces.
To allow the reuse of hardware models in future projects, hardware component models
can be stored in model libraries. If no hardware model exists for the specific compo-
nent, software developers may use data sheets to derive hardware component models
(c.f. Sect. 4) (steps 4(a)–4(b)). Those models are annotated with PAP (c.f. Sect. 5) to
add power and execution time properties and are automatically stored in the model
library (steps 4(c)–4(d)). As described in step 5(a), MDD tools like IBM Rhapsody or
Enterprise Architect [41] can be used to query model libraries for existing hardware
component model descriptions. Model libraries can be private, community-driven, or
vendor-specific, where hardware component model descriptions are provided as a pack-
age along with drivers and data sheets. In step 6, both models are linked together by
integrating function calls of the hardware component model interface into the software
model, e.g., as opaque behavior. Since the function signatures provided by hardware
component models should be identical with the driver implementations, hardware mod-
els can be replaced by driver implementations when the software model is transformed
into platform-specific source code. By this, no further code adjustments of the resulting
software application are required. A logging extension is added for both models in step
7 to provide basic information for power analysis by externals tools. Depending on the
MDD tool used, the extension process can be executed automatically. The intermedi-
ate model resulting from the actions in steps 6–7 also contains a system builder class
(c.f. Sect. 4.2), which is used in simulation environments to instantiate hardware com-
ponent models and make those models accessible for the software model. The system
builder is also responsible for capturing event logs, which can be provided to external
power analysis tools via Comma-Separated Values (CSV) files or a socket connection,
to achieve an analysis in real-time. In step 8, an M2M transformation is performed and
in step 9, the simulation of the software application model is executed. Afterward, the
software developer can use the results to check whether the requirements defined in
step 1 are met. If not, the software model can be optimized and the simulation repeated.
This procedure can lead to several iterations until requirements are met and energy bugs
fixed.

132 M. Schaarschmidt et al.

Fig. 7. Sequence of the JSON-base interchange file creation process.

Fig. 8. Extended MDD workflow as UML activity diagram.

Towards Power Consumption Optimization for Embedded Systems 133

8 Evaluation

Based on the methodology described in Sect. 3, our approach is elaborated in this
section by obtaining an energy profile of a software application for a typical sensor node
example in an early design phase. As shown in Fig. 9, the evaluation is designed as a
three-step process. The definition and development of the use case example as the first
step is described in Sect. 8.1. This includes a description of the hardware components
the embedded system is composed of, the derived hardware component models, and
the exemplary software application model. Section 8.2 covers the simulation part and
introduces the structure of trace logs and addresses the M2M transformation. Finally,
the analysis results and the energy profile are presented in Sect. 8.3.

8.1 Development

To evaluate our approach described in Sect. 4, 5 and 6, we defined an exemplary hard-
ware platform typical for a sensor node used in IoT use cases. The hardware system
consists of an NXP LPC54114 [30] MCU, a Bosch BME280 environmental sensor [8],
and a standard LED. The NXP LPC54114 is composed of an ARM Cortex-M4 and
ARM Cortex-M0+ co-processor. To keep this use case simple while focusing on the
evaluation of the proposed modeling concepts, the co-processor is unused and has been
disabled. While the standard LED represents a visual output, the Bosch BME280 is
used to measure the temperature, barometric pressure, and humidity of the surround-
ing. The following Table 1 gives an overview of the hardware devices used including
provided operation modes with their expected current consumption. Values for the NXP
LPC54114 are taken from a configuration with a voltage supply of 3.3V, a clock rate of
96 Mhz, and a powered flash module. All hardware models are derived from their corre-
sponding data sheets [8,30]. Figure 10 shows the state machine for the NXP LPC54114.
For this use case, only the states Active, Sleep, and Deep Sleep are used by the software
application. As shown in Table 1, the current consumption in each state of the MCU is
defined as a static value. For the states Active, Sleep, and Deep Sleep the values are set

Fig. 9. Evaluation process of our approach.

134 M. Schaarschmidt et al.

Table 1. Hardware devices with operational states and electric current values.

Device Operational state Current

NXP LPC54114 Active 9.9 mA

Sleep 3.0 mA

Deep sleep 18 µA

Deep power down 450 nA

Off 0.0 mA

Bosch BME280 Normal dynamic

Forced dynamic

Sleep 0.1 µA

Off 0.0 mA

Standard LED On 5.0 mA

Off 0.0 mA

Fig. 10. NXP LPC54114 state machine [37].

Fig. 11. Bosch BME280 state machine [37].

to 9.9 mA, 3 mA, and 18 µA respectively. Since the software application model itself
initiates all state changes of the MCU, the tag execTime for each state is left empty. The
hardware component model of the Bosch BME280 is shown in Fig. 11. The Sleep state
defines the default state of the sensor, which is automatically entered after the sensor
is powered. Depending on the configuration, the sensor can be configured dynamically
by the software application model, to perform a single measurement (Forced state) or
to continuously take measurements (Normal state). The dynamic consumption for the
Bosch BME280 in the operation states Normal and Forced (c.f. Table 1) depends on the
current configuration of the sensor. A software application model can change the over-

Towards Power Consumption Optimization for Embedded Systems 135

Fig. 12. Bosch BME280 state machine in IBM Rhapsody [37].

sampling rate of each sensor provided by the Bosch BME280 during runtime, which
directly impacts the amount of electric current and the measurement time. To take this
dynamic behavior into account, class attributes for the oversampling rate of each sen-
sor (e.g., temperature, pressure, humidity) have been defined as configuration param-
eters and extended with the stereotype HWPowerAttribute following our concept pro-
posed in Sect. 4–5. For the tag id of the stereotype, the values T Sample, P Sample, and
H Sample have been defined, which are used in the value fields of the current and exec-
Time tags provided by the HWDeviceBehavioralState stereotype, as shown in Fig. 12.
By re-evaluating the equations during simulation, configuration changes initiated by
the software application model can be taken into account. For the software-hardware
interaction between the BME280 hardware component model and the software applica-
tion, we abstracted the existing sensor driver implementation3. We furthermore applied
HWBehavioralImpact stereotypes on each operation affecting the power-related behav-
ior. The state machine of the LED will not be discussed in detail due to its simplicity.
Besides the definition of hardware component models, we also implemented an exem-
plary software application model. The software application is based on a typical use
case for smaller IoT systems, where temperature values are measured and evaluated.
As pictured in Fig. 13, the software model is based on a state machine with four differ-
ent states:

– Input: A single measurement of the Bosch BME280 (Forced) is performed.
– Process: In this state, the measurement is processed. Measurement values are com-
pared against a threshold and if the threshold exceeds, the application will switch
to the Output state and to the Sleep state otherwise. Active outputs will be disabled
before entering the Sleep state.

– Output: As a visual output, the LED will be enabled and the system will switch to
the Sleep state afterwards.

3 https://github.com/BoschSensortec/BME280 driver.

https://github.com/BoschSensortec/BME280_driver

136 M. Schaarschmidt et al.

– Sleep: In this state, the MCU is set to a low power mode for a fixed amount of time
before re-entering the Input state automatically.

Fig. 13. Software application model [37].

In the state Sleep, it is expected, that the MCU is set into the Deep Sleep state. For the
evaluation of our approach, we prepared the software application with an energy bug. If
the LED is powered in the Output state, the event evOutputCompleted will be triggered.
Because of a faulty event handling in the Sleep state of the software model, the MCU is
set to the Sleep mode instead, consuming more power than expected. Since there exists
no functional error in the application logic nor on the code level, this energy bug may
be hard to detect with normal existing debugging methods.

8.2 Simulation

IBM Rhapsody is used for a continuous simulation of UML-based models and associ-
ated state machines. The simulation environment has been extended to be capable of
generating event logs for software-hardware interactions and state changes of hardware
models. All logs are aggregated and stored in a CSV file, where each entry has the same
structure and consists of the following elements:

– Timestamp: The simulation time in milliseconds of the event.
– Device: The name of the affected hardware component.
– State: New operational state of the devices. Required for behavior messages.
– Settings: List of affected attributes of a configuration change expressed as a JSON
structure. Required for configuration messages.

We defined two different message types for behavior and configuration-related mes-
sages. A state change of a hardware component represents a typical example of
a behavior-related message and can be written as Timestamp;Device;NewState;.
An example for a configuration-related message with two changed parameters
can be expressed as Timestamp;Device;;Settings:{“ParamA”: “NewStringValue”,
“ParamB”: NewIntValue}. For the proof of concept, a plugin for IBM Rhapsody has
been developed to import and export hardware component models using the proposed
M2M interchange format definition (c.f. Sect. 6). As a preparation for the simulation, a
measurement series with the Bosch BME280 was performed. The measured values are
passed back to the software model when the hardware model of the sensor is set into a
measurement state.

Towards Power Consumption Optimization for Embedded Systems 137

0 20 40 60 80 100 120 140 160 180
Time (s)

0
1
2
3
4
5
6
7
8
9

10
11
12

C
ur

re
nt

 (
m

A
)

0
0.25
0.5
0.75
1
1.25
1.5
1.75
2
2.25
2.5
2.75
3

T
ot

al
 E

ne
rg

y
C

on
su

m
pt

io
n

(W
s)Power Estimation - Application with Energy Bug

LPC54114 BME280 LED Total Energy

0 20 40 60 80 100 120 140 160 180
Time (s)

0
1
2
3
4
5
6
7
8
9

10
11
12

C
ur

re
nt

 (
m

A
)

0
0.25
0.5
0.75
1
1.25
1.5
1.75
2
2.25
2.5
2.75
3

T
ot

al
 E

ne
rg

y
C

on
su

m
pt

io
n

(W
s)Power Estimation - Bug Free Application

LPC54114 BME280 LED Total Energy

Fig. 14. Energy profile of the software application model [37].

8.3 Analysis

In this section, we evaluate our approach and obtain an energy profile of the software
application model in an early design phase. The analysis in MATLAB is based on the
recorded event logs and the M2M transformation of the hardware component models.
The information provided by the M2M transformation are used in Matlab as a lookup
table so that lists containing all states, transitions, and attributes are generated and
used to calculate the power consumption of the current and active state for each hard-
ware component. Figure 14 shows the resulting energy profiles of the software model
interacting with the defined hardware components. The simulation was executed for a
total of 180 s. The upper part of Fig. 14 shows the power estimation and accumulated
energy consumption for the software application containing the energy bug. The result-
ing energy profile after the software developer has changed the software model and fixed
the energy bug is shown in the lower part of Fig. 14. As a result of the fixed energy bug,
the total consumption could be reduced by 25 % from approx. 2.36 Ws to 1.76 Ws.
It must be mentioned that the error adds up over time, resulting in a more significant
impact when the system is operated for a longer period.

9 Discussion

The approach presented in this article can be used by software developers to esti-
mate and optimize power consumption for a software application model in early design
phases. Our novel UML-based profile enables fine-grained modeling of hardware com-
ponents and dynamic hardware behavior. Hardware models can be linked with the soft-
ware application model to make software-hardware interactions visible. By this, we

138 M. Schaarschmidt et al.

were able to address RQ1–3. To answer RQ4, we extended the simulation environment
with the capability to provide event logs that are used for trace analysis in MATLAB.
The trace analysis and the presented M2M transformation are used to derive energy pro-
files and to identify energy bugs of software application models in early design stages.
The evaluation has shown that our approach can analyze software-hardware interac-
tions. The impact of energy-related software design patterns [38] on the entire system
may also be analyzed with the presented approach. Additionally, sub-systems, indi-
vidual program sequences, test cases, and power-related NFRs, e.g., total peak power
or battery capacity, may be evaluated, which can lead to early design changes in the
application’s workflow. The presented concept may also be used to perform exploration
methods [18] and evaluate the best software-hardware configuration based on power and
use case related factors. The presented concepts are tool independent. Hardware models
may be exchanged between tools and reused in different projects due to the lightweight
interchange format, resulting in increased developer productivity. The visualization of
possible energy bugs is also useful to improve the quality of the application. With a
focus on the software developer perspective, we also presented a concept focusing on
the integration of our approach into an MDD workflow.

There exist also limitations that can impact the results when our approach is used.
The accuracy of models decreases with the level of abstraction. A highly accurate sim-
ulation of an MCU, for example, must take all components (ADCs, timer, GPIOs)
into account and use intermediate code as an input. The transformation of UML-based
models into intermediate code representations for specific platforms can be a time-
consuming manual endeavor and is therefore unsuitable for early design stages. Addi-
tionally, parameters for tagged values of the PAP are currently derived from data sheets
or have been previously measured in specific environments (e.g., temperature), resulting
in another loss of accuracy. The last limitation addresses the simulation environment of
current MDD tools, where the execution time does not match the runtime of generated
code directly executed on an embedded system.

Overall, our approach offers valuable feedback for software developers. Further-
more, the overall development time and costs can be reduced by performing an energy-
related re-design and optimization of the software application in early design phases.

10 Conclusion

The work presented in this article represents an important step towards an energy
transparent software application in MDD. Our concept offers a novel approach to pro-
vide power estimations for software applications in early design phases by considering
software-hardware interactions and dynamic power-related behavior of hardware com-
ponents. Based on UML and MARTE, we created hardware component models as an
abstraction of the embedded system environment and included dynamic power charac-
teristics in their descriptions. Hardware accesses initiated by the software applications
can be traced using simulations environments of MDD tools while MATLAB was used
for the analysis and evaluation steps. By this, software applications of embedded sys-
tems can be evaluated in early design stages without the need for real hardware compo-
nents. To improve the quality of software applications further, our approach may also
be used to track down energy bugs of software applications.

Towards Power Consumption Optimization for Embedded Systems 139

Future work includes the comparison of our approach with physical measurements
on real hardware platforms for accuracy evaluations. Furthermore, we are planning to
extend our concepts to include energy sources and communication interfaces. We are
also planning to provide a simulation and analysis environment for deriving energy
profiles, detecting energy bugs, and evaluating NFRs.

References

1. Abd El-Mawla, N., Badawy, M., Arafat, H.: IoT for the failure of climate-change mitigation
and adaptation and IIoT as a future solution. World J. Environ. Eng. 6(1), 7–16 (2019).
https://doi.org/10.12691/wjee-6-1-2

2. Andrade, E., Maciel, P., Falcão, T., Nogueira, B., Araujo, C., Callou, G.: Performance
and energy consumption estimation for commercial off-the-shelf component system design.
Innovations Syst. Softw. Eng. 6(1–2), 107–114 (2010). https://doi.org/10.1007/s11334-009-
0110-7

3. Arpinen, T., Salminen, E., Hämäläinen, T.D., Hännikäinen, M.: Marte profile extension for
modeling dynamic power management of embedded systems. J. Syst. Archit. 58(5), 209–219
(2012). https://doi.org/10.1016/j.sysarc.2011.01.003

4. Atitallah, Y.B., Mottin, J., Hili, N., Ducroux, T., Godet-Bar, G.: A power consumption esti-
mation approach for embedded software design using trace analysis. In: Proceedings of the
41st Euromicro Conference on Software Engineering and Advanced Applications, Madeira,
Portugal, 26–28 August 2015, pp. 61–68 (2015). https://doi.org/10.1109/SEAA.2015.34

5. Banerjee, A., Chattopadhyay, S., Roychoudhury, A.: On testing embedded software. In:
Advances in Computers, vol. 101, pp. 121–153. Elsevier (2016)

6. Banerjee, A., Chong, L.K., Chattopadhyay, S., Roychoudhury, A.: Detecting energy bugs
and hotspots in mobile apps. In: Proceedings of the 22nd ACM SIGSOFT International
Symposium on Foundations of Software Engineering, FSE 2014, Hong Kong, China, 16–
21 November 2014, pp. 588–598 (2014). https://doi.org/10.1145/2635868.2635871. ISBN
978-1-450-33056-5

7. Benini, L., Bogliolo, A., de Micheli, G.: A survey of design techniques for system-level
dynamic power management. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 8(3), 299–
316 (2000). https://doi.org/10.1109/92.845896

8. Bosch Sensortec GmbH: BME280 - Data sheet, Version 1.9. Document Number BST-
BME280-DS001-18. https://www.bosch-sensortec.com/media/boschsensortec/downloads/
datasheets/bst-bme280-ds002.pdf (2020). Accessed 09 Jul 2021

9. Bouguera, T., Diouris, J.F., Chaillout, J.J., Jaouadi, R., Andrieux, G.: Energy consumption
model for sensor nodes based on LoRa and LoRaWAN. Sensors 18(7), 2104 (2018)

10. Caplat, G., Sourrouille, J.L.: Considerations about model mapping. In: Bezivin, J., Gogolla,
M. (eds.) Workshop in Software Model Engineering (WiSME) at the 6th International Con-
ference of the Unified Modeling Language, Modeling Languages and Applications (UML
2003), San Francisco, CA, USA, 21 October 2003

11. Cisco Systems: Cisco annual internet report (2018–2023). White Paper C11–741490-01.
https://www.cisco.com/c/en/us/solutions/collateral/executive-perspectives/annual-internet-
report/white-paper-c11-741490.html (2020)

12. Danese, A., Pravadelli, G., Zandonà, I.: Automatic generation of power state machines
through dynamic mining of temporal assertions. In: Proceedings of the 2016 Conference
on Design, Automation & Test in Europe, Dresden, Germany, DATE 2016, 14–18 March
2016, pp. 606–611. EDA Consortium, San Jose (2016). ISBN 9783981537062

https://doi.org/10.12691/wjee-6-1-2
https://doi.org/10.1007/s11334-009-0110-7
https://doi.org/10.1007/s11334-009-0110-7
https://doi.org/10.1016/j.sysarc.2011.01.003
https://doi.org/10.1109/SEAA.2015.34
https://doi.org/10.1145/2635868.2635871
https://doi.org/10.1109/92.845896
https://www.bosch-sensortec.com/media/boschsensortec/downloads/datasheets/bst-bme280-ds002.pdf
https://www.bosch-sensortec.com/media/boschsensortec/downloads/datasheets/bst-bme280-ds002.pdf
https://www.cisco.com/c/en/us/solutions/collateral/executive-perspectives/annual-internet-report/white-paper-c11-741490.html
https://www.cisco.com/c/en/us/solutions/collateral/executive-perspectives/annual-internet-report/white-paper-c11-741490.html

140 M. Schaarschmidt et al.

13. Douglass, B.P.: Design Patterns for Embedded Systems in C: An Embedded Software Engi-
neering Toolkit. Newnes/Elsevier, Oxford and Burlington (2011)

14. Elijah, O., Rahman, T.A., Orikumhi, I., Leow, C.Y., Hindia, M.N.: An overview of internet of
things (IoT) and data analytics in agriculture: benefits and challenges. IEEE Internet Things
J. 5(5), 3758–3773 (2018)

15. Friedli, M., Kaufmann, L., Paganini, F., Kyburz, R.: Energy efficiency of the inter-
net of things: technology and energy assessment report prepared for IEA 4e EDNA
(2016). https://www.iea-4e.org/document/384/energy-efficiency-of-the-internet-of-things-
technology-and-energy-assessment-report

16. Georgiou, K., Xavier-de Souza, S., Eder, K.: The IoT energy challenge: a software perspec-
tive. IEEE Embed. Syst. Lett. 10(3), 53–56 (2018)

17. Gomez, C., DeAntoni, J., Mallet, F.: Multi-view power modeling based on UML, MARTE
and SysML. In: Proceedings of the 2012 38th Euromicro Conference on Software Engineer-
ing and Advanced Applications, Cesme, Turkey, 05–08 September 2012, pp. 17–20 (2012).
https://doi.org/10.1109/SEAA.2012.66

18. Gries, M.: Methods for evaluating and covering the design space during early design devel-
opment. Integr. VLSI J. 38(2), 131–183 (2004). https://doi.org/10.1016/j.vlsi.2004.06.001

19. Grunwald, A., Schaarschmidt, M., Westerkamp, C.: LoRaWAN in a rural context: Use cases
and opportunities for agricultural businesses. In: Roer, P. (ed.) Proceedings of the Mobile
Communication-Technologies and Applications; 24. ITG-Symposium, ITG-Fachbericht,
15–16 May 2019, pp. 134–139. VDE-Verl. GmbH, Osnabrück, Germany (2019)

20. Gupta, A., Tsai, T., Rueb, D., Yamaji, M., Middleton, P.: Forecast: internet of things: end-
points and associated services, worldwide, vol. 2017 (2017). https://www.gartner.com/en/
documents/3840665/forecast-internet-of-things-endpoints-and-associated-ser

21. Hagner, M., Aniculaesei, A., Goltz, U.: UML-based analysis of power consumption for real-
time embedded systems. In: Proceedings of the 10th International Conference on Trust, Secu-
rity and Privacy in Computing and Communications, 16–18 November 2011, pp. 1196–1201.
IEEE, Changsha, HN,China (2011). https://doi.org/10.1109/TrustCom.2011.161. ISBN 978-
1-4577-2135-9

22. Holst, A.: Number of internet of things (IoT) connected devices worldwide from 2019 to
2030 (2021). https://www.statista.com/statistics/1183457/iot-connected-devices-worldwide/

23. Holst, A.: Number of internet of things (IoT) connected devices worldwide from 2019 to
2030, by communications technology (2021). https://www.statista.com/statistics/1194688/
iot-connected-devices-communications-technology/

24. IBM: IBM Engineering Systems Design Rhapsody - Developer (2021). https://www.ibm.
com/products/uml-tools. Accessed 12 July 2021

25. IEEE SA: IEEE Standard for IP-XACT, Standard Structure for Packaging, Integrating, and
Reusing IP within Tool Flows. Document Number IEEE 1685–2014. https://standards.ieee.
org/standard/1685-2014.html (2014)

26. Iyenghar, P., Pulvermueller, E.: A model-driven workflow for energy-aware scheduling anal-
ysis of IoT-enabled use cases. IEEE Internet Things J. 5(6), 4914–4925 (2018). https://doi.
org/10.1109/JIOT.2018.2879746

27. Julien, N., Laurent, J., Senn, E., Martin, E.: Power consumption modeling and characteri-
zation of the TI c6201. IEEE Micro 23(5), 40–49 (2003). https://doi.org/10.1109/MM.2003.
1240211

28. Martinez, B., Monton, M., Vilajosana, I., Prades, J.D.: The power of models: modeling power
consumption for IoT devices. IEEE Sens. J. 15(10), 5777–5789 (2015). https://doi.org/10.
1109/JSEN.2015.2445094

https://www.iea-4e.org/document/384/energy-efficiency-of-the-internet-of-things-technology-and-energy-assessment-report
https://www.iea-4e.org/document/384/energy-efficiency-of-the-internet-of-things-technology-and-energy-assessment-report
https://doi.org/10.1109/SEAA.2012.66
https://doi.org/10.1016/j.vlsi.2004.06.001
https://www.gartner.com/en/documents/3840665/forecast-internet-of-things-endpoints-and-associated-ser
https://www.gartner.com/en/documents/3840665/forecast-internet-of-things-endpoints-and-associated-ser
https://doi.org/10.1109/TrustCom.2011.161
https://www.statista.com/statistics/1183457/iot-connected-devices-worldwide/
https://www.statista.com/statistics/1194688/iot-connected-devices-communications-technology/
https://www.statista.com/statistics/1194688/iot-connected-devices-communications-technology/
https://www.ibm.com/products/uml-tools
https://www.ibm.com/products/uml-tools
https://standards.ieee.org/standard/1685-2014.html
https://standards.ieee.org/standard/1685-2014.html
https://doi.org/10.1109/JIOT.2018.2879746
https://doi.org/10.1109/JIOT.2018.2879746
https://doi.org/10.1109/MM.2003.1240211
https://doi.org/10.1109/MM.2003.1240211
https://doi.org/10.1109/JSEN.2015.2445094
https://doi.org/10.1109/JSEN.2015.2445094

Towards Power Consumption Optimization for Embedded Systems 141

29. Nurseitov, N., Paulson, M., Reynolds, R., Izurieta, C.: Comparison of JSON and XML data
interchange formats: a case study. In: Che, D. (ed.) Proceedings of the 22nd International
Conference on Computer Applications in Industry and Engineering (CAINE), 4–6 November
2009, pp. 157–162. ISCA, San Francisco, CA, USA (2009)

30. NXP Semiconductors: LPC5411x - Product data sheet, Rev. 2.5. Document identifier
LPC5411x. https://www.nxp.com/docs/en/data-sheet/LPC5411X.pdf (2019). Accessed 07
Sep 2021

31. Object Management Group: Unified Modeling Language, Version 2.5.1. OMG Document
Number formal/17-12-05. https://www.omg.org/spec/UML/2.5.1/ (2017)

32. Object Management Group: A UML Profile for MARTE: Modeling and Analysis of Real-
Time and Embedded Systems, Version 1.2. OMG Document Number formal/19-04-01.
https://www.omg.org/spec/MARTE/1.2/ (2019). Accessed 07 Sep 09 2021

33. Object Management Group (gG): Model Driven Architecture (MDA): MDA Guide rev. 2.0.
OMG Document Number ormsc/2014-06-01. https://www.omg.org/cgi-bin/doc?ormsc/14-
06-01 (2014). Accessed 07 Sep 2021

34. Pang, C., Hindle, A., Adams, B., Hassan, A.E.: What do programmers know about software
energy consumption? IEEE Softw. 33(3), 83–89 (2016)

35. Pathak, A., Hu, Y.C., Zhang, M.: Bootstrapping energy debugging on smartphones: a first
look at energy bugs in mobile devices. In: Proceedings of the 10th ACM Workshop on Hot
Topics in Networks, HotNets-X, Cambridge, MA, USA, 14–15 November 2011, 6 p. (2011).
https://doi.org/10.1145/2070562.2070567. Article No. 5. ISBN 978-1-4503-1059-8

36. Pinto, G., Castor, F., Liu, Y.D.: Mining questions about software energy consumption. In:
Proceedings of the 11th Working Conference on Mining Software Repositories, MSR 2014,
31 May–1 June 2014, pp. 22–31. ACM, Hyderabad, India (2014). https://doi.org/10.1145/
2597073.2597110. ISBN 978-1-4503-2863-0

37. Schaarschmidt., M., Uelschen., M., Pulvermüller., E.: Power consumption estimation
in model driven software development for embedded systems. In: Proceedings of the
16th International Conference on Software Technologies - ICSOFT, 6–8 July 2021,
pp. 47–58. INSTICC, SciTePress, Online Streaming (2021). https://doi.org/10.5220/
0010522700470058. ISBN 978-989-758-523-4. ISSN 2184-2833

38. Schaarschmidt, M., Uelschen, M., Pulvermüller, E., Westerkamp, C.: Framework of software
design patterns for energy-aware embedded systems. In: Proceedings of the 15th Interna-
tional Conference on Evaluation of Novel Approaches to Software Engineering - ENASE,
5–6 May 2020, pp. 62–73. INSTICC, SciTePress, Online Streaming (2020). https://doi.org/
10.5220/0009351000620073. ISBN 978-989-758-421-3, ISSN 2184-4895

39. Selic, B., Gérard, S.: Modeling and analysis of real-time and embedded systems with UML
and MARTE: Developing cyber-physical systems. Morgan Kaufmann, Waltham (2014)

40. Silicon Labs: Energy debugging tools for embedded applications. Technical Report (2010)
41. SparxSystems: Enterprise architect (2020). https://sparxsystems.com/products/ea/index.

html. Accessed 12 Jul 2021
42. Tan, T.K., Raghunathan, A., Jha, N.K.: Software architectural transformations: a new app-

roach to low energy embedded software. In: Design, Automation, and Test in Europe Con-
ference and Exhibition, 7 March 2003, pp. 1046–1051. IEEE Computer Society, Munich,
Germany (2003). https://doi.org/10.1109/DATE.2003.1253742. ISBN 978-0-7695-1870-1

43. The MathWorks Inc: MATLAB (2021). https://www.mathworks.com/products/matlab.
Accessed 12 Jul 2021

44. Vuran, M.C., Salam, A., Wong, R., Irmak, S.: Internet of underground things in precision
agriculture: architecture and technology aspects. Ad Hoc Netw. 81, 160–173 (2018). https://
doi.org/10.1016/j.adhoc.2018.07.017

https://www.nxp.com/docs/en/data-sheet/LPC5411X.pdf
https://www.omg.org/spec/UML/2.5.1/
https://www.omg.org/spec/MARTE/1.2/
https://www.omg.org/cgi-bin/doc?ormsc/14-06-01
https://www.omg.org/cgi-bin/doc?ormsc/14-06-01
https://doi.org/10.1145/2070562.2070567
https://doi.org/10.1145/2597073.2597110
https://doi.org/10.1145/2597073.2597110
https://doi.org/10.5220/0010522700470058
https://doi.org/10.5220/0010522700470058
https://doi.org/10.5220/0009351000620073
https://doi.org/10.5220/0009351000620073
https://sparxsystems.com/products/ea/index.html
https://sparxsystems.com/products/ea/index.html
https://doi.org/10.1109/DATE.2003.1253742
https://www.mathworks.com/products/matlab
https://doi.org/10.1016/j.adhoc.2018.07.017
https://doi.org/10.1016/j.adhoc.2018.07.017

142 M. Schaarschmidt et al.

45. Zanella, A., Bui, N., Castellani, A., Vangelista, L., Zorzi, M.: Internet of things for smart
cities. IEEE Internet Things J. 1(1), 22–32 (2014)

46. Zhou, H.Y., Luo, D.Y., Gao, Y., Zuo, D.C.: Modeling of node energy consumption for wire-
less sensor networks. Wirel. Sens. Netw. 03(01), 18–23 (2011). https://doi.org/10.4236/wsn.
2011.31003

47. Zhu, Z., Olutunde Oyadiji, S., He, H.: Energy awareness workflow model for wireless sensor
nodes. Wirel. Commun. Mob. Comput. 14(17), 1583–1600 (2014). https://doi.org/10.1002/
wcm.2302

https://doi.org/10.4236/wsn.2011.31003
https://doi.org/10.4236/wsn.2011.31003
https://doi.org/10.1002/wcm.2302
https://doi.org/10.1002/wcm.2302

Materializing Microservice-oriented
Architecture from Monolithic
Object-oriented Source Code

Pascal Zaragoza1,2(B), Abdelhak-Djamel Seriai1(B), Abderrahmane Seriai2(B),
Anas Shatnawi2(B), Hinde-Lilia Bouziane1(B), and Mustapha Derras2(B)

1 LIRMM, CNRS and University of Montpellier, Montpellier, France
{zaragoza,seriai,bouziane}@lirmm.fr

2 Berger-Levrault, Paris, France
{abderrahmane.seriai,anas.shatnawi}@berger-levrault.com

Abstract. Following the evolution of Cloud Computing and Service-
Oriented Architecture (SOA), microservices (MS) have naturally
emerged as the next trend due to the advantages they provide. These
advantages include increased maintainability, better scalability, and an
overall better synergy with DevOps techniques. This makes migrating
legacy software towards a microservice-oriented architecture (MSA) an
attractive prospect for organizations. The migration process is a complex
and consequently risky endeavor that can be decomposed into two phases
(1) the microservice-based architecture recovery phase and (2) the trans-
formation (i.e. materialization) phase. Several studies have been done to
automate the microservice architecture recovery phase. However, to the
best of our knowledge, no work has been completed to automate the
transformation phase. In this paper, we propose a systematic approach
to refactor the existing code of an object-oriented monolithic application
towards an MS-oriented one by using the target architecture from the
recovery phase as a guide. By defining and applying a set of transforma-
tion patterns, we are able to generate a set of deployable microservices.
Finally, we validate our approach by automating it through our tool
MonoToMicro, and we apply it to a set of monolithic Java applications
to generate a set of MSAs.

Keywords: Microservices · Monolith · Modernization · Reverse
engineering · Refactoring · Transformation · Software architecture

1 Introduction

Over the past decade, there has been a significant paradigm shift towards cloud
computing. As organizations try to keep up with the latest organizational, con-
ceptual and technological trends and avoid accumulating technical debt, there
has been a demand for shifting legacy systems to the Cloud [22]. From this shift,
the microservice-oriented architecture (MSA) is a recent architectural style that
has emerged to take advantage of the Cloud [27]. In an MSA, applications are
c© Springer Nature Switzerland AG 2022
H.-G. Fill et al. (Eds.): ICSOFT 2021, CCIS 1622, pp. 143–168, 2022.
https://doi.org/10.1007/978-3-031-11513-4_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-11513-4_7&domain=pdf
https://doi.org/10.1007/978-3-031-11513-4_7

144 P. Zaragoza et al.

developed as a suite of small services, each running in its own process and com-
municating through lightweight interfaces [20,23]. Individually, each microservice
is technologically independent, and functionally autonomous while guaranteeing
its autonomy with regard to their manipulated data. As a consequence, this
results in a more manageable codebase as each microservice can be managed by
a smaller team [6,32]. These small manageable services used in conjunction with
popular DevOps techniques enable quick deployment and better scalability on
the Cloud.

Meanwhile, enterprise application are often built in three parts: the client-
side user interface (UI), a server-side application that handles the business logic,
and the database [20]. In the MSA style, the server-side application is divided
into a group of microservices. In contrast, the monolithic architecture style builds
the server-side application as a single logical executable unit (i.e., monolith) [20].
Initially, the development of monolith is relatively simple. However, as product
requirements change and grow, they become large and complex and thus harder
to maintain. Furthermore, any change to the application requires rebuilding
and redeploying the entire monolith [30]. After deployment, these monolith are
rigid as increasing the workload requires duplicating the entire application. The
duplication of instance is resource-intensive, as every part of the application
must be replicated even when only one feature is utilized [29].

For these reasons, companies are increasingly interested in migrating their
existing monolithic legacy systems towards a microservice-based one. Realisti-
cally, the migration process is a two-step process. The first step of the process
involves recovering the microservice architecture from the existing application.
In the second step, the extracted microservice architecture is then used to mate-
rialize (i.e., transform) the source code of the MSA.

Several approaches address the first step of the migration process by parti-
tioning the OO implementation of a given monolithic application into clusters
of classes that can later be used in the materialization step [4,5,10,11,17,18,
21,24,26,28]. However, they either do not address the materialization step or
complete this step manually. Although the recovered clusters help understand
the target MSA, the source code must be transformed to conform to the MSA
style (service-based, message-oriented communication, etc.).

Concretely, the goal of the materialization step is to transform the exist-
ing monolithic source code to create functional microservices that conform to
the recovered microservice architecture, while preserving the business logic of
the application. With regards to monolithic applications following the object-
oriented paradigm, the difficulty of the materialization step is to transform the
OO dependencies present between the identified clusters of classes into MSA-
type dependencies (i.e. services). In addition, these transformation must adhere
to the refactoring principles (i.e. preserve the business-logic) without degrading
the performance of the overall system. However, despite the importance of the
second step of the migration, and to the best of our knowledge, no approach
have been proposed to automate it.

Materializing Microservice-Oriented Architecture 145

In this article, we propose a systematic approach to transform an OO applica-
tion from the monolithic style to an MSA one based on a set of transformation
patterns. This set of transformation patterns create microservice-based com-
munication mechanisms that preserve the semantic of the monolith while con-
forming to the principles of the MSA (e.g. message-based and data-oriented).
Furthermore, we propose an automated process, and a tool, that applies our
systematic transformation approach. Finally, we apply our approach on a set
of monolithic applications to determine whether this approach is able to refac-
tor the code while preserving the business logic and not negatively affect the
performance of the application.

This article is an extension of the work presented in the ICSOFT 2021 pro-
ceedings [33]. In this extension, we present another set of transformation patterns
to address the exception handling mechanism found in object-oriented languages.
Furthermore, we enriched the related works to present a greater view of the exist-
ing literature with regards to the migration process as a whole. We extend the
evaluation of our approach to take into consideration the transformation pat-
terns concerning the exceptions handling mechanism. Additionally, we expand
the research questions regarding the syntactic and semantic correctness of our
transformation approach, as well as the applicability of our approach on different
OO applications.

The remainder of this paper is organized as follows. Section 2 and 3 describe
the problem statement through an illustrative example and the overall migra-
tion approach. Section 4 and 5 describe the transformation patterns proposed
to automatically refactor the inter-microservice OO dependencies to materialize
fully-encapsulated microservices. While Sect. 6 presents the refactoring order of
all the identified encapsulation violations. Section 7 presents the tool developed
to make the approach proposed in this paper a reality, as well as the experimen-
tation to demonstrate the validity of the approach. Section 8 and 9 provide the
related work, a conclusion and future directions.

2 The Migration Towards an MSA: A Two-step Problem

The overall goal of the migration towards an MSA is to create structurally,
behaviorally, and operationally-correct microservices. Especially, we define a
microservice as one that follows the commonly accepted definitions which include
structural and behavioral characteristics such as “structural & behavioral auton-
omy”, “small and focused on one functionality”, and “data autonomy” [20].
Furthermore, operational characteristics include “communicate with lightweight
mechanisms”, “running on its own process”, and “automatically deployed” [20].
Later, we use these characteristics to guide the migration process.

The process of migrating a monolithic application towards an MSA is a two-
step process involving (1) the recovery of a microservice architecture from a
monolithic OO source code and (2) the transformation of the source code to
conform to the recovered architecture. Next, we propose an example application,
followed a step-by-step migration using this example to motivate the difficulties
of each migration step.

146 P. Zaragoza et al.

2.1 Motivating Example: Information Screen

In this paper, we illustrate the problems we encounter during the migration
process with a display management system (e.g., an airport information dis-
play). This application contains a DisplayManager class whose responsibility is
to handle the information and display it through the Screen class (see Fig. 1).
The information is handled using the ContentProvider class which handles con-
tent such as the current time (i.e., Clock instances) or incoming messages (i.e.,
Message instances). Finally, The Clock class uses an instance of the Timezone
class to get the time based on its GPS location.

Fig. 1. Information screen class diagram inspired [2].

2.2 Microservice-based Architecture Recovery

The goal of the MSA recovery step is to partition a monolith’s classes into a
set of clusters that forms the basis of a structurally and behaviorally-valid
microservices. Several approaches have been proposed to partition classes to
maximize the quality of each microservice based on these characteristics. They
often work to maximize the cohesiveness of the classes within a microservice
while minimizing the coupling between microservices [5,29], or [18].

The results of applying a microservice recovery approach in Information
Screen are shown in Fig. 2. In Fig. 2, five clusters are recovered. In this recovered
architecture, the microservice candidate MS1 manages and displays the content
on a screen, through its classes DisplayManager and Screen. Each class can be
placed into two different categories: internal classes and edge classes. An inter-
nal class can be defined as being a class that does not contain any inbound or
outbound dependencies with a class belonging to another cluster. This is the case

Materializing Microservice-Oriented Architecture 147

for Screen and GpsLocation. While an edge class is defined as a class which
has at least one dependency with a class belonging to another cluster. These
dependencies can be of any type (e.g. method invocation, constructor calls, or
inheritance).

2.3 OO Source Code Transformation Towards an MSA One

The architecture recovery step’s identified MSA is materialized in the transfor-
mation step. It entails converting object-oriented source code into MSA source
code. Each recovered cluster of classes is then deployed into its own microservice
during this step (i.e., microservice encapsulation).

Fig. 2. Recovered microservice architecture for the information screen application.

Yet, edge classes (e.g., DisplayManager and Clock) by definition have depen-
dencies with classes belonging to another cluster. These direct structural depen-
dencies between the classes of different microservices are called microservice
encapsulation violations, and they must be handled before a microservice
can be fully encapsulated. Indeed, all violations must be handled by refactor-
ing methods that convert all OO-type dependencies into MS-type dependencies
before a microservice can be generated.

During this step, the operational characteristic of an MSA to use message-
oriented communication between different microservices is considered. In other
words, method invocations between classes belonging to different clusters (e.g.
the method calls between DisplayManager and ContentProvider) must be
restricted to a set of provided and required interfaces that define both the web
services it provides and those it consumes. In addition, inter-process communi-
cations (IPC) calls between microservices are limited to value-based communica-
tion. In other words, only primitives and serialized data are exchanged between

148 P. Zaragoza et al.

microservices. However, a procedural call in an OO system may pass object
references between the invoking object and the invoked one. To encapsulate
microservices, the instance sharing mechanism between microservice candidates
must be resolved.

Besides these explicit OO dependencies, implicit dependencies between clus-
ters must be addressed to fully encapsulate the microservice candidates. Inher-
itance mechanism and exception handling are the two main implicit OO mech-
anisms must be addressed. Particularly, an inheritance violation is defined as
a class that has a super-class that belongs to another clusters (e.g., between
Message and Content). The exception handling violation is defined as a class
throwing an exception that is caught by a class belonging to another cluster.
Both of these OO mechanisms must be addressed and transformed into MS-type
dependencies.

Lastly, MSA generated after the transformation step must adhere to 2 addi-
tional operational characteristics: (1) microservices must run on their own pro-
cess and (2) they must be automatically deployable. To conform to these opera-
tional characteristics, each microservice must define an independent project that
must be configured for Cloud deployment. Both of these characteristics must be
addressed during the generation of the source code for each microservice.

3 MonoToMicro: A Semi-automated Refactoring
Approach

Fig. 3. The transformation process using the MonoToMicro tool [33].

In this paper, we propose a systematic way of transforming a monolithic OO
application into an MSA application with a set of transformation patterns. The
purpose of this approach is to transform monolithic object-oriented source code
into an MSA by encapsulating the clusters discovered during the initial migration
step. To do so, we define a process composed of four steps as presented in Fig. 3
which consist of: (1) detecting encapsulation violations, (2) healing encapsulation
violations, (3) packaging microservices, and (4) deploying and containerizing
microservices.

Materializing Microservice-Oriented Architecture 149

3.1 Detecting Encapsulation Violations

Each recovered cluster of classes is encapsulated in its own microservice to mate-
rialize the recovered microservice candidates from the source of object-oriented
software. On the other hand, encapsulation prevents OO dependencies between
clusters (i.e., encapsulation violations). Therefore, they must be transformed into
MS-type dependencies. However, before the transformation can take place these
encapsulation violation must be identified. To facilitate the detection of these
encapsulation violations, a set of encapsulation violation rules are proposed to
analyze the monolith:

(Rule 1:) if a cluster’s method invokes a method belonging to a class from
another cluster then it is a method invocation violation.

(Rule 2:) if a cluster’s method accesses an attribute belonging to a class from
another cluster then it is an access violation.

(Rule 3:) if a cluster’s class contains a reference targeting a class from another
cluster then it is an instance violation.

(Rule 4:) if a cluster’s class inherits a class belonging to another cluster then it
is an inheritance violation.

(Rule 5:) if a cluster’s method throws, catches or declares an exception defined
in another cluster then it is a thrown exception violation.

These rules are applied on the AST representation of the OO source code. Ini-
tially, the target architecture description is used to partition the AST nodes
that represent the classes in the OO source into clusters. Then, each node is
parsed for references towards class nodes belonging to another cluster using the
aforementioned detection rules. After all the violations have been detected, the
process of resolve all these violations can take.

3.2 Healing Encapsulation Violations

The violations detected in the preceding step must be healed using transforma-
tion rules in order to encapsulate the microservices. These transformations must
either fully heal or reduce a violation to a solvable type. Previously, the identi-
fication of encapsulation violation covered (1) method invocation, (2) attribute
access, (3) instance handling, (4) inheritance, and (5) exception handling. In
this paper, we present a set of transformation rules to heal the encapsulation
violations identified in the first step. Particularly, we separate these violations
into two categories: explicit and implicit. As a general rule, microservice should
obfuscate their internal structure and behavior while exposing a clearly-defined
interface. Violations that break this rule are considered explicit (e.g., attribute
access, instance handling, and method invocation). While implicit violations are
related to the implicit dependency between microservices caused by OO mecha-
nism (e.g., inheritance and exception handling). Therefore, we present the trans-
formation rules related to explicit violations in Sect. 4, and the transformation
rules related to implicit violations in Sect. 5. Finally, as most of the proposed
transformation rules would create different additional violations, a transforma-
tion order is presented in Sect. 6 to resolve all violations.

150 P. Zaragoza et al.

3.3 Packaging and Deployment of an MSA

Once the MSA source code has been generated, it must be packaged and made
deployable. In step (3), the violation-free microservices are packaged. To accom-
plish this, each microservice has its own project where the source code is gener-
ated. The file structures and project dependencies are then automatically con-
structed. The microservice projects are then containerized in step (4) by gener-
ating instantiable images. An image description file is created for each microser-
vice. A composition file is also created, which arranges and delivers all of the
microservices at the same time.

In this work, we concentrate on the first two steps of the transformation
phase, which comprise the major scientific roadblocks previously highlighted,
and leave the last two steps for the implementation in 7 as they comprise more
technical roadblocks. Next, we present the set of transformation patterns based
on the encapsulation type (see Sect. 4 and 5).

4 Explicit Encapsulation Violation Resolution

After fragmenting the monolithic code into different microservices (i.e. clusters
of classes), some classes are instanced in one microservice and used (i.e., invoked,
referenced, accessed) in others. To remove these type of violations, it is necessary
to provide adequate answers to the following questions: (1) How do we access
attributes of objects belonging to another microservices? (2) How do we invoke
a method existing in a class belonging to another microservice? (3) How do we
create an instance of a class belonging to another microservice? (4) When a given
instance is referenced in several microservices, how do we ensure the sharing of
this instance while preserving the business logic of the application? All of these
questions must be answered to properly heal all explicit violations.

4.1 Attribute Access

The attribute access violation can be reduced to a method invocation violation by
applying the getter/setter pattern, limiting the attribute access to the class, and
refactoring the internal code to replace all access with the appropriate method.

4.2 Method Invocation

The method invocation between two classes (e.g., ContentProvider and Dis-
playManager) belonging to different clusters is the only violation that can be
refactored without creating additional violations. To remove these encapsula-
tion violation, the set of methods from the invoked class (i.e., ContentProvider)
are extracted into a set of required and provided interfaces that are placed in
the appropriate clusters. The outgoing methods calls from DisplayManager are
then refactored to invoke the interface instead. This transformation allows us
decouple the two classes while providing an interface for future communication.

Materializing Microservice-Oriented Architecture 151

Nevertheless, after the encapsulation towards an MSA the invoked class
(e.g., ContentProvider) cannot be reached by the invoker (e.g., DisplayMan-
ager) via the required interface. Indeed, as microservice communicate exclu-
sively through lightweight mechanism (e.g., RPC or events), a technological layer
must be implemented. Therefore, the provided interfaces must be implemented,
or exposed, as a web service in the microservice containing the invoked class
(e.g., ContentProvider). In Fig. 4, a WebService class is generated to expose the
methods of ContentProvider. To achieve this goal, a method is created in the
WebService for every public method of ContentProvider, to act as a proxy to
receive a request. The proxy method then calls the appropriate method and
returns its result. From the invoking microservice, a WebConsumer class is gen-
erated to implement the required interface and handle the network calls to its
corresponding WebService class.

4.3 Instance Handling

Regarding the questions surrounding the creation and sharing of instances of a
class between multiple microservices, we propose a combination of design pat-
terns to recreate the constructor calls and the sharing of instances. More specif-
ically, we apply a Factory pattern to decouple the creation of instances between
classes belonging to different cluster. For instance, we replace the instantiation
of ContentProvider by the class DisplayManager with an interface acting as
an object factory. For simplicity, the same provided/required interfaces used

Fig. 4. Decoupling method invocations with interface-based calls and class instantia-
tion with the factory pattern.

152 P. Zaragoza et al.

to decouple method invocations between microservices are used to define these
object factory methods. In Fig. 4, this requires adding a factory method in the
required/provided interface (i.e., method createContentProvider()), and imple-
menting the corresponding methods in the WebConsumer & WebService.

Applying a Proxy Pattern is the next step in transforming the instance cre-
ation violation. According to [16], the proxy pattern is used to provide a sur-
rogate for another object to control access to it. Figure 5 illustrates the proxy
pattern applied on the class ContentProvider to propose a surrogate (Content-
ProviderProxy) and handle all method invocations from DisplayManager. In this
scenario, the proxy class acts to decouple the object referenced in one microser-
vice which is defined in another microservice. Therefore, a proxy class is created
for any class referenced in one microservice and defined in another. This proxy
class will have the same public methods and the same public constructors. How-
ever, the proxy class implementation is rewritten to use the WebConsumer class
to interact with the real class definition.

Furthermore, upon the instantiation of the proxy class, the real class’ instance
is created. To differentiate, between the proxy class and the real class, the
instances of the proxy class are called proxy instances, and instances of the
real class are called concrete instances. However, after instantiating a proxy
instance, there needs to be a mechanism to link the proxy instance to the con-
crete instance. Indeed, a proxy instance should reference its concrete instance.
Therefore, we propose that a proxy instance references its concrete instance via
the same unique reference, and any operation on a proxy instance is transferred
to its concrete instance. Finally, whenever the concrete instance is exchanged
between microservices, the unique reference is passed instead of the concrete
instance.

Fig. 5. Replacing access to an object with the proxy pattern.

Materializing Microservice-Oriented Architecture 153

Concretely, there needs to be a mechanism to keep the state of the concrete
instance between methods calls. Therefore, we implement a class to store and
manage all concrete instances created in a microservice. Whenever a factory is
called to create a concrete instance, it sends the object to a storage class (e.g.,
the Database class in Figure 5 to preserve it. In return the storage class returns a
token for accessing the object. The factory method returns the token via its web
service implementation to the proxy instance which stores it for later method
invocations. Later, when a proxy-instance method is invoked, it transfer the
request along with the token to the appropriate web service method. The token
adds the required context for the web service to load the concrete instance and
invoke the correct method.

Another thing to consider is that complex objects may be passed as a param-
eter between microservices. While primitives or data classes can be easily seri-
alized, certain objects and their states cannot be serialized without losing infor-
mation. Since microservices are limited to lightweight communication, we need
to transform the exchange of complex objects while preserving the consistency of
the application’s business logic. For instance, a microservice may receive or send
an object of a class which it does not define. Whether the sender holds a proxy
or a concrete instance, it must be able to produce a token to represent it. In the
case of the receiver, it must be able to handle a token whether the receiver holds
the concrete instance or not. With this token mechanism, complex objects can
be passed between microservices as tokens, while the owner of the class manages
the instances. A microservice is able to instantiate the proxy instance whenever
it receives a token. When a microservice receives a token, it is able to instance
the appropriate proxy class to access the concrete instance.

5 Implicit Encapsulation Violation Resolution

In the previous section, we covered explicit encapsulation violations and how
to resolved them. In this section, we cover the implicit encapsulation violations
relating to the inherent OO mechanisms. Particularly, we address the inheritance
relationship between classes, and exception handling.

5.1 Inheritance Relationship

Whenever a class inherits from another class belonging to a different microser-
vice, it is considered an inheritance violation. To heal this encapsulation vio-
lation, inheritance must be decomposed into its different mechanisms and then
transformed as to preserve all of the mechanisms. This includes (a) the exten-
sion of the child class definition through the parent class, (b) the subtyping
mechanism, and (c) polymorphic assignment. To do so, we propose a three-step
transformation inspired from [2]: (i) Uncoupling the child/parent inheritance
with a double proxy pattern, (ii) Recreating subtyping via interface inheritance,
and (iii) recreating the polymorphic assignment through interface inheritance.

154 P. Zaragoza et al.

Child/Parent Definition Extension. The first mechanism that must be
transformed is the extension of the definition of the parent by the child. A
child class has access to the parent’s attributes and methods. Furthermore, it
may override the parent’s methods. Finally, both child and parent method def-
initions may access each other’s methods through the use of reference variables
to the parent object or itself. To preserve the this mechanism, we propose a
double-proxy pattern inspired by the work presented in [2]. In their paper, the
authors propose a double delegate pattern to preserve the inheritance between
class placed in different components [2].

When a child object is created, a parent object is also created as an attribute
within the child object. However, the child class is refactored to implement any
parent method that is not redefined. These methods delegate any invocation to
the parent method through the stored parent object. Inversely, the parent object
store the child object and acts as a delegate and preserves the dynamic calling
of overridden methods. This transforms the inheritance encapsulation violation
into a set of instantiation violations and a method invocation violations which
can be healed using the transformation patterns proposed previously. In the
case of an abstract parent class, [2] apply a proxy pattern so that the proxy
class inherits from the parent class and it can be instantiated by the child class.
However, since we later heal the instantiation violations with a proxy pattern,
this is already handled.

Furthermore, the double-delegate pattern of [2] refactors the internal code
of the child and parent class. This requires informing the developer to use the
delegate pattern instead of the native inheritance implementation. Instead, we
proposed a revised version that treats inheritance as a service and reduced the
refactoring of the internal classes.

Concretely, we propose a double-proxy pattern to reproduce the inheritance
link between the child and parent classes without significantly refactoring the
child/pattern classes. First, a parent proxy class (e.g., ContentConsumer) is
created and implements the methods defined by the interface extracted from
the parent (e.g., IContent). Then, the child class (e.g., Message) is refactored
to extend the parent proxy (e.g., ContentConsumer). Finally, child proxy class
(e.g., MessageConsumer) is defined to extend the parent class, and acts as the
child proxy for the parent class. Figure 6 illustrates the transformation of the
inheritance link between the child (e.g., Message) and the parent class (e.g.,
Content).

Recreating Subtyping Through Proxy Inheritance. To preserve the inter-
nal logic created through subtyping, the proxy classes are exposed as web ser-
vices (as seen in Sect. 4). This results in the creation of two web services (Fig. 6).
Upon the creation of a child object (e.g., Message), the parent proxy’s construc-
tor (e.g., ContentConsumer) is called to consume the Parent web service. This
has the effect of initializing the child proxy (e.g., MessageConsumer) that inher-
its naturally from the parent class (e.g., Content). Whenever a method defined
by the parent class (e.g., Content) is invoked by the child object (e.g., Message),

Materializing Microservice-Oriented Architecture 155

the parent object will be invoked via the parent web service. Furthermore, when
the parent class (e.g., Content) references the instance, it will invoke the child
object through the child proxy (e.g. MessageConsumer) object.

Recreating Polymorphic Assignment Through Interface Inheritance.
Finally, to recreate the polymorphic mechanism, a child interface (e.g., IMes-
sage) is defined to extend the parent interface (e.g. IContent). The child class
implements the child interface, allowing for the polymorphic assignment of the
child objects (see Fig. 6).

Fig. 6. Polymorphic assignment can be recreated by applying an interface inheritance
between the parent interface and the child interface [33].

5.2 Source Code Transformation to Heal Exception Throwing
and Catching Violations

The exception handling encapsulation violation involves create, throwing, and
catching exception objects across microservices. To ensure a well-contained
throwing & handling of exceptions we propose a two-step transformation pro-
cess: wrapping the exception response and transforming the exception-handling
source code.

156 P. Zaragoza et al.

Wrapping the Exception Response. Normal methods have two different
types of responses. They may return the normal intended type response, or an
exception response. However, Web service methods are not intended to throw
exception objects. When a method is exposed as a service, this limitation must
be circumvented by introducing a class that acts as a wrapper return type which
can hold either the normal response type, or an exception response type. Every
method’s return type is replaced by this wrapper class.

Transforming the Exception-Handling Source Code. To prepare the
wrapper type, a web service operation surrounds the method invocation with
a try and catch. When the method returns the normal response type, it safely
adds the value in a dictionary. When the method returns an exception response
type, it safely captures the exception object, stores it for later use, and adds
its corresponding access token to access the dictionary. Listing 13 illustrates an
example of a web service method wrapping the normal IContent response type,
or catching either an EmptyContentStackException or a FullContentStackExcep-
tion object. Either way, the object is stored and its token is placed in a JSON
node and returned.

1 public class ContentProviderWebService {
2 public JsonNode pop(int proxy_id){
3 JsonNode return_node = new JsonNode();
4 IContentProvider contentprovider = InstanceDB.getContentProvider(

proxy_id);
5 try{
6 return_node.put("return", InstanceDB.addContent(contentprovider.

pop()));
7 } catch(EmptyContentStackException e){
8 return_node.put("EmptyContentStackException", InstanceDB.

addEmptyContentStackException(e));
9 }

10 return return_node
11 }
12 }

Listing 1.1. Surrounding the method which throws an error with a try and catch.

Upon receiving the response from the service, the proxy must check the
response with a series of if/else. If the wrapper contains the normal response then
it returns it. If, on the other hand, it contains one of the exception responses,
then it extracts the token corresponding to the exception response, associates
it with a new proxy exception object, and finally throws the latter. Listing 23
illustrates how the JSON sent in Listing 13 is handled. If the JSON contains
a value designating any of the keys that correspond to an exception type, then
the corresponding exception proxy is created. Otherwise, it is assumed that the
normal response was stored in the return key of the JSON.

13 public class ContentProviderConsumer {
14 public IContent pop() throws EmptyContentStackExceptionImpl {
15 JsonNode return_node = getProxy().pop(contentprovider_id);
16 if(return_node.get("EmptyContentStackException" != null){
17 throw new EmptyContentStackExceptionImpl(return_node.get("

EmptyContentStackException"));

Materializing Microservice-Oriented Architecture 157

18 } else {
19 return new IContentImpl(return_node.get("return").asInt());
20 }
21 }
22 }

Listing 1.2. Surrounding the network call with an if/else statement to unwrap either
the normal response or the exception response.

6 Violation Resolution Order

For every type of encapsulation violation identified in this approach, transfor-
mation rules have been proposed. However, some transformation rules produced
additional violations. Such is the case with the inheritance violation which cre-
ates additional instance violations. Therefore, to systematically fully resolve all
encapsulation violations in one iteration, we propose a violation resolution order
which is presented in 7.

Fig. 7. The transformation order of each microservice encapsulation violation.

The order is as follows:
1. The attribute access violation is reduced as it adds public methods to its class

that may be further refactored by inheritance violation.
2. The thrown exceptions are reduced to instance violations.
3. The inheritance violations are reduced to an instance violation so all instance

violations can be healed together.
4. The instance violations are reduced to method invocation violations.
5. The remaining method invocations violations are transformed into a set of

web services.

In the next section, we apply this transformation order when resolving the encap-
sulation violations identified on a set of applications.

158 P. Zaragoza et al.

7 Evaluation

To evaluate our approach we implemented a tool to apply our approach. Further-
more, we migrated to various degree a set of monolithic applications of various
sizes. We extracted an initial list of 19 applications that were used in nine dif-
ferent articles in the field of MSA recovery. We selected 6 applications based
on whether the source code was open-source and object-oriented. The seventh
application (Omaje), is a closed-source legacy application by Berger-Levrault,
an international software editor. This application was designed over 10 years ago
by a team of 4 developers to handle the distribution of software licenses between
Berger-Levrault and its clients. Metrics on the seven applications are available
in Table 1.

Table 1. Applications on which the experiment was conducted (originally in [33]).

Application name No of classes Lines of code (LOC)

FindSportMates1 21 4.061

JPetStore2 24 4.319

PetClinic3 44 2.691

SpringBlog4 87 4.369

IMS5 94 13.423

JForum6 373 60.919

Omaje 1.821 137.420
1https://github.com/chihweil5/FindSportMates.
2https://github.com/mybatis/jpetstore-6.
3https://github.com/spring-petclinic/spring-framework-
petclinic.
4https://github.com/Raysmond/SpringBlog.
5https://github.com/gtiwari333/java-inventory-
management-system-swing-hibernate-nepal.
6https://github.com/rafaelsteil/jforum2/.

7.1 Data Pre-processing: Microservice Identification

To evaluate the transformation approach, we must first use recover the microser-
vice architecture. We use the semi-automatic approach proposed in [29] to
recover an MSA as a cluster of classes but other identification approaches can
be used. These clusters along with the source code of the applications are used
as input for our approach.

7.2 Research Questions and Their Methodologies

We conduct an experiment with the goal of answering the three following research
questions regarding our approach.

https://github.com/chihweil5/FindSportMates
https://github.com/mybatis/jpetstore-6
https://github.com/spring-petclinic/spring-framework-petclinic
https://github.com/spring-petclinic/spring-framework-petclinic
https://github.com/Raysmond/SpringBlog
https://github.com/gtiwari333/java-inventory-management-system-swing-hibernate-nepal
https://github.com/gtiwari333/java-inventory-management-system-swing-hibernate-nepal
https://github.com/rafaelsteil/jforum2/

Materializing Microservice-Oriented Architecture 159

RQ1: Is the Mono2Micro Approach Applicable for Different Types of
OO Applications?
Goal. The goal of this research question is to test the applicability of
Mono2Micro on a set of different applications. By selecting a several applications
of varying size and implementation, we aim to demonstrate that this approach
is applicable in real use cases.
Method. To answer RQ1, we applied our approach on the set of applications
found in Table 1. For each case study, we compiled the packaged target code.
We consider that the transformations proposed in our approach materialize the
encapsulation characteristic in the case where Mono2Micro is able to successfully
heal the encapsulation violations detected in the different types of applications,
and no compilation or execution error is revealed within all 7 applications.

RQ2: What Is the Precision of Mono2Micro Approach When Materi-
alizing a Microservice-oriented Architecture?

Goal. The goal of this research question is to evaluate the syntactic and semantic
correctness of the microservice architecture. We aim to demonstrate that we are
able to transform the source code of a monolithic application while preserving
its business logic.

Method. We measure the precision of our approach based on the syntactic and
semantic correctness of the transformed microservices. It stands to reason that
if the resulting MSA applications behaves in the same way as the monolithic
applications then the business logic was preserved.

We consider that microservices have a correct syntax if there is no com-
pilation errors. To measure the semantic correctness, we rely on whether the
transformed microservices produce the same results compared to the functional-
ities of the original the monolithic applications at run-time. To do so, we identify
a set of execution scenarios that can be used in both applications. We compare
the outputs of the monolithic application with its microservice counterpart for
each execution scenario. We consider that the transformation has a semantic cor-
rectness when the outputs generated by the monolith and the MSA are identical
based on the same inputs.

When possible, the identification of execution scenarios is based on test cases
defined by the developers of the monolithic applications (e.g. JPetStore). When
test cases are not available, we identify a set of features and sub-features for
each monolithic application (e.g. FindSportmates, IMS). From these features,
we establish a set of user scenarios that cover all features of each application.
These user scenarios are performed on the monolithic application and the results
are saved. Then, these user scenarios are performed on the MSA, and the results
are compared with those of the monolithic application. When they are identical
we consider this as a passed test. Otherwise, they are marked as a failed test.

The precision is calculated by taking the number of tests passed by both
architectures and dividing by the number of the tests passed by the MSA.

Due to time constraints related to the application packaging that is highly
dependent on the technology of the monolith working with Spring, we study

160 P. Zaragoza et al.

this research question with the FindSportMates, JPetStore, and InventoryMan-
agementSystem applications. For JPetStore, we ran the Selenium tests provided
with the monolithic application. For FindSportmates and Inventory Management
System, we manually ran these user scenarios.

RQ3: What Is the Recall of Mono2Micro Approach When Material-
izing a Microservice-oriented Architecture?

Goal. This RQ is similar to RQ2, but aims to evaluate the recall of our
Mono2Micro approach

Method. Similarly to RQ3, we perform the same procedure. However, we cal-
culate the recall by taking the number of tests passed by both architectures and
dividing it by the number of tests passed by the monolith.

RQ4: What Are the Impacts of Mono2Micro on the Performance?

Goal. The overall goal of our approach is to migrate while preserving the seman-
tic behavior of an application. Moreover, an important aspect of the migration
is that it must preserve the semantic without degrading drastically the run-
time performance of the application. Therefore the primary goal of this RQ is
to evaluate whether the performance impacts resulting from the migration of
the monolithic application to microservices are negligible when compared to the
original application.

Method. To answer RQ4, we rely on the execution time of user requests. The
execution time measures the delay between the time when the request is sent and
the time when the response is received by the user. We compare the execution
time of both the monolith and the MSA.

We establish a user scenario using Omaje to compare the performance of the
monolithic application with its microservice counterpart. We chose Omaje for
this evaluation because its business logic is the most complex of all 7 applica-
tions. To evaluate the performance, we simulate an increasing number of users
connecting to both the MSA and the monolith, using JMeter1 to simulate user
load. As the number of user increases, we increase the number of instances of
the microservice for both the monolith and the MSA. For the monolith, this
involves duplicating the application. For the MSA, this involves duplicating the
microservices involved in the current scenario. We consider that the refactoring
results improve or maintain the quality and performance of the original code
if the execution time difference between both architectures is negligible for the
average user while the resource utilization is optimized. For our test we use a
computer with an i7-6500U @ 2.5 GHz and 16 GB of ram.

1 https://jmeter.apache.org/.

https://jmeter.apache.org/

Materializing Microservice-Oriented Architecture 161

7.3 Results

RQ1: Is the Mono2Micro Approach Applicable for Different Types of
OO Applications?
Table 2 displays the number of violations detected and resolved. A viola-
tion is defined as a class that is dependent on a class belonging to a dif-
ferent microservice. Note that we have manually transformed two encapsula-
tion violations in relation to the use of the Java reflexivity mechanism (e.g.
Class.forName(className), proxyClass.getConstructor().newInstance()). This
type of violation is not yet addressed in our approach. Table 3 highlights the
different violations detected. The distribution of the type of violations can be
explained by the relatively low amount of inheritance and exception classes found
in these applications. The number of class inheritance is low in these applica-
tions as the frameworks used emphasizes simpler class relations. Exception-type
violations are not present in FindSportMates, JPetStore, and IMS as they do
not contain exception class definitions. As a result of the refactoring process,
we observed that the execution of the seven applications, in their two versions,
monolithic and microservices, was completed without compilation or runtime
errors. Based on the analysis of these results, we answer RQ1 as follows: The pro-
posed transformations make it possible to remove direct dependencies between
the clusters which constitute violations of the encapsulation characteristic of the
corresponding microservices. Therefore, our approach guarantees the encapsula-
tion characteristic of microservices over a variety of applications.

Table 2. Data on the applications being transformed (originally in [33]).

Application No. MSs No. data classes No. violations

Findsportmates 3 2 9

JPetStore 4 9 21

PetClinic 3 7 26

SpringBlog 4 8 104

IMS 5 18 113

JForum 8 37 1031

RQ2: What Is the Precision of Mono2Micro Approach When Materi-
alizing a Microservice-oriented Architecture?
Table 4 shows the results of RQ2. The results show that our approach has a
100% precision for FindSportMates, JPetStore and InventoryManagementSystem
in terms of syntactic and semantic correctness. Therefore, our approach is able
to preserve the business logic with a high precision.

162 P. Zaragoza et al.

Table 3. Type of violations caused by OO-type dependencies between microservices
(originally in [33]).

Application No. Instances No. Inheritances No. Exceptions

Findsportmates 9 0 0

JPetStore 20 0 0

PetClinic 24 2 0

SpringBlog 95 7 2

IMS 110 3 0

JForum 1013 16 2

RQ3: What Is the Recall of Mono2MMicro Approach When Materi-
alizing a Microservice-oriented Architecture?
Table 4 shows the results of RQ3. The results show that our approach has a
100% recall for FindSportMates, JPetStore and InventoryManagementSystem.
The proposed transformation did not create a side-effect that was detected by
failed functional tests that otherwise passed for the monolith. Therefore, our
approach is able to preserve the business logic with a high recall. However,
it should be noted that for JPetStore the Selenide test “testOrder” failed for
both the monolithic version and the MSA version, as both checked the pricing
notation using a period as a decimal separator while the testing was performed
on a computer which defaults to using a comma instead.

Table 4. Number of tests performed for each application and the resulting precision
and recall from these tests (originally in [33]).

Application No. Test Precision Recall

Findsportmates 7 100% 100%

JPetStore 34 100% 100%

IMS 36 100% 100%

RQ4: What Are the Impacts of Mono2Micro on the Performance?
Fig. 8 illustrates the number of users per scenario with the different architec-
ture configurations. We can see, there is a small gain in performance upon the
introduction of scaling for the microservice-oriented architecture.

The proposed transformations from Mono2Micro does not negatively affect
the performance of the application. Our expectations were that by introducing
additional network calls the performance of the migrated application would be
affected negatively. However, in this scenario it was not the case. This was likely
due to the parallelization aspect of scaling the requested service. By adapting the

Materializing Microservice-Oriented Architecture 163

number of instances of microservices, the MSA was able to handle the increased
requests and compensate for the additional network layer. In fact, as the number
of parallel requests increased, the MSA performed better (on average) compared
to its monolith counterpart.

7.4 Threats to Validity

Our study may be concerned by internal and external threats to validity. We
discuss below these two kinds of possible threats:

Internal Threat to Validity. The first threat to validity is that our transfor-
mation approach uses static analysis to detect and transform the existing source
code. Indeed, static analysis cannot detect dynamic binding and polymorphism
when identifying instance encapsulation violations. However, this can be avoided
by taking into consideration the worst case by creating an instance dependency
for every sub-type. Another risk is that static analysis, unlike dynamic analysis,
does cannot detect unused source code. This results may result in detecting more
dependencies than necessary. However, this can be mitigated in well-maintained
applications. Another solution is to perform a hybrid analysis during the detec-
tion step. However, dynamic analysis requires instrumenting and providing a
thorough set of test cases, which is not always available or feasible in a large
industrial code-base. Also, we consider our approach to be adequate for source
code that is not reliant on a strong framework (e.g. Spring for JAVA). We do
not consider, dependency injection which is one of the properties of this type of
framework. Finally, our approach does not consider the reflexivity of certain lan-
guages, thus in our experiment we identified and manually resolved these types
of encapsulation violation.

External Threat to Validity. One external threat of validity we considered
is the use of a specific architecture recovery approach (e.g., [29]) to have an
impact of the transformation phase. Indeed, the number of identified depen-
dencies and the overall performance are highly dependent on the results of the
architecture recovery phase. However, our goal was not to analyze the impact
of our transformation on the produced architecture, but whether we are able
to migrate applications while preserving the intended behavior (business-wise
and performance-wise) of the application. Another threat we considered is that
our monolithic application are all implemented in JAVA. However, the obtained
results can be generalized for any OO language. We argue, just as most architec-
ture recovery approaches, that generalization is possible since all OO languages
(e.g., C++, C#) are structured in terms of classes and their relationships are
realized through the same general mechanisms (e.g. method invocations, field
access, inheritance, etc.).

164 P. Zaragoza et al.

Fig. 8. Average execution time of Omaje based on the number of users and the corre-
sponding architecture (originally in [33]).

8 Related Work

We present related work in relation to the two phases of a migration process.

8.1 Microservice-based Architecture Recovery

Architecture recovery is fundamental to promote software reuse, increase soft-
ware comprehension and support software evolution. Previously, architecture
recovery as focused on recovering components. Particularly, [8,9] focus on recov-
ering a component-based architecture from a object-oriented system. More gen-
erally, several surveys have been proposed to cover component recovery [7,12].

Recently, many works have been done on the process of extracting an MSA
from an OO software, and several systematic reviews have been published on the
subject and microservices in general [14,15,25]. Several have presented method-
ologies or techniques to decompose and identify microservices within a mono-
lithic application [4,5,10,11,17–19,21,28]. Chen et al. present a dataflow-driven
approach to extracting microservices [10]. The authors of [4] present a clustering
technique from business processes. Jin et al. propose a microservice extraction
method that focuses on functional independence, and use 5 different metrics to
measure the functional independence quality of the extracted microservices [18].
[19] proposes an ad-hoc method to decompose a monolithic application starting
with a triple (F,B,D) where F is a set of facades, B is a set of business functions,
and D is a set of database tables. In [17], the authors present a service decomposi-
tion tool known as Service Cutter which assists software architects when making
design decisions. The authors of [5] present an automated tool that analyses the
OpenAPI interface of an application to extract its microservices. Other tools
use various clustering methods such as [21] which represents the monolith with

Materializing Microservice-Oriented Architecture 165

a graph where a class is represented by a node and the edge between nodes has
a weight function that is related to the coupling between two classes. Or [28],
which uses a semi-automated approach based on architect’s recommendations
and a hierarchical clustering method with a fitness function. Another technique
for microservice discovery is the function-splitting heuristics proposed in [11].

8.2 Transformation Towards a Microservice-oriented Application

The goal of refactoring is to extend the lifetime of an existing software product
while preserving its functional behavior via code transformation to improve the
structure of the source code. To the best of our knowledge, there does not exist
any work in the transformation towards microservice that attempts to auto-
mate this process. However, there exists works towards refactoring existing OO
code towards component-based architecture. Particularly, [2,3] have proposed
a transformation approach to seamlessly refactor existing OO source code into
a component-based architecture. Similarly, [1] transforms java applications into
OSGi-type components. However, contrary to [2,3] they do not treat component
instantiation.

Both a systematic mapping study [25] and a systematic review [15] on the
subject of microservice migration, indicate a lack of tool to support the migra-
tion towards microservices. [31] proposes a technique for extracting modules
from monolithic software architectures based on a series of refactoring to modu-
larize concerns through the isolation of code fragments. [31] proposes a technique
for extracting modules from monolithic software architectures based on a series
of refactoring to modularize concerns through the isolation of code fragments.
However, they don’t focus on the transformation of modules that can be indepen-
dently deployed as microservices, and therefore does not solve the main problems
with encapsulating a microservice (i.e. uncoupling classes belonging to different
modules by creating web services). Furthermore, the authors present an app-
roach to isolate concerns into modules, however they do not explicitly focus on
modularizing all of the monolith.

Besides, several works offer insights on the manual transformation such as
[13,27], and [4]. [13] presents an experiment report where the authors share their
migration process on an example. [4] propose an extraction method accompanied
by a manual transformation to validate their approach.

9 Conclusion

The migration of OO monolithic applications towards a microservice-oriented
one is a complex two-step process. In Sect. 2.1, we have exposed the particular
difficulties in the transformation step in which we must transform existing OO-
type dependencies between microservice candidates before they can be encap-
sulated. Furthermore, we have presented a set of transformation patterns to
refer the different OO-type dependencies into microservice-type dependencies.

166 P. Zaragoza et al.

Overall, we have proposed a systematic approach to automate the transforma-
tion of monolithic source code towards an MSA by detecting and transforming
the OO-type dependencies. To evaluate our approach, we have applied our app-
roach on a set of applications to answer three research questions regarding the
syntactic and semantic correctness of our approach as well as the performance
of the resulting microservice-based application. As a perspective for this work,
we will consider other particular properties of certain object-oriented languages
(e.g., reflexivity, multiple inheritance, “Friend” concept). Furthermore, we plan
to study dependencies and transformation patterns pertaining to applications
relying on frameworks. We also plan to study dependencies and transformation
patterns in the context of frameworks. Finally, we plan generalize our approach
to other languages and frameworks by applying model-driven engineering tech-
niques.

References

1. Allier, S., Sadou, S., Sahraoui, H.A., Fleurquin, R.: From object-oriented appli-
cations to component-oriented applications via component-oriented architecture.
In: 9th Working IEEE/IFIP Conference on Software Architecture, WICSA 2011,
Boulder, Colorado, USA, 20–24 June 2011, pp. 214–223. IEEE Computer Society
(2011). https://doi.org/10.1109/WICSA.2011.35

2. Alshara, Z., Seriai, A., Tibermacine, C., Bouziane, H., Dony, C., Shatnawi, A.:
Migrating large object-oriented applications into component-based ones: instanti-
ation and inheritance transformation. In: International Conference on Generative
Programming: Concepts and Experiences, GPCE 2015, pp. 55–64. ACM (2015).
https://doi.org/10.1145/2814204.2814223

3. Alshara, Z., Seriai, A.-D., Tibermacine, C., Bouziane, H.L., Dony, C., Shat-
nawi, A.: Materializing architecture recovered from object-oriented source code
in component-based languages. In: Tekinerdogan, B., Zdun, U., Babar, A. (eds.)
ECSA 2016. LNCS, vol. 9839, pp. 309–325. Springer, Cham (2016). https://doi.
org/10.1007/978-3-319-48992-6 23

4. Amiri, M.J.: Object-aware identification of microservices. In: 2018 IEEE SCC,
pp. 253–256. IEEE, July 2018. https://doi.org/10.1109/SCC.2018.00042, https://
ieeexplore.ieee.org/document/8456428/

5. Baresi, L., Garriga, M., De Renzis, A.: Microservices identification through inter-
face analysis. In: De Paoli, F., Schulte, S., Broch Johnsen, E. (eds.) ESOCC 2017.
LNCS, vol. 10465, pp. 19–33. Springer, Cham (2017). https://doi.org/10.1007/978-
3-319-67262-5 2

6. Baskarada, S., Nguyen, V., Koronios, A.: Architecting microservices: practical
opportunities and challenges. J. Comput. Inf. Syst. 60, 428–436 (2020)

7. Birkmeier, D., Overhage, S.: On component identification approaches – classifica-
tion, state of the art, and comparison. In: Lewis, G.A., Poernomo, I., Hofmeister,
C. (eds.) CBSE 2009. LNCS, vol. 5582, pp. 1–18. Springer, Heidelberg (2009).
https://doi.org/10.1007/978-3-642-02414-6 1

8. Chardigny, S., Seriai, A.: Software architecture recovery process based on object-
oriented source code and documentation. In: Babar, M.A., Gorton, I. (eds.) ECSA
2010. LNCS, vol. 6285, pp. 409–416. Springer, Heidelberg (2010). https://doi.org/
10.1007/978-3-642-15114-9 35

https://doi.org/10.1109/WICSA.2011.35
https://doi.org/10.1145/2814204.2814223
https://doi.org/10.1007/978-3-319-48992-6_23
https://doi.org/10.1007/978-3-319-48992-6_23
https://doi.org/10.1109/SCC.2018.00042
https://ieeexplore.ieee.org/document/8456428/
https://ieeexplore.ieee.org/document/8456428/
https://doi.org/10.1007/978-3-319-67262-5_2
https://doi.org/10.1007/978-3-319-67262-5_2
https://doi.org/10.1007/978-3-642-02414-6_1
https://doi.org/10.1007/978-3-642-15114-9_35
https://doi.org/10.1007/978-3-642-15114-9_35

Materializing Microservice-Oriented Architecture 167

9. Chardigny, S., Seriai, A., Tamzalit, D., Oussalah, M.: Quality-driven extraction of
a component-based architecture from an object-oriented system. In: 12th European
Conference on Software Maintenance and Reengineering, CSMR 2008, 1–4 April
2008, Athens, Greece, pp. 269–273. IEEE Computer Society (2008). https://doi.
org/10.1109/CSMR.2008.4493324

10. Chen, R., Li, S., Li, Z.: From monolith to microservices: a dataflow-driven app-
roach. In: Proceedings - Asia-Pacific Software Engineering Conference, APSEC,
pp. 466–475 (2018). https://doi.org/10.1109/APSEC.2017.53

11. De Alwis, A.A.C., Barros, A., Polyvyanyy, A., Fidge, C.: Function-splitting heuris-
tics for discovery of microservices in enterprise systems. In: Pahl, C., Vukovic, M.,
Yin, J., Yu, Q. (eds.) ICSOC 2018. LNCS, vol. 11236, pp. 37–53. Springer, Cham
(2018). https://doi.org/10.1007/978-3-030-03596-9 3

12. Ducasse, S., Pollet, D.: Software architecture reconstruction: a process-oriented
taxonomy. IEEE Trans. Softw. Eng. 35(4), 573–591 (2009). https://doi.org/10.
1109/TSE.2009.19

13. Fan, C., Ma, S.: Migrating monolithic mobile application to microservice architec-
ture: an experiment report. In: 2017 IEEE AIMS, pp. 109–112, June 2017. https://
doi.org/10.1109/AIMS.2017.23

14. Francesco, P.D., Malavolta, I., Lago, P.: Research on architecting microservices:
trends, focus, and potential for industrial adoption. In: 2017 IEEE ICSA, pp. 21–
30 (2017). https://doi.org/10.1109/ICSA.2017.24

15. Fritzsch, J., Bogner, J., Zimmermann, A., Wagner, S.: From monolith to microser-
vices: a classification of refactoring approaches. CoRR abs/1807.10059 (2018),
http://arxiv.org/abs/1807.10059

16. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns: Elements of
Reusable Object-Oriented Software. Addison-Wesley Longman Publishing Co., Inc,
USA (1995)

17. Gysel, M., Kölbener, L., Giersche, W., Zimmermann, O.: Service cutter: a system-
atic approach to service decomposition. In: Aiello, M., Johnsen, E.B., Dustdar, S.,
Georgievski, I. (eds.) ESOCC 2016. LNCS, vol. 9846, pp. 185–200. Springer, Cham
(2016). https://doi.org/10.1007/978-3-319-44482-6 12

18. Jin, W., Liu, T., Zheng, Q., Cui, D., Cai, Y.: Functionality-oriented microservice
extraction based on execution trace clustering. In: 2018 IEEE ICWS, pp. 211–218,
July 2018. https://doi.org/10.1109/ICWS.2018.00034

19. Levcovitz, A., Terra, R., Valente, M.T.: Towards a technique for extracting
microservices from monolithic enterprise systems. CoRR abs/1605.03175 (2016),
http://arxiv.org/abs/1605.03175

20. Lewis, J., Fowler, M.: Microservices: a definition of this new architectural term
(2014). https://martinfowler.com/articles/microservices.html

21. Mazlami, G., Cito, J., Leitner, P.: Extraction of microservices from monolithic soft-
ware architectures. In: 2017 IEEE ICWS, pp. 524–531. IEEE, June 2017. https://
doi.org/10.1109/ICWS.2017.61, http://ieeexplore.ieee.org/document/8029803/

22. Monaghan, B.D., Bass, J.M.: Redefining legacy: a technical debt perspective. In:
Morisio, M., Torchiano, M., Jedlitschka, A. (eds.) PROFES 2020. LNCS, vol.
12562, pp. 254–269. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-
64148-1 16

23. Newman, S.: Building Microservices: Designing Fine-Grained Systems. O’Reilly
Media, Newton (2019)

24. Nunes, L., Santos, N., Rito Silva, A.: From a monolith to a microservices archi-
tecture: an approach based on transactional contexts. In: Bures, T., Duchien, L.,

https://doi.org/10.1109/CSMR.2008.4493324
https://doi.org/10.1109/CSMR.2008.4493324
https://doi.org/10.1109/APSEC.2017.53
https://doi.org/10.1007/978-3-030-03596-9_3
https://doi.org/10.1109/TSE.2009.19
https://doi.org/10.1109/TSE.2009.19
https://doi.org/10.1109/AIMS.2017.23
https://doi.org/10.1109/AIMS.2017.23
https://doi.org/10.1109/ICSA.2017.24
http://arxiv.org/abs/1807.10059
https://doi.org/10.1007/978-3-319-44482-6_12
https://doi.org/10.1109/ICWS.2018.00034
http://arxiv.org/abs/1605.03175
https://martinfowler.com/articles/microservices.html
https://doi.org/10.1109/ICWS.2017.61
https://doi.org/10.1109/ICWS.2017.61
http://ieeexplore.ieee.org/document/8029803/
https://doi.org/10.1007/978-3-030-64148-1_16
https://doi.org/10.1007/978-3-030-64148-1_16

168 P. Zaragoza et al.

Inverardi, P. (eds.) ECSA 2019. LNCS, vol. 11681, pp. 37–52. Springer, Cham
(2019). https://doi.org/10.1007/978-3-030-29983-5 3

25. Pahl, C., Jamshidi, P.: Microservices: a systematic mapping study. In: Proceedings
of the 6th CLOSER - Volume 1 and 2, pp. 137–146. CLOSER 2016, SCITEPRESS
- Science and Technology Publications, Lda, Setubal, PRT (2016). https://doi.org/
10.5220/0005785501370146

26. Ponce, F., Márquez, G., Astudillo, H.: Migrating from monolithic architecture
to microservices: a rapid review. In: 2019 38th International Conference of the
Chilean Computer Science Society (SCCC), pp. 1–7 (2019). https://doi.org/10.
1109/SCCC49216.2019.8966423

27. Richardson, C.: Microservices Patterns. O’Reilly Media, Newton (2018)
28. Selmadji, A., Seriai, A.-D., Bouziane, H.L., Dony, C., Mahamane, R.O.: Re-

architecting OO software into microservices. In: Kritikos, K., Plebani, P., de Paoli,
F. (eds.) ESOCC 2018. LNCS, vol. 11116, pp. 65–73. Springer, Cham (2018).
https://doi.org/10.1007/978-3-319-99819-0 5

29. Selmadji, A., Seriai, A.D., Bouziane, H.L., Mahamane, R., Zaragoza, P., Dony,
C.: From monolithic architecture style to microservice one based on a semi-
automatic approach. In: 2020 IEEE International Conference on Software Archi-
tecture (ICSA), pp. 157–168 (2020)

30. Soldani, J., Tamburri, D.A., Van Den Heuvel, W.J.: The pains and gains of
microservices: a systematic grey literature review. J. Syst. Softw. 146, 215–232
(2018). https://doi.org/10.1016/j.jss.2018.09.082, https://www.sciencedirect.com/
science/article/pii/S0164121218302139

31. Terra, R., Valente, M., Bigonha, R.: An approach for extracting modules from
monolithic software architectures. In: pp. 1–8, January 2012

32. Waseem, M., Liang, P., Shahin, M.: A systematic mapping study on microser-
vices architecture in devops. J. Syst. Softw. 170 (2020). https://doi.org/
10.1016/j.jss.2020.110798, https://www.sciencedirect.com/science/article/pii/
S0164121220302053

33. Zaragoza., P., Seriai., A., Seriai., A., Bouziane., H., Shatnawi., A., Derras., M.:
Refactoring monolithic object-oriented source code to materialize microservice-
oriented architecture. In: Proceedings of the 16th International Conference on Soft-
ware Technologies - ICSOFT, pp. 78–89. INSTICC, SciTePress (2021). https://doi.
org/10.5220/0010557800780089

https://doi.org/10.1007/978-3-030-29983-5_3
https://doi.org/10.5220/0005785501370146
https://doi.org/10.5220/0005785501370146
https://doi.org/10.1109/SCCC49216.2019.8966423
https://doi.org/10.1109/SCCC49216.2019.8966423
https://doi.org/10.1007/978-3-319-99819-0_5
https://doi.org/10.1016/j.jss.2018.09.082
https://www.sciencedirect.com/science/article/ pii/S0164121218302139
https://www.sciencedirect.com/science/article/ pii/S0164121218302139
https://doi.org/10.1016/j.jss.2020.110798
https://doi.org/10.1016/j.jss.2020.110798
https://www.sciencedirect.com/science/article/ pii/S0164121220302053
https://www.sciencedirect.com/science/article/ pii/S0164121220302053
https://doi.org/10.5220/0010557800780089
https://doi.org/10.5220/0010557800780089

A Personalized Code Formatter:
Detection and Fixing

Thomas Karanikiotis(B) , Kyriakos C. Chatzidimitriou ,
and Andreas L. Symeonidis

School of Electrical and Computer Engineering,
Intelligent Systems and Software Engineering Labgroup,
Aristotle University of Thessaloniki, Thessaloniki, Greece

{thomas.karanikiotis,kyrcha}@issel.ee.auth.gr, symeonid@ece.auth.gr

Abstract. The wide adoption of component-based software develop-
ment and the (re)use of software residing in code hosting platforms have
led to an increased interest shown towards source code readability and
comprehensibility. One factor that can undeniably improve readability
is the consistent code styling and formatting used across a project. To
that end, many code formatting approaches usually define a set of rules,
in order to model a commonly accepted formatting. However, this app-
roach is mostly based on the experts’ expertise, is time-consuming and
ignores the specific styling and formatting a team selects to use. Thus, it
becomes too intrusive and may be not adopted. In this work, we present
an automated mechanism that can be trained to identify deviations from
the selected formatting style of a given project, given a set of source
code files, and provide recommendations towards maintaining a common
styling across all files of the project. At first, source code is transformed
into small meaningful pieces, called tokens, which are used to train the
models of our mechanism, in order to predict the probability of a token
being wrongly positioned. Then, a number of possible fixes are examined
as replacements of the wrongly positioned token and, based on a scor-
ing function, the most suitable fixes are given as recommendations to
the developer. Preliminary evaluation on various axes indicates that our
approach can effectively detect formatting deviations from the project’s
code styling and provide actionable recommendations to the developer.

Keywords: Source code formatting · Code styling · Source code
readability · LSTM · SVM one-class

1 Introduction

Source code readability has recently gained much research interest and is con-
sidered of vital importance for developers, especially those working under a
component-based software engineering scheme. It is a quite complex concept
and includes factors such as understanding of the control flow, the functionality
and the purpose of a given software component. At the same time, source code
c© Springer Nature Switzerland AG 2022
H.-G. Fill et al. (Eds.): ICSOFT 2021, CCIS 1622, pp. 169–192, 2022.
https://doi.org/10.1007/978-3-031-11513-4_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-11513-4_8&domain=pdf
http://orcid.org/0000-0001-6117-8222
http://orcid.org/0000-0003-0715-1197
http://orcid.org/0000-0003-0235-6046
https://doi.org/10.1007/978-3-031-11513-4_8

170 T. Karanikiotis et al.

readability is highly related to maintainability and reusability, pillar aspects of
software quality.

In this context, the importance of readability is obvious. However, despite the
fact that a number of recent research approaches aspired to assess the readability
degree of a given component [15,19,20], the proper extraction of features and
metrics that could accurately quantify readability still remains a vague process
and under heavy debate. Nevertheless, it has been proven that the selection of a
correct formatting approach and a suitable code styling can significantly enhance
the capability of the developers to comprehend the functionality, the content and
the intention of the source code [22] and improve source code readability. On the
other hand, the use of various and different coding styles can affect the overall
readability [9]. At the same time, the comprehensibility of the source code may
be affected by various fields of code formatting, such as the indentation applied
on source code.

Several studies have aspired to model code styling and formatting and,
mainly, identify styling errors and provide styling fixes or detect deviations from
a priorly accepted set of formatting rules [10,11,16]. While these approaches
seem to achieve promising results, the majority of them make use of predefined
sets of formatting rules, that seem to be globally accepted and can only be
turned on/off, without the option to alter any of them or add new. Based on
these rules, the aforementioned approaches try to identify pieces of code that
diverge from them. At the same time, there is a number of approaches that,
focusing mainly on program comprehension, rather than readability from the
code styling perspective, aspire to identify changes that could make the code
more comprehensible, such as alterations on identifier or method names, code
structure or sequence of function calls.

The majority of the aforementioned approaches share the same target; the
appropriate modelling and identification of deviations from a commonly accepted
code styling and formatting and the ability to help developers apply these com-
mon practices into their code. Nevertheless, as teams and individual developers
vary in skills, needs, targets and way they develop software, not all styling guide-
lines can apply to each one of them. Teams may spend a lot of time in order
to properly configure the aforementioned approaches and tools into their own
needs, which is a quite complex task, especially in cases where there are a lot of
developers that participate in the team. Thus, there is a need for a system that
can model the desired source code formatting of the team in a completely unsu-
pervised way, based solely on previously developed software. Using this system,
the team or individuals should be able to identify deviations from their previ-
ously defined code styling and be provided with actionable recommendations
about the way to maintain their selected formatting.

In this work, we aspire to overcome the aforementioned limitations by propos-
ing an automated mechanism, which can model the desired code formatting of
an individual or team of developers by examining the code styling used in a
project or repository in a completely unsupervised manner. Our approach can
identify deviations from the global styling that is applied throughout a whole

A Personalized Code Formatter: Detection and Fixing 171

project or repository, without the need of a domain expert. In order to accom-
plish that, we extend our previous work [7], where we proposed an automated
mechanism for identifying styling deviations and formatting errors from a set of
source code files. Here, a set of possible fixes to the aforementioned formatting
errors is also given to the developers, that can effectively assist them to fix the
deviations. In that way, the team can maintain the desired code styling across
the whole project or a set of projects, making it easier for them to maintain or
reuse certain pieces of code, or cooperate.

Summarizing, the advances of this work with respect to our previous paper
[7] are the following:

• The extension of the previous models that identify deviations from a source
code styling used in previous projects or files with the use of a scoring function,
which can expand the capabilities of our models to detect formatting errors.

• The creation of a fixing mechanism, which, based on the predictions of our
models and the scoring mechanism, can identify the best possible fixes to
the previously detected formatting error and provide effective and actionable
recommendations to the developers.

The rest of this paper is organized as follows. Section 2 provides back-
ground information on source code formatting mechanisms and reviews current
approaches, while it discusses how our work differentiates from them. In Sect. 3
we present the methodology applied in order to accomplish our goal, the data we
used and the models we trained. Section 4 evaluates the efficiency of our format-
ting errors detection and fixing mechanism against various axes, while in Sect. 5
we analyze potential threats to our internal and external validity. Finally, Sect. 6
concludes this work and provides insight for further research.

2 Related Work

Source code readability is one of the main software attributes that is closely
linked to maintainability and reusability, which are considered of vital impor-
tance and have gained increased interest in the recent years, since the importance
of correct and evolving code is given. Thus, readability has also become a cru-
cial factor of the software development procedure and, in many times, where
projects need to be processed quickly while also maintaining a standard level of
quality, it is considered a success or fail factor. Additionally, when it comes to
large teams of developers that are involved in the software development process
and the component-based software development paradigm, a greater emphasis
towards source code readability and comprehensibility has been noticed, as it
can directly affect multiple aspects of the software development procedure.

While the comprehension and readability degree of a software component is
yet to be strictly quantified or even properly defined, it is not arguable that a
correct code formatting and a proper code styling can unquestionably ease the
developer in the process of perceiving the content and the functionality of a given
source code. One attribute that can be of crucial importance in a proper code

172 T. Karanikiotis et al.

formatting and can affect the way the developers comprehend the intentions of
a given source code in a significant degree is the code indentation. Hindle et al.
[5] examined over 200 software projects and carried out a research about the
way the indentation shape correlates with the structure of the code block. The
results concluded that there exists a high correlation between the shape drawn
by the indentations appearing in code and the structure of the given code. This
correlation could be proven quite useful for the developers to better perceive the
content of the software component. Persson and Sundkvist [22] argue that the
readability and the interpretation of source code can be improved, leading to
faster understanding of the code purpose and functionality, especially when the
source code size increases, by the correct use of indentation within the code.

In the recent years, there have been a lot of tools, which aspire to identify
styling mismatches and highlight lines of code that diverge from the globally
accepted styling standards, as they are expressed by a set of expert-defined
rules. Some of the most well-known tools are Indent [3] and Prettier [17]. At
the same time, Wang et al. [23] aspired to ease the way the developers read,
perceive and comprehend the code and its functionality, by splitting a given
Java code into smaller segments, each one of which implements a different task.
Additionally, Prabhu et al. [16], focused on creating a code editor that can help
the developers and can separate the functionality of the source code from the
styling and the formatting it appears within the editor. Moreover, the authors
provided some additional features, such as auto-indentation and auto-spacing, in
an attempt to provide a formatting tool that does not need human intervention.
However, although the auto-formatting features can be helpful, they are strictly
based on heuristic algorithms developed by the authors, which follow a global
styling pattern with no alterations.

Lately, there have been a lot of approaches that aspire to model a globally
accepted code styling and formatting and, based on that, identify deviations from
that pattern (i.e. formatting errors) and, possibly, provide fixes [10]. Neverthe-
less, these approaches are mainly based on a set of predefined rules, which the
developers can only enable/disable, while they are not able to add their own or
alter any of them, in order to create their custom code styling that best matches
their needs. It is a fact that maintaining a common formatting across projects
or files within a team, especially when the team consists of a large number of
developers, can be a crucial factor towards quality code. The work of Kesler et
al. [8] supports this argument. The authors conducted an experiment, aspiring
to identify the way that no indentation, excessive indentation and a moderate
indentation affect the comprehensibility of the source code. It is obvious from
the results that there can not exist a perfect indentation style that matches the
needs of all teams and individual developers and it constitutes a task that should
be carefully examined at each time. At the same time, Miara et al. [12] carried
out a study about the most used and popular indentations. The study concluded
that, while the level of indentation can be a crucial factor for code comprehen-
sibility, multiple and different indentation styles may be found across programs.

A Personalized Code Formatter: Detection and Fixing 173

Therefore, there is a need for models that could identify the code formatting
that is used across the same project and detect deviations from it.

One of the first approaches towards dynamic adaptation and homogenization
of code styling was made by Allamanis et al. [1]. The authors aspired to model
the styling used by one or more developers in a single project and, then, detect
and identify deviations from it. Their framework, called NATURALIZE, could
provide a set of recommendations regarding identifier names and styling changes
in the given source code, in order to increase styling consistency across the files of
a project. The evaluation of the NATURALIZE framework depicted that it could
provide accurate suggestions, but it could process only local context and could
not incorporate semantically valid suggestions, while it was mainly focused on
the use of indentation and whitespaces and not on other aspects of code format-
ting (e.g. the placement of comments within the code). At the same time, Parr
et al. [14] created a code formatter based on machine learning algorithms, which
could model the grammar of any given language and, thus, could automatically
generate universal code formatters. Although this formatter, called CODEBUFF,
achieved quite good results, it was based on a trial-and-error trained complex
model, with no generalization capabilities. It wasn’t also able to handle some
(quite common) cases, such as mixed indentation with tabs and spaces or mixed
quotes with single and double quotes. Taking these limitations into account,
Markovtsev et al. [11] created STYLE-ANALYZER. STYLE-ANALYZER is a
tool that can provide suggestions about fixing formatting deviations that were
previously identified in a given repository, after having modelled its formatting
style. While STYLE-ANALYZER achieved pretty good results during the eval-
uation of the effectiveness the approach appears to have in modelling the code
styling of the respective project, the proposed model is quite complex, time-
consuming and can only be used with javascript source code. Finally, Ogura et
al. [13] created a tool that aspires to maintain a consistent code styling across
a software project, helping the developers use their own local formatting style.
The tool, called StyleCoordinator, creates a styling configuration file upon exam-
ining the source code of a given repository. The configuration file is then used
to provide consistency in every new file examined within the same repository.
However, StyleCoordinator is initially based on a common convention configu-
ration, in order to ensure consistency, and is not able to extract the code styling
selected by the user from the ground, while its efficiency is yet to be clarified.

In this work, in an attempt to overcome the limitations introduced in the
aforementioned approaches, we propose a generalizable model that dynamically
learns the formatting style of a given project or set of files and, then, identifies
any styling deviations from it. Taking these deviations into account, our approach
aspires to provide actionable and useful recommendations to the developers,
in order to fix these inconsistencies. Using our approach, single developers or
teams of developers are able to feed their existing source code files to indicate
the desired formatting and then use the generated model to format future code
in the same styling, by directly applying the produced suggestions into their
code. By doing that, they are able to minimize the time and effort needed to

174 T. Karanikiotis et al.

comprehend the source code, while the team can maintain a uniform way of
developing software. Our approach requires no specific domain knowledge or
even rules customisation, which most of the recent linters and style checkers
need.

3 System Design

In this section we design our formatting error detection and fixing system, which
is shown in Fig. 1. Our methodology is based on two approaches, which aspire to
model the formatting of a given source code from different aspects, the genera-
tive model and the outlier detection model, and a snippet scoring function that
evaluates the purity of code regarding the code styling deviations.

The aforementioned system has been altered from the respective one in [7],
in order to incorporate also the snippet scoring stage, as well as the fixing mech-
anism that can provide possible fixes to the developers, in order to eliminate the
styling deviations.

Fig. 1. Overview of the formatting error detection & fixing methodology.

3.1 User Dataset

In the first step of our methodology, the source code files that determine the
formatting style adopted by the developers in each specific case needs to be
determined. This set of source code files will be used to train the system in the
specific needs of each team and model the desired formatting style. This input
step differentiates our system from many similar approaches, which make use of
a predefined set of formatting rules, in order to identify and highlight styling
deviations. Instead, we allow every developer or team of developers to use their
own source code files to define the desired code styling. The rest of our modelling
procedure simply adapts to the provided dataset and, thus, our system is dataset
agnostic.

A Personalized Code Formatter: Detection and Fixing 175

While our system is dataset agnostic, in an attempt to showcase the per-
formance of our approach in practice against frequently encountered formatting
errors that have been found across projects, we make use of the same data used
in our previous approach [7] and train our formatting error detection and fixing
mechanism on a code writing style that is widely used by developers. Specifically,
we made use of the dataset used by Santos et al. [18]. The authors mined the top
10,000 Java repositories and extracted the latest snapshot of the default branch,
keeping only the syntactically-valid Java files. In total 2,322,481 Java files were
collected.

The dataset collected by Santos et al. [18] contains syntactically valid files
that depict the formatting style used in a large variety of projects and by most
of the developers. However, we apply an extra step of preprocessing, in which
we identify and keep only the source code files that do not diverge from widely
known formatting rules, in order to evaluate the ability of our mechanism to
identify also commonly found styling deviations. Thus, a set of rules has been
defined manually, which describes the occasions when a formatting error occurs.
In this context, we made use of 22 regular expressions, in an attempt to detect
widely known formatting errors that occur in a single Java file and exclude this
file from the rest of our methodology. In Table 1, an example of the 22 regular
expressions of our approach is depicted, which identifies a wrongly positioned
space that has been inserted before a semicolon, along with a corresponding
example of a source code line, in which the regular expression has been triggered.
The complete corpus of our 22 regular expressions can be found on our page1,
where the modelling pipeline of [7] is presented. It should be noted once again
that the selection of widely known formatting errors is used only for showcasing
and does not affect the adaptive nature of our approach, while each developer
could train the system with his/her own specific code styling guidelines, just by
providing a set of source code files.

Table 1. A regular expression used to identify a space that has been inserted before a
semicolon.

Regular expression “ ;”

Source code example int myNum = 15 ;

Using the aforementioned set of 22 regular expressions, we were able to collect
10,000 Java files from the original set of source code files collected by Santos
et al., which completely conform to widely accepted coding standards, do not
contain any formatting deviations from well-known styling guidelines and, thus,
could be used as the basis for training our models.

1 https://gist.github.com/karanikiotis/263251decb86f839a3265cc2306355b2.

https://gist.github.com/karanikiotis/263251decb86f839a3265cc2306355b2

176 T. Karanikiotis et al.

3.2 Tokenizer and Vectorizer

In the next step of our approach and before the source code is further processed
by our models, the source code files need to be preprocessed and transformed into
a suitable form. This procedure is widely used in approaches that handle source
code files, is known as tokenization and transforms the initial source code into a
set of small meaningful pieces called tokens. Each programming language consists
of a list of all possible unique tokens, which is called vocabulary, and contains
all the possible keywords and operators used by the language. The source code
contains also a set of out-of-vocabulary tokens, which are the variable names,
string literals and numbers used by the developer. In an extra step, these tokens
need to be further processed and they are projected into an abstract form and
represented by the respective token that indicates the corresponding category
the token belongs to (variable, string or number).

In this work, our main target was token differentiation regarding the way
they are placed between the rest of the tokens of the source code. The tokenizer
identifies and abstracts the set of variables, strings and numbers used by the
developer, detects the set of keywords and groups tokens with similar formatting
behaviors and returns the set of tokens identified, as well as the number of
characters each token occupies in the initial source code. Table 2 depicts some
example of keywords identified in the initial source code by the tokenizer and
the corresponding token they are transformed into, as it was originally presented
in [7].

Table 2. Examples of keywords and their respective tokens, as it was originally pre-
sented in [7].

Token name Token symbol Keywords

KEYWORD <keyword> Break, for, if, return,

LIT <lit> Float, int, void,

LITERAL <literal> True, false, null

NUMBER <number> 123, 5.2, 10, 1, 0,

STRING <word> “a”, “hello”,

Each token of the initial source code file is processed by the tokenizer and
categorized into the appropriate token category. An example was originally pre-
sented in [7], according to which, whenever any of the words true, false or null
are identified in the source code, they are transformed and treated with the token
LITERAL. The tokenization of special characters, such as the white-spaces and
tabs, brackets and semicolons, required special attention, since these characters
play a major role for the appropriate styling of the code. In order to convert
source code into a form that is suitable for training our models, a two step pro-
cedure is followed. First, the source code is tokenized using the aforementioned
tokenizer and, thus, a set of tokens is returned. Subsequently, this set of tokens

A Personalized Code Formatter: Detection and Fixing 177

is processed to extract the total vocabulary of tokens used. Each token is then
assigned a positive integer index, that will then be used as the input in the fol-
lowing models. Table 3, which was also presented in [7], depicts an example of
a full transformation; the initial source code is transformed to a numeric vector
that can be treated by our models.

Table 3. The tokenization pipeline from the source code to a numeric vector presented
in [7]. The vocabulary indexes for this example are “<lit>” = 0, “<space>” = 1,
“<word>” = 2, “<equal>” = 3, “<number>” = 4 and “<semicolon>” = 5.

Source code int x = 1;

Tokens [“<lit>”, “<space>”, “<word>”,

“<space>”, “<equal>”, “<space>”,

“<number>”, “<semicolon>”]

Tokens lengths [3, 1, 1, 1, 1, 1, 1, 1]

Vectorization [0, 1, 2, 1, 3, 1, 4, 5]

3.3 Model Generation

The sequence of tokens generated by the tokenizer from the initial corpus of
training files is then used in the model generation section of our methodology to
train two different models that aspire to detect a formatting error. Our primary
goal in that stage is the approximation of the probability of a token being wrongly
positioned among the others, i.e. a formatting error, given a set of tokens that
define the formatting style. In order to do so, each token coming from the source
code needs to be assigned a likelihood of being a formatting error, as shown in
the following equation and was first defined in [7]:

P (formatting error token|context) (1)

Each of the two models used in our approach, aspires to approximate the
aforementioned probability from its own perspective for every token that appears
in the source code. The final probabilities are then calculated by aggregating the
outputs of the respective models.

Generative Model. The first model of our approach is the generative model,
which, given a series of tokens that have already been identified in the source
code, aspires to predict the next token that will be found, from the corpus of
the available ones, assigning a probability to each one of them. This model
is accomplished using a long short-term memory (LSTM) [6] recurrent neural
network model. LSTM neural networks are an extension of RNNs (recurrent
neural networks), that resolve the vanishing gradient problem and, thus, can

178 T. Karanikiotis et al.

memorize past data easier. LSTMs have been proven really effective in processing
source code and predicting the next tokens in a sequence of previous ones [4].

The generative model can play a crucial role towards accomplishing our pri-
mary goal, which is the approximation of a function that can estimate the prob-
ability of the next token to be identified, given a series of n− 1 tokens that have
been already found in the source code. LSTMs return an array of probabilities
that depict the likelihood of the next token to be the respective one. It can be
also considered as a categorical distribution of the probability across the vocab-
ulary of all possible tokens. In [7], we originally presented the following equation,
which depicts the categorical distribution, i.e. the vector of probabilities given
by the LSTM:

P (next token|context) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

P (< word > |context)
P (< space > |context)
P (< number > |context)
...

(2)

Respectively, Fig. 2 (also introduced in [7]) illustrates the way the LSTM
predicts the token < semicolon > given the previous tokens from the source
code “int x = 1;”, as it was originally presented in [7].

Fig. 2. The LSTM prediction of the adjacent token, given the source code “int x =
1;”, originally introduced in [7].

As it has been already mentioned, the LSTM estimates a vector containing
the probability of each token of the vocabulary to be the next one to be identified
in the series of tokens. Using this probability and inverting its value, we are able
to estimate the probability of identifying any other token in the next place of the
series, except from the respective one. In other words, inverting the probability
generated by the LSTM, we can approximate the probability of the respective
token being wrongly placed in the specific position in the source code. In the
following equation, originally defined in [7], the probability of the token < tok >
being wrongly positioned is depicted, i.e. the probability of any other token to
be found next:

P (< tok > wrong|cont) = 1 − P (next tok =< tok > |cont) (3)

A Personalized Code Formatter: Detection and Fixing 179

where < next tok > is the next token in the sequence of the previously
identified context cont.

The tokens that are generated from the initial source code, using the tok-
enizer defined in the previous step of our methodology, are fed into the LSTM
architecture, in order to calculate their probabilities of being wrongly positioned.
It should be noted that, in order for the first n tokens of the source code to be
checked also by the LSTMs, we manually added a set of n starting tokens, so
the first token to be predicted from the architecture is the actual first token
of the code. For the creation of the LSTM neural network we made use of the
Keras2 deep neural network framework, with two layers of 400 LSTM nodes
each, parameters that were selected upon testing. The sliding window that was
applied to the tokens of the source code in order to create the input vector was
chosen to have a context length of 20 tokens, as it was proven to be effective
on source code [24]. A window of 20 tokens is selected at each time-step and is
given as input to the LSTM network. The model outputs the probability of each
possible token to be the next one in the series. We compare these probabilities
with the actual next token and, using Eq. 3, we transform this probability into
an error probability.

Outlier Detection Model. The identification of a source code token wrongly
positioned among the others can also be seen from a different perspective, which
is the classification approach using n-grams. N-grams are a set of n continuous
tokens from the given source code. Figure 3, which was first presented in [7],
illustrates the procedure of tokenizing the source code “int x = 1;” and splitting
the generated tokens into different n-grams, with n = 1, n = 2 and n = 3.

Fig. 3. The n-grams that are produced from the source code “int x = 1;” for n = 1,
n = 2 and n = 3. For n = 1 the unigrams are “<lit>”, “<space>”, etc., for n = 2 the
bigrams are “<lit> <space>”, “<space> <word>”, etc. and for n = 3 the trigrams
are “<lit> <space> <word>”, “<space> <word> <space>”, etc. The figure was
originally presented in [7].

2 https://github.com/keras-team/keras.

https://github.com/keras-team/keras

180 T. Karanikiotis et al.

Using the complete corpus of tokens found in the original dataset and trans-
forming these tokens into n-grams, the formatting error detection problem can be
approached from the outlier detection perspective, aspiring to identify n-grams
in the source code that have not been previously met in the training corpus
and, thus, deviate from the developer’s code styling. Indeed, if the most of the
n-grams a specific token participates in are classified as outliers, then, probably,
this particular token has not been previously used in this way and constitutes a
formatting error.

The outlier detection model selected to implement this perspective was a Sup-
port Vector Machine - SVM One Class algorithm, which has been proven suc-
cessful in outlier detection problems [21]. The SVM One-Class model is trained
using only data coming from the original (or “positive”) class, this way iden-
tifying new data that deviate from the “normal” behavior. In our approach,
the model is trained on n-grams coming from the training corpus, which define
the developer’s preferable code styling, and is then used to detect n-grams that
diverge.

During the training of the SVM model, a usual limitation arises, which con-
cerns the fine-tuning of the SVM parameters, i.e. the ν and γ parameters. The
process of tuning these parameters usually tends to confine the model, while,
in practice, it needs to be flexible and adaptive, since multiple and previously
unknown n-grams may be found during the prediction stage of the model. In
order to overcome this limitation, we applied the following approach: instead
of simply using one single SVM One-Class model, with a certain set of ν and γ
parameters, we created a set of SVM models with various ν-γ pairs, that aspire to
cover a large area of the fine-tuning procedure. Each model is trained separately
and, then, all the predictions are aggregated, leading to the final prediction.

As our primary modelling target is the prediction of the probability of a sin-
gle token being a formatting error, we cannot make use of the classification of
an n-gram into the original or the outliers class. Instead, we take into account
the prediction probabilities that are produced by each model. The n-gram is fed
into all the different SVM One-Class models, which return their prediction prob-
abilities of the n-gram being an outlier, i.e. the n-gram does not have the same
behavior with the ones met in the training corpus. Subsequently, the predictions
of all SVM models are being aggregated and the final prediction for the n-gram
is made.

Finally, each token coming from the source code is assigned a probability of
being a formatting error as the mean probability of all the n-grams it partici-
pates. Equation 4 depicts the calculation of the formatting error probability for
the token <tok>, where n-grams is the set of all n-grams the token participates
in, SVM models is the set of all the SVM models we used and context is the
previously identified context.

P (< tok > being wrong|context) =
∑

n−grams

∑

SV M models

Pmodel(n-gram is outlier) (4)

A Personalized Code Formatter: Detection and Fixing 181

Models Aggregation. In the final step of our modelling step, we have to
concatenate the decisions made by the two separate models, as it is illustrated
in Fig. 1. The overall pipeline, from the initial source code that needs to be
checked for formatting errors, includes the tokenization of the code and the
generation of the respective tokens, as well as the prediction stage, in which
the tokens are forwarded into the two selected models, the LSTM and the SVM
One-Class. For each token found in the initial source code, the models output
their probabilities of the token being wrongfully present in the specific position.
In the next step, the two predictions are combined to form the final probabilities
of the models. By averaging the probabilities calculated from each model, we
were able to fix some ambiguous decisions made by a single model, i.e. a token
probably misclassified as formatting error but with low prediction probability
from the one model, would be correctly classified with a high probability from
the second one.

3.4 Snippet Scoring

Towards optimizing the results of identifying the position a formatting error
appears at, an extra step has been added to our approach, as it was originally
presented in [7], where a snippet of code is evaluated and a score is calculated.
This score reflects the purity of the snippet regarding formatting errors and
styling deviations from the ground truth.

A snippet scoring function has been designed that receives a given code as
input, transforms the initial code into tokens using the tokenizer described in
Subsect. 3.2 and splits the tokens into sets of predefined size, called snippets.
Each snippet is, then, processed and the tokens are split into bigrams (two
consecutive tokens constitute a single bigram), as illustrated in Fig. 3.

We then calculate the frequency of each bigram appearance in the set of
training files provided by the developers. The higher the frequency of a bigram
is in the training corpus, the less possible it is to be a formatting error. The final
score of each snippet is calculated by averaging the frequency of each bigram,
normalized based on the number of training files, according to the following
equation:

Score =

∑
bigrams(1 − norm freq)

#bigrams
(5)

where norm freq is the normalized frequency the bigram appears in the
training corpus, in the interval [0, 1], and # bigrams is the total number of
bigrams in the snippet. A normalized frequency of 0 means that the bigram has
not been found in any training file, while a normalized frequency of 1 reflects
the fact that the bigram appears in all the training files.

Using the score calculated with the aforementioned equation, the probabil-
ities of the modelling stage of our approach are altered to include the effect of
it. Specifically, the probability of each token is multiplied by the score value of
the snippet it participates in, as it is depicted in the following equation. Finally,

182 T. Karanikiotis et al.

the tokens along with their respective probabilities are being sorted to create a
descending order of tokens possibly being formatting errors.

Final token probability = snippet score ∗ initial probability (6)

where snipper score is the score calculated by the Eq. 5 for the snippet the
token belongs to and initial probability is the aggregated probability of the
token calculated by the models aggregation stage.

3.5 Possible Fixes

Next, a group of possible fixes for the formatting error needs to be generated.
In general, a formatting error appears when a token is misaligned or misplaced
and can probably be fixed by modifying this specific token in three different
ways [10]:

• Add an extra token in the list of tokens before the wrongly positioned one.
• Remove the token that produces the formatting error.
• Replace the wrongly positioned token with another one.

In order to generate the set of possible fixes, the above three cases are taken
into account. For the first case, where an extra token needs to be added, the
predictions of the generative model, i.e. the LSTM model, are employed. Par-
ticularly, the 5 most probable tokens of the LSTM predictions (i.e. the tokens
that the LSTM predicted as the actual next ones in the series of tokens) are the
potential ones to be added in the series of tokens, just before the token that gen-
erates the formatting error. Each one of these tokens is added separately in the
series and the prediction is fed to the next step of our system. When it comes
to the second case of the possible alterations, the change is quite simple and
involves only the removal of the wrongly positioned token. Finally, some pos-
sible fixes include the replacement of the formatting error token with another
one. Once again, the top predictions of the LSTM model are used as potential
substitutions of the examined token.

Having generated a list of possible alterations in the token series, we first need
to identify and discard the ones that result in syntactically invalid code. To do
so, we employ an appropriate language parser, which in our case is javac parser,
in order to examine the syntactical validity of the respective outcome. Obviously,
the possible fixes of the previous step that do not produce syntactically correct
code are discarded and the remaining ones are given in the next stage, in order
to be sorted accordingly.

3.6 Fixes Suggestion

In the last step of our approach, a sorted list of possible fixes is provided as
recommendations to the developers. Having verified the syntactical validity of
the remaining fixes, we need to calculate a score that reflects the appropriateness
of the fix with regard to the user’s selected code styling.

A Personalized Code Formatter: Detection and Fixing 183

In order to accomplish this and calculate a score for each possible fix, the
snippet scoring mechanism of the Subsect. 3.4 is once again used. Particularly,
for each candidate in the set of fixes, we calculate a score based on the frequency
the bigrams it consists of appear in the training corpus. The final score of each
possible fix is calculated using the Eq. 5. The complete list of possible fixes
is, then, sorted and the top predictions are given to the developer as the best
possible changes that will fix the formatting error that was detected.

4 Evaluation

Towards assessing the performance of our proposed methodology in identifying
formatting errors and deviations from a globally used code styling and providing
fixing recommendations, we perform several evaluation scenarios on various axes.
At first and in an attempt to measure the performance of our system, we apply
our methodology on the codrep dataset3. Additionally, towards the evaluation of
the effectiveness of our approach in practice, we apply our system in real-world
scenarios, in order to assess its ability of providing actionable recommendations
that can be used in practice during development.

4.1 Detection Evaluation

In the first step towards assessing the effectiveness of our system in identifying
code styling inconsistencies and pieces of code that diverge from a common for-
matting, we tested our system against data coming from the Codrep competition
[2]. Codrep is a competition for applying machine learning on source code. The
main goal of the codrep 2019 competition was the identification of the position
in a code file in which a formatting error appears. Codrep dataset consists of
8,000 Java files, each one of which contains a single formatting error in a spe-
cific character position. An additional file is given, which includes the character
position the formatting error appears for each one of the 8,000 files. Figure 4,
which was first presented in [7] depicts an example, in which a formatting error
appears. In this case, the formatting error is the unnecessary space that appears
in character position 30.

Fig. 4. Example of code file containing a single formatting error in character position
30. This example was originally presented in [7].

3 https://github.com/KTH/codrep-2019/tree/master/Datasets.

https://github.com/KTH/codrep-2019/tree/master/Datasets

184 T. Karanikiotis et al.

According to the codrep rules, the program that participates in the competi-
tion should have a single input, which is a file containing Java source code, and
output a descending ranking of the characters offsets, according to the probabil-
ities that are calculated and estimate their likelihood of containing a formatting
error. The final ranking of the characters is compared with the actual character
that contains the formatting error and the evaluation metric is calculated.

For the evaluation of the system’s performance, codrep made use of the Mean
Reciprocal Rank (MRR) metric, which is calculated as the mean value (over all
the files given as input) of the inverse of the rank in an ordered list the correct
answer is found on for a given file q. Given a set Q of evaluation files of length
|Q|, for each of which the correct answer is found in the rankq position in the
ordered list of predictions, the MRR is calculated using the equation:

MRR =
1

|Q|
∑

q∈Q

1
rankq

(7)

The best possible value of the MRR metric is 1, which depicts that the correct
position of the formatting error is found in the first place of the predictions for
each file in the evaluation set. On the other hand, an MRR value of 0, which is
the lowest possible score, means that the correct position of the formatting error
was not found. Table 4 depicts the MRR obtained using our approach only with
the generative model, only with the outlier detection model and with both the
models combined. In all the cases, the values of the MRR are calculated both
with and without the additional use of the snippet scoring mechanism and the
table has been altered accordingly from the respective one in [7]. The n-grams
we selected to use were 7-grams and 10-grams.

Table 4. MRRs of LSTM and SVM models.

Model Without snippet scoring With snippet scoring

LSTM 0.70 0.72

7-gram SVM 0.63 0.63

7-gram SVM & LSTM 0.78 0.79

10-gram SVM 0.57 0.61

10-gram SVM & LSTM 0.85 0.88

According to the MRR values depicted in Table 4, the combined model, con-
sisted of both the LSTM and the 10-gram SVM, along with the snippet scoring
mechanism yields the best results. These values are well above the ones from
random guessing the position of the formatting error. Santos et al. [18] calcu-
lated that, for a file of 100 lines and 10 tokens per line, the random guessing
would achieve an MRR of 0.002.

Despite the fact that we also used the MRR metric for the evaluation of our
approach, we refrained from comparing our results with the respective ones from

A Personalized Code Formatter: Detection and Fixing 185

the Codrep competition4, as the rules of the competition were not quite strict
and the participants were allowed to use any possible technique to identify the
formatting errors, e.g. using regular expressions, while a training set containing
a lot of similar formatting errors was given to them a priori.

However, the MRR is a quite strict and conservative metric and its values can
be significantly reduced just by some bad predictions. Indeed, in a case where the
correct answer is ranked first 50% of cases and second the other 50%, the MRR
value would be just 0.75, despite the fact that this model would probably be
considered acceptable. In order to cope with the strictness of the MRR metric,
we also calculated the histograms of the position in the ordered list the correct
answer was found. Figure 5 illustrates these histograms, calculated both with the
snippet scoring mechanism and without it. The height of each bar displays the
number of files for which the correct prediction was found on that position. The
blue bar reflects the number of files for which the correct prediction was found
on the respective position without the use of the snippet scoring mechanism (as
it was originally calculated in [7]), while the purple bar reflects the respective
ones with the addition of the scoring function of this work.

The results from Table 4 and Fig. 5 show that the correct prediction, i.e.
the identification of the formatting error within the source code, is the first
one for the most of the times. The combination of the two models, LSTM and
SVM, clearly improved the results, while the selection of 10-grams over 7-grams
had also a positive impact. The addition of the snippet scoring mechanism also
appears to improve the results and enhance the detection outcome.

Towards further examining the performance of the first part of our method-
ology, regarding the identification of formatting errors and deviations from the
globally used code styling, we evaluated our system in the following scenario.
From the sorted list of tokens, along with their probabilities of being a for-
matting error, only the first k tokens are returned to the user, as long as their
probability of being a formatting error is above a predefined threshold. For these

Fig. 5. The histograms of the positions the correct answer was found in.

4 https://github.com/KTH/codrep-2019.

https://github.com/KTH/codrep-2019

186 T. Karanikiotis et al.

tokens, we examine whether the actual formatting error is included and cal-
culate the metrics precision@k, recall@k and f-measure@k. Figure 6 illustrates
these metrics calculated for the best two of the previous models (the 7-gram
SVM with LSTM and the 10-gram SVM with LSTM) and using various thresh-
olds in the range 0.9–1.0 and values 1, 5 and 10 for k. The top figures reflect the
calculated metrics with the modelling approach of [7] (i.e. without the scoring
mechanism), while the bottom ones are calculated using the predictions with the
snippet scoring step.

Fig. 6. The precision, recall and f-measure metrics for various k and threshold values.

From the results illustrated above, we can conclude that the 10-gram SVM
along with the LSTM and the scoring mechanism performs better with a preci-
sion value of 0.9, a recall value of 1.0 and an f-measure value of 0.92 for k = 10
and threshold = 0.95. A system with these parameters could correctly identify
deviations from the globally used formatting and provide useful suggestions to
the developer about possible fixes.

4.2 Application of Formatting Error Fixing in Practice

In an attempt to further assess the effectiveness of our approach in providing
useful recommendations to the developers that can be directly applied on the
source code and fix the identified formatting error, we applied our methodology
in certain use-cases, in which we aspire to identify the applicability of the format-
ting error detection system in practice. Thus, we randomly selected some small
Java files from the most popular GitHub repositories, in which our methodology
would be applied to.

A Personalized Code Formatter: Detection and Fixing 187

Figure 7 presents the initial version of a randomly selected source code to be
evaluated by our system. In this occasion a formatting error is detected in line
12 and concerns the extra use of a new-line character (the character in the red
circle). It is obvious that the insertion of just one new character can reduce the
overall code comprehensibility, as there is no correct indentation.

Fig. 7. Initial version of file.

Our system is able to identify the formatting error position, while the fixing
mechanism evaluates the possible fixes and produces a sorted list of possible
fixes. According to them, the fix with the biggest score is presented in Fig. 8.
Indeed, the first predicted syntactically-valid fix is the one that a developer
would have also applied. The final version of the file is easier for the developers
to understand, as the correct indentation can be a valuable guidance towards
the code flow comprehension.

Figure 9 illustrates a different example, in which, in the initial source code
of the file, the formatting error is detected in line 11 and concerns the extra
use of a tab character (depicted in the Figure). Again, the insertion of just one
new character alters the way a developer can read the code and understand its
content.

Our approach ranks the formatting error first among the set of all possible
positions and the fixing mechanism provides a sorted list of suggestions. The
first recommendation given by our approach includes the withdrawal of the tab
character. In Fig. 10, the final version of the file, the comprehension of the source
code follows a natural flow.

Despite these examples seem small and the fixes seem insignificant, they can
be quite important in large projects, in which different and various developers

188 T. Karanikiotis et al.

Fig. 8. Final version of file.

Fig. 9. Initial version of file.

participate with various coding styles. Detecting and fixing these formatting
errors could noticeably improve readability and code comprehensibility.

5 Threats to Validity

Our approach towards identifying formatting deviations from the previously
selected code styling and suggesting possible fixes to the developers seems to
achieve high internal validity, as it was proved by the evaluation of our system
in the previous section.

A Personalized Code Formatter: Detection and Fixing 189

Fig. 10. Final version of file.

The limitations and threats to the external validity of our approach span
along the following axes: 1) the selected training dataset used as the ground
truth and 2) the selected use case. In the first step of our methodology and
towards creating the ground truth of our approach, we attempted to define the
desired code styling by making use of the dataset Santos et al. [18] created, who
mined the top 10,000 Java repositories from GitHub and extracted more than
2M syntactically valid files. It is a fact that different projects or repositories
could be used in order to train our system with their code styling. However,
our methodology can be applied as-is in any repository or benchmark dataset,
covering multiple and different evaluation scenarios. Moreover, for the evalua-
tion of our approach the codrep competition was employed, the main goal of
which was the identification of formatting deviations from widely accepted cod-
ing standards. One threat to the external validity of our approach lies on the
evaluation of our approach on different scenarios, i.e. the generalization of our
approach on a set of different code stylings. Nonetheless, the selected use case
is considered as the most common and necessary one, while it does not differ
significantly from the other scenarios.

6 Conclusions and Future Work

In this work, we proposed an automated mechanism, which is able to identify
styling deviations from a previously defined code styling and propose fixes to
the developer. Our system is based on two algorithms, LSTM and SVM, which
aspire to model the problem from different perspectives, and a snippet scoring
mechanism that evaluates the purity of the given code regarding the formatting
errors. One of the basic contributions of our approach is that it does not need to

190 T. Karanikiotis et al.

be pre-trained based on a dataset or based on a set of predefined rules, that allow
only minor modifications, but it can learn the coding style used in a project and
detect deviations from it in a completely unsupervised manner, without the need
of experts or prior domain knowledge. The evaluation of our approach in diverse
axes indicates that our system can effectively identify formatting deviations from
the coding style used as ground truth, calculate and sort possible fixes and
provide effective and actionable recommendations to the developers, enhancing
the readability degree and ensuring the styling consistency across the project.

While the use of globally adopted code styling in the evaluation stage of our
approach indicates that our methodology could also be used as a common format-
ter, the main contribution of our approach lies on the unsupervised code styling
consistency held across a project or set of files. Should a team of developers
apply our methodology across a project, every team member will be motivated
to follow the common code styling from the ground, improving the maintenance
and the evolution of the software.

Future work relies on several axes. First, the snippet scoring mechanism
could be further investigated, in order to create an algorithm that could assess
the purity of the given code regarding the code styling and the way the for-
matting of code under examination correlates with the desired formatting style
of the training corpus. Additionally, a thorough evaluation mechanism could be
created that could qualitatively or quantitatively assess the performance of the
complete system in detecting and fixing formatting errors, as well as the read-
ability improvement achieved. Moreover, we would suggest the creation of a tool
or plugin for a set of commonly used IDEs, that would predict the formatting
errors, while the developer is typing, highlight these errors and suggest possible
fixes. Finally, we could alter the training dataset by using projects with different
characteristics and, especially, small projects with developers that use different
formatting styles, in order to evaluate the performance of our approach in a
small code basis with high formatting fluctuations.

References

1. Allamanis, M., Barr, E.T., Bird, C., Sutton, C.: Learning natural coding conven-
tions. In: Proceedings of the 22nd ACM SIGSOFT International Symposium on
Foundations of Software Engineering, FSE 2014, pp. 281–293. Association for Com-
puting Machinery, New York (2014). https://doi.org/10.1145/2635868.2635883

2. Codrep: Codrep 2019 (2019). https://github.com/KTH/codrep-2019. Accessed 27
Sept 2020

3. GNU Project: Indent - GNU project (2007). https://www.gnu.org/software/
indent/. Accessed 27 Sept 2020

4. Hellendoorn, V.J., Devanbu, P.: Are deep neural networks the best choice for mod-
eling source code? In: Proceedings of the 2017 11th Joint Meeting on Foundations
of Software Engineering, ESEC/FSE 2017, pp. 763–773. Association for Computing
Machinery, New York (2017). https://doi.org/10.1145/3106237.3106290

5. Hindle, A., Godfrey, M.W., Holt, R.C.: From indentation shapes to code structures.
In: 2008 Eighth IEEE International Working Conference on Source Code Analysis
and Manipulation, pp. 111–120 (2008)

https://doi.org/10.1145/2635868.2635883
https://github.com/KTH/codrep-2019
https://www.gnu.org/software/indent/
https://www.gnu.org/software/indent/
https://doi.org/10.1145/3106237.3106290

A Personalized Code Formatter: Detection and Fixing 191

6. Hochreiter, S., Schmidhuber, J.: LSTM can solve hard long time lag problems.
In: Mozer, M.C., Jordan, M.I., Petsche, T. (eds.) Advances in Neural Information
Processing Systems, vol. 9, pp. 473–479. MIT Press (1997). http://papers.nips.cc/
paper/1215-lstm-can-solve-hard-long-time-lag-problems.pdf

7. Karanikiotis, T., Chatzidimitriou, K.C., Symeonidis, A.L.: Towards automatically
generating a personalized code formatting mechanism. In: Proceedings of the
16th International Conference on Software Technologies (2021). https://doi.org/
10.5220/0010579900900101

8. Kesler, T.E., Uram, R.B., Magareh-Abed, F., Fritzsche, A., Amport, C., Dun-
smore, H.: The effect of indentation on program comprehension. Int. J. Man-
Mach. Stud. 21(5), 415–428 (1984) https://doi.org/10.1016/S0020-7373(84)80068-
1. http://www.sciencedirect.com/science/article/pii/S0020737384800681

9. Lee, T., Lee, J.B., In, H.: A study of different coding styles affecting code read-
ability. Int. J. Softw. Eng. Its Appl. 7, 413–422 (2013). https://doi.org/10.14257/
ijseia.2013.7.5.36

10. Loriot, B., Madeiral, F., Monperrus, M.: STYLER: learning formatting conventions
to repair checkstyle errors. CoRR abs/1904.01754 (2019). http://arxiv.org/abs/
1904.01754

11. Markovtsev, V., Long, W., Mougard, H., Slavnov, K., Bulychev, E.: Style-analyzer:
fixing code style inconsistencies with interpretable unsupervised algorithms, pp.
468–478, May 2019. https://doi.org/10.1109/MSR.2019.00073. https://www.
scopus.com/inward/record.uri?eid=2-s2.0-85072331325&doi=10.1109%2fMSR.
2019.00073&partnerID=40&md5=1c53eb83d17352bd9e21fc03c40f7ef3

12. Miara, R.J., Musselman, J.A., Navarro, J.A., Shneiderman, B.: Program indenta-
tion and comprehensibility. Commun. ACM 26(11), 861–867 (1983). https://doi.
org/10.1145/182.358437

13. Ogura, N., Matsumoto, S., Hata, H., Kusumoto, S.: Bring your own coding style.
In: 2018 IEEE 25th International Conference on Software Analysis, Evolution and
Reengineering (SANER), pp. 527–531 (2018). https://doi.org/10.1109/SANER.
2018.8330253

14. Parr, T., Vinju, J.: Towards a universal code formatter through machine learning.
In: Proceedings of the 2016 ACM SIGPLAN International Conference on Soft-
ware Language Engineering, SLE 2016, pp. 137–151. Association for Computing
Machinery, New York (2016). https://doi.org/10.1145/2997364.2997383

15. Posnett, D., Hindle, A., Devanbu, P.: A simpler model of software readability. In:
Proceedings of the 8th Working Conference on Mining Software Repositories, MSR
2011, pp. 73–82. Association for Computing Machinery, New York (2011). https://
doi.org/10.1145/1985441.1985454

16. Prabhu, R., Phutane, N., Dhar, S., Doiphode, S.: Dynamic formatting of source
code in editors. In: 2017 International Conference on Innovations in Information,
Embedded and Communication Systems (ICIIECS), pp. 1–6 (2017). https://doi.
org/10.1109/ICIIECS.2017.8276008

17. Prettier: Prettier (2017). https://prettier.io/. Accessed 27 Sept 2020
18. Santos, E.A., Campbell, J.C., Patel, D., Hindle, A., Amaral, J.N.: Syntax and sen-

sibility: using language models to detect and correct syntax errors. In: 2018 IEEE
25th International Conference on Software Analysis, Evolution and Reengineering
(SANER), pp. 311–322 (2018)

19. Scalabrino, S., Linares-Vásquez, M., Poshyvanyk, D., Oliveto, R.: Improving code
readability models with textual features. In: 2016 IEEE 24th International Con-
ference on Program Comprehension (ICPC), pp. 1–10 (2016). https://doi.org/10.
1109/ICPC.2016.7503707

http://papers.nips.cc/paper/1215-lstm-can-solve-hard-long-time-lag-problems.pdf
http://papers.nips.cc/paper/1215-lstm-can-solve-hard-long-time-lag-problems.pdf
https://doi.org/10.5220/0010579900900101
https://doi.org/10.5220/0010579900900101
https://doi.org/10.1016/S0020-7373(84)80068-1
https://doi.org/10.1016/S0020-7373(84)80068-1
http://www.sciencedirect.com/science/article/pii/S0020737384800681
https://doi.org/10.14257/ijseia.2013.7.5.36
https://doi.org/10.14257/ijseia.2013.7.5.36
http://arxiv.org/abs/1904.01754
http://arxiv.org/abs/1904.01754
https://doi.org/10.1109/MSR.2019.00073
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85072331325&doi=10.1109%2fMSR.2019.00073&partnerID=40&md5=1c53eb83d17352bd9e21fc03c40f7ef3
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85072331325&doi=10.1109%2fMSR.2019.00073&partnerID=40&md5=1c53eb83d17352bd9e21fc03c40f7ef3
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85072331325&doi=10.1109%2fMSR.2019.00073&partnerID=40&md5=1c53eb83d17352bd9e21fc03c40f7ef3
https://doi.org/10.1145/182.358437
https://doi.org/10.1145/182.358437
https://doi.org/10.1109/SANER.2018.8330253
https://doi.org/10.1109/SANER.2018.8330253
https://doi.org/10.1145/2997364.2997383
https://doi.org/10.1145/1985441.1985454
https://doi.org/10.1145/1985441.1985454
https://doi.org/10.1109/ICIIECS.2017.8276008
https://doi.org/10.1109/ICIIECS.2017.8276008
https://prettier.io/
https://doi.org/10.1109/ICPC.2016.7503707
https://doi.org/10.1109/ICPC.2016.7503707

192 T. Karanikiotis et al.

20. Scalabrino, S., Linares-Vásquez, M., Oliveto, R., Poshyvanyk, D.: A comprehensive
model for code readability. J. Softw. Evol. Process 30 (2018). https://doi.org/10.
1002/smr.1958

21. Seo, K.K.: An application of one-class support vector machines in content-
based image retrieval. Exp. Syst. Appl. 33(2), 491–498 (2007) https://doi.org/
10.1016/j.eswa.2006.05.030. http://www.sciencedirect.com/science/article/pii/
S0957417406001655

22. Tysell Sundkvist, L., Persson, E.: Code styling and its effects on code readabil-
ity and interpretation. Ph.D. thesis, KTH Royal Institute of Technology (2017).
http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-209576

23. Wang, X., Pollock, L., Vijay-Shanker, K.: Automatic segmentation of method code
into meaningful blocks to improve readability. In: 2011 18th Working Conference
on Reverse Engineering, pp. 35–44 (2011)

24. White, M., Vendome, C., Linares-Vásquez, M., Poshyvanyk, D.: Toward deep learn-
ing software repositories. In: Proceedings of the 12th Working Conference on Min-
ing Software Repositories, MSR 2015, pp. 334–345. IEEE Press (2015)

https://doi.org/10.1002/smr.1958
https://doi.org/10.1002/smr.1958
https://doi.org/10.1016/j.eswa.2006.05.030
https://doi.org/10.1016/j.eswa.2006.05.030
http://www.sciencedirect.com/science/article/pii/S0957417406001655
http://www.sciencedirect.com/science/article/pii/S0957417406001655
http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-209576

Software Framework of Context-Aware
Reconfigurable Secure Smart Grids

Soumoud Fkaier1,2,3(B), Mohamed Khalgui1,2, and Georg Frey3

1 INSAT LISI Lab, Carthage University, Tunis, Tunisia
soumoud.fkaier@aut.uni-saarland.de

2 Tunisia Polytechnic School, Carthage University, Tunis, Tunisia
3 Chair of Automation and Energy Systems, Saarland University,

Saarbruecken, Germany

Abstract. Developing Smart Grids (SG) requires more advanced soft-
ware engineering tools to keep-up with the growing requirements. Recon-
figuration, context-awareness, and security features are becoming neces-
sary for the smart and reliable behavior of future electricity grids. Sev-
eral software solutions have been proposed to improve the development
of such features. However, there is still a need to a software solution
that clarify the relation between reconfiguration and context as well as
facilitate their development all with satisfying complex needs such the
real-time, coordination, and security needs. In this paper, we propose
a solution for easy implementation of reconfigurations originated by a
context change. We extend an existing software framework dedicated to
the development of context-aware reconfigurable applications with mech-
anisms that handles the contexts in the controller. This paper explores
the usage of the said framework as an infrastructure for general pur-
pose SG applications. To show the suitability of the proposed concepts,
a formal case of microgrids reconfigurations is conducted.

Keywords: Software framework · Reconfiguration · Security ·
Context-awareness · Distributed system

1 Introduction

Smart grids are undergoing a large evolution in the offered services to both end-
users and producers. The aim behind this evolution is to achieve more reliable,
sustainable, and economical power supply [1,2]. This becomes possible thanks
to the adoption of modern concepts such as the integration of the renewable
energy and storage systems as well as the demand response handling. To sat-
isfy the new requirements, the software governing the system must be strong
enough to support such complicated features. In fact, the software needs to pro-
vide the awareness about the context [3,4] that the grid behaves within in order
to have proper and coherent decisions. It must also allow the use of prediction
and intelligence techniques since these techniques are widely used in the elec-
tricity field in order to predict the energy production based on weather forecasts
c© Springer Nature Switzerland AG 2022
H.-G. Fill et al. (Eds.): ICSOFT 2021, CCIS 1622, pp. 193–217, 2022.
https://doi.org/10.1007/978-3-031-11513-4_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-11513-4_9&domain=pdf
https://doi.org/10.1007/978-3-031-11513-4_9

194 S. Fkaier et al.

and/or the consumption rates based on the estimations of users profiles and
consumption trends [5]. Further, it is required that the software offers the tools
to coordinate with other peers in the system, where collaborations are more and
more required [6,7]. More importantly, protecting the coordination between peers
against cyber-attacks needs also to be taken into consideration since security is
a major concern especially that the modern economy relies heavily on electricity
[8]. Moreover, applications need to seamlessly conduct reconfigurations [9], all
with checking the aforementioned needs.

Most of the current research in this field is focusing to satisfy each of the
mentioned needs in a separate way, although it is generally required to have an
application able to perform a set of the requirements simultaneously, if not all of
them together. From another side, most the existing works deal with the intel-
ligence and reconfiguration at the control and automation level. This approach
has a main drawback: it is generally tied to the considered case. In fact, usu-
ally a SG architecture is defined with a set of parameters and assumptions, and
even with fixed types of equipment. Also, if we watch the existing works we can
notice that the goals are often the same and repetitive functionalities are sought,
such as the Demand Response management, batteries operation optimization,
Renewable Energy Sources (RES) integration, etc. [11]. Hence, in order to reduce
the development time and effort, it is better to create a code infrastructure that
can be generic. In this way we can allow reusability by making the main logic as
generic code base, which can be extended with systems specificity according to
the considered case. In fact, it is of great importance to have a tool that allows
to implement applications logic independently from the grid architecture and
physical platform (i.e., that can run on top of any hardware). In fact, SG equip-
ment and devices are continuously changing, so it is required to have a software
algorithms and business models independent from any restricted platform [12].

Based on the limitations discussed above, this paper proposes to develop the
logic of the SG functionalities in the application level using the software frame-
work introduced in the research presented in [13]. This framework is selected
because in addition to the ability to develop multiple requirements (security,
context-awareness, collaboration, intelligence, real-time requirements), it fea-
tures the definition of the SG functionalities into services which promotes the
generic and reusable aspect of the framework.

In this paper, we demonstrate how it is possible to implement application’s
reconfiguration scenarios initiated by a context change. For this end, the mecha-
nisms of the controller -which is the central element of the framework architecture
that is located in the Context Control Layer- are extended to clearly demon-
strate the relation between a context change and a system reconfiguration. A
new experimentation with new data-sets is conducted to show the reasoning of
the controller face to context changes.

Software Framework of Context-Aware Reconfigurable Secure Smart Grids 195

The outline of the rest of the paper is the following: Section 2 reviews the
related literature. Section 3 presents the improved framework. Section 4 shows
an example of development of microgrids software. Section 5 evaluates the per-
formances of the proposed framework. Finally, Sect. 6 concludes the paper and
shows new perspectives.

2 Related Works

This section studies the existing works from two perspectives: First, the relation
between context-awareness computing paradigm with regard to the smart grid
systems, second the existing context-awareness software frameworks. It finally
discusses them and introduces the motivation.

2.1 Context-Awareness and Smart Grids

Given its high potential to bring smartness to the computerized grid, context-
awareness paradigm was lately considered by many SG-related works. The work
reported in [8] studied the awareness of microgrids in terms of operational
and infrastructural aspects. The work layouts a framework for context-aware
resilience. The work reported in [14] proposed a context-aware energy manage-
ment system for smart buildings that relies on IoT and wireless sensor net-
works. The works reported in [15–17] used the context awareness concepts to
create security measures in the energy grid. The work reported in [18] used
context-awareness to build an adaptive cognition system for smart homes and
smart grids. The work reported in [19] proposed a context-aware traffic schedul-
ing in smart grids. The work reported in [20] proposed a solution for the net-
work of Phasor Measurement Units (PMUs) awareness using the IoT and cloud
computing.

From another side, the context-awareness computing paradigm was largely
exploited in the smart grids from a communication perspective, specifically the
Software-Defined-Networks solutions. Many works have focused on including the
contextual awareness to the communication methods due to the high complexity
of the distributed entities involved in the smart grid as well as the increasing
inter-operability challenges. The research provided in [21] surveyed the main
proposed solutions in this direction.

2.2 Context-Awareness Frameworks

The outstanding evolution of sensory and data acquisition technologies has moti-
vated the integration of contextual data in the applications logic. And given the
complicated nature of systems relying on real-time decision making, some soft-
ware frameworks were proposed to facilitate the development of such intelligent
software. The work reported in [22] defined a context-awareness framework based
on the cloud technology that is dedicated to smart cities. The work reported
in [23] presented a context-aware framework for semantic traffic supervising in

196 S. Fkaier et al.

smart cities. The work reported in [24] introduced a new service-oriented archi-
tecture supporting the real-time context-aware services. The contributions were
applied to a health care use case.

2.3 Discussion

As it can be seen from the literature overview presented in the previous two sub-
sections, many software solutions in the scope of context-awareness are defined.
But despite its importance, we recognized the following limitations:

– From the context-awareness perspective, many context-awareness software
frameworks are proposed. But most of them are dedicated for mobile appli-
cations and are not suitable for complicated systems like the SG.

– Many software solutions are dedicated to smart grids but most of them focus
on inter-operability and coordination issues, such as the wide range of SDN-
based works, which do not cover other crucial aspects such as the prediction,
reconfiguration, functional constraints, etc.

– Many other software solutions are proposed to leverage intelligence, aware-
ness, and coordination needs, but they are always developed in the automa-
tion and control level, and are tied to specific SG architectures.

To overcome the mentioned limitations we propose a new context-awareness
framework that enables to develop smart software of smart grids. The frame-
work provides the mechanisms facilitating the implementation of reconfiguration,
security, intelligence, coordination and timing needs. The framework is initially
introduced in [3,4,13]. In this paper, we extend the controller logic and we show
how the framework make the development task more efficient using an example
of microgrids case study.

3 Enhanced Software Framework

To design a software architecture for context-aware reconfigurable systems, we
need to make the structure simple and clear. In fact, with the increasing com-
plexity of the miscellaneous requirements that need to be involved, the software
becomes more and more difficult to develop. This is why, it is important to
define the architecture components in a loosely coupled way. The structure of
the architecture needs to follow the separation of concerns principle [25] to make
every component responsible for a specific role. An analysis of the context-aware
reconfigurable systems has led us to define the meta-model presented in [1,26],
and based on this meta-model we defined the framework architecture presented
in Fig. 1.

Software Framework of Context-Aware Reconfigurable Secure Smart Grids 197

Fig. 1. Framework architecture for context-aware reconfigurable applications.

The framework is defined in [3,4,13] by four layers: RL: the reconfigura-
tion layer, CCL: the context control layer, SL: the services layer, and CL: the
communication layer.

3.1 Reconfiguration Layer

This layer is in charge of the communication with the outer environment, specif-
ically ensuring the reading of the inputs of the framework and writing of its
outputs. This is done thanks to two pools: the inputs pool IP and the outputs
pool OP .

Inputs Pool: The role of the inputs pool is to provide data that are used to
establish a context. This pool distinguishes between two types of inputs accord-
ing to their urgency level, critical and uncritical data, where the uncritical data
are processed following a context modeling and reasoning methodology presented
in [27]. The context reasoner of this pool produces recommendations of recon-
figurations and sends them to the upper layer for further processing.

This pool provides also the reading of measurements/inputs whenever
required by the upper layer (CCL).

198 S. Fkaier et al.

Outputs Pool: The role of the outputs pool is to ensure the application of
the decisions made in the upper layer (CCL). It contains a context output
handler that renders the data necessary to change the system behavior. This
is done through updating some interfaces to the connected software/hardware
components.

3.2 Context Control Layer

This layer is composed of six pools: CCL = (C,CP, FP, TP, SP,AIP), where C
is the controller pool, CP is the coordination pool, FP is the functional pool, TP
is the timing pool, SP is the security pool, and AIP is the artificial intelligence
pool.

The CCL’s role is to process the inputs provided by the inputs pool and
decides if a reconfiguration is required or the application of the current services
must be further continued. This layer uses the upper and lower layers (i.e.,
SL and RL) where the SL represents the services store. The main logic of
applications is ensured thanks to the controller pool C. This pool is the central
and major element in the whole architecture since it is the component responsible
for the changes of the system behaviors. The controller includes the logic and
algorithms that rely on the rest of the pools of CCL.

Controller Pool. The name of the second layer -Context Control Layer- is
coming from the fact that this layer, and especially the controller, is responsible
for running applications according to a specific context. A context is defined
as the set of input data that make the system reconfigure itself. The context
is created in the reconfiguration layer using the context reasoner methods (see
Fig. 1). Thereafter, the controller takes this context entry and processes it in
order to determine which configuration to deploy.

Previously the logic of the controller was left to the developers to design and
implement. It was offering only the interfaces allowing the interaction with the
pools and layers. In this paper, we extend the mechanisms of the controller with
more details about the relation of contexts and configurations, and we propose
some generic algorithms that could be re-usable in different cases.

Sub-contexts and Sub-configurations. At any instant t of its lifetime, a
context-aware application is running according to a well-defined context called
the OperatingContext and denoted by OC (see Fig. 2).

The goal of processing the context entry is to make a feasible change of the
OperatingContext. The OC is given by:

OC = (scint, scext) (1)

where scint denotes the internal sub-context that indicates the management of
the internal activities of a microgrid and scext denotes the external sub-context
that indicates the activities that a microgrid performs to interact with the rest of

Software Framework of Context-Aware Reconfigurable Secure Smart Grids 199

Fig. 2. Context processing by the controller.

the microgrids in the SG such as the trading or the fault recovery. A sub-context
is defined by a type and is composed of a set of sub-configurations,

sci = (Tsc, SCFGsc), SCFGsc = {scfgj |j = 0, ...,m} (2)

where Tsc is the type of the sub-context (i.e., internal or external), SCFGsc

denotes the set of sub-configurations and m is the number of sub-configurations.
A sub-configuration is defined by a set of services such that

scfgj = {Si|i = 0, ..., |scfgj |} (3)

where Si denotes a service of the services layer SL.
The controller performs two main tasks: processing the main logic and recon-

figuring the system (see Fig. 2). Processing the main logic is ensured by a master
controller and its function can be summarized as follows: receiving the new con-
text entries, analyzing it using the pools, and then deciding if new services will
be added, removed or updated in the OperatingContext. In fact, the context
entry is considered as a CandidateContext, denoted by CC that requires some
processing and verification before taking it into deployment.

Adopting the composition of the operating context of internal and external
sub-contexts helps to separate the concerns. This is useful to preserve the conti-
nuity of services for internal issues. It allows also to tame the complexity of the
intertwined events/contexts. In fact, it is required to align with external contexts
as maximum as possible but these sub-contexts should not violate the internal
sub-contexts. Preferences and priorities of the sub-contexts, and therefore of the
services to be deployed, must respect the application goals (which need to be
defined by system developers).

200 S. Fkaier et al.

The class diagram of the controller is extended with the new proposed ele-
ments. Figure 3 shows that in addition to the interaction with the architecture
layers and the CCL pools, the logic includes now the processing of the sub-
contexts and sub-configurations. The class SubContextHelper (resp. SubConfig-
urationHelper)contains the methods that help to handle the predefined list of
sub-contexts (resp. sub-configurations).

Fig. 3. UML class diagram of the controller.

Reusable Routines. In addition, three generic algorithms that can be used
by the master controller are proposed, where Algorithm1 defines the mecha-
nism to find the match between the context reasoner recommendations and the
predefined sub-context, Algorithm 2 defines the process to check a combination
of intelligence and functional needs, and Algorithm3 defines the mechanism of
secure coordination among a given microgrid with other peers in the system.
The nomenclature used in the algorithms is the following:

• R the recommendations of CC.
• SC is the set of all sub-contexts predefined by the system owners/developers

where the sub-contexts must match the set of recommendations defined in the
Context Rule Store of the context reasoner of the inputs pool (IP). SC =
{sck|k = 0, ..., |SC|}.

• Reconfigurator is the controller reconfigurator object.
• PC is the list of possible sub-configurations.
• ps possible services variable.

Software Framework of Context-Aware Reconfigurable Secure Smart Grids 201

• irs internal running services.
• ers external running services.

The role of Algorithm 1 is to receive the context entry sent by the inputs
pool of RL; from now on, this entry is considered as candidate context CC.
Then, it extracts the recommendations from CC if they exist. After, it parses
the predefined set of sub-contexts SC and extracts the matching ones.

Algorithm 1. Extract the services of context entry.
CC = ReadContext();
R = ExtractRecommendation(CC);
//based on received recommendations, retrieve sub-context from the list of sub-contexts
foreach(sc in SC)do

if (sc.name == R) then
PC ← sc;

end
end
ps = GetServices(PC);
return ps

Algorithm 2 defines a generic process to check both intelligence and functional
needs. In this algorithm, first the AIP is consulted to check the intelligence
needs. If the result indicates context conclusions different from the running one,
then an update must be conducted. But before executing any updates, we must
verify that the changes will not bring the system to an inconsistent state. Thus
the functional pool is involved to check for coherence between the new services
and the running ones. First, we check if we have completely new services, if yes
we need to check whether we have exclusion with one of the existing services. In
case there is no exclusion then the service is added, and in case there is exclusion
the existing service is removed and the new one is added. In case the new context
contains the same services as the running one, an update with the corresponding
operation mode is performed.

Coordination among distributed peers requires, in most of the reliable sys-
tems, a secure information exchange. For this, we propose Algorithm3 to enable
secure collaboration between peers. The coordination process is based on the
predefined coordination matrix of CP . Before sending any messages or transac-
tion in general, the security pool is involved to secure data (hashing, encrypt-
ing, etc.), then the transactions need to go through the outputs pool OP . These
instructions maybe repeated until a consensus takes place between the peers. The
termination condition is use-case dependent. After the peers reach an agreement,
then the considered services need to be processed.

202 S. Fkaier et al.

Algorithm 2. Check Intelligence and functional needs.
AIPResult= InteractWithAIP (ps);
if(AIPResult �= irs) then

if(∃Si|Si ∈ AIPResult, Si �∈ irs) then
FPResult= InteractWithFP (AIPResult, irs);
if(FPResult is positive) then
NewServices = {Si|Si ∈ AIPResult and Si �∈ irs};
irs ← NewServices;

else if(∃Si|Si ∈ FPResult and∃{Sj ∈ irs|FPExclusion(Si, Sj) = true}) then
irs \ {Sj ∈ irs|FPExclusion(Si, Sj) = true};
irs ← Si;

end
else if(∃Si|Si ∈ AIPResult and Si ∈ irs)then

rop = GetOperationModes(irs);
pop = GetOperationModes(ps);
if(rop = pop) then

do nothing;
else if(rop �= pop) then

opToUpdate = pop − rop ;
update(opToUpdate, pop, ps); //if different modes, then take the new ones.

end
end

Algorithm 3. Coordinating.
repeat
CPResult = InteractWithCP (ps);
SPResult = InteractWithSP (CPResult);
ss = InteractWithOP (SPResult);
acceptance = AnalyseEfficiency(ss); //the efficiency logic is use case dependent.
until(acceptance = true);

Artificial Intelligence Pool. Since modern systems are depending more and
more on the artificial intelligence concepts, this pool provides a generic intelli-
gence mechanism that could be used differently according to the use case. This
pool provides an expert system composed of a knowledge base, an inference
engine, and a pool history. In order to use this pool, developers need to fill
the rules and facts bases of the knowledge base and they need to choose which
inference type (forward or backward chaining) [13] should the engine use.

Coordination Pool. To allow coordination between distributed peers, this pool
uses a matrix of configurations in which the columns represent all the existing
peers, and the lines represent the different configurations [13].

Software Framework of Context-Aware Reconfigurable Secure Smart Grids 203

Security Pool. Coordination between the distributed peers requires an
exchange of data where some of them can be critical. The security pool is a
container of security mechanisms such as the algorithms necessary for blockchain-
related algorithms, etc. [13]. Since encryption/decryption tools are often used,
in this paper we extend the existing techniques with the methods of the crypto-
system Elliptic Curve Integrated Encryption Scheme (ECIES) [28].

Functional Pool. With the multiple services that an application can provide,
precedence and conflicts could happen between some of them. To overcome the
coherence constraint a Functional Exclusion Matrix is created, and to resolve
the precedence constraint a Functional Precedence Array is created [13].

Timing Pool. In order to ensure a timing efficiency, a timing pool is created.
This pool has the role of temporal behavior analyzer. Analysis helps to check
the time feasibility in case of leading reconfigurations [13].

3.3 Services Layer

The services layer, denoted by SL, is defined to store the services to be pro-
vided by a system in the form of independent functional units called service and
denoted by Si, hence this layer is defined as SL = {Si|i = 0, ..., n} with n is the
number of all services provided by a system. An S encapsulates the necessary
operational methods in the form of operation modes denoted by om. Hence a
service is defined as the set of operational modes of a particular functionality
Si = {omj |j = 0, ...,m} with m is the number of all operational modes supported
by a Si.

3.4 Communication Layer

The communication layer, denoted by CL, is in charge of presenting the services
of SL to the developers. Its role is to expose the necessary dynamics of a certain
service. Every communication object represents one unique service.

4 Application

This section presents the use of the framework concepts to develop the software
of a smart grid. First, the case study is presented and formalized, then the
framework settings are prepared, and finally a scenario is demonstrated.

4.1 Case Study Presentation

Modern smart grids are electricity distribution networks that include an infor-
mation flow between suppliers and consumers at the aim of guaranteeing more
efficient management such as the adjustment of the electricity flow in real-time.

204 S. Fkaier et al.

This is achieved thanks to the adoption of software techniques that facilitates
the coordination of smaller grids units, optimizing the production as well as
the storage of energy in relation with real-time consumption, smoothing the
consumption/production peaks, etc. In this paper, we manifest the use of the
proposed framework in simplifying the development of such complicated func-
tionalities.

Smart Grid Model and Goals: In this case study we consider a multi-agent
model of the smart grid. The grid is considered as the set of distributed micro-
grids in the field & control level and a network of distributed software agents in
the software level (see Fig. 4), where each agent manages one microgrid.

Fig. 4. Smart grid structure.

A microgrid, denoted by mg, is a small scale electricity grid having its own
renewable energy sources (RES), loads (L), a storage system (batteries in this
example) (B), a switching to utility system a.k.a. remotely operating switches
(ROS). Hence the microgrid is given by

mgi = (RES,L,B,ROS) (4)

Microgrids are characterized by the integration of renewable energy sources.
So they have the possibility to operate in islanded mode in case of high produc-
tion and in utility-connected mode in case of shortages. This is why, and given
the volatility/intermittence of the renewable energy sources, reconfigurations are

Software Framework of Context-Aware Reconfigurable Secure Smart Grids 205

always needed to keep the stability and continuity of the offered services. Fur-
ther, in order to reach better efficiency it is needed to provide the ability to
microgrids to reconfigure themselves automatically when changes are happening
and new system behaviors are required. This is why context-awareness comput-
ing plays a promising role in satisfying such needs. In the considered smart grid,
aggregators have the possibility to aggregate electricity from independent pro-
ducers (i.e., prosumers), to store the collected quantities, and to distribute it
over consumers. They work in coordination and consent of microgrids, so the
software of microgrids includes also the logic of the interaction with aggregators.

4.2 Settings Preparation

Before starting the development of the software applications, it is necessary first
to determine the settings of every layer.

Fig. 5. Service layer schematic presentation.

Service Layer. In the considered example, the microgrid is performing seven
services: Electricity trading (ET), Storage System Managing (SSM), Renewable
Energy Sources Managing (RESM), Electricity Managing (EM), Consumers
Managing (ConsM), Energy Aggregation (EA), Switches to Neighbors and util-
ity Managing (SNM). Thus the services layer is given by

SL = {S1ET
, S2SSM

, S3RESM
, S4EM

, S5ConsM
, S6EA

, S7SNM
}. (5)

The schematic presentation of SL becomes as depicted in Fig. 5.

206 S. Fkaier et al.

Each service has a set of operation modes defined as follows; the first ser-
vice S1ET

provides three operations modes: buying (b), selling all surplus (sas),
selling part of surplus (sps). The Storage System Managing service is composed
of seven operation modes: high charging (hc), high discharging (hd), medium
charging (mc), medium discharging (md), low charging (lc), low discharging
(ld), reserving (r). The RES managing service offers three operation modes: total
activation (ta), partial activation (pa), deactivation (d). The electricity manag-
ing service provides two operations: demand side managing (dsm) and demand
response managing (drm). The consumers managing service is composed of two
operation modes: suppliers switching (ss) and metering consumption (mc). The
Energy aggregation service provides two operation modes: the aggregation from
independent producers (aip) and the distribution to consumers (dc). Finally, the
switches to neighbors managing service is composed of two operation modes:
opening switches (os) and closing switches (cs). Table 1 summarizes the services
definition.

Table 1. Services definition.

Service Definition

S1ET {om1b , om2sas , om3sps}
S2SSM {om1hc , om2hd , om3mc , om4md , om5lc , om6ld , om7r}
S3RESM {om1ta , om2pa , om3d}
S4EM {om1dsm , om2drm}
S5ConsM {om1ss , om2mc}
S6EA {om1aip , om2dc}
S7SNM {om1os , om2cs}

Context Control Layer. In the lower layer (CCL), we need to define the
sets of sub-contexts and sub-configurations as well as the requirements of the
pools. Taking the decision to participate in a trading session is not an easy
task to perform since many considerations need to be taken into account. Such
a decision needs to keep efficiency from a financial, functional, and strategic
scopes. Human expertise is required to tell when to buy/sell and with which
quantity in order to keep profit. For this, we need the artificial intelligence pool
to be involved in right decision making. The rules base is defined as shown in
Table 2.

Software Framework of Context-Aware Reconfigurable Secure Smart Grids 207

Table 2. Extract from the rules base of the expert system of AIP.

id Rule

R1 if (BC is medium) & (L is low) & (CSG is high) & (TSG is high) & (MP is
high) → sell all surplus

R2 if (BC is high) & (L is low) & (CSG is medium) & (TSG is medium) & (MP
is low) → sell part of surplus

R3 if (BC is high) & (L is low) & (CSG is high) & (TSG is high) & (MP is high)
→ high charging

R4 if (BC is high) & (L is medium) & (CSG is high) & (TSG is low) & (MP is
high) → high discharging

R5 if (BC is high) & (L is medium) & (CSG is high) & (TSG is high) & (MP is
high) → sell all surplus

In this table BC: Battery level of charge, L: loads, CSG: Current Solar Generation, TSG: predicted
Tomorrow Solar Generation, MP: Market Price.

As mentioned earlier, the sub-configurations match the services with its
operation modes, and a sub-context reflects the services that could work
together. The following is an extract of the list of sub-configurations. These sub-
configurations must be filled in the XML configuration files, so that developers
could adjust them “externally”; without the need to change the code of config-
uration handling of the controller. Of course the added names should match the
names of the services of the services layer:

– scfg1 = {S2SSM
.om7r , S3RESM

.om3d}, scfg6 = {S6EA
.om1aip

}.
– scfg2 = {S2SSM

.om4md
, S3RESM

.om2pa}, scfg7 = {S6EA
.om2dc}.

– scfg3 = {S2SSM
.om1hc

, S3RESM
.om2pa}, scfg8 = {S7SNM

.om2cs}.
– scfg4 = {S2SSM

.om2hd
, S3RESM

.om1ta}, scfg9 = {S7SNM
.om1os}.

– scfg5 = {S4EM
.om1dsm , S5ConsM

.om2mc
},scfg10 = {S1ET

.om2sas
}.

– scfg11 = {S1ET
.om1b},scfg12 = {S1ET

.om3sps}.

Table 3 depicts some sub-contexts (developers could define the sub-contexts as
needed in the considered case). For example, in the trading sub-context different
combinations of sub-configurations can be used:

Reconfiguration Layer. After having defined the setting of SL and CCL, we
move now to define the context model to be used by the RL. In this example, the
smart grid ontology takes into consideration not only the environmental facts,
but also the entities that affects the trading activity such as the presence of
aggregators, prosumers, and the electricity market itself (see Fig. 6).

208 S. Fkaier et al.

Table 3. Sub-contexts definition.

Sub-context name Type Definition

RegularRoutine1 Internal sc1 = {scfg5, scfg1}
RegularRoutine2 Internal sc2 = {scfg5, scfg2}
RegularRoutine3 Internal sc3 = {scfg5, scfg3}
RegularRoutine4 Internal sc4 = {scfg5, scfg4}
Collaborating External sc5 = {scfg9}
SellingElectricity1 External sc6 = {scfg9, scfg10}
BuyingElectricity2 External sc7 = {scfg9, scfg11}
SellingElectricity2 External sc8 = {scfg9, scfg12}
Disconnecting External sc9 = {scfg8}
Aggregating External sc10 = {scfg6}

Fig. 6. Smart grid OWL ontology.

4.3 Use Case Scenario

In this paper, we consider a scenario where the context-awareness, artificial intel-
ligence, security as well as functional requirements are needed to lead the proper
reconfiguration. Let us assume that the application of microgrid mg2, is running
under the internal context “RegularRoutine2” which reflects that mg2 is par-
tially activating the solar panels generation, the batteries are making a medium
discharge, and that the aggregators are active, and under the external context
“Aggregating” which reflects that the aggregator of mg2 is aggregating energy
from prosumers.

OC0 = (scint0 , scext0) (6)

where scint0 = sc2 is RegularRoutine2 and scext0 = sc10 is Aggregating.

Software Framework of Context-Aware Reconfigurable Secure Smart Grids 209

The last context CR0 that was created by the inputs pool of RL is given by

CR0 =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

i1 : < oElectricityMarket.aActivity, false, 0 >
i2 : < oEnvironment.eWeather.aType, Sunny, 3 >
i3 : < oEnvironment.ePeriodOfDay.aType,Morning, 1 >
i4 : < oAggregators.aActivity, Aggregating, 1 >
i5 : < oConsumers.aSize, low, 1 >
i6 : < oBattery.aLevelOfCharge,medium, 2 >

(7)

In the next timer tick (i.e., period of measurements and reads of the inputs
pool), the context reasoner detects that some changes have happened, mainly a
trading session is becoming active in the electricity market, the level of charge
of the batteries becomes high, and the consumption becomes medium. The new
context is given by

CR1 =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

i1 : < oElectricityMarket.aActivity, true, 1 >
i2 : < oEnvironment.eWeather.aType, Sunny, 3 >
i3 : < oEnvironment.ePeriodOfDay.aType,Morning, 1 >
i4 : < oAggregators.aActivity, Aggregating, 1 >
i5 : < oConsumers.aSize,medium, 2 >
i6 : < oBattery.aLevelOfCharge, high, 3 >

(8)

According to the context reasoning process of the inputs pool IP , the Context
Rules Store (CRS) must be consulted. We have defined this CRS based on the
defined context ontology of Fig. 6 as mentioned in Table 4.

Table 4. Extract from the context rules store.

id Rule

R1 if (Weather is Rainy) & (Season is Summer) & (PeriodOfDay is Night) →
Put off REG

R2 if (Weather is Sunny) & (Season is Summer) & (PeriodOfDay is Morning) →
Put on REG

R3 if (Market is Active) & (Battery is Low) & (PeriodOfDay is Midday) →
Buying electricity

R4 if (Market is Active) & (Battery is High) & (PeriodOfDay is Morning) →
Selling electricity

R5 if (Weather is Sunny) & (Season is Summer) & (PeriodOfDay is Morning) →
Charge Battery

Parsing the CRS has resulted in firing the rule R4. Then, the context reasoner
creates a new context entry CE1 with recommendation to “Selling Electricity”
and sends it to the controller of CCL.

210 S. Fkaier et al.

The controller obtains CE1 and following Algorithm1, it extracts the recom-
mendations and checks the table of sub-contexts (see Table 3) to get the type of
the sub-context. In this case, it is an external sub-context that changed. So the
controller prepares to make the processing with the running external sub-context
(i.e., Aggregating).

Then, it starts the processing in order to verify if the recommendation is
feasible and in case yes which reconfiguration to lead. Participating in the trading
session is not an easy task to perform since many aspects need to be analyzed.
Such analysis should include the pricing, current reserve power, future renewable
power generation predictions and others. Here the controller calls the artificial
intelligence pool to help in decision making. The AIP consults its rule base
(see Table 2) and given the facts that the battery level of charge is high, the
loads are medium, the current solar generation level is high, the predicted solar
generation of the day after is high, and the market price is high, the inference
engine fires the rule R5. Thus, the AIP returns the conclusion “Sell all surplus”
to the controller.

Now the controller knows that it is a positive decision to participate in
the electricity market. So the controller parses the set of possible sub-contexts
and picks the sub-context “SellingElectricity1” and prepares the candidate con-
text CC1 for processing. The candidate context consists of the current running
sub-contexts and in addition the new recommended sub-context (sc6). Figure 7
depicts the XML file of the definition of the sub-context to be added.

Fig. 7. XML file of sub-configurations acfg9 and acfg10.

The first verification that the controller performs before starting the price
calculations and bidding in the market, is consulting the functional pool to see
if the addition of the selling activity preserves the functional consistency of the
whole system state: the relation of the new services with the other services.

In order to keep coherence of the considered multiple services, FP checks the
coherence thanks to the exclusion matrix defining these contradictory relations
[3]. Table 5 depicts the defined matrix:

Software Framework of Context-Aware Reconfigurable Secure Smart Grids 211

Table 5. Exclusion matrix of the Functional Pool.

ET SSM RESM EM ConsM EA SNM

ET X 0 0 0 0 1 0

SSM 0 X 0 0 0 0 0

RESM 0 0 X 0 0 0 0

EM 0 0 0 X 0 0 0

ConsM 0 0 0 0 X 0 0

EA 1 0 0 0 0 X 0

SNM 0 0 0 0 0 0 X
In this matrix 0: false, 1: true, X: not relevant.

In this exclusion matrix, it is stated that the electricity trading service ET
is in conflict with the electricity Aggregation service EA. In fact, performing
trading and aggregation in the same time brings a risk in terms of security of
supply and it deteriorates the quality of services of energy transfer. This is why,
these two services are considered exclusive. Figure 8 shows the implementation
of the method that checks whether an exclusion relationship exist between the
new sub-context and the running internal one.

Fig. 8. Parsing the exclusion checking of the functional pool.

The controller recognizes that the aggregation service needs to be removed
whenever the microgrid is selected to be a seller. This condition is known and
saved by the master controller, the controller can start to the trading process
with all preconditions clear.

Then, it calculates the selling price and prepares a bid (the logic on how the
price is calculated is out of the scope of this paper, in fact the aim of this example
is to show how the controller works based on a context change). Let as assume
that, in order to protect the trading process, the microgrids adopt a trading
protocol where the information exchange is secured using cryptography. Thus,

212 S. Fkaier et al.

every microgrid must encrypt its bid before submitting it to the market using
the Elliptic Curve Integrated Encryption Scheme. For this, the security pool
SP of the CCL includes the necessary methods enabling the transactions (i.e.,
bids) encryption. Figure 9 shows the implementation of the key establishment,
encryption, decryption methods that are required to participate in the secure
trading process.

Fig. 9. ECIES methods implementation.

So the controller calculates the prices and prepares the bids and handover
them to SP . The SP encrypts the necessary information and sends it back to the
controller. The controller repeats this step as required by its trading algorithm.

In this example, we made the microgrid mg2 the best bidder, so now it must
proceed to the electricity transfer. For this, a reconfiguration is required. So the
controller applies the changes mentioned in the recommended context according
to Algorithm 2. Hence the new OC becomes as follows:

OC1 = {scint1 , scext1} (9)

with scint1 = sc2 “RegularRoutine2” and scext1 = sc6 “SellingElectricity1”.
The application runs OC1 until the energy transfer required by the trading

activity is done.

5 Results and Discussions

To show the suitability of the proposed framework we start by comparing it
with the existing ones. Then, since the performance of the pools were evaluated

Software Framework of Context-Aware Reconfigurable Secure Smart Grids 213

and discussed in previous papers, and since this paper tackles the extension of
the controller as well as the security pool, we focus in this section on discussing
them.

Comparison with Existing Works. In comparison with the work presented in
[24], which has introduced an important context-awareness architecture accord-
ing to the service-oriented approach, our framework provides a more holistic
solution. In fact, although it addressed the needs to real-time and distribution
of the software of context-aware systems, some other important features such
as the intelligence/prediction or the automatic reconfiguration were not con-
sidered. Similarly, the work reported in [23] provides an interesting solution to
context-aware car tracking that takes into consideration the real-time and predic-
tion needs, however reconfiguration, collaboration, and security needs were not
addressed. The work reported in [22] has studied the suitable software frame-
work for smart cities. Although many significant aspects were discussed such as
the compliance with the big data concepts, requirements such as the reconfigura-
tion, real-time, and intelligence were not studied. As it can be see, our proposed
framework has addressed the lack of a rich and clear context-awareness develop-
ment infrastructure. Miscellaneous requirements could be easily developed used
our framework. Table 6 sums-up the comparative study.

Table 6. Comparison with existing context-awareness frameworks.

Reference Reconfiguration Intelligence Security Real-time Coordination

[22] X X X X X

[23] X � X � X

[24] X X X � �
Our work � � � � �

Security Pool. Introducing a security pool to be the “container” of miscella-
neous security techniques is of great importance. In fact, leaving the possibility
to developers to extend the existing techniques with new ones ensures better
evolvability to the pool. In this way, the framework could always keep-up with
the new and/or personalized security techniques.

However, this approach has some limitations. First, developers need to
include/implement new techniques if they need something different from
blockchain tools, ECIES as well as RSA encryption. And this requires knowledge
in the field of security, so additional effort is needed.

Controller Pool. In this paper, the controller is improved by a refinement of the
context usage process. In fact, the controller is able now to distinguish between
the internal and external contexts and this shapes its operation, which leads to
improve the processing time.

214 S. Fkaier et al.

In order to demonstrate this, let us assume that we have an increasing number
of services and an increasing number of operation modes in every service. If we
check the whole configuration each time we receive a context entry, then a lot of
computational time will be required. However, characterizing the sub-contexts
as internal and external helps to recognize which scope the context will impact
and hence, we don’t require to check the whole context.

Let us consider the sub-configuration scfgi

scfgi = {S1.om1, S2.om1, S3.om1, S4.om1, S5.om1} (10)

Let us consider these contexts:

– OC0 = (scint0 , scext0) where scint0 = {scfgi|i = 0, ..., 2} and scext0 = ∅.
– OC1 = (scint1 , scext1) where scint1 = {scfgi|i = 0, ..., 5} and scext1 =

{scfgi|i = 20, ..., 21}.
– OC2 = (scint2 , scext2) where scint2 = {scfgi|i = 0, ..., 10} and scext2 =

{scfgi|i = 20, ..., 25}.
– OC3 = (scint3 , scext3) where scint3 = {scfgi|i = 0, ..., 15} and scext3 =

{scfgi|i = 20, ..., 30}.
– OC4 = (scint4 , scext4) where scint4 = {scfgi|i = 0, ..., 19} and scext4 =

{scfgi|i = 20, ..., 35}.

The time taken by the functional pool to check the exclusion between two
services is measured to be 36 milliseconds. Let us assume that the candidate
context contains only one sub-configuration which in its turn contains only one
service. If we have an increasing size of operating contexts then, the elapsed time
will be as mentioned in the following curve (see Fig. 10).

Fig. 10. Computation time of the exclusion checking of the functional pool.

Figure 10 shows that the distinction between internal and external sub-
contexts helps to avoid the checking of the whole running context which reduces
the elapsed computational time to nearly the half.

Software Framework of Context-Aware Reconfigurable Secure Smart Grids 215

6 Conclusions and Outlook

This paper has introduced a software framework for the development of recon-
figurable applications based on context change. The framework architecture is
composed of four layers reflecting the stages of the context data processing: the
first layer, called the Reconfiguration Layer, provides the mechanisms responsible
for data collection and context reasoning. The second layer, called the Context
Control Layer, provides the possibility to check different aspects of the reconfig-
uration decision such as the intelligence, timing, functional, coordination, and
security issues. This layer relies mainly on a central element, called the con-
troller, which represents the main logic of applications. The third layer, called
Services Layer, encapsulates the system functionalties in the form of services.
And finally, the fourth layer, called the Communication Layer, is charged by the
representation of the system services.

In this paper, we have extended the concepts introduced in [13] by making
clear the relation between the context and reconfiguration. The used case study
has helped to manifest the decision making of reconfigurations based on context-
awareness basis. We have detailed the controller logic and we have developed new
cases regarding the case study such as an extended context ontology and different
security techniques.

In future works, we aim to study the deployment of the framework applica-
tions using the cloud computing resources. Virtualization using cloud computing
becomes an interesting alternative that offers promising results regarding the
management of IT infrastructures, however some challenges especially interop-
erability ones need to be further studied.

References

1. Fkaier, S., Romdhani, M., Khalgui, M., Frey, G.: Context-awareness meta-model
for reconfigurable control systems. In: Proceedings of the 12th International Con-
ference on Evaluation of Novel Approaches to Software Engineering, pp. 226–
234 (2017). ISBN 978-989-758-250-9, ISSN 2184-4895. https://doi.org/10.5220/
0006328502260234

2. Abidi, M.G., Smida, M.B., Khalgui, M., Li, Z., Wu, N.: Multi-agent oriented solu-
tion for forecasting-based control strategy with load priority of microgrids in an
island mode-case study: Tunisian petroleum platform. Electr. Power Syst. Res.
152, 411–423 (2017)

3. Fkaier, S., Romdhani, M., Khalgui, M., Frey, G.: Enabling reconfiguration of adap-
tive control systems using real-time context-aware framework. In: 2016 IEEE/ACS
13th International Conference of Computer Systems and Applications (AICCSA),
pp. 1–8. IEEE, September 2016

4. Fkaier, S., Romdhani, M., Khalgui, M., Frey, G.: R2TCA: new tool for developing
reconfigurable real-time context-aware framework-application to baggage handling
systems. In: Proceedings International Conference Mobile Ubiquitous Computing,
System, Services Technologies (UBICOMM), pp. 113–119, October 2016

5. Fredj, N., Kacem, Y.H., Khriji, S., Kanoun, O., Abid, M.: A review on intelligent
IoT systems design methodologies. Measur. Sens. 18, 100347 (2021)

https://doi.org/10.5220/0006328502260234
https://doi.org/10.5220/0006328502260234

216 S. Fkaier et al.

6. Naidji, I., Mosbahi, O., Khalgui, M., Bachir, A.: Cooperative energy management
software for networked microgrids. In: ICSOFT, pp. 428–438 (2019)

7. Patti, E., Syrri, A.L.A., Jahn, M., Mancarella, P., Acquaviva, A., Macii, E.: Dis-
tributed software infrastructure for general purpose services in smart grid. IEEE
Trans. Smart Grid 7(2), 1156–1163 (2014)

8. Mishra, S., Kwasnik, T., Anderson, K.: Microgrid resilience: a holistic and context-
aware resilience metric (2021). arXiv preprint arXiv:2106.09640

9. Ghribi, I., Abdallah, R.B., Khalgui, M., Li, Z., Alnowibet, K., Platzner, M.: R-
codesign: codesign methodology for real-time reconfigurable embedded systems
under energy constraints. IEEE Access 6, 14078–14092 (2018)

10. Fkaier, S., Khalgui, M., Frey, G.: Modeling methodology for reconfigurable dis-
tributed systems using transformations from GR-UML to GR-TNCES and IEC
61499. In: Proceedings of the 16th International Conference on Evaluation of Novel
Approaches to Software Engineering, pp. 221–230 (2021). ISBN 978-989-758-508-1,
ISSN 2184-4895. https://doi.org/10.5220/0010422102210230

11. Hijjo, M., Frey, G.: Battery management system in isolated microgrids consider-
ing forecast uncertainty. In: 2018 9th International Renewable Energy Congress
(IREC), pp. 1–6. IEEE, March 2018

12. Karnouskos, S., De Holanda, T.N.: Simulation of a smart grid city with software
agents. In: 2009 Third UKSim European Symposium on Computer Modeling and
Simulation, pp. 424–429. IEEE, November 2009

13. Fkaier, S., Khalgui, M., Frey, G.: A software framework for context-aware secure
intelligent applications of distributed systems. In: Proceedings of the 16th Inter-
national Conference on Software Technologies, pp. 111–121 (2021). ISBN 978-989-
758-523-4, ISSN 2184-2833. https://doi.org/10.5220/0010604701110121

14. Najem, N., Haddou, D.B., Abid, M.R., Darhmaoui, H., Krami, N., Zytoune, O.:
Context-aware wireless sensors for IoT-centeric energy-efficient campuses. In: 2017
IEEE International Conference on Smart Computing (SMARTCOMP), pp. 1–6.
IEEE, May 2017

15. Santos, G., Pinto, T., Vale, Z., Carvalho, R., Teixeira, B., Ramos, C.: Upgrad-
ing BRICKS-the context-aware semantic rule-based system for intelligent building
energy and security management. Energies 14(15), 4541 (2021)

16. Ustundag Soykan, E., et al.: Context-aware authentication with dynamic creden-
tials using electricity consumption data. Comput. J. (2021)

17. Sikder, A.K., Babun, L., Uluagac, A.S.: AEGIS+ A context-aware platform-
independent security framework for smart home systems. Digit. Threats Res. Pract.
2(1), 1–33 (2021)

18. Lugo-Cordero, H.M., Guha, R.K., Ortiz-Rivera, E.I.: An adaptive cognition system
for smart grids with context awareness and fault tolerance. IEEE Trans. Smart Grid
5(3), 1246–1253 (2014)

19. Ahmad, W.S.H.M.W., et al.: Scheduling smart grid network traffic with context-
awareness in industrial grade router. In: 2020 1st International Conference on
Information Technology, Advanced Mechanical and Electrical Engineering (ICI-
TAMEE), pp. 101–105. IEEE, October 2020

20. Meloni, A., Pegoraro, P.A., Atzori, L., Castello, P., Sulis, S.: IoT cloud-based dis-
tribution system state estimation: virtual objects and context-awareness. In: 2016
IEEE International Conference on Communications (ICC), pp. 1–6. IEEE, May
2016

21. Rehmani, M.H., Davy, A., Jennings, B., Assi, C.: Software defined networks-based
smart grid communication: a comprehensive survey. IEEE Commun. Surv. Tuto-
rials 21(3), 2637–2670 (2019)

http://arxiv.org/abs/2106.09640
https://doi.org/10.5220/0010422102210230
https://doi.org/10.5220/0010604701110121

Software Framework of Context-Aware Reconfigurable Secure Smart Grids 217

22. Faieq, S., Saidi, R., Elghazi, H., Rahmani, M.D.: C2IoT: a framework for cloud-
based context-aware internet of things services for smart cities. Procedia Comput.
Sci. 110, 151–158 (2017)

23. Goel, D., Pahal, N., Jain, P., Chaudhury, S.: An ontology-driven context aware
framework for smart traffic monitoring. In: 2017 IEEE Region 10 Symposium
(TENSYMP), pp. 1–5. IEEE, July 2017

24. De Prado, A.G., Ortiz, G., Boubeta-Puig, J.: CARED-SOA: a context-aware event-
driven service-oriented architecture. IEEE Access 5, 4646–4663 (2017)

25. Schlegel, C., Lotz, A., Lutz, M., Stampfer, D.: Composition, separation of roles and
model-driven approaches as enabler of a robotics software ecosystem. In: Software
Engineering for Robotics, pp. 53–108. Springer, Cham (2021). https://doi.org/10.
1007/978-3-030-66494-7 3

26. Fkaier, S., Khalgui, M., Frey, G.: Meta-model for control applications of microgrids.
In: 2020 6th IEEE International Energy Conference (ENERGYCon), pp. 945–950.
IEEE (2020)

27. Fkaier, S., Khalgui, M., Frey, G.: Hybrid context-awareness modelling and rea-
soning approach for microgrid’s intelligent control. In: Proceedings of the 15th
International Conference on Software Technologies, pp. 116–127 (2020). ISBN 978-
989-758-443-5, ISSN 2184-2833. https://doi.org/10.5220/0009780901160127

28. Gayoso Mart́ınez, V., Hernández Álvarez, F., Hernández Encinas, L., Sánchez
Ávila, C.: Analysis of ECIES and other cryptosystems based on elliptic curves
(2011)

https://doi.org/10.1007/978-3-030-66494-7_3
https://doi.org/10.1007/978-3-030-66494-7_3
https://doi.org/10.5220/0009780901160127

A Novel Neural Network-Based Malware
Severity Classification System

Miles Q. Li1 and Benjamin C. M. Fung2(B)

1 School of Computer Science, McGill University, Montreal, Canada
miles.qi.li@mail.mcgill.ca

2 School of Information Studies, McGill University, Montreal, Canada
ben.fung@mcgill.ca

Abstract. Malware has been an increasing threat to computer users. Different
pieces of malware have different damage potential depending on their objec-
tives and functionalities. In the literature, there are many studies that focus on
automatically identifying malware with their families. However, there is a lack
of focus on automatically identifying the severity level of malware samples. In
this paper, we propose a dedicated neural network-based malware severity clas-
sification method. It is developed based on the clustering analysis of malware
functions. Experimental results show that the proposed method outperforms pre-
viously proposed machine learning methods for malware classification on the
severity classification problem.

Keywords: Cybersecurity · Malware severity classification · Neural networks

1 Introduction

Malware programs are becoming more sophisticated and diverse with time [1,16]. They
are developed for different purposes. Some could harm only individual computers and
their users, and the damage can be recovered. Some could cause permanent loss to large
groups of computers and their users. Thus, the severity of malware programs can vary.
The resources of malware defenders allocated to deal with different malware programs
should depend on their severity to minimize the potential losses they can cause. To this
end, it is crucial to have an AI-based severity classification system that helps malware
analysts recognize the severity level of a malware program in a timely manner.

Signature-based methods are the most commonly used kind of malware classifica-
tion method in commercial antivirus products. If an executable contains a signature that
is labelled with a certain class of malware, it belongs to that class. The signatures are
crafted by malware analysts through manual analysis of their collected malware sam-
ples. The problem with this type of method is that it is limited in recognizing significant
variants of existing malware samples or new malware samples since malware authors
could avoid the signature while still keeping its functionalities [1,13,42]. Therefore,
machine learning-based malware classification methods are proposed to identify signif-
icant variants of known malware or new malware samples based on the patterns that are
recognized from known malware samples [23,26,27,35,36].
c© Springer Nature Switzerland AG 2022
H.-G. Fill et al. (Eds.): ICSOFT 2021, CCIS 1622, pp. 218–232, 2022.
https://doi.org/10.1007/978-3-031-11513-4_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-11513-4_10&domain=pdf
http://orcid.org/0000-0001-7091-3268
http://orcid.org/0000-0001-8423-2906
https://doi.org/10.1007/978-3-031-11513-4_10

A Novel Neural Network-Based Malware Severity Classification System 219

As a classification problem, malware severity classification is more challenging than
malware family classification, while the latter is more intensively studied. One reason
that malware family classification is less challenging is that in each malware family,
the samples have the same purposes and behaviors, so they are programmed similarly
to each other [9,25]. The similarity makes it easier to recognize a new sample of that
malware family based on the knowledge of known samples of that family. However,
the malware programs at each severity level could present different behaviors and func-
tionalities. Thus, there are many different and independent patterns that can indicate
the severity levels of malware programs. This increases the complexity of the malware
severity classification problem. The second challenge with malware severity classifica-
tion is that severity classification is not a normal classification problem in which the
relations between all classes are balanced. In severity classification, a higher severity
level dominates a lower severity level. In other words, if a program has behaviors at
different severity levels, it should be classified as the level of the most severe behaviors.
A third challenge is that the malware family classification can be done by analyzing
the functional similarity between an unknown sample and a malware family, but sever-
ity ranking cannot. When a malware program contains more than the average number
of behaviors of programs at a certain level, it should be classified to a higher level, or
when most behaviors of a malware program are at a low severity level and only a few
behaviors at a high severity level, it belongs to the higher level. For example, when
a malware program has multiple Trojan-related functions, it should be classified to a
higher severity level than a program that contains only one [21].

The contribution of this paper is a novel and dedicated neural network-based mal-
ware severity classification model. It is a neural network extension of the malware
family classification model proposed by Li et al. [25], which is based on the simi-
larity analysis of functions of malware samples. Since it is developed based on func-
tional similarity, it will fail the severity classification problems for the reasons we men-
tioned in the previous paragraph. As artificial neural networks are good at comprehen-
sively capturing the correlation between inputs and outputs rather than just similarity
accumulation, we introduce artificial neural networks into the framework proposed by
Li et al. [25] for the malware severity classification problem.

The rest of the paper is organized as follows. Section 2 discusses related work.
Section 3 formally defines the malware severity classification problem. Section 4
describes our proposed method. Section 5 presents the evaluation of the proposed
method. Section 6 discusses the limitations and our future work. Section 7 concludes
the paper.

2 Related Work

2.1 Malware Classification

Most existing malware classification studies focus on malware detection or family clas-
sification. The former aims to differentiate malware and benign software, while the
latter aims to identify the malware family.

Malware classification methods can be categorized as static, dynamic, and hybrid
methods [1]. Static methods examine the static content of an executable, and dynamic

220 M. Q. Li and B. C. M. Fung

Executable Disassembling
Asm2Vec

Representation
Learning

Function
Representation

Database

Discriminative
Clustering

Function
Cluster

Database

Function
Clone

Search

Classification
with Neural

Network

Training

Test

Feature
Vector

Formation

Feature Vector
Formation

Neural
Network
Training

Trained
Neural

Network

Fig. 1. Workflow of our severity classification model.

methods run it to analyze its behaviors. Common features used by static methods are
sequences of bytes [4,17,23,32,35,36], sequences of assembly code [3,4,11,17,26,
27,34], numerical PE header fields [4,6,26,35], PE imports/API calls [6,17,26,29,35,
36], printable strings [20,26,35,36], and malware images [28,40,41]; those used by
dynamic methods are memory images [10,19,24], executed instructions [3,4,11,33],
invoked system calls or behaviors [2,4,7,10,15,19,20,34]. Hybrid methods use both
static and dynamic features for malware classification [4,12,20,34].

2.2 Severity Ranking

The severity level of malware can be defined based on different criteria. In this subsec-
tion, we introduce some severity ranking theories.

Malware Rating System. Bagnall and French [5] suggest three criteria to define the
severity of a malware program, namely: (1) its payload potential, (2) its proliferation
potential, and (3) its hostility level. The payload means the potential of the code to
degrade or damage its target. The proliferation potential means the ability to spread
itself across the file system or over the network. The hostility level means how mali-
cious the intent is behind the payload. The payload potential and proliferation potential
are classified to 10 ratings and hostility to 5. All three criteria considered, there are 5
severity ratings.

Threat Severity Assessment. Symantec Corporation also suggests three criteria to
define severity [38]. They are (1) in-the-wild, (2) damage caused, and (3) rate of dis-
tribution. In-the-wild measures the extent to which a virus has already spread among
computers. Damage caused measures the amount of damage that a given infection can
inflict. The distribution component measures how quickly a program spreads itself. It
can be seen that damage caused corresponds to the payload potential and the hostility
level in the classification criteria proposed by Bagnall and French [5]. Both in-the-wild
and rate of distribution measure the spread of the malware program, with the differ-
ence being that the former is about the facts of existing spread and the latter is about
its ability to spread. They correspond to the proliferation potential in the classification

A Novel Neural Network-Based Malware Severity Classification System 221

criteria proposed by Bagnall and French [5]. Therefore, both of these two severity level
definition systems mainly cover two aspects: proliferation and damage.

Kaspersky Lab Threat Level Classification. Kaspersky Lab uses a tree structure to
describe their definition of the severity levels of all types of malware programs [21].
Kaspersky Lab does not provide their specific criteria, but it can be seen that the types
of malware that are programmed to wildly spread and that may cause tremendous dam-
age are in the upper part of the tree, and the reverse are in the lower part of the tree.
This means that the criteria they use are consistent with the first two systems. Kaspersky
Lab suggests that the following principles should be taken into consideration to deter-
mine the severity: 1) each behavior is assigned its own severity level, and the behaviors
that pose less of a threat are outranked by behaviors that pose more of a threat, 2) if a
program can be categorized as a number of different behaviors, it should be classified
as the most threatening level of those behaviors, 3) if a malicious program has two or
more functions with equal severity levels, which could be covered by Trojan Ransom,
Trojan ArcBomb, Trojan Clicker, Trojan DDoS, Trojan Downloader, Trojan Dropper,
Trojan IM, Trojan Notifier, Trojan Proxy, Trojan SMS, Trojan Spy, Trojan Mailfinder,
Trojan GameThief, Trojan PSW or Trojan Banker, then the program will be classified
as a Trojan. These principles make sense not only for their severity classification sys-
tem, but also for the general severity ranking problem. The last principle also makes
this classification problem different from normal classification problems in which the
relations between all classes are balanced.

3 Problem Definition

Definition 1 (Malware Severity Classification). Consider a collection of executables
E and a collection of labels L that indicate the severity levels of executables in E.
Let exe be an unknown executable that exe /∈ E. The malware severity classification
problem is to build a classification model M based on E and L such that M can be
used to determine which severity level the executable exe belongs to. �

4 Methodology

The workflow of our proposed method is shown in Fig. 1. The classification is per-
formed based on the functionality analysis of malware samples. For training the system,
we use IDA Pro1 to disassemble the training samples to get their assembly functions.
Then, we apply Asm2Vec [14] on the assembly functions to compute their vector repre-
sentations such that semantically similar assembly functions have large cosine similari-
ties with their vector representations. With the vector representations, we perform a dis-
criminative clustering algorithm to group semantically equivalent assembly functions in
a cluster. A feedforward neural network is trained on the vectors representing whether a
sample contains a function that belongs to each cluster as input, and predicts the severity

1 https://www.hex-rays.com/products/ida/.

https://www.hex-rays.com/products/ida/

222 M. Q. Li and B. C. M. Fung

level of the sample. In the test phase, a target sample is disassembled and the vector rep-
resentations of its assembly functions are computed with the trained Asm2Vec model.
The vector representations are then used to determine whether the functions belong to a
cluster or not. We form a vector representation of the target sample based on whether it
has any assembly function that belongs to each cluster. The trained feedforward neural
network takes this vector as input to predict the severity level of the target sample.

The disassembling, function representation learning, clustering, and function clone
search steps are inherited from the malware family classification system proposed by
Li et al. [25]. The feature vector formation and feed-forward neural network classifier
are our improvements to that system for the severity classification problem.

4.1 Function Representation Learning

An assembly function consists of one or more blocks of assembly instruction sequences.
Assembly functions that achieve the same purpose may appear quite differently when
obfuscations or optimizations are applied. Therefore, in its original form, it is hard to
directly compare the similarity of assembly functions.

Asm2Vec [14] is a representation learning method for assembly code functions. The
vector representations of semantically similar functions have a large cosine similarity
so that they can be used to detect clone relations (i.e., similarity larger than a threshold)
between different assembly functions. In the training phase, we use the assembly func-
tions of training samples to train Asm2Vec, and at the same time, Asm2Vec computes
the vector representations of the assembly code functions.

The result of this step is the trained Asm2Vec and the vector representations of the
assembly code functions of the training samples.

4.2 Discriminative Function Clustering

In this step, we put assembly code functions that are semantically equivalent to each
other in a cluster. Some clusters are good representatives of certain malware classes
since only malware samples from these classes contain assembly code functions that
belong to these clusters. They are called discriminative assembly code function clusters.
They could be groups of functions related to certain malicious behaviors, such as key
logging, proliferation, or corrupting file systems. We identify these clusters with their
discriminative power. This concept relies on another concept called the popularity
of a malware class in a cluster. Let Gi be a cluster, and Cj be a malware class. Let
‖comf(Gi, Cj)‖ be the percentage of executables in class Cj that has one or more
functions in cluster Gi. The popularity of malware class Cj in cluster Gi is defined as
follows:

pop(Gi, Cj) =
‖comf(Gi, Cj)‖∑m
j=1 ‖comf(Gi, Cj)‖ (1)

The discriminative power of cluster Gi is as follows:

dp(Gi) =
{
0 if Gi contains only 1 function
maxj{pop(Gi, Cj)} − minj{pop(Gi, Cj)} otherwise

A Novel Neural Network-Based Malware Severity Classification System 223

In plain words, the discriminative power of a cluster is the difference between the
popularity of the class with the maximal popularity and the popularity of the class with
the minimal popularity in the cluster. The clusters with high discriminative power char-
acterize the malware classes that have large popularity. In other words, when an exe-
cutable contains a function that belongs to the cluster, there is a large probability that it
belongs to the clusters with large popularity in the cluster as opposed to the rest of the
malware classes. Therefore, they can be used to discriminate against the classes with
low popularity. On the contrary, in the clusters with low discriminative power, the pop-
ularity of all malware classes are similar, thus containing a function of these clusters
can not bring much knowledge on which malware classes it is likely to belong to.

To get the discriminative assembly code function clusters from the set of assem-
bly code functions of the training samples, we use a discriminative clustering algo-
rithm [25]. The basic is a Union-Find algorithm to gradually aggregate assembly func-
tions to each cluster and its efficiency is optimized by locality-sensitive hashing (LSH).
The LSH function family we use is proposed by Charikar [8]. In the hash function,
the only parameter is a random vector r, which has the same dimension as the vector
representation of an assembly code function. The entries of r are independently drawn
from standard Gaussian distribution. The hash value of an assembly code function rep-
resented as u is computed as follows:

hr (u) =
{
1 u · r > 0
0 u · r ≤ 0

Charikar [8] proved that for two vectors u and v, the probability that they have the
same hash value is as follows:

Pr[hr (u) = hr (v)] = 1 − θ(u,v)
π

(2)

Therefore, the larger their cosine similarity is, the larger the probability that they
have the same hash value. Thus, semantically similar assembly code functions tend to
have the same hash values. The way we use LSH to group the assembly code functions
can be described as follows:

1. We apply a set of LSH functions on the assembly code functions. The assembly
code functions that have the same hash values are put in the same bucket. In each
bucket, the assembly functions are potentially equivalent to each other. The number
of LSH functions should guarantee that in each bucket, the number of assembly code
functions should be smaller than a threshold.

2. We apply the Weighted Quick-Union with Path Compression algorithm [37] on the
vector representations of the assembly code functions in each bucket to aggregate
them in clusters.

3. We filter the clusters with low discriminative power since they are not informative
for discriminating samples of a malware class to other classes.

We refer the readers to the original paper [25] for more details about the discrimi-
native clustering algorithm. We keep the same hyper-parameters as theirs for the algo-
rithm. The idea of processing the training executables for clustering is shown in Fig. 2.

224 M. Q. Li and B. C. M. Fung

Fig. 2. The procedure to cluster assembly functions.

4.3 Function Clone Search

The classification of a sample is based on its relation to the discriminative assembly
code function clusters. The relation of each training sample to the clusters is already
known, since the assembly code functions in the clusters are all from training samples.
In the test phase, the trained Asm2Vec will be applied onto the assembly functions of
the test samples to generate the vector representations of the functions. Based on the
vector representations, Asm2Vec determines whether each assembly function of a test
sample is equivalent to an assembly function in a cluster. If it is, the function belongs
to that cluster and the test sample is related to the cluster.

4.4 Feature Vector Formation

Let m be the number of discriminative code function clusters that are formed in the
discriminative function clustering step. For each training or test sample, we form a
feature vector of dimensions m. Each entry of the vector corresponds to a cluster. The
value of an entry is 1 if there is at least one assembly function of the executable that
belongs to the cluster (i.e., is equivalent to the functions in the cluster) and 0 otherwise.

4.5 Feed-Forward Neural Network Classification

Malware samples in a family are functionally similar to each other. That is the reason
that the classification method based on accumulating the functional similarity proposed
by [25] could work. However, it would not work for the severity classification prob-
lem because similarity does not determine the severity level of a sample. If a malware
program contains much more than the average number of functions at a certain level,
its severity level is boosted to a higher level. If a malware program contains only a few
functions at a higher level and most functions at a lower level, it should still be classified
to the higher level [21].

A Novel Neural Network-Based Malware Severity Classification System 225

Fig. 3. The procedure to classify an executable.

To solve the aforementioned problem, we replace the functional similarity
accumulation-based classification module with an artificial neural network. As is well-
known, artificial neural networks are good at pattern recognition for classification. They
implicitly learn the patterns that are correlated with each class from the training data.
And they can approximate any function to arbitrary accuracy [18]. Therefore, we incor-
porate a neural network in our proposed malware severity classification model.

The neural network is a feedforward neural network. The input is a feature vector
of dimension m formed in the previous step. It is fed to l fully-connected (FC) hidden
layers with Relu as the activation function:

vl(x) = FCl(...FC1(x)...)

where FCi(vi−1(x)) = Relu(Wivi−1(x) + bi)

Then vl(x) is fed to another FC layer with the output of dimension c, which is the
number of classes (i.e., severity levels), and followed by a softmax layer:

y(x) = softmax(Wovl(x) + bo) (3)

The output y(x) ∈ Rc is the probability distribution that the query sample is at
each severity level. Figure 3 shows the procedure to process an executable and classify
it with the feed forward neural network.

In the training phase, we use the feature vectors of training samples and their sever-
ity level labels to train the feed forward neural network. We use cross entropy loss as
the objective function and Adam [22] as the optimizer with the initial learning rate
1e−4. The number of hidden layers and the dimensions of the hidden layers are hyper-
parameters. We consider 1, 2, 3 hidden layers and 256, 128, 64 as the candidate dimen-
sions. We use grid search for tuning hyper-parameters.

In the test phase, we just feed the feature vectors of test samples to the neural net-
work and it computes the probability that the samples belong to each severity.

226 M. Q. Li and B. C. M. Fung

5 Experiments

In this section, we present the evaluation of our proposed severity classification method.
The major evaluation metric is accuracy:

accuracy =
number of correctly classified samples

number of samples to classify
(4)

We also report the precision, recall, and F1 for each severity level (class):

precision =
number of samples correctly classified to the class

number of samples classified to the class

recall =
number of samples correctly classified to the class

number of samples belonging to the class

F1 =
2 ∗ precision ∗ recall

precision + recall

5.1 Dataset

Table 1. Statistics of the dataset.

Severity Training Validation Test

of exec # of func # of exec # of func # of exec # of func

Level 1 169 67, 933 56 23, 541 56 21, 869
Level 2 724 177, 361 216 54, 849 216 59, 178
Level 3 181 10, 066 39 2, 952 39 3, 126
Level 4 181 6, 391 53 2, 075 53 1, 690
Level 5 96 30, 443 19 5, 650 19 6, 719
Level 6 181 2, 223 55 344 55 695
Level 7 31 6, 178 7 2, 712 7 2, 909
Level 8 56 5, 934 11 1, 478 11 2, 238

Total 1, 619 306, 529 456 93, 601 456 98, 424

Based on the Kaspersky Lab Threat Level Classification tree [21], we create a dataset
of 8 severity levels. There are 1619 malware samples in the training set, 456 in the
validation set, and 456 in the test set. We use SHA256 checksum to ensure that there is
no repetition between those three sets. The statistics of the dataset is given in Table 1.
The types of malware included in our dataset at each severity level are shown in Table 2.

A Novel Neural Network-Based Malware Severity Classification System 227

Table 2. Types of malware included in each severity level.

Severity Malware types

Level 1 Hoax, HackTool

Level 2 Trojan-Banker, Trojan-Downloader, Trojan-PSW, Trojan-Ransom, Trojan-Spy

Level 3 Trojan

Level 4 Backdoor

Level 5 Virus

Level 6 Worm

Level 7 Email-Worm

Level 8 Net-Worm

Table 3. Accuracy of different methods on the test set.

Method Accuracy

Our method 91.9%

Mosk2008OpBi 82.2%

Bald2013Meta 90.4%

Saxe2015Deep 87.5%

Mour2019CNN 27.0%

Li2021Func 73.2%

5.2 Malware Classification Methods for Comparison

In the evaluation, we use the following state-of-the-art malware classification methods
to compare with our model:

– Mosk2008OpBi:Moskovitch et al. propose to use TF or TF-IDF of opcode bi-grams
as features and use document frequency (DF), information gain ratio, or Fisher score
as the criterion for feature selection [27]. They apply Artificial Neural Networks,
Decision Trees, Naı̈ve Bayes, Boosted Decision Trees, and Boosted Naı̈ve Bayes as
their malware classification models.

– Bald2013Meta: Baldangombo et al. propose to extract multiple raw features from
PE headers and use information gain and calling frequencies for feature selection
and PCA for dimension reduction [6]. They apply SVM, J48, and Naı̈ve Bayes as
their malware classification models.

– Saxe2015Deep: Saxe and Berlin propose a deep learning model that works on four
different features: byte/entropy histogram features, PE import features, string 2D
histogram features, and PE metadata numerical features [35].

– Mour2019CNN: Mourtaji et al. convert malware binaries to grayscale images and
apply a convolutional neural network on malware images for malware classifica-
tion [28]. Their CNN network has two convolutional layers followed by a fully-
connected layer.

228 M. Q. Li and B. C. M. Fung

– Li2021Func: Li et al. propose to group assembly functions to clusters, and compute
the similarity of a query executable to a malware family based on the comparison of
the number of clusters of the family related to it and the number of clusters related to
a median sample of the training set in the family [25]. We directly replace malware
families with severity levels as the class labels to apply their method to this severity
classification problem.

5.3 Experiment Settings

The experiments are conducted on a server with two Xeon E5-2697 CPUs, 384 GB of
memory, and four Nvidia Titan XP graphics cards. The operating system is Windows
Server 2016.

Our proposed severity classification system and Li2021Func are developed with
Java 11, and the feedforward neural network is developed with Deeplearning4j [39].
Other baseline methods are implemented with Python 3.7.9. The traditional machine
learning models are implemented with scikit-learn 0.23.2 [31], and neural networks are
implemented with PyTorch 1.6.0 [30].

5.4 Results

The classification accuracy of different methods is shown in Table 3. Our proposed
model achieves the best classification accuracy among all methods. Bald2013Meta
achieves the second best accuracy, which means the features extracted from PE head-
ers are also informative. However, PE headers only provide peripheral information of
an executable, thus, it would not provide as much insight and interpretability as our
method since our method is based on the analysis of the malware functionality.

Even though Li2021Func is also based on the functionality analysis of malware,
it achieves inferior accuracy because of the way it computes the class that a sample
belongs to. The severity level of a malware sample is determined by the level of its
most threatening behavior, and a greater than average number of behaviors existing

Table 4. Experiment results on each severity level.

Severity level Precision Recall F1-score

Level 1 1.00 0.79 0.88

Level 2 0.87 1.00 0.93

Level 3 0.97 0.90 0.93

Level 4 1.00 0.81 0.90

Level 5 0.83 0.79 0.81

Level 6 1.00 0.95 0.97

Level 7 0.73 0.69 0.71

Level 8 1.00 0.82 0.90

Weighted avg 0.93 0.92 0.92

A Novel Neural Network-Based Malware Severity Classification System 229

in one executable boosts its severity level. However, Li2021Func would classify an
executable to the level of most behaviors because it is correlated to the most number of
clusters at that level. This leads to incorrect classification results.

The precision, recall, and F1 of our model on each severity level is shown in Table 4.
Our model performs well for most severity levels except severity level 7. The inferior
F1 on level 7 is because we have fewer training samples at severity level 7.

5.5 Classification Result Interpretation

Figure 4 shows an example of the interpretation module of our model. On the left, it
lists the assembly functions of a query executable and the function “sub 408CF3” is
selected. On the right, it shows the assembly functions in a cluster that are semantically
equivalent to “sub 408CF3”. They are all from the same cluster “level 1 Cluster95”,
which is a cluster of severity level 1.

Fig. 4. An example of interpretation for classification results.

6 Discussions

As is shown in the previous section, our malware severity classification model can
explain its classification results by pointing out which functions of the query executable
and which function clusters contribute to the classification result. This is the inter-
pretability inherited from the method proposed by Li et al. [25]. However, the neural
network module is not directly interpretable. This is a limitation since different func-
tions are not equally important to determining its severity level and it cannot explain
how much each assembly function contributes to the classification result. One direction
of our future work is to improve the interpretability of the severity classification system
so that it can quantify the importance of each assembly function related to its severity.

230 M. Q. Li and B. C. M. Fung

7 Conclusion

In this paper, to classify the severity levels of malware programs, we propose a neural
network-based model that is applied on assembly code function clusters. The method
has the same interpretability as the method proposed by Li et al. [25] to point out which
functions contribute to the classification, and it has a better ability to implicitly learn
patterns of functionalities to provide accurate severity level estimation of unknown mal-
ware samples. It also outperforms previously proposed methods for malware classifica-
tion on the severity classification task.

Acknowledgment. This research was funded by NSERC Discovery Grants (RGPIN-2018-
03872), Canada Research Chairs Program (950-230623), and the Canadian National Defence
Innovation for Defence Excellence and Security (IDEaS W7714-217794/001/SV1). The IDEaS
program assists in solving some of Canada’s toughest defence and security challenges. The Titan
Xp used for this research was donated by the NVIDIA Corporation.

References

1. Abusitta, A., Li, M.Q., Fung, B.C.M.: Malware classification and composition analysis: a
survey of recent developments. J. Inf. Secur. Appl. (JISA) 59(102828), 1–17 (2021)

2. Amer, E., Zelinka, I.: A dynamic windows malware detection and prediction method based
on contextual understanding of API call sequence. Comput. Secur. 92, 101760 (2020)

3. Anderson, B., Quist, D., Neil, J., Storlie, C., Lane, T.: Graph-based malware detection using
dynamic analysis. J. Comput. Virol. 7(4), 247–258 (2011)

4. Anderson, B., Storlie, C., Lane, T.: Improving malware classification: bridging the
static/dynamic gap. In: Proceedings of the 5th ACM Workshop on Security and Artificial
Intelligence, pp. 3–14. ACM (2012)

5. Bagnall, R.J., French, G.: The malware rating system (MRS)TM (2001)
6. Baldangombo, U., Jambaljav, N., Horng, S.J.: A static malware detection system using data

mining methods. arXiv preprint arXiv:1308.2831 (2013)
7. Bayer, U., Moser, A., Kruegel, C., Kirda, E.: Dynamic analysis of malicious code. J. Comput.

Virol. 2(1), 67–77 (2006)
8. Charikar, M.S.: Similarity estimation techniques from rounding algorithms. In: Proceedings

of the 34th Annual ACM Symposium on Theory of Computing, pp. 380–388 (2002)
9. Chen, J., Alalfi, M.H., Dean, T.R., Zou, Y.: Detecting android malware using clone detection.

J. Comput. Sci. Technol. 30(5), 942–956 (2015)
10. Dahl, G.E., Stokes, J.W., Deng, L., Yu, D.: Large-scale malware classification using ran-

dom projections and neural networks. In: 2013 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), pp. 3422–3426. IEEE (2013)

11. Dai, J., Guha, R.K., Lee, J.: Efficient virus detection using dynamic instruction sequences.
JCP 4(5), 405–414 (2009)

12. Damodaran, A., Troia, F.D., Visaggio, C.A., Austin, T.H., Stamp, M.: A comparison of static,
dynamic, and hybrid analysis for malware detection. J. Comput. Virol. Hacking Tech. 13(1),
1–12 (2015). https://doi.org/10.1007/s11416-015-0261-z

13. Demontis, A., et al.: Yes, machine learning can be more secure! A case study on android
malware detection. IEEE Trans. Dependable Secure Comput. 16, 711–724 (2017)

14. Ding, S.H.H., Fung, B.C.M., Charland, P.: Asm2Vec: boosting static representation robust-
ness for binary clone search against code obfuscation and compiler optimization. In: Pro-
ceedings of the 40th International Symposium on Security and Privacy (S&P), pp. 38–55.
IEEE Computer Society, May 2019

http://arxiv.org/abs/1308.2831
https://doi.org/10.1007/s11416-015-0261-z

A Novel Neural Network-Based Malware Severity Classification System 231

15. Fredrikson, M., Jha, S., Christodorescu, M., Sailer, R., Yan, X.: Synthesizing near-optimal
malware specifications from suspicious behaviors. In: 2010 IEEE Symposium on Security
and Privacy (SP), pp. 45–60. IEEE (2010)

16. Gandotra, E., Bansal, D., Sofat, S.: Malware analysis and classification: a survey. J. Inf.
Securi. 5, 56–64 (2014)

17. Gibert, D., Mateu, C., Planes, J.: HYDRA: a multimodal deep learning framework for mal-
ware classification. Comput. Secur. 95, 101873 (2020)

18. Hornik, K., Stinchcombe, M., White, H.: Multilayer feedforward networks are universal
approximators. Neural Netw. 2(5), 359–366 (1989)

19. Huang, W., Stokes, J.W.: MtNet: a multi-task neural network for dynamic malware classi-
fication. In: Caballero, J., Zurutuza, U., Rodrı́guez, R.J. (eds.) DIMVA 2016. LNCS, vol.
9721, pp. 399–418. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-40667-1 20

20. Islam, R., Tian, R., Batten, L.M., Versteeg, S.: Classification of malware based on integrated
static and dynamic features. J. Netw. Comput. Appl. 36(2), 646–656 (2013)

21. Kaspersky, L.: Rules for classifying (2020). https://encyclopedia.kaspersky.com/knowledge/
rules-for-classifying/

22. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint
arXiv:1412.6980 (2014)

23. Kolter, J.Z., Maloof, M.A.: Learning to detect malicious executables in the wild. In: Proceed-
ings of the 10th ACM International Conference on Knowledge Discovery and Data Mining
(SIGKDD), pp. 470–478. ACM (2004)

24. Kruegel, C., Kirda, E., Mutz, D., Robertson, W., Vigna, G.: Polymorphic worm detec-
tion using structural information of executables. In: Valdes, A., Zamboni, D. (eds.) RAID
2005. LNCS, vol. 3858, pp. 207–226. Springer, Heidelberg (2006). https://doi.org/10.1007/
11663812 11

25. Li, M.Q., Fung, B.C.M., Charland, P., Ding, S.H.H.: A novel and dedicated machine learning
model for malware classification. In: Proceedings of the 16th International Conference on
Software Technologies, pp. 617–628 (2021)

26. Li, M.Q., Fung, B.C., Charland, P., Ding, S.H.: I-MAD: interpretable malware detector using
galaxy transformer. Comput. Secur. 108, 102371 (2021)

27. Moskovitch, R., et al.: Unknown Malcode detection using OPCODE representation. In:
Ortiz-Arroyo, D., Larsen, H.L., Zeng, D.D., Hicks, D., Wagner, G. (eds.) EuroIsI 2008.
LNCS, vol. 5376, pp. 204–215. Springer, Heidelberg (2008). https://doi.org/10.1007/978-
3-540-89900-6 21

28. Mourtaji, Y., Bouhorma, M., Alghazzawi, D.: Intelligent framework for malware detection
with convolutional neural network. In: Proceedings of the 2nd International Conference on
Networking, Information Systems & Security, p. 7. ACM (2019)

29. Onwuzurike, L., Mariconti, E., Andriotis, P., Cristofaro, E.D., Ross, G., Stringhini, G.:
MaMaDroid: detecting android malware by building Markov chains of behavioral models
(extended version). ACM Trans. Privacy Secur. (TOPS) 22(2), 1–34 (2019)

30. Paszke, A., et al.: Automatic differentiation in PyTorch. In: Neural Information Processing
Systems NIPS 2017 Autodiff Workshop (2017)

31. Pedregosa, F., et al.: Scikit-learn: machine learning in Python. J. Mach. Learn. Res. 12, 2825–
2830 (2011)

32. Raff, E., Barker, J., Sylvester, J., Brandon, R., Catanzaro, B., Nicholas, C.: Malware detection
by eating a whole exe. arXiv preprint arXiv:1710.09435 (2017)

33. Royal, P., Halpin, M., Dagon, D., Edmonds, R., Lee, W.: PolyUnpack: automating the
hidden-code extraction of unpack-executing malware. In: Proceedings of the 22nd Annual
Computer Security Applications Conference (ACSAC 2006), pp. 289–300. IEEE (2006)

https://doi.org/10.1007/978-3-319-40667-1_20
https://encyclopedia.kaspersky.com/knowledge/rules-for-classifying/
https://encyclopedia.kaspersky.com/knowledge/rules-for-classifying/
http://arxiv.org/abs/1412.6980
https://doi.org/10.1007/11663812_11
https://doi.org/10.1007/11663812_11
https://doi.org/10.1007/978-3-540-89900-6_21
https://doi.org/10.1007/978-3-540-89900-6_21
http://arxiv.org/abs/1710.09435

232 M. Q. Li and B. C. M. Fung

34. Santos, I., Devesa, J., Brezo, F., Nieves, J., Bringas, P.G.: OPEM: a static-dynamic app-
roach for machine-learning-based malware detection. In: Proceedings of the International
Joint Conference CISIS’12-ICEUTE 12-SOCO 12 Special Sessions, pp. 271–280. Springer,
Heidelberg (2013). https://doi.org/10.1007/978-3-642-33018-6 28

35. Saxe, J., Berlin, K.: Deep neural network based malware detection using two dimensional
binary program features. In: Proceedings of the 10th International Conference on Malicious
and Unwanted Software (MALWARE), pp. 11–20. IEEE (2015)

36. Schultz, M.G., Eskin, E., Zadok, F., Stolfo, S.J.: Data mining methods for detection of new
malicious executables. In: 2001 IEEE Symposium on Security and Privacy, S&P 2001. Pro-
ceedings, pp. 38–49. IEEE (2001)

37. Sedgewick, R., Wayne, K.: Algorithms. Addison-Wesley Professional (2011)
38. symantec: Severity assessment: Threats, events, vulnerabilities, risks (2006)
39. Eclipse Deeplearning4j: DL4J: Deep Learning for Java (2016). https://github.com/eclipse/

deeplearning4j
40. Vasan, D., Alazab, M., Wassan, S., Safaei, B., Zheng, Q.: Image-based malware classification

using ensemble of CNN architectures (IMCEC). Comput. Secur. 92, 101748 (2020)
41. Verma, V., Muttoo, S.K., Singh, V.: Multiclass malware classification via first-and second-

order texture statistics. Comput. Secur. 97, 101895 (2020)
42. Ye, Y., Li, T., Adjeroh, D., Iyengar, S.S.: A survey on malware detection using data mining

techniques. ACM Comput. Surv. (CSUR) 50(3), 41 (2017)

https://doi.org/10.1007/978-3-642-33018-6_28
https://github.com/eclipse/deeplearning4j
https://github.com/eclipse/deeplearning4j

Author Index

Bouziane, Hinde-Lilia 143

Calegari, Daniel 41
Chatzidimitriou, Kyriakos C. 169
Chelli, Melvin 1

Delgado, Andrea 41
Derras, Mustapha 143

Fkaier, Soumoud 193
Frey, Georg 193
Fung, Benjamin C. M. 218

González, Laura 41

Karanikiotis, Thomas 169
Khalgui, Mohamed 193

Li, Miles Q. 218

Marotta, Adriana 41

Ournani, Zakaria 94

Penhoat, Joel 94
Pulvermüller, Elke 117

Rouvoy, Romain 94
Ruiz, Jenny 67
Rust, Pierre 94

Schaarschmidt, Marco 117
Seriai, Abdelhak-Djamel 143
Seriai, Abderrahmane 143
Shatnawi, Anas 143
Snoeck, Monique 67
Sobernig, Stefan 24
Spieldenner, Torsten 1
Symeonidis, Andreas L. 169

Tansini, Libertad 41

Uelschen, Michael 117

Zaragoza, Pascal 143

	 Preface
	 Organization
	 Contents
	Linked Data as Medium for Stigmergy-based Optimization and Coordination
	1 Introduction
	2 Related Work
	3 Background
	3.1 Resource-oriented Architectures
	3.2 Linked Data Systems
	3.3 Stigmergic Media

	4 Linked Data as Digital Stigmergic Medium
	4.1 Requirements for (Digital) Stigmergic Media
	4.2 Linked Data as Stigmergic Medium

	5 Optimization: Minimize Open Stacks Example
	5.1 The Minimize Number of Open Stacks Problem
	5.2 Medium Model
	5.3 Agent Models
	5.4 Evaluation
	5.5 Implementation

	6 Coordination: Make-to-Order Production
	6.1 Domain Model
	6.2 Algorithm and Agent Models
	6.3 Evaluation
	6.4 Implementation

	7 Conclusion and Future Work
	References

	Object Parsing Expressions for Unplanned, Unmodified, and Incremental Grammar Reuse
	1 Introduction
	2 Background
	2.1 Parsing Expressions
	2.2 Parsing to Objects: Abstraction Mismatches

	3 Advanced Object Parsing Expressions
	3.1 Basics
	3.2 Multi-valued Properties
	3.3 Non-positional Parsing

	4 Composing Parsing Expressions
	4.1 On Composition Operations
	4.2 Merges and Transforms
	4.3 Application (ex.): Syntax Unification

	5 Design and Implementation
	5.1 Packrat Parsing
	5.2 DjDSL

	6 Discussion
	7 Related Work
	8 Concluding Remarks
	References

	A Methodology for Organizational Data Science Towards Evidence-based Process Improvement
	1 Introduction
	2 Methodological Dimension of the PRICED Framework
	2.1 Static View
	2.2 Dynamic View

	3 PRICED Dimensions Supporting the Methodology
	3.1 Process and Data Integration Approach
	3.2 Business Process and Organizational Data Quality Model
	3.3 Business Process Compliance Requirements Model
	3.4 Integrated Process and Data Mining Approach

	4 Applications of the Methodology
	4.1 Students Mobility BP with Organizational Data Extension
	4.2 Passport Request BP with Collaborative Extension

	5 Related Work
	6 Conclusions
	References

	Feedback Generation for Automatic User Interface Design Evaluation
	1 Introduction
	2 Related Work
	3 Techniques for the Automatic UI Design Evaluation
	3.1 Automatic Usability Evaluation
	3.2 UI Design Principles for the Automatic Usability Evaluation

	4 FENIKS
	4.1 Models
	4.2 FENIkS Feedback
	4.3 Implementation

	5 Evaluation
	5.1 Experimental Evaluation
	5.2 Discussion

	6 Conclusions
	References

	Tales from the Code #2: A Detailed Assessment of Code Refactoring's Impact on Energy Consumption
	1 Introduction
	2 Experimental Protocol
	2.1 Hardware Environment
	2.2 Projects Under Study
	2.3 Methodology and Tools

	3 Refactoring Impact Analysis
	4 Refactoring Rules Impact
	4.1 Software Energy Consumption Evolution

	5 Related Work
	6 Conclusion
	References

	Towards Power Consumption Optimization for Embedded Systems from a Model-driven Software Development Perspective
	1 Introduction
	2 Background and Related Work
	3 Methodology and Tools
	4 Hardware Component Models
	4.1 Formal Definition of Hardware Component Models
	4.2 Integration into the Software Model Domain

	5 Power Analysis Profile (PAP)
	6 Model Transformation
	7 Model-Driven Development Workflow Integration
	8 Evaluation
	8.1 Development
	8.2 Simulation
	8.3 Analysis

	9 Discussion
	10 Conclusion
	References

	Materializing Microservice-oriented Architecture from Monolithic Object-oriented Source Code
	1 Introduction
	2 The Migration Towards an MSA: A Two-step Problem
	2.1 Motivating Example: Information Screen
	2.2 Microservice-based Architecture Recovery
	2.3 OO Source Code Transformation Towards an MSA One

	3 MonoToMicro: A Semi-automated Refactoring Approach
	3.1 Detecting Encapsulation Violations
	3.2 Healing Encapsulation Violations
	3.3 Packaging and Deployment of an MSA

	4 Explicit Encapsulation Violation Resolution
	4.1 Attribute Access
	4.2 Method Invocation
	4.3 Instance Handling

	5 Implicit Encapsulation Violation Resolution
	5.1 Inheritance Relationship
	5.2 Source Code Transformation to Heal Exception Throwing and Catching Violations

	6 Violation Resolution Order
	7 Evaluation
	7.1 Data Pre-processing: Microservice Identification
	7.2 Research Questions and Their Methodologies
	7.3 Results
	7.4 Threats to Validity

	8 Related Work
	8.1 Microservice-based Architecture Recovery
	8.2 Transformation Towards a Microservice-oriented Application

	9 Conclusion
	References

	A Personalized Code Formatter: Detection and Fixing
	1 Introduction
	2 Related Work
	3 System Design
	3.1 User Dataset
	3.2 Tokenizer and Vectorizer
	3.3 Model Generation
	3.4 Snippet Scoring
	3.5 Possible Fixes
	3.6 Fixes Suggestion

	4 Evaluation
	4.1 Detection Evaluation
	4.2 Application of Formatting Error Fixing in Practice

	5 Threats to Validity
	6 Conclusions and Future Work
	References

	Software Framework of Context-Aware Reconfigurable Secure Smart Grids
	1 Introduction
	2 Related Works
	2.1 Context-Awareness and Smart Grids
	2.2 Context-Awareness Frameworks
	2.3 Discussion

	3 Enhanced Software Framework
	3.1 Reconfiguration Layer
	3.2 Context Control Layer
	3.3 Services Layer
	3.4 Communication Layer

	4 Application
	4.1 Case Study Presentation
	4.2 Settings Preparation
	4.3 Use Case Scenario

	5 Results and Discussions
	6 Conclusions and Outlook
	References

	A Novel Neural Network-Based Malware Severity Classification System
	1 Introduction
	2 Related Work
	2.1 Malware Classification
	2.2 Severity Ranking

	3 Problem Definition
	4 Methodology
	4.1 Function Representation Learning
	4.2 Discriminative Function Clustering
	4.3 Function Clone Search
	4.4 Feature Vector Formation
	4.5 Feed-Forward Neural Network Classification

	5 Experiments
	5.1 Dataset
	5.2 Malware Classification Methods for Comparison
	5.3 Experiment Settings
	5.4 Results
	5.5 Classification Result Interpretation

	6 Discussions
	7 Conclusion
	References

	Author Index

