l‘)

Check for
updates

Semantic Relations of Sub-models
in an Enterprise Model

Ella Roubtsova®™)® and Sefanja Severin

Open University, Valkenburgerweg 177, 6419 AT Heerlen, The Netherlands
ella.roubtsova@ou.nl

Abstract. Enterprise modeling is a set of tools, methods and prac-
tices for an aligned development of business, functional, organizational
and technical aspects of an enterprise. Therefore, an enterprise model is
always a set of sub-models of different semantics. In order to form a con-
sistent enterprise model, its sub-models should be aligned to each other.
The practice of modeling shows the difficulties in design of an aligned set
of sub-models of an enterprise model. In this paper we present a review of
enterprise modeling approaches aiming to find the reasons of difficulties.
Our review shows that enterprise modeling approaches not sufficiently
use the semantic relations of sub-models for building an enterprise model.
This paper identifies and formalizes the semantic relations of sub-models
and suggests to use them as constraints directing the design of aligned
sub-models. The constraints imposed by sub-models of the enterprise
model to each other are illustrated with a case study in ArchiMate.

Keywords: Enterprise modeling - Sub-models - Goal sub-model -
Concept sub-model * Process sub-model + Semantic relations of
sub-models - Model consistency * Sub-models alignment + ArchiMate

1 Introduction

Enterprise modeling is a set of tools, methods and practices “for an aligned
development of all parts of an enterprise, e.g. business, functional, organizational
and technical aspects” [23].

Enterprise modeling (EM) approaches present these different parts of an
enterprise as sub-models. There are sub-models that use the same semantics and
notation of concepts and relations (boxes and arrows). Such sub-models separate
sub-domains of the modeled enterprise (resources, technical components, actors,
business concepts). There are sub-models that present dynamics with a process
semantics. They use processes and flow relations, states, events and triggering
relations. Other sub-models present the motivation of the modeled enterprise
and use goals and requirements as elements and their refinement relations.

The sub-models in a consistent enterprise model should be related or aligned
to each other [8]. The practice shows how difficult it is to align sub-models into
a consistent enterprise model. Many authors, for example, [12,17], emphasize

© Springer Nature Switzerland AG 2022
B. Shishkov (Ed.): BMSD 2022, LNBIP 453, pp. 104-121, 2022.
https://doi.org/10.1007/978-3-031-11510-3_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-11510-3_7&domain=pdf
http://orcid.org/0000-0002-4067-3088
https://doi.org/10.1007/978-3-031-11510-3_7

Semantic Relations of Sub-models in an Enterprise Model 105

the critical alignment of enterprise sub-models to the goal sub-model. Kaisler at
al. [8] identify the critical problems of alignment, such as using in sub-models
the non-matching levels of abstraction, limited tool support for business process
alignment with other sub-models and for managing the integrated enterprise life
cycle. All these problems cannot be solved without methodological support for
designing aligned sub-models.

Section 2 of this paper presents the result of our review of enterprise modeling
approaches that shows some history of accumulating and aligning a set of sub-
models in an enterprise model. By evaluating enterprise modeling approaches, we
have recognized that the relations of sub-models can be defined only at some level
of detail and these relations may direct the modeling to a consistent enterprise
model. We define an aligned or consistent! enterprise model as follows:

An aligned or consistent enterprise model is a set of sub-models of different
semantics, where sub-models restrict or constrain each other and the restrictions
and constraints are defined in terms of semantics of sub-models.

Section 3 of this paper shows a case study of enterprise modeling, directed
with semantic relations of sub-models.

Section4 generalizes the semantic relations of sub-models in an enterprise
model.

Section 5 concludes the paper and presents ideas for future work.

2 Related Work. Attempts to Address Consistency
of an Enterprise Model

The notion of consistency of an enterprise model, meaning aligning of all its
sub-models to each other, faces difficulties caused by the need to include a sub-
model representing requirements for the model and by the different semantics of
sub-models. Let us show how it was recognized and handled historically.

The 4+1 approach has been designed “for describing the architecture of
software-intensive systems” [10]. The +1 in the 4+ approach is an attempt
to include a sub-model of requirements, into a 4+1 enterprise model and make
all sub-models aligned with this sub-model and with each other.

The +1 sub-model is a set of scenarios presented in the UML Use Case Dia-
gram. “Scenarios are used to identify architectural elements and to illustrate
and validate the architecture design. They also serve as a starting point for
tests of an architecture prototype” [10]. Each scenario corresponds to a set of
requirements, often combined as a set of milestones or presenting separation of
domains. Speaking about the order of designing of sub-models, we see that the
+1 sub-model should be the first, however, the +1 is never seen as a complete
presentation of requirements. The architectural elements identified in the +1 are
depicted in other sub-models presented using 4 semantics: (1) Class Diagrams,
(2) State Machines or Protocol State Machines, (3) Sequence or Communication
or Activity Diagrams, (4) Component and Package Diagrams [5,9,16]. The rela-
tions of sub-models are defined as rules on 4 semantics. The +1 sub-model is

! Both terms are used, even by the same group of authors, for example [8].

106 E. Roubtsova and S. Severin

excluded. Egyed [3] reports that there is “a division between those who compare
design models directly and those who transform design models into some inter-
mediate, usually formal, representation to compare there”. The comparison of
sub-models directly requires consistency rules, for example, “Name of a message
must match an operation in receiver’s class”; “Calling direction of a message
must match an association”. There is an analyzer for “instant error feedback
that profiles consistency rules” [3]. The analyzer needs an external information
to collect semantic rules for consistency checks of sub-models.

The need of a sub-model representing requirements in an enterprise model
has initiated the attempts to combine goal models with UML models. The KAOS
approach [19] has introduced a practical goal modeling with refinement of goals
and its application for system modeling. However, Letier et al. [11] have iden-
tified a semantic difference between the goal models and the UML behavior
semantics (State Machines, Sequence or Communication or Activity Diagrams).
The goal models define quiescent states that should be achieved by the system.
A quiescent state means that the system cannot change this state by itself; the
system preserves this state indefinitely long time until an external event. In a
UML behavior semantics, the changes of the system state may be caused by
events taken from the bags or queues of earlier arrived events [21].

In parallel, the enterprise modeling approaches have tried to include the goal
sub-model into an enterprise model and choose the behavior semantics that can
be aligned with the semantics of goal models.

The 4EM approach has defined an Enterprise Model as a tuple of six sub-
models.

— Goal sub-model uses the semantics of [19]. An element (box) is a goal, business
rule or requirement. A relation (arrow) is a refinement relation of a goal to a
sub-goal or a requirement, a business rule to requirement.

— Concept Model, Actors and Resource Model and Technical Components
Model types use the semantics of object models. An element (box) presents
a business object or a physical resource. A relation (arrow) can be a binary,
an operation or a specialization or an aggregation relation [23, p. 112].

— Business Process Model uses a process semantics. There are two types of
elements (boxes): information sets and processes. A relation(arrow) between
a process and an information set or between an information (material) set
and a process presents a control flow. AND and OR join and split connectors
are used to present alternatives and cycles [23, p. 121].

The relations of sub-models in an enterprise model are abstractly described
in [23, p. 78] with a diagram. For example, a Goal Model “uses” and “is related”
to the Concept Model, “motivates” and “requires” Business Process Model
and Technical Components Model [23, p. 78]. The restrictions that sub-models
impose on each other in an enterprise model are expressed as “a number of
consistency rules” [23, p. 211]. For example, the rule: “Every information set or
material set in a Business Process Model must be expressed using concepts of the
Concept Model,” relates concepts in the Concept Model and information sets in
the Business Process Model.

Semantic Relations of Sub-models in an Enterprise Model 107

To design a consistent enterprise model, the 4EM approach suggests the
modeler to (1) integrate the sub-models, so that “the inter-model links should
establish a clear line of reasoning” [23, p. 211]; (2) visually check the consistency
rules; (3) identify inconsistencies and make iterations to improve the model. The
practice of application of the 4EM shows that the integration can be applied in
small cases and usually results in a model having boxes and arrows with different
meaning, what makes the model difficult to observe and understand. The exam-
ples can be seen in [23, p. 213, 214]. The visual checks of consistency rules are
very useful for small models, however, the consistency rules just partially define
the semantic relations of sub-models and do not direct the design of sub-models.

The ExtREME approach [20,22] presents an enterprise model as a set of a
Goal, a Concept, and an executable Protocol sub-models. ExtREME exploits
the similarity of semantics of a goal, being a quiescent state of the modeled
system, in a Goal sub-model and a quiescent state in an executable Protocol
sub-model [13].

The relations of sub-models are used to direct the design of the enterprise
model from a Goal sub-model to a Protocol sub-model. The refinement patterns
of the Goal sub-model identify the states of life cycles of concepts.

A Protocol sub-model is a set of protocol machines. Each protocol machine
presents a life cycle of a concept. The elements of a protocol machine are the
following: a local structure (to present states of the life cycle of a concept) and
a set of transition relations. A transition from state “a” to another state “b” is
labeled with an event “e”, that can happen in state “a”.

An event “e” is a happening in environment. An event is presented with a
data structure. The data of an event and the local structure of the protocol
machine are used to check if the event can happen and to update the local
structure of the protocol machine after the transition.

The instances of life cycles of concepts (instances of protocol machines) are
synchronized using the CSP-parallel composition [13,14]: if an event is recognized
by several instances protocol machines, it can happen only if all these instances
are in the state where this event can happen. A business process is a set of
sequences of synchronized executions of instances of protocol machines. The
consistency of sub-models in ExXTREME is achieved by executing the protocol
sub-model and testing all requirements presented in the goal sub-model.

The ArchiMate approach [24] has been designed as a foundation for a con-
sistent enterprise model. ArchiMate provides a “structure or a storage for an
internal model of an enterprise”, that includes sets of elements and relations. If
an internal model of an enterprise model has been filled in with unique (non-
duplicating) elements and relations, then this model can be used as a source for
designing views being consistent with the internal model.

The practice of enterprise modeling shows that it is difficult to fill the internal
model in with the unique (not duplicating) elements and relations. The reasons of
the difficulties are caused by the team modeling and human factors: (1) modelers
draw different sub-models and even their parts (views) as teams and the internal
model is filled in from these drawings; (2) the sub-models and the order of

108 E. Roubtsova and S. Severin

their building, and the naming of elements and relations are chosen by modelers
(often different team members). Modelers can make typos, duplicate names, miss
elements or relations.

The structure of an internal ArchiMate model of an enterprise model is the
following:

— ‘T'wo main types of elements: “structure elements” and “behavior elements”,
“ inspired by natural language, where a sentence has a subject (active struc-
ture), a verb (behavior), and an object (passive structure) [24, sec. 4].

— The element “event” in ArchiMate is defined differently than in many other
notations [4,6,14]. An event in ArchiMate is actually a state: “A business
event represents an organizational state change” [24, sec. 8.3.4].

— There are motivation elements. “A motivation element represents the context
of or a reason behind the architecture of an enterprise” [24, sec. 4]. Elements
“Goal” and “Requirement” are among motivation elements.

— There is a set of relations: access, composition, flow, aggregation, assignment,
influence, association, realization, specialization, triggering, serving [24, sec.
5.6]. There is a table [24, B.5] that specifies what kinds of relations are allowed
for what kinds of elements. The semantics of most relations corresponds to
the Concept sub-model semantics. Some relations are applicable in Process
sub-models.

— The refinement relation used in Goal sub-models does not exist in ArchiMate.

Providing an internal model structure for an enterprise model, the ArchiMate
does not provide any systematic way or method for collecting elements and rela-
tions for the internal model. The internal model is often filled in with elements
and relations from sub-models or their partial views drawn by modelers on the
spur of the moment. As a result, the internal model may contain double copies
of elements, not-related elements, elements that are not related to goals and all
typos and mistakes that a modeler can make, trying to capture a case descrip-
tion. Although there is a tool support to mark suspicious model elements [1],
but the decision about any model correction is delegated to the modeler and the
correction is often postponed and forgotten.

Our review of enterprise modeling approaches shows that the semantic rela-
tions of sub-models of an enterprise model are recognized in all approaches, but
they are not used to direct the design of sub-models. The semantic relations of
sub-models, expressed in 4dEM, KAOS and ExtREME, need generalization to
direct the design of sub-models aligned to each other in a consistent enterprise
model.

3 Semantic Analysis of Sub-models

In order to identify the semantic relations of sub-models, we use a combination
of research methods, namely, a case study and a semantic analysis of sub-models
within the case study.

Semantic Relations of Sub-models in an Enterprise Model 109

Our case study is an executable enterprise model of an insurance busi-
ness taken from [22]. This enterprise model includes sub-models that represent
all three semantics: goals, concepts and behaviors. The sub-models have been
already made consistent in ExXREME by executing and testing techniques.

By redrawing of sub-models of this enterprise model in ArchiMate, we use
the internal ArchiMate model, i.e. elements and relations (Sect.2). The initial
elements are (1) goals and requirements. The initial relations of goals and require-
ments are the goal refinement patterns. We also use the ArchiMate elements of
two categories: (2) objects (concepts) and (3) events.

In majority of enterprise modeling notations, the terms “concept” is used to
present enterprise objects at different levels of abstraction.? Therefore, we use
the term “concept” instead of “object”.

Concepts (objects) can be identified by the lexical and semantic analysis of
goals and requirements. A concept can be a business object, a role, an technical
component named as a noun in a sentence presenting a goal. A relation of con-
cepts is a named pair of concepts. A name of relation is identified as a verb or
a preposition in a sentence presenting a goal.

An event (a behavior element) in ArchiMate is defined differently from other
notations. “A business event represents an organizational state change” [24, sec.
8.3.4]. Because there is no any data structure associated with an event in Archi-
Mate, a name of an event is a goal-sentence representing a state in a life cycle
of a concept. Two events can be related with a triggering relation. “The trigger-
ing relationship is used to model the temporal or causal precedence of behavior
elements in a process.” [24, sec. 5.3.1].

A sequence of events is identified using a milestone refinement pattern of a
goal. An alternative refinement pattern of a goal corresponds to an alternative
ArchiMate events. A cycle of events can be identified by lexical analysis of a
goal, when it expresses that the life cycle of a concept needs a set of instances
of other concepts.

In terms of these elements and relations of the ArchiMate internal model, we
define the sub-models and the semantic relations of sub-models.

3.1 Relations of Concepts and Relations of Process States Identified
in the Goal Sub-model

In goal-oriented approaches, the refinement relation is used between goals, sub-
goals, requirements and constraints. The ArchiMate does not specify the refine-
ment relation. The same way as [18], we use the realization relation to present
refinement. The interpretation of a realization relationship is that the whole
or part of the source element realizes the whole of the target element [24, sec.
5.1.5.]. The realization relation can express the sufficient condition of refinement
relation. We have modified the Archi-tool and made realization relation allowed
for all pairs of motivation elements.

2 In ArchiMate, both elements and relations are concepts [24, sec. 2.8].

110 E. Roubtsova and S. Severin

< MAIN GOAL: An application supporting insurance business

m1

R1: A product is composed R2: A policy of pr‘oduct is R3: A claim of a client with a
by a product manager bought by a registered bought policy is handled
customer

m3, @ m4,,.

R2.1: A customer /7 R3.1: A claim is [T
is registered submitted by a client

R2.2: A registered /7
customer bought a
policy and became

a client

R1.1: A
medical
procedure is
created

R3.2: Using the product /7
information, a
submitted claim is
sorted to one of the
three classes: Not
Covered, Max Claim,
NoLimit Claim

R1.2: Medical
procedures are
combined into
groups

R2.3: A handler
procedure for each
coverage of the policy

R1.3: Each group

el i is created R33: A claim is handled

NoLimit or a Max

Coverage schema A
p: a1 @

medical procedures
are associated with a

product
R33.1: A
H NotCovered claim
R2.3.1: NoLimit Handler fully H is refused
compensates the submitted claim

R3.3.2: A NoLimit

claim is always paid

R2.3.2: CoverageMax Handler: The initial CoverageMax.Balance =
MaxValue. If (Claim.Amount <= CoverageMax.Balance) then
(Claim.Amount is paid) and (CoverageMax.Balance =
CoverageMax.Balance - Claim.Amount). If (Claim.Amount >
CoverageMax.Balance and CoverageMax.Balance <> 0) then
(CoverageMax.Balance is paid) and (CoverageMax.Balance = 0). If
(CoverageMax.Balance = 0) then (Claim.Amount is not paid).

R3.3.3: The handling of a
Max Claim depends on
the rest of the balance

(see R2.3.2)

Fig. 1. Goal sub-model

The Goal sub-model of the case is presented in Fig. 1. Figures 2, 3, 4, 5 present
the Relations of Concepts and Relations of Process States (ArchiMate events)
identified in the Goal sub-model.

In Fig.2, the reader can see that “MAIN GOAL: Application supporting
insurance business.” is refined to a tuple R1, R2 and R3. The refinement uses
the mile-stone pattern, which means that R1, R2, R3 is a sequence of states of
the concepts from the Main Goal: “Application” and “Insurance business”. Each
of these concepts represents the entire model. We have chosen the “Application”
point of view, i.e. we focus on the data structure and relations and do not model
actors.

R1, R2 and R3 are formulated as sentences in natural language. For example,
“R1. A product is composed by a product manager.” Using lexical analysis of
this sentence, we can find a is-composed(Product) applied to any object of type

Semantic Relations of Sub-models in an Enterprise Model

Requirements, Nouns Verbs, Relations of Relations of Process States
Refinement prepositions Concepts (ArchiMate Events)
MAIN GOAL: An Insurance
application business,
supporting Application
insurance state-sequence-of “An
business”. application supporting

insurance business”.
Refinement named in requirements
milestones-of R1,R2,R3
(MAIN GOAL,
(R1,R2,R3))
R1: A product is Product is-composed-by | is-composed- state-of(Product,(Product is
composed by a by(Product, composed))
product manager Product Product

Manager (role) Manager) added by the modeler

is-created (Product)
R2: A policy of Policy of of(Policy, state-of (Policy, (Policy is
product is bought Product) bought by a Registered
by a registered Product is-bought-by is-b ht-b Customer))
customer Customer Polioy Y (

Registered
Customer)

R3: A claim of a Claim is-handled state-of (Claim, (Claim is
client with a bought handled))
policy is handled

Fig. 2. Relations from the refinement of the Main Goal

Fig. 3. Relations identified in the Goal sub-model by refinement of R1.

Requirements Nouns Verbs Relations of Relations of Process States
Refinement Concepts
Refinement R1
milestones- State sequences defined by synchronized
of(R1, (R1.1, business objects named in requirements.
R1.2. R1.3, R1.4))
R1.1: A medical Medical is-created state-of(Medical Procedure, (A Medical
procedure is Procedure Procedure is created))
created
R1.2: Medical Group of is-combined | /s- state-sequence-of(Medical Procedure, (A
procedures are Medical combined(Medical Medical Procedure is created; A Medical
combined into Procedures Procedure, Group Procedure is combined with a Group of
groups of Medical Medical procedures)).
Procedures)
R1.3: Each group | NoLimit corresponds | correspond- state-sequence-of (Group of Medical
corresponds to Schema -to to(Group of Medical | Procedures,
the NoLimit or a MaxCi Procedures, (A Group of medical procedures is created;
Max Coverage Sa: overage NoLimit Schema) state-alternative(Group of Medical
schema chema ds -t Procedures, (A group corresponds to the
Group with ::g:roeusp?z?l\:e-dti)cal NoLimit Schema; A group corresponds to
NoLimit Procedures. the Max Coverage Schema); _)
Coverage MaxCoveraée A Medical Procedure is combined with a
) Group of Medical procedures)).
Group with Schema)
Max Coverage corresponds- state-of(NoLimit Schema, (NoLimit Schema
to(Group with is created));
zgt:z:: gglz:::g)e, state-of(MaxCoverage Schema,
(MaxCoverage Schema is created));
f&gﬁ:ﬁ:nx;h Max glates “is created” for the Schemas and the
roup are added by a modeler to enable
Coverage, specified events.
MaxCoverage
Schema)
R1.4: Groups of are- is-associated- state-sequence-of(Product, (A Product is
medical associated with(Group of created; A Group of medical procedures is
procedures are Medical associated with a Product; A product is
associated with a Procedures, composed));
product Product)

state-of(Group of Medical Procedures, (A
Group of medical procedures is associated
with a Product));

State “A Product is created” is added by a
modeler to enable specified events.

111

112

E. Roubtsova

and S. Severin

Requirements, Nouns Verbs, of C of Process
Refinement prepositions States
Refinement R2 State sequences defined
milestones-of (R2, by synchronized business
(R2.1,R2.2, R2.3)) objects named in
requirements
R2.1: A customeris | Customer is-registered state-of(Customer, (A
registered Customer is registered))
R2.2: A registered of of(Policy, Product)
cus_tomer bought a is-bought is-bought-by(Product, Customer) | state-of(Policy,(A policy of
policy and became b
a client a product is bought by a
customer))
R2.3: A handler Handler is-created-for(NoLimit Handler, state-of ((Policy, (NoLimit
procedure for each Clai NoLimit Coverage Schema) Handler is created; AND
coverage of the aim is-created-for (CoverageMax CoverageMax Handler is
policy is created ughgr;(r is-created Handler, Max Coverage created))
is-created Schema)

CoverageMax

Handler
R2.3.1 NoLimit is-created is-created

. Handler

Figure 1
R2.3.2 added by the is-composed- | added by the modeler:is-
Figure 1 modeler of composed-of(CoverageMax

CoverageMax Handler,CoverageMax Balance);

Balance is-composed-of(MaxCoverage

Max Value Schema,Max Value);

Claim Amount is-composed-of(Claim,Claim

Amount)

Fig. 4. Relations from the refinement of R2

Requirements, Nouns Verbs Relations of Relations of Process States
refinement Concepts
Refinement R3: State sequences defined by synchronized
milestones-of(R3, business objects named in requirements
(R3.1,R3.2, R3.3))
R3.1: Aclaimis A Customer | is- is-submitted- state-of (Claim, (A Claim is submitted by a
submitted by a client | is a Client submitte | by(Claim, customer)).
d Customer)

R3.2: Using the NotCovered is-sorted pecic NotCov tat it f(Claim,
product information, a | Claim ered Claim, Claim) | (Is sorted to NotCovered Claim OR
submitted claim is Max Clai ializes(M Is sorted to NoLimit Claim OR
sorted to one of the ax Claim (s:/Te_cIa gles_(ax Is sorted to MaxClaim))
three classes: Not NoLimit aim, Claim)
Covered, Max Claim, | Claim specializes(NoLimit
NoLimit Claim Claim, Claim)

one-of(Claim,

Medical Procedure)

— added
R3.3: Aclaim is is- state-of(Claim, (A Claim of a Customer
handled handled with the bought policy is handled))

state-sequence-of(Claim, (A Claim is
submitted by a Customer;

(Is sorted to NotCovered Claim OR

Is sorted to NoLimit Claim OR

Is sorted to MaxClaim)),

A Claim of the registered customer with the
bought policy is handled)

Refinement R3.3

Alternative-of(R3.3,
(R3.3.1,R3.3.2,
R3.3.3))

State alternatives defined by R3.3.1,
R3.3.2, R3.3.3.

R3.3.1: A NotCovered

NoCoverage | is-

is-refused-by(No

state-alternative-of(Claim, (is-refused))

of the balance

claim is refused Handler — refused- Coverage Handler)

added for by

symmetry
R3.3.2: A NoLimit is-paid- is-paid-by(NoLimit state-alternative-of(Claim, (is-paid))
claim is always paid by Handler)
R3.3.3: The handling Is- is-calculated- state-alternative-of(Claim, (is-calculated-
of a Max Claim calculate | by(CoverageMax using-MaxClaim-and-Balance))
depends on the rest d-by Handler)

Fig. 5. Relations from the refinement of R3

Semantic Relations of Sub-models in an Enterprise Model 113

Product, so it defines a life cycle of a Product. Only one state of this life cycle is
seen in R1: state-of(Product, (Product is composed). The modeler adds the state
is-created(Product), because a product should exist to be composed. Analogically,
R2 defines the life cycle of an object Policy and R3 defines the life cycle of an
object Claim (Fig.2).

Figure 3 shows the concepts identified by lexical analysis of R1.1, R1.2, R1.3,
R1.4. Requirement “R1.3. Fach group corresponds to the NoLimit or MaxCov-
erage Schema” defines a specialization relation of the object Group of medical
procedures to Group with Nolimit Coverage and Group with Max Coverage and
objects NoLimit Schema and MaxCoverage Schema. R1.3 also defines a state-
alternative of a Group of Medical Procedures.

Figure 4 presents Relations of Concepts and Relations of Process States used
for a Policy life cycle are shown in Fig.4. A Policy object is created when it is
bought.

Relations of Concepts and Relations of Process States used for a Claim life
cycle are shown in Fig. 5. The alternative states of the business object Claim are
caused by sorting each instance of object Claim. A Claim state is-handled may be
one of the following states: is-refused, is-paid or is-calculated-using-MazxClaim-
and-Balance.

Internal model of ArchiMate. “Elements” is an existing structure of the inter-
nal model presenting an enterprise model in ArchiMate. It can be filled in with
“Nouns” (Objects). “Relations of Concepts” is an existing structure of the inter-
nal model, presenting an enterprise model, in ArchiMate. The elements of this
structure are the results of lexical analysis of the Goal sub-model (Figs. 2, 3, 4,
5).

Because a goal represents a state of the modeled system and the ArchiMate
defines an event as a state change, we use the names of goals to fill in events
in the internal ArchiMate model. “Relations of Process States” (Figures2, 3, 4,
5) are now filled in the “Relations of Concepts” in ArchiMate, but we visually
check that each relation of process states is a triggering relation between a pair
of ArchiMate events.

3.2 A Concept Sub-model Using Relations of Concepts

Using the “Relations of Concepts” identified in the Goal sub-model we build the
Concept sub-model. Building of Concept sub-models is well guided by Archi-
Mate [24, sec. 4], so we have depicted the Concept sub-model aligned with the
Goal sub-model in Fig. 6.

The constraints imposed by sub-models on each other is the basis of our
method. Ideally, the set of “Relations of Concepts” of the Concept sub-model
is equal to the set of “Relations of Concepts” identified from the Goal sub-
model. The first version of the Concept model can be generated from the internal
ArchiMate model.

In practice of enterprise modeling, there are two possible deviations from this
constraint.

114 E. Roubtsova and S. Severin

Product of Policy —bought by Customer
associated with T submitted by
Group of Medical Schema Handler Claim
Procedures
Group with No-Limit | __ cqrresponds to +> No-Limit Schema | g5, No-Limit Handler | __handled by — No-Limit Claim

Coverage

Group with Max ~ —-corresponds to = Max-Coverage <—for Max-Coverage ~~—handled by — Max-Coverage Claim
Coverage Schema Handler

? No-Coverage Claim

combined into Max Value Balance

Medical Procedure

\

Claim Amount

Fig. 6. Concept sub-model

1. A Concept sub-model may present a subset of “Relations of Concepts” identi-
fied from the Goal sub-model. It is a partial Concept sub-model called a view.
Views are often used in enterprise modeling. A set of views may eventually
cover all “Relations of Concepts” found in the Goal sub-model. Views can be
generated from “Relations of Concepts” identified from the Goal sub-model.

2. A concept sub-model may contain extra relations added by designers. These
extra relations have not been presented in the Goal sub-model.

Our case study illustrates the second deviation. Our Concept sub-model contains
extra relations a Policy is composed by handlers. Also a Claim has an extra
relation with a Medical Procedure.

So, in general, the set of “Relations of Concepts” identified from the Goal
sub-model is a subset or an equal set of “Relations of Concepts” used in a
Concept sub-model (or in a set of partial Concept sub-models).

3.3 A Process Sub-model Using Relations of Process States

Figure 7 depicts a Process sub-model built on “Relations of Process States” iden-
tified the Goal sub-model. We have already mentioned, that an ArchiMate event
is a state change, so we present states using ArchiMate events. Each sentence
presenting goals (requirements) is transformed to an ArchiMate event.

Most concepts Medical Procedure,Group of Medical Procedures, Product are
business objects and have their life cycles shown in Fig. 7.

We use only one of possible semantics for the Process Model, namely Protocol
Modeling. Events with the same name in different life cycles of this model mean

Semantic Relations of Sub-models in an Enterprise Model 115

1. Events for medical procedure

1. A medical procedure is created 10— 3. A medical procedure is combined into a group of medical procedures D

2. Events for group of medical procedures

2. A group of medical 1D 3. A medical procedureis 1D 4a. A group is D 6a. A group with max coverage is 1)
procedures is created combined into a group of —> specialized to a group — made to correspond to a max-
/ medical procedures \ with max coverage coverage schema
\O 4b. A group is p) 6b. A group with no-limit P
specialized to a group —> coverage is made to correspond
with no-limit coverage to a no-limit schema
8. A group of medical procedures is associated with a product b
3. Events for schema
5a. A max-coverage 1O 6a. A group with max coverage is made to correspondtoa 1O 12b. A max-coverage handler is created p)
schema is created max-coverage schema >
5b. Ano-limit 1D 6b. A group with no-limit coverage is made to correspond 1O 12a. A no-limit handler is created D
schema is created to a no-limit schema

4. Events for product

A i N

7. A product 1D 8. A group of medical procedures is 9.A product is
is created associated with a product ready

11. A policy of a product is bought by a customer 1O

5. Events for customer

P -

10. A customer is registered 1O— 11. A policy of a product is bought by a customer 1) 13. A claim is submitted by a customer P

6. Events for policy

12a. A no-limit handler is created D 15a. A no-limit claim is paid 1
11. A policy of a productis 1) / /
bought by a customer 4’.\ ”O\
12b. A max-coverage handler is created D 15b. A max-coverage claim is calculated 1O
7. Events for claim
14a. A claim s sorted to a no-limit claim D— 15¢. A not-covered claim is refused 1D
13. A claim is submitted 1O
by a customer 4@\4 14b. A claim s sorted to a max-coverage claim D—> 15b. A max-coverage claim is calculated 10
14c. A claim is sorted to a no-coverage claim DOy 15a. A no-limit claim s paid D

Fig. 7. Business Process sub-model

the CSP-parallel composition [14]. The CSP-parallel composition restricts the
events allowed in each system state as it is explained in Sect.2: if an event is
recognized by several instances of protocol machines, it can happen only if all
these instances are in the state where this event can happen.

A business process is a set of sequences of synchronized execution of instances
of protocol machines. We have numbered the events in Fig. 7 to work the reader
through one of the possible sequences of the process presented in Fig. 7.

1. A medical procedure is created.

— 2. A group of medical procedures is created.

— 3. A medical procedure is combined with a group of medical procedures.

— 4a. A group is specialized to a group with max coverage.

— 5a. A max-coverage schema is created. (This event is added by the modeler.
It is missing in the Goal sub-model.)

116 E. Roubtsova and S. Severin

— 6a. A group with max coverage is made to correspond to a max-coverage
schema.

— 7. A product is created.

— 8. A group of medical procedures is associated with a product.

— 9. A product is ready. (This event is added by the modeler. It is missing in
the Goal sub-model.)

— 10. A customer is registered.

— 11. A policy of a product is bought by a customer.

— 12a. A no-limit handler is created. AND 12b. A max-coverage handler is
created.

— 13. A claim is submitted by a customer.

— 14b. A claim is sorted to a max-coverage claim.

— 15b. A max-coverage claim is calculated (The Balance of the Policy is
updated).

Figure 7 shows that there are synchronous events. For example, “A Group
of medical procedures is associated with a Product” for a Group and a Product;
“A Medical Procedure is combined with a Group of Medical procedures” for a
Medical Procedure and a Group.

The life cycle of a Group of Medical Procedures has alternative states 4a. A
group is specialized to a group with max coverage. and 4b. A group is specialized
to a group with no-limit coverage.

If a life cycle of an business object needs a set of instances of another business
object, a cycle is designed. For example, a set of instances of “Medical Procedure”
can be added to each “Group of Medical procedures”.

Some process states, that are not presented in the Goal sub-model, have
been added in the Business Process sub-model. For example, 2. A group of
medical procedures is created, 5a. A maz-coverage schema is created, 5b. A no-
limit schema is created and 9. A product is ready. This means that the set
“Relations of Process States” identified in the Goal sub-model is a subset of
“Relations of Process States” used in the Business Process sub-model.

4 Generalization of Semantic Relations Between
Sub-models of an Enterprise Model

In the presented case study, we used the semantic relations of sub-models of an
enterprise model to organize a modeling process that results in aligned set of
sub-models. In this section, we formalize the semantic relations of sub-models in
one enterprise model.

4.1 Analysis of a Goal Sub-model

A Goal sub —model = (G, Ry, Rs, Ry).

The elements g € G in Fig.1 are indexed to show how they are refined into
sub-goals or how they refine a parent goal. To show how a parent goal is refined,
we use the following notation. Let g4, be a goal under refinement tn:

{gin|t € {m,s,a} An € N}.

Semantic Relations of Sub-models in an Enterprise Model 117

where t € {m,s,a} denote the type of refinement, being milestone (m), sub-
domain(s) and alternative(a) refinement respectively. And where n is used to
distinguish refinements of the same type (such as refinements ml, m2, m3 and
m4 in the goal sub-model in Fig. 1).

To show how a sub-goal refines its parent goal, we use the following notation:

Gin ={gtn, € G|t €{m,s,a} N n e N A ke N}
The set of sub-goals G, = {gtn,, ---Gtn,, } refines the parent goal gyy,.

— @ is a finite set of goals, sub-goals and requirements. Each element g € G is
a sentence in the natural language presenting a state or a partial state of the
modeled system.

— R,, is a set of milestone-type refinement relations.

An element r,,, € R, refines a goal g,,, to a finite set of goals, that are
ordered, namely, form a sequence to complete the goal g,,,:

Tmn = (gmna (vau Omn))a
Gmn = {gmnk}a nvk € Na
Or,.. = {(Gmnss 9mnz)s o (Gmng_ 1 9mi)} B G-

— Ry is a set of sub-domain AN D refinement relations. An element 7., € Ry
refines a goal gg, to a set of goals, union of which means the completion of

gsn:
Tsn = (gsna (Gsn7 Usn))a

Gsn = {gsn17 -~-7gsnk}7 ’I’L,k‘ € Na (gsn1 N -~-amgsnk) = @
Usn = (gsnl ... Ugsnk) ': Gsn-

— R, is a set of alternatives, i.e. OR refinement relations. An element r,, € R,
refines a goal g,, to a set of goals, appearance of one of which means the
completion of ggp:

Tan = (gan7 (Gan7Aan))7
Gan = {gank7 "-Mgank}a ’I’L,k S Na (ga’rbl N ---7mgank) = @
Awn =Vi=1,..k: (Gan; E Gan)-

4.2 Goal Sub-model and Concept Sub-model
A Concept sub — model = (C, R) is a tuple

— C a finite set of concepts; ¢; € C, i =1,....,n, n € N.
— R is finite set of relations; r € R, r = (¢;,¢;), ¢i,¢; € C.

The lexical analysis of goals G expressed in natural language in a goal model is
aimed to identify the constraints imposed by the Goal sub-model on the Concept
sub-model in one enterprise model:

118 E. Roubtsova and S. Severin

— Nouns(@) is a finite set of nouns (noun phrases), n € Nouns(G), forming
the sentences presenting goals, sub-goals and requirements.

— Verbs(G) is a finite set of verbs (verb phrases, prepositions), v € Verbs(G),
used in the sentences presenting goals, sub-goals and requirements.

— Relations of Concepts(G) = {(v,ni,nj) | v € Verbs(G), n;,n; €
Nouns(G)}, is a finite set of triples (v,n;,n;) found in the sentences pre-
senting goals, sub-goals and requirements; where v is a verb, n;, n; are nouns.

The Nouns(G) and Relations of Concepts(G) are subsets of concepts and
relations of the Concept sub-model. It is because the designers of the Concept
sub-model often add some new concepts-attributes and their relations with other
concepts.

Figure 6 shows a Concept sub-model that respects the constraints imposed
by the Goal sub-model in Fig. 1.

4.3 Process, Goal and Concept Sub-models

A Process sub — model is a set of behaviors.
Process sub — model = { Behavioury, | k=1,..,K, K € N}.
A behavior is a tuple Behaviour = (S,T), where

— S is a finite set of states, s;,5; €S 1,5 € N.
— T is a finite set of transitions between states: t;, € T h € N, t), = (s;,5;) € T.
Transitions are relations of process states.

The constraints imposed by the Goal and Concept sub-models on the Process
sub-model in one enterprise model are the following.

— Each noun n € Nouns(G), being a concept ¢ € C of the Concept sub-model,
has a corresponding Behavior, except if the concept composes or specializes
another concept.

— Each goal g € G of a Goal sub-model has a corresponding state s € S in the
Process sub-model.

— The transitions (being Relations of Process States) are identified by analysis
of each milestone refinement of the Goal sub-model. Each pair of goals of an
milestone refinement r,,, in the Goal sub-model:

Ormn = {(gmnl) gmng)a "'(gmnk,lagmk)}): Imns

corresponds to a transition of states in the Process sub-model. The states are
named after the goals in the set G,,p,.
— Each alternative refinement r,, in the Goal sub-model:

Aan = \VIZ = 17 ...k . (gani ': gU/ﬂ)7

corresponds to an OR-split of states in the Process sub-model. The states are
named after the goals in the set G-

Semantic Relations of Sub-models in an Enterprise Model 119

— Each sub-domain refinement rg,, in the Goal sub-model:

Usn = (gsn1 U... Ugsnk) ': Gsn;

corresponds to an AND-split of states in the Process sub-model. The states
are named after the goals in the set G,.

Figure 7 presents a Process sub-model that respects constraints imposed by the
Goal and Concept sub-models (Figs. 1, 6).

In this work, we have defined the semantic relations or constraints that are
imposed by sub-models in an enterprise model. The semantic relations cover
three modeling semantics used for sub-models. The goal modeling semantics is
the leading semantics. The concept modeling and the process modeling semantics
are applied within constraints imposed by the goal sub-model. The Concept and
Process sub-models are complete if they present the elements (concepts, states)
and relations (relations-of-concepts, relations-of-process-states) identified in the
Goal sub-model.

If a sub-model is depicted as a set of partial sub-models (views), then the
semantic relations, defined in this paper, can be applied to the union of elements
and relations of views of the sub-model. For the partial sub-models, that do not
form a complete sub-model, the partial constraints can be derived from the
semantic relations of sub-models, however, this needs more investigation.

5 Conclusion and Future Work

Enterprise modeling approaches have difficulties in producing enterprise models
with aligned sub-models. Even the ArchiMate [24] approach, which has been
designed for consistent enterprise modeling, experiences these difficulties. The
ArchiMate provides a storage for an internal model of each enterprise model.
This internal model is to be used for generating sub-models. However, the filling
the internal model in with elements and relations is done by drawing sub-models
of different semantics. The drawing and naming of elements and relations is made
by a team of enterprise architects. Team members are humans and may duplicate
elements of models using different names, forget the details of the semantics of
sub-models and the semantic relations of sub-models. This results in unaligned
sub-models of an enterprise model.

We have reviewed several enterprise modeling approaches and found out that
the semantic relations of sub-models are recognized, but not used to direct the
design of aligned sub-models.

In order to analyze and formalize the semantic relations of sub-models in
an enterprise model, we have analyzed a case study depicted in ArchiMate. We
have identified the structures and formulated semantic constraints imposed by
sub-models to each other. All these structures can be identified in the Goal sub-
model of an enterprise model and can be used for design of a Concept and a
Process sub-models. The identified structures and constraints can be used in
any enterprise modeling approach.

120 E. Roubtsova and S. Severin

Currently, we apply the found structures for the design of aligned sub-models
directed by the semantic relations via the integration of sub-models. We are
experimenting in one of the ArchiMate tools, namely, Archi [2]. In the future
work, building on our former results [7,15], we plan to define constraints imposed
by sub-models for tool extensions to enable automated checks and directed design
of aligned sub-models.

References

1. Beauvoir, P., Sarrodie, J.: Archi-the free archimate modelling tool. User Guide,
The Open Group (2018)

2. Beauvoir, P., Sarrodie, J.B.: Archi-Open Source Archimate Modelling (2019)

3. Egyed, A.: Instant consistency checking for the UML. In: Proceedings of the 28th
International Conference on Software Engineering, pp. 381-390 (2006)

4. Hoare, C.A.R.: Communicating sequential processes. Commun. ACM 21(8), 666—
677 (1978)

5. Hui, L.M., Leung, C.W., Fan, C.K., Wong, T.N.: Modelling agent-based systems
with UML. In: Proceedings of the Fifth Asia-Pacific Industrial Engineering and
Management Systems Conference (2004)

6. Jackson, M.: System Development. Prentice-Hall, Englewood Cliffs (1983)

7. Joosten, S., Roubtsova, E., Haddouchi, E.M.: Constraint formalization for auto-
mated assessment of enterprise models. In: International Conference on Enterprise
Information Systems (ICEIS), vol. 2, pp. 430441 (2022)

8. Kaisler, S., Armour, F., Valivullah, M.: Enterprise architecting: critical problems.
In: Proceedings of the 38th Annual Hawaii International Conference on System
Sciences, p. 224b (2005)

9. Kontio, M.: Architectural Manifesto: Designing Software Architectures. Part 5.
Introducing the 44+ 1 View Model. IBM developerWorks (2005)

10. Kruchten, P.B.: The 4+ 1 view model of architecture. IEEE Softw. 12(6), 42-50
(1995)

11. Letier, E., Kramer, J., Magee, J., Uchitel, S.: Deriving event-based transition sys-
tems from goal-oriented requirements models. Autom. Softw. Eng. 15(2), 175-206
(2008)

12. Marosin, D., van Zee, M., Ghanavati, S.: Formalizing and modeling Enterprise
Architecture (EA) principles with Goal-Oriented Requirements Language (GRL).
In: Nurcan, S., Soffer, P., Bajec, M., Eder, J. (eds.) CAiSE 2016. LNCS, vol. 9694,
pp. 205-220. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-39696-
513

13. McNeile, A., Roubtsova, E.: CSP parallel composition of aspect models. In: Pro-
ceedings of the 2008 AOSD Workshop on Aspect-Oriented Modeling, pp. 13-18
(2008)

14. McNeile, A., Simons, N.: Protocol modelling: a modelling approach that supports
reusable behavioural abstractions. Softw. Syst. Model. 5(1), 91-107 (2006)

15. Michels, G., Joosten, S., van der Woude, J., Joosten, S.: Ampersand. In: de Swart,
H. (ed.) RAMICS 2011. LNCS, vol. 6663, pp. 280-293. Springer, Heidelberg (2011).
https://doi.org/10.1007/978-3-642-21070-9-21

16. OMG: Unified Modeling Language (UML, formal) 01 March 2015. https://www.
omg.org/spec/UML/2.5/

https://doi.org/10.1007/978-3-319-39696-5_13
https://doi.org/10.1007/978-3-319-39696-5_13
https://doi.org/10.1007/978-3-642-21070-9_21
https://www.omg.org/spec/UML/2.5/
https://www.omg.org/spec/UML/2.5/

17.

18.

19.

20.

21.

22.

23.

24.

Semantic Relations of Sub-models in an Enterprise Model 121

Pereira, C.M., Sousa, P.: Enterprise architecture: business and IT alignment. In:
Proceedings of the 2005 ACM Symposium on Applied Computing, pp. 1344-1345
(2005)

Quartel, D., Engelsman, W., Jonkers, H., Van Sinderen, M.: A goal-oriented
requirements modelling language for enterprise architecture. In: 2009 IEEE Inter-
national Enterprise Distributed Object Computing Conference, pp. 3—13. IEEE
(2009)

Respect-IT: A KAOS Tutorial, V1.0 (2007)

Roubtsova, E.: EXTREME: EXecuTable requirements engineering, management,
and evolution. In: Progressions and Innovations in Model-Driven Software Engi-
neering, pp. 65-89. IGI Global (2013)

Roubtsova, E.: Advances in behavior modeling. In: Advances in Computers, vol.
97, pp. 49-109. Elsevier (2015)

Roubtsova, E.: Interactive Modeling and Simulation in Business System Design.
Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-319-15102-1
Sandkuhl, K., Stirna, J., Persson, A., Wilotzki, M.: Enterprise Modeling. Springer,
Heidelberg (2014). https://doi.org/10.1007/978-3-662-43725-4

The Open Group: ArchiMate 3.1 Specification (2012-2021). https://pubs.
opengroup.org/architecture/archimate3-doc/

https://doi.org/10.1007/978-3-319-15102-1
https://doi.org/10.1007/978-3-662-43725-4
https://pubs.opengroup.org/architecture/archimate3-doc/
https://pubs.opengroup.org/architecture/archimate3-doc/

	Semantic Relations of Sub-models in an Enterprise Model
	1 Introduction
	2 Related Work. Attempts to Address Consistency of an Enterprise Model
	3 Semantic Analysis of Sub-models
	3.1 Relations of Concepts and Relations of Process States Identified in the Goal Sub-model
	3.2 A Concept Sub-model Using Relations of Concepts
	3.3 A Process Sub-model Using Relations of Process States

	4 Generalization of Semantic Relations Between Sub-models of an Enterprise Model
	4.1 Analysis of a Goal Sub-model
	4.2 Goal Sub-model and Concept Sub-model
	4.3 Process, Goal and Concept Sub-models

	5 Conclusion and Future Work
	References

