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Preface

This book collects the papers presented at the 17th Advances in Computer Games con-
ference (ACG 2021) which took place during November 23–25, 2021. The conference
was held online in 2021 for the first time in its 47 year history due to the COVID-19
pandemic and subsequent travel restrictions. This was a truly international effort as the
conference was primarily hosted fromMaastricht University, the Netherlands, through a
Zoom stream provided by the University of Alberta, Canada, with assistance from IBM
Research - Tokyo, Japan.

The Advances in Computer Games conference series is a major international forum
for researchers and developers interested in all aspects of artificial intelligence and
computer game playing. Earlier conferences took place in London (1975), Edinburgh
(1978), London (1981, 1984), Noordwijkerhout (1987), London (1990), Maastricht
(1993, 1996), Paderborn (1999), Graz (2003), Taipei (2005), Pamplona (2009), Tilburg
(2011), Leiden (2015, 2017) and Macao (2019). For the past 20 years, the conference
has been held every second year, alternating with the Computer and Games conference.

A total of 34 papers were submitted to this conference. One was later withdrawn and
the remaining 33 papers were each reviewed by three reviewers. A total of 22 papers
were accepted for presentation.

The online nature of this year’s conference offered some benefits in that conference
registration could be made free for the first time, resulting in a record participation
for this event with 399 registered participants. It also provided logistical challenges in
devising a schedule that worked for as many attendees as possible over a wide range of
time zones.

The themes for this year’s ACG conference were specifically widened to include
video game research in addition to the usual traditional/mathematical games research.
The goalwas to broaden the conference focus to encourage new researchers to participate
in International Computer Games Association (ICGA) events. The four papers presented
in Session 5: Player Modelling represent the results of this initiative.

The ACG 2021 program consisted of three keynote speeches and six regular paper
sessions. The keynote talks were fromworld-class researchers David Silver andMichael
Bowling, along with veteran computer chess program creators Larry Kaufman andMark
Lefler. All papers and presentation videos can be accessed at the ACG 2021 web site.1

Session 1: Learning in Games

The opening session, chaired by ToddNeller, collected three papers focussed onmachine
learning – especially deep learning – for specific games. These included C. Yi and
T. Kaneko on “Improving Counterfactual Regret Minimization Agents Training in the
Card GameCheat”, B. Doux, B. Negrevergne, and T. Cazenave on “Deep Reinforcement

1 https://icga.org/?page_id=3328.

https://icga.org/?page_id=3328
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Learning forMorpion Solitaire”, and L. G. Heredia and T. Cazenave on “Expert Iteration
for Risk”.

Session 2: Search in Games

This session, chaired by Michael Hartisch, presented new search methods and enhance-
ments of existing search methods for a range of games. The papers presented were N.
Fabiano and T. Cazenave on “Sequential Halving Using Scores”, T. Cazenave, J. Sentuc,
and M. Videau on “Cosine Annealing, Mixnet and Swish Activation for Computer Go”,
G. Moskowitz and V. Ponomarenko on “A Heuristic Approach to the Game of Sylver
Coinage”, and A. Pálsson and Y. Björnsson on “Evaluating Interpretability Methods for
DNNs in Game-Playing Agents”.

Keynote: Artificial Intelligence Goes All-In: Computers Playing
Poker

The first keynote speaker, Michael Bowling from the University of Alberta’s Computer
Poker Research Group and Google DeepMind, was introduced by Jonathan Schaeffer.
This talk described the development of the world’s first superhuman Poker bots.

Session 3: Solving Games

Kazuki Yoshizoe chaired this session on solving, or at least providing more complete
complexity analyses, of some simple games. This included S. Tanaka, F. Bonnet, S.
Tixeuil, and Y. Tamura on “Quixo is Solved”, J. Uiterwijk on “Solving Bicoloring-
Graph Games on Rectangular Boards – Part 1: Partisan Col and Snort” and “Part 2:
Impartial Col and Snort”, and R. Hayward, R.A. Hearn, and M. Jamshidian on “BoxOff
is NP-Complete”.

Keynote: 54 Years of Progress in Computer Chess

Larry Kaufman andMark Lefler, introduced by Jaap van den Herik, presented a personal
account of key developments in computer chess over the last half century, through their
own experiences in the field.

Session 4: Chess Patterns

This session on chess patterns, chaired by Tristan Cazenave, explored effective represen-
tations of chess for AI search. The papers includedM.Bizjak andM.Guid on “Automatic
Recognition of Similar Chess Motifs”, R. Haque, T.H. Wei, and M. Müller on “On the
Road to Perfection? Evaluating Leela Chess Zero Against Endgame Tablebases”, and
D. Gomboc and C. Shelton on “Chess Endgame Compression via Logic Minimization”.
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Session 5: Player Modelling

Matthew Stephenson chaired Session 5 on Player Modelling which collected the video
games papers accepted for the conference. These included K. Fujihira, C.-H. Hsueh, and
K. Ikeda on “ProceduralMazeGenerationwithDifficulty fromHuman Players’ Perspec-
tives”, H.-J. Chang, C. Yueh, G.-Y. Fan, T.-Y. Lin, and T.-S. Hsu on “Opponent Model
Selection Using Deep Learning”, G. Guglielmo, I.F. Peradajordi and M. Klincewicz on
“Deep Learning to Detect Facial Markers of Complex DecisionMaking”, and A. Gunes,
F. Kavum and S. Sariel on “Player Modeling Using Event-Trait Mapping Supported by
PCA”.

Keynote: AlphaZero Fundamentals

The third keynote speaker was David Silver, leader of Google DeepMind’s machine
learning group and lead researcher on the successful AlphaGo, AlphaZero, and AlphaS-
tar programs. David, introduced by Martin Müller, described the inner workings of
AlphaZero, and how existing search methods were adapted to produce the spectacular
results obtained.

Session 6: Game Systems

This session, chaired by Spyridon Samothrakis, featured four papers on game systems,
especially the Ludii general game system. The papers includedM. Stephenson, E. Piette,
D.J.N.J. Soemers, and C. Browne on “Automatic Generation of Board Game Manuals”,
“Optimised Playout Implementations for the Ludii GGS”, and “General Board Geom-
etry” (in various orders of authorship) in addition to M. Goadrich and C. Shaddox on
“Quantifying the Space of Hearts Variants”.
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Learning in Games



Improving Counterfactual Regret
Minimization Agents Training in Card
Game Cheat Using Ordered Abstraction

Cheng Yi(B) and Tomoyuki Kaneko

Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan
yi-cheng199@g.ecc.u-tokyo.ac.jp, kaneko@acm.org

Abstract. Counterfactual Regret Minimization (CFR) has been one of
the most famous iterative algorithms to learn decent strategies of imper-
fect information games. Vanilla CFR requires traversing the whole game
tree on every iteration, which is infeasible for many games, especially as a
number of them require infinite steps due to repeated game states. In this
paper, we introduce an abstraction technique called Ordered Abstraction
to enable us to train using a much smaller and simpler version of the game
by limiting the depth of the game tree. Our experiments were conducted
in an imperfect information card game called Cheat, and we introduce
the notion of “Health Points” a player has in each game to make the
game length finite and thus easier to handle. We compare four variants
of CFR agents, evaluate how the results from smaller games can improve
the training in larger ones, and show how Ordered Abstraction can help
us increase the learning efficiency of specific agents.

Keywords: Imperfect Information Games · Counterfactual Regret
Minimization · Abstraction Technique · Curriculum Learning

1 Introduction

In artificial intelligence research, we often see games as our challenging problems
and solving them represents research breakthroughs. There are two kinds of
games: perfect information and imperfect information. In imperfect information
games, such as Bridge, Mahjong, and most poker games, players do not know the
complete game state. The hidden information of the play is what makes imperfect
information games more challenging. The Nash equilibrium (NE), which is an
important concept in game theory, is a strategy profile where no player can
achieve a better result through converting their strategy unilaterally. Therefore,
the goal of most research is to reach or approximate the NE of games.

Counterfactual Regret Minimization (CFR) has become one of the most
famous and widely-used algorithms when dealing with imperfect information
games. In 2018, Noam Brown et al. developed an agent called Libratus [3] based
on CFR for Limited Texas Hold’em, a widely known and played poker game,

c© Springer Nature Switzerland AG 2022
C. Browne et al. (Eds.): ACG 2021, LNCS 13262, pp. 3–13, 2022.
https://doi.org/10.1007/978-3-031-11488-5_1
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4 C. Yi and T. Kaneko

and further improved it to create Pluribus [4] for a multiplayer no-limit version
of the game. Pluribus is the first AI agent to beat top human players in such a
complex multiplayer game. The main idea of CFR is to converge to an NE on
the basis of the counterfactual regret (how much we are regretful for choosing
this action) calculation of every state on the game tree for the players. One of
the limitations of this algorithm is that Vanilla CFR requires a traversal of the
whole game tree on each iteration, which becomes infeasible when dealing with
extremely large games. As a result, researchers have been looking for better ways
to deal with infeasibly large games to save computing costs.

In this paper, we introduce a new approach called Ordered Abstraction to
create and adjust the training environment of CFR agents to serve our pur-
pose. We limit the total length of the game for simplification and aim at using
the results from simpler games in larger games to speed up the iterations and
achieve a better result. In the next section we will introduce some background
knowledge, and Sect. 3 will cover a number of related previous works. Sections 4
and 5 describe our proposed methods, details of conduction, and the results. In
the last section, we summarize the paper and outline the future direction of our
research.

2 Background

2.1 Notations and Terminology

Extensive Games and Nash Equilibrium. We followed a standard notation
in game theory [5]. A finite extensive form game with imperfect information is
composed of the following elements:

– A finite-size set of players, P. For player i, −i represents all the players other
than i. There is also a Chance player c representing the actions that are not
controlled by any player.

– A history h ∈ H is a node on the game tree, composed of all the information
at that exact game state. A terminal history z ∈ Z ⊆ H is where there are
no more available actions and each player will receive a payoff value for what
they have done following the game tree respectively.

– We use A to denote the action space of the whole game and A(h) as the set of
all legal actions for players at history h. If history h′ is reached after a player
chooses action a ∈ A(h) at history h, we can write h · a = h′.

– An information set (infoset) is a set of histories that for a particular player,
they cannot distinguish which history they are in between one another. Ii rep-
resents the finite set of all infosets for player i. Inherently, ∀h, h′ ∈ I,A(h) =
A(h′) = A(I).

– For each player i ∈ P, there is a payoff function ui : Z → R, and especially
in two-player zero-sum games, u1 = −u2.

In a game, a strategy for player i is σi, which assigns a distribution over their
action space to each infoset of player i, particularly, σt

i(I, a) for player i maps
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the infoset I and action a ∈ A(I) to the probability that player i will specifically
choose action a in the infoset I on iteration t. Σi denotes the set of all strategies
of player i. A strategy profile σ = (σ1, . . . , σn) is a tuple of all the players’
strategies with one entry for each player where σ−i represents the strategies in
σ except σi. Let πσ(h) denote the reach probability of reaching the game history
h while all the players follow the strategy profile σ. The contributions of player
i and all other players to this probability are denoted by πσ

i (h) and πσ
−i(h),

respectively.
Informally, the Nash Equilibrium (NE) is the “best” strategy profile, in a

sense that a player who follows it can be seen as “no-loss.” Here, we will give
the formal definition of NE. Let (Σ, u) be a game with n players, where Σ =
Σ1×Σ2×· · ·×Σn is the set of strategy profiles and u(σ) = (u1(σ), . . . , un(σ)) is
its payoff function defined over σ ∈ Σ. Therefore, the NE can be now expressed as
a strategy profile σ∗, in which every player is playing the best response. Formally,
a strategy profile σ∗ ∈ Σ is an NE if ∀i, σi ∈ Σi : ui(σ∗

i , σ∗
−i) ≥ ui(σi, σ

∗
−i).

2.2 The Game Cheat

Cheat is a card game of lying and bluffing while also detecting opponents’ decep-
tion. One turn of the game consists of two phases Discard and Challenge. At the
beginning of the game, all the cards are well shuffled and dealt to the players as
equally as possible. The first discard player is chosen randomly and the “current
rank” that all the players share is set to be Ace.

In the Discard phase, the discard player discards one or more cards, puts it
(them) face down on the table, and makes a claim that includes the number of
cards discarded and current rank. Players are supposed to discard cards only of
the current rank but they can lie about their cards—either bluffing when they do
not hold any correct cards or choosing other cards even if they have the correct
ones. Then, in the Challenge phase, if any other player thinks the discard player
is lying, they can challenge them by saying “Cheat!” When there is a challenge,
the last discarded card(s) will be revealed to all players to see whether they are
consistent with the claim. If the accused player did lie, they must take the pile
of cards on the table back to their hands, otherwise, the challenger takes the
pile. If no one challenges, the card(s) remain(s) in the pile. After the Challenge
phase, we move to the Discard phase in the next turn. The current rank increases
by one (K is followed by Ace) and the player sitting to the right of the former
discard player then discards one or more cards. The first to discard all their
cards and survive the last challenge wins the game.

The rule states that cards are discarded and taken back during the game that
might lead to repetitions of game states and thus infinite game lengths, which is
one of the difficulties we have to overcome when we apply Counterfactual Regret
Minimization (CFR). Although our paper focuses on the application of CFR, the
incorporation of other techniques would be of interest in the future.
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2.3 Counterfactual Regret Minimization

CFR was first proposed in 2008 by Zinkevich et al. [7] where the idea that claims
minimizing overall regret can be used to approximate an NE in extensive games
with incomplete information was demonstrated and proved. The basic steps of
one iteration of Vanilla CFR are as follows. First, CFR keeps a record of the
regret values, Rt(I, a), for all actions a ∈ A(I) (all zeros at the beginning) in
each infoset I ∈ Ii where t denotes iteration. Second, the values are used to
generate strategies, s.t., σt+1(I, a) ∝ max(Rt(I, a), 0). Third, the regret values
are updated on the basis of the new strategies. After all iterations, the average
strategy σ̄(I, a) =

∑
t πσt

−iσt(I, a) obtained by normalizing the overall actions
belonging to the action space of this infoset, weighted by counterfactual reach
probability, is proved to converge to the best strategy as time tends to infinity.

Vanilla CFR requires traversals of the whole game tree in every iteration.
The average game tree size of the original Cheat is massive and possibly infinite,
so traversing the entire game tree even once is impossible and the computation
is beyond the calculation power of ordinary computers. Another variant called
Chance-sampled CFR (CS-CFR) is more common in practice, especially when
dealing with poker or card games. We see the results of dealing cards as Chance
player’s actions, and on each iteration, we only sample the action of the Chance
player. In our paper, we focus on CS-CFR and test it among three variants of it
in experiments (see details in Sect. 5.1).

3 Related Works

There are many related studies on Cheat. P. Sinclair1 applied Perfect Informa-
tion Monte Carlo Tree Search and evaluated the performance against several
stochastic rule-based agents.

In another study [6], Neller and Hnath presented an abstraction as well as
enhancements on graph search in a dice game called Dudo. They dramatically
reduce the time cost of CFR training and were the first one to approximate
Nash equilibrium in a full 2-player Dudo. The abstraction they have used and
our Ordered Abstraction share a similar structure with natural numbers.

Moreover, there have been many enhancements for CFR to tackle large
games. The Blueprint strategy is one of them. It was introduced in Libratus [3]
and then improved upon in Pluribus [4]. First, an abstraction of the whole game
is defined and the solution to this abstraction is called Blueprint strategy. This
strategy only has specific details for the early stage of the game and an approxi-
mation for later parts. The approximation will then be refined during the runtime
of the game and after the agent learns more about the opponents’ actions.

Most of the technique enables us to save time and space for the whole game
but remains unchanged at the early stage of the game. In 2015, Brown et al.

1 https://project-archive.inf.ed.ac.uk/ug4/20181231/ug4 proj.pdf.

https://project-archive.inf.ed.ac.uk/ug4/20181231/ug4_proj.pdf
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propounded an algorithm called simultaneous abstraction and equilibrium find-
ing (SAEF) [1], which does not rely on any domain knowledge but is only appli-
cable in specific conditions. In 2016, a refined version of SAEF called Strategy-
Based Warm Starting was introduced [2]. The new method expands the power
of SAEF and is capable of skipping the early expensive iterations of the game.
Although warm starting and our curriculum learning have a number of simi-
larities, our method is simpler because both the initial strategy and regret are
directly transferred while warm starting involves a sophisticated procedure to
recover a substitute regret from a given strategy.

4 Ordered Abstraction and Curriculum Learning

To handle a subset of infinite games with CFR, we present Ordered Abstraction.
The basic idea is to make a finite variant of an original game by introducing a
condition to terminate the game in finite steps. Then, we run CFR to obtain a
strategy in this finite variant (abstraction). We hope that the learned strategy
would also work well in the original game, but it crucially depends on the design
of the abstraction. To remedy such difficulties, we present an effective heuristic
of a curriculum learning with an abstraction with numbering as follows:

1. Design a finite variant, Gn, of a game, associated with integer n such that
a variant with a smaller n is easier and thus has a stronger restriction
(i.e., having a shorter game length and a smaller subset of infosets), and
it asymptotically recovers the original game as n → ∞. We assume that
for all n < n′, HGn ⊆ HGn′ and |IGn

i | ≤ |IGn′
i | for each player i ∈ P

and that any non-terminal history is also non-terminal in a larger game,
((HGn \ZGn)∩ZGn′ ) = ∅. Typically, there are a number of histories that are
terminal in Gn and non-terminal in Gn′ to make variant Gn strictly smaller.
We use superscript XGn to denote property X in variant Gn.

2. Run CFR T iterations in the easiest variant, G1, to obtain a decent strategy
profile σ̄t=T,G1(I, ·) and regrets Rt=T,G1(I, ·) for each infoset I,

3. Run CFR with variant Gn after completing CFR with variant Gn−1, initializ-
ing the strategy as well as regret for each infoset by using the results obtained
for variant Gn−1 to speed up learning, i.e., σt=1,Gn(I, a) ← σ̄t=T,Gn−1(I ′, a)
and Rt=1,Gn(I, a) ← Rt=T,Gn−1(I ′, a) where I = I ′ for I ∈ IGn

i , I ′ ∈ IGn−1
i .

To do so, each infoset for variant Gn has to be included in exactly one infoset
with Gn−1, i.e., for all n > 0, for all I ∈ IGn

i , there exists a unique I ′ ∈ IGn−1
i

such that I ⊆ I ′. This can be easily fulfilled by hypothetically including HGn

in IGn−1 as abstraction.

Because CFR with a sequence of variants, (G1, G2, . . .), is enhanced by the
initialization using the former results in Step 3, we call our method a curriculum
learning. A primary advantage of the ordered approach is in iterative improve-
ment. Usually, we cannot expect how well a strategy learned for Gi behaves in
the original game before any enhancement. Therefore, it is effective to start with
the smallest variant, G1, gradually improve the strategy along with a larger Gn,
and stop once a sufficient variant is obtained.
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4.1 Application to Cheat

We explain an example of our method when applying it to Cheat. By analyzing
the game rule, we can see that to win the game, we want to not only keep as
few cards as we can in our hand, but also win more challenges. On the basis of
this thought, we bring “Health Points” (HPs) into this game.

In the original game, there is no restriction on how many times a player can
lose challenges as long as no one wins the game. Now suppose each player has n
HPs, which means they only have n chances to lose a challenge. More specifically,
when a player’s HPs becomes 0, they lose the entire game (even if their opponent
has not discarded all their cards). Notice that the original winning condition still
works but 0-HP losing condition has the higher priority (i.e.: if a player discards
all the cards before any player’s HP becomes 0, they win). We call Cheat with n
HPs, Cheat-n. By limiting HPs, we created a technique of Ordered Abstraction.
We propose to compute a smaller and easier version of the game, solve the
game, and map the strategies into a larger game, i.e. sequentially solve Cheat-k,
from Cheat-1 (the smallest variant), Cheat-2, . . . , to obtain the strategy for the
original Cheat, Cheat-∞.

When evaluating the playing performance of a strategy trained with Cheat-n
in Cheat-n′ where n < n′, an agent may be faced with an unknown situation, i.e.,
an infoset with n′′ HPs where n < n′′ ≤ n′. In such cases, we use the strategy
learned in case n′′ = n, so we argue that our method is a type of abstraction.

5 Experiments

5.1 Experimental Setups

All experiments were conducted in a simplified version of Cheat, called Mini-
Cheat. In Mini-Cheat, we use cards of three ranks and two cards for each rank,
i.e. six cards in total. There are two players in the game and we deal two cards
to each player to eliminate the possibility of perfect information. Although only
a subset of cards is used in Mini-Cheat, it inherits an important property of
infinite game length with repetition from the original.

In the following, “Cheat-n” refers to Mini-Cheat with n HPs for each player,
unless stated otherwise. Moreover, we found that the average number of chal-
lenges in one game without any restriction is about 3.5, so we start with Cheat-3;
a simple but still strategically complex version of the game.

To evaluate how our agents perform in different environments under various
ways of training, we built two testing bots: Random and Heuristic. In both the
Discard and Challenge phases, the Random bot chooses its action from all legal
actions randomly with equal probability.

The Heuristic bot was built on the basis of human knowledge. It memorizes all
the cards that it observed, keeps records of their locations, and makes decisions
on the basis of its memory in a conservative way. In the Discard phase, it always
discards honestly with the current rank as long as possible, or discards a random
card among its private cards except for ones needed in its next turn. In the
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Challenge phase, it challenges with probability 0% or 100% if the opponent’s
claim is consistent or not with its memory. If it cannot determine the consistency,
it challenges with probability 50%. When it chooses not to challenge in this case,
it believes the opponent and update its memory in accordance with the claim.

At the beginning of a game, any player cannot infer the opponent cards
because a random subset of the cards are dealt but once the Heuristic bot iden-
tifies all the cards, then the bot plays perfectly. Please note that even though
this does not happen, the Heuristic bot is still quite strong and more accurate
in the Challenge phase.

Table 1. Time and Space Costs of four agents

Memoryless HP-Aware History-Aware Baseline

Time1 Space2 Time Space Time Space Time Space

Cheat-3 60 292 52 1331 171 10689 224 11433

Cheat-4 860 292 1057 2557 5514 113331 5054 120512

Cheat-5 17887 292 19034 4257 18371 1209336 20315 1523174
1 Time is in seconds.
2 Space is represented in the number of infosets.

We tested the original CS-CFR and three variants of it. The difference
between them is what they save in their infosets. All of them include the infor-
mation about the setting of the game environment, the numbers of cards in the
pile and in each player’s hand, the card(s) in their hand, and the current rank.
In addition, (1) Baseline (B) agent (original CS-CFR) includes both game his-
tory and current remaining HPs (i.e. all information it can obtain during the
game); (2) History-Aware (HA) agent includes the game history in its infosets
but not the remaining HPs; (3) HP-Aware (HPA) agent is aware of the HP infor-
mation but not the game history; (4) Memoryless (M) agent does not include
either the game history or HP information in its infosets. Similar to the nam-
ing of the game environments, we call Memoryless agents trained in Cheat-n,
Memoryless-n (M-n). The same is applied for all the other agents.

5.2 Results

We compare all the agents in three aspects: time consumption and storage space
costs, winning rates against testing bots in different game environments, and the
effect of an agent’s results on other’s training processes (curriculum learning).
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Table 1 shows the cost of four agents after the first 100 training iterations of
CS-CFR. We can see that the time costs all increase exponentially as the game
becomes more complex. The numbers of infosets of M agents stay constant. The
growth of numbers of infosets of the HPA agent is exponential in powers of
about two while that of the HA and B agents is almost 10. It is interesting that
although HPA agent costs more in space, it needs less time than M agent. The
same thing happens between B and HA agent.

To evaluate the learning efficiency and performance strength, we use the win-
ning rate of the Heuristic bot against the Random bot as our baseline, which is
approximately 82% (slightly varies in different game environments). The baseline
will be represented in the red line in the following graphs.

Fig. 1. Winning rates of four variants against two testing bots: x-axis is the number of
training iterations. The red line represents our baseline (Heuristic bot). (Color figure
online)

We first test our agents against two testing bots every five training iterations;
500 iterations in total. Figures 1(a) and 1(b) reveal the winning rate trends of
four agents in Cheat-3 against the Random and Heuristic bots, respectively. The
x- and y-axes are the number of training iterations and winning rate, respectively.
We notice that after 500 iterations, most agents become strong enough to exceed
the baseline, and in particular, Memoryless-3 reached more than 90%. Agents
even beat the Heuristic bot with winning rates over 70% while Memoryless-3
reached 80%. The reason that the Memoryless agent performs better is that the
number of its infosets is the smallest, so we update its infosets more times than
others during the same number of iterations, which results in a better strategy.
We also notice that most agents have a much steeper learning efficiency at the
beginning of the training and become steadier in later iterations.
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Fig. 2. Generalization ability of four agents in different variants of Cheat: Winning
rates of agents against Random and Heuristic bots in different game environments

Figure 2 demonstrates how agents perform in different game environments,
from Cheat-2 to Cheat-100 (represented as C-2 to C-100). When the agents
are in a different game (in particular, a larger game), there are game states
(infosets) they never encounter in the training, and in such a case, they follow
the strategy in the nearest (closest HPs information or history) infoset. We can
see that the Memoryless and HA agents can perform better in the games that
have larger numbers of HPs, while the HP-Aware is less strong and General
agent only excels in the game environment that it was trained in. Notice that
in Mini-Cheat-100, none of the players loses all their HPs, and the game always
ends because someone discards all their cards. As a result, Mini-Cheat-100 is
empirically the same as Mini-Cheat-∞.

We then test how the strategy profiles agents gained in smaller games affect
the training in larger games. Instead of starting from scratch where the initial
strategy and regret of each infoset are zero, we use the infosets of the agent
trained in Cheat-n to initialize the training in Cheat-n′ where n′ > n. In Fig. 3,
lighter lines represent agents trained from nothing while darker lines represent
agents trained in Cheat-4 on the basis of the infosets data from Cheat-3. For
example, the darker blue line in Fig. 3(a) is the winning rate of Memoryless-4
using Memoryless-3’s final strategy profile at the beginning of the training.

From Fig. 3 we can see that abstractions provided by Ordered Abstraction
training with a smaller game serves as a good approximation of that with a
larger one for M, HA, and B agents since the darker lines start at higher places
and are always higher than the lighter ones. However, it is less useful for HPA
agents because the trends of lines of one type are almost the same.
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Fig. 3. Effect on curriculum learning: Blue lines represent winning rates against the
Random bot; Green lines represent winning rates against the Heuristic bot. Lighter
lines show training from scratch while darker lines show training based on former data.
(Color figure online)

6 Conclusion

In this paper, we introduce Ordered Abstraction, an abstraction of limiting game
lengths effectively in imperfect information games with a large or possibly infinite
game length to make the training feasible. The idea is to make a variant where
the game is forced to terminate in a finite number of steps. Also, by relaxing the
condition of forced termination, we designed a curriculum learning with a series
of variants from the most abstracted variant toward the original game.

Specifically in Cheat, we included a new term called “Health Points” that
limits the number of challenges a player can lose in one game. With this method,
we first designed smaller variants of Cheat so that training of Chance-sampled
CFR agents becomes feasible. We then showed how we trained CFR agents
and evaluated their performance against two testing bots. Moreover, we also
demonstrated that we can utilize strategy profiles obtained in smaller games in
the training of larger ones and the experiments show that there is an increase in
the learning efficiency of specific agents.
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For future work, we are also interested in including other abstraction tech-
niques that can be independently used with ours to further improve learning
efficiency to tackle the original Cheat between two or more players. A theoret-
ical foundation and the ability to generalize to other games would also be an
interesting line of further research.
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Abstract. The efficiency of Monte-Carlo based algorithms heavily relies on a
random search heuristic, which is often hand-crafted using domain knowledge.
To improve the generality of these approaches, new algorithms such as Nested
Rollout Policy Adaptation (NRPA), have replaced the hand crafted heuristic with
one that is trained online, using data collected during the search. Despite the lim-
ited expressiveness of the policy model, NRPA is able to outperform traditional
Monte-Carlo algorithms (i.e. without learning) on various games including Mor-
pion Solitaire. In this paper, we combine Monte-Carlo search with a more expres-
sive, non-linear policy model, based on a neural network trained beforehand. We
then demonstrate how to use this network in order to obtain state-of-the-art results
with this new technique on the game of Morpion Solitaire. We also use Neural-
NRPA as an expert to train a model with Expert Iteration.

1 Introduction

Monte-Carlo search algorithms can discover good solutions for complex combinatorial
optimization problems by running a large number of simulations. Internally, the simula-
tions are used to evaluate each alternative branching decision, and the search algorithm
successively commits to the best branching decision until a terminal state is reached.
Thus, one can see simulations as a tool to turn uninformed (random) search policies
into well informed ones, at the cost of computational power. Building on this observa-
tion, Nested Monte Carlo Search (NMCS) further improves the technique by running
recursive (a.k.a. nested) simulations. At the lowest recursive level, the simulations are
driven by a simple random search policy. At higher recursive levels, the simulations are
driven by a search policy that is based on the simulations of the recursive level below.
Nesting simulations greatly improve the quality of the solutions discovered, however it
is generally impossible to run NMCS with more than 5 or 6 levels of recursion, due to
the prohibitive cost of recursive simulations.

To further improve the quality of the results, it is often desirable to replace the purely
random search policy with a hand crafted search heuristic, but building such heuristic
is time consuming and requires expert knowledge which is difficult to encode in the
search heuristic. To overcome this limitation and facilitate the adaptation of Monte-
Carlo search to new problems, Nested Rollout Policy Adaptation [10] replaces the recur-
sive policies, with a simple policy model that is learned, using data collected during the
search. Thanks to this simple principle, NRPA is now the state of the art on different
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problems such as vehicle routing problems, network traffic engineering or RNA design
as well as the game of Morpion Solitaire which became a testbed for several Monte-
Carlo based algorithms such as NRPA and NMCS.

However, despite the success of learned policies, and a number of recent studies
on the topic, the last major record break on Morpion Solitaire dates back from 2011.
(Rosin obtained 82 on the 5D variant with a week long execution of NRPA).

Recently [2] has managed to rediscover the best score with optimized play-
outs, but despite many tries was unable to break the record. The recent success of
AlphaGo/AlphaZero [12–14] suggests that combining Monte-Carlo search together
with a neural network based heuristic can lead to important improvements. AlphaZero
like Deep Reinforcement Learning has been tried for Morpion Solitaire with PUCT
[15].

In this paper, we look into learning an expressive policy model for the Morpion
Solitaire that is based on a deep neural network, and we use it to drive simulations at low
computational cost. We then conduct thorough experiments to understand the behaviour
of new and existing approaches, and to assess the quality of our policy models. Then
we reintroduce this neural network based policy inside NMCS. We are able to obtain
a policy which is almost as good as state-of-the-art NRPA algorithm with 3 nested
levels, for a 2–3 times reduction of computational time. Finally, we experiment using
self-play with a second approach based on Expert Iteration (Exit) with various experts.
Our approach is able to learn a policy from scratch and outperforms previous work on
selfplay in Morpion Solitaire by 6 points.

The rest of this paper is organized as follows: the second section describes related
work on Monte Carlo Search. The third section explains search with a learned model.
The fourth section shows how to combine neural networks andMonte Carlo Search. The
fifth section shows how to apply Deep Reinforcement Learning using Neural NMCS
and Neural NRPA. The sixth section outlines future work.

2 Preliminaries on Monte-Carlo Search for Game Playing

Policies: A policy is a probability distribution p over a set of moves M that is condi-
tioned on the current game state s ∈ S. For example, we often consider the uniform
policy p0, which assigns equal probability to all the moves that are legal in state s. I.e.
p0(m|s) = 1

|Ms| .
In this paper, we also consider policies probability distributions pW which are

parameterized with a set of weights W . There is one real valued weight for each pos-
sible move, i.e. W = wm1 , . . . , wm|M| , and the probability pW (m|s) is defined as
follows:

pW (m|s) = ewm

∑
p∈Ms

ewp

The softmax function enables to calculate the gradient for all the possible weights
associated to the possible moves of a state and to learn a policy in NRPA using gradient
descent.
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Finally, we also consider more complex policies πθ in which the probability of
each move depends on a function of the state, represented using a neural network. Let
fθ : S → R

|M | be a neural network parameterized with θ, we can then define policy
πθ as follows:

πθ(m|s) = e(fθ(s))m

∑
p∈Ms

e(fθ(s))p

2.1 NMCS and NRPA

As most Monte-Carlo based algorithms, Nested Monte Carlo Search (NMCS) and
Nested Rollout Policy Adaptation (NRPA) both generate a large number of random
sequences of moves. The best sequence according to the scoring function is then
returned as a solution to the problem. The quality of the final best sequence directly
depends on the quality of the intermediate random sequences generated during the
search, and thus on the random policy. Therefore NMCS and NRPA have introduced
new techniques to improve the quality of the policy throughout the execution of the
algorithm.

NMCS and NRPA are both recursive algorithms, and at the lowest recursive level,
the generation of random sequences is done using playouts parameterized with a simple
stochastic policy. If the user has access to background knowledge, it can be captured
by using a non-uniform policy (typically by manually adjusting the weights W of a
parameterized policy pW ). Otherwise, the uniform policy p0 is used.

In NMCS, the policy remains the same throughout the execution of the algorithm.
However, the policy is combined with a tree search to improve the quality over a simple
random sequence generator. At every step, each possible move is evaluated by com-
pleting the partial solution into a complete one using moves sampled from the policy.
Whichever intermediate move has led to the best completed sequence, is selected and
added to the current sequence. The same procedure is repeated to choose the following
move, until the sequence has reached a terminal state.

A major difference between NMCS and NRPA, is the fact that NRPA uses a stochas-
tic policy that is learned during the search. At the beginning of the algorithm, the pol-
icy is initialized uniformly and later improved using gradient descent based the best
sequence discovered so far. The policy weights are updated using gradient descent steps
to increase the likelihood of the current best sequence under the current policy.

Finally, both algorithms are nested, meaning that at the lowest recursive level, weak
random policies are used to sample a large number of low quality sequences, and pro-
duce a search policy of intermediate quality. At the recursive level above, this policy
is used to produce sequences of high quality. This procedure is applied recursively. In
both algorithms the recursive level (denoted level) is a crucial parameter. Increasing
level increases the quality of the final solution at the cost of more CPU time. In prac-
tice it is generally set to 4 or 5 recursive level depending on the time budget and the
computational resources available.
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2.2 Playing Morpion Solitaire with Monte Carlo Search

The game of Morpion Solitaire. Morpion Solitaire is a single player board game. The
initial board state is shown in Fig. 1 and a move consists of drawing a circle on an empty
intersection, and drawing a line out of five neighboring circles including the new one. A
game is over when the player runs out of moves, and the goal of the game is to play as
many moves as possible. The final score is simply the number of moves that have been
played. There are two versions of the game called 5T (T for touching) and 5D (D for
disjoint). In 5T two lines having the same direction can share a common circle, whereas
in 5D they cannot.

The best human score for 5T is 170 moves and it has been discovered by Charles-
Henri Bruneau who held this record for 34 years until he was beaten by an algorithm
based on Monte-Carlo search. The current best score is 82 for 5D and 178 for 5T. Both
records were established in August 2011 by Chris Rosin with an algorithm combining
nested Monte-Carlo search and a playout policy learning (NRPA, [3,10]).

Fig. 1.Move 1, 2, 3 and 4 are legal for 5D and 5T. Move 5 is legal for 5T only

Modeling Morpion Solitaire as a Monte-Carlo Search Problem. Any game state is fully
determined by the set of (oriented) segments connecting the circles. Thus, the initial
game state s0 is the empty set, and performing a move consists of adding a segment to
the set of segments representing the current state. Each segment (or move) is determined
by a 2D coordinates representing the starting point of the segment, and one direction
among the 4 possible directions: left to right, top to bottom, top-left to bottom-right,
and top-right to bottom-left. The game is over when the player reaches a terminal state
i.e. a state s such that Ms = ∅.

Although the order in which the moves are added does not influence the final
game state, (i.e. for any sequence of moves X and any permutation X ′ of X , we have
state(X) = state(X ′)), it is generally difficult to compute the subset of moves that
can be added without breaking the rules. Therefore the moves are drawn sequentially
such that every intermediate state is also a legal state.



18 B. Doux et al.

3 Imitating NRPA

In this section, we first focus on training a policy model that can be used to select good
moves, without having to simulate a large number of games. We recall that a policy
model is a conditional probability distribution πθ(m|s) where s is a game state from
the set of all possible game states S, and m is a move from the set of all possible move
M.

To obtain a good policy, we first train our policy model to learn to reproduce the
sequences found by NRPA. The policy model is represented by a neural network, and
is trained to predict the next NRPA move, given a description of the current game state.
Each supervised example is a particular game state, labeled with the move that was
chosen by NRPA during a previous run. (Note that since NRPA is a stochastic algorithm,
identical game states may appear several times in the dataset, labeled with different
moves.)

To successfully reproduce sequences found by NRPA, we need 1: a game state rep-
resentation that contains the adequate features to accurately predict the next move by
NRPA, and 2: a policy model that is expressive enough to capture the complex relation
that exists between the game state and the best move selected by NRPA. In this section,
we design and evaluate several training settings using different game state representa-
tions and different models. We then discuss the performance of these settings by using
two criteria: the ability to mimic the behaviour of NRPA, and the quality of a play (i.e.
the game score).

3.1 Game State Representation

Although the game state is fully determined by the set of segments (as discussed in
Sect. 2), this representation does not favor learning, and generalization over different
but similar states. In this section, we discuss a better state representation, that explicitly
captures important features and makes it possible to predict the behavior of NRPA,
without having to run the costly simulations.

In all our models, the board is represented by five 30 × 30 binary valued matrices,
which are large enough to capture any record holding boards. The first matrix is used to
represent the occupied places (i.e. the circles in Fig. 1) which are not directly available
nor easy to compute from a board state represented as a set of segments. If the place
i, j is occupied on a board, the corresponding value in the matrix is set to 1, and 0
otherwise.

Because this matrix alone does not fully determine the game state, the four extra
binary valued matrices are used to represent the connecting segments, one matrix for
each possible direction respectively: left to right, top to bottom, top-left to bottom-
right, and top-right to bottom-left. A one in the first matrix (left to right) at position
i, j signifies that there is a segment between the place i, j and the place i + 5, j on the
board. A one in the second matrix (top to bottom) at position i, j signifies that there is a
line between position i, j and position i, j+5 on the board and so on for each matrices.
Every time a new place is occupied (i.e. the player makes a move) we set one boolean
value in the first matrix, and one boolean value from one of the 4 remaining matrices.
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In addition to the board representation, we extend the state representation with 4
extra matrices which are meant to represent all the possible moves for the next move
(one matrix for each possible direction). We call this first representation R1.

To further improve temporal consistency of the policy model, we extend the first
state representation with 8 extra matrices, to represent the 8 previous moves. We call
this second representation R2.

3.2 Neural Network Architecture

We consider two neural network architectures. The first one is a fully convolutional
neural network with 4 convolutional layers. The first 3 layers have 32 filters with 3× 3
kernels, and the last convolutional layer has 4 filters with 1× 1 kernels to match the
output. The output is a vector of dimension n2d where n is the dimension of the board
and d the number of directions to represent all possible moves (in all our experiments
use n = 30 and d = 4).

The second architecture is a residual neural network [8] with 4 convolutional lay-
ers with the same type and number of filters as the first architecture, and the same
input/output definition.

We found the use of a fully convolutional model more effective than the policy
heads used in AlphaGo and Alpha Zero which contain fully connected layers. A fully
convolutional head is similar to the policy heads of Polygames [7] and Golois [6].

3.3 Training Data and Training Procedure

We train the policy models using data generated with NRPA. Each example in the train-
ing set is a game state representation labelled with one move played by NRPA in this
game state. To improve the quality of the training data, we can select only the moves
from the NRPA games that scored well, however it is important to remark that there is a
trade-off between the quality of the moves, and the diversity of the training data (a.k.a.
the exploration vs. exploitation trade-off). To observe this phenomenon, we selected 10
000 games (800.000 game states) generated with NRPA that scored 80 or above (Fig. 2
first plot), and 10 000 games (around 800.000 game states) generated with NRPA that
scored between 70 and 82 (Fig. 2 second plot). As we can see in the first plot, game
states dramatically lack of diversity.

Based on this observation and other empirical analysis, we used NRPA to generate a
large number of games, and selected 9141 games scoring between 70 and 82 for a total
of 694 716 training examples (couples: game state, move). We use this data to train the
neural networks models described above, using the two representations R1 and R2. We
used a decaying learning rate starting at 0.01 and divided it by 10 every 40 epochs.
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Fig. 2. NRPA data diversity

3.4 Model Performance (Without Search)

We now compare the different policy models using two metrics. First we consider the
test accuracy, that is how well the policy models are able to predict NRPA moves.
Then we estimate the average and the maximum score obtained with a playing strategy
which sample moves from the different policy models. The mean and the average are
computed over 100 000 games.

Train/Test accuracy. We first compare the two neural network architectures and the two
game state representations that we have described in the previous section. The values
of the loss functions during the training procedure for each architecture are shown in
Fig. 3, and a comparison of the accuracy achieved by each architecture and each state
representation is shown in Fig. 4. (We only show the comparison of the state represen-
tation using the Resnet architecture since it performs best.)

We first consider, the initial model with the game state representation R1 and the
BasicCNN neural network architecture shown in Fig. 3 (left). We observe that the train-
ing loss quickly reaches its lowest value, and that an important difference between the
training and the testing loss remains. Unsurprisingly, this results in a poor model accu-
racy of 45.5% on the test set (as seen in Fig. 1). Furthermore, this peculiar behaviour is
not impacted by the use of a larger, more expressive neural network architecture such
as the Resnet or by any more sophisticated training procedure.

To explain this behaviour, we recall that 1) NRPA is not deterministic, 2) the policy
in NRPA is trained in a stochastic way and may vary significantly from one game to
another. Non determinism leads to presence of a large number of identical examples
labelled differently in the train and test set, which induces an incompressible Bayes risk,
that cannot be removed, by increasing the expressivity of the model, or by improving
the training procedure.

However, the behaviour is remarkably different on the second representation R2
which includes the previous moves in addition to current game state. This may be sur-
prising, since with an unbiased algorithm, the best move only depends on the current
state, and should not depend on the previous actions performed by the player. However,
NRPA is biased by the learned policy, which differs from one game to another. The
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previous moves thus informs the neural network on the current policy, and the partic-
ular strategy that is being played, and ultimately reduces Bayes’s risk. As a result, the
neural network is able to better fit the training set (and benefits from additional epochs),
the final loss is lower, the generalization gap is reduced, and the final accuracy reaches
70%.

This suggests that unlike the first two models based on R1, last model based on R2
is able to capture not just one strategy but several good strategies that were discovered
by NRPA during the 9141 selected games.

Fig. 3. Loss evolution during training Fig. 4. Accuracy evolution during training

Table 1. Accuracy for each tested configuration

Epoch BasicCNN R1 Resnet R1 Resnet R2

1 25% 27% 47%

40 45.5% 45.3% 67%

80 45.5% 45.5% 68.9%

Score. To evaluate the quality of the policy models as players, we sample sequence of
moves from each policy model and observe the score of the final state. The distribution
of the scores across 100 000 sequences generated from each policy model is shown in
Fig. 5.

In both plots, we have a high probability of reaching a score between 57 and 62.
However, the second model based on state representation R2 demonstrates better results
in the early games, and there are fewer games that score less than 50 points. We believe
that the second game state representation, which includes the previous moves, is able
to achieve better temporal consistency and avoid simple mistakes which may be the
consequence of mixing several NRPA strategies from the training set. The model based
on R2 also exhibits the highest average score, and maximum score than the model based
or R1.
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Fig. 5. Score distribution of Resnet R1 and Resnet R2

To accurately evaluate the quality of the models and to compare it with the orig-
inal NRPA algorithm, we provide more precise score statistics which are available in
Table 2.

In this table, Uniform is the performance of the uniform policy model p0, the next
3 are the performance of NRPA with increasing level recursions, and the last 3 are our
models, described in the previous sections. The statistics for the Uniform policy and
our models, are averaged over 100 000 games. However, generating NRPA games is
computationally intensive so the statistics for NRPA(1), NRPA(2) and NRPA(3) are
computed over 100 000, 10 000 and 400 games respectively where number between
brackets refers to the number of recursive levels

We can see that the two neural network models based on R1 (without the previous
moves) offer a little improvement over the baseline, but are outperformed by NRPA(1).
However the neural network based on R2 performs significantly better than the baseline,
(mean and max), and achieves better maximum scores than NRPA(1) and NRPA(2),
without having to run a large number of rollouts.

Table 2. Results of our approaches compared to state of the art algorithm.

mean max σ/
√

n

Uniform 39.1 61 0.059

NRPA(1) 58.5 66 0.014

NRPA(2) 65.9 72 0.024

NRPA(3) 68.2 78 0.119

BasicCNN R1 41.7 60 0.024

Resnet R1 44.0 58 0.018

Resnet R2 50.5 74 0.032

3.5 Combining MC Search Algorithms with a Neural Based Search Procedure

We now have a neural network that can act as an informed search heuristic comparable
to a NRPA of level 2–3. To further improve the quality of the solutions, we incorporate
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the newly trained policy model inside existing search algorithms, in place of the random
heuristic.

Table 3 summarizes results achieved by the different policy models. Nested(1)
where number between brackets refers to the number of recursive levels, outperforms
Resnet by 18,3 points in average and by 5 points for the maximum score. In this setup,
our approach outperforms NRPA(2) in mean and maximum and perform very close to
NRPA(3).

Table 3. Comparison between different search algorithms

mean max avg. game time

NRPA(3) 68.2 78 16:40

Nested(1) + Resnet R2 68.8 79 6:26

Resnet R2 50.5 74 0:01

4 Self Play with Exit

In the previous section, we were able to obtain a playing strategy by training a neural
network with game data generated by NRPA. Although the resulting strategy is good
and computationally efficient, this technique remains entirely supervised by NRPA, and
thus it is unlikely performing better than NRPA itself.

In this Section, we explore self-play and learn a new policy from scratch using
an approach based on Exit [1]. In contrast with the previous approach in which the
neural network is only used to store and generalize past experiences acquired through
supervision, in Exit the expert is also based on a neural network and can be improved as
we discover new good moves. This allows the expert to learn from scratch, and improve
beyond the current best known strategy. (See [1] for details.)

Exit has been used in the notorious Alpha Zero [13] and Wang et al. [15] applied it
for Morpion Solitaire. However, our approach is different since it does not use PUCT
as the search algorithm. Instead we use an expert based on NRPA which is state-of-the
art in Morpion Solitaire. Although using NRPA poses a number of challenges, we are
able to outperform state-of-the-art in the self play setting by a significant margin.

Speeding up NeuralNRPA. The main challenge that is to overcome if we want to use
NeuralNRPA as an expert is the computational cost. Despite the improvement discussed
in the previous Section training a policy from scratch using NeuralNRPA remains pro-
hibitive.

In the previous approach, we make a forward pass at each step, which induces a
significant computational cost. In the Morpion Solitaire, moves are often commutative,
meaning that playing move a, then b leads to the same state than playing move b, then
a. We can exploit this property and make a single forward pass for an entire game
(including the many rollouts). This results in a small reduction of the average score, but
a dramatic reduction of computational cost.
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Training Setting. In our experiments, at each iteration we generated 10.000 boards with
the learner. We train our model with a learning rate of 5.10−4 and 20 epochs.

We tested Exit using 3 different configurations: NeuralNMCS(0) is Exit with
NMCS lvl 0 as expert which means the expert use the best sequence out of x rollouts
played by the neural network. NeuralNMCS(1) is Exit with NMCS level 1 as expert,
NeuralNMCS(1)c the expert is a early stopped version of NMCS where instead of call-
ing NMCS after each move played, we stop the algorithm after the end of the first call
from the highest nested level end and use the best sequence found as the label instead
of choosing only one move after one call and repeat until the end of the sequence. Neu-
ralNRPA(1) and NeuralNRPA(2) are GNRPA [5] of level 1 and 2 with the bias given
by the policy output by the neural network. GNRPA had a bias to NRPA action’s weight
leading to a bootstraped NRPA into a specific direction.

Table 4 gives mean and max scores of neural networks trained by the different
approaches. All of the approaches have been running for 180 h. NeuralNRPA(2)
A, NeuralNMCS(1)c A, NeuralNMCS(1) A and NeuralNMCS(0) A are the best
approaches among all tested parameters.

The Fig. 6 displays the evolution of the maximum score evolution on 100 rollouts
with the four best approaches of each type. NeuralNMCS(0) A is the fastest reaching
70 but it gets stuck quickly. NeuralNMCS(1) A shows poor exploration due to a low
number of rollouts but it is also very slow regarding the number of its rollout parameter.
NeuralNMCS(1)c A and NeuralNRPA(2) A are slower then NeuralNMCS(0) A but
ended up outperforming it. NeuralNMCS(1)c A is a bit faster than NeuralNRPA(2) A
at the beginning but NeuralNRPA(2) A gets the highest score at the end.

Table 4. Comparison of approaches

Approach Temperature Rollouts NN mean score NN best score Best score in (Hours)

NeuralNMCS(0) 0.2 1 50.66 64 6

NeuralNMCS(0) 0.2 100 63.76 68 72

NeuralNMCS(0) A 0.4 100 54.33 70 51

NeuralNMCS(1) A 0.2 1 56.1 66 50

NeuralNMCS(1)c 0.2 1 61.42 68 63

NeuralNMCS(1)c A 0.2 10 64.38 72 134

NeuralNMCS(1)c 0.4 10 53.23 67 111

NeuralNRPA(1) 0.2 100 47.4 63 3

NeuralNRPA(2) 0.2 10 54.9 71 93

NeuralNRPA(2) A 0.2 20 57.28 73 180

NeuralNRPA(2) 0.2 40 53.78 70 151
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Fig. 6. Best approaches max score evolution

5 Conclusion

We have shown that it is possible to learn an exploratory policy for Morpion Solitaire
from a set of states with score ranging from high average scores (70) to highest known
scores (82) using a neural network. We also integrated this neural network in a Nested
Monte Carlo search and showed it improves when sampling from its moves distribution
reaching scores 3 moves away from the highest known score. We have also trained a
network with an original version of Expert Iteration using Neural NRPA and Neural
NMCS and found that Neural NRPA is the best expert performing 6 points higher than
the reinforcement learning approach in [15].

In computer Go and more generally in board games the neural networks usually
have more than one head. They have at least a policy head and a value head. The pol-
icy head is evaluated with the accuracy of predicting the moves of the games and the
value head is evaluated with the Mean Squared Error (MSE) on the predictions of the
outcomes of the games. The current state of the art for such networks is to use residual
networks [4,13,14]. The architectures used for neural networks in supervised learning
and Deep Reinforcement Learning in games can greatly change the performances of
the associated game playing programs. For example residual networks gave AlphaGo
Zero a 600 ELO gain in playing strength compared to standard convolutional neural
networks. Mobile Networks [9,11] are commonly used in computer vision to classify
images. They obtain high accuracy for standard computer vision datasets while keep-
ing the number of parameters lower than other neural networks architectures. For board
games and in particular for Computer Go it was shown recently that Mobile Networks
have a better accuracy than residual networks [6].

We plan to try different architectures for Morpion Solitaire neural networks and
compare their performances.
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Abstract. Risk is a complex strategy game that may be easier to understand for
humans than chess but harder to deal with for computers. The main reasons are
the stochastic nature of battles and the different decisions that must be coordi-
nated within turns. Our goal is to create an artificial intelligence able to play the
game without human knowledge using the Expert Iteration [1] framework. We
use graph neural networks [13,15,22,30] to learn the policies for the different
decisions and the value estimation. Experiments on a synthetic board show that
with this framework the model can rapidly learn a good country drafting policy,
while the main game phases remain a challenge.

1 Introduction

The game of Risk might be somehow simpler for humans compared to chess or Go. It
has a much more complex game flow, but it requires less experience to be able to play
at a decent level. For Risk, once the game rules and objectives are understood, human
players can find out common sense strategies that work fairly well. Nevertheless. this
classic game presents a lot of challenges when it comes to computer play.

To begin with, in Risk each turn consists on different phases that involve multiple
decisions that should be coordinated. Moreover, the attack phase is stochastic because
the result of the attack depends on a dice roll, introducing chance nodes to the game tree
[18]. In terms of the number of players, it can be played with two to six players, so by
nature it falls out of the usual two-player zero sum game category, opening the door to
questions about coalitions and the impact of other players on the outcome of the game
[19,27]. It has imperfect information because of the game cards that players can use to
trade armies. Under traditional rules, trading cards will augment the number of armies
for the next trade, making it less obvious to decide when to trade.

The present work aimed to create a Risk player able to learn tabula rasa, mean-
ing without human knowledge and just using self-play. When we state without human
knowledge we mean letting the player discover strategies by mere self-play and only
from information that can be deduced directly from the board and game history. This
can be summarized in the following points:

– Features used as input may be sophisticated but must be deducible from the infor-
mation available to the player. This features should be as simple as possible, ideally
just a property obtained directly from the board with some reasonable pre-processing
(normalization, scaling, etc.)

c© Springer Nature Switzerland AG 2022
C. Browne et al. (Eds.): ACG 2021, LNCS 13262, pp. 27–37, 2022.
https://doi.org/10.1007/978-3-031-11488-5_3
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– We want to avoid hard coding strategies for particular board configurations. This
also goes for the different game phases, meaning we would like to keep them fun-
damentally unchanged if possible. We believe a general thumb rule should be that
the model used should be able to play another turn based, multiplayer game that
contains chance nodes and multi-decision turns without incurring into fundamental
changes.

The player and training methods follow the Expert iteration framework [1], closely
related to AlphaZero [24]. For the policy and value neural networks we used graph
neural networks [13,15,22,30], given the fact that the Risk board can be naturally rep-
resented as a directed unweighted graph.

Section 2 covers the basic concepts needed to understand the whole approach.
Section 3 is a small survey on previous attempts to create a Risk AI. Section 4 presents
the design of the neural-MCTS player and implementation details. Section 5 explains
the experimental setup including the modifications to the game rules made to simplify
the problem. Results on a small map are shown and discussed to understand the pos-
sible future work directions. The code related to the project is available as a Github
repository1.

2 Preliminaries

2.1 Monte Carlo Tree Search

Monte Carlo Tree Search [9] is a search method that iteratively builds the search tree
relying on random sampling to estimate the value of actions. The general algorithm
consist on 4 phases: selection, expansion, simulation and backpropagation. The idea is
that at each iteration the tree is traversed using a tree policy for choosing moves. When
a leaf is found usually the tree is expanded by adding a new node. From there a default
policy is used to play further moves (usually random) and end the episode. The results
are then backpropagated through the traversed nodes [5].

The most known MCTS algorithm is probably Upper Confidence Tree (UCT) cre-
ated in 2006 by Levente Kocsis and Csaba Szepesvári [14]. It makes use of the UCB1
[3] bandit formula to choose moves along the tree descent. Rosin [21] later added prior
knowledge to the formula to bias the initial choices towards moves suspected of being
strong. This idea was called Predictor+UCB (PUCT) and it is the way in which the
AlphaZero and Expert Iteration frameworks combine neural networks and MCTS. The
idea is that neural networks can learn strong policies that can work as priors biasing the
search towards promising nodes. They can also learn to evaluate game states which also
improves the search process.

2.2 Expert Iteration

Expert Iteration [1,2] is an effective algorithm to learn a policy given by a tree search
algorithm like Monte Carlo Tree Search (MCTS). The idea is that a deep neural network

1 https://github.com/lucasgneccoh/pyLux.

https://github.com/lucasgneccoh/pyLux


Expert Iteration for Risk 29

can approximate the policy provided by the MCTS and generalize it so that it can be
used afterwards without performing the search, or it can be used to bias the search and
get better results. At each iteration of the training process, the current neural network
is used to guide the search of the MCTS and/or to evaluate game states at the leaves of
the tree, resulting in a more efficient search and therefore a stronger policy. This new
policy is learned again by the deep neural network and the process repeats.

3 Previous Work

The first Risk AI players to the best of our knowledge date back to 2005, where Wolf
[28] tried to create a linear evaluation function. Apart from the value function, he pro-
grammed different plans that represent common sense strategies and allowed his player
to play accordingly. A similar approach was developed in 2013 by Lütolf [17].

Another approach developed in 2005 was made by Olsson [11,20] who proposed a
multi-agent player that placed one agent in every country plus a central agent in charge
of communication and coordination. Each country agent works like a node in the map
graph, passing and receiving information from its neighbors to evaluate its own state.
Then every agent participates in a global, coordinated decision. It is worth highlighting
the importance it gives to the graph structure of the board and the message passing
between countries, concepts highly related to graph neural networks.

The first attempt that used MCTS for playing Risk was done in 2010 by Gibson,
et al. [10] where they used UCT only on the initial country drafting phase of the game.
They concluded that the drafting phase was key to having better chances of winning the
game, and that their UCT drafting algorithm was able to make an existing AI player
improve considerably.

In 2020, two contributions were made using neural networks. The one developed by
Carr [6] uses temporal difference and graph convolutional networks (GCN) [13] to take
information from the board and return an evaluation. This evaluation is used together
with a breadth-first search to find the most promising end-turn state for the player.
The possible end-turn states are enumerated by making the attack phase deterministic.
Carr generates data using the available bots in the open-source game Lux Delux2: by
Sillysoft. This games are used to train the evaluation function.

The key differences between Carr’s approach and ours is that we wanted to learn
using self-play only and that we wanted to model the actions in the game in a general
way. This meant not using special techniques for complicated game phases like turning
the attack phase deterministic by creating a look up table of possible outcomes [6], but
relying only on the traditional tree search expanding each node by considering possible
actions, whatever their nature. We also wanted to use MCTS instead of other tree search
algorithms.

We would like to highlight that Carr’s player proved to be good in the six player
player game against strong enemies from Lux Delux, which is very impressive and
shows that graph neural networks can be useful at extracting features and information
from the game board. Again, our idea was to push a little further into the tabula-rasa

2 https://sillysoft.net/lux/.

https://sillysoft.net/lux/
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scheme and also to reduce the amount of hand crafted features. Unfortunately our app-
roach was not able to reach this level of play. In Sect. 6 we will discuss on what could
be done to improve the level of a player following our approach.

Coming back to Carr’s approach, we think that one important fact that contributed
to his player being successful was turning the attack phase deterministic. On our case,
the value estimation of states and actions through sampling was particularly difficult
and demanded a large number of simulations, so we think that having something like a
look-up table with outcomes and probabilities could really speed up value estimation.
In our approach we wanted to avoid using the probabilities of the outcomes in an attack
so that the player could remain general and work in situations where these probabilities
cannot be easily computed or may not be fixed.

The second player proposed in 2020 by Blomqvist [4] followed the AlphaZero algo-
rithm. This is very similar to what we intend doing, but the network architecture con-
sists only on fully connected linear layers. One valuable result is that even if the learned
policies are not remarkably strong, they improve the MCTS when included as priors,
allowing to conclude that they indeed bias the search towards interesting moves.

4 Player Design

4.1 General Player Design and Architecture

The first thing to notice about the game of Risk is that the board can be naturally rep-
resented as a graph. This immediately suggests the use of a Graph Neural Network
(GNN) [22] instead of more traditional networks. Moreover, having seen the impor-
tance of convolutional layers on the development of the Go players [23], we decided to
use Graph Convolutional Networks [13].

Following the same line of thought presented by Olsson [20], we considered coun-
tries as the fundamental blocks for any reading of the game board as most of the infor-
mation needed is stored at a country level. We considered only basic information as
input, such as the percentage of armies in the country from the board’s total, the owner
of the country, the continent it makes part of, the bonus this continent has, etc. Just as
in Go [23], more complex features could be created such as if the country is on the
border of the continent or not, if it has an ally/enemy neighbor. Once this features are
computed, each country yields a tensor that is fed to deep residual convolutional layers
[15,16] to create a hidden board representation. We were inspired by the increase in
performance due to residual blocks and deeper models in the game of Go [7,25]. We
used four deep GCN layers for the initial block and another four for each independent
head.

One key idea we wanted to keep present in the network design was that for every
action except for the card trade, a policy could be represented as a distribution over
either the nodes or the edges of the graph. In our model, each head ends up with some-
thing similar to the input: one tensor for each node of the graph that can then be easily
transformed into the desired policy. This makes the design flexible enough to adapt to
any map and is similar to how the Go players were designed, reading as input a game
board and giving as output a distribution that has the same shape [8,29]. Figure 1 shows
a general diagram of the network design.
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Fig. 1. General flow of the network. DGCN stands for Deep Graph Convolutional Network, which
consist of layers of graph convolutions with normalization and a skip connection. They are imple-
mented in PyTorch Geometric based on [15,16]. The input consists on one tensor per node (coun-
try). The first DGCN will output again one tensor per node that we call hidden representation, and
that is common to every head. This hidden representation is the input for each one of the heads,
that will apply an additional DGCN with independent weights for every head. The output of each
head is then passed through linear layers to obtain the desired shape, whether it is a value for each
node (for country drafting or army placing), a value for each edge (for attacking or fortifying) or
another scalar or vector used for any other decision (value estimation for example).

Note that the presented design is flexible and can be adapted either at the graph
convolutional layers that build the hidden board representation, the final layers that take
the output of the convolutions and turn it into distributions over the nodes or edges,
or even at the creation of the node tensors where node embeddings can be considered.
The final model has 5 heads: one policy head for each decision (pick country, place
armies, attack, fortify) and one value head to estimate the value of all players as a vector
with 6 components. The network is designed so that the player with index 0 is the one
to play, and every time the network is used, the boards are transformed accordingly
by permuting the players indices in the board. We estimate the value of all players
like in [6].

4.2 Loss Function and Further Parameters

The loss function used was the one detailed in [1]. It is composed of two terms related
to the policy and value estimations. The target policy is the distribution induced by the
visit counts of the MCTS at the root node. The target value is ideally a vector with 1 for
the winning player and 0 for the rest, but for unfinished games we created an evaluation
function that takes into account the number of armies a player would receive at the start
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of his turn. If P represents the neural network policy, z the target value vector and ẑ the
value estimation given by the network, the loss functions is given by

L = −
∑

a

N(s, a)
N(s)

· lnP (a|s)−
6∑

i=1

zi ln [ẑi] + (1− zi) ln [1− ẑi]

where N(s, a) is the visit count for action a from state s and N(s) is the total visit
count for state s.

Regarding the evaluation function used for unfinished games we normalized the
values and made sure that the value of an unfinished board was always less than 0.9,
keeping it far from 1 so that it was easier to differentiate between a good unfinished
game and a winning one. This was done because in previous work, players often had
problem finishing up games, even when they had completely winning positions. For the
tree policy, we used the PUCT bandit formula from AlphaGo:

U(s, a) = Q(s, a) + cb · P (a|s)
√
N(s)

N(s, a) + 1

where Q(s, a) is the mean action value estimated so far and cb is a constant controlling
the exploration.

For the optimizer, we chose the Adam optimizer [12] with a learning rate of 0.001
that decayed exponentially by a factor of 0.1 every 50 epochs. Regarding the Expert
Iteration algorithm, we used 4000 simulations per expert labeling step. To speed up self
play we chose moves by sampling the action proportional to the network policy without
performing a search.

5 Experiments

In terms of gameplay, we made the following simplifications to the game:

1. Cards are only traded automatically for all players.
2. Attacks are always till dead, meaning that if an attack is chosen, it will only finish

when either the attacker has only one army left or when the defender is eliminated
and the attacker conquers the country.

3. The choice of how many armies to move to a conquered country was also eliminated.
By default only one army is left in the attacking country, and the rest move to the
newly conquered one. Fortifications work in a similar way, were all the armies that
can be moved will be moved.

4. When placing armies, only one country is chosen and all armies are placed on it.

This simplifications were made to reduce the game complexity and test our first
prototype on more basic game strategy. In addition to these gameplay changes, we also
performed our tests on a simplified map.

Experiments were run on a Linux system with an AMD EPYC-Rome Processor
(100 cores, 2 GHz each) and 120 GB of main memory. No GPU was used.
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Fig. 2. Hex map. Country background colors are related to continents. Country names are C0 and
C1 in red, C2 and C3 in yellow, C4 and C5 in blue (Color figure online)

5.1 Hexagonal Map

The hexagonal map shown in Fig. 2 has 6 countries grouped into three continents: Red,
Yellow and Blue. The bonuses for each continent were designed so that their value is
clearly different: Red has bonus 1, Yellow has bonus 4 and Blue has bonus 9. With this
said, picking countries becomes very straightforward as the player must try to get Blue
or at least stop the opponents from getting it. In a simple two player game, the optimal
strategy for both players would end up with each player controlling one country of each
continent so that the starting player does not have any bonus at his first turn. Moreover,
if given the chance, a player should try to secure the Blue continent.

We started the evaluation of the models by looking at the evolution of the probabil-
ities they assigned to each country when having to choose first. Results in Fig. 3 show
that the model is indeed learning that the best choices are situated in the Blue continent,
followed by the Yellow one. It is interesting to see that the model does not converge to a
single choice. This might be useful to provide different lines of play if all options have
indeed a similar value.

Fig. 3. Evolution of the policy for choosing a country with an empty board.
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Next we wanted to know what happened if instead of choosing a country on an
empty map, the model had to choose second and the best options were not available.
Figure 4 shows that if the Blue country C4 was not available, the model is able to
realize that the best option is either the other Blue country C5 to stop the enemy from
getting the whole continent, or to start taking the Yellow continent. Again we see that the
model changes its opinion through time between these two options. On the other hand,
the probability of choosing the unavailable country is decreasing meaning the model is
learning that the unavailable countries should not be picked. The model is also able to
place armies in the most important countries after the country draft.

Fig. 4. Evolution of the policy for choosing a country after the best choice is not available

We tested the model against a random player by playing 100 games against it. We
did this for each of the models after one iteration of Expert Iteration to see if there was
an improvement during training. Our model only uses the neural net policy to weight
the possible moves and sample one of them without performing any search. Moreover,
having played against the model we had perceived that it struggled in the second part
of the game, after country drafting and initial fortification. To understand better the
performance of the model in the two parts of the game, we also played 100 games
against random but using the player only in the initial part, and then playing completely
at random. These two experiments are identified using the suffixes full and init only.

Figure 5 shows the evolution of the win rate for both experiments. To smooth the
curves we present a rolling average with a window of 5 observations that better captures
the tendency. It is interesting to see that the model considerably improves the winning
rate of the random player after the initial phase (curve for init only). This is true even
after only one iteration of Expert iteration. These results confirm what was found in [10]
about UCT improving the country drafting, and also that our neural network is able to
learn this UCT policy really quickly. On the other hand, they show that our player is
worse than random in the second part of the game, and that even after 100 iterations of
training it is not able to get the same win rate obtained by the player that uses the neural
net policy in the initial phase and then random.



Expert Iteration for Risk 35

Fig. 5.

After having played against the trained model we can say that its behavior does not
seem random or erratic. We think the player has trouble in some specific situations like
finishing the game. Sometimes it will just stop attacking even when having an upper
hand, and other times it will let the opponent recover and even become stronger by
allowing it to keep continents that could (and should) be easily conquered. Some other
times it will start accumulating armies without attacking even when it is obvious it
should attack. All these behaviors seem to tell us that the attack phase needs further
learning and that it is this phase that keeps the win rate of the player stuck below the
random player. We would like to recall that no search was done, so the performance
of the player might improve considerably if more resources are used and a search is
performed using the policy instead of directly sampling a move using the policy.

6 Future Work

We think there are many possible improvements that could stem from this initial proto-
type. First, the game engine could allow faster or even parallel simulations to accelerate
self-play and specially the expert labeling phase that involves the MCTS.

On the other hand there are many possible customizations for the neural network
design to test. There are multiple options just when considering the graph convolutions
to use (See for example [30,31] for GNN and GCN reviews).

The training pipeline has also numerous parameters to study including the use of
the value network in the MCTS [1,25] or the way past experience is sampled [26].
In the paper presenting Katago [29], authors present interesting improvements to the
AlphaZero pipeline that should also be beneficial for Risk like Forced Playouts and
Policy Target Pruning.

Another natural step is to generalize the player to the full version of the game with-
out simplifications. Some of the game phases would need to be reinterpreted, for exam-
ple how to define a move in the army placing phase where N armies must be placed.
In our opinion, the attack phase is the one that should be dealt with initially to really
improve the player’s level.
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7 Conclusion

We created a first prototype of a Risk player using graph neural networks and MCTS
following the Expert Iteration and AlphaZero frameworks. On small synthetic maps this
model was able to learn optimal strategies for the country drafting phase, confirming
that UCT can indeed produce a good country drafting policy [10] that can be learned by
neural networks. We conjecture that this game phase might be somehow easier to learn
because chance nodes appear deeper in the tree.

On more complex phases like attacking there were no clear signs of learning. The
stochastic nature of this phase might be at the root of the problem and either more
simulations have to be used to get better action value estimates or other techniques have
to be thought of to deal specifically with chance nodes directly at the root.

Acknowledgment. This work was supported in part by the French government under manage-
ment of Agence Nationale de la Recherche as part of the “Investissements d’avenir” program,
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Abstract. We study the multi-armed bandit problem, where the aim is to mini-
mize the simple regret with a fixed budget. The Sequential Halving algorithm is
known to tackle it efficiently. We present a more elaborate version of this algo-
rithm to integrate some exterior knowledge or “scores”, that can for instance be
provided by a neural network or a heuristic such as all-moves-as-first (AMAF) in
the context of a Monte-Carlo Tree Search. We provide both theoretical justifica-
tions and experiments.

1 Introduction

Since it was introduced in [6,11], the Monte Carlo Tree Seach (MCTS) algorithm has
known a great success in AI, especially in turn-based games like Go, and some of its
refinements are state of the art for most games.

The general idea of this algorithm is the following: from the root configuration, it
picks a move, and generates a random playout from it. If the player to move wins, this
means that the move was probably good, and if they lose, it was probably bad. Then
the algorithm continues by picking more moves, deeper and deeper in the game tree,
respecting a fixed amount of playout (or time) budget.

One of the key elements for MCTS to be efficient is the choice of what moves to
investigate, with the usual search for the optimal exploration-exploitation trade-off. To
perform this, one typically uses the Upper Confidence Bound (UCB) bandit algorithm,
which has good properties in terms of cumulative regret. This means that, for every
investigated configuration, the moves tested were mostly good ones.

However, in the context of games, the success of simulations does not matter in
itself. The only goal is that the final output of the algorithm is as good a move as
possible. This means that, instead of cumulative regret, a more relevant quantification
is the expected simple regret (see Fig. 1 for a precise definition).

In [10], a new bandit algorithm named Sequential Halving (SH) was introduced. It is
proven to have a small expected simple regret 0-1 (see Fig. 1) and is also shown to have
a small expected simple regret through numerical experimentation. It has successfully
been used as an alternative to UCB in MCTS, in particular as a replacement in the root
node with UCB used in the rest of the tree [12], in Partially Observable Games [13] or
even in the whole tree with SHOT [3].

However, for most games, the unmodified UCB is not state of the art. For many
games such as Go, moves typically commute, so the RAVE algorithm, which uses the
c© Springer Nature Switzerland AG 2022
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all-moves-as-first (AMAF) heuristic [1], was introduced [9]. For some games, once
again including Go [14], Neural Networks (NN) can provide an algorithm with reliable
priors, which are incorporated in the PUCT algorithm [14].

The aim of this paper will be to incorporate exterior knowledge like AMAF or NN
to the SH algorithm, and to compare the result both to the simple SH and to the state of
the art MCTS algorithms RAVE and PUCT.

The first part will discuss the SH algorithm in general, and report experiments in
a theoretical setup. The second part will present a theoretical foundation for a new
algorithm named SHUSS, Sequential Halving USing Scores. It will also discuss some
variations around it, and report experiments on games.

Fig. 1. The various notions of regret

2 The Sequential Halving Algorithm

The SH algorithm is round-based. For every round, each arm is sampled the same
amount of times, and only a set fraction of the best arms are kept. This step is repeated
until there is only one arm left.

The theoretical bounds presented in [10] suggest that the same total budget should
be spent for each round, and that the fraction removed should be constant for every step
(denoted 1 − λ). For a precise description, see Algorithm 1.

This version of the algorithm differs from the original one in two ways. First, by
the introduction of the parameter λ, which allows for values other than the original 1/2.
Second, the computation of the budget per round is slightly improved, to ensure that
less budget is left unspent in case of multiple issues with rounding.

Note 1. Contrary to other bandit algorithms like UCB, SH assigns a lot of the budget at
once to each arm, which has practical advantages like simpler parallelisation and less
back-and-forth in the search tree. This is especially true when λ is small (few rounds).

2.1 Restart vs Stockpile

In [10], for the theoretical computations to be rigorous, one has to assume that rounds
are independent, which means that statistics are discarded from one round to the other.

However, in order to gather more accurate statistics, it may be worth to stockpile the
statistics from the previous round, instead of restarting them for every round. In terms
of budget, this adds a factor of almost 1/(1 − λ).

Note 2. Getting the factor of almost 1/(1−λ) from the first rounds implies redistribut-
ing the weight to give more of it at the beginning, but less at the end. Doing this will be
referred to as uniforming.
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Algorithm 1. Sequential Halving
Parameter: cutting ratio λ
Input: total budget T , set of arms S
S0 ← S, T0 ← T
R ← number of rounds before |SR| = 1
for r = 0 to R − 1 do

tr ← � Tr
|Sr|·(R−r)

�
Tr+1 ← Tr − tr|Sr|
sample tr times each arm in Sr

Sr+1 ← Sr deprived of the fraction 1 − λ of the worst arms
end for
Output: arm in SR

In theory, this may cause the following issue: if, for one round, a rather bad arm is
sampled disproportionately, these statistics will be stockpiled for the next round, which
will cause it to be kept even further; whereas restarting would decrease the probability
for that bad arm to be chosen, as it would have to be wrongly selected twice. This issue
is particularly important when λ is close to 1, as the stockpiled statistics contribute
significantly to the overall ones in that case.

A compromise can be found between the two pure approaches, as one can keep
the statistics from the previous round and give it a decaying factor d between 0 (pure
stockpile) and 1 (pure restart).

The experiments of the next section clearly show that stockpiling is always better,
even more so than choosing 0 < d � 1.

Note 3. We successfully replicated the SH part of the experiments of [10], and it would
appear that they were done using stockpiling, as restarting gives significantly worse
results.

2.2 Experiments

Even if we could be more general, we focus on the case where the only possible out-
comes are 0 (loss) and 1 (win). Thus, every arms is described by its value, which is both
the probability to win and the expected value.

The performance of bandit algorithms highly depend on the distribution of the arms’
values. We consider 4 distributions of values for the n arms.

In setting (1), the optimal arm has a value of 0.5 and the others have a value of 0.4.
In setting (A), the values form an arithmetic sequence from 0.5 to 0.25.
In setting (S), the optimal arm has a value of 0.5, the worst has a value of 0.25, and

the others have values such that i/δ2i is constant, with δi the difference in value with
the optimal arm. This setting is suggested by the fact that the theoretical bounds of [10]
rely on these values, and thus the theoretical guaranty is the strongest.

In setting (N), the values are distributed according to the sigmoid of a normal distri-
bution with parameters 0.5 and σ2 = 0.01. This setting induces richer behaviours, and
we believe it to be a more realistic model of the actual distributions in games.
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The results are compared to UCB, the standard MCTS bandit. It consists of, for each
step from 1 to the budget, picking the arm that maximises the empirical value, added to
a term to force exploration, of the form

c

√
log(playouts)

playoutsz

(1)

We tested various values for λ and d for SH, and compared it to various values for
the exploration constant c in UCB. We also tested the uniforming variant discussed in
Note 2. The results are shown in Fig. 2.

Rounding the number of arms left is handled as follows: always round up, except
when this would cause the amount of arms to remain constant, in which case round
down.

Each result is averaged over 10000 tests. To reduce the covariance from one setting
to another, the bandits are seeded using numpy.random.binomial. For the same index of
experiment e and the same arm i, if the value of arm i is the same in two settings, then
on the same round r their results are drawn out of the same sequence of win/loss (the
number of successes is monotonous in terms of budget).

As announced, in every setting, the best results are obtained for d = 0, showing that
in practice, stockpiling is more efficient than restarting.

The optimal λ depends on the setting. The experiments globally suggest that, for the
interesting case d = 0, λ ≈ 0.7 is often the best value, but the difference is small and the
algorithm performs well on a wide range of λ that includes the classical value λ = 0.5.
That problem is actually very complex, and some less rigorous experiments suggest
that it is better not to decrease geometrically but rather to start with large decreasing
factors and to end with smaller ones (eg 20 → 8 → 4 → 3 → 2 → 1 rather than
20 → 10 → 5 → 3 → 2 → 1).

The effect of uniforming is mixed, which suggests that there is room for practical
improvement concerning the way the budget is distributed among the rounds.

Surprisingly, the results are globally worse than UCB for n = 20, especially in
the setting (S), for which the SH algorithm is theoretically designed. Nonetheless, UCB
relies more heavily on fine-tuning of its parameter c, with no universally excellent value,
and for n = 80 SH is globally better.

3 Scores

The aim of this part will be to develop a variant of the SH algorithm that takes advantage
of some exterior knowledge, like a NN or AMAF statistics. We will consider the general
case where we have access to what we will call a score, which is a numerical evaluation
of every move, independent from the bandit evaluation.

The bandits are still assumed to give either 0 or 1, giving an empirical mean p
(i)
r ∈

[0, 1] for arm i on round r, but the scores do not necessarily belong to [0, 1].



Sequential Halving Using Scores 45

Fig. 2. Simple regret obtained with SH in various settings. In every setting, the budget is taken
equal to T = 2048. From top to bottom, we report settings (1), (A), (S) and (N). For each setting,
the left plot corresponds to SH, and the right one corresponds to UCB. For SH, for each λ, the
bars correspond (from left to right) to d = 1, d = 0.5, d = 0.1, d = 0, and d = 0 with
uniforming. The darker bars correspond to n = 20, and the lighter ones to n = 80.
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3.1 Theoretical Model

We don’t know precisely how to estimate the expected simple regret: the bounds pro-
vided in [10] are far from tight in practical cases and only describe the expected simple
regret 0-1. Still, it will globally depend on P (p(i)r < p

(j)
r ): if any two arms are often

properly ordered, then the best arms have a low probability to be among the worst 1−λ

fraction. Thus, our aim will be to find an optimal formula for some q
(i)
r which optimizes

P (q(i)r < q
(j)
r ) to use instead.

Formally, let x and y (the value of the arms) be two hidden values that we want
to compare, with x − y = δ. We have access to 4 independent variables. X and Y
(the number of 1s obtained) are binomials with a same first parameter t and centered
on respectively tx and ty. X̃ and Ỹ (the scores, eg the AMAF statistics) are such that
X̃ − Ỹ = δ̃ is hopefully globally the same sign as δ.

In the following, z can stand for x, y, or any arm.
We make the assumption that δ̃ is distributed following a normal law with parame-

ters δ̃0 and σ̃2
0 . δ̃0 has the same sign as δ, and we even have δ̃0 = δ when the score is

unbiased. This is not the case for NN, but we will see how to handle this in Sect. 3.5.

3.2 Optimal Combination

As a particular case of the central limit theorem, we know that (for a more quantified
statement, see for instance [7]):

Lemma 1. A binomial law of parameters t and p and a normal law of parameters tp
and tp(1 − p) have almost the same distribution, provided that t is large.

This means that X − Y is (almost) distributed as a normal law of parameters tδ
and tσ2 = t(x(1 − x) + y(1 − y)), which up to normalisation can be seen as having

parameters δ̃0 and δ̃2
0σ2

δ2t .
Conversely, this shows that X̃ − Ỹ gives (almost) the same information as two

binomials, with the crucial first parameter t̃ such that σ̃2
0 = δ̃2

0σ2

δ2 t̃
. This gives

t̃ =
δ̃20σ

2

δ2σ̃2
0

(2)

but with an intensity δ̃0
δ that is too large. We define

t̃′ =
δ̃0σ

2

δσ̃2
0

(3)

We showed that the problem is (almost) equivalent to maximizing the probability of
choosing the best arm among two, knowing that one has succeeded X + t̃′X̃ times out
of t + t̃ trials, and the second Y + t̃′Ỹ times.

Thus, it is optimal to use (for δ̃2
0σ2

δ2σ̃2
0

reasonably large)

qz = Z + t̃′Z̃ (4)
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Similar reasoning gives the same result for t reasonably large.
One could be tempted to use the Z̃ to approximate σ. However, given that the final

goal is to sort all the arms on a single scale, t̃′ has to be the same for every pair of arms.
The simplest solution is to choose a hyperparameter t̃′ that corresponds to an overall

reasonable guess. We will see how to improve that choice in some particular cases.
The resulting algorithm is presented as Algorithm 2. In it, t+r corresponds to the

total budget used in p
(i)
r : t+r = tr with restart and t+r = t0 + · · · + tr with stockpile.

Algorithm 2. Sequential Halving USing Scores (SHUSS)

Parameter: cutting ratio λ, t̃′

Input: total budget T , set of arms S, online scores X̃
(i)
r

S0 ← S, T0 ← T
R ← number of rounds before |SR| = 1
for r = 0 to R − 1 do

tr ← � Tr
|Sr|·(R−r)

�
Tr+1 ← Tr − tr|Sr|
sample tr times each arm in Sr , giving an empirical mean p

(i)
r to arm i out of t+r trials

q
(i)
r = p

(i)
r + t̃′

t+r
X̃

(i)
r

Sr+1 ← Sr deprived of the fraction 1 − λ of the worst arms in terms of q
(i)
r

end for
Output: arm in SR

3.3 Selection Bias

One issue that may occur is that, after any given round, the arms that remain have their
Z̃ biased by the fact that they were among the best. Thus, even if during the first round
they are indeed normal laws, it is unclear how they look like after a few rounds.

However, this issue is very similar to the issue of stockpiling, as all arms tend to
have better stats than they theoretically should. The fact that stockpiling is so powerful
suggest that this issue is not too important, so we will neglect it.

3.4 Case of AMAF: a Better Formula for t̃′

This subsection discusses the special case where the scores are given by AMAF statis-
tics. It should be seen as a small toolbox consisting of a few ideas that can be used to
do better than taking t̃′ as a constant, based on a case study.

The AMAF (all-moves-as-first) score [1] consists in evaluating a move m for a
player p in a game state s, considering the win/loss ratio of every game where p plays
m, not only in s itself but in any of its descendants in the game tree (or even its cousins,
in some variants of AMAF like GRAVE [2]).
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First of all, this score is not independent from the value of the bandits. In the first
rounds of the algorithm, there are many bandits, so the AMAF scores are almost inde-
pendent from each of them, which makes it a mostly unimportant issue.

In the last rounds, however, it is highly correlated with the stats of some, if not all,
bandits. In some games, one could imagine that some properties of the moves generate
important biases, for instance if the move m can only appear after few of the remaining
moves considered. We will see a general way to address this problem, but this could be
more tricky for some particular games and we recommend caution.

The most interesting aspect about AMAF in this context is that the score becomes
more and more accurate as evaluations are performed. Thus, taking t̃′ as a constant
throughout the algorithm is not adequate. Instead, one can model the distribution of δ̃
as based on the following:

– the fact that AMAF is a heuristic causes an error distributed as a normal law of
variance σ2

heu, centered somewhere between δ and the local average value;
– the fact that the AMAF stats are only gathered on a finite number sr of moves on

round r causes an error distributed as a binomial law, which is almost (see Lemma
1) and after normalization a centered normal law of variance σ2

stat/sr.

Provided that σ2
heu is small (i.e. the heuristic makes sense in the application context),

and the values of the arms are not too extreme, σ and σstat are almost equal.
Equation 3 applied with this variance gives

t̃′r =
δ̃0
δ

σ2

σ2
heu + σ2

stat/sr
≈ δ̃0

δ

1
σ2

heu/σ2 + 1/sr
(5)

This time, there are 2 hyperparameters to choose values for.
δ̃0
δ describes how much AMAF flattens the stats, and can easily be measured exper-

imentally. It may be relevant to make it depend on the number of arms left and on the
variant of AMAF used.

σheu/σ describes how accurate the heuristic is, compared to the accuracy provided
by binomial stats. Giving this hyperparameter a relatively high value also ensures that,
in the last rounds where sr is large, the value of t̃′r stops increasing, which addresses
the previously mentioned issue of correlation.

Note that this reasoning works only if, on each round, sr is globally the same for
every arm (or if, for every arm, 1/sr � σ2

heu/σ2), as we need a common value of t̃′r.

3.5 Case of Prior Score: Pruning

In this subsection, we assume that the X̃i are known a priori (before any evaluation is
performed). This can be applied to some extent in cases where some score is known a
priori but refined during the algorithm, like GRAVE. We start with a general discussion,
before dealing with the specific case of neural networks (NN) applied to MCTS.
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Even before the algorithm begins, some arms have no chance of being chosen at the
end, for instance if X̃i is smaller than the median (for λ = 1/2) minus 1/t̃′0.

In addition to these trivial pruning operations, it is often worth pruning more arms,
as the budget saved will compensate for the risk taken.

As we saw in a previous section, the prior can be interpreted as though we had
already spent some amount t̃ of budget on each arm before round 0, which we will
consider to be a round labelled −1. The philosophy of SH (exploited in the performance
proof in [10]) is that, when bandits are pruned up to number nr with a budget tr, the
product πr := nr · tr is equal to some π that does not depend on r. Thus, it is natural
to prune up to arm n−1, where n−1 is chosen so that π−1 = π.

For a precise computation, we neglect the rounding issues when dividing by λ. We
also make the computations as if we were not stockpiling (note that using the score on
the subsequent rounds can be seen as stockpiling when it is purely a prior).

Then
π−1 = n−1 · t̃ (6)

π = π0 = λn−1 · T

log1/λ(n−1) · n−1
(7)

n−1 log1/λ(n−1) =
λT

t̃
(8)

For NN in MCTS, all the previous theoretical foundation has to be slightly adapted,
given that bandits don’t give 0 or 1 but the value of the leaf evaluated by the NN instead.

More importantly, the score is given by the policy of the root. It is meant to be
monotonic with the value, but the way it uses a softmax layer makes the rest of our
model about its distribution fail. Thus, the safest way to use it is for pruning, and then
the remaining arms are explored using a basic SH that does not use the policy.

The previous formula for n−1 should hold for the same reasons. Now, the value of
t̃ describes how much budget is needed for the exploration to be as good as the policy.
As the budget is typically distributed among the rest of the tree by an algorithm like
PUCT, designed to be good asymptotically but not for small values, t̃ is typically quite
large. In addition, given that the policy is not stockpiled, it is better to overestimate the
value of t̃ to make use of the policy as much as possible.

3.6 Experiments with AMAF

First, we test SHUSS using the score AMAF, to compare it with RAVE [8,9].
The latter uses the AMAF score as follows: the value of the arm, to which the

exploration term is added, is taken equal to

(1 − βz)Z + βzZ̃ (9)

with tz the number of playouts starting with z, sz the number of playouts containing z
and

βz =
sz

sz + tz + bias × sz × tz
(10)
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Table 1. Percentage of games won by Hybrid-SHUSS (using AMAF and RAVE) against RAVE,
in various games. T = 10000 ; bias = 10−7 ; λ = 1/2 ; 500 matches.

Game \ t̃′ 0 128 256 512 1024 2048 4096 8192 16384 ∞
Atarigo 7 × 7 44.2 47.2 49.6 50.2 50.0 49.6 45.2 47.8 46.4 45.2

Atarigo 9 × 9 35.6 41.4 40.0 38.2 41.0 41.2 43.4 41.4 36.4 40.2

Ataxx 8 × 8 30.2 33.6 35.2 34.2 42.0 46.2 55.0 62.4 62.0 71.8

Breakthrough 8 × 8 54.0 57.8 56.8 56.0 56.6 55.2 53.8 51.0 55.0 52.4

Domineering 8 × 8 41.4 47.8 44.8 49.0 46.2 47.2 46.2 45.6 43.0 42.4

Go 7 × 7 45.2 49.2 46.2 53.8 58.6 50.2 42.6 33.2 31.0 15.8

Go 9 × 9 43.4 53.2 58.2 52.2 50.8 43.8 35.6 26.4 19.0 12.2

Hex 11 × 11 15.8 43.0 43.4 51.4 48.4 50.2 46.4 46.6 43.4 42.6

Knightthrough 8 × 8 61.0 61.6 65.0 63.8 62.2 60.2 54.2 54.4 56.2 52.8

NoAtaxx 8 × 8 91.0 87.4 76.8 72.0 62.8 55.2 53.8 44.6 45.8 43.2

NoBreakthrough 8 × 8 37.8 40.8 44.0 46.2 51.4 44.2 46.4 44.0 50.0 46.6

NoDomineering 8 × 8 40.4 45.6 49.4 46.0 48.4 50.0 47.6 47.4 45.0 47.6

NoGo 7 × 7 38.8 40.8 45.6 44.0 50.8 47.6 50.8 49.4 47.6 51.8

NoGo 9 × 9 30.0 37.8 38.8 40.0 41.0 42.0 42.8 45.0 45.8 37.4

NoHex 11 × 11 46.4 48.0 48.6 49.0 49.2 48.6 48.6 49.2 48.8 49.2

NoKnightthrough 8 × 8 29.0 36.8 38.8 39.6 47.8 46.2 46.0 45.2 48.2 47.6

Average 42.76 48.25 48.83 49.10 50.45 48.60 47.40 45.85 45.23 43.68

Table 2. Percentage of games won by Hybrid-SHUSS (using a NN and PUCT) against PUCT,
for the game of Go. c = 0.2 ; λ = 1/2 ; 400 matches.

T \ n−1 3 4 5 6 7 8 9

32 31.00 46.00 43.50 26.50 20.50

64 57.75 60.00 57.00 71.50 38.75

128 39.75 46.50 54.50 39.75 41.25

256 55.25 71.50 60.75

512 25.50 60.00 47.25

1024 60.75 67.75 55.50

[12] demonstrates how to combine the SH algorithm with UCT in the Hybrid-MCTS
algorithm: SH is used only at the root, and the rest of the tree expansion uses UCB. We
followed this idea, by combining SHUSS at the root with RAVE for the rest of the tree,
in an algorithm naturally named Hybrid-SHUSS.

Table 1 reports the results of 500 matches (250 as White and 250 as Black) between
Hybrid-SHUSS and RAVE, for many classical games. Both algorithms use a budget
(number of playouts) per move equal to 10000. RAVE uses the classical parameter
bias = 10−7, both in the inner parts of Hybrid-SHUSS and its opponent. SHUSS uses
the classical parameter λ = 1/2.

Different values of t̃′ are experimented with (to keep things simple, t̃′ is a constant).
The extreme case t̃′ = 0 is the usual SH algorithm without AMAF (it is only used to
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break ties), and t̃′ = ∞ is relying purely on AMAF, with the same weight regardless of
whether or not the move is first.

In most games, SHUSS performs better than both pure SH and pure AMAF.
The optimal value of t̃′ depends on the game, but using 1024 gives a reasonably

good performance for every game with this budget.

3.7 Experiments with a Neural Network

We then test SHUSS with a prior given by a NN in the game of Go.
The state of the art NNs in the game of Go use two heads, one for the policy and

one for the value. The MCTS algorithm used in current computer Go programs since
AlphaGo is PUCT. It uses the NN score as follows : the exploration term is replaced by

c × Z̃ ×
√

t

1 + tz
(11)

with Z̃ the policy, t the budget already used for this node and tz the budget already used
for this node on move z.

We use as a NN a simple MobileNet of 16 blocks, a trunk of 64 and 384 planes in
the bottleneck block [4,5]. MobileNets give better results than usual residual networks
for the game of Go.

As explained in Sect. 3.5, in SHUSS, the policy is used to prune at the root, and
the remaining algorithm is SH at the root and PUCT for the remaining of the tree, in a
similar Hybrid fashion.

Experiments showed that PUCT performs best against Hybrid-SHUSS for c = 0.2.
Table 2 report the results of 400 matches of Hybrid-SHUSS against PUCT for various
budgets and n−1, and we see that with the Hybrid-SHUSS outperforms PUCT for large
enough budgets.

Concerning the relationship between T and the optimal n−1, it seems to be loga-
rithmic, while it was theoretically expected to be closer to being linear. Regardless, the
size of the game of Go forced us to stick to rather small budgets, for which this part of
the theory may not apply yet as it is asymptotic.

4 Conclusion

In the first section, we discussed the SH algorithm in general.
We discussed two ways of using the budget, restarting and stockpiling, with the

latter being much better experimentally.
We also showed that a cutting parameter λ ≈ 0.7 for SH is experimentally slightly

better than the classical λ = 0.5, but that globally the algorithm is very robust for a
wide range of λ. Nonetheless, it appears that some more flexible budget attribution or
cuts may be better.

In the second section, we presented our new algorithm Sequential Halving USing
Scores (SHUSS).
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A theoretical model suggests a very simple way to combine the score with the bandit
statistics, while still leaving plenty of room for improvement depending on the precise
nature of the score.

Work still remains to be done to handle scores that are very asymmetrical among
the arms in terms of quality.

We associated SHUSS with AMAF statistics and RAVE under the root play in a
variety of different games against RAVE with the same parameters. The results are
mixed, and depend on the game.

We also made SH, pruning using the policy with PUCT under the root node, play
Go against PUCT with the same parameters. SH with pruning outperforms PUCT for
well chosen numbers of moves kept, but it is quite sensitive to this value and it is unclear
how to choose it in general.
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Abstract. The architecture of neural networks in neural based com-
puter game programs influences greatly the strength of the game play-
ing programs. We present developments on the recently tested Mobile
Network architecture that has good results for the game of Go. The
three proposed improvements deal with the optimization process, the
activation function and the convolution layers. These three modifications
improve the accuracy of the policy and the error of the evaluation, as well
as the playing strength of a computer Go program using the resulting
networks.

1 Introduction

Important breakthroughs in Computer Go have been achieved in the past years.
These advances were made possible by the advent of Convolutional Neural Net-
work (CNN) and development of Monte-Carlo Tree Search. Because of their
versatility, CNN architectures are constantly evolving. Thus, the purpose of this
article is to use these recent changes to improve supervised learning in Computer
Go. We also hope that these improvements will transfer to the Reinforcement
Learning setup.

Classically, CNN for Go have more than one head. At least, these networks
use a policy head, to prescribe moves, and a value head, to evaluate the board
quality in terms of future incomes. This output configuration has been popu-
larized by the groundbreaking AlphaZero [7]. In 2017, AlphaGoZero reached a
superhuman level without initial knowledge except the game rules. Thereafter,
DeepMind’s algorithm AlphaZero achieved comparable results for Chess and
Shogi. This achievement has been made possible by the use of deep reinforce-
ment learning from self-play.

Closer to our work, various architecture has been evaluated for learning to
play Go in a supervised way. Typically, the dataset used for the supervised
learning is constituted of superhuman games produced by Deep Reinforcement
Learning agent like AlphaZero or Katago. In our study, we used Katago to
constitute our dataset.

KataGo [9] like Alpha Zero only learns from neural-net-guided Monte Carlo
Tree Search self-play. KataGo improves learning compared to AlphaGo Zero.
Mainly, it converges to superhuman level much faster than comparable methods
c© Springer Nature Switzerland AG 2022
C. Browne et al. (Eds.): ACG 2021, LNCS 13262, pp. 53–60, 2022.
https://doi.org/10.1007/978-3-031-11488-5_5
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such as Alpha Zero, ELF/OpenGo or Leela Zero. It uses different optimizations
strategies like using a low number of playouts for most of the moves in a game to
gather more data about the value in a shorter time, or using additional training
targets to regularize the network. An innovation in the Katago program is to
use GlobalAverage Pooling in some layers of the network in conjunction with
residual layers.

Architectures of the Neural Network used in Deep Reinforcement Learn-
ing has been shown to have a great impact on the performances of the result-
ing playing engines. For example, the use of residual networks increased Alpha
GO’s ELO by 600. Residual Networks used in Alpha Zero were compared to
Mobile Networks [4] with policy and value heads different from the Alpha Zero
ones, for instance a fully convolutional policy head and a global average pooling
value head. These mobile networks are more efficient in terms of computation
and parameters than their classic CNN counterparts. Also, further improvement
of mobile networks have been tested [3]. The main architecture change is the
introduction of the Squeeze and Excitation block, adding channel attention to
the network. Mobile Networks presented better results than Residual Networks,
both for small and large networks on the Leela dataset composed of games played
at a superhuman level [4]. They had a better accuracy and value error.

2 Improving Supervised Learning

Here, we present different improvements made to increase performance. They
rely on three different aspects of the training: optimization, activation function
and architecture.

2.1 Cosine Annealing

Better optimization schema can lead to better results. Indeed, by using a dif-
ferent optimization strategy, a neural net can end in a better optimum. In
this paper, this is achieved by using Stochastic Gradient Descent with warms
Restart (SGDR) [5]. In particular, the learning rate is restarted multiple times.
This way, the objective landscape is explored further and the best solution of all
restart is kept. Furthermore, using a peculiarly aggressive learning rate strategies
like cosine annealing (Eq. 1) can lead to better convergence.

ηt = ηi
min +

1
2
(ηi

max − ηi
min)(1 + cos(

Tcur

Ti
π)) (1)

with ηt the learning rate at time t, Tcur the number of step since the last restart
and i the current number of cycles done. Thus, Ti indicates the number of steps
allowed for the cycle i and ηi

min, η
i
max the range of values the learning rate can

take during the cycle i.
We compare this cosine annealing with what we call division annealing.

Division annealing, simply divide the learning rate by a constant at predefined
epochs.
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2.2 MixNet

Traditional depthwise convolution suffers from the limitations of single kernel
size.Tan et al. [8] proposed to replace the vanilla depth-wise convolution with
MixConv. Their module takes advantage of bigger kernel size in the convolution.
The idea is to mix up multiple kernels of different sizes in a single depthwise con-
volution operator in order to capture different types of patterns at different scales
from input images. They achieved significant performance gain in image classi-
fication compared to mobilenet-v3 on both ImageNet classification and COCO
object detection. Even better, they showed that mixing kernel size allows using
bigger kernels.

2.3 Swish Activation

Non-linearity plays an important role in neural network. Without them, they
lose their expressiveness power. It also has an important impact on the neural
net training. In particular, the activation shape the derivatives of the network.
These important properties motivated Ramachandran et al. [6] to search for good
activation functions. From their research, they discovered the Swish activation
function:

x · sigmoid(x)

This activation, used as drop down replacement for ReLU, gives significant
improvement on diverse tasks and networks (Fig. 1).

Fig. 1. Swish function plot

3 Experimental Results

In all experiments, instead of learning the final result of a game, the value head is
labeled with the Q value coming from MCTS. We use a simple mixed convolution
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composed of half of 3×3 kernels and half of 5×5 kernels. The dataset is composed
of self played games from Katago [9]. The label, for the policy head, is a one for
the move played by Katago and zeros for other moves. The label, for the value
head, is the evaluation of the position given by the Monte Carlo Tree Search of
Katago. A value between 0 and 1 giving the probability of winning for White.

3.1 Training with Cosine Annealing

Fig. 2. Cosine annealing versus division annealing for the accuracy and the MSE of
the 16 blocks mobile network. The learning rate of division annealing is divided by 10
at epoch 100, 150 and 200.

In early experiments, we tested multiple learning rate parameters using learning
rate restart leads to no improvement. Figure 2 makes the comparison of cosine
annealing with division annealing for the two best run. Cosine annealing ends up
with better accuracy and MSE. Moreover, the learning curve for cosine annealing
is smoother, for instance there are no bumps on the learning curve because of
learning rate changes. So in the following experiments, we use cosine annealing
without restarts, there is only one cycle.

3.2 Training Small Networks with Mixnet and Swish Activation

Figure 3 compares 16 blocks mobile networks, Mixnet and Mixnet with Swish
activation. We see that Mixnet with Swish has better results than Mixnet alone,
and that Mixnet alone has better result than using only 3×3 kernels. Notice that
Mixnet also has similar results to a mobile network with 5 × 5 kernels, despite
having less parameters.
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Fig. 3. Mobile network with kernels 3 × 3 and 5 × 5, Mixnet and Mixnet with Swish
activation for the accuracy and the MSE of the 16 blocks mobile network.

Fig. 4. Mobile network, Mixnet and Mixnet with Swish activation for the accuracy and
the MSE of the 48 blocks mobile network.

3.3 Training Big Networks with Mixnet and Swish Activation

We have tested the Swish activation instead of the Rectified Linear Unit activa-
tion (ReLU) in the inverted residual blocks. Figure 4 compares 48 blocks mobile
network, with 3 × 3 kernels only, Mixnet, and Mixnet with Swish activation.
Mixnet with Swish activation is better than Mixnet which is better than 3 × 3
kernels only.

3.4 Playing

Table 1 gives the experiments done for comparing the different networks. Each
line is the result of 400 games between two networks using given constants and
numbers of playouts at each move. Each player plays 200 games as Black and 200
games as White. Both players use the Batch MCTS search algorithm [2]. In order
to randomize the starting position of each game, the first 20 moves are played
randomly according to the probabilities given by the policy. The properties of
the Max players are given in columns 2 to 7. Blocks is the number of blocks
of the mobile network, Planes is the number of planes in the trunk, M is the
use of Mixnets, S is the use of the Swish activation, C is the PUCT constant



58 T. Cazenave et al.

and Playouts is the number of playouts at each move. Columns 8–13 are the
properties of the Min player. The last two columns are the winrate of the Max
player and the standard deviation of the winrate.

Lines 1–5 give the experiments used to find the best PUCT constant for the
16 blocks mobile network. Each constant is played against the upper constant.
We observe that every constant between 0.05 and 0.30 is worse than the upper
constant while 0.40 beat 0.50. We assume the best constant for 100 playouts and
the 16 blocks network is 0.40.

Lines 6–9 compare the 16 blocks mobile network with Mixnet and Swish
activation with a constant 0.40 to the 16 blocks mobile network with Mixnet
only. Various constants are tested for the Mixnet only network and the best
constant for this network is 0.20 yielding a winrate of 0.5850 for the Mixnet with
Swish activation network. We can conclude that the Swish activation makes the
16 blocks mobile network stronger.

Lines 10–14 compare the 16 blocks mobile network with Mixnet and Swish
activation with a constant 0.40 to the 16 blocks mobile network with no Mixnet
and no Swish activation. The best constant for the second network is 0.20 yielding
a winrate of 0.6950 for the first network. It is higher than the 0.5850 winrate
obtained with Mixnet. We can conclude, Mixnet improves the strength of the 16
blocks mobile network.

Lines 15–16 show that 0.40 is also a good constant for the 48 blocks mobile
network. We will use it in the next experiments.

Lines 17–22 compare the 48 blocks mobile network with Mixnet and Swish
activation with a constant 0.40 to the 48 blocks mobile network with Mixnet
only. The best performance for the second network is obtained with the 0.20
constant which gives a 0.5600 winrate for the first network. Swish activation is
also beneficial to the 48 blocks mobile network.

Lines 23–27 compare the 48 blocks mobile network with Mixnet and Swish
activation with a constant 0.40 to the 48 blocks mobile network without Mixnet
and without Swish activation. The best performance for the second network
is obtained with the 0.30 constant which gives a 0.6450 winrate for the first
network. This is a worse result for the second network than with Mixnet, so
Mixnet improves the strength of the 48 blocks mobile network.

Table 2 gives the accuracy, the MSE, the GPU and the CPU speed in terms of
batches of size 32 processed per seconds for different networks. We did not train
the residual networks on our new dataset, so we only give the speeds for residual
networks [1]. In previous experiments, both the accuracy and MSE of residual
networks were largely behind those of mobile networks [3]. The mobile.16.64
line is a mobile network with 16 inverted residual blocks and 64 planes in the
trunk. The mobile.mix.swish.48.128 network is a mobile network with mixed
convolutions, Swish activation, 48 inverted residual blocks and 128 planes in the
trunk.

We can observe that the GPU speed of the networks with mixed convolutions
and Swish activation is a little smaller than the speed of the original mobile
networks. The accuracy and the MSE are better.
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Table 1. Making the networks play.

Blocks Planes M S C Playouts Blocks Planes M S C Playouts Winrate σ

1 16 64 y y 0.05 100 16 64 y y 0.10 100 0.4250 0.025

2 16 64 y y 0.10 100 16 64 y y 0.20 100 0.4775 0.025

3 16 64 y y 0.20 100 16 64 y y 0.30 100 0.4700 0.025

4 16 64 y y 0.30 100 16 64 y y 0.40 100 0.4925 0.025

5 16 64 y y 0.40 100 16 64 y y 0.50 100 0.5025 0.025

6 16 64 y y 0.40 100 16 64 y n 0.40 100 0.6375 0.024

7 16 64 y y 0.40 100 16 64 y n 0.30 100 0.6125 0.024

8 16 64 y y 0.40 100 16 64 y n 0.20 100 0.5850 0.025

9 16 64 y y 0.40 100 16 64 y n 0.10 100 0.6425 0.024

10 16 64 y y 0.40 100 16 64 n n 0.50 100 0.8250 0.019

11 16 64 y y 0.40 100 16 64 n n 0.40 100 0.7475 0.022

12 16 64 y y 0.40 100 16 64 n n 0.30 100 0.7125 0.023

13 16 64 y y 0.40 100 16 64 n n 0.20 100 0.6950 0.023

14 16 64 y y 0.40 100 16 64 n n 0.10 100 0.7500 0.022

15 48 128 y y 0.30 100 48 128 y y 0.40 100 0.4900 0.025

16 48 128 y y 0.40 100 48 128 y y 0.50 100 0.5200 0.018

17 48 128 y y 0.40 100 48 128 y n 0.50 100 0.7125 0.023

18 48 128 y y 0.40 100 48 128 y n 0.40 100 0.6300 0.024

19 48 128 y y 0.40 100 48 128 y n 0.30 100 0.5775 0.025

20 48 128 y y 0.40 100 48 128 y n 0.20 100 0.5600 0.025

21 48 128 y y 0.40 100 48 128 y n 0.10 100 0.5850 0.025

22 48 128 y y 0.40 100 48 128 y n 0.05 100 0.6475 0.024

23 48 128 y y 0.40 100 48 128 n n 0.50 100 0.7050 0.023

24 48 128 y y 0.40 100 48 128 n n 0.40 100 0.6700 0.024

25 48 128 y y 0.40 100 48 128 n n 0.30 100 0.6450 0.024

26 48 128 y y 0.40 100 48 128 n n 0.20 100 0.6525 0.024

27 48 128 y y 0.40 100 48 128 n n 0.10 100 0.6925 0.023

Table 2. Accuracy and speed.

Network Accuracy MSE GPU Speed CPU Speed
residual.20.256 20.78 1.30
residual.40.256 12.62 0.68
mobile.16.64 55.61 0.0367 30.70 6.11
mobile.mix.16.64 56.64 0.0349 26.58 4.11
mobile.mix.swish.16.64 57.40 0.0331 21.60 2.75
mobile.48.128 61.97 0.0230 13.06 0.75
mobile.mix.48.128 62.37 0.0223 10.35 0.54
mobile.mix.swish.48.128 62.95 0.0208 7.73 0.42

4 Conclusion

We proposed three improvements to Mobile Networks for Computer Go. They
improve both the supervised training and the architecture of the network by
using Swish activation and mixed convolutions. The large network using mixed
convolutions and the Swish activation has a winrate of 0.6450 against a similar
network not using them. This brings a 104 Elo improvement. Also, the network
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trained with cosine annealing has better accuracy and evaluation error than the
network trained dividing by 10 the learning rate.

It would be interesting to experiment these improvements in other games
and also in the deep reinforcement learning framework.
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Abstract. Sylver Coinage is a zero-sum terminating game, making the
search for an optimal strategy very enticing. Many of the challenges
that existed with creating computer programs to play games like Chess
and Go exist for Sylver Coinage as well. However, unlike Chess and
Go, working towards finding an optimal strategy in the game of Sylver
Coinage presents some new and interesting challenges. We attempt to
make some headway on the problems associated with finding a strategy
for Sylver Coinage using several heuristic algorithms employed by bots
to play the game.

1 Introduction

John H. Conway discovered the game of Sylver Coinage, and popularized it in
the 1982 book, Winning Ways, for your mathematical plays [1]. In this game,
two players face off taking turns naming positive integers that cannot be created
as a sum combination of previously named integers. The first player forced to
name 1, loses. An example game is given in Table 1, below.

Since its inception, Sylver Coinage has been studied extensively in both pub-
lished [3–6,9] and unpublished [2,7,8] works. A lot is known about winning and
losing positions, but not much is known about how to actually win from those
positions. For instance, Hutchings’s Theorem [1] tells us that any prime num-
ber greater than or equal to five is a winning first move. However, there is no
known strategy for finding a winning move after playing such a prime number.
Another problem that comes up in the study of Sylver Coinage is that of infinite
positions.

Definition 1. An infinite position in the game of Sylver Coinage is one in
which there are still infinitely many remaining legal moves.

The first move played by each player is played in an infinite position, but
we can see that sometimes a game can remain in an infinite position for a long
time. For instance, if Player 1 plays 22

100
, then Player 2 can play 22

100−1, then
Player 1 can play 22

100−2 keeping the game infinite since no odd number has
been played, and this can go on for a long time. There can also be infinitely

c© Springer Nature Switzerland AG 2022
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Table 1. Example Sylver Coinage Game.

Player Move Played
Remaining Pos-

Explanation
sible Moves

1 3 1, 2, 4, 5, 7, 8. . . Any move that is not a multiple of 3

2 5 1, 2, 4, 7

8 = 3 + 5, 9 = 3 + 3 + 3, and 10 = 5

+5, so all moves above 7 can be made

as 8 + 3k, 9 + 3k, or 10 + 3k for k ≥ 0.

1 7 1, 2, 4 Remaining moves after playing 7.

2 4 1, 2 Remaining moves after playing 4.

1 2 1 Remaining moves after playing 2.

2 1 — Player 2 is forced to play 1 and loses.

many possible combinations that keep a game in an infinite position. However, a
game cannot remain in an infinite position forever [1]. All Sylver Coinage games
will eventually end.

Comparing Sylver Coinage to games like Chess and Go, we see three distinct
problems with the analysis of the game. They are the size of a position, the lack
of an established corpus of human strategy, and the lack of a natural way to
naively evaluate a position.

In a game of Sylver Coinage, we have the existence of infinite positions,
and we already discussed how this adds difficulty to the problem. Also, many
finite Sylver Coinage positions have a much larger move set than any possible
position in a game of Chess or Go. This fact makes is so that computationally
calculating a winning move from a given position can be almost impossible, and
even a look-ahead strategy would be too computationally intensive.

Little has been discovered that concerns the strategies used to win a game of
Sylver Coinage. Some positions have been analyzed completely and full winning
strategies are known, similar to how there are rules to the endgame in Chess,
but there are still many finite positions that have no known winning strategy.
The only “opening” that is proven to be a winning strategy is a prime number
greater than 5. However, there is no known strategy to winning after playing
a prime number greater than 5 as an opening move. There is a complete lack
of literature on attempted strategies and human evaluation of general positions.
When attempting to write a bot to play a game like Chess or Go, there are many
resources on strategy that can be used to improve the bot. For Sylver Coinage,
no such resources exist.

Lastly, a major problem of Sylver Coinage is the lack of a naive way to
evaluate a position. In Chess, for instance, pieces have value. One may evaluate
positions based on material gains of each player. For instance, in most situations,
a position in which a player doesn’t have a queen on the board is much worse
than the same position with the player still in control of their queen. In Sylver
Coinage, there is no inherent way to evaluate positions and to make material
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gains as it were. Therefore, making a bot proves even more difficult as there is
no easy implementation of a strategy that prioritizes material gains, a strategy
often used historically by primitive chess bots.

With modern computational power, we hope to find new insights on the game
using various algorithms that play against each other. Hence, our goals include
producing a bot that plays well, and making inroads on the second and third
problems. Instead of human analysts writing books on what they believe is a good
position, we will have objectively skilled bots that can provide concrete data.
Further, the algorithms of our best bots make progress on the third problem, by
giving us a way to evaluate a position.

2 Bot Strategies for Playing Sylver Coinage

In pursuit of an optimal strategy for the game of Sylver Coinage, we began the
development of several bots to play the game against each other. We will discuss
the development of the heuristic strategy used by the current most successful
bot and show results from testing this bot against various prior versions.

While the position is still infinite, all the bots rely on the same heuristics
and some random choices to play their moves. Only once the position is finite,
do the bots discussed begin to implement their strategy. For this reason, we will
only focus on the strategy in a finite position. We begin by describing the first
set of “naive” bots with minimal strategy. These bots were

– randomBot - Always picks a random legal move
– alwaysMin - Always picks the smallest legal move greater than 3 (since picking

1, 2, or 3 in any position will lead to a loss if the opponent plays correctly)
– alwaysMax - Always picks the largest legal move
– maximalOdd - The most complicated of the initial batch. This bot would pick

the largest legal move that would return an odd position. If no move returns
an odd position, it will just pick the largest move.

Definition 2. We say the parity of a position is even when the number of
remaining legal moves is even, and odd when the number of remaining legal
moves is odd.

The motivation for the maximalOdd bot came from the realization that if
you can always return a position with odd parity to your opponent, you will
eventually return a position where the only remaining legal moves are 1, 2, and
3 thereby winning. When we ran a round robin tournament with these four
aforementioned bots, we got the results found in Table 2.

We see that the maximalOdd bot outperforms its competition. Comparing its
success rate versus each individual bot over 1000 games, we found that against
alwaysMax, the maximalOdd bot won all 1000 games; against alwaysMin, it won
876 games; and against randomBot, it won 760 games.

The performance of the maximalOdd bot led us to look for advancements
that can be made on this strategy. We came up with the following definitions,
leading to our more advanced maxThen1Weak bot.
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Table 2. 4 bot Round Robin Tournament with three rounds, where each match between
two bots consists of 50 games. Each match gets scored as follows, 3 points for a win, 1
point for a tie, and 0 points for a lose.

Bot Name
Match Score

Total Wins Win Percentage
(27 maximum)

maximalOdd 27 397 88.22%

alwaysMax 18 218 48.44%

randomBot 3 167 37.11%

alwaysMin 6 118 26.22%

Definition 3. We say that a position is weak, or 0-weak, if the parity of the
position is odd.

A position in which the only remaining move is 1 is a lost position. Similarly,
a position with only 1, 2, and 3 as legal moves is lost. So, we see that in many
cases a position of odd parity can lead to a loss. This leads us to our next concept.

Definition 4. We say that a position is 1-weak if for every move, j > 1 in the
position, there is a different unique move, k > 1, such that playing k in response to
j results in a weak position. Note that a 1-weak position is also a weak position as
every move other than 1 has a pair that can be played to return a weak position.

The idea here is that if Player 1 is in a 1-weak position and for every move
there is a response that returns a weak position, then Player 1 will end up playing
into a weak position again no matter their move. Therefore, they are unlikely to
win if the opponent plays perfectly.

Working with this definition, we built a bot, maxThen1Weak, that checks
all the remaining legal moves and sees if playing any of them will result in the
opponent ending up in a 1-weak position. However, checking every move and
then checking if a position is 1-weak is very costly in terms of computation.

Giving the bots any amount of time to calculate and play their moves could
result in extremely long games. Suppose there are 10000 remaining legal moves.
Testing all the moves to see if playing any of them would result in a 1-weak position
is close in computational time to 100003 computations of position. Each compu-
tation of the remaining legal moves in a position is also costly. Thus, to prevent
games from lasting too long, we implemented a time constraint on the bot to play
their move. We chose to have each bot play with a 30 s chess clock, meaning that
each bot has a total of 30 s for all their moves. We wanted to prevent extremely
long games while still giving bots time to make calculations on critical moves.

To make sure that our maxThen1Weak bot doesn’t take too long to play a
move, it only starts to implement its strategy when there are less than thirty
remaining legal moves. Until then it will play the maximal legal move remaining.
Even with this restriction on the implementation of the strategy, the bot still
vastly outperforms the competition thus far. In a round robin tournament against
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all the previously mentioned bots, the maxThen1Weak bot performed as seen
in Table 3.

Table 3. 5 bot Round Robin Tournament with three rounds, where each match between
two bots consists of 50 games. Each match gets scored as follows, 3 points for a win, 1
point for a tie, and 0 points for a lose.

Bot Name
Match Score

Total Wins Win Percentage
(36 maximum)

maxThen1Weak 36 585 97.5%

alwaysMax 18 213 35.5%

alwaysMin 9 135 22.5%

maximalOdd 27 418 69.67%

randomBot 0 149 24.83%

We can see that the maxThen1Weak bot was much ahead of its competition,
only losing 15 out of the 600 games played. In a head-to-head match of 1000
games against the maximalOdd bot, the maxThen1Weak bot was able to win
934 games.

However, as it turns out, there are many positions that are 1-weak, but not
lost. To address this, we arrive at our next definition.

Definition 5. We say that a position is 2-weak if for each move, j > 1 in the
position, there is a different unique move, k > 1, such that playing k in response
to j returns a 1-weak position.

Remark 1. When checking if a position is 2-weak, we are seeing what the position
will be after four moves have been played. In many finite positions, we can try to
calculate every possible remaining position to find a complete strategy for winning,
but this is very computationally expensive. With the strategy of 2-weak we only
need to look a few moves ahead to give us a decent sense of the position.

So, using this new definition, we created the maxThen2Weak bot (previously
called strongCounterV2, winner of the 2021 Computer Olympiad). This bot, like
the maxThen1Weak bot, only uses its strategy when there are less than thirty
remaining legal moves. With this modification, we saw significant improvement.
When we added maxThen2Weak to the round robin tournament we got the
results in Table 4.

We see that the maxThen2Weak bot does have a slight edge over the max-
Then1Weak bot, but both are much stronger than the rest of the bots. In a
head-to-head match of 1000 games against the maxThen1Weak bot, the max-
Then2Weak bot was able to win 664 games.

Using the notion of a 2-weak position we devised an improvement for the
maxThen2Weak bot. The pseudo-code for this bot, dubbed peekThen2Weak
(previously called strongCounterV3), follows.
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Table 4. 6 bot Round Robin Tournament with three rounds, where each match between
two bots consists of 50 games. Each match gets scored as follows, 3 points for a win, 1
point for a tie, and 0 points for a lose.

Bot Name
Match Score

Total Wins Win Percentage
(45 maximum)

maxThen2Weak 45 674 89.87%

maxThen1Weak 36 650 86.67%

maximalOdd 27 423 56.4%

alwaysMax 15 216 28.8%

alwaysMin 6 113 15.07%

randomBot 6 174 23.2%

def pretendMove (move , remainingMoves ) :
r e turn [ i i f ( i in remainingMoves a f t e r move i s played ) ]

i f ( numberOfRemainingMoves <30):
f o r i in remainingMoves :

nextPos i t i on = pretendMove ( i , remainingMoves )
check i f nex tPos i t i on i s 2−weak
i f yes :

play i
i f no i r e tu rn s a 2−weak po s i t i o n :

play max remainingMove

e l s e i f ( numberOfRemainingMoves <200):
f o r i in remainingMoves :

nextPos i t i on = pretendMove ( i , remainingMoves )
i f ( numberOfMovesInNextPosition <20):

check i f nex tPos i t i on i s 2−weak
i f yes :

play i
i f no i r e tu rn s a 2−weak po s i t i o n :

play max remainingMove

e l s e :
play max remainingMove

The logic of the bot is to see if playing a move will return a 2-weak position,
thereby giving the opponent a bad position to play from. If there is a move
that returns a small 2-weak position, play it. If not, play the largest remaining
move, which will only get rid of one move, and hope that your opponent makes a
mistake, letting you put them in a 2-weak position. One of the big goals for this
bot is to make it play efficiently and keep the calculation times to a minimum.
This means that we can’t test for 2-weak positions after playing every move in
a large position since the calculation time for that would be close to n5 where
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n is the number of remaining moves. Through a lot of testing, we found that
starting the checks for 2-weak positions when the number of remaining moves
was less than 30 was optimal for maximizing the number of wins while staying
within the time constraint. Although this is a relatively small position, there are
still many positions that fall into this category. We have also seen that in larger
positions opposing bots rarely have a better strategy and therefore often lose
once the position becomes small.

Adding this bot to the round robin we have been running, we got the following
results (Table 5).

Table 5. 7 bot Round Robin Tournament with three rounds, where each match between
two bots consists of 50 games. Each match gets scored as follows, 3 points for a win, 1
point for a tie, and 0 points for a lose.

Bot Name
Match Score

Total Wins Win Percentage
(54 maximum)

peekThen2Weak 52 781 86.78%

maxThen2Weak 43 722 80.22%

maxThen1Weak 39 707 78.56%

maximalOdd 27 427 47.44%

alwaysMax 16 221 24.56%

alwaysMin 6 122 13.56%

randomBot 4 170 18.89%

3 Introducing Elo to Keep Track of Bot Success

The Elo rating system, named after Arpad Elo, is commonly used to represent
the relative skill level of players in various games including board games like chess
and Scrabble, and video games like League of Legends. Even though the player
pool was small, the results of the round robin tournaments showed that certain
bots are almost always able to beat other bots. This means that win percentage
cannot be used as a good metric to determine the skill level of the bot since it
can vary based on the competition. This led to the idea of implementing an Elo
ranking system for the bots. That way, bots could be tiered in some capacity
and we can get a sense of how likely one bot is to beat another. An Elo ranking
is also future-proof. As more competitions are held and more bots compete, an
Elo ranking allows for more accurate comparison of bots, even ones that did not
play in the same tournament.

To generate an Elo ranking for each of the bots, we used a series of round
robin tournament with Elo for each bot being calculated after it completed a
match. Suppose bot A is playing against bot B. After the match the winning
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bot gets a score of 3 and the losing bot gets a score of 0. In the case of a tie,
both bots get a score of 1. The formula for calculating each bots Elo is

EA =
1

1 + 10
RB−RA

400

EB =
1

1 + 10
RA−RB

400

R′
A = RA + 20 ∗ (BotAScore − 2 ∗ EA)

R′
B = RB + 20 ∗ (BotBscore − 2 ∗ EB)

where RA and RB are the bots’ Elos going into the match and R′
A and R′

B are the
bots’ Elos following the match. The scoring was set in this manner so that if two
bots of equal Elo played and the match resulted in a tie, neither bot’s Elo would
change. Also, with this system the bot’s Elo would change aggressively based
on a win or loss. This was done to make sure that we can get fairly accurate
Elos quickly. All the bots were given a base Elo of 800 except for alwaysMin
with an Elo of 400, maxThen1Weak with an Elo of 1600, and a few other bots
with various strategies. We then ran a round robin tournament with 14 bots
including all the ones mentioned so far and one AI that was trained via Deep
Reinforcement Learning. The tournament consisted of 4 rounds with each match
having 25 games, with peekThen2Weak coming in first and maxThen2Weak as
the runner-up. We set the bots Elos in accordance with the results of this round
robin and ran another round robin with the same bots. This time, three rounds
with each match having 30 games, again we ended with peekThen2Weak coming
in first and maxThen2Weak as the runner-up. After this, we scaled all the bots
Elos by setting the Elo of the worst bot, alwaysMin, to 400 and adjusting the
rest of the Elos accordingly.

At this point, we had the following Elo ratings for each of the aforementioned
bots (Table 6).

Table 6. Bots and their respective Elo ratings after a series of round robin tournamets
to initialize them.

Bot Name Elo

peekThen2Weak 2605

maxThen2Weak 2514

maxThen1Weak 2279

maximalOdd 1313

alwaysMax 759

randomBot 429

alwaysMin 400

Once we had a fairly accurate Elo rating for each bot, we changed the formula
for calculating Elo. Now, a winning bot would get a score of 1, a losing bot would



A Heuristic Approach to the Game of Sylver Coinage 69

get a score of 0, and in the case of a tie each bot would get a score of 0.5. The
new Elo formula is

EA =
1

1 + 10
RB−RA

400

EB =
1

1 + 10
RA−RB

400

R′
A = RA + 16 ∗ (BotAScore − 2 ∗ EA)

R′
B = RB + 16 ∗ (BotBScore − 2 ∗ EB).

This is a more conservative system so that the bots don’t change score so
drastically. We hope that as more bots and algorithms are developed, we can
use this Elo system to determine their success more accurately.

4 Conclusion

One of the problems we mentioned earlier with the journey to finding an optimal
strategy for the game of Sylver Coinage is the lack of a way to evaluate a position.
Through our research, we’ve developed four ways of analyzing a position 0-weak,
1-weak, 2-weak, peek-then-2-weak. Building on this, we can discuss two more
definitions.

Definition 6. We say that a position is n-weak if for each move, j > 1 in the
position, there is a different unique move, k > 1, such that playing k in response
to j returns a (n - 1)-weak position. For example, in a 3-weak position, for every
j > 1 there is a response k > 1 such that the resulting position after playing both
moves is a 2-weak position.

Definition 7. We stay that a position is ∞-weak if for every move greater than
1 that the current player can play for the rest of the game, their opponent will
always have a unique response greater than 1 that returns a weak position.

We see that an ∞-weak position is a lost position as the opponent will always
have a response to keep the parity odd, eventually returning the position with 1
being the only legal move. It is important to note that finding an ∞-weak position
is not guaranteed, and that not all lost positions are necessarily ∞-weak. Also,
it is very computationally difficult to determine if a position is ∞-weak as we
have to calculate every possible remaining position. Even just calculating if a
position is n-weak for n > 2 gets very computationally expensive very quickly.
However, surely finding a move that puts our opponent in a 3-weak position is
better than a move that puts our opponent in a 2-weak position. Therefore, logic
says that with enough computational power, a bot that searches for a move that
returns a 3-weak position, then, failing to find one, searches for a move that
returns a 2-weak position, and so forth would be stronger than our current bots.
This shows that still, there is much work to be done in the search for an optimal
strategy for the game Sylver Coinage.
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Our bots provide headway in addressing the second and third problems we
mentioned in the introduction regarding the analysis of the game. With regards
to the second problem, the various strategies implemented by the bots provide
some material concerning strategies for winning a game of Sylver Coinage. With
regards to the third problem, although we still have no way of naively evaluating
a position, the hierarchical nature of our bot strategies suggests that our anal-
ysis of position has some value. That leads to the likelihood of finding ways to
evaluate a position, even if that value comes from a bot’s analysis.

We hope that with the development of the bots thus far and the growth of
Sylver Coinage as a competitive bot played game, we can make great headway
on the problems associated with finding a winning strategy for the game.
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Abstract. There is a trend in game-playing agents to move towards an
Alpha-Zero-style architecture, including using a deep neural network as
a model for evaluating game positions. Model interpretability in such
agents is problematic. We evaluate the applicability and effectiveness of
several saliency-map-based methods for improving the interpretability of
a deep neural network trained for evaluating game positions, using the
game of Breakthrough as our testbed. We show that the more applicable
methods provide insights into the importance of the different game pieces
and other domain-dependent knowledge learned by the model.
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1 Introduction

Over the past few decades, research into game-playing programs for abstract
strategy board games has first-and-foremost concentrated on developing new
techniques and algorithms for improving gameplay. That work has resulted
in super-human strength game-playing agents [9] for disparate games such as
chess, checkers, Othello, Go, and many more. At the same time, other impor-
tant aspects of intelligent systems have been mainly neglected, such as how to
explain the rationality for one’s actions in human-understandable terms. More-
over, recent advancements in the field where game-playing agents use deep neural
networks (DNNs) to evaluate board positions and action selection in the think-
ahead process make the decision-making process even more non-transparent.

The above-mentioned lack of transparency is not specific to game-playing
agents. As computer-generated models in disparate fields such as healthcare and
banking have become increasingly ubiquitous, the need for humans to understand
their decisions becomes increasingly crucial for establishing trustworthiness. This
has spurred research interest in model interpretability, that is, the development
of approaches to make it less complicated for humans to understand the cause
of models’ decisions in terms of their inputs. Several such approaches now exist,
for example, in the field of image recognition, which has hitherto been at the
forefront of both deep neural network and model-interpretability research. In

c© Springer Nature Switzerland AG 2022
C. Browne et al. (Eds.): ACG 2021, LNCS 13262, pp. 71–81, 2022.
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particular, saliency maps [10] have become a popular way of visualizing which
regions of an image are primarily responsible for a given classification decision.

In this work, we evaluate the applicability and effectiveness of several
saliency-map-based methods for improving the interpretability of a neural net-
work trained to evaluate game positions of a board game, using the game Break-
through as our testbed. The paper’s primary contributions are: (i) We eval-
uate several popular saliency-map-based methods within recently established
paradigms and taxonomies for black-box interpretability methods; and (ii) show
how they can be applied to interpret a deep neural network model for an abstract
board-game—a domain they are not mainly intended for; and, finally; (iii) assid-
uously evaluate and rank the methods by their effectiveness in our domain.
Furthermore, this works adds to the recently emerging literature on explaining
models and actions learned by game-playing agents [4,6].

The paper is organized as follows. Section 2 introduces the terminology and
preliminaries. Section 3 explains the game-playing agent, model, and evaluation
methods used. In Sect. 4, which constitutes the main body of the work, we intro-
duce and analyze the finding of the empirical evaluations of the saliency-maps
methods. Finally, in Sect. 5, we conclude and discuss future work.

2 Background

We start with a high-level overview of the model-interpretability methods we
investigate, before explaining the rules of the game of Breakthrough.

2.1 Model Interpretability

The taxonomy of explanation methods of black-box models categorizes them as
either global or local and model-specific or model-agnostic. Global methods create
explanations valid across all input instances, while local methods’ explanations
are specific to individual instances. Model-agnostic methods explain any black-
box models, while model-specific methods leverage the model’s architecture.

The most straightforward local method is occlusion, where the model’s out-
put sensitivity to leaving out (zeroing) arbitrary input parameters is investi-
gated [15]. Such an approach, where applicable, is appealing as it is both model-
agnostic and straightforward to implement.

A method that is local and model-specific but still requires no ad-hoc work is
to analyze the gradient of the output with respect to individual input pixels [10].
Multiplying the input with the gradient is also often preferable because it lever-
ages the strength of the input. A further extension on the gradient method is
Integrated Gradients [12], which relies on a baseline and interprets the input fea-
ture attribution as the integration of gradients on the straight-line path between
the input and the baseline. GradientShap [5] is an extension of Integrated Gra-
dients that computes the expected gradient by sampling baseline values.
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Fig. 1. Breakthrough: Initial board position (left); Example position (right)

DeepLIFT [8] is a model-specific explanation method that does not rely on
the gradient. It overcomes the limitations of loss of information when the gradi-
ent is zero because the signal might still be meaningful. It calculates the impor-
tance in a backward fashion by distributing attributions, or blame, in terms
of difference-from-reference. For all neurons, a difference-from-reference is calcu-
lated by passing through the input sample and the reference. Finally, it calculates
the importance using predefined rules, such as the linear- or reveal cancel rule.1

LIME [7] is a local model-agnostic method, which uses an interpretable sur-
rogate model to explain the black-box model. A local model, such as a linear
model, is trained on a dataset derived from sampling noise around the input and
using the model evaluation as a target. In the case of a linear model, the weights
from the model serve as feature attributions.

The Shapley value [11] is a concept from cooperative game theory that can
be used to calculate feature attribution. There are multiple ways to approximate
the Shapley values [5], the one we use in this paper is Shapley Value Sampling.
It takes random permutations of the input and adds them one by one to the
baseline. This is repeated multiple times to approximate the Shapley values.

2.2 Breakthrough

The game Breakthrough is an abstract strategy board game, originally played
on a 7 × 7 board but later popularized to an 8 × 8 board. The game can be
played on different-sized (not necessarily squared) boards. In this work we use a
smaller variant of 5× 6, mainly for the ease of demonstration.

The game is a two-player turn-taking game. The players are referred to as
White and Black, respectively. The board is initially set up by placing White’s
pieces along the first two rows and the Black pieces on the last two rows, as
shown in Fig. 1 (left). White goes first and then players alternate, with each

1 A baseline, or a reference, may be interpreted as a neutral state of a neural net-
work, and is important for defining counterfactual arguments [12]. When assigning
an attribution/blame to the input, it is done relative to the baseline. Most of the
methods we consider in this paper rely on a baseline defined as all-zeros.
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player moving one of their pieces per turn. A piece moves one square straight or
diagonally forward (relative to the player). A straight forward move is allowed
to an empty square only, but a diagonally forward moves may also capture an
opponent’s piece. For example, in Fig. 1 (right) the white pawn on d2 has two
moves, to d3 or e3, and the piece on d4 also has two moves, to c5 or e5, both
with a capture. The first player to get a piece across the board wins: White wins
by moving a piece onto the last row, and likewise, Black wins by moving a piece
onto the first row. If all pieces of a player are captured, that player loses. It
follows from the rules that one of the players always wins (there are no draws).

3 Methods

An Alpha-Zero-like agent for playing the game of Breakthrough was developed
for the paper.2 The following subsection providing details, whereas the next
subsection gives an overview of our evaluation methodology.

3.1 The Model

We trained a AlphaZero-like model [9], (p, v) = fθ(s) with parameters θ, where
p is the policy and v is the value function. The value is the output from a
tanh activation function, a scalar value between −1 and 1. And the policy is a
tensor with three channels, where each channel is the same size as the board
and encodes the three different move directions available for all the pieces, i.e.,
forward, and diagonally left, or -right.

The model consists of a body of 5 residual blocks with 56 filters, followed
by the policy and value heads. The input to the model is a tensor with three
channels, where each channel is the same size as the board. The first channel
encodes the board positions of the active player (the player to move), the second
channel encodes the positions of the opponent, and the third channel is a binary
encoding of the active player’s color. If it is white to move, then the third channel
is all ones. Otherwise, it is all zeros. In our case, we use a board with six rows
and five columns. The search is performed with the Monte Carlo tree search
algorithm like AlphaZero. The training procedure was via asynchronous self-
play, where each move played used 200 simulations.

We deviate from AlphaZero we only feed the model the current board posi-
tion. We do this mainly to make the model easier to explain, as an explanation
should not depend on previous board positions.

3.2 Evaluation Measures

The goal of this paper is to compare and evaluate model explanation methods
in the domain of game-playing. Our model is returning a value estimate, and

2 We have no objective measure of the agent’s playing strength, but as anecdote, it
consistently wins all humans it plays, including an expert-level chess player.
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the goal is to explain the estimation. When evaluating the usefulness of the
explanations, we will consider if we can use the explanations to gain trust in the
trained model, if the explanation satisfies our human curiosity, and if we can
interpret some meaning from the model [1].

The evaluation approaches are split into three categories [3]: (i) Functionally-
grounded, where the explanation is evaluated without human, using a proxy as
an indication of explainability; (ii) human-grounded, requiring a human with
non-expertise to evaluate a simple explanation and; (iii) application-grounded,
which requires a human-expert, evaluating an explanation for a real-world task.

At first, we will inspect the saliency map from a qualitative human-grounded
perspective. We will briefly debate if the saliency maps match our human objec-
tives by visualizing statistics from the saliency methods.

Quantitative evaluation will be in the form of functionally grounded exper-
iments. We will define three tasks where the performance will be used as a
proxy for explanation quality. First, we will assess if the saliency method assigns
the highest saliency to a critical piece, and conversely, if the lowest saliency is
assigned to a non-critical piece. We will analyze this as an ablation study, where
we separately remove the least and most important piece and measure its impact
on the game’s outcome. The second proxy task is to analyze the saliency of the
piece that ultimately secures the win in a self-play game. The third task is to
find the smallest sufficient subset of pieces required to retain a winning position.
Then we iteratively remove non-important pieces according to an explainability
method. The explainability method that has the highest area under the curve
has the highest explainability quality.

4 Results

We ran several experiments, both for contrasting the effectiveness of different
model-interpretability methods and for gaining added insights into the domain-
dependent knowledge captured by the learned model.

4.1 Experimental Setup

The model is implemented in Pytorch and trained using asynchronous self-play
using two GeForce RTX 3090, AMD Ryzen 9 5950 with 64 GB of RAM, and
using RAY [14]. It was trained while playing a total of 630,000 self-play games.
The training used stochastic gradient descent with a batch size of 512 and a
decaying learning rate that was re-initialized every few thousand iterations.

LIME’s perturbation of the input was binary, i.e., the features were set either
to zero or one, allowing a more direct comparison with the occlusion method.

The saliency map methods in the paper used the implementations in the
model interpretability library Captum [13].
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4.2 Saliency Methods: Qualitative Evaluation

In image classification, a saliency map is a two-dimensional image, representing
each pixel’s perceived importance for the model’s output. The analogy for a
board game would be an image of the board’s squares, representing the square’s
(or the piece on it) influence on the model’s evaluation of the current game state.

Model-agnostic methods typically rely on modifying the input somehow and
observing its effect on the model’s output. That way, each input feature’s attribu-
tion (or importance) to the output can be determined. One of the most straight-
forward of such ablation methods is that of occlusion, where in our domain we
remove a piece from the board and observe the effect of the model’s output.
Figure 2 shows the saliency map from such an experiment.3 It shows clearly that
the attacking piece on d4 is White’s primary asset along with the supporting
piece on c3 (and the independently potential breakthrough piece on a4). Unsur-
prisingly, for Black, the defending pieces on a6, a5, d6 and d5 play the most
crucial role. This assessment is in perfect consonance with human (expert-level)
assessment: the white pieces on d4 and c3, with White to move, can collec-
tively win the game on their own, while the piece on a4 is a valuable long-term
asset severely restricting the mobility of two of the black pieces, thus potentially
placing Black later in zugzwang, but a well-established expert-level strategy in
playing Breakthrough is to force such situations.

Fig. 2. The saliency map generated by Occlusion; the lighter a square is, the more
important the piece occupying the square is.

Fig. 3. Model-agnostic saliency methods: Shapley Value Sampling and Lime

3 For ease of comparison, the maps are scaled to be in the range [0.0–1.0].
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We ran the same type of experiment for two additional model-agnostic algo-
rithms, Shapley Value Sampling (SVS) and LIME, which also find attribution
by perturbing the model input parameters. However, they do it in a more refined
way, potentially detecting non-trivial input interactions (as described in Sect. 2).
The two methods give almost identical results, depicted in Fig. 3, with the result
for the most part also consistent with the one from the occlusion method. The
only significant difference is that for Black, the defending player, the piece on
b4 gets much-added importance (without that defending piece, White will have
additional ways to win by immediately playing a piece to that square).

Fig. 4. Model-specific saliency methods.

We furthermore experimented with a few model-specific approaches as tak-
ing advantage of the model’s internals may (in theory) yield further benefits.
We looked at several methods that use the model’s gradient in different ways
to detect attribution, and one non-gradient-based, Deeplift. Figure 4 shows the
resulting saliency maps. Again, the more sophisticated methods, Integrated Gra-
dient, GradientShap, and Deeplift, all give intuitively plausible results, whereas
the straightforward gradient-based method is more indecisive.

4.3 Saliency Methods: Quantitative Evaluation

Qualitative evaluation as in the previous subsection, albeit able to provide valu-
able insights, is not sufficient for determining the relative effectiveness of the
different saliency map algorithms—a quantitative approach is needed for that.

We generated 10,000 game positions from self-play by stopping play randomly
10–30 moves (plies) into the game. We played two games from each position for
each saliency-based approach: one without intervention and one after removing
the most important piece for the player to move as judged by the respective
saliency method. The expectation is that the more reliable indicators of a most-
importance piece suffer more profound drop in proportion of games won.

Table 1 summarizes the results. We see the expected effect in all cases but
most profoundly for the Occlusion method followed closely by LIME, SVS and



78 A. Pálsson and Y. Björnsson

DeepLift. This gives us added confidence that these saliency methods are detect-
ing the importance of the different pieces.

In an attempt to further discriminate the effectiveness of the different
approaches in detecting valuable pieces, we looked at how important a pawn
reaching the opponent’s back rank was judged a few moves earlier. One can
think of that information as an indicator of how quickly a particular saliency
method realizes the importance of such “breakaway” pieces. Figure 5 shows that
information, and apparently, LIME and SV S seem to put much-added impor-
tance on such pieces, whereas Occlusion and Gradient do not.

Table 1. The positions are placed into 9 bins based on their evaluation. The top-most
rows shows proportion of games won by the player to move, for each bin, and the
next rows show the same after removing the highest ranked piece. We also include the
average and standard deviation of all methods after removing the lowest ranked piece.

Method Importance Proportion of games won

Nothing deleted - 0.09 0.26 0.36 0.44 0.51 0.55 0.64 0.74 0.90
Occlusion Highest 0.08 0.21 0.26 0.29 0.31 0.37 0.40 0.43 0.50
LIME Highest 0.04 0.18 0.26 0.29 0.34 0.39 0.45 0.47 0.51
SVS Highest 0.04 0.19 0.24 0.32 0.38 0.37 0.44 0.45 0.51

Gradient Highest 0.12 0.23 0.35 0.41 0.49 0.50 0.57 0.63 0.66
Integ. Gradients Highest 0.06 0.18 0.24 0.32 0.38 0.41 0.44 0.47 0.56
Gradient Shap Highest 0.05 0.15 0.27 0.31 0.36 0.41 0.45 0.49 0.57

Deeplift Highest 0.04 0.18 0.24 0.34 0.35 0.40 0.46 0.47 0.51

Average Lowest 0.10 0.27 0.37 0.44 0.50 0.56 0.62 0.75 0.91
Std Dev Lowest 0.01 0.03 0.05 0.06 0.06 0.05 0.04 0.02 0.00

Mean bin value (before deletion) -0.90 -0.68 -0.45 -0.22 0.00 0.22 0.45 0.67 0.90

It is also of interest to investigate how confidently the methods rank the
less important pieces. For that, we use the (functionally grounded) method of
smallest sufficient subsets [2], which in our domain translates into the set of
pieces required to retain a winning position. To create a test-suite, we sampled
positions from random games according to the model’s value function to find
positions in the current player being only a slight favorite. Then we gradually
removed the pawns considered least important, one at a time, and recorded its
effect on the proportion of games won. Figure 6 depicts the result. Essentially,
the later a curve drops, the more effective the respective saliency method is in
ranking pieces by importance. There are two clear winners, LIME and SV S, and
two methods that do notably worse than the others, Occlusion and Gradient.

4.4 Explaining the Explanations

Finally, we were also interested in knowing common higher-level characteristics
of pieces judged valuable. One way to unveil such characteristics is to build a sur-
rogate model from hand-made higher-level features and then train the surrogate
model to predict the saliency values.
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Fig. 5. Distribution of saliency values of a piece 4-ply prior to the winning move.

Fig. 6. Effect of gradually removing the least-important pieces.

We build such a surrogate model using a LightGBM regression tree. Figure 7
shows the relative importance of higher-level features we defined for the model;
it clearly shows how important it is in Breakthrough to have advanced pieces,
but features such as a center-of-mass are also important.

Fig. 7. The average Shapley Values of each of the inputs to the interpretable surrogate
model. Here COM stands for center of mass. Has- and Giving Support indicate if the
piece is supporting or giving support diagonally to a piece of the same color. # Potential
Captures indicates is the number of available capture moves for the current player.

5 Conclusion and Future Work

This paper evaluated several popular saliency-based model interpretability meth-
ods on a DNN based game-playing agent, demonstrating their usefulness for
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identifying the most and least essential game pieces. The more sophisticated
attribution methods, like Shapley Value Sampling and LIME, performed overall
the best. One of the strengths of those methods is that they can capture non-
trivial interactions between the inputs, which seems well suited to identify vari-
ous in-game piece dynamics. Moreover, those methods are both model-agnostic,
making them well-suited for a wide range of models.

As future work, we plan to evaluate the methods’ applicability in other games
to better establish their usefulness in the domain of abstract board games. Also,
we only scratched the surface of looking at higher-level domain concepts (beyond
piece importance), and further research in that direction holds promise.
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Abstract. Quixo is a two-player game played on a 5 × 5 grid where
the players try to align five identical symbols. Using a combination of
value iteration and backward induction, we propose the first complete
analysis of the game. We describe memory-efficient data structures and
algorithmic optimizations that make the game solvable within reasonable
time and space constraints. Our main conclusion is that Quixo is a Draw
game. The paper also contains the analysis of smaller boards and presents
some interesting states extracted from our computations.

Keywords: Quixo · Strongly Solved · Backward Induction · Draw
Game

1 Introduction

1.1 Quixo

Quixo is an abstract strategy game designed by Thierry Chapeau in 1995 and
published by Gigamic [3,4]. Quixo won multiple awards,1 both in France and
in the United States. While a four-player variant exists, Quixo is mostly a two-
player game that is played on a 5 × 5 grid, also called board. Each grid cell, also
called tile, can be empty, or marked by the symbol of one player: X or O.

At each turn, the active player first (i) takes a tile – empty or with her symbol
– from the border (i.e. excluding the 9 central tiles), and then (ii) inserts it, with
her symbol, back into to the grid by pushing existing tiles toward the hole created
in step (i). The winning player is the first to create a line of 5 tiles all with her
symbol, horizontally, vertically, or diagonally. Note that if a player creates two
lines with distinct symbols in a single turn, then the opponent is the winner.
1 As d’Or Festival International des Jeux (1995), Oscar du Jouet (1995), Mensa Select

Top 5 Best Games (1995), Games Magazine “Games 100 Selection” (1995), Games
Magazine “Best New Strategy Game” (1995), Parent’s Choice Gold Award (1995) [4].

A Japanese version of this paper was published and presented at the 25th Game
Programming Workshop (GPW’20) [6]. S. Tanaka received the GPW Research
Encouragement Award and the IPSJ Yamashita SIG Research Award for his work.
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Figures 1a and 1b show the real game and our corresponding representation.
Figure 1c depicts the resulting board after a valid turn by player O from the
board depicted in Fig. 1b: player O first (i) takes the rightmost (empty) tile of
the second row, and then (ii) inserts it at the leftmost position shifting the other
tiles of this second row to the right.

(a) Real game (b) Simplified illustration (c) After a move from O

Fig. 1. The two-player game of Quixo

Quixo bears an immediate resemblance with some classic games such as Tic-
Tac-Toe, Connect-Four, or Gomoku. However there are two major differences: (1)
the board is “dynamic;” a placed X or O may change its location in subsequent
turns, (2) the game is unbounded (in term of turns). The first point is what
makes the game interesting to play: dynamicity makes Quixo very difficult for
a human player to plan more than a couple of turns in advance. The second
point raises immediately a natural question about termination. Trivially, players
could “cooperate” to create an infinite game, as official rules do not specify any
terminating rules, such as the 50-move or the threefold repetition rules of chess.

1.2 Objectives and Challenges

Our main goal is to solve Quixo, which means finding the optimal outcome
of the game assuming perfect players. As for any combinatorial game, there
are only three possible outcomes: first-player-Win, second-player-Win, or Draw.
While a second-player-Win seems unlikely, there is no easy observation (e.g.
strategy stealing argument) that would permit to discard it. It is improbable to
obtain analytical results, so we focus on computing this optimal outcome and the
corresponding optimal strategies. More precisely, we are looking for outcomes of
all states, i.e. strongly-solving the game. In addition to the real 5 × 5 game of
Quixo, we also analyze variants using 3 × 3 or 4 × 4 grids, where players have to
create a line of 3 (resp, 4) tiles with their symbols.

Even on the 5 × 5 grid, Quixo’s game “tree” is not extremely large, in
comparison with other games. The number of positions is upper bounded by
2 · 325 ≈ 1.7 · 1012 configurations – 2 possibilities for the active player, and
3 options for each cell in the grid. This number is in a similar order of mag-
nitude as the numbers of positions in Connect-Four, which was solved 30 years
ago [1].
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However, the game “tree” of Quixo is very different from other similar game
“trees.” For most games, the “trees” are directed acyclic graphs (DAG), assum-
ing the merging of identical positions reached from different histories. Conversely,
for Quixo, the game “tree” contains cycles. Indeed, especially in the later stages
of the game, when the grid is mostly full of Xs and Os, most moves do not add
symbols, only reorganize them. Therefore, a simple minimax algorithm (with or
without alpha-beta pruning) may never terminate.

As a consequence, instead of searching the game “tree” with a DFS algorithm
(as done by minimax or alike algorithms), it is necessary to use a more costly
approach. Ideally, one would like to analyze the whole game “tree,” but it is
currently impossible to store it all at once in memory on commodity hardware.

1.3 Results Overview

Our solution involves a combination of backward-induction and value-iteration
algorithms, implemented using a state representation that is both time and space
efficient. Based on our computations, the regular 5 × 5 Quixo is a Draw; neither
player has a winning strategy if both players play optimally, and the game con-
tinues forever. On smaller grids, the first player wins. Interestingly, on the 4 × 4
grid, it takes at least 21 moves (11 moves from the first player and 10 from the
opponent) to win. Since 21 > 16, it is always necessary to re-use existing tiles.

Outline. Section 2 presents some basic definitions and terminology used in the
paper. Sections 3 and 4 describe respectively the data structures and the algo-
rithms used to solve Quixo. Section 5 summarizes our findings and highlights
some unexpected observations. Finally, Sect. 6 concludes the paper with a list of
open problems.

2 Preliminaries

By convention, the first player is player X and the second player is player O.
The board corresponds to the 25 tiles and the active player denotes the player
playing next. Note that, contrarily to Tic-Tac-Toe or Connect4, the active player
cannot be deduced automatically from a given board. Therefore a state of the
game consists of both a board and an active player. The initial state is the empty
board (that is, the board with 25 empty tiles) with player X as the active player.

A state is terminal if its board contains a line of Xs or Os tiles. The children
of a given state are all states obtained by a move of the active player. A terminal
state has no children since the game is over and there are no valid moves. The
parents of a state are defined analogously. The set of states and parent-child
relations induce the game graph of Quixo (referred to as the game “tree” in the
prequel). As mentioned earlier, this graph is neither a tree nor an acyclic graph.

Outcomes. Each state has a state value, also called outcome which can be either
active-player-Win, active-player-Loss, or Draw. For brevity, the active-player
part is omitted, and a Win (resp. Loss and Draw) state denotes a state whose
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outcome is Win (resp. Loss and Draw). The outcome of a terminal state is
trivially defined. For non-terminal states, the outcome is inductively defined:
Win if there is at least one Loss child, Loss if all children are win, Draw otherwise.

Symmetries and Swapping. Rotating or mirroring the board does not change
the state value. Therefore states can be grouped in equivalence classes. This
optimization divides approximately by eight the number of states: four being
due to rotations, and two to mirroring. Also, swapping the active player and
flipping all Xs and Os to Os and Xs respectively creates a new equivalent state.
Figure 2 illustrates these notions.

Active player: X

(a) Base

Active player: X

(b) Rotation 90◦

Active player: X

(c) Mirror

Active player: O

(d) Swap X-O

Fig. 2. Equivalent states with respect to symmetries and swapping

In the remaining of the paper, all states have X as the active player. By an abuse
of notation, we then identify the state and its board, omitting the active player.

3 Solving Quixo – Data Structures

This section considers only 5 × 5 Quixo but explanations can easily be adapted
for smaller grids. First, we describe our memory-efficient representation of states.
Then we focus on the more general problem of storing intermediate results. Due
to space constraints, some explanations are omitted and can be found in the full
paper [7].

3.1 Bitboard State Representation

0000000000000000000000000000000000000000000000000000000000000000

unused unused25 bits to store X locations 25 bits to store O locations

Fig. 3. State representation in 64bits (LSB on the right)

We use 64 bits to encode a state as depicted in Fig. 3. This representation offers
some decisive advantages. It enables very fast computation of all basic operations.
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s = 0000000000000100011101010000010000000000011000100000101000001000

B = 0000000000001111100000000000000000000000000011111000000000000000

C = 0000000000000000000000000000000000000000000010000000000000000000

Fig. 4. Our 64bits representation of the state of Fig. 1b and constants B and C used to
compute the move creating the state of Fig. 1c using (((s & B) >> 1) & B) | (s &

~B) | C

Given a state s, and some appropriate pre-computed constants A, B, C (see Fig. 4),
all the following operations can be executed efficiently (<<,>>, &, |, and ~ denote
usual bitwise operations):

– Swapping the players: s << 32 | s >> 32
– Checking the existence of a tile at a given location: s & A != 0
– Checking the existence of a given line of Xs or Os: s & A == A
– More interestingly, moves can also be computed quickly; e.g. for a down-

pushing move: (((s & B) >>5) & B) | (s & B) | C

Unfortunately, rotations and symmetries are still costly to compute. In fact,
we believe that there is no efficient way to compute rotations with a compact
data structure. Based on our observations, it is faster to avoid symmetry opti-
mizations, and simply compute values independently for all symmetrical states.
In the next section, we thus investigate how to store the outcomes of 325 states.

3.2 Optimized Storage of Results

Using our optimized state representation, computations can be done quickly. It
remains to consider the problem of storing the outcome of each state. Indeed,
in order to strongly-solve the game, we need to record the outcome of all pos-
sible states. Three possible outcomes (Win/Loss/Draw) means that 2 bits are
necessary to store each outcome. Using a typical (state: value) associative array
requires at least 64 bits + 2 bits per entry, which sums up to more than 6.5TB.2

It is possible to enumerate all possible states in a pre-determined order. It
is therefore natural to only store the outcomes in a (giant) bit array. Again,
2 bits per entry yields a total size of 2 ·325 = 197GB. Although more reasonable,
renting a server with 200 GB of RAM may still require a significant investment.
We further reduce memory requirements.

The obvious solution is to avoid storing all outcomes at the same time in
RAM. Using backward induction (see Sect. 4), we only need to have a subset of
already computed values to compute the new outcomes. For example, to compute
all states containing either 10 Xs and 8 Os or 8 Xs and 10 Os, it is sufficient to
know the (inductively computed) outcomes of states with either 8 Xs and 11 Os,

2 In practice, this amount of space is likely much higher due to memory alignment.
So, a more realistic estimation for full storage is in the order of 15 TB.
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or 10 Xs and 9 Os. Therefore we partition the 325 states based on the number
of Xs and Os. Let Cx,o denotes the class of states containing x Xs and o Os.

The largest class is C8,8 which contains
(
25
8

) · (
17
8

) ≈ 2.6 · 1010 states. Using
2 bits per state, it corresponds to ≈ 6.1 GB of RAM. Since we can implement
our algorithms using at most two classes loaded in memory at once, it becomes
possible to solve the game on a more typical 16 GB-RAM computer. While this
partitioning is easy, there is an hidden problem:

Creating a bijection between the set of all 325 states and the set of natu-
ral numbers {0, . . . , 325 − 1} is straightforward and easily computable (in both
directions); one can see the 25 cells as the 25-digit ternary representation of a
number (0 for empty, 1 for X, and 2 for O).

However, creating a bijection between Cx,o and the set
{
0, . . . ,

(
25
x

) · (
25−x

o

)

− 1
}

is less straightforward and more difficult to implement in an efficient way.
Due to space constraints, implementation details are omitted here.

4 Solving Quixo – Algorithms

4.1 Computing Outcome

Value Iteration. After designing data structures, we now present our algo-
rithms. As explained in Sect. 1.2, due to cycles in the game “tree,” minimax
algorithm cannot be used for Quixo. The most natural algorithm for solving
such games is the Value Iteration (VI) algorithm (recalled in Algorithm 1). In
the pseudo-code, the children of a state denote the set of states that are reach-
able after one move.3 This algorithm follows closely the definition of outcome
provided in Sect. 2.

Algorithm 1. Value Iteration (VI)
1: for all states s do
2: if there is a line of Xs in s then
3: outcome[s] ← Win
4: else if there is a line of Os in s then
5: outcome[s] ← Loss
6: else
7: outcome[s] ← Draw
8: repeat
9: for all states s such that outcome[s] = Draw do

10: if at least one child of s is Loss then
11: outcome[s] ← Win
12: else if all children of s are Win then
13: outcome[s] ← Loss
14: until no update in the last iteration

3 Some implementation details are omitted. For example, since we only consider states
with active player X, we need to swap the tiles/players after each move.
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Backward Induction. Quixo cannot be solved directly applying this algo-
rithm since it would require to store all outcomes at once in RAM (and thus
would be too slow due to memory caching). Fortunately, we can use the classes
Cx,o we defined in Sect. 3.2. Indeed, for any state of Cx,o, its children belong
to Co,x

⋃ Co,x+1 (due to player swap after each move). Thus, it becomes possi-
ble to compute all outcomes of Cx,o

⋃ Co,x using only Cx,o+1

⋃ Co,x+1. Starting
from states with 25 non-empty tiles, and using backward induction, we can com-
pute all outcomes having only four classes of states in RAM at any time. The
corresponding pseudo-code is given in Algorithm 2.

Algorithm 2. Backward Induction using VI internally
1: for n = 25 to 0 do
2: for x = 0 to �n/2� do
3: o ← n − x
4: if n < 25 then
5: Load outcomes of classes Cx,o+1 and Co,x+1

6: Compute outcomes of classes Cx,o and Co,x using VI
7: Save outcomes of classes Cx,o and Co,x

8: Unload all outcomes

This algorithm is likely to be able to solve Quixo, but, in practice, it is too
slow. Unfortunately, it is difficult to evaluate precisely its complexity because it
depends on the number of internal (value) iterations, which is itself difficult to
predict. The topology of the game “tree” has a strong impact on the required
number of iterations to converge.

Algorithmic Optimizations. We propose two algorithmic enhancements that
significantly reduce the computation time. Due to space constraints, pseudocodes
and detailed explanations are omitted and available in the full paper.

Use Parent Link. To be a Win state, there should be at least one Loss child.
Reversing this statement, we obtain that every parent of a Loss state is a Win
state. This simple observation can be used to improve the computation. As soon
as a state is found to be a Loss, we can compute all its parents and update
their outcome to Win. Eventually they would have been updated to Win in
Algorithm 1, but updating them immediately makes it possible to skip searching
if states are Win (Lines 10 to 11) and may allow other states to be updated faster
too. Note that parents of a given state can also be computed efficiently using a
similar method as for computing its children (see Sect. 3.1).

Use Win-or-Draw Outcome. Internal iterations require checking the outcomes
of all children of a given state (see Lines 10 and 12 of Algorithm 1). Some of
the children belong to already inductively-computed classes, while the others
belong to classes currently being computed. More explicitly, for a state s ∈ Cx,o,
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some children belong to Co,x and some belong to Co,x+1. The outcome of this
latter class has been already computed inductively. It is possible to check them
only once by introducing a new temporary outcome: WinOrDraw.

Complete Algorithm. Combining value iteration, Backward induction, and our
two optimizations, we obtain the complete algorithm we used to solve Quixo.
Note that we also added some parallelization to reduce computation time
(see [7]).

4.2 Deriving an Optimal Strategy

Using previously described algorithms, it is possible to compute all state out-
comes. One may think that always choosing deterministically a winning move (if
available) is a winning strategy. Unfortunately, such a strategy does not guaran-
tee winning since Quixo game tree contains cycles. Hence, it is possible to enter
a cycle where all states outcomes are Win (for one of the player), yet the game
never finishes. Note that this issue does not exist in games without cycles, such
as Connect-four.

It is possible to devise a probabilistically winning strategy by choosing a
winning move uniformly at random (among winning moves): indeed, from any
Win state, there exists a sequence of steps that does not belong to an infinite
cycle. So, in an expected finite number of steps, the player wins.

However, the random strategy is not optimal with respect to the number of
steps taken to win. Instead, we focus on the strategy to win in the minimum
number of steps (assuming the loosing player always chooses the action that
delays her loss as much as possible). To actually compute the steps to win or
lose, we now store the number of steps to the final outcome, using a new step
variable. The step variable is defined as follows:

– In a terminal state, step is 0,
– If the state is Win, step is one plus the minimum of the steps of Loss children,
– If the state is Loss step is one plus the maximum of the steps of Win children.

Previous algorithms can be adapted to compute this additional step variable.
Note that it incurs a memory cost; instead of only 2 bits per outcome, 16 or 32
more bits are needed for an integral type. Since 5 × 5 Quixo is a Draw (Sect. 5),
there is obviously no (optimal) winning strategies. Hence we used this modified
algorithm only for the smaller variants of Quixo on 3 × 3 and 4 × 4 grids.

Algorithm 3 is the update of Algorithm 1 including the computation of steps.

4.3 Implementations

To increase confidence in our results, all computations (except the one described
in Sect. 4.2) have been computed and verified with two independent implementa-
tions using slightly different optimizations. The complete source code is available
in a public Github repository [5].
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Algorithm 3. Value Iteration with steps to Win or Loss
1: for all states s do
2: if there is a line of Xs in s then
3: outcome[s] ← Win
4: step[s] ← 0
5: else if there is a line of Os in s then
6: outcome[s] ← Loss
7: step[s] ← 0
8: else
9: outcome[s] ← Draw

10: i ← 1
11: repeat
12: for all states s such that outcome[s] = Draw do
13: if at least one child of s exists whose outcome[c] is Loss and step[c] is i − 1

then
14: outcome[s] ← Win
15: step[s] ← i
16: else if all children of s are Win then
17: outcome[s] ← Loss
18: step[s] ← max(children steps) + 1
19: i ← i + 1
20: until no update in last iteration

5 Results

5.1 5 × 5 Quixo

Our main result is that Quixo is a Draw game. In other words, if perfect players
play the game, no one wins, that is, the game never finishes.

Using a single-thread computation,4 it takes approximately 19 500 min (just
under two weeks) to obtain this result. Using multithreading, the running time
shrinks to around 1 900 min (i.e. ≈ 32 h) using up to 32 threads. For comparison,
it takes around 13.5 s and 0.1 s for 4 × 4 and 3 × 3 grids respectively.

Some Additional Observations. Table 1 shows the total number of Win, Loss, and
Draw states. As the number of Draw states is smaller than those of Win or Loss
states, it may come as a surprise that the initial state is Draw. However, when
looking at the distribution of these states, it appears that most of the Draw states
are located near the top of the game “tree” (i.e., with few marked tiles).

Figure 5 displays a few selected states whose outcomes are not trivial.

5.2 4 × 4 Quixo

Contrarily to the real game, the 4 × 4 variant is a Win for the first player.
Intuitively, the smaller board makes it easier to create a line. However,
4 We used a Ubuntu 18.04LTS server equipped with 32GB of RAM and powered by

a 16-core Intel Core i9-9960X CPU.
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Table 1. Total Win, Loss and Draw states numbers

Win Loss Draw

441,815,157,309 279,746,227,956 125,727,224,178

(a) Player X can win. One
of the states with the small-
est numbers of tiles such
that the outcome is not
draw.

(b) Player X can win. One
of the states with the small-
est numbers of tiles such
that the outcome is not
draw and both players have
chosen empty tiles only.

(c) Player X loses. The
number of Xs and Os tiles
is the same but the active
player loses.

Fig. 5. Some interesting states on the 5 × 5 board. Player X is next to play.

winning is not trivial; it requires up to 21 moves when the opponent follows
an optimal strategy.

Some additional observations. Some states are obviously not reachable, e.g. a
state containing a single O not on an edge. Some other unreachable states are
much less obvious, such as the state in Fig. 6a. Globally, there are 41 252 106
reachable states, which accounts for 95.8% of the 316 states. Therefore, ignoring
unreachable states in the computation would not be significant.

(a) Unreachable
state. No previ-
ous state.

(b) Player X
loses in 1 step.

(c) Player X
loses in 22 steps.

(d) Draw state. O can
come back to this state
(or a symmetric one) with
the next O step even if X
plays optimally.

Fig. 6. Some interesting states on the 4 × 4 board. Player X is next to play.
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Using the algorithm described in Sect. 4.2, we computed the optimal strate-
gies and the numbers of steps required to win/lose.

Typically, a winner wins in an odd number of steps, and a loser loses in an
even number of steps. However, some states yield an optimal player to lose in 1
step. One such example is shown in Fig. 6b. In all children states, there is a line
of O, so X loses in 1 step.

Another interesting result is that there are some states that lose in 22 steps
although no state wins in 23 steps, and the initial state wins in 21 steps. Figure 6c
is the only state (and its symmetric states) to lose in 22 steps.

6 Conclusions and Open Questions

To summarize, the official 5 × 5 Quixo is a Draw game; neither player can win.
Smaller 3 × 3 and 4 × 4 variants are First-Player-Win games.5 Given that the
5×5 board is already a Draw game, one may expect larger instances to be Draw
games too. We conjecture that it is the case, but we were not able to prove it.

Mishiba and Takenaga proved that a generalization of Quixo is EXPTIME-
complete [2]. They consider arbitrary large boards, but players still have to
align only five identical symbols. Based on this generalization, a natural question
arises; can the first player (or unlikely the second player) create a line of four
symbols when playing on the 5 × 5 board? Changing the two lines losing rule
into a winning rule may also change the global outcome.

Finally, a last research direction would be to compute human-playable opti-
mal strategies. We strongly solved Quixo on 4 × 4 and 5 × 5 grids. However,
playing an optimal strategy remains difficult for humans.
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Abstract. In this paper we give an overview of results obtained for
solving the combinatorial games of Col and Snort on rectangular boards.

For Col on boards with at least one dimension even we give a strategy
guaranteeing a win for the second player. For Col on general odd × odd
boards we found no applicable strategy, though all experimental data
show second-player wins. For Linear Col we were able to prove using
Combinatorial Game Theory (CGT) that all chains, including odd-length
chains, are second-player wins.

A similar strategy as for Col guarantees for Snort on boards with
both dimensions even a win for the second player and with at least one
dimension odd a first-player win. Snort therefore is completely solved.

1 Introduction

In Artificial Intelligence map-coloring has been a prime focus of research. In
its basic form the question is: can a map with neighboring regions be colored
with some finite number of colors, such that neighboring regions are colored
differently? Any map-coloring problem is equivalent with some graph-coloring
problem, where nodes represent regions, and edges denote common frontiers
between corresponding regions, and the goal is to color all nodes in the graph
such that any two connected nodes are colored differently.

In the field of Combinatorial Game Theory (CGT in short), graph-coloring
problems can be transformed into games by changing the goal of a game: not to
fully color a map, but to make the last move (under the normal ending rule) when
players alternately color one region. It is common to restrict such graph-coloring
games to two colors, where both players have their own color, conventionally
Black for the player who starts the game and White for the opponent.

The two combinatorial graph-coloring games most well known are surely Col
and Snort, both first analyzed by Conway [3]. He attributed Col to Colin Vout and
Snort to Simon Norton. Both are similar in the sense that both players alternately
color a node in the graph, where one player may only color it black, the other only
white. The two games differ in their conditions for coloring: in Col neighboring
nodes may not be colored the same (further called the Col-condition), while in
Snort they may not be colored differently (the Snort-condition).
c© Springer Nature Switzerland AG 2022
C. Browne et al. (Eds.): ACG 2021, LNCS 13262, pp. 96–106, 2022.
https://doi.org/10.1007/978-3-031-11488-5_9
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Although both games can be played on any types of graphs, in this paper we
concentrate on rectangular boards (sometimes just refered to as boards), where
both players alternately put a stone of their color on a square. As a special
case of Col and Snort on boards we consider Linear Col and Snort, played on
one-dimensional boards (further called chains).

The literature on Col and Snort is very scarce. It has been introduced in
the framework of CGT in the seminal books On Numbers and Games [3] and
Winning Ways [2], where many small graphs are given and some more general
rules are exemplified. Most of these are irrelevant for analyzing larger boards,
except Linear Col, for which values were given without proof. Such a proof is
given in this paper. Recently, a bachelor thesis by Demeur [4] reports solving
many Col and Snort boards with sizes up to some 30 squares, based on αβ
search. We are not aware of any further analyses of Col and Snort.

2 Combinatorial Game Theory for Col and Snort

In this section we give a short introduction to the Combinatorial Game Theory
as far as relevant for Col and Snort. For a more thorough introduction, we refer
to the literature, in particular [1–3,6].

In a combinatorial game, the players are conventionally called Left and Right.
For Col and Snort, Left is the player moving the black stones, therefore also
denoted as Black, and similarly Right (White) moves the white stones. A game
(position) G is then represented as G = {GL |GR}, where GL and GR stand for
sets of games (the options) that players Left and Right, respectively, can reach
by making one move in the game. The value of a game indicates how good a
game is for a player. Then there are four possible outcome classes.

1. The class L consists of all positions where Left wins, irrespective of who moves
first. These positions have strictly positive values.

2. The class R consists of all positions where Right wins, irrespective of who
moves first. These positions have strictly negative values.

3. The class N consists of all positions where the player to move (the next
player) wins. These positions have fuzzy values (incomparable with 0).

4. The class P consists of all positions where the player to move loses, so the
previous player wins. These positions all have value 0.

Depending on the outcome class of a game, several types of values are possi-
ble. We treat the most important ones for Col and Snort in the next subsections.

2.1 Numbers and Star

Numbers have the property that any option is a number itself, and that any
left option has a lower value than any right option. The simplest number game
is the endgame {|}, denoted as 0. In this position, no player has any available
moves, so it is a loss for the player to move. Larger or smaller numbers are built
recursively. So 0 = {|}; 1 = {0|}; 2 = {1|};−1 = {|0};−2 = {|−1}; etc.
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Some example Col positions with integer values are given in Fig. 1. In the
left position, there is only one empty square, but due to the Col-condition it can
be colored neither black nor white, so this position has value 0. In the middle
position there is also one empty square, which may only be colored black, so
this position has value +1. In the right position, with two empty squares, only
White can move (twice), so this position has value −2.

Fig. 1. Example Col positions on the 3 × 1 board with integer values.

Also fractions are possible. For example, the position in Fig. 2 has value
{−1, 0|1} = {0|1}. Naturally this value is notated as 1/2 (supported by the proof
that two games with value 1/2 are equivalent to one game with value 1).

Fig. 2. Example Col position on the 3 × 1 board with value 1/2.

Besides the endgame 0 on which all numbers are built, the most important
simple game is the one denoted as Star or ∗. It is defined as ∗ = {0|0}, where the
player to move has just 1 option, leading to the endgame. Therefore, whereas
the game 0 is a game where the second player to move wins (since trivially the
next player cannot move), the ∗ is a game where the first player to move wins.
A trivial example in both Col and Snort is a lone empty square; a more complex
example in both games is given in Fig. 3.

Fig. 3. An example ∗ position in both Col and Snort on the 3 × 3 board.

∗ is a fuzzy number, incomparable with 0. In fact it is a nimber, which is
formally defined as ∗n = {∗0, ∗1, ∗2, · · · , ∗(n − 1) | ∗0, ∗1, ∗2, · · · , ∗(n − 1)}.
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In partisan games like Col and Snort nimbers can occur, but are quite rare; so
far we only found nimbers 0 = ∗0 and ∗ = ∗1. Conway [3] has proven that in
Col every position has as value a number (z) or a number plus ∗ (notation z∗).

2.2 Switches

Simple Snort games often have numbers as options, but have at least one left
option with a larger value than some right option. For simple switches of the
form {a|b} (a > b) an alternative notation is a+b

2 ± a−b
2 , where the first term is

the mean value of the switch and the second term its temperature. A few example
Snort positions with simple switches as values are given in Fig. 4.

Fig. 4. Example Snort positions on the 4 × 1 board with switch values.

In the left position Black to move can take any of the remaining two empty
squares to reach a position of value +1, whereas White’s only option is to take
the lowest empty square, ending the game; so this position is a switch with value
{1|0} (alternative notation 1/2 ± 1/2). The second and third positions likewise
have values {2| − 1} (alternatively 1/2±11/2) and {2|1} (alternatively 11/2± 1/2).
Clearly the third position is to be preferred for Black over the second one. As
a consequence, in the rightmost position this option for Black dominates; since
White options are the negation of Black’s options, the latter position can be seen
to have value {{2|1}|{−1| − 2}} (alternatively ±{2|1}). It is clear that larger
boards can have quite long and complicated switches as values.

Note that switches of the form ±x are called fair switches, since both players
to move gain the same profit. Obviously, all switches for empty Snort boards are
fair switches.

3 Partisan Col on Rectangular Boards

In this section, we investigate standard (partisan) Col on rectangular boards.
This means that both players have their own stones, black for the Left player
and white for the Right player.

3.1 Col on m × n Boards with m and/or n Even

For m × n Col boards with m and/or n even we found that the second player
always can win. This can easily be proven as stated in Theorem 1.
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Theorem 1. All empty m × n Col boards with m and/or n even are second-
player wins and thus have CGT value 0.

Proof. The second player can use a copy-strategy as follows. Wherever the first
player (Black) moves, the second player (White) plays symmetric wrt the center.
Then after every black move the board has opposite-color symmetry wrt the
center. Since every black move must fulfil the Col-condition, every white move
will automatically fulfil the Col-condition also. Consequently, the second player
makes the last move and wins. ��

We further denote this strategy as the center strategy. Example Col games
on the 4× 4 and 4× 5 boards where White uses this winning strategy are shown
in Fig. 5. The left diagram shows a Col game on an even × even board, the right
diagram on an even × odd board. The numbers inside the stones are the move
numbers. The small dot indicates the center of the board.
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Fig. 5. Example Col games on the 4 × 4 and 4 × 5 boards won by White.

3.2 Col on m × n Boards with m and n Odd, with m,n ≥ 3

As a consequence of Theorem 1, only m × n Col boards with both m and n
odd are of interest for solving. Obviously, the second player cannot use the
center strategy, since the first player can at some moment color the center, to
which the second player cannot respond using this strategy. In principle such
boards can therefore be either first-player or second-player wins. Only for empty
1 × n boards (see Sect. 3.3) with odd n we know the solutions, which limits the
interesting boards to be solved to empty m × n boards with both m and n odd
and m,n ≥ 3. Demeur [4] proved that the 3 × 3, 3 × 5, 3 × 7, 3 × 9, and 5 × 5
boards are second-player wins (CGT value 0), but his analyses show no general
applicable winning strategy for either player on odd × odd boards.

3.3 Linear Col

We denote Col on a 1×n (or equivalently n× 1) board as Linear Col. Of course
we already know that Linear Col on even-length boards is a second-player win, so
has CGT value 0. The odd-length Linear Col boards are still of interest, since our
previous analysis gives no clue. Linear Col is supposedly completely solved, see
Winning Ways [2], Vol. 1, pp. 49–50. Since there are no proofs given we provide
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such a proof in Theorem 2. This will be a proof by induction on the length of
the chain. To do this we do not only consider just empty, black, or white nodes,
but also so-called tinted nodes. After coloring a node the Col-condition imposes
that its neighbors never may receive the same color. To indicate this we may
tint an empty neighbor of a black-colored node white, to indicate that such a
node may only be colored White in the future. Likewise, an empty neighbor of
a white-colored node is tinted black. If an empty node receives both a black and
a white tint, it means that this node may not be colored anymore at all.

We use the following notation for this: B for a black-colored square, W for
a white-colored square, b for a black-tinted square, w for a white-tinted square,
x for an empty square that can no longer be colored by either player, and o for
an empty square that still can be colored by either player. For brevity we omit
all edges.

Theorem 2. Empty Linear Col chains of length n have CGT value 0 for n > 1.

Proof. Note that as soon as a node is white-colored or black-colored (and the
neighbors have been updated), it may be removed from the chain, which accord-
ingly splits. It splits also when an empty node can not be colored by any player,
since this node may also be removed. Therefore the CGT value of a Linear Col
chain can be determined by the values of shorter subchains, in which only end
nodes are possibly tinted. For the chains o · · ·o, b · · ·b, and w · · ·w we consider
only options in the left half of the chain, for other chains we consider all options.
Of course symmetric chains like b · · ·o, and o · · ·b have the same values, whereas
swapping bs and ws in a chain yields the negation of the CGT value. 0 denotes
the Linear Col chain of zero length, of course having value 0.

The analyses below always proceed in (at most) five steps: 1) determine the
options of the chain; 2) simplify the options by removing colored and uncolorable
nodes; 3) replace the options by their CGT values; 4) remove dominated options;
and 5) determine the CGT value of the original chain.

Base cases: 1 × n chains with n ≤ 4 have the following values:

n = 1: o = {B|W} = {0|0} = {0|0} = ∗; b = {B|} = {0|} = {0|} = 1; similarly
w = −1.

n = 2: oo = {Bw|Wb} = {w|b} = {−1|1} = 0; bo = {Bw,xB|bW} =
{w,0|b} = {−1, 0|1} = {0|1} = 1/2; similarly ob = 1/2, wo = ow = −1/2;
bb = {Bx|} = {0|} = {0|} = 1; similarly ww = −1; bw = {Bw|bW} =
{w|b} = {−1|1} = 0; similarly wb = 0.

n = 3: ooo = {Bwo,wBw|Wbo,bWb} = {wo,w+w|bo,b+b} = {−1/2,−2|
1/2, 2} = {−1/2|1/2} = 0; boo = {Bwo,xBw,bwB|bWb,bbW} =
{wo,w, bw|b + b,bb} = {−1/2,−1, 0|2, 1} = {0|1} = 1/2; similarly
oob = 1/2, woo = oow = −1/2; bob = {Bwb,xBx|bWb} =
{wb,0|b + b} = {0, 0|2} = {0|2} = 1; similarly wow = −1; bow =
{Bww,xBw|bWx,bbW} = {ww,w|b,bb} = {−1,−1|1, 1} = {−1|1} =
0; similarly wob = 0.
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n = 4: oooo = {Bwoo,wBwo|Wboo,bWbo} = {woo,w + wo|boo,b +
bo} = {−1/2,−11/2|1/2, 11/2} = {−1/2|1/2} = 0; booo = {Bwoo,xBwo,
bwBw,bowB| bWbo,bbWb,bobW} = {woo,wo,bw + w,bow|b +
bo,bb + b,bob} = {−1/2,−1/2,−1, 0|11/2, 2, 1} = {0|1} = 1/2; similarly
ooob = 1/2, wooo = ooow = −1/2; boob = {Bwob,xBwb|bWbb} =
{wob,wb|b + bb} = {0, 0|2} = {0|2} = 1; similarly woow = −1; boow =
{Bwow,xBww, bwBw|bWbw,bbWx,bobW} = {wow,ww,bw +
w|b + bw,bb,bob} = {−1,−1, −1|1, 1, 1} = {−1|1} = 0; similarly
woob = 0.

So for 1 ≤ n ≤ 4 we have

o = ∗,b = 1,w = −1,o · · ·o = 0,

b · · ·o = o · · ·b = 1/2,w · · ·o = o · · ·w = −1/2,

b · · ·b = 1,w · · ·w = −1,b · · ·w = w · · ·b = 0

(1)

Induction hypothesis: suppose Eq. (1) holds for chains of length up to k − 1.
Induction steps: consider a chain of length k ≥ 5. We then have the following
subcases, where a ‘· · · ’ now indicates a sequence of nodes o, not of arbitrary
length, but the length needed to have a complete chain of length k. For entries
with chains ‘· · · ’ at both sides of the colored square a range of possible entries
is meant such that all combinations of left and right lengths are included with
always a total length of k.

o · · ·o: B moves gives {Bw · · ·o,wBw · · ·o,o · · ·wBw · · ·o} = {w · · ·o,w +
w · · ·o,o · · ·w+w · · ·o} = {−1/2,−11/2,−1} = {−1/2}. Similarly, W moves
gives {1/2}. So o · · ·o = {−1/2|1/2} = 0.

b · · ·o: B moves gives {Bw · · ·o,xBw · · ·o,b · · ·wBw · · ·o,b · · ·wBw,
b · · ·wB} = {w · · ·o,w · · ·o,b · · ·w+w · · ·o,b · · ·w+w,b · · ·w} = {−1/2,
−1/2,−1/2, −1, 0} = {0}. W moves gives {bWb · · ·o,b · · ·bWb · · ·o,
b · · ·bWb,b · · ·bW} = {b+ b · · ·o,b · · ·b+ b · · ·o,b · · ·b+ b,b · · ·b} =
{11/2, 11/2, 2, 1} = {1}. So b · · ·o = {0|1} = 1/2. Similarly o · · ·b = 1/2,
w · · ·o = o · · ·w = −1/2.

b · · ·b: B moves gives {Bw · · ·b,xBw · · ·b,b · · ·wBw · · ·b} = {w · · ·b,
w · · ·b,b · · ·w + w · · ·b} = {0, 0, 0} = {0}. W moves gives {bWb · · ·
b,b · · ·bWb · · ·b} = {b + b · · ·b,b · · ·b + b · · ·b} = {2, 2} = {2}. So
b · · ·b = {0|2} = 1. Similarly w · · ·w = −1.

b · · ·w: B moves gives {Bw · · ·w,xBw · · ·w,b · · ·wBw · · ·w,b · · ·wBw} =
{w · · ·w,w · · ·w,b · · ·w + w · · ·w,b · · ·w + w} = {−1,−1,−1,−1} =
{−1}. Similarly W moves gives {1}. So b · · ·w = {−1|1} = 0. Similarly
w · · ·b = 0.

This means that based on the assumption that Eq. (1) holds for chain length
k − 1 it follows that it holds for chain length k. Combined with the base cases,
Eq. (1) consequently holds for arbitrary length chains. ��

Concludingly, all empty 1×n Col boards are second-player wins (CGT value
0), except the 1 × 1 board has value ∗, and so is a trivial first-player win.
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4 Partisan Snort on Rectangular Boards

Although standard (partisan) Col and Snort are very similar games, it turns out
that they differ considerably in CGT outcomes and values. In this section we
focus on Snort, again on rectangular boards.

4.1 Snort on m × n Boards with m and n Even

For m×n Snort boards with m and n both even we found that the second player
always can win. This can easily be proven as stated in Theorem 3.

Theorem 3. All empty m×n Snort boards with m and n even are second-player
wins and thus have CGT value 0.

Proof. White as second player follows the center strategy. So after every black
move, White maintains opposite colored squares wrt the center of the board,
meaning that White necessarily makes the last move and wins. ��
Note that this strategy is exactly the same as used in Col on boards with at
least one dimension even. Although the Snort-condition differs, for even × even
boards the symmetry applied makes sure that after any black move obeying the
Snort-condition the white response automatically also obeys this condition.

An example Snort game on the 4×4 board is shown in Fig. 6. The first eight
moves are the same as the Col game shown in Fig. 5. This is possible since for
these moves it holds that there are no colored neighbors yet. From the ninth
move on every move necessarily has a colored neighbor and therefore the Snort
game now differs from the Col game.
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Fig. 6. Example Snort game on the 4 × 4 board won by White.

4.2 Snort on m × n Boards with m and/or n Odd

For m × n Snort boards with m and/or n odd the second player cannot use the
above copy-strategy to win the game. Instead, we found that the first player
always can win, see Theorem 4.

Theorem 4. All empty m×n Snort boards with m and/or n odd are first-player
wins.
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Proof. First assume that both m and n are odd. Black as first player then starts
coloring the single center square and then follows the center strategy. Although
the black center inhibits its neighbors to be colored white in the future, it does
not hamper Black, so the center strategy still is always possible. Therefore, Black
can maintain opposite colored squares wrt the center after every white move (of
course excluding the center). Therefore Black makes the last move and wins.

When only one of m and n is odd (arbitrarily suppose m), then the number
of rows is odd and the center of the board is in the middle row between the
two middle squares. Now Black as first player colors one of these two middle
squares and then again can use the center strategy. Of course White cannot use
the second middle square. So the center strategy again guarantees Black to make
the last move and win. ��

The latter result, stating that the first player wins on a board with at least
one dimension odd, does not give the CGT value of these Snort boards, which in
principle can be any fuzzy value (like a fair switch or a nimber). Example games
where the first player uses this winning strategy are given in Fig. 7.

1

2

3

4

5

6 7

8

9

1

2

3

4

5 6

7

89

Fig. 7. Example Snort games on the 3 × 5 and 3 × 4 boards won by Black.

As a consequence of Theorems 3 and 4 strategically solving rectangular Snort
boards is of no more interest, since the dimensions of the board fully determine
the winner. Regarding full (CGT) values, determining values of rectangular Snort
boards with at least one dimension odd is still of interest.

4.3 Linear Snort

Since 1 × n chains are instances of odd × even or odd × odd boards, and since
both these board categories are first-player wins for Snort, we know that all
Linear Snort boards are first-player wins with fuzzy values, like nimbers or fair
switches. To see if we can find some pattern we determined many CGT values
for Linear Snort, using the CGSUITE system [7]. The following values where
obtained for various lengths n of the board: n = 1: ∗; n = 2: ±1; n = 3: ±2; n = 4:
±{2|1}; n = 5: ±(1,{3|0}); n = 6: ∗; n = 7: ±(1,{4|3||∗|−1∗},{4|3||±1,{1∗|∗}});
n = 8: ±{{5|2},{5|2∗}|±2,{2|1||0|−1},{2∗|−2}}; and n = 9: ±(2∗). For lengths
10 to 12 we found fair switches with canonical forms consisting of 273, 628, and
1954 symbols respectively, which we do not reproduce here. Unsurprisely we did
not find any pattern in these CGT values.
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5 Conclusions and Future Research

We summarize our main results in Table 1. In this table, for every board type
we give the outcome class.‘?’ indicates that the outcome in general is unknown.
Instances of outcome class P have CGT value 0, while instances of outcome class
N have fuzzy CGT values (nimbers or fair switches). For Linear Col and Snort
we summarize the results in Table 2.

For odd × odd Col we do know that some instances are second-player wins,
but do not know if first-player wins also occur.

Table 1. Outcome classes for Col and Snort on boards of different types.

Game even × even odd × even odd × odd

Col P P ?

Snort P N N

Table 2. Outcome classes for Linear Col and Snort on chains of length n > 1.

Game even n odd n

Linear Col P P
Linear Snort N N

All results in [2–4] fully support our results. Also, all values in this paper
were checked with the CGSUITE system [7], and no discrepancies were found.1

For future research we will focus on finding optimal strategies for odd × odd
Col boards with both dimensions ≥ 3. We are also interested in results for Col
and Snort played on other graphs than rectangular boards. Moreover, we are
interested in other bicoloring games. For impartial versions of Col and Snort
(dubbed iCol and iSnort) played on rectangular boards we already performed
such an analysis [8].

Acknowledgement. We greatfully acknowledge our cooperation with Ewan Demeur.
Some of the strategies found were inspired by and formulated during discussions of his
thesis research and lead to a deeper insight into the topics of this paper.
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Abstract. As a sequel to an investigation of the standard (partisan)
versions of Col and Snort on rectangular boards, we defined impartial
versions of both games (dubbed iCol and iSnort). These have the same
coloring conditions as their partisan versions, but either player is allowed
to use at any move a black or a white stone. For these two games similar
strategies show that with both dimensions odd the first player can win,
otherwise it is a second-player win. For both Linear versions, analyses
using Combinatorial Game Theory show that the even-length chains have
value 0, the odd-length chains value ∗.

1 Introduction

In a previous paper [8] we analyzed two well-known bicoloring-graph games on
rectangular boards, namely Col and Snort. They were the standard (partisan)
versions of these combinatorial games. Both are similar in the sense that both
players alternately color a node in the graph, where one player may only color it
black, the other only white. The two games differ in their conditions for coloring:
in Col neighboring nodes may not be colored the same (the Col-condition), while
in Snort they may not be colored differently (the Snort-condition). These two
games then were largely solved.

In the present paper we introduce impartial versions of both games, denoted
as iCol and iSnort, again focussing on rectangular boards. The games are played
with the same restrictions on coloring neighboring nodes as their partisan ver-
sions (the Col- and Snort-conditions), but differ in the property that both players
always may use either color. This on one hand makes playing them easier, since
values of games belong to just two outcome classes (see Sect. 2), but on the other
hand makes them more complex, since for neither player it is possible to build
significant advantages due to the nature of the games.

Since these games are new to our knowledge, there is no previous scien-
tific literature on them. We only found a single mention of iCol, under the name
Bichrome [7], though it was just presented as a fun game and not analyzed math-
ematically, notably not in the framework of the Combinatorial Game Theory.
For iSnort we found no mention in the literature at all.
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2 Combinatorial Game Theory for iCol and iSnort

In this section we give a short introduction to the Combinatorial Game Theory
(CGT in short) as far as relevant for the games discussed in this paper. For a
more thorough introduction, we refer to the literature, in particular [1,2,4,5].

In a combinatorial game, the players are conventionally called Left and Right.
Left starts the game. A game (position) G is then represented by its left and
right options GL and GR, so G =

{
GL

∣
∣ GR

}
. In this representation, GL and

GR stand for sets of games that players Left and Right, respectively, can reach
by making one move in the game. The value of a game indicates how good a
game is for a player, where positive values indicate an advantage for Left and
negative values an advantage for Right. Then there are four possible outcome
classes.

1. The class L consists of all positions where Left wins, irrespective of who moves
first. These positions have strictly positive values.

2. The class R consists of all positions where Right wins, irrespective of who
moves first. These positions have strictly negative values.

3. The class N consists of all positions where the player to move (the next
player) wins. These positions have fuzzy values (incomparable with 0).

4. The class P consists of all positions where the player to move loses, so the
previous player wins. These positions all have value 0.

For impartial games, like iCol and iSnort, it holds that they can only take
nimbers as values and hence that all positions have outcome class N or P.

2.1 Nimbers

The simplest nimber game is the endgame
{∣
∣}, denoted as ∗0. In this position,

no player has any available moves, so it is a loss for the player to move and hence
a second-player win. Its outcome class is therefore P. Note that this game is the
only game being both a nimber and a number, hence ∗0 = 0.

Besides the endgame ∗0, the most important simple game is the one denoted
as ∗1, often notated as just ∗. It is defined as ∗ =

{
0

∣
∣ 0

}
, where the player

to move has just one option, leading to the endgame. Therefore, whereas 0 is a
game where the second player to move wins (since trivially the next player cannot
move), ∗ is a game where the first player to move wins. A trivial example in both
iCol and iSnort is a lone empty square. Nimbers take their name from the values
that can occur in the Nim game [3], where each player has the same options. They
are formally defined as ∗n = {∗0, ∗1, ∗2, · · · , ∗(n − 1) | ∗0, ∗1, ∗2, · · · , ∗(n − 1)}.
In case that not all options for a player are consecutive nimbers starting from
∗0, it follows from CGT that the Mex() function applied to the options gives
the nimber value of the parent game. The Mex() function (Minimal excludant)
is the lowest non-negative integer not in a set of integers. In case of sums of
nimbers they are added pairwise using the Nim-addition rule, which effectively
boils down to exclusive-oring the binary representations of the nimbers.

All nimbers other than ∗0 are fuzzy (incomparable with 0) and denote first-
player wins. Their outcome class is therefore N .
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3 Impartial Col and Snort

We noted in our previous research [8] that most Col and Snort games on rect-
angular boards (except Col on odd × odd boards) have known outcomes and
easy strategies guaranteeing these outcomes. We then were interested to see if
such winning strategies are also possible for impartial versions of Col and Snort.
These are defined as follows.

Definition 1. Impartial Col (iCol for short) and impartial Snort (iSnort) are
coloring games on graphs, where the same restrictions on possible colors of neigh-
boring nodes apply as in Col and Snort, respectively, but both players are free to
use any of the two colors (Black or White) on their turn.

By this definition both players have exactly the same possible moves in any
game position, and so are truly impartial games. We therefore further do not use
Black and White for the names of the players in iCol and iSnort, but Left (first
to move) and Right (second to move). As stated in Sect. 2 all impartial games,
including iCol and iSnort, have only nimbers as possible values.

3.1 iCol on Rectangular Boards

For m× n iCol boards with m and/or n even the second player always can win.
This is proven in Theorem 1.

Theorem 1. All empty m × n iCol boards with m and/or n even are second-
player wins and thus have CGT value 0.

Proof. The second player can use a center strategy similar as in Col, i.e. the
second player always moves symmetric wrt the center of the board using the
opposite color as the previous move. Therefore, after every second-player’s move
the board is center-symmetric with opposite colors. Consequently, the second
player makes the last move and wins. ��

Since in iCol (and later iSnort) both players can use both colors, we add the
term “same” or “opp” to the strategy name, so the winning strategy described
in the above theorem is called the center-opp strategy. Of course when the first
player just sticks to using one color, we have a standard Col game won by the
second player. Example iCol games on the 4 × 4 and 4 × 5 boards where Right
uses this winning strategy are shown in Fig. 1.

The left diagram shows an iCol game on an even × even board, the right
diagram on an even × odd board. Right has chosen to always use the center-opp
strategy, guaranteeing the win. Note that for iCol on an even × even board an
alternative winning strategy for the second player would be to use the center-
same strategy. For odd × even and even × odd boards this strategy is not
possible, since it might violate the Col-condition.

For m × n iCol boards with m and n odd the first player always can win.
This is proven in Theorem 2.
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Fig. 1. Example iCol games on the 4 × 4 and 4 × 5 boards won by Right.

Theorem 2. All empty m × n iCol boards with m and n odd are first-player
wins.

Proof. Contrary to Col, in iCol the first player can easily win by first coloring the
center square arbitrarily (say, black), followed by using the center-same strategy.
This guarantees the first player to make the last move and win. ��

An example game where Left uses this strategy to win the game is given in
Fig. 2.
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Fig. 2. Example iCol game on the 3 × 5 board won by Left.

Like in Col [8] we only know that odd × odd boards have fuzzy values, but
since all values in iCol must be nimbers, we know that the values of odd × odd
boards have nimber values ∗n with n > 0.

3.2 Linear iCol

In the following we analyze Linear iCol in a similar way as we did for Linear Col
[8]. The only difference is that both players may use both colors (as long as they
respect the Col-condition), which makes the analysis longer. On the other hand
it suffices to only consider the options of one player, since the other player has
exactly the same options by the impartial nature of the game; this shortens the
analysis.

After coloring a node the Col-condition imposes that its neighbors never
may receive the same color. To indicate this we may tint an empty neighbor of a
black-colored node white, to show that such a node may only be colored White
in the future. Similarly, an empty neighbor of a white node is tinted black. If an
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empty node receives both a black and a white tint, it means that this node may
not be colored anymore at all.

We use the following notation for this: B for a black-colored square, W for
a white-colored square, b for a black-tinted square, w for a white-tinted square,
x for an empty square that can no longer be colored by either player, and o for
an empty square that still can be colored by either player. For brevity we omit
all edges. Our result is stated in Theorem 3.

Theorem 3. Empty Linear iCol chains have CGT value 0 for even length and
∗ for odd length.

Proof. Again when a node is colored (and the neighbors have been updated), it
may be removed from the graph, which accordingly splits. It splits also when an
empty node can not be colored, since this node may also be removed. Therefore
the CGT value for a Linear iCol chain can be determined by the values of shorter
subchains, in which only end nodes are possibly tinted. For the chains o · · ·o,
b · · ·b, and w · · ·w we consider only options in the left half of the chain, for
other chains we consider all options. Of course symmetric chains like b · · ·o, and
o · · ·b have the same values, just as swapping bs and ws in a chain (yielding
the negation of the CGT value, which for nimbers has no effect). 0 denotes the
Linear iCol chain of zero length, of course having value 0.

The analyses below always proceed in (at most) five steps: 1) determine the
options of the chain; 2) simplify the options by removing colored and uncolorable
nodes; 3) replace the options by their CGT values; 4) remove dominated options;
and 5) determine the CGT value of the original chain.

Base Cases: 1 × n chains with n ≤ 4 have the following values:

n = 1: o = {B,W} = {0,0} = {0, 0} = {0} = ∗; b = {B} = {0} = {0} = ∗;
similarly w = ∗.

n = 2: oo = {Bw,Wb} = {w,b} = {∗, ∗} = {∗} = 0; bo = {Bw,xB,bW} =
{w,0,b} = {∗, 0, ∗} = {0, ∗} = ∗2; similarly, ob = wo = ow = ∗2;
bb = {Bx} = {0} = {0} = ∗; similarly ww = ∗; bw = {Bw,bW} =
{w,b} = {∗, ∗} = {∗} = 0; similarly wb = 0.

n = 3: ooo = {Bwo,wBw,Wbo,bWb} = {wo,w + w,bo,b + b} =
{∗2, 0, ∗2, 0} = {0, ∗2} = ∗; boo = {Bwo,xBw,bwB,bWb,bbW} =
{wo,w,bw, b + b,bb} = {∗2, ∗, 0, 0, ∗} = {0, ∗, ∗2} = ∗3; simi-
larly oob = woo = oow = ∗3; bob = {Bwb,xBx,bWb} =
{wb,0,b + b} = {0, 0, 0} = {0} = ∗; similarly wow = ∗; bow =
{Bww,xBw,bWx,bbW} = {ww,w,b,bb} = {∗, ∗, ∗, ∗} = {∗} = 0;
similarly wob = 0.

n = 4: oooo = {Bwoo,wBwo,Wboo,bWbo} =
{
woo,w + wo,

boo,b + bo
}

= {∗3, ∗3, ∗3, ∗3} = {∗3} = 0; booo =
{
Bwoo,

xBwo,bwBw,bowB, bWbo,bbWb,bobW
}

= {woo,wo,bw +
w,bow,b + bo,bb + b,bob} = {∗3, ∗2, ∗, 0, ∗3, 0, ∗} = {0, ∗, ∗2, ∗3} =
∗4; similarly ooob = wooo = ooow = ∗4; boob =

{
Bwob,

xBwb,bWbb
}

= {wob,wb,b + bb} = {0, 0, 0} = {0} = ∗;
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similarly woow = ∗; boow =
{
Bwow,xBww,bwBw,bWbw,

bbWx,bobW
}

= {wow,ww,bw + w,b + bw,bb,bob} =
{∗, ∗, ∗, ∗, ∗, ∗} = {∗} = 0; similarly woob = 0.

So for 1 ≤ n ≤ 4 we have

o = b = w = ∗
o · · ·o =

{
0 if n is even
∗ if n is odd

b · · ·o = w · · ·o = o · · ·b = o · · ·w = ∗n
b · · ·b = w · · ·w = ∗
b · · ·w = w · · ·b = 0

(1)

Induction hypothesis: suppose Eq. (1) holds for chains of length up to k − 1.
Induction steps: consider a chain of length k ≥ 5. We then have the following
subcases, where a ‘· · · ’ now indicates a sequence of nodes o, not of arbitrary
length, but the length needed to have a complete chain of length k. For entries
with chains ‘· · · ’ at both sides of the colored square a range of possible entries
is meant such that all combinations of left and right lengths are included with
always a total length of k.

o · · ·o = {Bw · · ·o,wBw · · ·o,o · · ·wBw · · ·o} = {w · · ·o,w + w · · ·o,o · · ·
w + w · · ·o} = {∗(k − 1), ∗ + ∗(k − 2), . . . , ∗(k − 2) + ∗, ∗(k − 1)} (and
similar for the first player using W, with the same values). For even k we
see that every option is either an odd nimber or the Nim-sum of an odd
plus even nimber, which is an odd nimber. Therefore the value of o · · ·o
for even k is 0 (being the Mex() of all-odd nimbers). For odd k we see
that every option is either an even nimber or the Nim-sum of two odd
nimbers (which is an even nimber). This includes 0, namely when the
middle node is colored (black or white), since both subchains are equal
then. Therefore the value of o · · ·o for odd k is ∗ (being the Mex() of
all-even nimbers including 0).

b · · ·o =
{
Bw · · ·o,xBw · · ·o,b · · ·wBw · · ·o,b · · ·wBw,b · · ·wB,bWb · · ·

o,b · · ·bWb · · ·o,b · · ·bWb,b · · ·bW}
= {w · · ·o, w · · ·o,b · · ·w +

w · · ·o,b · · ·w + w,b · · ·w,b + b · · ·o,b · · ·b + b · · ·o,b · · ·b +
b,b · · ·b} = {∗(k − 1), ∗(k − 2), 0 + ∗(k − 3), . . . , 0 + ∗, 0 + 0, ∗ +
∗(k − 2), ∗ + ∗(k − 3), . . . , ∗ + ∗, ∗} = {0, . . . , ∗(k − 1)} = ∗k. Similarly
o · · ·b = w · · ·o = o · · ·w = ∗k.

b · · ·b = {Bw · · ·b,xBw · · ·b,b · · ·wBw · · ·b,bWb · · ·b,b · · ·bWb · · ·b} =
{w · · ·b,w · · ·b,b · · ·w + w · · ·b,b + b · · ·b,b · · ·b + b · · ·b} =
{0, 0, . . . , 0, ∗ + ∗, . . . , ∗ + ∗} = {0} = ∗. Similarly w · · ·w = ∗.

b · · ·w =
{
Bw · · ·w,xBw · · ·w,b · · ·wBw · · ·w,b · · ·wBw,bWb · · ·w,b · · ·

bWb · · ·w,b · · ·bWx,b · · ·bW}
= {w · · ·w,w · · ·w,b · · ·w + w · · ·

w,b · · ·w + w,b + b · · ·w,b · · ·b + b · · ·w,b · · ·b,b · · ·b} = {∗, ∗, 0 +
∗, 0 + ∗, ∗ + 0, ∗ + 0, ∗, ∗} = {∗}. So b · · ·w = 0. Similarly w · · ·b = 0.
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This means that based on the assumption that Eq. (1) holds for chain length
up to k − 1 it follows that it holds for chain length k. Combined with the base
cases, Eq. (1) consequently holds for arbitrary chain lengths. ��

Concludingly, in Linear iCol even-length empty chains have CGT value 0
(second-player wins) and odd-length empty chains have CGT value ∗ (first-
player wins). In the latter case the first-player must color the middle square
(either black or white).

3.3 iSnort on Rectangular Boards

For m × n iSnort boards with m and/or n even the second player always can
win. This is proven in Theorem 4.

Theorem 4. All empty m× n iSnort boards with m and/or n even are second-
player wins and thus have CGT value 0.

Proof. The second player can again use a copy-strategy as in iCol, but always
using the same color as the previous move (the center-same strategy). Therefore,
after every second-player’s move the board is center-symmetric with same colors.
Consequently, the second player makes the last move and wins. ��

When the first player just sticks to using one color, the game ends after the
full board has been filled with one color. Example iSnort games on the 4×4 and
4 × 5 boards where Right uses this winning strategy are shown in Fig. 3.
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Fig. 3. Example iSnort games on the 4 × 4 and 4 × 5 boards won by Right.

The left diagram shows an iSnort game on an even × even board, the right
diagram on an even × odd board. Right has chosen to always use the center-
same strategy, guaranteeing the win. Note that for iSnort on an even × even
board an alternative winning strategy for the second player would be to use the
center-opp strategy. For odd × even and even × odd boards this strategy is not
possible, since it might violate the Snort-condition.

Analogously with iCol, for m × n iSnort boards with m and n odd the first
player always can win. This is proven in Theorem 5.

Theorem 5. All empty m × n iSnort boards with m and n odd are first-player
wins.
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Proof. Like in iCol, the first player can easily win by first coloring the center
square arbitrarily, followed by using the center-same strategy. Since the number
of empty squares after the first move is even, this guarantees the first player to
make the last move and win. ��

Again, we only know that such boards have fuzzy values, but since all values
in iSnort must be nimbers, we know that the values of odd × odd boards have
nimber values ∗n with n > 0.

An example game where the first player uses this strategy to win the game
is given in Fig. 4.

12 3

4

5

6

78

9

Fig. 4. Example iSnort game on the 3 × 5 board won by Left.

3.4 Linear iSnort

For Linear iSnort the situation is quite similar as for iCol, namely second-player
wins (CGT value 0) for even-length chains, and first-player wins (CGT values
∗n with n > 0) for odd-length chains. For iCol we found that all odd-length
chains have value ∗ (Theorem 3). To prove that this is also the case for iSnort
we analyse Linear iSnort in a similar way as we did for Linear iCol, using the
same notations. Again both players may use both colors, but now the moves
must respect the Snort-condition. Our result is stated in Theorem 6.

Theorem 6. Empty Linear iSnort chains have CGT value 0 for even length
and ∗ for odd length.

Proof. This proof is analogous as the proof of Theorem 3, of course except the
Snort-condition on neighboring squares instead of the Col-condition. We just
give the main parts of the proof and leave the complete analysis as an exercise.

Base Cases: 1 × n chains with n ≤ 4 have the following values:

n = 1: o = b = w = {0} = ∗.
n = 2: oo = {∗} = 0; bo = ob = wo = ow = {0, ∗} = ∗2; bb = ww = {∗} = 0;

bw = wb = {0} = ∗.
n = 3: ooo = {0, ∗2} = ∗; boo = oob = woo = oow = {0, ∗, ∗2} = ∗3;

bob = wow = {0} = ∗; bow = wob = {∗} = 0.
n = 4: oooo = {∗3} = 0; booo = ooob = wooo = ooow = {0, ∗, ∗2, ∗3} = ∗4;

boob = woow = {∗} = 0; boow = woob = {0} = ∗.
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So for 1 ≤ n ≤ 4 we have

o = b = w = ∗
o · · ·o =

{
0 if n is even
∗ if n is odd

b · · ·o = w · · ·o = o · · ·b = o · · ·w = ∗n
b · · ·b = w · · ·w =

{
0 if n is even
∗ if n is odd

b · · ·w = w · · ·b =

{
∗ if n is even
0 if n is odd

(2)

Induction hypothesis: suppose Eq. (2) holds for chains of length up to k − 1.
Induction steps: consider a chain of length k ≥ 5. We then have the following
subcases.

o · · ·o = {∗(k − 1), ∗ + ∗(k − 2), . . . , ∗(k − 2) + ∗, ∗(k − 1)} for using Black
(and similar for the White options, with the same values). The value of
o · · ·o for even k is 0, for odd k it is ∗.

b · · ·o: We have to distinguish cases where the chain has odd or even length,
and whether the player uses Black or White as color.
We first consider even k. Using Black the sums of the left and right
subchains are ∗(k − 1), ∗(k − 1), ∗(k − 3), ∗(k − 3), etc., i.e. all odd
nimbers from ∗ to ∗(k − 1). Using White the sums of the left and right
subchains are ∗(k−2), ∗(k−4), ∗(k−4), etc., i.e. all even nimbers from
0 to ∗(k−2). Taking all options together we see that all nimbers from 0
to ∗(k − 1) are included, which means that the value of the total chain
for even k is ∗k.
For odd k the analysis is quite similar, this time leading to the series
∗(k− 1), ∗(k− 3), ∗(k− 3), ∗(k− 5), ∗(k− 5), etc. for the options using
Black, including all even nimbers from 0 to ∗(k−1); for the options using
White we obtain the series ∗(k − 2), ∗(k − 2), ∗(k − 4), ∗(k − 4), etc.,
again including all odd nimbers from ∗ to ∗(k − 2). Taking all options
together we see that again all nimbers from 0 to ∗(k − 1) are included,
which means that the value of the total chain for odd k is also ∗k.

b · · ·b: We differentiate between the Black and White options.
For options using Black the chain is split in two parts, with either value 0
(even-length b · · ·b subchains) or ∗ (odd-length b · · ·b subchains). For
options using White the chain is split in two parts, with either value ∗
(even-length b · · ·w subchains) or 0 (odd-length b · · ·w subchains). In
either case, for even k the sum of the two splits has odd length, with
sum value ∗, which means the original chain has value 0; for odd k the
sum of the two splits has even length, with sum value 0, which means
the original chain has value ∗. Similarly, a chain w · · ·w with length k
also has value 0 if k is even, and value ∗ if k is odd.
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b · · ·w: We again differentiate between the Black and White options.
For options using Black the chain is split into a b · · ·b subchain (odd-
length ∗, even-length 0) and a b · · ·w subchain (odd-length 0, even-
length ∗). For options using White the chain is split into a b · · ·w sub-
chain (odd-length 0, even-length ∗) and a w · · ·w subchain (odd-length
∗, even-length 0). In either case, for even k the sum of the two splits has
sum value 0, which means the original chain has value ∗; for odd k the
sum of the two splits has sum value ∗, which means the original chain
has value 0. Similarly, a chain w · · ·b with length k also has value ∗ if
k is even, and value 0 if k is odd.

This means that based on the assumption that Eq. (2) holds for chain length
up to k − 1 it follows that it holds for chain length k. Combined with the base
cases, Eq. (2) consequently holds for arbitrary length chains. ��

Concludingly, like in Linear iCol, in Linear iSnort even-length empty chains
have CGT value 0 (second-player wins) and odd-length empty chains have CGT
value ∗ (first-player wins). In the latter case the first-player must color the middle
square (either black or white).

4 Conclusions and Future Research

We summarize our main results in Table 1, where we give for all board types the
corresponding outcome class. Note that the results for even × odd boards are
equal to their equivalent odd × even boards obtained by a 90◦ rotation.

Table 1. Outcome classes for iCol and iSnort on boards of different types.

Game even × even odd × even odd × odd

iCol P P N
iSnort P P N

This table shows that iCol and iSnort on rectangular boards are solved games,
though their values on odd × odd boards can vary (nimbers ∗n with n > 0).

For Linear iCol and iSnort we do have precise CGT values, given in Table 2.

Table 2. CGT values for Linear iCol and iSnort on chains of length n.

Game even n odd n

Linear iCol 0 ∗
Linear iSnort 0 ∗



Solving Impartial Col and Snort on Rectangular Boards 117

All values in this paper were checked with the CGSUITE [6] system and fully
agree with our findings.1 For future research we are also interested in results for
iCol and iSnort played on other graphs than rectangular boards.
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Abstract. BoxOff is a one-player game invented by Steven Meyers:
a rectangular board is covered with colored stones; a legal move is to
remove two same-colored stones from opposite corners of an otherwise
empty rectangle. Removing all stones wins the game. We show that it can
be hard to determine whether a BoxOff puzzle is winnable: by reducing
from Boolean Satisfiability, we show that BoxOff is NP-complete, even
when only four colors are used.

Keywords: BoxOff puzzle · NP-Complete · Satisfiability

1 Introduction

In 2013 in Games Magazine, Steven Meyers introduced his new solitaire game
BoxOff: see the article by Kerry Handscomb in Abstract Games Magazine for a
colorful introduction [3,6]. The board has a rectangular grid; each board cell is
empty or has a colored stone. On a move, the player removes two stones of the
same color that lie on opposite corners of an otherwise empty rectangle. The
player wins by clearing the board. We are interested in this decision question:
given a BoxOff puzzle, is it solvable, i.e. can the player win? Consider Fig. 1. The
left puzzle is solvable, e.g. remove {a1,b1}, then {b2,c2}, then {a2,c1}. The right
puzzle is not solvable: each of {b2,c1}, {b1,c2} must be removed before the other,
which is impossible. To learn the basics of BoxOff strategy, see Handscomb’s
article.

1

2

a b c

1

2

a b c

Fig. 1. Two 2-color BoxOff puzzles (left is solvable, right is not).

Browne and Maire investigated the complexity of BoxOff [1]. They gave a
Monte Carlo analysis of random play, described a polytime algorithm to solve
one-column k-color BoxOff, and noted that otherwise the puzzle’s complexity
was unknown. We will show that 4-color BoxOff is NP-complete, resolving this
open question.
c© Springer Nature Switzerland AG 2022
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2 Reduction Overview

In the usual way [2,5], we will show that 4-color BoxOff is NP-hard by reducing
from 3-CNF-Satisfiability (3-SAT). Given a 3-SAT formula, we construct a Box-
Off puzzle that is solvable if and only if the formula is satisfiable. The BoxOff
puzzle models a Boolean circuit, formed from gadgets (independent sub-puzzles)
that simulate Boolean variables, And and Or gadgets, fanout gadgets, color-
switch gadgets, and turn gadgets. In order to ensure that gadgets influence each
other only with respect to the flow of the circuit, we insulate the gadgets by
placing each inside one cell of a larger overlay grid.

We will show that the input formula is satisfiable if and only if the Box-
Off puzzle can be cleared by a two-phase process, starting with a multiple-
source/single-sink flow from each variable to a single cell indicating that the
complete formula is satisfied, followed by a cleanup phase that erases all overlay
stones and any remaining gadget stones.

3 4-Color BoxOff is NP-Complete

Here we give our reduction, and also show an example: the BoxOff puzzle cor-
responding to (x ∨ y) ∧ (x ∨ ȳ) ∧ (x̄ ∨ y).

We transform the input formula into a puzzle by connecting the literal gad-
gets to appropriate Or gadgets and thence And gadgets, using the wiring (turn,
fanout, and color-change) gadgets. We do not need a crossover gadget: there is
only empty space between the stones that are paired, and the overlay grid keeps
any gadgets from interacting that are not directly paired in a row or column.1

3.1 Overlay Stones and Gadget Stones

We use two stone colors (black and white) for the overlay grid. Within each row
or column that includes an overlay stone, the stones alternate colors. We use two
other colors (red and blue) for our gadgets. Each gadget fits in a bounded grid
called a container, defined as the empty rectangular regions within the overlay
grid. We align gadgets so that one gadget’s output is on the same line (horizontal
or vertical) as the next gadget’s input. At least one overlay stone separates any
pair of stones not in gadgets in the same row or column of the overlay grid, so
they can never interact. We only put two gadgets in the same row or column
when they are connected. Figure 2 is an example of the overlay grid.

1 Reducing instead from Planar 3-SAT would not help us avoid the need for a crossover,
if crossing signals were not trivial in this setting. The reason is that we need to con-
nect the clauses together to produce a single output signal, a situation that is com-
mon in SAT reductions. But Planar 3-SAT only applies when the graph connecting
the variables to their clauses is planar; it does not allow us to further connect the
clauses. Instead, we would then have reduced from Bounded One-Player Constraint
Logic [4], which solves this problem.
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Fig. 2. The overlay black and white stones, demarking the containers within. The
gadget stones are located in these containers, to prevent unwanted interactions.

3.2 Signals

Signals are propagated whenever an output stone from one gadget is paired with
an input stone in another gadget, removing both. We then say that the output
and corresponding input have been activated. The activation of its inputs (if
any) is what allows a gadget to activate its output(s).

3.3 Variable Gadget

A variable gadget consists of a single output stone, connecting to inputs in
two other gadgets. See Fig. 3(a). Each variable corresponds to a switch, where
the player can set the output signal to be true or false. So each gadget has
two possible output directions, indicated in the figure by arrows. A satisfying
assignment corresponds to setting the appropriate output signal (true or false)
for each variable gadget.

3.4 Wiring Gadgets

Lemma 1. The turn gadget rotates its input signal by 90 ◦C.

Proof. When the input signal is available, the red stone can be matched and
removed, allowing the blue stone to propagate the output signal.

Lemma 2. The fanout gadget splits one input signal into two.

Proof. An active input signal matches the middle blue stone, allowing the lower
and the upper red stone to be removed. The remaining blue stones can leave the
gadget as active signals.
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Fig. 3. Gadgets: (a) Variable (b) Turn (c) Fanout (d) Color-change. (Color figure
online)

Lemma 3. The color-change gadget turns a blue input signal into a red output
signal.

Proof. An active input signal matches the middle blue stone, allowing the upper-
middle and lower red stone to match and be removed. The remaining blue stones
match and the upper-left red stone serves as an output signal.

There are two ways to change colors: to maintain the direction of the input
signal, use the color-change gadget; to change the direction of the signal, use the
turn gadget. (The color-change gadget is actually not necessary: we could just
combine a fanout gadget and turn gadget instead. However, the color-change
gadget makes our transformations slightly more compact.) (Fig. 4).

3.5 Logical Gadgets

Lemma 4. The Or gadget functions as a logical OR operator.

Proof. Case 1) Both inputs are active: Both upper-level blue stones are matched
with input signals. Then the upper red stone is matched with either of the lower
red stones. Then the lower blue stone can leave the gadget as a active signal.
The two remaining red stones will match once the output signal is activated, i.e.
once the lower blue stone disappears.

Case 2) Only input 1 is active: The upper-right blue stone matches input
signal 1. Then the upper red stone matches the right red stone, allowing the
output stone to leave the gadget as an active signal.

Case 3) Only input 2 is active: Similar to the previous case.
Case 4) Neither input is active: No stones are matched: the output signal

cannot leave the gadget, so is inactive.
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Fig. 4. Logical gadgets: (a) Or, (b) And. (Color figure online)

Lemma 5. The And gadget functions as a logical AND operator.

Proof. Case 1) Both inputs are active: The upper and middle blue stones match
the inputs. Then the red stones match, so the output blue stone is an active
signal.

Case 2) At most one input is active: At least one blue stone remains, pre-
venting the red stones from matching, so the output signal is inactive.

3.6 Gadget Interactions

We have already shown that gadgets not in the same row or column cannot
interact. But we also need to show that gadgets that are in the same row or
column can only interact as intended. Ideally this would mean that no pairs of
stones can be removed other than in the valid propagation of signals. In fact,
a slightly weaker condition suffices. First, we only connect non-turn gadgets
together via intervening turns, never directly. Then we only need to analyze
connections involving turns. But a turn has only two stones: the input stone
is the one intended to be matched, and can only be paired with its intended
partner; the output stone should instead be used to propagate the signal onward.
If instead the output stone is matched with a stone in another gadget, then the
signal simply doesn’t propagate, and no incorrect solution of the puzzle is thus
enabled. But what about the loss of the stone that inappropriately paired with
the turn’s output stone? This can only be a stone in the turn’s input gadget. If
that gadget has a single output, then any change in its properties is irrelevant,
because the output can’t propagate further. The only other case is that the input
gadget is a fanout. We need to verify that if a fanout stone inappropriately pairs
with an output turn gadget’s output stone, this does not then enable the other
output to activate. By inspection, this is the case.
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Fig. 5. Transformation of (x ∨ y) ∧ (x ∨ ȳ) ∧ (x̄ ∨ y). Gadgets for x,y in cells K3,D6,
auxiliary stones at L2,E5. Or at G10 is (x ∨ ȳ), Or at D11 is (x ∨ y), Or at J12 is
(x̄ ∨ y). And at F13 is ((x ∨ y) ∧ (x ∨ ȳ)), And at I15 is (x ∨ y) ∧ (x ∨ ȳ) ∧ (x̄ ∨ y).

3.7 The Reduction

The main result of our paper is the following theorem. The example transfor-
mation shown in Fig. 5 may serve as a reference here; it is analyzed explicitly in
Sect. 3.8. (Note: for compactness, in the example we relax the rule about only
connecting non-turn gadgets via turns; in this instance no unwanted interactions
arise.)

Theorem 1. Deciding whether a BoxOff game with 4 colors is solvable is NP-
Complete.

Proof. Let φ be a 3-CNF formula with variables x1, · · · , xn. Then we construct
a corresponding BoxOff configuration as follows.

Variable Gadgets. There is one gadget for each variable xj .

Or gadgets. Our Or gadgets take two inputs. Each clause has three literals, so
we use two chained Or gadgets for each clause.

Fanout Gadgets. A variable can appear in more than one clause, so we might
need to duplicate a variable’s output signal to all instances of the correspond-
ing literals. For this, we use fanout gadgets, possibly sending signals far around
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the grid, so we also need turn (and if necessary color-change) gadgets. A vari-
able gadget’s True (resp. False) output signal flows to Or gadgets in which the
variable is a positive (resp. negated) literal.

And Gadgets: We use the And gadgets to logically combine the value of all
clauses; again, this operator takes only two inputs, so we need to chain k − 1
And gadgets to resolve a formula with k clauses. We can activate the final And
if and only if the formula is satisfiable. Notice that when at least one input to
the And gadgets is inactive, at least one And gadget will have uncleared stones,
and the BoxOff puzzle will not be solvable.

In the rest of this proof, we want to show that the BoxOff puzzle is solvable
when the input formula is satisfiable. Hence, assume the selected assignment is
satisfying; then, the construction described allows us to activate the final And
gadget, by activating the variable gadgets appropriately and propagating all
signals where possible.

Cleaning Up Overlay Grid: In order to be able to clean up the board, we modify
our construction so that when the final And gadget emits an active signal, we
can remove the overlay grid. We route this active signal to a special middle row
of our construction, where to the right of the final overlay-grid stone, say black,
we add a red stone and then another black stone, and then alternating white and
black stones, enough to match the middle row of the overlay grid. See Fig. 6(a).

In Fig. 6(b), notice that the red stone in the middle row matches the final
And active signal, so the middle-row black stones adjacent to the red stone will
match, allowing the middle row to disappear completely, which will then allow
each column to disappear, as we construct the overlay grid so that within each
row and column, the black and white stones alternate, and the total number of
overlay stones in each column is odd.

Fig. 6. (a) Rightmost edge of the grid, showing the middle row. (b) Rightmost edge of
the grid, with middle row and final AND gadget. (Color figure online)

Cleaning Up Remaining Stones: Depending on the particular Boolean assign-
ment selected for our formula, each gadget (except for the And gadgets) might
have remaining stones, either because the signal never reached the gadget,
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or the signal reached the gadget but not all stones were removed when the
signal flowed through. We now show how to add extra stones to variable gadgets
so that a final cleanup is possible whenever the formula is satisfied.

Fig. 7. The modified variable gadget has an extra stone located in a diagonally adjacent
cell.

The idea is that the extra stone can activate the True/False signal not
assigned to the variable. This auxiliary stone must not interact with any gadget
until the overlay grid has vanished; we place it in a diagonally adjacent cell, as
shown in Fig. 7.

We constructed our gadgets so that they normally receive inputs in a straight
line, but the auxiliary stone will not be in a line with the variable’s output turn
gadgets. To address this, we orient those turn gadgets such that the auxiliary
stone can still pair with them, as shown in Fig. 8.

Fig. 8. The modified variable gadget, showing the connecting turn gadgets and the
auxiliary stone to be used during the clean-up phase.

Once all overlay stones and the satisfied parts of the gadgets are gone, the
auxiliary stone can be matched with the turn at the output of the unchosen path
and clear the following stones.

Once the auxiliary stones for each unactivated literal path have cleared, each
instance of each gadget has disappeared: variable and auxiliary gadgets have
cleared; Ands have cleared; Ors all have both inputs activated (because each
traces back to a literal, or to another Or that has activated); fanouts split
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variable outputs, and since all variable outputs are active, fanouts have cleared;
turns occur only on pathways connecting the above and so have cleared. So, with
a satisfying assignment, we can clear the entire board. If there is no satisfying
assignment, then the final And gadget is not cleared by signal propagation, and
overlay grid ensures that this gadget cannot be cleared in any other way.

Our reduction is polynomial: we have one And or Or gadget per logical
operator in the formula, and one variable or fanout per literal. We can place
each variable, auxiliary variable, And, Or, and fanout in its own column and
row. If we allow an equal number of rows and columns for routing, we can
connect any gadget output to any other gadget input with at most four turns
and one color-change gadget. Thus the number of rows and columns needed is
polynomial in the input size. The size of each container (i.e., the spacing of
the overlay stones) also need only be polynomial in the input size: the gadgets
might need to be positioned at various offsets within the containers to align
inputs and outputs, but at worst the required space would be polynomial in the
total number of gadgets, and all we actually need is that the logarithm of this
spacing is polynomial.

Finally, BoxOff is clearly in NP: a solution is a list of pairings, which is of
polynomial length, and can be easily verified. This completes the proof.

3.8 Example Transformation

Here we describe our example transformation of (x∨ y)∧ (x∨ ȳ)∧ (x̄∨ y) shown
in Fig. 5. For the sake of simplicity, this example is in 2-CNF.

To begin, consider a trial assignment, say x and y both false. Since x is false,
we follow the horizontal-right output signal from variable gadget x (at K3),
which then matches the red stone at K4. The signal then proceeds to the lower
input of the OR gadget at J12, then to the color-change gadget at J14, through
a turn gadget at J15, and reaches the lower-level input of the And gadget at
I15.

Meanwhile, starting from variable gadget y at D6, output proceeds to the
turn at D7, follows arrows to the upper input of the Or gadget at G10, and can
leave the gadget to reach the lower input of the And gadget at F13.

Notice that these two signals cannot move further, since the D11 Or gadget
has no active input. Thus neither And gadget at F13,I15 has an active upper
input, so each is inactive. So our current assignment fails.

Next consider the satisfying assignment with both x, y true. Now the x vari-
able stone at K3 activates the turn at J3 and the signal continues to the I3 fanout
gadget, whose vertical output continues to the lower input of the G10 Or. The
horizontal fanout output activates the I4 color-change gadget at I4 and then the
D11 Or lower input.

Also, the y variable at D6 matches the red turn stone at C6. The output
of the turn gadget matches the input of the B8 fanout, whose vertical output
activates the upper input of the J12 Or. The vertical fanout output matches
the upper input of the D11 Or.



BoxOff is NP-Complete 127

Now all Or gadgets have active outputs, so the two And gadgets have both
inputs active, so both have active outputs. The output of the I15 And matches
the red stone outside of the overlay grid, so the middle black-white row clears,
and each black-white column then clears.

After all black and white stones are gone, we are left with six turn gadgets,
two blue stones from the OR gadgets J12 and G10, and the auxiliary stone for
both x and y. The auxiliary x-stone at L2 matches the red stone at K4 and
eventually clears out the remaining lower blue stone for the OR gadget at J11,
and all turn gadgets in between. The auxiliary y-stone at E5 matches the D7
turn gadget and—the last step—the upper blue stone for the G10 OR, and all
turn gadgets in between. Finally, the board is clear.

4 Conclusion

We showed that 4-color BoxOff is NP-complete, resolving an open question of
Browne and Maire [1]. Our 3SAT reduction is straightforward, except for the
extra machinery needed to clean up the board once the final And activates.
Our reduction requires at least four colors: two for the overlay grid and two for
the gadgets. Might a different approach show hardness for three, or even two
colors? (One color is trivial.) We conjecture that with three colors BoxOff is still
hard, but with two it is polynomial. We encourage further work to clarify this
fascinating boundary.

Acknowledgment. We would like to show our gratitude to Steven Meyers, the
designer of the BoxOff game, for his careful review of the paper.
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Abstract. We present a novel method to find chess positions similar to
a given query position from a collection of chess games. We consider not
only the static similarity resulting from the arrangement of chess pieces,
but also the dynamic similarity involving the recognition of chess motifs
and the tactical, dynamic aspects of position similarity. By encoding
chess tactical problems as text documents, we use information retrieval
techniques to enable efficient approximate searches. We have also devel-
oped a method for automatically generating tactical puzzles from a col-
lection of chess games. We have experimentally shown the importance of
including both static and dynamic features for successful recognition of
similar chess motifs. The experiments have clearly shown that dynamic
similarity plays a very important role in the evaluation of the similarity
of chess motifs by both the program and chess experts.

Keywords: Problem solving · Chess motifs · Automatic similarity
recognition

1 Introduction

The focus of this paper is on automatic retrieval of similar tactical problems from
a large collection of chess games. The term tactic is used in chess to describe
a series of moves that exploit a particular position on the board and allow the
player to gain material, gain a positional advantage, or even force a checkmate.

For chess players to progress, tactical problems are incredibly important.
Knowing tactical motifs helps them to recognise when a winning or drawing
combination might exist in a position. By solving tactical problems, chess play-
ers improve their tactical skills. It is not uncommon for games to be decided by
tactics, because even a single mistake gives the opportunity to use a tactic that
changes the outcome of the game. A large number of patterns or tactical motifs
have been defined in chess literature to help players discover tactical opportu-
nities during a game [2]. The ability to recognise chess motifs during a game is
one of the key components of becoming a competent chess player [4].

In order to provide useful teaching material to their students, chess instruc-
tors often look for examples from actual games that exhibit relevant chess motifs.
c© Springer Nature Switzerland AG 2022
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However, the human mind is not capable of sifting through thousands or even
millions of games to find problems with similar chess motifs and similar solutions
to those overlooked by students. Contextually similar chess positions could also
be used to annotate chess games [6] and in intelligent tutoring systems [8].

Our research aims for the automatic retrieval of similar chess motifs for a
given query position in a large collection of archived chess games. It needs to be
both efficient in terms of speed and effective in terms of the quality/similarity
of the retrieved results.

1.1 Related Work

There are a large number of possible positions in a game of chess, so a query-
by-example [9] system that only looks for exact matches would not be effective.
To mitigate the problem, the Chess Query Language (CQL) [3] allows searching
for approximate matches of positions, but requires the user to define complex
queries in the system-specific language. In addition, CQL works directly with
PGN game archive files and checks each game sequentially, making it inefficient
for querying larger databases.

To overcome these problems, an information retrieval-based approach was
proposed, in which a textual representation is constructed for each board posi-
tion and information retrieval (IR) methods are used to compute the similarity
between chess positions [5]. Instead of creating a query manually, the user simply
enters a FEN and the query encoding the features of the position is automati-
cally created internally. Initially, a naïve coding was used, which only contained
the positions of the individual pieces. Additional information about the mobil-
ity of the individual pieces and the structural relationships between the pieces
improved the results.

Besides improving the above approach by introducing advanced static pat-
terns such as pawn structures, we aim to develop a state-of-the-art chess engine
for finding similar chess tactics that also takes into account the dynamic aspects
of chess tactics. In terms of the progress of chess players, this dynamic aspect is
much more relevant when considering a contextually similar tactical problem.

2 Domain Description

Figure 1 illustrates three chess tactics with the same chess motif: the white rook is
sacrificed in the corner of the board and the black king must capture it, allowing
the white queen to appear with check (it cannot be captured due to the activity
of the white bishop along the long diagonal) and deliver checkmate on the next
move. Note that the similarity is due to a dynamic aspect of the combination,
which is based on the underlying chess motif. We use standard chess annotation
to describe chess moves.

To illustrate the difference between static and dynamic similarity, consider
the removal of the white rook on the h-file in each of the three positions in Fig. 1.



Automatic Recognition of Similar Chess Motifs 133

Fig. 1. Chess tactics with the same chess motif. In all three positions, White wins with
1.R h8+ K xh8 2.Q h6+ K g8 3.Q xg7 checkmate.

The new positions would be statically very similar, but the dynamic similarity
would disappear and the tactic mentioned above would no longer apply.

We are particularly interested in detecting dynamic similarity, i.e. finding
positions with similar motif(s) in the solution of the tactic. However, we also want
to consider static similarity, i.e. finding problems with similar initial positions.
Figure 1 also illustrates the behaviour of our program: when querying a chess
tactic in (a), the program found two similar chess tactics, shown in (b) and (c).

3 Similarity Computation

To determine similarity between tactical problems we use an approach based on
information retrieval. A set of features is computed from each problem’s starting
position and its solution move sequence. The features are then converted into
textual terms, forming a document that represents the problem. A collection of
documents is used to build an index, which can then be queried using the textual
encoding of a new position to retrieve the most similar positions in the index.

The conversion from the two-dimensional structure given by the chess board
to the set of independent textual terms allows us to make use of highly optimized
and scalable text information retrieval systems, while still preserving important
features of each position by encoding specific piece combinations and interactions
between pieces on the board.

For the implementation of our system for indexing and retrieval of similar
tactics we use the Apache Lucene Core library. Search results are ranked using
the BM25 ranking function [7]. For our use case, the most important character-
istics of BM25 are increased relative score contributions of less frequent terms
using each term’s inverse document frequency (IDF) and normalization of scores
based on document length, favoring shorter documents over longer ones with a
large number of irrelevant terms.

For each tactic, the input consists of a starting position in FEN format and a
solution move sequence in algebraic notation. The solution can be provided with
the position or calculated using a chess engine. Sections 3.1 and 3.2 describe the
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features and terms that are generated, and Table 1 shows an example of a text
encoding.

Table 1. Text encoding of a tactical position in Fig. 1c.

Feature set Generated terms

static_positions Ra1 Kh1 Pa2 Bb2 Pc2 Qd2 Pg2 ...
Rb1|0.89 Rc1|0.78 Rd1|0.67 ...
B>pg7 Q>pd5 n>Qd2 n>Pg3 ...
R<Kh1 R<Pa2 K<Pg2 P<Pb3 ...
R=pa7 R=ra8 q=Pc2 r=Ra1 r=Pa2

static_pawns Ig2 Ig3 id5 Lc2 Sg2-g3 sg6-g7 P(2) p(3)
dynamic_general ?px ?0x ?p+ ?# ?S !Sr !#b !#n !#q !#r

!#bn !#bq !#br !#nq !#nr !#qr
dynamic_solution !-R !-k !-Q !-k !-Q !-Rk !-kQ !-Qk !-kQ

!xR !xp !xRp
!k>R !R>k !Q>k !p>Q !Q>r

3.1 Static Features

The static part of the encoding includes information about the positions of
pieces, structural relationships between pieces and pawn structures present in
the position. The implementation is based on previous work on similar position
retrieval [5] and our early work [1] and is intended to serve as a baseline on which
we aim to improve by implementing encoding of dynamic features.

Piece Positions and Connectivity. The section describing piece positions
and connectivity encoding consists of three parts:

– naive encoding - the positions of all the pieces on the board.
– reachable squares - all squares reachable by pieces on the board in one move,

with decreasing weight based on distance from the original position.
– connectivity between the pieces - the structural relationships between the

pieces in the positions. For each piece it is recorded which other pieces it
attacks, defends or attacks through another piece (X-ray attack).

Pawn Structures. For the static part of the encoding, we also use pawn struc-
ture detection algorithms to detect the following pawn structures in the position
and encode them into terms: isolated pawns, (protected) passed pawns, backward
pawns, doubled pawns and pawn chains.
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3.2 Dynamic Features

In the dynamic part of the encoding, we focus more on the solution of the tactical
problem and try to grasp the motif behind it.

We first encode some general features of the solution and then add more
specific terms describing the sequence of moves. The types of pieces that are
moved or captured in the move sequence and the interactions between pieces are
described in the encodings. We also try to identify piece sacrifices in the solution
sequence. We are mainly interested in the motifs that occur in the solution
and make the encodings of the features independent of where exactly on the
chessboard they occur. For this reason, we do not include any exact positions of
the pieces in the textual terms, but only describe the pieces by their types.

General Dynamic Features. In this part we encode some basic features of
the solution move sequence that can help us determine similarity. We use a single
term for each of the following features if it holds for the solution:

– ?px - the player captures a piece in at least one of the moves
– ?ox - the opponent captures a piece in at least one of the moves
– ?+ - the player gives a check at least once during the sequence
– ?= - the player promotes a pawn in at least one of the moves
– ?S - the player sacrifices one or more pieces
– ?# - the solution ends with a checkmate
– ?1/2 - the solution ends in a draw

Solution Sequence Features. In this section we encode information about
the solution move sequence. The encoding includes a term for each:

– type of piece moved: !-{piece symbol}
– type of piece captured: !x{piece symbol}
– attack between pieces that occurs during the solution: !{attacking piece sym-
bol}>{attacked piece symbol}

– type of piece sacrificed: !S{piece symbol}
– type of piece involved in checkmate: !#{piece symbol}

We count a piece as involved in checkmate if it is attacking either the king
directly or any of the squares adjacent to the king. To include information about
the order of moves and captures we also include a term for each two consecutive
moves and captures in the solution. We also include a term for each pair of pieces
involved in checkmate to capture more specific combinations of pieces.

4 Building a Database of Tactical Puzzles

To build a system that can recommend relevant tactical problems for any given
game, a large enough collection of tactics to draw from is as important as the
search algorithm itself. To obtain a larger dataset for our experiments, we devel-
oped the following method to automatically traverse a collection of games and
generate tactical puzzles from positions with certain properties.
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– To find the most relevant candidate positions, we analyse sequences of three
positions. We look for the pattern where the first player makes a blunder (the
engine’s rating changes by more than a certain threshold), which is immedi-
ately followed by another blunder by the second player. This means that the
correct move in the position is probably not obvious, giving us a potentially
interesting tactical problem. The change in evaluation must be significant and
effectively change the theoretical game value.

– We analyse candidate positions with a chess engine to find the optimal line of
play and other relevant moves in order to determine whether they are suitable
as tactical problems and to find solutions to them. We also determine the
correct length of a solution, which is another difficult problem.

– Finally, we perform an additional filtering step. Namely, the solution must be
the only unambiguously winning move sequence from the initial position, the
player must gain a clear material advantage or checkmate the opponent, and
the final position must be stable.

5 Evaluation

To evaluate the effectiveness of our approach, we conducted three experiments.
In the first experiment, we took a large number of pairs of similar tactical prob-
lems from a renowned chess tactics training course. The pairs of similar training
examples in this course were determined by chess experts. The task of our pro-
gram was to find the pairs based on similarity calculations. In the second experi-
ment, our program picked out the most similar chess tactics to the queried chess
tactics and a chess expert was asked to explain the reasons for the similarity.
In the third experiment, a group of experts was asked to find the most similar
chess tactics to the queried chess tactics and the results were compared to the
results of the program.

5.1 Matching Pairs of Puzzles from a Chess Training Course

In the first experiment, we use a number of problems that we have collected
from the Chess Tactics Art (CT-ART 6.0) training course. Many puzzles in
this course consist of pairs of positions: one is taken from a real game, another
represents a simplified version where the same tactical motif usually appears on
a smaller 5× 5 board. This fact allowed us to obtain a set of position pairs that
were considered similar by human experts. We manually checked the puzzles and
verified the similarity between the solutions of the individual problem pairs. A
total of 400 pairs were collected for the test data set.

An example of such a pair is shown in Fig. 2. The solution to both problems
is to sacrifice the rook on the e-file to remove the defender of the g7 square,
resulting in checkmate with the queen. The solution in the simplified problem
contains the same motif, but there are much fewer pieces, so the solution is
generally easier for the students to find.
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Fig. 2. A pair of tactical problems from the data set: base problem (left) and simplified
problem (right). The solution is in both cases 1.R xe8 followed by 2.Q g7 checkmate.

We first build an index using the simplified version of the problem from each
pair, then perform a query on the index with each of the regular problems.
For each query we record the rank of the matching position in the results and
calculate how often the matching position appears as the top result or within
the first N results.

We tested the search accuracy using the following feature subsets: all static
features, all dynamic features and all features combined. All runs use the default
BM25 parameters k1 = 1.2 and b = 0.75 and all included feature sets are
weighted equally. The results are presented in Table 2.

Table 2. Success rates for different configurations.

Accuracy
Feature set top-1 top-5 top-10

all static features 0.252 0.370 0.433
all dynamic features 0.418 0.652 0.761
all features 0.481 0.736 0.814

Using either static or dynamic features only does not yield the best results.
The results are significantly improved when both static and dynamic features
are combined. This shows that each set of features covers a different aspect of
the tactic, both of which need to be considered when determining similarity.

5.2 Chess Expert’s Explanations of Similarity

In the second experiment, we selected 10 contextually different chess tactical
problems and then automatically retrieved 5 most similar positions for each of
them from a database of 46,370 tactical problems constructed from the lichess.org
game database.
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The resulting most similar positions were shown to a chess expert. The expert
was asked to comment on the reasons for the similarity of the resulting problems
with the original query positions, taking into account both static and dynamic
aspects. The expert was able to explain the similarity in 48 out of 50 problems.
Overall, the expert praised the program’s ability to detect dynamic similarity of
positions, even if the initial positions differ significantly.

Table 3. The results of the experiment with three chess experts.

Expert 1 Expert 2 Expert 3
ID Top score Avg. score SD Score Rank Score Rank Score Rank

1 63.42 15.41 11.04 63.42 1 63.42 1 63.42 1
2 82.09 15.60 17.13 81.47 2(1) 81.47 2(1) 81.47 2(1)
3 72.13 22.19 15.56 60.67 2(2) 60.67 2(2) 60.67 2(2)
4 72.32 15.72 13.46 72.32 1 72.32 1 72.32 1
5 91.58 22.55 17.43 89.17 2(1) 89.17 2(1) 89.17 2(1)
6 78.05 16.08 15.20 78.05 1 78.05 1 78.05 1
7 72.67 16.07 13.04 72.67 1 72.67 1 72.67 1
8 69.03 23.22 14.55 69.03 1 69.03 1 69.03 1
9 78.77 24.69 14.54 78.77 1 78.77 1 61.58 2(2)

10 70.37 16.10 13.23 70.37 1 25.72 6(11) 70.37 1

5.3 Comparison with a Group of Chess Experts

In the third experiment, we compared the choice of the most similar tactics
according to the program with the choice according to three chess experts: a
woman grandmaster, a master, and a strong club player.

We first selected 20 contextually distinct chess tactical problems and then
automatically searched for three similar chess tactical problems using (1) static
features only, (2) dynamic features only, and (3) all features. Half of these con-
textually different chess tactics were presented to a group of chess experts. The
found chess tactics were presented to the experts in another database. In this
database, 7 duplicates occurred because the program retrieved the same chess
tactics with dynamic features or with all features. After removing the duplicates,
53 tactics remained for comparison. The experts’ task was to look at the original
10 tactics and find the most similar tactic for each of them in the database of
53 tactics retrieved by the program.

The results of the comparison are shown in Table 3. Each row in the table
first shows ID of a query tactic and the results according to the program: the
highest score of the most similar tactics, the average score of all tactics in terms
of similarity to the query item, and the standard deviation of these scores. Then
the results of the three experts are displayed: the program’s score of the most
similar tactic according to a chess expert and the program’s rank of this tactic
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Fig. 3. Similar tactics with corresponding solutions and scores.

among all 53 candidate tactics. Spearman’s statistical test showed that there is
a significant correlation between the rankings of the program and the rankings
of the chess experts (ρ= .645, p = .001).

In the cases where the experts did not choose the same most similar tactic as
the program, we also show the rank of the tactic according to its dynamic score.

The results show that all three experts strongly agreed not only with the
program’s choices, but also with the choices of the other experts. With only
one exception, the experts always chose the most similar or second most similar
tactic according to the program. The exception was when the second expert
chose a tactic that was similar to the query tactic with ID 10. But even in this
case, the expert pointed to the most similar tactic according to the program as
an alternative (which also shows that the decision was not easy).

We also found that the dynamic part of the score played the most impor-
tant role in the evaluation of similarity by both the program and the experts.
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When searching for similar tactics to query tactics with IDs 2 and 5, all three
experts chose the tactics that had the highest dynamic score according to the
program. Moreover, the dynamic score accounted on average for 77% (SD= 0.11)
of the total score of the most similar tactics according to the program and even
80% (SD= 0.10) of the total score of the most similar tactics according to the
majority vote of the experts.

Figure 3 shows three examples of the query tactics (the diagrams on the
left) and the most similar tactics (the diagrams on the right) according to the
program and also according to all three experts (the IDs of the tactics are 1,
7, and 8, respectively). The third example is particularly interesting: all three
experts agreed that this was the most similar tactic among all 53 candidate
tactics, although the tactical motif occurs on a completely different part of the
board. From the program’s evaluation of similarity, we can see that the dynamic
part of the evaluation contributed the most to the overall score.

6 Conclusion

We presented a novel method for retrieval of similar chess positions, which takes
into account not only static similarity due to the arrangement of the chess
pieces, but also dynamic similarity based on the recognition of chess motifs and
dynamic, tactical aspects of position similarity. We also designed and imple-
mented a method to automatically generate tactical puzzles from a collection of
games.

The method for similar position retrieval was put to test in three experiments.
The first experiment emphasised the importance of including both static and
dynamic features for successful detection of similar chess motifs. In the second
experiment we demonstrated the efficiency of the program on a large database
of tactical problems generated from online chess games. A chess expert was
able to explain the similarity in the vast majority of the retrieved problems and
praised the program’s ability to detect dynamic similarity of positions even if the
initial positions differ significantly. The results of the third experiment showed
that all three experts are congruent not only with the choices of the program,
but also with the choices of each other. Importantly, the experiments clearly
demonstrated that the dynamic part of the score played the most important
role in the evaluation of similarity by both the program and the experts.

The resulting program can be useful for the automatic generation of instruc-
tive examples for chess training. Our approach is certainly not limited to chess.
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Abstract. Board game research has pursued two distinct but linked
objectives: solving games, and strong play using heuristics. In our case
study in the game of chess, we analyze how current AlphaZero type
architectures learn and play late chess endgames, for which perfect play
tablebases are available. We study the open source program Leela Chess
Zero in three and four piece chess endgames. We quantify the program’s
move decision errors for both an intermediate and a strong version, and
for both the raw policy network and the full MCTS-based player. We
discuss a number of interesting types of errors by using examples, explain
how they come about, and present evidence-based conjectures on the
types of positions that still cause problems for these impressive engines.

Keywords: AlphaZero learning · Computer chess · Leela Chess Zero

1 Introduction

The AlphaZero algorithm [12] has demonstrated superhuman playing strength
in a wide range of games, such as chess, shogi, and Go. Yet as powerful as
neural networks (NNs) are at move selection and state evaluation, they are not
perfect. Judging from the varied outcome of self-play games in deterministic
complete information games such as chess and Go, even the best AlphaZero-
style players must still make mistakes. We investigate this gap between strong
play and perfect play. To analyze how these modern programs learn to play
sophisticated games, and also to test the limits to how well they learn to play,
we turn to a sample problem that has known exact solutions. While the full
game of chess has not yet been solved, exact solutions for endgames up to seven
pieces have been computed and compiled into endgame tablebases. We use the
AlphaZero-style open-source program Leela Chess Zero (Lc0) to analyze chess
endgames. We develop a methodology and perform large-scale experiments to
study and answer the following research questions:

– How do stronger and weaker networks differ for predicting perfect play?
– How does the search in Lc0 improve the prediction accuracy for endgames?
– How do stronger policies improve search results?
c© Springer Nature Switzerland AG 2022
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– How does reducing the search budget affect the correctness of Lc0?
– Which is easier to predict, wins or draws?
– How well does Lc0 recognize wins and losses?
– Which kinds of endgame positions are easy and hard to learn? How does that

change with more learning?
– Are there cases where search negatively impacts move prediction? If such

cases exist, why do they occur?

2 Background

In previous work [6,11], perfect play has been compared against heuristic engines.

2.1 Chess Endgame Tablebases

Chess is a game in which the state space and game tree complexity is reduced as
the game progresses and pieces are captured. Chess endgames are sub-problems
in which the full rules of chess apply, but only a reduced set of game pieces
remains on the board. While the game of chess itself has not been solved to
date, endgames of up to seven pieces have been solved and are publicly available
[9]. A database of such endgame solutions is referred to as an endgame tablebase.
A solution for each position includes the outcome of the game given perfect play
for both players, the optimal moves that each player must make to reach that
outcome, and specific metrics such as the number of plies (moves by one player)
required to reach the outcome. There are advantages and disadvantages to each
kind of metric. In this paper, we use the depth to mate (DTM) metric, which
is the number of plies for a win or loss, assuming the winning side plays the
shortest way to win, and the losing side the longest to lose [4].

Endgame tablebases hosted online [5,10] differ in storage size and metrics.
Tablebase generators are often also available. Among these, the Syzygy [10] and
Gaviota [1] tablebases are free and widely used.

2.2 Leela Chess Zero

Leela Chess Zero (Lc0) is an adaptation of the Go program Leela Zero for chess.
Both programs are distributed efforts which reproduce AlphaZero for chess and
Go, respectively. Volunteers donate computing resources to generate self-play
games and optimize the NNs. Relying solely on community resources and efforts,
in 2020 Lc0 surpassed AlphaZero’s published playing strength in chess [7].

Like AlphaZero, Lc0 also takes a sequence of consecutive raw board positions
as input. It uses the same two-headed (policy and value) network architecture
as AlphaZero. Similar to AlphaZero, the policy head output guides the Monte
Carlo tree search (MCTS) as a prior probability, while the value head output
replaces rollouts for position evaluation. Over time the developers of Lc0 intro-
duced enhancements that were not in the original AlphaZero. For example, an
auxiliary output called the moves left head was added to predict the number
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of plies remaining in the current game [3]. Another auxiliary output called the
WDL head separately predicts the probabilities that the outcome of the game
is a win, draw, or loss [8]. Lc0 uses two distinct training methods to generate
different types of networks that differ in playing strength. T networks are trained
by self-play, as in AlphaZero, while J networks are trained using self-play game
records generated from T networks. J networks are stronger and are used in
tournament play.

3 Analyzing Chess Endgames with Leela Zero Chess

3.1 Tablebase Dataset Pre-processing

In order to evaluate the performance of a chess program in terms of finding exact
solutions, a ground truth to compare against is needed. For that, we use chess
endgame tablebases which describe perfect play of all positions up to 7 pieces
on the board. In this section we describe how to pre-process the tablebases.

We choose the open-source Gaviota tablebases as the source of ground truth.
We compare the perfect play against the tested program’s choice for all unique
legal positions in all nontrivial three and four piece endgames. Also, we took the
winning and drawing positions where there are more than one possible outcome.

Since the Gaviota tablebase is indexed and compressed, the following steps
are performed to create an iterable list of positions:

1. We use the method of Kryukov [5] to enumerate all unique legal positions and
store positions in the FEN format. Uniqueness refers to treating symmetric
positions as one; legality is checked using normal chess rules.

2. We use tools from python-chess [2] to extract the following information from
the Gaviota tablebase for each enumerated position: The position in FEN for-
mat, lists of all winning, drawing and losing moves, the win-draw-loss status,
the DTM score, and the decision depth (see below).

3. The data for each endgame type is stored in MySQL for easy access.

We use the term decision depth to categorize positions in an endgame table-
base. For a winning position, the decision depth is simply the DTM score. For
drawing positions where there are also losing moves, the decision depth is the
highest DTM after a losing move.

3.2 Choice of AlphaZero Program and Its Parameters

We chose Lc0 0.27 as our AlphaZero-style program in our analysis, because it is
both publicly available and strong. Lc0 has evolved from the original AlphaZero
in many ways, but with the proper configuration, it can still perform similarly.
We use two specific settings and leave everything else in the default configuration.

Disabling Smart Pruning: AlphaZero selects the node with the highest PUCB
value during MCTS [13]. However, Lc0 does not always follow this behaviour.
This is due to smart pruning, which uses the simulation budget differently: it stops
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considering less promising moves earlier, resulting in less exploration. We set the
Lc0 parameter -smart-pruning-factor=0 to disable smart pruning.

Single-Threaded Search: For consistent analyses, we prefer the engine to
be deterministic between different experiment runs. Multi-threading introduces
random behaviour, so we run the engine with a single thread for consistency.

Lc0 supports a variety of NN backends. Since we used Nvidia Titan RTX
GPUs for our experiments, we chose the cudnn backend.

Many network instances are publicly available. For this research we chose
two specific snapshots of the T60 network generation:

Strong Network: ID 608927 with (self-play) ELO rating 3062.00, which was
the best performing snapshot up to May 2, 2021.

Weak Network: ID 600060, rating 1717.00, were the initial weights of this
generation after 60 updates starting from random play.

Table 1. Total number of mistakes by the policy net and MCTS with 400 simulations,
using strong and weak networks.

EGTB Total Positions Tested
Weak Network Strong Network

Policy MCTS-400 Policy MCTS-400

KPk 8596 390 13 5 0

KQk 20743 109 0 0 0

KRk 24692 69 0 0 0

KQkq 2055004 175623 12740 3075 36

KQkr 1579833 141104 3750 4011 46

KRkr 2429734 177263 6097 252 0

KPkp 4733080 474896 41763 20884 423

KPkq 4320585 449807 46981 6132 13

KPkr 5514997 643187 60605 13227 196

4 Experiments

4.1 Move Prediction Accuracy for Basic Settings

We evaluate the move decisions of Lc0 for all non-trivial three and four piece
endgame positions. We define a mistake as a move decision that changes the
game-theoretic outcome, either from a draw to a loss, or from a win to not a
win. Any outcome-preserving decision is considered correct. So the engine does
not need to choose the quickest winning move. Accuracy is measured in terms
of the number or frequency of mistakes, over a whole database.

Table 1 shows the number of mistakes, for each three and four piece tablebase,
for both the weak and the strong network. Results are shown for both the raw
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network policy, and for full Lc0 with 400 MCTS simulations. From the table it
is clear that both network training and search work very well. The strong net
makes significantly fewer mistakes, and search strongly improves performance in
each case where the network alone is insufficient. For all three piece positions, 400
MCTS simulations are enough to achieve perfect play. In four piece endgames,
a small number of mistakes still remain under our test conditions.

Effect of Search Budget on Winning and Drawing Positions. To analyze
how deeper search influences accuracy, we compare search budgets of 0 (raw
policy), 400, 800, and 1600 simulations per move decision. We call these settings
MCTS-0 = policy, MCTS-400, . . . We chose these relatively settings considering
our limited computational resources. Deeper search consistently helps for all of
these tablebases.

The error rate, defined as the fraction of mistakes in a set of positions, is
shown separately for the sets of winning and drawing positions in each tablebase
in Table 2. In many of these datasets, decisions are more accurate for draws
than for wins. The main exception is KQkr, which contains only a small fraction
(3.4%) of draws. The error rate for those draws is very high at 2%.

Table 2. Error rate for winning and drawing move predictions for MCTS with search
budgets of 0 (raw policy), 400, 800 and 1600 simulations.

EGTB

% of Error

Winning Positions Drawing Positions

0 400 800 1600 0 400 800 1600

KPk 8.00e – 2 0.00 0.00 0.00 0.00 0.00 0.00 0.00

KQk 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

KRk 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

KQkq 2.96e – 1 3.21e – 3 1.61e – 3 0.00 2.74e – 2 5.35e – 4 8.03e – 4 5.35e – 4

KQkr 1.53e – 1 1.41e – 3 4.01e – 4 0.00 2.01 2.93e – 2 1.41e – 2 1.17e – 3

KRkr 2.33e – 2 0.00 0.00 0.00 4.19e – 3 0.00 0.00 0.00

KPkp 4.39e – 1 1.02e – 2 3.30e – 3 1.46e – 3 4.45e – 1 6.18e – 3 1.51e – 3 3.29e – 4

KPkq 1.18e – 3 2.94e – 6 1.34e – 6 10.07e – 6 2.94e – 3 3.42e – 6 0.00 0.00

KPkr 2.02e – 1 4.11e – 1 3.25e – 3 4.92e – 3 1.22e – 3 1.81e – 3 2.88e – 4 1.31e – 3
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Fig. 1. Error rate for each decision depth in the KQkr tablebase.

4.2 Performance at Different Decision Depths

In this experiment, shown in Fig. 1, we measure the error rate separately at each
decision depth. We evaluate both the raw policy and MCTS-400 using the strong
network. The figure shows that in contrast to raw policy, MCTS-400 only makes
mistakes at higher decision depths. Policy mistakes at all shallow decision depths
are completely corrected by search. At higher depths, some errors remain, but
there is no simple relation between decision depth and error rate there.

Figure 2 shows that there is a relationship between the sample size at each
decision depth and the error rate of the raw net. Each point in the figure cor-
responds to all positions of a specific decision depth in KQkr. The results in
other four piece tablebases are similar in that fewer positions at a given depth
correspond to more errors. They are omitted here for brevity. Figure 1(c)–(d)
shows the corresponding results for MCTS-400. The engine only makes mistakes
in positions with higher decision depths. Search can routinely solve positions
with shallower decision depths regardless of the policy accuracy.
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Fig. 2. Sample size (shown as percentage of the total number of positions) at each
decision depth vs. raw policy error rate (in log scale) for the KQkr tablebase.

4.3 Case Studies: Interesting Engine Mistakes

In this section we study a number of interesting cases where Lc0 makes mistakes.
While analyzing these mistakes, there is a large amount of common expected
behavior: search typically corrects policy inaccuracies, and larger searches correct
errors that are still made by smaller searches. However, there are cases where
search fails while the policy is correct. Several examples discussed below are
shown in Fig. 3. The correct moves are indicated in green and blue, while chosen
incorrect moves are shown in red.

Policy Wrong, Search Correct: In Fig. 3(a), Qg1 wins but Qa1 only draws.
The network’s prior probability (policy head) of the incorrect move Qa1 (0.1065)
is higher than for the winning move Qg1 (0.0974). However, the value head has
a better evaluation for the position after the winning move (0.3477) than the
drawing move (0.0067). Therefore Qg1 becomes the best-evaluated move after
only a few simulations. Figure 4(a1–a4) shows details - the changes of Q, U ,
Q + U and N during MCTS as a function of the number of simulations. At
each simulation, the move with the highest UCB value (Q + U) is selected for
evaluation. The Q value of a node is the average of its descendants’ values. The
exploration term U depends on the node’s visit count N and the node’s prior
probability. For this example, while the exploration term U(Qa1) > U(Qg1)
throughout, the UCB value remains in favour of the winning move. An accurate
value head can overcome an inaccurate policy in the search.

Policy and Search Both Wrong: In Fig. 3(b), both Kd3 and Kd5 win, but
both the raw network and the search choose Kc3 which draws. Kd5 has by far
the lowest policy (0.2776) and value (0.3855), and its Q and N are consistently
low, keeping it in distant third place throughout. Both the initial policy and value
are higher for Kc3 (0.3229 and 0.9144) than for the correct Kd3 (0.2838 and
0.8501). We extended the search beyond the usual 1600 simulations to see longer-
term behavior. The Q value of Kc3 remains highest for 6000 simulations, while
Kd3 catches up, as shown in Fig. 4(b1). MCTS samples all three moves with
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Fig. 3. Examples for different types of engine mistakes.

similar UCB values, but focuses most on the incorrect Kc3. At 1600 simulations,
the inaccurate value estimates play a large role in incorrectly choosing Kc3.
Beyond 6000 simulations, the Q value of Kd3 keeps improving, and MCTS
finally chooses a correct move at about 12000 simulations.

Policy Correct, Smaller Search Wrong: In Fig. 3(c), Kb5 wins while Kd6
draws. The prior probability of Kb5 is 0.0728, which is slightly higher than
Kd6’s at 0.0702, but the value, at 0.2707, is slightly lower than Kd6’s at 0.2834.
Figure 4(c1) shows that the Q value of Kd6 is higher early on due to the value
head. As search proceeds, this reverses since the values in the subtree of the
winning move are better. In this example, MCTS overcomes an inaccurate root
value since the evaluations of its followup positions are more accurate.

Policy Correct, Search up to 1600 Simulations Wrong: In the example
shown in Fig. 3(d), d4 wins. Up to 1600 simulations, MCTS chooses the drawing
move Kb3. The value of Kb3 (0.1457) is higher than that of d4 (0.1053), but
the prior probability of d4 (0.3563) is higher than Kb3 (0.348). Figure 4(d1–d4)
shows the search progress. The Q value of d4 remains lower for longer than in
the previous example in Fig. 3(c). At around 1500 simulations, the UCB value
of the correct move becomes consistently higher. This prompts the search to
sample the correct move more, At 2200 simulations, the Q value of the correct
d4 spikes dramatically. At this point the search tree is deep enough to confirm
the win, and from 2700 simulations on, the engine plays d4.
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Fig. 4. Development of relevant terms Q, U , Q + U , N in UCB for Fig. 3((a)–(d)).
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Fig. 4. (continued)
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5 Summary and Future Work

The important findings for three and four piece tablebases are: 1) NNs approach
perfect play as more training is performed. 2) Search helps improve prediction
accuracy. 3) The number of NN errors decreases for decision depths that have
a higher number of samples. 4) Search increases the rate of perfect play with
shallower decision depths. 5) Search corrects policy inaccuracies in cases where
the value head accuracy is high. 6) Small-scale search may negatively impact
accuracy in cases where the value head error is high. However, deep search
eventually overcome this problem in the endgames we analyzed.

Future extensions of this study include: 1) Extend the study for larger
endgame tablebases (with more pieces) to generalize our findings. 2) Perform
frequency analyses of self-play training data to get the number of samples at
each decision depth. 3) Analyze symmetric endgame positions to verify decision
consistency. 4) Examine value head prediction accuracy and compare with policy
accuracy. 5) Study the case where the program preserves the win, but increases
the distance to mate. How often would the program run into the 50 move rule?
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Abstract. Chess endgame tables encode perfect information to inform heuris-
tic search and permit error-free play once the root position is within them. We
introduce a new approach to their minimization, and demonstrate better probe
performance than the state-of-the-art.
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1 Introduction

Chess play has been studied for over a century, decades before computing science
itself existed as a discipline [5,8,24,25,27,31,38,41]. Today, machines are substan-
tially stronger Chess players than top human experts, and the same can be said regarding
many other similar traditional human games.

1.1 Game-Theoretic Error-Free Endgame Play

A Chess endgame table (EGT) is a precomputed, known-correct source of information
about Chess endgame positions. The first Chess EGTs were computed by Ströhlein [36];
seven-piece EGTs were first computed by Zakharov et al. [40] on the Lomonosov super-
computer, using tens of tebibytes. Chess engines that reach such pre-tabulated positions
from within their heuristic searches can propagate back an exact score, which can be
used either to improve on-line game play or to improve the accuracy and efficiency of
off-line reinforcement learning [32] via endgame table rescoring [21].

1.2 State-of-the-Art Chess Endgame Data Compression

Syzygy [22] EGTs are predominantly used at present because they are more compact
than any widely-available alternative, while also being acceptably efficient to query.
Syzygy has coverage for positions where en passant is possible, but has no data for
where some castling right exists. By design, Syzygy stores misleading values for posi-
tions containing legal captures that achieve better compression: correct querying of
them requires the concomitant use of a capture-based quiescence search and minimax-
ing the resulting values. We use (an updated version of) Fathom [13] to provide these
capabilities.
c© Springer Nature Switzerland AG 2022
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For each material balance (the set of pieces remaining, for each player) covered,
Syzygy includes both a win-draw-loss (WDL) table, and a distance-to-zeroing-move
(DTZ) table. WDL alone is sufficient to avoid entering a game-theoretically-suboptimal
position and to determine the result of a game, as has been previously achieved in
Checkers [30], so we do not consider DTZ further.

1.3 Approach

A Chess EGT may be viewed as a partial function that maps a subset of Chess positions
to game-theoretic outcomes. We employ two-level logic minimization to represent this
function in a compact form. Binary decision diagrams [7] have been used for a related
purpose in domains such as Connect Four [12]. In Sect. 2, we review two-level logic
minimization, and explain how we encode Chess positions as logic bits. We discuss the
experiments we undertake in Sect. 3, and summarize our contributions in Sect. 4.

2 Two-Level Logic Minimization

Consider a partial function P : {0, 1}n → {0, 1}m. An equivalent total function T :
{0, 1}n → {0, 1,X}m exists, where an output of X indicates that we do not care
which truth value is assigned to that output. The straightforward tabular representation
of T would always contain 2n rows. For succinctness, we use a matrix representation
M : {0, 1,X}n → {0, 1,X}m of P , where an input of X indicates that the row is
applicable regardless of the instantiated truth value of that input. Thus, a single row of
matrix M with k inputs set to X is equivalent to specifying the 2k compatible rows of
the tabular representation of T .

The union of the input vectors where any of the outputs is assigned to either 1, 0, or
X is considered to be part of the ON-cover (or F , for function), the OFF-cover (or R,
for reverse), or the DC-cover (or D, for “don’t care”), respectively. Each such cover is
the sum of clauses; each clause (or “cube”) is the product of individual inputs.

Definition 1. Two-level logic minimization is the task of, having been provided with
some matrixM that is consistent with P , identifying a matrixM ′ that is also consistent
with P whose covers of interest have minimum cardinality.

We first discuss a few important algorithms from the electronic design automa-
tion (EDA) literature; see Coudert [9] for coverage of additional historically-important
techniques. We then describe the mapping from Chess endgame table data to {0, 1,X}-
vectors and how to employ logic minimization in this context.

2.1 MINI

The MINI logic minimizer [20] introduced the heuristic approach of iteratively improv-
ing cover cardinality via repeated cube expansion and reduction.

Positional Cube Notation. As with one-hot encodings used in machine learning, posi-
tional cube notation (PCN) maps each specific value of an input variable to a different
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bit. Doing so permits efficient cube operations to be performed via bitwise logical oper-
ators. A multiple-valued input variable over the domain {ant, bee, cat} could be mapped
as: ant → 100; bee → 010; cat → 001. In contrast to a one-hot encoding, 111 is also
valid PCN, representing “do not care”. For each binary input variable v, PCN reduces
to a bit pair v̄v: 0 → 10; 1 → 01; X → 11.

Distance-One Merging. Hong et al. [20] report using merging two cubes that disagree
on only a single variable for “computational advantage”, as in these three examples:

before
0X01100 100X010 X011001
0X11100 10XX010 X0X1001

after 0XX1100 10XX010 X0X1001

MINI iterates over each such input variable once, updating the sorted ordering of
M ′ prior to processing each variable to ensure that the clauses are ordered to permit all
potential merges involving that variable via a linear scan through the product clauses.

Expansion. Distance-one merging is a particular form of cube expansion, which is the
process of enlarging a cube so that it (hopefully) includes as many as possible of the
minimum product terms, or minterms, ofM ′ that must be covered, while avoiding cov-
ering any product terms that must not be covered (the collection of which constitutes
the blocking cover). Any cube that is completely covered by another may be discarded,
thereby reducing the cardinality of M ′.

Reduction. Once expansion has occurred, many cubes that partially overlap may cover
the same minterms. Cube reduction is the process of shrinking a cube while ensuring
that it continues to cover all minterms not already covered by any other cube. This can
allow the cube to later grow in a different direction for better overall minimization.

2.2 ESPRESSO

Irredundancy (Introduced by Brayton et al. [6]). While expansion alone can eliminate
many cubes, it does not eliminate any cube that does not end up completely encom-
passed by a single other cube. The irredundancy pass within ESPRESSO’s expansion-
irredundancy-reduction main loop exists to prioritize the cardinality minimization of
M ′ via the detection and removal of such cubes that are nonetheless redundant with
respect to multiple other cubes in advance of performing any reduction that could cause
an available opportunity for cube removal to be forfeited.

Distance-One Merging. Like MINI, the ESPRESSO implementation used does support
the ability to apply distance-one merging across multiple variables of the ON-cover in
sequence. Though this capability is not enabled by default, the espresso(1)manual
page suggests its use.

2.3 Pupik

Pupik [15,16] is based on processing ternary trees that represent Boolean functions
[14]. It repeatedly performs single-variable absorption and complementation to com-
bine cubes. We observe that a single distance-one merge encompasses both of those
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operations, and that the full procedure described in Fišer et al. [15] is precisely equiv-
alent to performing distance-one merging over F . The asymptotic analysis performed
therein naturally does not account for practical benefits of the matrix representation
such as its memory locality and amenability to bit vector operations.

2.4 A Simple Position Encoding Scheme

The Chess position encoding we use retains the traditional top-level division of Chess
endgame positions by their material balance to permit straightforward comparison with
the substantial body of prior work. More importantly, the scheme selected is relatively
uninformed about Chess. Not only do our input vectors contain no machine-learned
features, they also fail to manually capture basic Chess notions such as whether the
player to move is in check or has at least one legal move that can be played. We have
stayed far away from using any sort of bitboard representation [1] that could cause logic
minimization-based image processing techniques [4,11,29] to become applicable. No
counters are used; even the specific material balance in use is not encoded. Furthermore,
we make no application of concepts that might assist logic minimization itself such as
multiple-valued variables or reflected binary (a.k.a. Gray) coding. By doing so, we hope
to convince the reader of the generality of the compression technique.

The input to the logic minimizer contains a matrix description of the universe of
discourse: 0000010000000010000001001010 is an example row of T . Of the
25 input bits, the first is 1 iff Black is to move. Chess boards contain 26 potential
piece locations, so a sextet is used to specify the placement of each piece. Pieces are
recorded inKQRBNPkqrbnp order. The final triplet is a multi-valued vari-
able indicating whether White wins, draws, or loses with best play, or that we do not
care. Were we processing the KNkp table, the row above would be interpreted as
follows: White is to move; the white king is on c8; the white knight is on a8; the black
king is on a6; the black pawn is on b7; White has a draw with best play. The complete
table T for each four-piece material balance contains 225 rows.

Note the austere simplicity of this representation. Extensive efforts have been made
to identify indexing schemes that include all legal positions for a material balance, but
as few additional illegal positions as possible [18,19,23,37]. It is also common for mul-
tiple indexing order permutations to be attempted for each material balance: once it is
determined which variant turns out to yield the smallest file size after a subsequent layer
of block compression is applied, the necessary data required to select which scheme is
to be used for decompression is recorded near the beginning of the file. Instead, we rely
upon logic minimization to combine adjacent cubes with compatible outputs.

This representation also permits labelling large blocks of positions with the same
output vector a priori. For example, all positions where a black pawn is on the eighth
rank are illegal. We could specify that we do not care about any such positions within the
KNkp table using a single matrix row: XXXXXXXXXXXXXXXXXXX000XXXXXX.
For simplicity, we do not currently represent either castling or en passant rights.
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2.5 Method

We construct one matrixM per material balance, where each row represents a (possibly
illegal) position and its associated game-theoretic outcome. We then employ logic min-
imization to construct a more compact matrix M ′. We begin with iterated distance-one
merging. Then, one or more ESPRESSO operators (e.g., expansion) are applied.

To probe the game-theoretic value of a position, the query position is encoded as
aforementioned. Then, the M ′ for the appropriate material balance is scanned linearly
until a match is found. The output bits of the matching entry dictate the returned result.

3 Experimentation

We explore the trade-off between the minimization time and quality, then compare the
resulting on-disk size and time to query endgame positions our method and Fathom.

3.1 Two- and Three-Piece Endgame Tables

Our first experiment manipulates three processing conditions while processing the two-
and three-piece tables: whether iterated distance-one merging is or is not performed;
whether a single expansion pass or the full ESPRESSO algorithm will be executed;
whether or not canonicalization is used. This last condition is explained immediately
below, followed by discussing the results of this first experiment.

Canonicalization. Symmetries in Chess endgames (and in other puzzles and games)
have long been exploited [2,10,17,26,28,33–35]. A simply example of symmetry
exploitation is that the Syzygy (and our) EGTs do not include the Kkq material
balance. When needed, the KQk table is probed using the inverted position, and the
result translated. Additional symmetries do exist, especially in pawnless endgames.

For each equivalence class of positions defined by the available symmetries for
a material balance, we designate one in particular as the canonical representation for
which WDL data is recorded. All other positions within the equivalence class are
assigned exclusively to the DC-cover. The probing operation must then translate to the
canonical position during querying.

Results. We perform experiments on two- and three-piece endgames. Regardless of the
processing condition under test, for each of the trivially-drawn material balances (Kk,
KBk, andKNk), the ON-cover consistently resolves to a single row with all inputs
marked as don’t care and the outputs indicating a drawn result. We are nonetheless
able to observe striking performance differences with the remaining material balances
(KQk, KRk, and KPk).

Cumulatively, 194 602 clauses in F exist between the six endgame tables under con-
sideration prior to iterated distance-one merging; versus just 29 920 clauses in F after-
ward. This early 6.5× reduction in cubes yields a significant processing time advantage
for the immediately following expansions, and moreover, takes negligible time to per-
form. Accordingly, we always apply iterated distance-one merging in our experiments
hereafter, and not just to F , but also to R and to D.
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Canonicalization causes a large majority of positions in each endgame under con-
sideration to be classified as don’t care, which substantially increases the opportunities
for cube expansion, and thus for ON- and OFF-cover cardinality minimization. We
do acknowledge that the use of canonicalization effectively slips some slight amount
of domain knowledge into our lossless compression algorithm. However, symmetry
exploitation is not inherently Chess-specific, and this same (and even more) domain
knowledge is also exploited by Syzygy EGTs, which serves as our standard for com-
parison. As with iterated distance-one merging, the benefit is so clear that we always
apply this process hereafter.

Executing the complete ESPRESSO algorithm improves ON-cover cardinality ver-
sus performing only a single expansion pass, but the associated time penalty is notice-
able. Thus, we proceeded to further investigate this tradeoff with larger material bal-
ances.

Fig. 1. (a) Time versus compression comparison for running ESPRESSO to completion versus
performing just a single expansion and irredundancy pass. Each data pair, which is denoted by the
dashed line connecting two dots, represents an endgame. The input to all endgames depicted was
preprocessed using both iterated distance-one merging and canonicalization. (b) A comparison
of the resulting cardinality of the ON-cover for the iterating versus the non-iterating treatment,
using the same data as (a). Four-piece endings with two pieces per side tend to be more complex
than those where one side has only a king, and so tend to require more cubes to be accurately
represented.

3.2 Two- Through Four-Piece Results

We now additionally include four-piece endgames in our exploration. The processing
treatment that has been added is to apply iterated distance-one merging, expansion,
and irredundancy, but without subsequent iteration of the ESPRESSO reduce-expand-
irredundant main loop.
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We observe that applying a single irredundancy pass after the expansion pass is both
quick and effective at reducing the cardinality of F . Figure 1(a) illustrates that iterating
the main loop of ESPRESSO extracts improvements only at a relatively high cost in
time; Fig. 1(b) provides an alternate view showing clearly that the ON-cover cardinality
reduction achieved for this extra effort is not great. Furthermore, there is every reason
to expect that iteration time will increase with problem size.

Exerting additional effort to continue to reduce cover cardinality may be particularly
valuable in the electronics manufacturing context. For example, simpler circuits are
associated with using either fewer lookup tables (LUTs), or less die space and power.
However, the extra effort of iterating until improvement can no longer be found does
not appear to be an efficient use of our limited processing power. Given our intention
to obtain usable compressed PCN versions of larger EGTs as economically as possible,
applying iterated distance-one merging, expansion, then irredundancy appears to be our
best trade-off.

3.3 Compression Effectiveness

–

– –

–

Fig. 2. Comparison of our method versus Syzygy WDL. (a) Table sizes: Each point represents
one material balance; points above the diagonal line represent tables for which our method out-
performs Syzygy. Note the log-scale: tables to the right and top dominate the total compression
size. (b) Query performance: Joint density (across 10M random queries) of the query time for our
method and Syzygy. Again, note the log-scales. Our method has a faster mean query time (39µs
versus 138µs) and smaller standard deviation (41µs, compared with 258µs).

Each product clause in F generated when using iterated distance-one merging, expan-
sion, and irredundancy is representable in PCN in 64 bits with room to spare. We gen-
erate a binary file per material balance containing each row in PCN sorted lexicograph-
ically, then compress it via xz -9 -e. Figure 2(a) contrasts the space consumed on
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disk by our method with the Syzygy endgame tables after being recompressed with
xz -9 -e. For the 2-, 3-, and 4-piece endings, our method does require 47% more
space than the recompressed Syzygy EGTs. Given that there has been a half-century of
endgame table technology development leading to the Syzygy format, and that numer-
ous opportunities to improve compression results using our novel method remain, we
are comfortable claiming that this method of lossless compression has some promise.

3.4 Query Effectiveness

We sampled uniformly with replacement to obtain ten million four-piece Chess
endgame positions. We place a white king on any of 64 squares, then a black king on
any of 64 squares, then any non-king on any of 64 squares, then any non-king on any of
64 squares, then select the side to move. Any non-legal position is then discarded. Note
that castling and en passant rights are never present.

All ten million positions are first probed to verify correctness of the result returned.
Afterwards, all ten million positions are probed a second time for timings capture.
Fathom is used to probe Syzygy; our method linearly scans the minimized ON-cover
for a matching cube.

Figure 2(b) shows the density plot of the joint distribution of query times. Densities
above the diagonal are positions that took longer for Syzygy; those below took longer
for our method. The mean time (above the diagonal) is shown, along with the marginal
densities. Our probes are on average both substantially faster (39µs versus 138µs) and
exhibit lower variability (a standard deviation of 41µs versus 258µs), which demon-
strates the viability of the approach.

4 Contributions

Logic minimization techniques have previously been applied widely within EDA, and
also within image processing-like and stream compression contexts [3,39]. We pro-
vide a top-level explanation of two-level logic minimization, clarify some relationships
between techniques described within its literature, and demonstrate superior probing
performance when using this method to losslessly compress Chess endgame tables.
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Abstract. In video game development, creating maps, enemies, and
many other elements of game levels is one of the important processes.
In order to improve players’ game experiences, game designers need
to understand players’ behavioral tendencies and create levels accord-
ingly. Among various components of levels, this paper targets mazes
and presents an automatic maze generation method considering diffi-
culty based on human players’ tendencies. We first investigate the ten-
dencies using supervised learning and then create a test player consid-
ering human-likeness by exploiting the tendencies. The test player simu-
lates human players’ behaviors when playing mazes and judges difficulty
according to the simulation results. Maze evaluation results from subject
experiments show that our method succeeds in generating mazes where
the difficulty estimated by the test player matches human players’.

Keywords: Procedural content generation · Maze · Difficulty · RPG

1 Introduction

Artificial Intelligence (AI) has succeeded in various fields; for games, AI has
been applied not only to make computer players but also to generate game con-
tent, well known as Procedural Content Generation (PCG). PCG has attracted
attention from academia and industry and was mainly researched for popular
game genres such as platformer games (e.g., Super Mario Bros) [1] and shooting
games [2]. In contrast, research on role-playing games (RPG) is relatively few.

RPG is a classical genre that includes famous titles such as The Elder Scrolls1

and Fallout2 series. In addition to defeating final bosses, players may have vari-
ous purposes, and these factors are often reflected in game design. One example
is “finding and collecting items on the maps.” Since it is not exciting that rare
items are easily found, game designers may design maps that guide players away

1 https://elderscrolls.bethesda.net/en.
2 https://fallout.bethesda.net/en/.
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from rare items. Another example is “going to the next town.” Although explor-
ing game maps may be enjoyable, getting lost for a long time is frustrating.
Meanwhile, too explicit guidance (e.g., maps containing a single path or flash-
ing marks showing the correct directions) harms the play experience. Therefore,
it is better that RPG maps give players freedom in exploring while implicitly
controlling their behaviors. These are key challenges in game design, known as
the “Narrative Paradox” [3]. Creating desirable maps usually needs many game
designers’ efforts and time, making the development costs high.

The main goal of this research is the automatic generation of such maps. As
the first step, we target simple two-dimensional mazes that contain only pas-
sages and walls but no enemies, items, or NPCs. We investigate human players’
behavioral tendencies when playing such mazes. In this paper, we aim to know
the difficulty of mazes from human players’ perspectives and generate mazes
accordingly. We analyze human players’ path selection tendencies by supervised
learning and use the learned model to create a test player for maze generation.
In evaluation experiments, the results that human players play the generated
mazes are generally consistent with the results predicted by the test player.

The rest of the paper is organized as follows. Section 2 introduces work related
to PCG and maze generation. Section 3 and Sect. 4 present an investigation of
human players’ tendencies using supervised learning and a maze generation app-
roach using the test player, respectively. Section 5 shows the results of the subject
experiments on maze evaluation. Finally, Sect. 6 makes conclusions.

2 Related Work

PCG is the algorithmic creation of game content with limited or indirect user
input [4]. A large variety of content such as maps [5], puzzles [6], and NPCs [7]
is covered as targets of PCG. Among approaches for PCG, the following four are
representative. Constructive PCG generates content via rules that are usually
hand-crafted. Search-based PCG optimizes generated content through repeats
of generation and evaluation [8]. PCG via Machine Learning trains generation
models using existing game content to generate new one [9]. PCG via Rein-
forcement Learning is a very recent approach that trains generation models by
reinforcement learning and does not require existing game content [10,11].

This paper focuses on generating maze maps. Simple Constructive PCG algo-
rithms include digging [12], extending [13], and toppling [14] methods. Some
researchers further considered maze difficulty and used Search-based PCG [15–
17]. For example, Kwiecień [17] proposed to generate challenging mazes based
on the cockroach swarm optimization algorithm and defined maze complexity
by the length of a solution path, the number of its direction changes, and the
branch point number in the maze. However, none of them explicitly considered
human players’ behaviors. Even though a maze looks complicated containing
many branch points, players do not always get lost. Our approach differs from
these papers’ in that ours considers difficulty from human players’ perspectives.
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3 Investigation of Human Players’ Tendencies

Mazes have been widely played around the world, which can be further grouped
by different attributes such as the number of dimensions and the uniqueness of
the solution path. In this paper, we target two-dimensional mazes with unique
solution paths. In order to adjust difficulty from humans’ perspectives, it is
important to grasp human players’ behavior tendencies. Section 3.1 presents
subject experiments on collecting human players’ behaviors. Section 3.2 employs
supervised learning on path selection probability to investigate the tendencies.

3.1 Subject Experiments

We generated the mazes by classical algorithms [12–14]. Figure 1(a) and 1(b)
show the screenshots of mazes, and the maze settings are listed as follows:

• The maze size is 31 × 31 (Small), 41 × 41 (Medium), or 51 × 51 (Large).
• The maze consists of only passable cells (passage) and impassable cells (wall).
• Since the algorithms place two consecutive passages at a time, each passage

must locate at a cell whose x-, y-, or both coordinates are even numbers,
assuming that the top-left corner is (1, 1).

• A player’s goal is to get from a start point to an end point.
• In cases that players do not visit a cell more than once, the solution path

that connects the start point to the end point is unique.
• The start point and the end point are located at the upper left and lower

right in the maze, respectively.
• The maze does not contain loops, cycles, and isolated cells.
• A player can move only one cell vertically or horizontally per action.
• The time limit is set for playing a maze, depending on the maze size: 80 s for

Small, 100 s for Medium, 150 s for Large. If the player does not reach the end
point within the time limit, the game is over.

• A player has either one of the following two ranges of view.
– Wide view: A player can view the entire maze, as shown in Fig. 1(a).
– Narrow view: A player can only view inside a circle centered on him-

self/herself, as shown in Fig. 1(b). The diameter of the circle is half of the
side length of the maze (e.g., 31/2 = 15.5 cells for Small)3.

A total of twenty players (males and females in their twenties to forties)
participated in the experiments. The participants consisted of both players who
were interested in playing games and players who were not. The participants
played 21 mazes with different maze sizes and view ranges.

3 We decide the circle size considering both humans’ visual perception and the design
of RPG maps. We leave it as future investigations into whether the sizes fit human
players’ visual perception and how different sizes influence the results.
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Fig. 1. Small size mazes with (a) the wide view and (b) the narrow view, and inter-
sections that (c) is not and (d) is a branch point, where the yellow, pink, and red cells
are the start point, the end point, and the player, respectively. (Color figure online)

3.2 Prediction by Supervised Learning

Human players’ tendencies are investigated by employing supervised learning on
probabilities of selecting proceeding directions at branch points. Note that not
all intersections are branch points, which we will define soon later. For a given
cell in a maze, we define a proceeding direction as uncertain if any part of the
succeeding paths is invisible within the narrow view range. In Fig. 1(c), if the
player (red cell) goes right, it leads to succeeding paths in green oblique lines.
Since some paths go to areas outside of the narrow view, the proceeding direction
of right is uncertain. In contrast, going left leads to succeeding paths fully visible
in the narrow view (blue vertical lines) and is not uncertain. We then define a
branch point as an intersection connected to two or more uncertain proceeding
directions. In Fig. 1(d), the player (red cell) is at a branch point connected to
two uncertain proceeding directions. Note that branch points in both wide and
narrow view mazes are defined in the same way.

Learning Settings. We collected branch points and the players’ selection pro-
portions of proceeding directions from the mazes in the subject experiments. For
example, assume that players could go right or go down at some branch point.
If 16 out of 20 players went right, the selection proportion of going right at this
branch point was 16/20 = 0.8. Note that we only counted data from the first
time that players reached the branch points. Also, we only considered uncertain
proceeding directions. For the supervised learning model, the input was maze
features related to branch points, including a proceeding direction, and the out-
put was the predicted selection proportion. We extracted 23 input features, as
explained in Appendix A. We collected 147 and 197 training data from the sub-
ject experiments for wide and narrow view mazes, respectively. Since the amount
of data was small, we doubled the data by creating copies that swapped the x-
axis and y-axis values of the original maze data. The prediction models were
built based on the LightGBM4 with leave-one-out cross-validation.

4 https://lightgbm.readthedocs.io/en/latest/.

https://lightgbm.readthedocs.io/en/latest/
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Learning Results. Figure 2 shows the prediction results. Note that selection
proportions of the proceeding directions at a branch point were predicted sepa-
rately and that the sum of the proportions might not be 1.0. Thus, we further
normalized the selection proportions at each branch point to make them a prob-
ability distribution (i.e., summing to 1.0). Root-mean-square errors between the
predicted probabilities and actual proportions were 0.26 (wide view) and 0.21
(narrow view). Although the prediction accuracy still had room to improve, the
Pearson correlation coefficients were 0.66 (wide view) and 0.74 (narrow view).
The former had a moderate positive correlation, while the latter had a highly
positive correlation. We concluded that the prediction models were reliable to
some extent, especially the narrow view one.

Fig. 2. Prediction results (x-axis: predicted probability, y-axis: actual proportion) of
(a) wide view mazes and (b) narrow view mazes.

Fig. 3. Human players’ selection proportions of the proceeding directions.

We further analyzed the players’ tendencies in both wide view and narrow
view mazes and had interesting findings reflected in the prediction models. Due
to the page limit, we only present the results of narrow view mazes. We observed
that (1) the players tended to go down or right instead of going up or left
and that (2) when both right and down directions were available, the players
tended to go straight. Such tendencies are shown in Fig. 3, the statistics on the
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players’ selection proportions of proceeding directions according to the shapes of
branch points. To keep the figures simple and easy-to-read, data with selection
proportions less than 0.5 are excluded. Also, data with sample numbers less than
20 are excluded since they are not reliable enough.

We considered that tendency (1) is because the end points of all mazes in
the experiments were fixed at the bottom-right corner. When further looking
into the prediction model, the “cos goal” feature had the biggest contribution
to prediction (feature importance of 0.35). With a higher “cos goal” value, the
proceeding direction was likely promising for the players. For example, if a player
is at some branch point in the upper-right area, going down leads to the highest
“cos goal” value and is reasonable for the player to select. Thus, we concluded
that tendency (1) was adequately reflected in the prediction model. As for ten-
dency (2), we considered that going straight is easier to operate than changing
directions for human players. This tendency was also reflected in the predic-
tion model, where the “is straight” feature contributed the second most (feature
importance of 0.15).

4 Maze Generation and Selection Approach

For generated mazes, we aim to evaluate the difficulty from human players’
perspectives. With a prediction model (e.g., the narrow view one in Sect. 3),
Sect. 4.1 creates a test player simulating human players. Section 4.2 then defines
difficulty and generates mazes accordingly.

4.1 Test Player Considering Human-Likeness

The test player’s action selection is broadly divided into two cases according to
whether the passage is a branch point or not (defined in Sect. 3.2). For a passage
that is not a branch point, the test player proceeds as follows. When the end
point is in the view range and can be arrived at, the test player directly goes to
the end point in the fewest steps. Otherwise, the test player moves forward and
never steps into dead ends (e.g., never going left in the situation of Fig. 1(c)).

The following two exceptions are introduced to the above rules to make
the test player more human-like. First, when the test player goes left on the
horizontal edges of the mazes or goes up on the vertical edges of the mazes, it
stops proceeding and returns to the last passed branch point. Since all mazes
have end points fixed at the bottom-right corner and do not contain loops, going
left or up on the edges never leads to solution paths. The investigation in Sect. 3
also supports that human players have such a tendency. Second, for narrow view
mazes, the test player returns to the last passed branch point upon knowing that
the succeeding paths lead to dead ends.

For a branch point, the test player only selects uncertain proceeding direc-
tions, and the selection is different from whether it is the first time visiting
or not. When visiting a branch point for the first time, the test player selects
directions according to the probability distribution from the prediction models.
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When the test player returns to a branch point from some dead ends, we
predict the selection proportions again for directions that the paths have not
been traversed. When the test player is not on the solution path5, the predicted
proportions less than 0.5 are changed to 0.0, which is to prevent the test player’s
behaviors from being too different from human players’. If all the not-traversed
directions have proportions of 0.0, the test player returns to the last passed
branch point. The reason for not applying this rule to solution paths is to make
sure that the test player can reach the end points. If at least one direction can
be selected, the proportions are normalized to sum to 1.0 no matter whether the
branch point is on the solution path or not. Taking a T-shaped branch point
on the solution path as an example, assume that the predicted proportions for
going right and down are 0.6 and 0.3, respectively. The test player goes right
with a probability of 0.6/(0.6 + 0.3) ≈ 67% and goes down with 33%.

4.2 Maze Difficulty Evaluation Using Test Player

We use the test player to simulate human players’ behaviors when playing mazes
and evaluate difficulty according to estimated step numbers. In more detail, for
each maze, we know in advance the shortest number of steps to the end point,
denoted by n∗. After the test player clears the maze, we count the total num-
ber of steps, denoted by ntotal. We then define the number of extra steps nextra

as ntotal − n∗. With higher nextra, we consider that the maze is more difficult.
Since the test player involves randomness, we let it play each maze 10 times and
judge the difficulty according to the results of all trials. We generate mazes auto-
matically using the digging method [12] and define difficulty by two indicators,
average nextra and the standard deviation of nextra, as: easy/moderate/difficult
whose average nextra is low/moderate/high and lowSD/highSD whose standard
deviation of nextra is low/high. For example, difficultlowSD contains mazes with
a high average nextra and a low standard deviation of nextra.

5 Subject Experiments on Maze Evaluation

We conducted subject experiments to see whether the maze difficulty for human
players is well predicted by the test player. A total of 10 players (males in their
twenties) participated in the experiments. The participants were different from
those in Sect. 3 for the sake of fair evaluation. The maze size was 51 × 51, and
the players had the narrow view. We generated 30,000 mazes and let the test
player with the narrow view prediction model play each maze 10 times. A maze
with an average nextra in [0, 50) was classified as easy, [150, 250) as moderate,
and [350, ) as difficult. In each class, mazes with the top-7 and the bottom-7
standard deviations of nextra were selected as highSD and lowSD, respectively.
We excluded easyhighSD since the standard deviations did not differ too much
from easylowSD. Therefore, we had five difficulty groups, as shown in Table 1.

5 We create the test player assuming that the shortest solutions of mazes are known.
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Figure 4(a) and 4(b) show examples of easylowSD and difficultlowSD mazes
with the test player’s trajectories of one trial, where cells in gray are on the
solution path and those in red oblique lines are not. Figure 4(c) shows the tra-
jectories by one of the human players, which looks particularly similar to the
test player’s.

Fig. 4. Example mazes of (a) easylowSD and (b)(c) difficultlowSD, where (a) and (b)
show the test player’s trajectories in gray (on the solution path) and in red oblique
lines (not on the solution path), and (c) shows one human player’s trajectories. (Color
figure online)

Table 1. The means and standard deviations (SD) of nextra by human players.

easylowSD moderatelowSD moderatehighSD difficultlowSD difficulthighSD

order mean SD order mean SD order mean SD order mean SD order mean SD

5 200 194 1 71 43 3 53 113 4 299 173 2 257 180

9 72 131 10 241 197 6 243 206 7 364 123 8 231 162

14 69 44 12 285 114 11 195 209 13 371 121 17 447 162

18 77 116 19 220 137 15 135 214 16 406 150 20 368 200

21 175 151 23 228 140 24 232 201 22 262 133 25 265 234

26 48 47 29 178 152 27 228 180 28 517 159 30 104 173

33 27 25 32 235 42 31 314 291 34 374 77 35 140 184

Avg. 95 101 Avg. 208 118 Avg. 200 202 Avg. 307 134 Avg. 259 185

Table 1 shows the order that the participants played the 35 mazes as well as
the means and the standard deviations of the participants’ nextra for each maze.
Generally, the difficulty judged by the test player matched human players’ (i.e.,
difficult > moderate > easy). When focusing on mazes with lowSD, the Student’s
t-test (p < 0.05) showed that the results were statistically significant. Namely,
difficultlowSD had the average nextra higher than moderatelowSD (p = 0.0016),
and moderatelowSD higher than easylowSD (p = 0.0083). We also compared the
standard deviations within the same difficulty. We considered that mazes with
lower standard deviations are preferred since it means that even different human
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players may still experience similar difficulty. For mazes with lowSD and highSD,
the results of Student’s t-test (p < 0.05) showed statistical significance as follows:
moderatehighSD had the average standard deviation higher than moderatelowSD

(p = 0.0142), and difficulthighSD higher than difficultlowSD (p = 0.0057). The
results demonstrated that our method succeeded in generating mazes where the
difficulty matched human players’ in terms of nextra.

Interestingly, some easylowSD mazes were actually difficult for human players
and vice versa, as shown in Table 1. We suspected that the accuracy of the
prediction model was insufficient in some situations and the test player somewhat
lacked the consideration for humans’ assumptions and misunderstandings. For
example, assume a maze has a very long solution path. When human players
cannot reach the end point for a long time, they may return to previous branch
points even when they are on the solution path. In contrast, the test player did
not have such hesitation. We expected that the difficulty evaluation would fit
human players’ behaviors better if we introduced more human-like characteristics
like this into the test player.

6 Conclusions and Future Work

In this paper, we proposed a procedural maze generation method considering
difficulty from human perspectives, which generated mazes by the following two
steps. The first investigated human players’ tendencies. We employed supervised
learning and built models for predicting human players’ path selection proba-
bilities. The prediction results had moderate or highly positive correlations to
human players’ selections. The second step created a test player based on the
model. The test player’s results of playing mazes were used as a measure of dif-
ficulty. Then, we conducted subject experiments to evaluate whether the maze
difficulty is suitable for human players. The experiments showed that difficulty
estimated by the test player matched human players’ playing results in general.

The followings discuss several promising research directions. About the test
player, on the one hand, we expect to improve the difficulty evaluation by making
the test player consider more human-like characteristics. On the other hand, to
make our approach applicable to a wide variety of mazes, it is worth investigating
more general ways to create human-like test players. Also, the efficiency of maze
generation has room to improve. The current approach may generate many mazes
before obtaining one with a specific difficulty. We consider that combining other
algorithms such as simulated annealing and local search can help improve the
efficiency. In addition, we plan to compare our approach to existing ones in
terms of difficulty evaluation, investigate the influences from the size of narrow
view or different locations of the start point and the end point, and apply the
approach to generate mazes containing more elements such as enemies and items
for application to RPGs.

Acknowledgements. This work was supported by JSPS KAKENHI Grant Numbers
JP18H03347 and JP20K12121.



174 K. Fujihira et al.

Appendix A Input Features of Prediction Models

The following are 23 features, mainly related to each branch point b. Directions
are represented by integers, 0 for right, 1 for down, 2 for left, and 3 for up.

(1) maze size: The maze size (0 for Small, 1 for Medium, or 2 for Large).
(2)(3) x, y: The x- and y-coordinates of b. (4) ent: The direction from which
players enter b. (5) proc: The proceeding direction at b. (6)–(9) proc ↑,
proc ↓, proc →, proc ←: Whether each direction is an uncertain proceeding
direction. (10)–(13) dist edge ↑, dist edge ↓, dist edge →, dist edge ←:
Distance from b to the edge in each direction. (14) is straight: Whether ent
and proc are in a straight line. (15) straight depth: The number of passages
that follow the straight line. (16) promisingness: The number of passages on
the succeeding paths of proc regardless of the view range. (17) promising-
ness sum: The sum of the promisingness values of all directions, excluding ent,
at b. (18) general direction: The general direction of the paths extending
from proc. (19) num branch: The number of other branch points in the nar-
row view range, which was used for both wide and narrow view mazes. (20)
dist start: The minimum number of steps from the start point to b. (21)
avg step: The number of steps taken to reach b. We used the average num-
ber of steps of the experiment participants when building the prediction models.
(22)(23) cos start, cos goal: The cosθ of the angle between the start point
or end point and proc.
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Abstract. It is observed that the strength of many game programs varies
a lot in a tournament when facing opponents of different styles. In order to
adapt one’s playing strategy when playing against different programs to
obtain the best possible outcome, it is important to estimate the strength
of the opponent. We use a neural network to predict the strength or style
of an opponent via the first 20 plies of a game in Chinese Dark Chess.
According to the prediction result, a contempt factor is used when playing
against the target opponent after the first 20 plies. Both the experiment
result and the tournament results show that this approach can improve
the rank of our program in a competitive tournament.

1 Introduction

In computer games, predicting the strength of the opponent player is one of the
essential techniques to improve the level of the computer programs [7,8]. Histori-
cal data can be used to estimate a specific opponent’s strength [8]. Moreover, one
can use the estimated results to implement a particular strategy when playing
against the target opponent [6,7].

One of the strategies used in computer Chess in finding a good opponent
model is called the contempt factor [7], which is a value indicating the strength
difference between two programs. When this value is non-negative, we assume
the opponent has an equal or greater strength than ours. In this case, we accept
a draw even if we currently have a small advantage. On the other hand, if the
contempt factor is negative, the opponent is assumed to be weaker than ours. In
this case, we do not accept a draw even if we currently have a small disadvantage.
That is, we try to force a draw when the opponent is stronger and avoid a draw
result when the opponent is weaker.

There are many participants in a computer game tournament [3]. Some par-
ticipants have participated in the tournament several times, but there are always
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some newcomers. We can use the previous results to estimate the strengths of
those who have participated in the tournament before. For newcomers, we need
to design a method to predict their strengths. Knowing that your opponent is
weak, we can afford to sacrifice the top-ranked piece and eventually win the
game in Chinese Dark Chess, whose goal is to capture all of the opponent’s
pieces. This is particularly true for Chinese Dark Chess, which easily draws by
chasing the opponent’s most important piece, namely King, using the least val-
ued piece, namely Pawn. Figure 1 shows an example of a forced draw. When the
black pawn moves from B5 to C5, the red king’s only escape is to move from
C4 to B4. The black pawn can continue chasing the red king by moving from
C5 to either C4 or B5. Furthermore, Chinese Dark Chess is a non-deterministic
game. By flipping a dark (unrevealed) piece, a game may turn from advantage
to disadvantage. For example, in Fig. 2a, the red side may consider flipping the
unrevealed piece in C5. If the revealed piece is a black cannon, as in Fig. 2b, the
red king can capture one black cannon and two black guards, which is a huge
advantage. On the other hand, if the revealed piece is a black pawn, as in Fig. 2c,
the red king will be captured directly, which is a huge disadvantage. In this paper,
we provide a way to estimate the opponent’s program’s strength by feeding the
first 20 plies of a game into a deep-learning neural network model [4,5].
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Fig. 1. An example of using black pawn to chase red king. (Color figure online)
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Fig. 2. An example of revealing result causes advantage and disadvantage result. (Color
figure online)

In this paper, we use a deep learning network to predict the opponent’s
strength based on the first 20 plies of the game. The training data are collected
from the previous TAAI, TCGA, and ICGA tournaments, and the self-played
data from three programs with different strengths. The experiment results show
that the opponent prediction model can improve the expected score of our pro-
gram in a competitive tournament.
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The remains of this paper is organized as follows: In Sect. 2, we briefly intro-
duce the game of Chinese Dark Chess and the data sets of the deep-learning
models. In Sect. 3, we describe the predicting methods. In Sect. 4, we show the
experiment results. Finally, In Sect. 5, we conclude this paper.

2 Background

In this section, we first introduce the terminologies used in this paper. Then we
describe the game Chinese Dark Chess which our program plays. Finally, we
describe the background of our problem and the main idea of how to use the
contempt factor in solving our problem.

2.1 Terminologies

A board position (b) denotes the state of a game. A legal ply (p) is an action
that can transfer the current board position into the next board position, that
is, T (b, p) = b

′
, where b

′
is the board position after ply p is applied to board

position b. The ply sequence of a game is represented as p1, p2, . . . , pn, where pi is
the i-th ply of the game. The board position sequence of a game is represented as
b0, b1, . . . , bn, where bi denotes the board position after ply pi is applied on board
position bi−1. An example of the relationship between the board positions and
the moves is shown in Fig. 3. The opponent ply sequence (OPS) is the sequence
of all the opponent’s plies. If the opponent makes the first ply in the game, then
the OPS is {p1p3p5 . . .}, and if we make the first ply in the game, then the OPS
is {p2p4p6 . . .}, respectively.

b0
p1 b1

p2 b2 bn−1
pn bn

Fig. 3. An illustration of board positions and ply sequences.

2.2 Chinese Dark Chess

Chinese Dark Chess (CDC) [2], also known as Banqi, is one of the most popular
variations of Chinese Chess (CC) in southeast Asia. This game is played by the
same pieces set on the half part of the original game board of CC. There are
two colors in the CDC, that is, the red side and the black side. Each side has 16
pieces, one king (K/k), two guards (G/g), two ministers (M/m), two rooks (R/r),
two knights (N/n), two cannons (C/c), and five pawns (P/p). In the following,
we use the uppercase character to represent the pieces of the red side and the
lowercase character to represent the pieces of the black side. Only a piece with a
higher rank can capture an opponent piece of lower rank. The order between two
pieces, which is used to decide which one can capture the other, is described by
three rules: 1) K > G > M > R > N > C, 2) P > K and 3) G,M,R,N > P .
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Each piece in the CDC has two faces: the front-face and the back-face. The
front-face of each piece is crafted with the name of that piece. The back-face of
all the pieces is identical.

At the beginning of the game, all the pieces are shuffled and placed with the
front-face facing-down. An illustration of the start position of the CDC is shown
in the left of Fig. 4. In the beginning of the game, the first player chooses one
facing-down piece and reverses it. In the remains of the game, the first player
owns those pieces with the same color as the first revealed one, and the second
player owns pieces of the other color.

In each turn, one player can either move a piece of his/her side to the adjacent
square, reveal one facing-down piece, or apply the special jump-move for cannon.
A piece can only be moved to the adjacent square, which is empty or is occupied
by an opponent’s piece with a lower rank. In the later case, the opponent’s piece
is captured by our piece and removed from the game. In the right of Fig. 4, the
legal moves of red minister at C3 are C3–C2 and C3–B3, since C2 is an empty
square and the black rook at B3 is lower-ranked than the red minister. Note that
C3–C4 is an illegal move since C4 is occupied by the red knight, which is the
same side as the red minister. Also, C3–D3 is an illegal move because the black
king is higher-ranked than the red minister. A jump move is a special capture
move for the cannons. When there is only one piece in between the cannon and
the target piece, the cannon can use the jump move to capture that target piece.
For example, in the right of Fig. 4, the red cannon in B5 can use a jump move
to capture either the black pawn in B5, the black rook in B3, or the black guard
in B8. Note that for each cannon, there exists at most one jump move along the
short edge, that is B5 to D5 in our example. In our example, there can be two
jump moves along the long edge, B5 to B3 and B5 to B8. We denote these two
moves as the jump moves along the long edge to the left and the jump moves
along the long edge to the right. The player who cannot make any legal move
loses the game. As a remark, if all pieces of one side are captured, he naturally
cannot make any legal move.

1 2 3 4 5 6 7 8
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D

Fig. 4. The initial position of Chinese Dark Chess and an ongoing position that the
legal moves of the red minister are C3–C2 and C3–B2. And the legal jump moves of
the red cannon at B5 are B5–D5, B5–B3, and B5–B8. (Color figure online)

2.3 Game Tournament and Expected Score

In the competition of computer games, e.g., the World Champion of Computer
Chess or Computer Olympics [3], the Swiss-system tournament is the most com-
mon applied playing rule. In this rule, one win gains 2 points, and one draw gains
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1 point. In a tournament, we can rank other participants according to their past
earned scores. We defined three different ranks: S, E, and W, that is, those who
are stronger than us (S), those who are relatively equal to us (E), and those who
are weaker than us (W). When we play against an opponent with rank x, we
have a corresponding winning probability PW,x, a losing probability PL,x, and
the probability of having a draw result with PD,x, respectively. Let the numbers
of participations with rank S, E, and W, be NS , NE , and NW , respectively. The
expected score (ES) is defined as

ES =
∑

i∈{E,S,W}
Ni × (2PW,i + PD,i). (1)

In order to increase ES, we have two different approaches: 1) increasing PW,W

by decreasing PD,W ; and 2) increasing PD,S by decreasing PL,S . In the first
approach, we try to avoid a draw when we still have a chance to win, usually
this is what we want when we play against weaker opponents. In the second
approach, we try to avoid a lose by using a force drawing strategy.

2.4 Contempt Factor and Threefold Repetition

In Chess and many other games, a threefold repetition is often treated as a draw.
Therefore many programs return a value of 0 when a threefold repetition occurs.
In Fig. 5, the left tree shows one move with a value of 0 and another move with a
small positive value +ε. The right tree shows another example: one move with a
value of 0 and another move with a small negative value −ε. The search algorithm
will compare the returned value of 0 with other moves’ return value. Traditionally,
if there is one move whose value is greater than 0, we will not choose the move with
the value of 0 no matter how small it is. However, when we play against a strong
program, the positionwith a small positive valuemaynot result in awin.Moreover,
the risk of being beaten by a stronger opponent is high when we only have a small
advantage. On the other hand, when we play against a weaker program, we will
tolerate the small amount of disadvantage because we know we still have a chance
to win that game even currently we only have a small disadvantage.

m1 m2

0 +ε

m1 m2

0 −ε

Fig. 5. An example of plies with values of 0.

The strategy described above is the main idea of using the contempt factor [7].
However, we are not sure about the strength of opponents before a tournament.
For those who have participated in the tournament before, we can use its past
results to estimate. For those newcomers, we need a reliable method to estimate
their strength during the competition.
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2.5 Chinese Dark Chess Programs

In this subsection, we describe the three CDC programs involved in our exper-
iment. The first program is “Yahari,” who participated in the computer game
tournament of TAAI, TCGA, and Computer Olympic for several years, and
achieved first place in TAAI 2013 and TCGA 2014, second place in 18th and
19th Computer Olympic, and the third place in TCGA 2019, TCGA 2020, and
TAAI 2019. The second program is “PupilDarkChess” which achieves first place
in TCGA 2020, TCGA 2019, and TAAI 2019. The third program is “YanYu,”
which has participated from TCGA 2018, does not win any top 3 places. It
appears that “Yahari” is stronger than “YanYu” and is slightly weaker or equal
to the strength of “PupilDarkChess.” “Yahari” is the target program we want
to improve. “Yahari” has an evaluation function with a range of −1 to 1 where
−1 means loss, 1 means win, and 0 means draw.

3 Method

To determine an opponent’s strength, we collect the Opponent Ply Sequences
(OPSs) generated during the game as the input. And feed these input data into
an opponent ranking neural network (ORNN) model to predict its rank. After
obtaining the estimated strength, we set a corresponding contempt factor when
playing against that program. To determine the proper value of the contempt
factor, we calculate the average winning rate when “Yahari” plays against an
opponent using different contempt factors.

3.1 Input Data of the ORNN

The input of our ORNN model contains one board position after the 3rd ply is
played and the following seven opponent’s plies. There are two reasons to use
the board position after the 3rd ply is played as the initial board position. First,
although the start board position of the CDC is random, there are strategies to
deal with what pieces should be in the first few plies [1]. An example is when a
high-ranked opponent’s piece is revealed, we cannot flip pieces around that piece.
These fixed strategies easily confuse a prediction program. Second, the predicted
result is used to determine the strategy when playing with this opponent, that
is, the contempt factor. And the contempt factor affects the search behavior of
a program only when a threefold repetition occurs. A threefold repetition rarely
occurs in the first 20 plies. Thus we use the first 20 plies in the OPS to predict
the rank of the opponent’s program without any risk.

3.2 Input Planes of the ORNN

There are two kinds of data in the input data of the ORNN: 1) the initial board
position and 2) the following opponent’s plies.

We use 30 planes to represent one initial board position, and each plane is
a 4 × 8 block. The first 14 planes represent the locations of the revealed pieces,
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and the 15th and 16th planes represent the locations of the unrevealed pieces
and the empty squares, respectively. The first 16 planes are the piece location
plane (PLP), which denote the location information about the kind or the state
(unrevealed/empty). We use 1 to denote one square under certain conditions.
For example, the black king is in D3 in Fig. 4. Thus the corresponding PLP for
the black king marks 1 on the square of D3. On the other hand, 0 is used when
the condition is not fulfilled. Therefore all the other squares except D3 for the
PLP of black king mark with 0. In Fig. 4, the plane representing the black king
is the left matrix in Fig. 6. The unrevealed and empty squares planes are shown
in the middle and right of Fig. 6, respectively.
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Fig. 6. The input planes of the black king, the unrevealed squares and the empty
squares of the board position shown in Fig. 4.

The 17th to 30th planes are the numbers of unrevealed pieces, respectively, for
the two sides, the unrevealed piece plane (UPP). Each plane represents one kind
of piece according to the canonical piece order of CDC, that is, “KGMRNCP-
kgmrncp.” For example, the 17th plane denotes the number of the unrevealed red
king, and the 18th plane denotes the number of unrevealed red guards. The range
of each value in the UPP is −1 to 1. The value −1 means the number of unre-
vealed pieces in that kind is minimal, that is 0. And the value 1 means the number
of unrevealed pieces in that kind is maximal, that is, 1 for king, 5 for pawn, and
2 for all other kinds of pieces. If one piece has neither the minimal number nor
the maximal number of pieces, the value is set to 2× # unrevealed pieces

total number of pieces −1. The
mapping between the number of unrevealed pieces and the value in the UPP is
shown in Table 1.

Table 1. The corresponding value of unrevealed pieces of each kind.

K/k G/g M/m R/r N/n C/c P/p

0 −1.0 −1.0 −1.0 −1.0 −1.0 −1.0 −1.0

1 1.0 0.0 0.0 0.0 0.0 0.0 −0.6

2 1.0 1.0 1.0 1.0 1.0 −0.2

3 0.2

4 0.6

5 1.0
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The basic idea to represent a move in the CDC in our ORNN is to transform
the original source-destination pair into a source-direction pair. We represent a
move by the source position and how it moves to the destination move. In each
round, there are eight possible moves: 1) up; 2) right; 3) down; 4) left; 5) flip an
unrevealed piece; 6) use a cannon to capture an opponent’s piece along the short
edge; 7) use a cannon to capture an opponent’s piece along the long edge to the
left; 8) use a cannon to capture an opponent’s piece along the long edge to the
right. We use a 4 × 8 × 8 block to encode the above information. For example,
in the left board of Fig. 7, the red king can either move up, right, down, or left.
If the red king moves up from C3 to C4, the corresponding input plane, the
move-up plane, is represented as the middle matrix in Fig. 7, and the rest of the
7 move-planes are all zeros. If the red side plays B6–D6 to capture the black
pawn, then the corresponding jump-right plane is recorded as the right matrix
in Fig. 7, and the rest of the 7 move-planes are all zeros.

We use 56 planes, called the opponent-ply plane (OPP), to represent the
opponent’s following 7 plies from the initial position. In total, we use 86 planes
to input one board position and the corresponding plies. The details of the input
planes are summarized in Table 2.
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Fig. 7. The input planes of the red king’s moves and the red cannon’s jump-move.
(Color figure online)

Table 2. Summary of the input planes.

Type Details # planes

PLP Locations of revealed pieces, unrevealed pieces and empty squares 16

UPP Number of unrevealed pieces of each kind 14

OPP The opponent’s following 7 plies 56

3.3 Output of the ORNN

As we mentioned in Sect. 2.3, an opponent’s strength is estimated to be in three
different levels corresponding to the S, E, and W code and in ORNN model as
0, 1, and 2, respectively.

4 Experiments

The experiment contains two parts. In the first part, we show the expected PW,S ,
PW,E and PW,L when using different contempt factors. In the second part, we use
the expected winning probability gathered from the first experiment to calculate
the ES gain in ORNN.
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4.1 Experiment Settings

In the first part of the experiment, we let our program “Yahari” play against
the other two programs with three different contempt factors, −0.6, 0, and 0.2.
We play 200 games for each setting.

When we have no information about the opponent’s strength, we can only
assume the opponent’s strength is similar to our program. We use 0 as the
contempt factor in this case. If our program is stronger than the opponent’s, we
will use a lower contempt factor. Since our program is stronger, it can gain back
the advantage from slightly disadvantageous situations in most cases because a
weaker makes mistakes easily. We will use −0.6 as the contempt factor in this
case. That is, our program refuses to get a draw result when it still has a chance
to fight back. However, when the opponent’s program’s strength is stronger than
our program, it is hard to turn the situation from a small advantage, says board
positions with evaluation value around 0.1 or 0.2, into a winning result. Therefore
we accept a draw result when we only have a small advantage when playing
against a stronger opponent. Hence we use 0.2 as the contempt factor.

In order to train our ORNN, we collect the game records generated by our
program, “Yahari,” which plays against the other two programs: “PupilDark-
Chess” and “YanYu.” We simulate 40,000 games for each pair of programs.
Each program in the pair plays as the first player in half of the games. There are
a total of 80,000 games. We use 80% of the game records as the training data
and the remaining 20% as the test data.

Table 3. Yahari plays against YanYu and PupilDarkChess.

Yahari v.s. YanYu.

Contempt Factor Win Draw Lose Score

−0.6 127 49 24 305

0.0 123 57 20 303

0.2 120 64 8 304

Yahari v.s. PupilDarkChess.

Contempt Factor Win Draw Lose Score

−0.6 42 21 137 105

0.0 41 37 122 119

0.2 48 62 90 158

4.2 The Effect of Using the Contempt Factor

In Table 3, we use three different contempt factors: −0.6, 0.0 and 0.2. For each
setting, we play 200 games against “YanYu,” which is a weaker program, and 200
games against “PupilDarkChess,” which is a stronger program. The experiment
results show that if we play against a weaker opponent, the setting contempt fac-
tor does not affect the expected score. However, the experiment results show that
when using the contempt factor as −0.6, the number of draw games decreases,
and the number of winning games increases. Note that when the number of draw
games decreases, both the number of winning and losing games increase. That is,
when playing against a weaker opponent, we prefer to have a non-draw outcome.
The experiment results also show that if we play against a stronger opponent,
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the contempt factor helps us gain a higher expected score. When we set the con-
tempt factor to 0.2, we force a draw when we only have a small advantage. The
experiment results show a much higher expected score, 158, than the expected
score of 119 as in the original setting. The experiment results also show that
if one has a wrong guess and uses −0.6 as the contempt factor, it causes little
harm as far as the expected score is concerned.

Table 4. Yahari v.s. Yahari.

Total Win Draw Lose Score

0 v.s. −0.6 97 23 80 217

0 v.s. 0.2 83 55 62 221

−0.6 v.s. 0.2 90 24 86 204

0 v.s. 0 77 45 78 199

In Table 4, we show the self-play result with different contempt factors. The
experiment result shows that when a program with a contempt factor value of
0 plays against a program with a contempt factor value of 0.2, the one with
a contempt factor 0 has a slight advantage. We believe the opponent forces a
draw even when it has a small advantage. The experiment result also shows that
when a program with a contempt factor value of 0 plays against a program with
a contempt factor value of −0.6, the program with the contempt factor 0 also
has a small advantage since the opponent tries to fight back even if they are
currently behind. Therefore, when playing against the programs with a strength
similar to our program, it is better to use 0 as the contempt factor.

4.3 Experiment Results

In Table 5, we show the confusion matrix of our ORNN. The experiment results
show that when the opponent is weaker, equal, or stronger to our program, the
prediction rate is 0.877, 0.863, and 0.855, respectively. And the overall predic-
tion accuracy in the training data and validation data are 0.8756 and 0.8717,
respectively.

Table 5. Experiment results of ORNN.

Predict

W E S

W 0.877 0.043 0.080

E 0.046 0.863 0.091

S 0.071 0.074 0.855
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5 Conclusions

This paper proposes a novel method to predict the opponent’s relative ranking in
the CDC tournament using the neural network. The experiment results show that
the training accuracy is 0.8756 and the prediction accuracy is 0.8717. According
to the experiment results, we also found the best contempt factor playing against
stronger opponents is 0.2, and the contempt factor for playing against a weaker
opponent is −0.6. By using the above setting, the expected score increases by 0.07
for “Yahari.” By applying these methods, our program “Yahari” has improved
from 3rd place in the 2019 and 2020 TCGA tournaments to 2nd place in the
2021 TCGA tournament.
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Abstract. In this paper, we report on an experiment with The Walk-
ing Dead (TWD), which is a narrative-driven adventure game where
players have to survive in a post-apocalyptic world filled with zombies.
We used OpenFace software to extract action unit (AU) intensities of
facial expressions characteristic of decision-making processes and then
we implemented a simple convolution neural network (CNN) to see which
AUs are predictive of decision-making. Our results provide evidence that
the pre-decision variations in action units 17 (chin raiser), 23 (lip tight-
ener), and 25 (lips part) are predictive of decision-making processes. Fur-
thermore, when combined, their predictive power increased up to 0.81
accuracy on the test set; we offer speculations about why it is that these
particular three AUs were found to be connected to decision-making. Our
results also suggest that machine learning methods in combination with
video games may be used to accurately and automatically identify com-
plex decision-making processes using AU intensity alone. Finally, our
study offers a new method to test specific hypotheses about the rela-
tionships between higher-order cognitive processes and behavior, which
relies on both narrative video games and easily accessible software, like
OpenFace.

Keywords: Video Games · Decision-Making · Facial Expression
Machine Learning

1 Introduction and Related Work

1.1 Decision-Making in Video Games

Decision-making has been studied extensively in social psychology and economics
with paradigms such as the prisoner dilemma, the ultimatum game, and the
dictator game [3]. These paradigms are largely grounded in game theory, which
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assumes idealizations about rationality, utility, and often ignores the unique ways
in which people make decisions in different contexts. Video games provide an
alternative to game theory paradigms in the study of decision-making precisely
because they provide a rich context for decisions in the form of a narrative,
including in-game mechanics, and non-player characters (NPC) [25].

NPCs are important in moving video-game narratives forward and also in
framing the decisions players make while playing. This framing typically involves
consequences in the narrative of the game and expressions of emotions on the part
of the NPCs. In this sense, decisions made in video games may involve similar
cognitive and affective mechanisms that are at work during decision-making in
real life, where meaningful decisions happen in a rich context with consequences
that affect other people. The important difference, of course, is that consequences
in video games affect the game world and NPCs, while decisions out-of-game
affect the real world and real people. This difference, while a limitation, also
makes video games useful in the study of complex decision-making, in that they
provide a safe environment to experience new forms of agency without worries
about the consequences [17]. This is also why video games are particularly useful
in education [1]. Considering the aforementioned advantages, we decided to use
TWD for our study, since its rich narrative presents scenarios that, to a certain
extent, can be compared to the ones presented in real life.

1.2 Facial Expressions and Machine Learning

It is an old idea that the face is the window to the soul. Facial expressions have
been systematically studied and linked to a set of basic emotions at least since
Darwin [4], but have recently also been found to vary depending on the cultural
context [13]. Emotions typically evoke a sympathetic system response. Being
exposed to a stimulus, including making a decision, can also sometimes elicit
a sympathetic response, which in turn changes heart rate, skin conductance,
and facial temperature just as is the case with emotions [8,18]. Some of these
responses, just as is the case with emotions, are accompanied by facial expres-
sions. That said, not as much attention has been paid to the potential links
between higher-order processes, such as decision-making, and facial expressions
[9].

Facial expressions have been coded in the facial action coding system (FACS)
developed by Paul Ekman and colleagues [7]. FACS is now used to measure
pain in patients unable to communicate it verbally [15], and even in identifying
depression [24]. Facial expressions are also widely used in affective computing,
understood to be a research program that aims to use devices and systems to
detect emotional states, processes, and responses [21].

Given all this, it is perhaps unsurprising that action units have been used
as input for machine learning models. For example, a relatively simple support
vector machine (SVM) reached 0.75 accuracy when using AUs as input for auto-
matic stress detection [10]. SVM and k-nearest neighbors (KNN) algorithms
can classify expressions of “pain” vs “no pain” and even their intensity [16,22].
More recently, CNNs have been used to estimate the presence of pain and its
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intensity [26]. In that last pain classification study, deep learning models had a
higher accuracy when compared to other techniques; where the KNN algorithm
implemented by [22] had an accuracy score of 0.86 and the CNN implemented by
[26] had an accuracy score of 0.93. CNNs have also been used to detect emotions
scoring an average beyond 0.92 on 8 classes of emotions [14]. AUs can also be
combined with other input to further increase accuracy of a CNN model. Audio
has been used with AUs for the detection of complex mental processes, such as
depression [27] and to identify micro facial expressions [5]. Head and face rotation
and the spatio-temporal dynamics occurring between AUs also increase accuracy
of AU detection [19]. In sum, deep learning models, and in particular CNNs, are
effective in detecting patterns in AUs to perform classification in different tasks.
For this reason, we used them with AUs obtained during decision-making while
playing TWD.

2 Methods

2.1 Data Collection and Participants

All participants were asked to play the first episode of TWD while seated in a room
with another participant that did the same. All participants signed informed con-
sent forms and were informed about the nature of the study and their rights regard-
ing personal data storage and processing. Participants’ gameplay was recorded
using screen capture software and their posture and face were recorded using Open
Broadcaster Software (OBS) and an HD Webcam (Logitech C922 Pro Stream);
the two recordings were synchronized using a hotkey. The two participants taking
part in any session of a recording always used two different computers, while the
recordings were started and monitored using another two control computers.

A total of 78 participants took part in the experiment; 51 males with a
mean age of 20.11 (SD = 2.63) and 27 females with a mean age of 19.4 (SD =
2.02). 12 participants were excluded since they played TWD before and knew the
narrative and decisions presented in the game. One participant decided to quit
the experiment because they found the content too disturbing. One participant
had to leave due to personal issues and another 5 participants were excluded
since they failed to perform the task as instructed. The final lot before data
analysis had 52 participants. Game-play recordings were prepared with Sony
Vegas Software by being cut into 10 s intervals around each decision made in the
game. Each participant made 8 decisions during the experimental session, so a
total of 80 s of video was eventually used to extract the information about AU
intensity with OpenFace for each of the 52 participants.

2.2 Decision Selection

All of the decisions we used were important to the narrative of the game and
relied on the participant taking into account the context in which they were
presented by NPCs and the effect that their decision will have on the narrative
of the game and NPCs (e.g., Fig. 1).
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Fig. 1. An example of decision presented in TWD. The amount of time showed in a
shrinking white bar on the lower part of the screen.

For example, in one of the decisions participants had to decide whether to
save a young boy or an older man from zombies. While the consequences of
these decisions would play out in the narrative of the game and affect NPCs,
regardless of the decision made by the player, the video game followed a pre-
defined course of action. So, each participant ultimately ended up playing the
same section of the game with the same decisions. Importantly, the 8 decisions
that were selected for analysis had more than 30 s between them. This eliminated
the potential confound of effects of prior decisions overlapping with effects of the
current decision.

3 Data Preparation and Modelling

3.1 Data Extraction

First, we identified the moment a decision was made by referencing the recording
of game-play and the recording of the participant. We then used that moment
as a representation of the end of the decision-making process and took 5 s of
the video from before and 5 s after. For each of the 52 participants, eight 10
s videos were thus obtained, representing the 8 selected decisions made during
TWD. The videos were recorded at 30 frames per second leading to a total of
300 frames, where the 150th frame represented the moment in which the decision
was made. During this stage, we had to exclude a further 6 participants due to
corrupted data or missing frames. Ultimately, 46 participants, with 8 videos each
were used to extract AUs.

The AUs used for this work were extracted using OpenFace [2]. OpenFace
extracts 17 action units (1, 2, 4, 5, 6, 7, 9, 10, 12, 14, 15, 17, 20, 23, 25, 26, and
45) that can be described either in terms of their presence (0 or 1) or in terms
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of their intensity (from 0 to 5). In our work, we extracted just the intensity
information since, by itself, it can provide a number ranging from 0, the absence
of the activity in the AUs, to 5, conveying the maximum intensity in the AUs.
The data obtained were stored in CSV files.

3.2 Data Preprocessing

Since our focus was to detect facial AUs related to decision-making processes, we
analyzed the 150 frames prior to the actual act of deciding corresponding to the
click to finalize the decision. This is because we intended to focus on the processes
prior to the decision itself. So, we compared the frames belonging to the baseline
(0–74) to the frames belonging to the decision-making process (75–149). The
150 frames before making the decisions were equally split considering that the
participants read the questions between frame 20 and 75 leaving frame 75–149
as the frames potentially reflecting the decision-making process. This particular
split is motivated by the length of the sentences presented in the video game.
Considering that the average speed to read 300 words per minute [23] and the
eight sentences introducing the scenario had a number of words ranging from
4 to 10. Reading a 10-word sentence would require around 2 s, approximately
corresponding to the 55 frames. For this reason, we considered frames 20 to 75
as a baseline period prior to the decision itself, which might have varied slightly
according to the sentence length and the individual reader speed.

In the end, a total of 736 samples of AUs were used as input for the CNN:
46 participants had 8 recordings labelled as “baseline” and 8 recordings labelled
as “decision-making process”. Each of the 736 data points represented a row in
the dataset. We then created a corresponding file with a 736× 75 structure for
each of the 17 AUs, where 736 is the number of total data points and 75 is the
number of frames considered (representing the columns of the dataset), with half
of the rows labeled “baseline” and half labeled “decision-making process”. This
allowed us to focus on each AU in isolation from others to examine its predictive
power in classifying “decision-making” frames.

3.3 Model Description

In order to test the predictive value of individual AUs for identifying the decision-
making processes, we created a 1D CNN, expecting it to serve as a baseline for
more sophisticated modelling [28]. We decided to use CNNs since they have
been successfully used with AUs for prediction and classification tasks [11], as
mentioned in the introduction. Furthermore, CNNs were used to perform clas-
sification tasks using a dataset with fewer than 1000 data points, similarly to
our own dataset [20]. In the end, our model had 2 convolutional layers, 2 max-
pooling layers, and 4 fully connected layers; the structure of the model and its
specification is illustrated in Fig. 2.

The activation function chosen was Rectifier Linear Unit (ReLU) as sug-
gested in Gudi et al. [11]. The optimizer chosen for our CNN was the Nesterov-
accelerated Adaptive Moment Estimation (Nadam) with a learning rate of 0.001.



192 G. Guglielmo et al.

Fig. 2. Model Specifications

In past studies, Nadam outperformed other optimizers in models that aimed to
classify different typologies of data. More specifically, using Nadam resulted in
lower convergence time required, lower loss score, and higher accuracy [6]. To
minimize overfitting that might affect results on a small dataset like the one
we used, dropouts were added between the convolutional, the max-pooling, and
the fully connected layers. 20% of the AU dataset was used for test purposes,
while 10% was used for validation and to keep track of potential overfitting. The
model was trained using 10 sample mini-batches and 20 epochs. All of this was
implemented in Python using Numpy, Pandas, Scikit-learn, and Keras libraries.

4 Results

The results suggest that three AUs might be predictive of decision-making pro-
cesses. As shown in the Table 1 these units all scored above 0.65 (threshold used
to select significant AUs).

The three action units make it possible to discriminate between decision-
making processes and baseline even in a simple 1D CNN are: AU17 (chin raiser),
AU23 (lip tightener), and AU25 (lips part). Other AUs did not reach significance
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Table 1. Significant differences in action units across baseline and decisions

Training Validation Test

AU Accuracy Loss Accuracy Loss Accuracy Loss

17 0.6954 0.5842 0.7627 0.5338 0.7297 0.5279

23 0.6948 0.5854 0.6949 0.5576 0.6824 0.5397

25 0.7240 0.5277 0.6780 0.6214 0.7027 0.5735

with our model, so were excluded in the reported results, but a more sophisti-
cated model may well find other AUs in the same areas of the face predictive. To
further explore the predictive power of these 3 action units, we combined them
in a multidimensional input (75,3) to the same network using the same number
of epochs to obtain consistent results. The final model scored 0.81 on accuracy
and 0.50 on loss score on the test set (Table 2).

Table 2. Combined significant AUs across baseline and decisions

Training Validation Test

Accuracy Loss Accuracy Loss Accuracy Loss

0.8144 0.4077 0.7966 0.4188 0.8108 0.4978

For a model this simple, our results suggest that AUs can indeed be used
to identify decision-making processes without much modelling. To make it clear
that this is not an anomaly, we include the convolution over epochs in Fig. 3
below.

Fig. 3. Convolution of combined AUs 17, 23, and 25; 20 epochs (where 20, being the
last number, is not displayed on the x-axis).
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Our results seem to be corroborated by other studies. A study using AUs
and SVM found that AU17, AU23, and AU25 intensities are modulated by stress
conditions [10]. So, it might be the case that decision-making processes trigger
a response similar to stressful stimuli [27]. Further corroborating our results, a
distinct experimental study with TWD identified significant variations in tem-
perature of the chin area approximately 20 s after decisions that had a moral
dimension [12]. In other words, the same area that involves AU17, and AU25,
shows a significant variation in temperature after particularly complex and pos-
sibly stressful decisions. The AU17 involves a tightening of the muscle mentalis,
which is located below the lower lip, while AU25 involves the same muscle relax-
ation, so one explanation for distinctive variations of temperature in specific
parts of the face is the effect of increased blood flow to those areas, which is
caused by the engagement of muscles in facial regions [8], as identified in the
present experiment with a CNN.

5 Discussion

Given their functional and anatomic connection, the predictive value of AU17
and AU23 might be a result of the tightening of the chin at the beginning of the
decision-making process. AU25, on the other hand, is a functional counterbalance
to AU17 and AU23 and logically connected to movements of the mouth and
chin. Interestingly, AU26 (jaw drop), is functionally related to AU25, and while
not included in the final model due to just-below 0.65 of accuracy, it seems to
be engaged during the decision-making process as well. As a consequence, it
might be the case that AU17 and AU23 are characteristic of the initial part
of the decision-making process while AU25 and AU26 might be peculiar to the
end part of the decision-making process when the facial expression returns to
baseline. AU17 (chin raiser) seems to be counterbalanced by AU25 (lips part)
while AU23 (lip tightener) might be counterbalanced by both AU25 and AU26
(jaw drop). In general, we can conclude that there is a tightening of the lip-
chin area prior to the decision process and then a relaxation of the chin area
after the decision process. That said, these results involve just one video game
and a relatively small dataset compared to the ones generally used to train
CNNs. Furthermore, processes occurring during the training (such as the random
initiation of the weights) might affect the final accuracy in some AUs more than
in others. So, incorporating other methods and measures would likely increase
accuracy in detecting patterns in AU variation over time, which a model that
relies on intensity alone would not.

Future studies should clarify the relationship between sympathetic activity
and changes in intensity in specific facial regions. Evidence provided in this study
suggests that decision-making is in some way connected to muscular activity
in the chin area. This might in turn lead to changes in temperature, due to
increased blood flow. These effects might be accentuated by stress caused by
moral aspects that characterize some decisions. Moral decisions might be more
stressful than non-moral ones thus eliciting a change in muscle activity and
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then in temperature. Therefore, future investigations should also pay special
attention to the effects of decision-making and moral decision-making on AUs
while keeping in mind the possible involvement (or confound) of stress on AU
intensity. Ultimately, if it becomes possible to detect the moment of decision-
making during game-play using the technique we outline here, our methods could
prove useful in future game development.
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Abstract. Modeling players based on their in-game events is essential
for predicting their future behaviors. Player modeling studies mostly tar-
get a specific game or genre. This makes it difficult to transfer existing
methods from one game to another. In this study, we propose a generic
event-trait mapping and unsupervised learning approach for player mod-
eling that extends our earlier modeling method with Principal Compo-
nent Analysis (PCA). We present a case study of this new approach on a
dataset of ten thousand players of World of Warcraft (WoW), a massive
multiplayer online role-playing game (MMORPG). The base and the
extended approaches are compared with an AutoEncoder (AE) based
approach on this dataset. The methods generate clusters (persona) as
mixtures of different character traits. The best results are obtained with
the extended event-trait mapping approach for player modeling.

Keywords: Player Modeling · Player Profiling · Event-Trait
Mapping · PCA · World Of Warcraft

1 Introduction

The process of personality prediction in video games is referred to as player
modeling. Player modeling not only helps with personality prediction but is also
an imperative tool in the game industry for monetary gain. It is key to adjust,
improve, and develop products for different types of players to improve their
satisfaction. The first and the most crucial step is to model players in a fast
and reliable way either in real-time or during development. Player modeling
approaches may vary for different games since one may wish to emphasize a dis-
tinctive trait of the game for a better result. Therefore, modeling different games
with a common method is a challenge. Some generic models [18] use common
aspects of games of different genres. They generalize game actions (events) to
group them into smaller chunks and apply profiling for different genres, showing
that a generic approach is plausible. However, this approach is not applicable
for games with no common ground (no common group of events).
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In this study, we propose a generic unsupervised learning method that can
be applied to a variety of games genres. Our method builds on our earlier work,
Event-Trait Mapping and Feature Weighting method (ET-FW) [12] and extends
it (ET-PCA) with the use of Principal Component Analysis (PCA) [15]. ET-FW
creates profiles as combinations of one or more personality traits in different
proportions. Associating events with traits not only provides a generic approach
but also higher quality and interpretable cluster distribution compared to that
of clustering by only using events.

We present a case study of ET-PCA on the World of Warcraft (WoW) [19], a
massive multiplayer online role-playing game (MMORPG) that contains a wide
spectrum of different in-game elements found in almost every game genre [8].
We compare the results with the base method and an AutoEncoder (AE) based
learning method.

The rest of this paper is organized as follows. Section 2 presents a review
of literature. The methodology is described in Sect. 3. The case study on WoW
data is presented in Sect. 4 which also includes the experimental results. Finally,
concluding remarks are made in Sect. 5.

2 Related Works

There is a rich body of literature on player profiling/modeling. We present the
ones targeting most relevant ones for our study. Halim et al. [13] explore the
player profiles with three different feature selection algorithms, four different
clustering techniques and three different classifier methods on three different
games. They use a personality test on users to label them and select the traits
as openness, conscientiousness, extraversion, agreeableness, and neuroticism. In
this work, manual labeling of players is needed by giving them personality tests
in real life.

Yee et al. propose a trait list and pre-processed event data for WoW [19].
Their study includes forty-six events and the necessary calculation methods.
They investigate events which can provide insights about a person’s personal-
ity. They also analyze the possibility of learning a person’s personality just by
studying their virtual behaviors. We inspire from some of these pre-processing
steps that are used for WoW events. Brown and Mitchell used a questionnaire
to measure personality tests based on five factors while measuring the relation-
ship between personality and gambling style over poker games [16]. Wang et al.
[5] present a behavior prediction method by using an auto-encoding neural net-
work but not on WoW data. They use traditional AE method as a pre-training
step. Charles and Cowley use archetypal profiles other than trait profiles for
their behavlet analytics-based profiling method [7]. They also use domain-expert
knowledge for creating the behavlets. Different from earlier work, we propose a
generic Event-Trait mapping method that can model and cluster players. Our
approach does not rely on manual labeling.
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3 Methodology

The main goal in this research is to determine in-game personality traits from
players’ in-game events. Player behaviors are represented via traits, which can be
treated as classes. Players’ trait scores are modeled using in-game events as fea-
tures. Our work builds on our previous work, Event-Trait Mapping and Feature
Weighting method (ET-FW) [12] which has shown to be successful in cluster-
ing players to traits for a casual mobile racing game called Dusk Racer. The
selected traits for this game are explorer, meticulist, competitor, compulsivist,
strategist, hoarder, social, exploiter. The first step of this clustering process is to
determine event-trait relations. For this purpose, event-weight (EW), event-trait
(ET), trait-event (TE) and user-event (UE) matrices are constructed to produce
the final user-trait (UT) matrix.

– EW : represents the weights of the preprocessed events. It is a diagonal square
matrix, with the size of event × event. The weights can be either determined
by a domain expert or generated with the extracted data. In this research,
frequencies of events has been used for weighting.

– ET : is a mapping matrix between in-game events and traits. This relation
is determined by a domain expert. The scores are given from 0 to 5 where
0 means not related and 5 means fully related. An event can be mapped to
more than one trait. As stated in the review study by Hooshyar et al. [14],
mapping of in-game events to traits is carried out by experts in the majority
of profiling processes. We also prefer this way when doing mapping.

– TE : Just like the event-trait matrix, this matrix is filled with the same intu-
ition. This time, traits are mapped to events. This relation is determined by a
domain expert. The size and dimensions of ET and TE are the same. Again,
the scores are given from 0 to 5.

– ET ◦ TE : Represents the final mapping. Note that the multiplication oper-
ation here is an element-wise operation called Hadamard product [9]. This
gives a resulting matrix of the same size of ET and TE whose elements take
on values from 0 and 25.

– UE : Represents the frequencies of events done by each user. Since the total
number is different for each event, it is normalized, used and obtained auto-
matically.

– UT : This matrix shows the relation between users and traits. It is the final prod-
uct, and computed by Eq. 1. Normalization is done using the min-max scaling.

UT = normalize(UE × EW ) × (ET ◦ TE) (1)

After the computation of UT, the Expectation-Maximization (EM) method
is applied to cluster users with this matrix. To see each persona trait ratio, mean
trait values given by the EM method for each cluster is used. The details of these
computations are presented in our previous work [12].

Mapping traits to game events reveal different behavior groups of the players
and their distributions, leading to a better understanding of the player-game
interaction. In order to better distinguish these player groups, we further extend
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our previous work with Principal Component Analysis (PCA). The new method,
Event-Trait Mapping extended with PCA (ET-PCA), improves the cluster qual-
ity and interpretability with the use of PCA. PCA is an automated exploratory
data analysis process to find principle components in a dataset which can also
be used for dimensionality reduction [15].

In traditional profiling methods, the game logs are reduced to a certain num-
ber of records using PCA, and then the players can be profiled by any clus-
tering method [11], yet in complex games, these clusters are very difficult to
interpret. Furthermore, since PCA is an unsupervised learning method, it deter-
mines dimensions of maximum variance without reference to class labels. To
apply PCA, the sum-product of the trait and variance values of events in each
PCA component is taken to create PCA component/Trait relation (Eq. 2).

sp =
n∑

i=0

ai ∗ bi (2)

where sp is the sumProduct value, n is the index of events in the PCA com-
ponent, an is the variance of the particular event in that PCA component, and
bn is the trait value taken from the ET matrix. Then, k-means clustering algo-
rithm [4] is applied to the selected first-6 PCA components to create clusters.
Finally, cluster trait relations are obtained using this relation as the result of the
ET-FW method by applying the sum product operation between “PCA compo-
nent/Trait” matrix and “PCA component/mean values of clusters” relations.

The following section presents a case study of this method on the WoW game.
WoW is picked since it includes a wide spectrum of different in-game elements
found in almost every game genre [8].

4 A Case Study on Wow Data

4.1 Data Collection and Preprocessing

Player data used in this study are collected from a third party website, WoW-
Progress [1]. More than 650000 guild informations can be accessed here. Guilds
are formed by players for better player experience and represent in-game asso-
ciation of player characters in the game. Players collaborate to form teams, and
they socialize and help each other in their guild. These guild data are catego-
rized by the WoWProgress company according to language, realm and tier in
their website. Blizzard, the original publisher of the World of Warcraft game,
has also set up an API system to the benefit of the developers [2].

In order to access the detailed game logs of these players, 51 different API
functions are called for each player, and more than 10000 events are obtained.
The events which are not directly correlated to the traits in the raw data are
eliminated, and the remaining events are preprocessed, yielding 175 events. In the
preprocessing phase, some of the stats are rewritten as averaged percentages, or
rates1. Because it is known that the player levels which is a measure of character
1 Event explanations are available at: https://playerprofiling.github.io/WoWEvents/.

https://playerprofiling.github.io/WoWEvents/
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progress fluctuates greatly in terms of events, only 120 level players are taken
into consideration for our experiments. Eventually, 11958 players are registered
in the database with 175 events.

4.2 Trait Selection

The selected traits in our study are mostly inspired from Bartle’s [6] and Ferro
et al.’s studies [10]. According to Bartle’s study, personas are considered to have
four main traits, namely; killers, achievers, socializers and explorers. Ferro et al.
extend the edition of the Bartle’s Player Type Graph. Based on these studies and
domain expert feedback, the traits are selected as follows: competitive (compete
with others), casual (do not think too much about choices), explorer (explore the
universe of the game), grinder (perform repetitive tasks), social (establish long-
term relationships with other), craftsman (keep professions in the game ahead
of the other traits), supportive (help others), and DPS-player (prone to kill all
other players and NPCs)2.

After the traits are selected, Event-Trait mapping is performed. The mapping
process is done by taking average scores of four experts playing the game3.

4.3 Applying Profiling Steps

ET-FW is applied on the ET and UE matrices. The resulting stacked graph
for the trait clusters can be seen in Fig. 1. The results show that there are 8
different clusters with 8 different trait ratios. The top three highest-valued traits
are considered for cluster representation. For example, the first cluster in Fig. 1
involves the grinder trait as the most dominant trait among the others. DPS-
player and Crafter traits follow this trait for that cluster.

Fig. 1. The resulting stacked graph of the Trait-Cluster relation for ET-FW.

Then, our new method, ET-PCA, is applied on the same ET and UE matri-
ces. After that, a new matrix that shows the relationship between PCA com-
ponents and clusters is created. Then, k-means algorithm is applied to find the
2 The details on the trait explanations are available at: https://playerprofiling.github.

io/WoWTraits/.
3 A sample Event-Trait matrix @see: https://playerprofiling.github.io/EventTrait/.

https://playerprofiling.github.io/WoWTraits/
https://playerprofiling.github.io/WoWTraits/
https://playerprofiling.github.io/EventTrait/
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PCA-Cluster matrix. Considering that there may be a cluster for each trait, k is
determined as 8. The sum product formula given in Eq. 2 is used between these
two relations to create the final stacked graph (Fig. 2).

Fig. 2. Stacked Graph of Trait-Cluster relation for ET-PCA

For comparing our result with a deep neural network approach, the same AE
approach used in Wang et al.’s work [5] is used within our study, except some
of the parameters and the activation function are changed to fit our data needs.
The AE method is applied to the WoW dataset and 175 preprocessed events
are reduced to eight encoded events. Creating a Trait/Cluster relation similar to
the other methods is not possible since the AE method reconstructs the input
nodes in the output and there are no interpretable relationships between the
original nodes and the encoded ones. For this reason, at the end of the profiling
process, the players are clustered without having any information about their
mixing rate of character traits, but only their clusters. Leaky Relu [17] is used
as the activation function. The Adam optimizer [20] with a 0.0005 learning rate
is used. Mean Square Error is used as the Loss function, and the program was
run with 200 epochs and 256 batch sizes.

4.4 Results and Discussion

First, the personas (cluster results) are compared between the three methods
according to the selected traits. Then, the quality of the clusters are compared
by analyzing their trait ratios and using silhouette analysis.

Evaluating Methods with Two Different Personas. In order to better
explain this section, cluster IDs are assigned to the outcomes of the profiling
methods. For ET-FW, ET-PCA and AE methods these clusterIDs are simple
index numbers starting from 0 to 7. Also, they are in the same order as the
clusters in the stacked chats given in Fig. 1 and Fig. 2.
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Table 1. Top 15 competitor players and their assigned clusters for all methods. The
order of displaying the competitor character trait relative to the other clusters is shown
as rank. We can’t report the rank for the AE method since it reconstructs the input
nodes in its output. So it is not possible to have a proper relationship between original
and encoded nodes.

Competitor Trait

UserId ET-FW ET-PCA AE

Cluster ID Competitor
Rank

Cluster ID Competitor
Rank

Cluster ID

778 2 1 1 1 2

1448 2 1 0 2 2

888 2 1 0 2 2

4786 2 1 0 2 2

473 6 2 1 1 2

3873 1 3 1 1 4

5433 6 2 1 1 1

6273 6 2 0 2 2

2008 1 3 1 1 4

5240 6 2 0 2 5

293 2 1 1 1 2

114 6 2 1 1 4

1425 6 2 1 1 4

5079 6 2 0 2 2

6800 1 3 1 1 3

Firstly, top fifteen players that have competitive character trait more than
other ten-thousand players are selected by taking the players with the highest
number of “ArenasPlayed”, “DuelsWon” and “WorldHonorableKills” events.

Table 1 reports the results for these players.
The top three clusters which have the highest competitive trait values for the

ET-FW method are Cluster 2 (trait value: 130.53), Cluster 6 (trait value: 102.38)
and Cluster 1 (trait value: 80.13). These trait values for the ET-FW method are
taken from the Trait-Cluster matrix that is obtained previously to create ET-
FW stacked graph (Fig. 1). The order of displaying the competitor character trait
relative to the other clusters is shown as rank in Table 1. Hence, the competitor
ranks for these clusters are 1, 2 and 3, respectively. The distribution is the same
in Table 1 for the ET-FW method. So, for the competitive trait, the ET-FW
method puts the selected players into the most related three clusters.

For the ET-PCA method, the top three clusters that have the highest compet-
itive trait values are Cluster 1 (trait value: 33.63), Cluster 0 (trait value: 14.92),
and Cluster 5 (trait value: 8.5). Trait values are taken from the Trait-Cluster
matrix that is obtained previously to create ET-PCA stacked graph (Fig. 2).
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Table 2. Top 15 grinder players and their assigned clusters for each method. The
order of displaying the character trait relative to other clusters shown as rank. We
can’t report the rank in AE due to its constraints.

Grinder Trait

UserId ET-FW ET-PCA AE

Cluster ID Grinder
Rank

Cluster ID Grinder
Rank

Cluster ID

9132 2 1 5 1 2

425 2 1 5 1 0

7069 2 1 5 1 0

3764 2 1 0 2 2

5423 6 2 5 1 0

6850 2 1 5 1 2

225 2 1 5 1 2

1448 2 1 0 2 2

480 2 1 5 1 2

3886 2 1 5 1 2

901 2 1 5 1 6

425 2 1 5 1 0

5423 6 2 5 1 0

7909 6 2 5 1 5

7076 2 1 5 1 2

These three clusters are the only clusters that have the positive value for the
competitor trait. Thus, it can be said that the other clusters are not related to
the competitor trait. Non-related cluster information cannot be provided, since
there is no negative value for traits. By observing Table 1, it can be said that
ET-PCA offers slightly better results while selecting players’ clusters since it
does not generate rank-3 clusters as ET-FW does. To sum up, while 3 different
clusters are observed on the ET-FW side, there are 2 clusters corresponding to
the top related traits for ET-PCA.

For AE, eight out of fifteen players are clustered in the same group (Cluster2),
and others are distributed separately in Clusters 4, 1, 5 and 3. A cluster/trait
relationship cannot be obtained for AE; therefore, this method cannot be eval-
uated like the other two.

Users with grinder personas are selected by taking the players that have
the highest number of “EpicItemsLooted” and “NeedRollsMadeOnLoot” events
from the remaining ten-thousand people. Table 2 reports the results for these
players.

The top three clusters that have the highest grinder trait values for ET-FW
method are Cluster 2 (trait value: 190.62), Cluster 6 (trait value: 154.4) and
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Cluster 1 (trait value: 134.00). From Table 2, it might be seen that 12/15 of the
selected players are in the first grinder rank cluster.

For the ET-PCA method, the top three clusters with the highest grinder
trait values are Cluster 5 (trait value: 22.07), Cluster 0 (trait value: 17.15) and
Cluster 1 (trait value: 5.01). In addition, as can be seen in Fig. 2, there is also
Cluster 7 which has the positive number for the grinder trait and the rest of
the traits have negative values. From Table 2, it might be seen that 13/15 of the
selected players are in the first grinder rank cluster.

For AE, eight out of fifteen players are in Cluster 2, and the other players
are in Cluster 0 and 5. Yet, the quality of clusters with respect to traits cannot
be assessed. More results are shown in our website4.

Table 3. Mean Silhouette Coefficient analysis results for ET-FW and ET-PCA.

Cluster MSC (ET-FW) MSC (ET-PCA)

cluster0 0.13 0.18

cluster1 −0.11 0.14

cluster2 0.19 0.10

cluster3 0.18 0.10

cluster4 0.07 0.16

cluster5 0.19 0.18

cluster6 0.06 0.16

cluster7 −0.05 0.19

Overall 0.05 0.16

Comparing Cluster Quality. Silhouette analysis is applied to the generated
player clusters for statistical analysis. The Silhouette Coefficient is a useful met-
ric for evaluating clustering performance [3] and computed using Eq. 3:

sc =
b − a

max(a, b)
(3)

where a is the mean intra-cluster distance, and b is the mean inter-cluster dis-
tance to the closest cluster. The score ranges from −1.0 to 1.0, where higher the
score, the better is the outcome.

The results reported in Table 3 show that, ET-PCA has a better overall
clustering performance than that of ET-FW.

5 Conclusion

In this paper, we present an Event-Trait Mapping based method extended with
the use of PCA (ET-PCA) and a case study of this method on the WoW data.
4 For more result tables: @see: https://playerprofiling.github.io/ResultTables/.

https://playerprofiling.github.io/ResultTables/
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Persona clusters are created with this method as combinations and mixtures of
different character traits. Two personas are selected for evaluating the resulting
clusters on the WoW data. To this end, the selected top ten players’ clusters are
analyzed. The results indicate that ET-PCA groups players to the most related
clusters. In addition, with this new method, traits can take on negative values.
Having negative trait values, a good indicator, in a cluster means that players do
not showcase those particular trait features. Furthermore, when the trait ratios
of the clusters are observed on a stacked graph, it is seen that more visualizable
results are obtained by the ET-PCA modeling method.

For future work, automated methods are planned to be developed for creating
Event-Trait matrix. In the short term, a validation procedure is planned to
correct human errors in creating matrices.
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Abstract. In this paper we present a process for automatically generat-
ing manuals for board games within the Ludii general game system. This
process requires many different sub-tasks to be addressed, such as English
translation of Ludii game descriptions, move visualisation, highlighting
winning moves, strategy explanation, among others. These aspects are
then combined to create a full manual for any given game. This manual
is intended to provide a more intuitive explanation of a game’s rules and
mechanics, particularly for players who are less familiar with the Ludii
game description language and grammar.

Keywords: Ludii · Board Games · Manuals · Tutorial · Procedural
Content Generation

1 Introduction

Board games are one of the most popular pastimes for millions of people, and
have been played for over 5000 years [3]. Board Game Geek, one of the most
popular repositories of board games, currently includes over 130,000 different
games.1 As such, manually describing the rules for all these games in a clear
and consistent manner is a near impossible task. In this paper we present a
game manual generation framework, which automatically creates explanations
for how to play any given board game. This framework operates on the Ludii
general game system, which supports the majority of non-dexterity board games.

The rest of this paper is organised as follows. Section 2 provides the nec-
essary background information about Ludii and other related work. Section 3
describes the Ludii game description language and our process for translating
it into English. Section 4 describes how different moves for a given game are
detected, classified and visualised. Section 5 describes several additional features
that can provide supplementary information. Section 6 describes how these pre-
vious aspects are combined into a complete game manual. Section 7 concludes
this work, discusses several limitations, and suggests ideas for future research.
1 https://boardgamegeek.com.
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2 Background

2.1 Ludii

Ludii is a general game system [17] that is being developed as part of the Digital
Ludeme Project [3]. The majority of games within Ludii are traditional board
games, but other types of games such as puzzles, finger games, dice games, etc.,
are also present. Ludii is also able to support games which are stochastic or
contain hidden information. Ludii currently includes over 950 playable games,2

covering a wide-range of different categories and mechanics.

2.2 Related Work

Video Games. The work that most closely resembles our desired outcome
would probably be the AtDelfi system [7] for the General Video Game AI
(GVGAI) framework [14,15]. This system generates instruction cards for sim-
ple arcade-style video games written in the video game description language
(VGDL), providing information about the game’s controls, how to gain points,
and how the game is won or lost. This information is displayed using a com-
bination of text, images, and GIF animations. Although this approach focuses
on video games rather than board games, the generated instruction cards are
similar in design and purpose to the manuals we would like to produce.

However, there are several additional considerations when creating manuals
for board games. Board games often have very different control schemes to those
of video games, where moves are defined less by the exact buttons the player
can press and more by what pieces can be placed or moved in accordance with
the game’s rules. Video games also typically have specific considerations which
do not apply to board games, such as non-player characters (NPCs), projectiles,
timed events, a larger state space, etc. Likewise, board games often contain
aspects such as multiple players, distinct game-play phases, a greater reliance
on strategy rather than dexterity, a larger action space, etc. Because of this,
our generated board game manuals will likely contain very different information
from AtDelfi, with a much greater emphasis on piece movement and the specific
rules of play.

Learning from Observation. This work involves learning the rules of board
games from observed play [2,6,9,13], where a learner agent is given a collection
of play traces and tasked with learning the rules of the game which produced
them. Prior work in this area has predominately focused on learning from games
written in the Stanford Game Description Language (GDL), which is a much
more verbose and low-level language compared to that of Ludii. This makes
direct translation from the game description very difficult, hence the reliance on
learning from observed moves. Research on this task is also somewhat limited,

2 https://ludii.games/download, version 1.2.9.

https://ludii.games/download
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(game "Tic-Tac-Toe"

(players 2)

(equipment {

(board (square 3))

(piece "Disc" P1)

(piece "Cross" P2)

})

(rules

(play (move Add (to (sites Empty))))

(end (if (is Line 3) (result Mover Win)))

)

)

Fig. 1. Game description for Tic-Tac-Toe, written in Ludii’s game description language.

with presented approaches so far only being able to translate a limited subset of
GDL game descriptions.

Our presented approach instead relies more heavily on the higher level lan-
guage provided by Ludii, utilising the ability to specify English translations for
specific sub-sections of a games’s description based on its wider context. This
arguably makes our approach less general than learning from observation, as it
is currently unable to operate on games outside of Ludii. However, our approach
works effectively on the majority of board games within Ludii, and the presented
ideas are likely to be applicable to other high-level game description languages
with only minor modifications.

3 Ludii Game Description Language

Every game within Ludii is described as a single symbolic expression, which
contains structured sets of pre-defined keywords and values. These keywords
are called ludemes, and are intended to represent some fundamental aspect of a
game (e.g. Line, Mover, Win). Some ludemes are atomic and require no additional
parameters, such as the examples given above, while others such as if require
additional arguments to be provided, in this case a condition and statement.
By combining several ludemes and values together into compound expressions,
we can create larger ludemeplexes that describe more complex ideas. For exam-
ple, (if (is Line 3) (result Mover Win)) describes that forming a line of
3 pieces results in a win. This same idea is used to describe all of the games
in Ludii, repeatedly creating and combining increasingly complex ludemeplexes
until the final game description is obtained. As an example, the complete Ludii
game description for Tic-Tac-Toe is shown in Fig. 1.

The number of ludemes needed to describe a game varies based on its com-
plexity, typically ranging from only a few dozen for simple examples like Tic-
Tac-Toe and Hex, to several hundred for more complex cases like Chess and
Backgammon. The complete set of ludemes within Ludii is referred to as the
Ludii Game Description Language (L-GDL), and is automatically inferred from
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The game "Tic-Tac-Toe" is played by two players on a 3x3 rectangle board

with square tiling.

Player one plays with Discs. Player two plays with Crosses.

Players take turns moving.

Rules:

Add one of your pieces to the set of empty cells.

Aim:

If a player places 3 of their pieces in an adjacent direction line,

the moving player wins.

Fig. 2. Automatic English language translation of Ludii’s Tic-Tac-Toe game
description.

the Ludii codebase using a class grammar approach [5]. Further details on L-GDL
are provided in the Ludii game logic guide [16].

3.1 Translation to English

While Ludii game descriptions are generally clear and understandable for sim-
ple cases like Tic-Tac-Toe, deciphering more complex game descriptions often
requires expert knowledge about L-GDL. As a result, Ludii relies on hand-
written descriptions to accompany each game. These are often obtained from
Board Game Geek, Wikipedia, or other sources with inconsistent levels of detail
and structure. Even worse, some of these descriptions might make allusions to
other games which players may be unfamiliar with, e.g. “Knights move the same
as in Chess”. All these issues motivate the creation of an automated game-
translation process, which is able to convert any Ludii game description into a
pseudo-English equivalent.

Due to the class grammar approach used to generate L-GDL, each Ludeme
has a corresponding class within the Ludii codebase. Within each of these classes
we define a toEnglish() function, which returns an English language description
of how the ludeme operates within the game. These descriptions often need
to consider the ludeme’s arguments, for example (is Line 3) might translate
to “3 pieces in a line”. As such, the toEnglish() function for each ludeme will
often need to call the toEnglish() functions of its arguments. For example, the
toEnglish() function of the if ludeme also calls the toEnglish() of its conditional
and statement arguments. This structure means that calling the toEnglish()
function on the highest level (game ...) ludeme of any given game description,
will recursively call and combine the results of all its sub-ludemes to create a full
English language translation of the game. As an example, applying this process
on the description in Fig. 1, outputs the text shown in Fig. 2. Additional examples
of English translations of Ludii game descriptions are shown in Appendix A.
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However, due to the complexities and inconsistencies of the English language,
this translation process is unlikely to work perfectly for every case. This includes
mostly harmless grammar issues like displaying the correct pluralisation of dif-
ferent words, to more complex challenges like converting a sequence of nested
statements such as (or A (or (or B C) D) (or E F)) into an unambiguous
sentence.

Ludii also contains certain implementation-specific ludemes such as SetPend-
ing or SetState, which are often used for different purposes across multiple games.
For example, in the game Chess the state of a piece indicates whether it has pre-
viously been moved or not, and is used to determine if castling is possible. Alter-
natively, in the game Jungle the state of a piece indicates its combat strength,
and is used to determine if certain pieces can capture others. As of the time of
writing, our translation approach is currently unable to directly link the action
of setting a piece’s state with the possible future consequences of this.

4 Move Visualisations

While the English translation of a game’s description provides an explanation of
the possible moves a player can make, there are some moves which are much eas-
ier to understand visually. Chess provides a nice example of this, where showing
the movements of the different pieces such as Knight, Queen, Rook, and Bishop
using diagrams or animations may be much more intuitive than with text alone.
Therefore, we also developed a move visualisation process which attempts to
identify all of the different types of moves that each player/piece can perform,
and creates suitable images to demonstrate them.

4.1 Move Properties

For the purposes of move visualisation, there are four move properties that need
to be considered:

1. Mover: Each move contains a Mover parameter, which indicates the player
who is making the move. This property is only considered for games where
the players have different piece rules.

2. Piece: The majority of moves contain an associated Piece parameter, which
indicates the main piece that is moved, added, or removed. Even though a
move may affect multiple pieces, a single piece is always designated as the
main one. For example, when capturing a piece in chess there are technically
two pieces that are being affected (the capturing piece and the captured
piece), but the capturing piece is considered the main piece. Certain moves
such as Pass or Swap do not have an associated piece.

3. Origin Rules: Each move originates from an associated (move ...) ludeme
within the current game’s description. For example, when playing the game
description given in Fig. 1, all moves originate from (move Add (to (sites
Empty))). By calling our previously described toEnglish() function on any
move’s associated ludeme, we can obtain an English translation of the rules
from which this move originated.
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4. Action Types: Each move contains a sequence of actions that are applied
when the move is selected. For example, the move [(Remove E6), (Move
F5-E6), (Score P1=4)] contains three actions which removes the piece at
E6, moves the piece at F5 to E6, and sets the score of Player 1 to 4, respec-
tively. The action types of a move are this same set of actions but where only
the name/type of action is retained; for example the action types of the same
example move given above would be [Remove, Move, Score].

4.2 Identifying Distinct Moves

When performing move visualisation for a given game, we first run a number
of random playouts. Once completed, we then combine all of the moves that
were selected during these playouts into a single list of moves. We then remove
all duplicate moves from this list, using only the four move properties listed in
Sect. 4.1 to determine uniqueness. This provides us with a set of distinct moves,
each of which has a unique combination of properties.

4.3 Visual Representations

For each distinct move, we create two images showing the state of the game
before and after the move is selected. The move’s piece is also highlighted using
either a red arrow or dot, depending on whether the piece’s location changes
or not. An example of these two images for a given move is shown in Fig. 3.
Additionally, certain games within Ludii support move animations which can
depict a moving piece in a more visually pleasing manner. In games where this
animation is supported, we also provide a short GIF animation of the move.

5 Additional Features

As well as the English translation and move visualisation processes, there are
several auxiliary features which can provide additional information.

5.1 Initial Setup

An image of the game state before any moves are made is also included. This is
not very helpful for games where the board is empty, but can be beneficial for
games such as Chess where the initial arrangement of the pieces is important.

5.2 Winning/Losing Moves

When running random playouts for move visualisation, we can also record the
result of each playout as well as the final move that was made. We can then



Automatic Generation of Board Game Manuals 217

(a) Before Move (b) After Move

Fig. 3. Visual representation of a move for Breakthrough, showing the board state
before (a) and after (b) the move is selected. The move is highlighted using a red
arrow. (Color figure online)

visualise this move for each unique result, showing the different possible results
that the game can have as well as the last move that led to this outcome.

In addition to the regular move visualisation, we can also detect the spe-
cific (end ...) ludeme that caused the game to end. By calling our previously
described toEnglish() function on this ludeme, we can obtain an English transla-
tion of the rules that ended the game. Certain (end ...) ludemes also support
additional visuals, such as allowing us to identify the specific winning line or pat-
tern. An example of these two ending move images for a result in Tic-Tac-Toe
is shown in Fig. 4.

5.3 Similar Legal Moves

When highlighting moves using red arrows or dots, we can also highlight any
other legal moves that have the same properties. Whereas previously only the
selected move was shown, this approach displays more example moves within
a single picture. Contrasting images showing with and without this addition
are shown in Fig. 5. Both approaches have their benefits, however we feel that
showing all similar legal moves more closely aligns with how piece rules are
typically described in most Ludii game descriptions.

5.4 Strategy Explanation

Many of the games within Ludii also contain associated heuristics for assisting
AI agents. The heuristics include aspects such as Material (number of pieces),
Mobility (number of moves), LineCompletion (potential ability to complete lines
of pieces), among many others. Each heuristic also has an associated weight
which indicates its relative level of importance. These heuristics can be specified
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(a) Before Move (b) After Move

Fig. 4. Visual representation of an ending move for Tic-Tac-Toe, showing the board
state before (a) and after (b) the move is selected. The move is highlighted using a red
dot, and the winning line is highlighted using green dots. (Color figure online)

(a) Only Selected Move (b) All Similar Moves

Fig. 5. Visual representation of the board state for Chess before a move is made, with
only the selected move highlighted (a) and all legal moves with the same properties
highlighted (b). (Color figure online)

manually by the game’s designer, or learned automatically through a heuristic
tuning process. More details on the heuristics which are available within Ludii
can be found in [18]. While predominately designed for AI agents, these heuristics
can also provide assistance to novice players about what moves to make. By
applying some simple formatting, these heuristics can be converted into basic
strategy explanations. An example of this strategy explanation for the Chess
heuristics in Ludii is shown in Fig. 6.
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Try to maximise the number of Pawn(s) you control (very low importance)

Try to maximise the number of Rook(s) you control (moderate importance)

Try to maximise the number of Bishop(s) you control (low importance)

Try to maximise the number of Knight(s) you control (low importance)

Try to maximise the number of Queen(s) you control (very high importance)

Fig. 6. Strategy explanation derived from Ludii’s AI heuristics for Chess.

6 Complete Game Manuals

All of the aspects described in Sects. 3, 4, and 5 can be combined into a single
webpage document which provides complete manuals for a specific game. Exam-
ples of generated manuals for a wide range of Ludii games are available online.3

The layout of each manual is as follows:

1. Rules: The rules of the game, based on the English translation of its Ludii
game description.

2. Heuristics: Recommended strategies for playing the game, derived from the
AI heuristics.

3. Setup: The initial state of the game before any moves are made.
4. Endings: The different endings for the game, with accompanying English

descriptions and visualisations.
5. Moves: The different moves for the game, with accompanying English

descriptions and visualisations. These moves are hierarchically organised
based on their properties (mover, piece, origin rules, and action types).

7 Conclusion

In this paper we have presented a process for automatically generating manuals
of Ludii games. This process combines solutions for multiple sub-tasks to create
a complete manual, detailing the rules, moves, endings and strategies for any
given game. This manual allows players who are unfamiliar with L-GDL to still
play complex games in Ludii, even if the hand-written rules are unavailable or
incomplete. Procedurally generated games would be an ideal application of this
work, as these games do not provide any instructions or details beyond their Ludii
game description. These manuals may also be able to assist game designers, by
providing a starting point for describing the game’s rules or highlighting outlier
moves that the designer may not have intended.

7.1 Limitations

While the manual generation process described in this paper works on the vast
majority of games in Ludii, there are still some minor cases where specific parts

3 https://ludii.games/manuals/menu.html.

https://ludii.games/manuals/menu.html
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are incompatible. Move visualisation is currently not possible for games with
simultaneous moves, or games which reference smaller sub-games (aka. matches).
The English translation code is also still in-progress, and will need to be updated
and improved over time. Other minor aspects such as move animations and
winning move visuals are also not yet implemented for all cases.

7.2 Future Work

One improvement on this work could be the creation of tutorial scenarios where
a specific mechanic or rule needs to be understood in order to win, thus providing
a more interactive learning experience [8]. Interactive tutorials have been shown
to increase player engagement and ability, particularly for complex games [1,12].
These scenarios could be created by identifying game states where a certain move
needs to be selected in order to win, or avoid loss.

Another improvement could be the addition of a coach/tutor AI that provides
tips to the player throughout the game. This could include advice about what
moves to make, or feedback on why certain moves were good/bad [11]. This could
be achieved using our learned heuristics, by detecting if a different move would
have given a higher state evaluation. For example, “Your last move resulted
in a lower material benefit (+2) than an alternative move (+5)”. Furthermore,
features of state-action pairs [4] may be used to provide advice on a tactical
level, as opposed to the strategic level that heuristic state functions operate on.

Our final improvement suggestion is the creation of an adaptive AI opponent
which modifies its strength based on the player’s abilities [10]. This agent would
aim to provide a reasonable level of challenge for the player, hopefully providing
a more engaging and constructive gameplay experience. This agent could be
extended further to favour states which promote certain strategies, providing an
online version of the tutorial scenarios mentioned previously.

Acknowledgements. This research is funded by the European Research Council as
part of the Digital Ludeme Project (ERC Consolidator Grant #771292) led by Cameron
Browne at Maastricht University’s Department of Data Science and Knowledge
Engineering.

Appendix

A English Translations of Ludii Game Descriptions

A.1 Hex

(game "Hex"
(players 2)
(equipment{

(board (hex Diamond 11))
(piece "Marker" Each)
(regions P1 { (sites Side NE) (sites Side SW) })
(regions P2 { (sites Side NW) (sites Side SE) })})

(rules
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(meta (swap))
(play (move Add (to (sites Empty))))
(end (if (is Connected Mover) (result Mover Win))))

)

The game "Hex" is played by two players on a 11x11 diamond board with hexagonal tiling.
Regions:

RegionP1: the NE side for P1 and RegionP1: the SW side for P1
RegionP2: the NW side for P2 and RegionP2: the SE side for P2

All players play with Markers.
Players take turns moving.
Rules:

Add one of your pieces to the set of empty cells.
Aim:

If the region(s) of the moving player are connected, the moving player wins.

A.2 Amazons

(game "Amazons"
(players 2)
(equipment{

(board (square 10))
(piece "Queen" Each (move Slide (then (moveAgain))))
(piece "Dot" Neutral)})

(rules
(start{

(place "Queen1" {"A4" "D1" "G1" "J4"})
(place "Queen2" {"A7" "D10" "G10" "J7"})})

(play
(if (is Even (count Moves))

(forEach Piece)
(move Shoot (piece "Dot0"))))

(end (if (no Moves Next) (result Mover Win))))
)

The game "Amazons" is played by two players on a 10x10 rectangle board with square tiling.
All players play with Queens. The following pieces are neutral: Dots.
Rules for Pieces:

Queens slide from the location of the piece in the adjacent direction through the set of
empty cells then move again.

Players take turns moving.
Setup:

Place a Queen for player one on sites: A4, D1, G1 and J4.
Place a Queen for player two on sites: A7, D10, G10 and J7.

Rules:
If the number of moves is even, move one of your pieces, else shoot the piece Dot0.

Aim:
If the next player cannot move, the moving player wins.
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Abstract. This paper describes three different optimised implementa-
tions of playouts, as commonly used by game-playing algorithms such
as Monte-Carlo Tree Search. Each of the optimised implementations is
applicable only to specific sets of games, based on their rules. The Ludii
general game system can automatically infer, based on a game’s descrip-
tion in its general game description language, whether any optimised
implementations are applicable. An empirical evaluation demonstrates
major speedups over a standard implementation, with a median result
of running playouts 5.08 times as fast, over 145 different games in Ludii
for which one of the optimised implementations is applicable.

Keywords: Playouts · General Game Playing · Ludii

1 Introduction

The playing strength of automated game-playing agents based on tree search
algorithms, such as αβ-pruning [10] and Monte-Carlo Tree Search (MCTS)
[3,8,11], typically correlates strongly with the efficiency of basic operations such
as computing a list of legal moves, applying a move to a state, copying a game
state, or evaluating whether or not a state is terminal. When such operations
can be implemented to run more efficiently, they allow for deeper tree searches,
which usually leads to stronger agents. For this reason, a significant amount
of research has gone towards techniques such as bitboard methods [2], Prop-
Net optimisations [17] for general game playing, hardware accelerators [6,18],
optimising compilers for general game description languages [12], etc.

MCTS is one of the most commonly used tree search algorithms for general
game playing [9,20]. Typically, a significant portion of the time spent by this
algorithm is in running playouts; these may intuitively be understood as the
algorithm following a “narrow” and “deep” trajectory of several—often many—
consecutive states and actions. In their most basic form, playouts are run by
selecting legal actions uniformly at random, and continuing them until a terminal
game state is reached, but it is also possible to truncate playouts early and to
select actions during playouts according to non-uniform distributions.
c© Springer Nature Switzerland AG 2022
C. Browne et al. (Eds.): ACG 2021, LNCS 13262, pp. 223–234, 2022.
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After running a playout, it is typically not necessary to retain the interme-
diate states generated between the start and end of a playout, the lists of legal
moves, etc.; only the final outcome of a playout is generally of interest. This is
in contrast to minimax-based algorithms such as αβ-pruning [10], or even the
time spent by MCTS in its tree building and traversal (outside of playouts),
where intermediate states and exact lists of legal moves are required for a cor-
rect tree to be built. Straightforward playout implementations compute exact
lists of legal moves in every state anyway, such that actions may be sampled
from them afterwards, but these insights may be used to develop more efficient
playout implementations.

In this paper, we propose several different optimised playout implementations
for the Ludii general game system [4,14], which allow for playouts to be run sig-
nificantly more quickly than with naive implementations. Each of them is only
applicable to a restricted set of games, but the system can automatically deter-
mine for any given game whether or not any specific playout implementation
is applicable. Furthermore, each of the proposed implementations is applicable
to a substantial number of games in Ludii (i.e., not specific to just a single
or a handful of games). Only our approach for automatically determining the
applicability of playout implementations is specific to Ludii—in particular, to its
game description format. The basic ideas behind the optimised playout imple-
mentations are not specific to Ludii, and may be relevant for other general game
systems as well as single-game engines.

2 Background

Ludii is a general game system that can run any game described in its ludemic
game description format [4,14]. A large library of ludemes, which may intuitively
be understood as keywords that make up the game description language, is
automatically inferred from Ludii’s codebase using a class grammar approach
[5]. An example game description for the game of Tic-Tac-Toe in Ludii’s game
description language is provided by Fig. 1.

Any game described in this language can be compiled by Ludii, resulting in a
forward model with functions for computing lists of legal moves, applying moves
to game states, copying game states, etc. Given these functions, a straightforward
playout implementation can be written as in Algorithm 1.

Algorithm 1. Standard playout implementation.
Require: Game state s to start playout from.
1: while playout should be continued do // Not terminal and not truncated
2: legal moves ← ComputeLegalMoves(s)
3: Sample move m from legal moves // Often uniformly at random
4: Apply move m to state s
5: end while
6: return game state s at end of playout.
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(game "Tic-Tac-Toe"

(players 2)

(equipment {

(board (square 3))

(piece "Disc" P1)

(piece "Cross" P2)

})

(rules

(play (move Add (to (sites Empty))))

(end (if (is Line 3) (result Mover Win)))

)

)

Fig. 1. Game description for Tic-Tac-Toe in Ludii’s game description language.

3 Related Work

For several connection games [15] (and possibly other types of games), it can be
proven that a game always ends in a win for exactly one player (no ties), and that
the outcome does not change if play “continues” after reaching a terminal game
state until the game board is full. For such games, playouts can be optimised by
simply continuing them until the board is full, and only evaluating the outcome
once at the end [15]. This is efficient because evaluating the win condition,
which is often the most expensive computation of these games, only needs to be
done once, at the end of every playout. This is in contrast to standard playout
implementations as in Algorithm 1, where the win condition would be evaluated
after every move.

In a general game system such as Ludii, we do not have a straightforward
way to automatically prove or disprove for any arbitrary game description that
the properties required for the optimisation described above hold. However, the
techniques we propose in the following sections are similar in the sense that
they are tailored specifically towards optimising playouts, as opposed to more
generally optimising functions that are also used outside of playouts.

4 Add-to-Empty Playouts

The first collection of games for which we propose an optimised playout imple-
mentation is the set of games where players’ moves consist of placing pieces of
their colour on empty positions on a game board, and pieces can never be moved
or removed anymore after being placed. We refer to these as “add-to-empty”
games. This includes many well-known games such as Gomoku, Havannah, Hex,
Tic-Tac-Toe, Yavalath, etc. These are often connection or line-completion games.

More formally, in Ludii, these games are recognised as those games where the
playing rules are defined as (play (move Add (to (sites Empty)))). This is
a strong restriction because only a single specific set of playing rules is permitted,
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but in practice we find this particular ruleset to be relatively commonly used
among several popular games. For this specific set of rules, we are guaranteed
that the list of legal moves in the initial game state is simply represented by all
positions that are empty at the start of the game (generally the entire board),
and that this list of legal moves monotonically decreases by exactly one after
every move. This allows for an optimised implementation, where the list of legal
moves is pre-allocated once at the start of a playout, and legal moves do not
need to be re-computed at any later stage in the same playout.

The only exception that we implement additional support for is the swap
rule (or pie rule). This is a common rule used in many of the games we aim
to cover with this playout implementation, such as Hex and Havannah, which
states that in the first turn of the second player, that player may opt to swap
colours with their opponent, rather than making a move. This rule is intended
to eliminate a first-mover advantage that the first player otherwise often has in
these games. The presence of this rule technically means that the list of moves
does not monotonically decrease by one in the very first turn transition, but it is
straightforward to implement support for this one special case in the optimised
playout implementation.

Note that, in these games, the idea of pre-computing a list of legal moves
only once at the start, and monotonically removing moves as they are played
afterwards, does not necessarily have to be restricted to just playouts. If such
a list of moves were stored in memory in the game state representation, and
updated as moves were applied, the optimisation could also be used outside of
playouts (e.g., when building search trees). In the Regular Boardgames system
[13], such an idea has been implemented more generally as a step of an optimising
compiler [12]. However, we remark that this does increase the memory footprint
of the game state representation, and it can slow down operations such as the
copying of game states, which is often required in aspects of game tree searches
outside of playouts.1 By restricting the use of this idea to just playouts, where
generating intermediate copies of game states is not required, we are guaranteed
that it cannot inadvertently cause a slowdown.

5 Filter Playouts

The second collection of games for which we provide an optimised playout imple-
mentation is the set of games where there is a basic set of arbitrary rules that
defines an initial list of legal moves for any game state s, but some of these
moves m are afterwards filtered out if a certain postcondition fails for whichever
successor state s′ is reached if m were to be applied to s. A well-known example
of such a game is Chess, where at first the moves are described according to
the different move rules of different pieces, but any move m that would lead
to a successor state s′ where the mover’s king would (still) be under threat is
filtered out. In chess-specific engines, such conditions may be relatively cheap
1 Ludii often requires game states to be copied during tree searches because Ludii does

not support “undoing” moves, though this may be added in the future.
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to compute without actually generating all the hypothetical successor states s′.
However, in the Ludii general game system, these conditions are expensive to
compute because all the potential successor states s′ are fully generated (which
in turn first requires many copies of s to be generated) to evaluate the postcon-
ditions.

More formally, we provide support for any game in Ludii where the playing
rules are described in any one of the following formats, where isolated capital
letters A, B, etc. can be filled by any arbitrary rules as permitted by the game
description language:

1. (play (do A ifAfterwards:(B)))
2. (play (if A B (do C ifAfterwards:(D))))
3. (play (or (do A ifAfterwards:(B)) (move Pass)))

The first case is the most basic case, where A defines the rules used to generate
the unfiltered list of moves, and B defines the postcondition that must hold in the
successor state for any move generated by A not to be filtered out. The second
case generates moves according to B if condition A holds, and otherwise drops into
a similar construction as in the first case. This construction is frequently used
in games such as Chess and Shogi, where promotion moves are generated if the
player to make a move is the same player as the last mover, and regular moves
with postconditions are generated otherwise. The third case is similar to the first
case, except it also always generates an unconditional pass move as a legal move.
This is used for games such as Go, where placing stones is conditional on liberty
postconditions, but passing is always permitted. Other (more complex) cases
than these three may occur and could be supported, but adding such support
would require a small amount of additional engineering effort on a case-by-case
basis. In practice we found these three cases to provide sufficient coverage for a
substantial number of games, including several popular ones such as Chess, Go,
and Shogi.

When constructing game trees, we cannot avoid computing the expensive
postconditions, because the exact lists of legal moves must be fully generated to
construct a correct game tree. However, in playouts, we only require the abil-
ity to sample legal moves according to some desired distribution over the legal
moves, but do not necessarily need to know which other (unsampled) moves
were actually legal according to the postconditions. Hence, we propose a play-
out implementation where moves are generated without checking postconditions.
A rejection sampling approach is used where postconditions are evaluated only
after a move has been selected (uniformly at random, in the simplest case), and
the process is repeated if it turns out that the sampled move should have been
filtered out. This allows us to avoid evaluating potentially expensive postcondi-
tions for moves that are not sampled. Pseudocode for this approach is provided
by Algorithm 2. Section 7 discusses how this approach can be combined with
more sophisticated playouts with non-uniform distributions over moves.
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Algorithm 2. Optimised filter playout.
Require: Game state s to start playout from.
1: while playout should be continued do // Not terminal and not truncated
2: moves ← ComputeMaybeLegalMoves(s) // Ignore postconditions
3: m ← Null
4: while m = Null do
5: m ← sample move m from moves

6: if m fails postcondition then
7: m ← Null
8: Remove m from moves

9: end if
10: end while
11: Apply move m to state s
12: end while
13: return game state s at end of playout.

6 No-Repetition Playouts

The final playout implementation we propose is a variant of the filter playouts
described in the previous section. Outside of the general playing rules, Ludii’s
game description language also allows for a more general (noRepeat) “meta-
rule” to be applied to a complete game. When this rule is used, any move that
leads to a game state that has already been encountered before is illegal. This
can be viewed as an additional postcondition, which again requires a game state
copy and a move application to evaluate, as described in Sect. 5. A similar rejec-
tion sampling approach can also be used again to avoid these computations for
many legal moves in playouts. The main difference between the no-repetition
playout and the filter playout is simply in how its applicability can be deter-
mined from a game’s game description file. In games where filter playouts are
also valid, any repetition restrictions are evaluated at the same time as the opti-
mised postconditions.

7 Non-uniform Move Distributions

Selecting moves uniformly at random is a common and straightforward strategy,
but it is often beneficial to use “smarter” playouts based on domain knowl-
edge, offline learning, or online learning, which means that moves are sampled
according to non-uniform distributions over the legal moves. The add-to-empty
playouts described in Sect. 4 still generate the precise lists of legal moves, which
means that they support the use of such non-uniform distributions. However,
the filter playouts and no-repetition playouts described in Sects. 5 and 6 require
careful attention. These playout implementations may include illegal moves in
their lists of moves, which are only discovered to be illegal and rejected after
sampling them, but their presence in the initial list of moves may affect the
probabilities computed for other (legal) moves. This may lead to an unintended
change in the distribution over moves.
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One common approach for move selection in playouts is to assign scores to
moves, which are not translated into probabilities, but instead used to inform
move selection through other means, such as ε-greedy policies. An ε-greedy strat-
egy simply selects moves uniformly at random with probability 0 ≤ ε ≤ 1, or
greedily with respect to the move scores with probability 1− ε. Move scores can,
for example, be obtained using approaches such as MAST, FAST [9], NST [21],
or PPA [7]. Techniques with only two or three discrete levels of prioritisation
for moves, such as the Last-Good-Reply policy [1] or decisive and anti-decisive
moves [22], may be viewed as a special case with discrete move scores. When-
ever such an ε-greedy policy is used (including the special case of greedy policies
with ε = 0), our proposed playout implementations—with their rejection sam-
pling schemes for handling illegal moves—will automatically play according to
the correct (non-uniform) distributions, with no further changes required.

Another common approach is to compute a discrete probability distribution
over all moves, and sample moves according to those probabilities. This is some-
times done by transforming move scores, such as those described above, into
probabilities using a Boltzmann distribution. Given a set of legal moves M, and
a temperature hyperparameter τ , the probability p(m,M) with which a move
m ∈ M with a score Q(m) should be selected is then given by Eq. 1:

p(m,M) =
exp(Q(m)/τ)

∑
m′∈M exp(Q(m′)/τ)

(1)

When offline training is used to train policies, for instance based on deep neural
networks [16] or simpler function approximators and state-action features [19],
it is also customary to use such a distribution with τ = 1 (leading to a softmax
distribution) and the Q(m) values referred to as logits.

Let M denote a set of legal moves, and let I denote a set of moves as
generated during a filter or no-repetition playout (which may include some illegal
moves), such that M ⊆ I. Let m1 and m2 denote two arbitrary legal moves.
The ratio p(m1,I)

p(m2,I) between their probabilities, in the possible presence of illegal
moves, is given by Eq. 2:

p(m1, I)
p(m2, I)

=
exp(Q(m1)/τ)

∑
m′∈I exp(Q(m′)/τ)

×
∑

m′∈I exp(Q(m′)/τ)
exp(Q(m2)/τ)

=
exp(Q(m1)/τ)
exp(Q(m2)/τ)

(2)
Note that this ratio is equal to the ratio we would have had with M instead of
I, i.e. if there were no possible presence of illegal moves.

Let m ∈ I denote a move that has been sampled in a playout, and is rejected
due to it turning out to be illegal, i.e. m /∈ M. For any other move m′ �= m, the
probability value p(m′, I\{m}) can be incrementally updated as p(m′, I\{m}) =
p(m′, I) × 1

1−p(m,I) when m is rejected. This re-normalises the distribution into
a proper probability distribution again after the rejection of the illegal move,
without changing the ratio of probabilities between any pair of remaining moves,
and without requiring the full distribution to be re-computed from scratch.
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Table 1. Aggregate measures of the speedups obtained by different playout implemen-
tations in their applicable games.

Speedup

Playout Implementation Num. Games Min Median Mean Max

Add-To-Empty 35 1.00 1.90 3.64 20.25

Filter 105 1.18 5.49 6.88 34.31

No-Repetition 5 1.65 6.35 9.08 19.26

All 145 1.00 5.08 6.17 34.31

8 Empirical Evaluation

We evaluate the performance of the proposed playout implementations by mea-
suring the average number of complete random playouts—from initial game state
until terminal game state—that can be run per second, using both standard
implementations (Algorithm 1) and the optimised implementations. Every pro-
cess is run on a single CPU core @2.2 GHz, using 60 s of warming up time for the
Java Virtual Machine (JVM), followed by 600 s over which the number of play-
outs run per second is measured. We allocate 5120 MB of memory per process,
of which 4096 MB is made available to the JVM.

The version of Ludii used for this evaluation2 has 929 different games, with
1053 rulesets (some games can be played using several different variants of rules).
Of these, 145 rulesets (from 141 games) are automatically detected to be com-
patible with one of the three proposed playout implementations. For each of
them, we evaluate the speedup as the number of playouts per second when using
the optimised playout, divided by the number of playouts per second when using
a standard playout implementation. For example, a speedup of 2.0 means that
the optimised implementation allows for playouts to be run twice as fast.

Figure 2 summarises, for each of the three playout implementations, the dif-
ferent speedups obtained by using the optimised playout implementations in
applicable games. Table 1 provides additional details on these results. Each
of the three implementations provides noticeable speedups in the majority of
games, with median speedups ranging from 1.90 (almost twice as fast) for Add-
To-Empty, to 6.35 (more than six times faster) for No-Repetition. The largest
speedup (34.31) is obtained by the Filter playout in the game of Go.

Only the Add-To-Empty playout has two games (out of 35) for which the
speedup is lower than 1.0, i.e. a slowdown; 0.9999896 for Icosian, and 0.997 for
Gyre. In Icosian, the Add-To-Empty playout is only valid for the first phase of
the game, which only lasts for a single move; after this phase, it is necessary to
switch back to the standard playout implementation, and the overhead of this
switch may cause the slowdown. In Gyre, close to 100% of the time is spent
computing the game’s win condition, which is not affected by Add-To-Empty.

2 Revision 7903697 of https://github.com/Ludeme/Ludii.

https://github.com/Ludeme/Ludii
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Fig. 2. Boxplots summarising speedups obtained from using optimised playout imple-
mentations rather than the standard one. Every data point is a different game (or
ruleset). Points to the left of the x = 1.0 line are slowdowns.

In theory, the optimised playout implementations should not affect the proba-
bilities with which moves are selected, and therefore random playouts should—on
average—take equally long (measured in number of moves per playout) regardless
of implementation. To verify that this is the case (i.e., there are no implementa-
tion errors), we compute a ratio for every game by dividing the average playout
length recorded when using optimised implementations, by the corresponding
number recorded when using the standard (unoptimised) implementation. The
boxplots in Fig. 3 confirm that almost all these ratios are very close to 1.0.

The three biggest outliers are Hexshogi, Unashogi, and Yonin Shogi, with
ratios of 0.75, 0.87, and 1.13, respectively. All three of these games are relatively
slow games, which means that even in our 600-s timing runs we obtain relatively
low total numbers of playouts, with a significant variance in the number of
moves per playout. Therefore, the observation of these outliers can be explained
by a combination of relatively low sample sizes (459, 215, and 322 total playout
counts over 600 s for the three respective games when using optimised playout
implementations) and high variance, rather than implementation errors. For all
three of these outliers, the speedups recorded for the Filter playout are also more
substantial than can be explained solely by the differences in average playout
lengths; we record speedups of 7.52, 5.67, and 4.50.
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0.75 0.80 0.85 0.90 0.95 1.00 1.05 1.10

Ratio of Average Moves per Playout

Add-To-Empty

Filter

No-Repetition

Fig. 3. For each of the optimised playout implementation, a boxplot summarising, for
each game, the ratio between the recorded average numbers of moves per random play-
out with and without using the optimised implementation. Ratios less than 1.0 mean
that random playouts were shorter on average when using optimised implementations,
and ratios greater than 1.0 mean that random playouts were longer on average when
using optimised implementations.

9 Conclusion

In this paper, we have proposed three optimised implementations for running
playouts, as often used by algorithms such as MCTS. Each of the implementa-
tions is applicable to a specific set of games, depending on the rules used by a
game. The Ludii general game system can automatically infer, based on game
descriptions in its game description language, which—if any—of these imple-
mentations are applicable, and use them for running playouts when applicable.
An empirical evaluation across 145 games demonstrated significant speedups,
with a median result of running playouts 5.08 times faster, a mean speedup of
6.17 times, and a maximum speedup of 34.31 times in the game of Go.
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Abstract. Game boards are described in the Ludii general game sys-
tem by their underlying graphs, based on tiling, shape and graph opera-
tors, with the automatic detection of important properties such as topo-
logical relationships between graph elements, directions and radial step
sequences. This approach allows most conceivable game boards to be
described simply and succinctly.

Keywords: General Game Playing · Ludii · game board · geometry

1 Introduction

The Digital Ludeme Project (DLP) is a five-year research project using Arti-
ficial Intelligence techniques to improve our understanding of the development
of games throughout history [2]. We are modelling the 1,000 most “important”
traditional strategy games in a consistent digital format, to provide a playable
database of the world’s traditional games for comparative analysis.

The Ludii general game system1 [5] is a software tool developed specifi-
cally for this task, for modelling the full range of possible board games (950+
games implemented in version 1.2.8). Games are described in terms of simple
ludemes assembled into structures to define arbitrarily complex behaviour, where
each ludeme is a game-related concept implemented as a Java class (or enum
attribute) in the Ludii code base [4].

A key challenge in this task is to allow the user to describe arbitrarily complex
game boards in a simple and intuitive way. This paper outlines our method for
describing game boards in the Ludii grammar for general games.

2 Game Graphs

In Ludii, the board shared by all players is represented internally as a finite
graph defined by a triple of sets G = 〈V,E,C〉 in which V is a set of vertices,
E a set of edges, and C a set of cells. In graph theory, a cell is more commonly
1 Ludii is available at ludii.games and the source code at github.com/Ludeme/Ludii.
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called face and represents a region bounded by a set of edges and that contains
no other vertex or edge.2 Vertex, edge and cell are all graph elements which
can refer to each other, and denote playable sites at which players can place
components during the game:

– Let v ∈ V denote a vertex. Then v is an endpoint to each edge in E(v), C(v)
gives the set of cells that v is part of, and V (v) = {v}.

– Let e ∈ E denote an edge. Then V (e) is a set of 2 vertices that are the
endpoints of e, C(e) gives the set of cells e is bounding, and E(e) = {e}.

– Let c ∈ C denote a cell. Then E(c) is the set of all the edges bounding c, V (c)
gives the set of the vertices which are the endpoints of the edges bounding c,
and C(c) = {c}.

(a) (b)

Fig. 1. A game played on vertices, edges and cells (a) and a game played on cells (b).

For example, Fig. 1a shows a game with pieces played on the vertices, edges
and cells of the board graph. Figure 1b shows a board game played only on the
cells but in which pieces may stack.

In any single game, components (or a stack of components) can be placed
on any graph element. For this reason, we define a playable site as a triple
〈Type, Index, Level〉 in which the Type can be (Vertex, Edge or Cell), the Index
is the number of the element and the Level is the index of the element in the
stack (0 meaning the ground).

Any ludeme referring to a playable site has to specify each of these data.
However, for convenience, Ludii uses default values. The default type of a loca-
tion is Cell, except if the description of the game specifies another default site
type. For levels, the default value is the top Level of the location specified, as
stacked site are typically owned by the player with a piece on top.

2 We sometimes use “game design” terms or definitions in lieu of stricter mathematical
equivalents, in keeping with Ludii’s primary purpose as a game design tool.
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2.1 Dimensions: Cells or Vertices

The graph is generated based on the specified board dimensions and default
site type. For example, a Chess board described (board (square 8)) (see
Fig. 2a) produces a square grid with 8 cells per row and column. However, a
Go board described as (board (square 19) use: Vertex) (see Fig. 2b) pro-
duces a square grid with 19 vertices per row and column. If the default site type
is Vertex or Edge then the board dimensions are based on the number of vertices
rather than cells.

(a) (b)

Fig. 2. (a) Chess (8 × 8 Cells). (b) Go (19 × 19 Vertices).

3 Game Board Description

Game boards are described in the Ludii grammar [3] using the following basic
EBNF syntax: <board> ::= (board <graph>) where the underlying <graph>
object defines the vertices, edges and cells that make up the game board.

The user can specify the location of each vertex (and adjacencies between
them as edges) to allow the description of arbitrarily complex graphs, or they
can take advantage of a range of predefined tilings, shapes and graph operators
for more concise descriptions (described more fully in Sect. 5). For example, the
three game boards shown in Fig. 3 are described by the following graphs (the
poly field describes the polygonal shape of the board):

(hex 4)

(tiling T3464 2)

(celtic (poly {{3 0}{3 4}{0 4}{0 7}{3 7}{3 11}{6 11}
{6 7}{10 7} {10 5} {6 5}{6 0}}))
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(a) (b) (c)

Fig. 3. Boards from tilings: hexagonal (a), semi-regular 3.4.6.4 (b) and celtic (c).

4 Graph Relations

For a graph G = 〈V,E,C〉, two different graph elements g1 and g2 can have
different relations:

– Adjacent: g1 and g2 are adjacent if and only if (∃e ∈ E(g1) ∩ E(g2)) ∨
(∃v ∈ V (g1) ∩ V (g2)) ∨ (∃c ∈ C(g1) ∩ C(g2)). In other words, two graph ele-
ments are adjacent if they share any graph element they are referring.

– Orthogonal: g1 and g2 are orthogonal if and only if ∃e1 ∈ E(g1),∃e2 ∈
E(g2), e1 = e2. In other words, two graph elements are orthogonal if they
share an edge.

E

Fig. 4. Adjacent diagonals (left) and non-adjacent diagonals (right).

– Diagonal: Two cells are considered diagonal if and only if:3
1. They share a vertex (but not an edge) and the bisectors of the angles

at that vertex in each cell are maximally opposed. Note that a cell can
have multiple diagonal neighbours through a vertex if all satisfy this prop-
erty. Or:

3 This definition differs slightly from the actual implementation, but it captures the
general understanding of diagonality between cells on a game board.
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2. If a cell has no such adjacent neighbour through a given vertex, then we
allow a non-adjacent diagonal neighbour through that vertex if the two
cells are coincident with the end points of some edge E (which does not
belong to either cell) and the bisectors of the angles at the end point in
each cell are maximally opposed.

These two diagonal relationships are shown in Fig. 4.
Diagonality is defined similarly for vertices, but transposing “cell” and “ver-
tex” in the above definitions.

– Off Diagonal: g1 and g2 are off diagonal if and only if g1 ∈ C, g2 ∈ C,∃v1 ∈
V (g1),∃v2 ∈ V (g2), v1 = v2,�e1 ∈ E(g1),�e2 ∈ E(g2), e1 = e2. In other
words, two cells are off diagonal if they are not diagonal, not orthogonal and
they share a vertex.

– All: g1 and g2 are related if they are orthogonally, adjacently, diagonally or
off diagonally related to each other.

These relationships are summarised for the regular tilings in Table 1.

4.1 Directions

Ludii supports the following direction types:

– Intercardinal directions: N, NNE, NE, ENE, E, ESE, SE, SSE, S, SSW,
SW, WSW, W, WNW, NW, NNW.

– Rotational directions: In, Out, CW (clockwise), CCW (counter-clockwise).
– Spatial directions for 3D games: D, DN, DNE, DE, DSE, DS, DSW, DW,
DNW and U, UN, UNE, UE, USE, US, USW, UW, UNW.

– Axial directions subset (for convenience): N, E, S, W.
– Angled directions subset (for convenience): NE, SE, SW, NW.

Each graph element g has a corresponding set of absolute directions Ad and
relative directions Rd to associated graph elements of the same type. Absolute
directions can be any of the above direction types in addition to any relation
type (Adjacent, Orthogonal, Diagonal, Off Diagonal, or All).

Relative directions from an element g are defined by Rd(g, facing, rotation,
relation) where facing describes the direction in which a component at g is
facing, rotation describes the number of rightward steps of the component at
g, and relation describes the graph relation to use at each step (Adjacent by
default). Relative directions are: Forward, Backward, Rightward, Leftward,
FR, FRR, FRRR, FL, FLL, FLLL, BR, BRR, BRRR, BL, BLL or BLLL.

For example, consider a piece on a square board (which involves only the
eight major compass directions as adjacent relations). If the piece is facing N
(North) with a rotation of 0, the relative direction Forward is the graph element
immediately to the North (upwards) if such an element exists. However, if that
piece is facing E (East) and its current rotation is 1, the relative direction FR
(meaning “Forward Right”) is the graph element to its South East (if such an
element exists).
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Table 1. Relations for the regular tilings.

Relation Square Triangular Hexagonal

All

Adjacent

Orthogonal

Diagonal

Off-Diagonal
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4.2 Steps and Walks

A step is a record of two related graph elements (from and to) which can be
of different types and the absolute directions that describe their relationship.
For example, a cell A directly above another cell B on a Chess board could be
described as an Adjacent, Orthogonal or N step away.

Ludii also provides three relative step types (F, L and R) that allow users to
define walks within the board graph. These correspond the standard “forward”,
“left” and “right” commands used in turtle graphics [1], as shown in Fig. 5.

RL

F

RL
R,R

R

L,L

L

R,R

R

F

L

L,L

Fig. 5. Relative steps from various cell types.

This representation allows descriptions of piece movements to be easily trans-
ferred between different board topologies. For example, a knight move in Chess
may be described as the walk {F,F,R} as shown in Fig. 6 (left) ans this walk
may be directly used on a board based on the semi-regular 3.4.6.4 tiling (Fig. 6,
right). Note, however, that different topologies may introduce ambiguities such
as whether both right turns in the 3.4.6.4 knight move (dotted lines) should
be considered valid moves or only one of them (probably the furthest reaching
one). Such ambiguities should be resolved by the game designer according to the
behaviour they want.

Fig. 6. Walk {F,F,R} describes knight moves on square and 3.4.6.4 tilings.
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4.3 Radials

Many games involve piece movement through contiguous lines of cells in a direc-
tion, such as slide moves by the queen, rook and bishop pieces in Chess. Such
lines of play are called radials. Ludii automatically pre-generates all possible
steps between playable sites on the board and all possible radials derived from
them, for convenient game description and efficient processing.

For each playable site on the board S, each valid step to a neighbouring
graph element of the same type in an absolute direction d is extended as far as
possible, to produce a radial from S in direction d. For example, Fig. 7 shows
Orthogonal radials from the shaded cell on a circular Chess board, such as a
rook would move in the game Shatranj ar-Rumiya. Note that radials may bend
to follow the board topology.

Fig. 7. Orthogonal radials on a circular Chess board (Shatranj ar-Rumiya).

Radials extend step-by-step in the given absolute direction that minimises
deviation in the radial’s current heading. If the next step would deviate by 90◦

or more, then the radial terminates.
Radials can branch where two or more steps in the current direction are

equally as good.4 For example, Fig. 8 shows how an Orthogonal step into a
triangular cell may validly continue either L (left) or R (right), and thereafter
alternate {L,R,L,R,...} to produce branching zig-zagging radials in which the
direction of each individual step is less important than the average direction of
the radial overall.

4 Still to be implemented in Ludii.
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RL

R

L

RL

R

L

RL

RL

R

L

RL

R

L

RL

Fig. 8. Branching radial on a triangular grid.

5 Graph Operators

Graphs are initially defined by a tiling and/or shape but can then be further
modified using a range of graph operators. The complete set of tilings, shapes
and graph operators defined in the Ludii grammar is shown in Table 2. These
can be used in combination to define thousands of different boards types quickly
and easily. Greyed out items indicate planned future work not implemented yet.

For example, the very useful dual operator converts a source graph into its
weak dual defined by edges whose end points are the centroids of its adjacent
cells. Figure 9 shows a dual operation applied to a small graph based on tiling
3.3.4.3.4 to produce the well known Cairo tiling:

(dual (tiling T33434 2))

(a) (b) (c)

Fig. 9. A 3.3.4.3.4 tiling (a), its cell adjacencies (b) and its weak dual (c).
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Another useful operator is subdivide, which subdivides all faces with N or
more sides into triangular sub-faces that share a central vertex (default N =
1). Figure 10 shows a sequence of subdivide and dual operations applied to a
rhombitrihexahedral 3.4.6.4 tiling to produce a novel and exotic board design:

(dual (subdivide (dual (subdivide (tiling T3464 2) min:6))))

Table 2. Keywords in the Ludii grammar for describing game boards.

Tiling Shape Operator

Regular square add

square rectangle clip

hex hexagon complete

tri triangle dual

wedge hole

Semi-Regular regular (polygon) intersect

T488 (i.e. 4.8.8) poly (any polygon) keep

T4612 (i.e. 4.6.12) layers

T3464 (i.e. 3.4.6.4) Attribute makeFaces

T3636 (i.e. 3.6.3.6) Star merge

T31212 (i.e. 3.12.12) Diamond recoordinate

T33336 (i.e. 3.3.3.3.6) Prism remove

T33344 (i.e. 3.3.3.4.4) renumber

T33434 (i.e. 3.3.4.3.4) Modifier rotate

diagonals:<DiagType> scale

Custom pyramidal:<boolean> shift

concentric limping:<boolean> skew

spiral fractal/recursive splitCrossings

quadhex lattice subdivide

brick projective trim

celtic union

repeat
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(a) (b) (c)

(d) (e)

Fig. 10. A 3.4.6.4 tiling (a) subdivided at N ≥ 6 (b), its dual (c), all subdivided (d)
and its dual (e).

6 Conclusion

The Ludii grammar provides a simple way to describe most conceivable game
boards by their underlying graphs, using tiling, shape and graph operators. This
approach has allowed us to model the boards of over a thousand games for
the Ludii general game system, and continues to produce interesting new board
designs based on simple operations.

Future work will include improvements to symmetric board colourings (for
games in which cell colour is relevant) and adaptive coordinate labelling that
follows the contours of exotic boards. But the inclusion of a freeform graph
ludeme means that almost any game board that can described as a combination
of vertices, edges and/or cells can be defined, making this approach ideal for the
wide range of game boards to be modelled for the Digital Ludeme Project.
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Quantifying the Space of Hearts Variants
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Abstract. Hearts is a card game with a rich history and many interest-
ing variants. Why has it remained popular while undergoing significant
changes? We use computational simulations of Hearts to understand the
experience of players through the application of four heuristics which
quantify the drama and security felt by the winning player, the ability
of players to win in chaotic imperfect-information situations, and the
player’s ultimate interest in their decisions. We find that there is a direct
relationship between the historical evolution of Hearts through ludemic
change and subsequent heuristic improvements to game play.

Keywords: Card Games · General Game Playing · Heuristics

1 Introduction

A ludeme [15] “is a fundamental unit of play,” also known as a building block
or mechanic by which game rules are constructed [8]. Over time, in a similar
manner to living organisms, games can evolve through changes to their under-
lying ludemic structure [5], through rearrangement, additions, deletions, and
mutations. However, the selective pressure for game evolution is found through
optimizing a game to be interesting and fun for human players.

Building off recent progress in developing AI for card games [13], in this
paper we seek to leverage computational techniques to understand evolutionary
selection pressures on games. In particular, we compare and contrast the player
experience through calculating heuristics [6] across various versions of the card
game Hearts. Previously used as a testbed for AI research by Sturtevant et al.
[18], Hearts is a simple popular trick avoidance game with a long history, where
the player with the most points at the end of the game loses. For consistency,
we employ a general game playing approach [9], applying the same AI algorithm
across multiple games, to computationally understand the heuristic ramifications
of each variant.

Specifically, we pose the following questions related Hearts:

1. How do changes in the rules manifest in player experience?
2. What is the relationship between ludemic space and heuristic space?
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We begin with a brief explanation of Hearts and its suitability for analysis,
followed by a discussion of ten diverse rule variants. We next develop four heuris-
tic metrics to help understand the player experience of card games, and then
apply these metrics to each of the variants through computational simulation
in CardStock [3]. Finally, we analyze the computational player’s experience for
each variant, cluster the variants to better understand their differences heuristic
space, and conclude with avenues for future work.

2 Hearts

Typically, a game of Hearts is played over multiple rounds until one player
accumulates 100 points. To standardize our analysis and increase the speed of
our simulations, each variant of Hearts analyzed will consist of only one round
with exactly four players, with no passing of cards between players. The current
canonical rules of Hearts [14] can be summarized as follows:

A one-round game of Hearts for four players consists of thirteen tricks. First,
shuffle a standard deck of cards. Each player receives thirteen cards. For each
trick, players play one card to the trick. The first player will set the lead suit for
the trick, which subsequent players must follow suit if they can, otherwise they
may play any card from their hand. Also, the first player is restricted to not
play a card from the Hearts suit unless one has already been played. Once all
cards have been played, the player who played the highest card that matches
the suit of the led card will collect all the cards in the trick and become the
first player for the next trick. Once all tricks have been played, players earn
one point for each ♥ collected in tricks, plus 13 points if they collected the
Q♠. If a player happens to collect all ♥ and the Q♠, then they will Shoot the
Moon and instead subtract 26 points from their score. The player with the
lowest point value wins the game.

Multiple ludemes make Hearts distinctive from other trick-taking games.
First, the goal is to avoid taking tricks that contain certain cards instead of
accumulate them. Players must avoid the whole suit of ♥, but the Q♠ is the
most critical to avoid because of its high point value. In addition, the normal
restriction where players must follow the led suit in a trick is compounded with
a new limit that players must not play ♥ until there is no other option. Finally,
players have the ability to recover from initial poor play through by collecting
every point and reverse their situation to a winning position.

3 Variants

David Parlett describes the history of Hearts and a multitude of variants to
the basic rules [14]. For our analysis, we examine ten specific modifications to
the standard rules given in Sect. 2. Table 1 summarizes the specific rule changes
for each variant we examined. Figure 1 organizes these variants in terms of what
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Table 1. Variants of Hearts and their attributes

Variant First Last ♥ Broken Moon Deck Points

SlobberHannes � � 32 Q♣:1

Polgnac � � 32 J♥:1, J♦:1, J♣:1, J♠:2

Pure Hearts 52 ♥:1

Black Lady 52 ♥:1, Q♠:13

Black Maria 52 ♥:1, Q♠:13, A♠:10, K♠:7

Broken Hearts � . 52 ♥:1, Q♠:13

Hearts � � 52 ♥:1, Q♠:13

Grey Lady � � 52 ♥:1, Q♠:7

Omnibus Hearts � � 52 ♥:1, Q♠:13 J♦:-10

Spot Hearts � � 52 ♥:X, Q♠:13

Widow Hearts � � � 51 ♥:1, Q♠:13

Hearts

Spot
Hearts

Omnibus
Hearts

Grey
Lady

Widow
Hearts

Broken
Hearts

Pure 
Hearts

Black 
Lady

Black 
Maria

Slobber
Hannes Polignac

Trick
Avoidance

Fig. 1. Evolutionary History of Hearts Variants and Relatives.

is currently known about their historical progression through changes via edits,
insertions, and deletions to the canonical Hearts rules in ludemic space [5].

To examine historical ancestors of Hearts, we start with bare-bones Pure
Hearts which has only 1 point for each ♥ collected and no rules for breaking
♥ or to Shoot the Moon. Black Lady adds in the 13 points for collecting the
Q♠, and its offshoot Black Maria adds additional 10 points for the A♠ and
7 for the K♠. We denote the breaking ♥ restriction as Broken Hearts, and
when the Shoot the Moon scoring is added, we arrive at modern Hearts.

Many variants to modern Hearts can be created by making small mutations
which introduce alternate methods of scoring points via collected cards. For
instance, Grey Lady reduces the points for Q♠ to only 7 points, while Omnibus
Hearts shifts in the other direction to make the J♦ worth -10 points. In Spot
Hearts, each ♥ is worth its pip value rather than 1 point. Parlett states that
these variants attempt to mitigate the large point value of the Q♠.

One additional variant is Widow Hearts in which the 2♠ is removed, each
player is only dealt 12 cards, and the 3 leftover cards are collected at the end of
the game by the player who wins the last trick. We also examine two distantly
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Fig. 2. Lead history for a typical game of Hearts.

related historical cousins in this vein, SlobberHannes and Polignac. Both
of these games use a smaller 32 card deck, deleting all cards with rank 6 and
below, as well as adding 1 point penalties each for taking the first and last trick.
SlobberHannes only assigns the Q♠ one point, while Polignac adds 2 for
J♠, and 1 for each other Jack.

4 Heuristic Metrics

For each variant, we encoded the rules using the RECYCLE language and ran
simulations in CardStock with a mixture of random and AI players [3]. Random
players will make choices using a uniform distribution across each choice, while
the AI players will use statistics gathered from random simulations for each
choice to determine their best chance of winning.

Our AI players employ a Perfect Information Monte Carlo (PIMC) strategy
[11]. When faced with a choice, for each potential move, an AI player creates
10 clones of the current game state, mapping identically all known information
from the player’s perspective (cards previously played plus cards in their own
hand), and creating a random determinization of the hidden information (cards
in other player’s hands) [19]. In the clone, all players are assigned to make choices
randomly. The clone is played out to completion, and each player is assigned a
value based on their final rank, scaled so that 1st place is mapped to 1, and 4th

place is mapped to 0. In the event of tied ranks, all tied players earn the higher
rank. These ranks are accumulated and averaged across all clones, and the move
where the AI player earned the highest rank is selected.

To understand of the shape and flow of player experience, we examine lead
histories, which record the rank estimates for all players every time any AI
player makes a move. A lead history will have two dimensions, the estimated
player rank, and the number of moves in the game. As an example, Fig. 2
shows the AI estimates of player rank in a typical 4 player game of Hearts. In
the beginning of the game, most players are estimated to be in the middle with a
good chance of winning. However, we can see a critical point about one quarter
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Fig. 3. Lead history demonstrating an AI player winning by Shooting the Moon.

of the way through the game where it is clear to everyone the losing player has
lost and can never recover.

From these lead histories, we are able calculate four heuristic metrics, adapted
from work by Browne and Maire [6]. Each heuristic is calibrated to a 0–1 scale,
with 0 being no evidence of this quality, and 1 being high evidence.

4.1 Drama

If a player can come from behind and eventually win a game, we label this as
dramatic. Figure 3 shows a dramatic run of Hearts where one player collects all
the point cards to Shoot the Moon. We can see the winning player only solidifies
their win right before the last trick of the game. We observed this behavior in
10% of our simulations.

We define drama as the average severity of being in a trailing position for the
eventual winner. First, we define dthresh, a threshold for drama, set between
the top ranked player and the next highest rank, so that when a player estimates
their rank above the threshold, they believe it is more likely than not that they
will be the winner of the game. Using np to denote the number of players,

dthresh =
1 + (np−2

np−1 )

2
(1)

In a two-player game, the threshold will be 0.5, half-way in-between the
winning and losing ranks of 1 and 0 respectively. In a four-player game, the
threshold will equal 5/6.

The full drama heuristic is then calculated using the winning player’s path
through the lead history. The number of times the leader is below the threshold is
dcount. Each time their estimate falls below the drama threshold, the difference
between the threshold and the estimate is calculated, and the sum of these
differences is averaged. These differences are also scaled with the square root, so
that larger differences are weighted more heavily in the final average.

drama =
∑dcount

i=1

√
dthresh − estwinner,i

dcount
(2)
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4.2 Security

One other calculation related to drama is the notion of the lead security of the
winning player. A simple way to determine security is the percentage of the game
that the winner was in the lead in the game. While drama can be impacted by
just a few poor evaluations, the security heuristic is more stable. Using dcount
from above, and dividing by the total number of moves in the game gives us the
following equation.

security = 1 − dcount

moves
(3)

4.3 Spread

When deciding which move to make, an AI will try to determine their chances
of winning for each given move. As a player looks at their possible moves in the
game, many times they can identify some moves quickly as good and others as
bad. Other times, it is difficult to know which move will have the best outcomes.
If there is a difference in the win percentage estimates between possible moves,
then this is a meaningful choice for the player: they should choose the move
that gives them the best estimate. If there is no difference, then the move is
meaningless.

By subtracting the minimum estimate from the maximum estimate (which
will ultimately be chosen by the player) at each turn, we can calculate the spread
at choice i (si) between these moves. If we find consistently high spread through-
out the whole game, this will indicate that the game is a series of interesting
decisions [1].

If we define the number of choices a player has in the game as |choices| then
we can determine the degree to which a player has meaningful moves by:

spread =
∑|choices|

i=1 si
|choices| (4)

4.4 Order

Finally, we wish to determine how much control a player has over their own
fate, or if they are at the whims of random events. When the order is low,
this indicates the AI player has a hard time winning against random chaotic
players, but when it is high, the AI player is very successful in determining their
success in the game. To calculate the order heuristic, first, we record the win
percentage (aiwp) of the AI player in games with one AI player and the rest
Random players. The AI player is always goes first.

Next, we determine the expected win percentage (ewp) for the number of
players in the game, assuming that the game is fair. For our games with 4
players, a fair game would expect the first player win 25% of the time. A perfect
AI in a perfect information world should be able to win 100% of the games. This
is reduced as unaccounted for chaos through hidden information is introduced.
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Fig. 4. Averaged lead histories for Hearts and each of the ten variants.

Therefore, we can calculate the order of the game by finding the ratio of the
aiwp gain over the perfect ordered AI gain as follows:

order =
aiwp − ewp

1 − ewp
(5)

5 Results

To gather statistics for each variant in CardStock, we ran 100 games with one AI
versus three random players, plus 100 games with all AI players. Figure 4 shows
the averaged lead histories for each variant. These were calculated by averaging
for each rank across the 100 simulations with all AI players.

First, we can trace the effects of historical progression, starting with Pure
Hearts. The addition of the Q♠ in Black Lady has a significant impact on the
fortunes of the losing player early in the game, steepening their decline. Looking
next to Broken Hearts, Parlett states that the hearts-breaking restrictions
“feel unnecessary”, [14], however in our simulations, this variant has the clear
effect of delaying the separation of the top three players until the midgame. On
these graphs, there appear to be no large differences when adding in the Shoot
The Moon rule.

When comparing the point-focused modern variants, it is clear that Spot
Hearts and Grey Lady are the most effective at mitigating the Q♠, with
Spot Hearts pushing any separation between player’s expected ranks until
the midgame. Omnibus Hearts with its reward for the J♦ gives the winning
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Fig. 5. Heuristic space quantification of Hearts variants.

player some early separation from the pack, while Widow Hearts delays the
final rank determination until the last trick.

We also see a drastic difference in SlobberHannes and Polignac. It
appears the penalty for taking the first trick has a direct impact on the fate
of the losing player. Also, due to SlobberHannes having only one penalty
card, there is not much variety for all players until the last trick.

Figure 5 shows each variant plotted on each of the metric dimensions of
drama, security, spread and order, with the pairing chosen to facilitate ease of
visualization of the results. First, we can see evidence of evolutionary pressure
on Hearts towards higher drama and lower security. SlobberHannes and
Polignac, two early variants, score high on security and low on drama. The
core variants of Pure Hearts and Black Lady fall in the middle of this graph,
while Spot Hearts, a modern variant, has highest drama and least security.

We also find evidence of selective pressure toward higher spread scores and
more interesting variants, where those variants with more diverse point structure
such as Spot Hearts, Grey Lady, and Omnibus Hearts, tend to have larger
spread. When comparing variants on order, there is a less direct connection.
However, once again we see SlobberHannes is an outlier, where players have
the highest chance to win against random players.

Spot Hearts appears to have many appealing qualities, however, it is not
the current dominant variant. We believe this is because for humans, Hearts
is meant to be a light game, and time spent calculating the score with each ♥
worth different points is too high when compared to the simple 1 point per ♥
math, and this illustrates a limitation of our computational approach.

Finally, Fig. 6 shows a clustering of these variants using the four heuristic
metrics described above. We normalized each metric dimension to a range of
0–1, calculated the distance matrix between all variants, and derived a hierar-
chical clustering using UPGMA [17]. When compared to Fig.1, the uniqueness of
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Fig. 6. UPGMA Clustering of Hearts variants in heuristic space.

SlobberHannes and Polignac is clearly present in both ludemic and heuris-
tic space. Spot Hearts, which we noted previously was on the other end of the
spectrum from these two cousins, is also found to be quite distant from the other
variants, enough to provide a distinct play experience. The closest to Hearts
are Widow Hearts, Grey Lady, Broken Hearts, which also matches their
underlying ludemic distance.

6 Future Work

There are a number of opportunities for improvement on our current work. While
the PIMC players we used can make intelligent decisions, as shown by their
ability to Shoot the Moon, they are very simple in comparison to more advanced
AI methods such as Information Set Monte Carlo Tree Search (ISMCTS) [19]
or Conterfactual Regret Minimization (CFR) [4] available through OpenSpiel
[10]. Also, we limited our analysis of Hearts variants to one round, however
as Neller and Presser [12] demonstrate for the simple dice game Pig, optimal
strategy changes when rounds are played within a full game, and we believe the
same will hold for Hearts. In addition, the number of heuristics we calculated
is small and only gives a window into the full player experience. A richer set of
heuristics will provide a larger space for more accurate clustering.

Looking forward, the analysis presented here is easily extendable to other
player counts beyond four, and could be used to determine if a game retains the
same heuristic qualities under different numbers of players. Finally, we envision
creating a full map of the heuristic space of card games, including related trick-
taking games such as Spades [2], Doppelkopf [16], and Skat [7], as well as
different genres such as shedding, fishing, or press-your-luck. We believe that
this map will illuminate connections across families and assist players in finding
games suited to their individual taste.

Acknowledgements. The authors thank Anna Holmes and Daniel Sweeney for their
contributions to the CardStock project, and the insightful comments of our anonymous
reviewers.
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