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Abstract

DNA methyltransferases (DNMTs) are widely
expressed in the brain, dictating the transcrip-
tional activity of genes through various epige-
netic mechanisms. Functional irregularities,
alterations in the activity, and aberrant expres-
sion levels of DNMTs have been linked to
various neurodevelopmental abnormalities,
neuropsychiatric disorders, neurodegenerative
diseases, and brain cancer. A continuously
increasing number of studies address the
roles DNMTs have in the brain, to reach a
better understanding of their involvement in
disease-related pathophysiologies, which in
turn is required to dissect their applicability
as potential therapeutic targets. This chapter
provides an overview of DNMT function in
the developing and the adult brain, putting a
spotlight on their role in orchestrating diverse
aspects of brain development, memory, and
aging, followed by a discussion of associated
neurodevelopmental and neurodegenerative
disorders, and the implications in brain cancer.
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15.1 Introduction

DNMTs are widely expressed in the developing,
adult, and aged brain, suggesting implications in
neuronal differentiation, maturation, and function
(Guo et al. 2011; Simmons et al. 2013; Fasolino
et al. 2017). Moreover, DNMT functionality and
expression are altered in neurons of the aged
brain, and in the context of neuropsychiatric and
neurodegenerative diseases (Linde and Zimmer-
Bensch 2020; Zimmer-Bensch 2020; Zimmer-
Bensch and Zempel 2021), for which they are
proposed as putative therapeutic targets. In addi-
tion to their canonical function of catalyzing
DNA methylation, DNMTs can act on gene
expression through crosstalk with histone
modifications (Du et al. 2015; Symmank et al.
2018, 2020), hence displaying a diverse mecha-
nistic spectrum. Moreover, the different DNMTs
exhibit a brain region and cell-type-specific
expression and seem to fulfill partly redundant
(Feng et al. 2010) but also distinct functions in
the brain (Morris and Monteggia 2014; Morris
et al. 2016). While DNMT3A seems crucial for
learning (Morris and Monteggia 2014), DNMT1
appears to be involved in anxiety (Morris et al.
2016), where the subcellular mechanisms remain
unknown. Similar to the particular implications of
the different DNMTs in orchestrating brain devel-
opment and function (Zimmer-Bensch 2019b;
Reichard and Zimmer-Bensch 2021), DNMTs
contribute to certain diseases (Klein et al. 2011;
Ding et al. 2018) and are themselves distinctively
affected in brain cancer such as glioma
(Rajendran et al. 2011). To exploit DNMTs ther-
apeutically, we need to dissect their precise func-
tional implications in the developing, aging, and
diseased brain, which is discussed in this chapter
with the focus on mammals.

15.2 The Mammalian Brain

The human brain is extraordinary in many
regards, being recognized as the crown of evolu-
tion (Pascual-Leone et al. 2005; Hofman 2014).
Still, we are far away from understanding in detail

how this fascinating organ evolved, how the
human brain works, and is established during
ontogenesis. Despite the extraordinary features
that account for the elaborated cognitive ability
of the human brain, there are essential common
principles in the architecture, the development
and the function of the mammalian brain. For
this, rodent and primate models are frequently
used in neuroscientific research to extend our
understanding of human brain evolution, func-
tion, development, and related diseases.

The mammalian brain is anatomically divided
into three major parts: the hindbrain (including
the cerebellum and the brain stem), the midbrain,
and the forebrain (including the diencephalon and
the cerebrum) (Fig. 15.1a). The brain stem,
incorporating the pons and the medulla
(Fig. 15.1b), is processing involuntary activities
such as vomiting and breathing, while the cere-
bellum coordinates muscular movements and, in
concert with the midbrain, it monitors posture.

The thalamus and the hypothalamus are major
parts of the diencephalon (Fig. 15.1b). While the
thalamus is a relay station for incoming sensory
information routing these to the appropriate
higher centers, the hypothalamus regulates heart-
beat, body temperature, and fluid balance, in addi-
tion to appetite and body weight control
(Sherman and Guillery 2006; Saper and Lowell
2014).

By far the largest region of the mammalian
brain is the telencephalon (cerebrum)
(Fig. 15.1a, b), composed of the superficial gray
matter (cerebral cortex) and the white matter
(axonal tracts). The telencephalon is distin-
guished vertically into left and right hemispheres.
The two hemispheres communicate with each
other through a large axonal tract, the corpus
callosum. The cerebral cortex, the most evolved
structure of the human brain holding its higher
cognitive function, is strongly folded in gyri and
sulci in humans and other primates (Hilgetag and
Barbas 2005). In the cortex sensory data are
processed, and motor impulses are generated
that initiate, reinforce, or inhibit the entire spec-
trum of muscle and gland activity. The cerebral
cortex is further involved in learning and memory
and the control of affection (Thompson 1986; Jin



and Maren 2015). The cortex is composed of the of the paleocortex, the archicortex, and the
periallocortex. The hippocampus and dentate
gyrus are the main parts of the archicortex,

six-layered neocortex, and the way smaller, three-
or four layered allocortex. The allocortex consists
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Fig. 15.1 Human brain anatomy and developmental
principles of the mammalian brain. (a) Anatomical regions
of the developing human brain. (b) Anatomy of the adult
human brain. (c) Graphic depiction of a coronally sec-
tioned hemisphere illustrating the sites of origin and the
migratory streams of cortical inhibitory interneurons in the
basal telencephalon (POA, MGE, and CGE), as well as of
excitatory neurons in the dorsal telencephalon. (d) Sche-
matic illustration of proliferation, differentiation, and
migration of cortical precursor cells. Radial glial cells
(RCGs) increase in number by symmetric division, and
asymmetrically divide into basal radial glial cells (bRGCs)

or neuronal intermediate progenitor cells (nIPCs). The
latter further divide symmetrically to give rise to young
excitatory principal neurons, which migrate into the corti-
cal plate (CP). Inhibitory interneurons invade the develop-
ing neocortex along two migratory streams, the marginal
zone (MZ), and the subplate (SP)/subventricular zone
(SVZ), before they switch to radial migration to enter the
cortical plate. CGE caudal ganglionic eminence, CP corti-
cal plate, IZ intermediate zone, LGE lateral ganglionic
eminence, MGE medial ganglionic eminence, MZ mar-
ginal zone, POa pre-optic area, SP subplate, Str striatum,
SVZ subventricular zone, VZ ventricular zone



being functionally relevant for learning and
memory.
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Excitatory glutamatergic neurons and inhibi-
tory local GABAergic interneurons represent the
major neuronal subtypes of the cerebral cortex.
While most glutamatergic cortical neurons dis-
play a long axon projecting either sub-cortically
to other cortical areas or contralaterally to the
other hemisphere, spiny stellate cells of layer IV
are local excitatory interneurons receiving input
from the thalamus (Shepherd 2004; Costa and
Müller 2015). The glutamatergic neurons of the
different cortical layers differ in their morphol-
ogy, molecular features, and connectivity,
establishing the neuronal circuits as basic
modules of cortical information processing
(Bayer and Altman 1991; Lodato et al. 2011;
Greig et al. 2013). These circuits are shaped by
the inhibitory action of the GABAergic cortical
interneurons, which represent a highly diverse
group of neurons differing in their electrophysio-
logical features, morphology, targeting, and
molecular properties (Nery et al. 2002; Fishell
2008; Gelman et al. 2009; Miyoshi et al. 2015;
Wamsley and Fishell 2017; Lim et al. 2018;
Zimmer-Bensch 2018) .

15.2.1 Developmental Principles
of the Cerebral Cortex
as the Seat of Higher Cognitive
Functions

Prerequisite for correct cortical functionality is
the proper establishment of the mammalian neo-
cortex during embryonic and postnatal develop-
ment. Processes such as progenitor proliferation
and differentiation, cellular migration, morpho-
logical maturation, and the establishment of syn-
aptic contacts, as well as programmed cell death,
have to be highly controlled to form the circuits of
billions of morphologically and functionally dis-
tinct neurons (Jones 2009; Huang and Paul 2018;
Sultan and Shi 2018; Subramanian et al. 2020).
Disturbances of these developmental processes
cause a variety of neurodevelopmental disorders
(Reichard and Zimmer-Bensch 2021).

The proportionally larger population of excit-
atory principal neurons (70–85% of the neuronal
cells in the cortex) originates from progenitors of
the dorsal telencephalon located in the zone
delineating the lateral ventricles (ventricular
zone; VZ) called radial glia cells (RGCs)
(Fig. 15.1c) (Kriegstein and Alvarez-Buylla
2009; Sun and Hevner 2014). In addition to sym-
metric proliferative division to increase the pool
of progenitors, RGCs’ asymmetric division leads
to the generation of neurons (“direct
neurogenesis”) (Kriegstein and Alvarez-Buylla
2009; Sun and Hevner 2014). Moreover, asym-
metric division can result in the formation of
intermediate progenitors, which translocate to
the SVZ, where they generate neurons by sym-
metric divisions (“indirect neurogenesis”)
(Kriegstein and Alvarez-Buylla 2009; Agirman
et al. 2017; Borrell 2019) (Fig. 15.1c). In humans,
the developing cortex contains an inner (iSVZ)
and an outer SVZ (oSVZ), hosting basal interme-
diate progenitor cells (bIPCs) and basal RGCs
(bRGCs) (Sun and Hevner 2014). In contrast to
humans and mammals with a high rate of
gyrification such as ferrets, bRGCs are less prom-
inent in lissencephalic species such as the mouse
(Penisson et al. 2019; Subramanian et al. 2020).
For this, bRGCs have been linked to cerebral
gyrification. IPCs are also present in the VZ in
humans and mice, being named apical IPCs
(aIPCs) (García-Moreno et al. 2012; Sun and
Hevner 2014).

Upon becoming post-mitotic, excitatory
neurons migrate along the scaffold of radial glial
cell processes spanning the whole cortical wall,
into the cortical plate and settle in their target
layer, establishing apical dendrites and axons
(Zimmer-Bensch 2019a) (Fig. 15.1c). The inhibi-
tory GABA-expressing interneurons originate in
particular domains of the basal telencephalon
(Lim et al. 2018; Mukhtar and Taylor 2018;
Subramanian et al. 2020). The medial ganglionic
eminence (MGE) generates parvalbumin (PV)-
positive basket and chandelier cells, and somato-
statin (SST)-expressing Martinotti and multipolar
interneurons. The pre-optic area (POa) gives rise
to neuropeptide Y (NPY)-, reelin-, SST-, and



CTIP2-expressing interneurons. Further reelin-
expressing interneurons emerge in the caudal
ganglionic eminence (CGE) alongside
vasointestinal-peptide- (VIP)/calretinin-positive
bipolar cells and VIP-/cholecystokinin-
expressing basket cells (Gelman et al. 2011;
Zimmer-Bensch 2019b). Thereby, the majority
of interneurons is born in the MGE and the dorsal
part of the CGE (dCGE) (Gelman et al. 2009;
Marín et al. 2010; Faux et al. 2012; Lim et al.
2018; Sultan and Shi 2018; Zimmer-Bensch
2018). In humans and monkeys, some
GABAergic interneurons appear to be generated
in parts of the dorsal telencephalon at develop-
mental later stages, proposing an evolutionary
strategy of primate corticogenesis (Petanjek
et al. 2009; Krienen et al. 2020).
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Cortical inhibitory interneurons perform glial
cell-independent long-range migration through
the basal telencephalon toward the cortex, follow-
ing defined routes depending on their site of ori-
gin, being guided by diverse sets of spatially and
temporally expressed chemoattractive and repel-
lent signaling molecules (Marín et al. 2003;
Zimmer et al. 2007, 2010, 2011; Petanjek et al.
2009; Marín et al. 2010; Rudolph et al. 2010;
Friocourt and Parnavelas 2011; Faux et al. 2012;
Guo and Anton 2014; Symmank et al. 2019).
Upon reaching the cortex, interneurons spread
tangentially over the cortical areas along the
SVZ/intermediate zone and the marginal zone
(MZ) (Fig. 15.1c, d) (Tanaka and Nakajima
2012; Guo and Anton 2014), before they switch
to radial migration invading the cortical layers
that begin to be formed by the excitatory neurons
at this embryonic stage (López-Bendito et al.
2004; Hatanaka et al. 2016).

Not all neurons being born successfully inte-
grate into cortical circuits. It seems an evolution-
arily conserved strategy to overproduce cortical
neurons that are then being fine-tuned in their
numbers by controlled cell death (Wong and
Marín 2019). In matters of GABAergic
interneurons about half of their embryonic popu-
lation is reduced within there early postnatal
period in mice (Yamaguchi and Miura 2015). At
the same stage, improperly or disconnected pyra-
midal cells are also eliminated (Raff 1992). Apart

from post-migratory regulation of the neuronal
survival, regulatory mechanisms for survival reg-
ulation during neuronal migration have been
described (Symmank et al. 2018).

15.3 DNMT Expression in the Brain

DNA methylation is catalyzed by the DNA
methyltransferases DNMT1, DNMT3A, and
DNMT3B in the mammalian brain. In line with
the well-known function of DNMT1 in
maintaining DNA methylation in dividing neural
progenitor cells, and its reported functions in
post-mitotic and mature neurons (Pensold et al.
2017, 2020), DNMT1 expression is remarkably
high in the embryonic as well as adult nervous
system (Goto et al. 1994; Inano et al. 2000; Fan
et al. 2001; Kadriu et al. 2012). In the developing
brain, DNMT1 is expressed in neuronal
progenitors (Feng et al. 2007; Noguchi et al.
2015) and oligodendrocyte progenitor cells
(OPCs) (Moyon et al. 2016), as well as in newly
generated post-mitotic neurons. DNMT1 expres-
sion is maintained until adulthood, with promi-
nent expression in GABAergic interneurons of
the cerebral cortex (Kadriu et al. 2012; Pensold
et al. 2020), as well as in excitatory cortical
neurons (Hutnick et al. 2009; Feng et al. 2010),
hippocampal neurons (Noguchi et al. 2015), and
cerebellar neurons (Fan et al. 2001). Similar to
DNMT1, DNMT3A can be detected in the devel-
oping, postnatal, and adult central nervous system
(CNS) (Watanabe et al. 2002; Feng et al. 2005).
DNMT3A was detected in progenitors of the
cerebral cortex, in post-mitotic and adult cortical
neurons, as well as in post-mitotic cerebellar
cells. Similar findings were reported for the olfac-
tory epithelia, which revealed expression of
DNMT3A in maturing olfactory receptor neurons
(MacDonald et al. 2005). In contrast to its neuro-
nal expression, GFAP-positive astrocytes seem to
only have a weak or no expression of DNMT3A.
However, strong expression of DNMT3A was
detected in postnatal cerebellar oligodendrocytes
(Feng et al. 2005). Different from DNMT3A,
DNMT3B expression is mainly restricted to neu-
ronal precursor during early neurogenesis (Feng



et al. 2005). These stage- and cell-type-specific
patterns of DNMT expression are suggestive of
important roles in brain development, adult func-
tionality, and associated diseases.
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15.4 DNMT Function
in the Developing Brain:
Neurogenesis

Neuronal circuit formation depends on the correct
generation of its neuronal constituents. Neurons
derive from neuronal stem cells, which become
progressively restricted to give first rise to the
different neuronal subtypes (neurogenesis) and
afterwards to glia cells (gliogenesis). Moreover,
the sequential generation of the excitatory
neurons destined for the distinct layers of the
cerebral cortex, with deep layer neurons being
born prior to the upper layer neurons, relies on
progressive fate restriction (Martynoga et al.
2012). Apart from such temporal confinement, a
spatial determination becomes evident early in
embryonic development (Kiecker and Lumsden
2005). A prominent example is the distinct site of
origin of inhibitory and excitatory neurons of the
cerebral cortex in the ventral and dorsal telen-
cephalon, respectively (Martynoga et al. 2012;
Hu et al. 2017). Further, discrete spatial domains
in the ventral telencephalon are suggested to give
rise to different cortical interneuron subtypes
(Hu et al. 2017).

Subtype-specific transcriptional programs
orchestrate cell fate determination of both excit-
atory principal cortical neurons and inhibitory
interneurons, directing subsequent developmental
steps such as migration and morphological differ-
entiation (Franco and Müller 2013; Hu et al.
2017). Thereby, a close connection between the
stage- and subtype-specific transcriptional
programs and the epigenetic machinery including
DNMTs is proposed by an ever-increasing body
of evidence. Indeed, as mentioned above,
DNMTs are found widely expressed in neuronal
precursors of the CNS (Feng et al. 2005).
DNMT1 is suggested to be implicated in driving

the differentiation into neurons by inhibiting the
astroglial cell fate through DNA methylation of
astroglia-associated genes during the neurogenic
period. Dnmt1 deficiency in progenitor cells of
the spinal cord was reported to trigger precocious
astroglial differentiation and hypomethylation of
genes related to the gliogenic JAK/STAT path-
way (Fan et al. 2005). Similarly, in the dentate
gyrus, Dnmt1 deficiency drives the differentiation
of neuronal stem cells into astrocytes (Murao
et al. 2016). The role of DNA methylation as an
intrinsic driver of astrocyte differentiation in the
embryonic brain has already been shown by
Takizawa et al. (2001). The promoter sites of
Gfap (glial fibrillary acidic protein) and s100β
become demethylated at later stages of
corticogenesis, promoting the generation of
astrocytes from cortical progenitors. Demethyla-
tion of Gfap has been found to depend on the
binding of NFIA (Nuclear Factor I/A), which is
activated downstream of Notch and JAK/STAT
signaling, leading to the dissociation of DNMT1
(Namihira et al. 2009), which then results in
reduced methylation levels.

DNA demethylation further involves the oxi-
dation of 5-methylcytosine (5-mC) to
5-hydroxymethylcytosine (5-hmC) and
subsequent oxidized forms by ten-eleven translo-
cation (TET) methylcytosine dioxygenases,
enabling cells to edit methylation patterns and
thus maintain epigenomic flexibility during
embryogenesis (Kohli and Zhang 2013). In line
with this, TET1 function was reported to mediate
the onset of neurogenesis by favoring the expres-
sion of neuronal genes (Kim et al. 2016).

In support of the functional implications of
DNMTs and TETs in neurogenesis, dynamic tem-
poral alterations of DNA methylation signatures
have been detected during the sequential genera-
tion of neuronal subtypes (Lister et al. 2013;
Lister and Mukamel 2015; Mo et al. 2015;
Sharma et al. 2016). The use of epigenome
editing approaches has already provided support
for an instructive role of DNA methylation in
neuronal differentiation driving subtype-specific
developmental programs (Baumann et al. 2019).
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15.5 DNMT Function
in the Developing Brain:
Post-mitotic Neuronal
Maturation

Newly generated post-mitotic neurons usually
migrate out of their proliferative zones to respec-
tive target regions, finally adopting subtype-
specific morphological features mediated by axo-
nal and dendritic growth as well as the formation
of synapses, which underlie their specific connec-
tivity and firing patterns. Intrinsically
programmed cell death represents another crucial
aspect of post-mitotic neuronal maturation,
removing unconnected neurons and ultimately
determining the final neuron numbers (Southwell
et al. 2012). Subtype-specific establishment of
DNA methylation signatures during neuronal
and glial maturation has been reported by numer-
ous studies (Lister et al. 2013; Lister and
Mukamel 2015; Mo et al. 2015; Sharma et al.
2016), implying an important function of
DNMTs in setting up the maturation-related
DNA methylation patterns.

It was already shown that Dnmt1 deletion in
nestin expressing progenitor cells of the CNS is
associated with increased rates of cell death in
postnatal animals (Fan et al. 2001). In addition
to this, morphological maturation was found to be
impaired upon Dnmt1 deletion in excitatory fore-
brain neurons (Hutnick et al. 2009), and after
deletion of both Dnmt1 and Dnmt3A (Feng et al.
2010). Together, these findings indicate that
DNMTs regulate important aspects of postnatal
neuronal development such as cell survival and
morphological maturation.

Similar to morphological maturation, e.g.,
dendritic/axonal elaboration, neuronal migration
critically relies on cytoskeleton remodeling. In
addition to morphological refinement of the excit-
atory neurons of the cerebral cortex (Hutnick
et al. 2009; Feng et al. 2010), DNMT1 function
was found to regulate the migration of cortical
inhibitory interneurons generated in the pre-optic
area (POa) by acting on cytoskeletal organization,
thereby promoting their polarized migratory mor-
phology. Moreover, Dnmt1 deficient interneurons

showed increased rates of cell death. One of the
involved target genes repressed by DNMT1 is
Pak6 (Pensold et al. 2017). PAK6 belongs to the
p21-activated kinases known to drive neurite
complexity in excitatory cortical neurons (Civiero
et al. 2015) and is implicated in cell survival
regulation (Kumar et al. 2017). Hence, the
increased Pak6 expression detected in Dnmt1-
deficient POA-derived interneurons seems to
account for their abnormal multipolar morphol-
ogy and their impaired survival (Pensold et al.
2017). Another cell survival-associated gene,
repressed by DNMT1 in migrating cortical
interneurons, is Lhx1 (Symmank et al. 2020).
This homeobox transcription factor drives cell
the expression of death associated genes and its
downregulation promotes neuronal survival
(Symmank et al. 2019; Symmank et al. 2020).

Of note, despite increased expression levels,
DNA methylation signatures of the Pak6 and the
Lhx1 gene locus were not changed in Dnmt1-
deficient embryonic interneurons (Pensold et al.
2017; Symmank et al. 2018, 2020), implying
DNMT1 to have activities beyond locus-specific
DNA methylation, which may account for the
transcriptional regulation of Pak6 and Lhx1.
Indeed, DNMT1 is known to affect histone
modifications in neuronal and non-neuronal cells
by transcriptional regulation of associated genes
as well as through interactions with key enzymes
at protein level (Du et al. 2015) (Fig. 15.2).
Interactions between DNMTs and histone
modifying enzymes have been reported to influ-
ence the catalytic activity of their binding partners
and the recruitment to protein complexes (Viré
et al. 2006; Smallwood et al. 2007; Clements
et al. 2012). DNMT1 has been described to inter-
act with EZH2 in non-neuronal cells (Viré et al.
2006; Ning et al. 2015; Purkait et al. 2016). EZH2
represents the core enzyme of the polycomb
repressor complex 2 (PRC2) catalyzing
repressive trimethylations on lysine 27 at the
N-terminal amino acid tail of histone
3 (H3K27me3) (Margueron and Reinberg 2011).
In addition to such putatively non-canonical
functions via interactions with histone modifying
proteins, DNMT1 has been reported to affect



(Symmank et al. 2018), which is essentially
involved in maintaining the migratory morphol-
ogy and promoting the survival of migrating
interneurons (Pensold et al. 2017). In support of
this, inhibition of EZH2 causes similar defects in
neuronal complexity as Dnmt1 deletion, which

H3K27me3 levels by regulating the expression of
Ezh2 (So et al. 2011; Purkait et al. 2016).
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Fig. 15.2 The functional spectrum of DNMTs in the
brain. Upper panel: DNMTs are involved in the regulation
of neuronal development (neurogenesis, differentiation,
neuronal migration, and maturation as well as survival),
but also neuronal functionality by modulating synaptic
function, learning and memory, in addition to neuronal
aging. Lower panel: At molecular level, DNMTs act on
gene expression through different mechanisms. The meth-
ylation of DNA segments via DNMTs can facilitate or

hinder transcription factor (TF) binding and thereby mod-
ulate the expression of a gene. The recruitment of DNMTs
may occur via long non-coding RNAs acting as adapters
as well as through cross-talking with histone modifying
complexes and histone marks. DNMTs DNA
methyltransferases, EZH2 enhancer of zeste homolog
2, Me methylation, Me3 trimethylation, TF transcription
factor

In migrating cortical interneurons, the interac-
tion of DNMT1 with EZH2 at protein level seems
implicated in the establishment of H3K27me3
marks that represses the transcription of Pak6



were rescued by Pak6 depletion (Symmank et al.
2018). LHX1, another regulator of post-mitotic
cortical interneuron development (Symmank
et al. 2018), is likewise indirectly transcription-
ally controlled by DNMT1 by interfering with
histone acetylation and deacetylation through
transcriptional control of genes coding for rele-
vant enzymes (Symmank et al. 2020). Hence,
DNMT1 regulates the migration and survival of
post-mitotic cortical interneurons through distinct
mechanisms (Fig. 15.2).
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The post-mitotic development of other neuro-
nal subtypes such as retinal ganglion cells, motor
neurons, and dentate gyrus neurons has also been
reported to involve DNMT1-mediated survival
regulation (Chestnut et al. 2011; Rhee et al.
2012; Noguchi et al. 2016).

In sum, DNMTs regulate important aspects of
post-mitotic neuronal development, such as
migration, morphological maturation, neuronal
survival, and cell death through canonical as
well as non-canonical mechanisms (Fig. 15.2).

15.6 Role of DNMTs in Brain
Function, Learning,
and Memory

15.6.1 Functional Implications
of DNMTs in Learning
and Memory

Communication of nerve cells in neuronal circuits
via their synaptic connections is considered the
basis of brain functionality, learning, and mem-
ory. DNMTs and DNA methylation seem to be
critically implicated in all these processes
(Fig. 15.2). Downregulation of DNMT1 in excit-
atory neurons of the cerebral cortex differentiated
from human induced pluripotent stem cells
(iPSCs) reduced the proportion of active neurons
as revealed by calcium imaging studies
(Bachmann et al. 2021), indicating that DNMT1
function promotes neuronal activity of excitatory
neurons. In contrast, in the inhibitory
interneurons of the cerebral cortex, DNMT1-
mediated DNA methylation was shown to reduce
synaptic transmission by repressing endocytosis-

related genes and endocytosis-dependent vesicle
recycling (Pensold et al. 2020). Hence, by affect-
ing the neuronal activity in excitatory versus
inhibitory cortical neurons differently, DNMT1
could balance the net excitation of cortical
networks. This process is critical for proper corti-
cal functionality that is shown to be disturbed in
diverse neurodevelopmental and neuropsychiatric
diseases (Linde and Zimmer-Bensch 2020;
Reichard and Zimmer-Bensch 2021).

It was already described that alterations in
neuronal activity can induce global changes in
the DNA methylation landscape (Guo et al.
2014). As DNA methylation modulates synapse-
and plasticity-related gene expression that can
mediate memory formation, DNMT function
and DNA methylation could act on neuronal plas-
ticity as well as metaplasticity, which is discussed
in more detail below.

The concept of experience- and activity-
dependent synaptic changes has long been
accepted as the fundamental mechanism of
learning and memory retention and is nowadays
dubbed the synaptic plasticity and memory
(SPM) hypothesis (Abraham et al. 2019). Several
observations have made synaptic plasticity a lead-
ing candidate cellular mechanism for memory
formation and storage. As numerous forms of
learning have been shown to induce synaptic
plasticity in learning-relevant brain regions,
diverse forms of reversal learning were shown to
trigger a reversal of synaptic plasticity, comple-
mentary to what has been induced by the initial
learning paradigm (Abraham et al. 2019). The
SPM hypothesis involves activity-dependent
long-lasting changes in synaptic efficacy such as
long-term potentiation (LTP) and long-term
depression (LTD) (Bliss and Collingridge 1993;
Roberts and Glanzman 2003). Recent studies
with modern imaging methods capable of real-
time monitoring of changes in synaptic spine
morphology accompanied by well-established
electrophysiological measures to detect func-
tional synaptic changes have opened a new door
for a better understanding of pre- and post-
synaptic LTP and LTD (Abraham et al. 2019).

LTP is the most intensively investigated form
of synaptic plasticity, captured by the Hebbian



phrase: “cells that fire together wire together”
(Lowel and Singer 1992). It has been shown to
depend on DNMTs and DNA methylation in
addition to other chromatin modifications
(Levenson et al. 2006; Miller and Sweatt 2007;
Muñoz et al. 2016). Joint firing of the pre- and
post-synaptic cell generates LTP, a strengthening
of the synapses, while asynchronous firing
generates the opposite, LTD. LTP and LTD are
induced by different mechanisms, involving
ionotropic and metabotropic receptor activation
by neurotransmitters, such as the amino acid glu-
tamate acting mainly as excitatory neurotransmit-
ter in the mammalian nervous system. Hallmarks
of LTP involve input specificity and associativity,
which can be achieved by the activation of the N-
methyl-D-aspartate (NMDA) subtype of gluta-
mate receptor (Abraham et al. 2019). The
NMDA receptor is an ion channel, which requires
glutamate binding (specificity) and coincident
depolarization achieved by multiple co-active
synapses (association) for opening and channel
unblocking, hence functioning as “coincidence
detector” (Bliss and Collingridge 1993). These
channels are also permeable for calcium ions,
well-known second messenger and initiators of
signaling cascades triggering LTP (Bear and
Abraham 1996; Cummings et al. 1996).
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LTP persistence is prerequisite for long-term
memory. LTP can be categorized in early LTP
(E-LTP) and late-LTP (L-LTP), or alternatively,
in LTP1, LTP2, and LTP3 (Racine et al. 1983;
Morrell 1991). While E-LTP or LTP1, which
lasts only a few hours in maximum, occurs inde-
pendently of de novo protein synthesis, L-LTP
involves protein synthesis. L-LTP can be further
subdivided into LTP that is transcription-
independent (LTP2) or dependent (LTP3)
(Racine et al. 1983). Transcription-independent
(LTP2) can be achieved by the local protein trans-
lation machinery present in dendritic-synaptic
compartments using existent local mRNA spe-
cies. Transcriptional activation involved in
LTP3 is mediated by transcription factors such
as cAMP response element-binding protein
(CREB), serum response factor, and nuclear fac-
tor kappa B, which in turn trigger the expression
of downstream-induced transcription factors like

ZIF268, c-FOS, JUNB. Manipulations of diverse
epigenetic writers and erasers, including DNMTs
and TET enzymes, have been shown to affect the
different forms of LTP as well as the expression
of key genes such as CREB (Kandel 2012;
Rajasethupathy et al. 2012), and thus, memory
formation.

Indeed, variable forms of learning and mem-
ory formation and/or consolidation involve
DNMT function and DNA methylation (Day
and Sweatt 2010). Dnmt1 and Dnmt3A deletion
in excitatory forebrain neurons has been shown to
affect learning and memory in the hippocampus
(Feng et al. 2010). Inhibition of DNA
methyltransferases or genetic deletion of
Dnmt3A potently hampers LTP (Levenson et al.
2006; Morris et al. 2014).Dnmt3A knockout mice
display deficits in associative and episodic mem-
ory tasks and synaptic alterations, indicating that
DNMT3A function in post-mitotic neurons is
crucial for normal memory formation. Further-
more, associative learning tasks impact Dnmt3A
expression, underlining the implication of
DNMT3A in learning-related processes (Morris
et al. 2014). Moreover, synaptic plasticity and
fear memory consolidation in the lateral amyg-
dala in addition to hippocampal structures seem
to depend on DNAmethylation and DNMT activ-
ity (Monsey et al. 2011). Of note, it was also
found that E-LTP is dependent on DNA methyla-
tion, as the DNA methylation inhibitor 5-aza-2-
deoxycytidine (5-AZA) impaired hippocampal
long-term potentiation (LTP) induced by a
twenty-minute theta burst stimulation. In contrast,
5-AZA treatment 2 hours after stimulation had no
effect on transcription-dependent LTP in the
applied experimental setup (Muñoz et al. 2016).
This indicates that early alterations in DNA meth-
ylation are sufficient to impair LTP. The role of
DNMTs in the induction of synaptic plasticity
was already reported by Levenson et al. (2006).
This study showed that inhibiting DNMT
changed the DNA methylation signatures within
promoters of Reln (reelin) and Bdnf (brain-
derived neurotrophic factor), two factors essential
for synaptic plasticity induction in the adult hip-
pocampus (Levenson et al. 2006).
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15.6.2 DNMTs as Potential Mediators
of Cell-Intrinsic Mechanisms
for Memory Consolidation
and Maintenance

It is still under debate whether the stability of such
synaptic changes is prerequisite for memory
maintenance. Highly varying degrees of spine
turnover were detected by high resolution imag-
ing in the neocortex (Bhatt et al. 2009), while
experimentally triggered LTP can be long-lasting
(Abraham et al. 2002). Alternative views involve
the idea that there may be multiple synaptic
weight distributions being capable of properly
coupling inputs with outputs. Learning new infor-
mation would result in an update of synaptic
weights to enable the incorporation of new infor-
mation, while at the same time retaining the old
ones. In artificial network models with highly
coupled layers of cells, such changes of synaptic
weights have been revealed to be necessary
(Abraham and Robins 2005). Another model
based on experimental data implies that learning
establishes specific connectivity patterns between
cells of a memory circuit, which is named
engram. These new connections, rather than the
potentiation of existing synapses, are suggested to
support memory storage. According to this view,
the LTP of existing synapses rather serves to
recall the memory (Tonegawa et al. 2015). Still,
both models somehow support the synaptic plas-
ticity and memory hypothesis, with synapses
representing critical units of memory storage. A
strong argument being discussed against this gen-
eral hypothesis is the observation that synaptic
molecules in the adult brain are not stable with
half-lives of only 2–5 days (Cohen et al. 2013),
although it should be mentioned that individual
molecules might not need to last for the duration
of a memory (Lisman 1985). Moreover, the suc-
cessful transfer of memory from a trained to an
untrained animal via RNA injection tremendously
challenged the synaptic plasticity hypothesis
of memory storage (Bédécarrats et al. 2018). Of
note, synaptic transmission is not the only way of
communication between neurons. Non-synaptic
flow of information between neuronal somata in

the form of non-coding and protein coding RNA
as well as proteins can be achieved through neu-
ronal activity triggered release of miRNA-
containing exosomes (Chivet et al. 2014; Goldie
et al. 2014; Higa et al. 2014) or channeling
nanotubes (Ariazi et al. 2017), and it has
been described to mediate learning-related
epigenetic alterations in neurons (Abraham et al.
2019). An important example is the activity
regulated cytoskeletal-associated protein ARC,
an immediate early gene product and a vital
regulator of synaptic activity. Upon neural
activity, ARC is released alongside Arc mRNA
via exosomes that are taken up by neighboring
neurons where the transferred mRNA is
translated locally (Ashley et al. 2018; Pastuzyn
et al. 2018).

An alternative model involves the cell-intrinsic
storage of memory enabled by thermodynami-
cally stable molecules, which is supported by
numerous studies that are discussed elsewhere in
more detail (Abraham et al. 2019). As firstly
suggested by Holliday (1999), DNA methylation
represents an attractive mechanism for cell-
intrinsic engram storage, which brings DNMT
function into play. Besides relative stability,
DNA methylation comes with the advantages of
compactness and energy efficiency. Apart from
that, this epigenetic signature is capable of storing
a vast amount of information, due to the extraor-
dinary numbers of methylation sites in the whole
genome (Holliday 1999). The finding of active
DNA demethylation involving TET-mediated
oxidation of 5-mC allows cytosines in neurons
to function as on-off switches, hence providing
principally a “binary code” (Abraham et al.
2019).

Since the hypothesis raised by Holliday in
1999, studies in mammals and invertebrates con-
firmed the functional implication of DNA meth-
ylation and DNMTs in diverse learning
paradigms (Day and Sweatt 2010; Biergans
et al. 2015; Pearce et al. 2017). It was shown
that contextual fear conditioning triggers global
genome-wide changes in DNA methylation seen
after an hour persisting for at least 24 h (Mizuno
et al. 2012), but not after 4 weeks (Halder et al.



2016). These changes in DNA methylation,
mostly detected in neurons that correlated with
the spatio-temporal location of memory, were
specific for genes and cis-regulatory sites and
were reported to be dynamic or stable (Halder
et al. 2016; Duke et al. 2017). In line with these
studies, inhibition of DNMTs has been shown to
block remote memory in rats (Miller et al. 2010).
Moreover, DNMT inhibition impairs memory
formation and consolidation and even eliminates
well-consolidated long-term memory in Aplysia
(Pearce et al. 2017). DNMTs and DNA methyla-
tion further seem to be implicated in the RNA
injection-mediated memory transfer described
previously. Blocking DNMTs by RG108 imme-
diately after RNA injection successfully impeded
the behavioral enhancement and, hence, memory
transfer (Bédécarrats et al. 2018). The learning-
triggered changes in DNA methylation were
reported to regulate the transcription or splicing
of plasticity-, neuronal transmission- and
function-related genes in different learning
paradigms (Halder et al. 2016; Duke et al.
2017). Hence, DNMTs and DNA methylation
might play a key role in long-term memory
being stored either as RNA-induced epigenetic
alterations and/or synaptic plasticity.
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Both models, the synaptic plasticity and the
cell-intrinsic model of memory formation, do not
necessarily exclude each other and rather could be
integrated, with epigenetic writers such as
DNMTs as key mediators. A prerequisite for
that would be a synapse-nucleus communication
to provide an explanation for how nuclear
changes can account for input (or synapse) speci-
ficity, shown to be evident in LTP, as well as
other forms of learning-related long-term synaptic
plasticity (Martin et al. 1997; Schuman 1997).
Hence, a challenging question in this context is
how the synaptic information is translated into
discrete changes of DNA methylation and how
the signaling mechanisms from the nucleus back
to specific synapses occur?

A recent study showed that protein levels of
DNMT3A1 are intimately linked to the activation
of N-methyl-D-aspartate receptors (NMDAR)
containing the GluN2A subunit. Synaptic
NMDARs were found to promote the degradation

of this DNMT in a neddylation-dependent pro-
cess. Interference with neddylation leads to
reduced degradation of DNMT3A1, which causes
changes in promoter methylation of activity-
driven genes and deficits in synaptic plasticity
and memory formation. Hence, plasticity-relevant
signals from GluN2A-containing NMDARs seem
to orchestrate activity-dependent DNA methyla-
tion implication in memory formation (Bayraktar
et al. 2020).

Moreover, non-coding RNAs provide possible
alternative mechanisms to control DNA methyla-
tion. Similar to mRNAs, which undergo local
translation at dendrites/synapses (Donnelly et al.
2010), also non-coding RNAs have been reported
to shuttle from the neuron’s nucleus to dendritic
compartments (Qureshi and Mehler 2012). Shut-
tling back from the cytosol to the nucleus has
already been shown for piRNAs, a class of
small-non-coding RNAs, which in addition to
cytosolic functions influence transcription in the
nucleus, e.g., by recruiting DNMTs and through
this targeting DNA methylation (Liu et al. 2019).
Of note, piRNAs are known to be key for
establishing stable long-term changes in neurons
in memory persistence by mediating the methyla-
tion of a conserved CpG island in the Creb2
promoter in a serotonin-dependent fashion
(Rajasethupathy et al. 2012). CREB, a critical
plasticity-related protein, acts as crucial inhibi-
tory constraint of memory in Aplysia (Bartsch
et al. 1995). Hence, cytosine methylation of the
Creb2 promoter triggered by the Piwi-piRNA
complex containing a DNMT could provide a
mechanistic link for how transient external
stimuli culminate in long-lasting alterations in
the expression of genes implicated in long-term
memory storage in neurons.

DNMTs have been further reported to interact
with long non-coding RNAs (lncRNAs), defined
as non-coding transcripts longer than
200 nucleotides (Hung and Chang 2010), which
were suggested to either recruit DNMTs to spe-
cific genomic loci or prevent their binding (Rinn
and Chang 2012; Merry et al. 2015; Zhao et al.
2016; Somasundaram et al. 2018; Zimmer-
Bensch 2019a), similar to piRNAs. The expres-
sion of lncRNAs has been described to be



modulated by altered neuronal activity (Barry
et al. 2017), and they can be shuttled from the
nucleus to the cytoplasm (Bridges et al. 2021).
Thereby, their subcellular location determines
their function (Carlevaro-Fita and Johnson
2019). LncRNAs can be precursors for miRNAs,
representing a class of small non-coding RNAs
which modulate translation in the cytoplasm
(Leung 2015). Hence, lncRNAs could influence
the translation of synapse-related gene expres-
sion, “transferring” information from the nucleus
into the cytoplasm, and potentially in discrete
microcompartments of a neuron “hitting” local
translation. The ability of lncRNAs to localize to
diverse yet specific subcellular locations has fur-
ther been described (Bridges et al. 2021), where
they regulate synapse stability (Wang et al. 2021),
synaptic activity (Raveendra et al. 2018; Keihani
et al. 2019), or structural plasticity of dendritic
spines in an activity-dependent manner (Grinman
et al. 2021). However, in contrast to piRNAs,
whether and how shuttling of lncRNAs back
from the cytoplasm to nucleus occurs, is still
largely unknown.
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15.7 DNMTs in Neurodevelopmental
and Neuropsychiatric Diseases

After having discussed the crucial functions of
DNMTs in neurodevelopment and brain function,
it is not surprising that mutations or defective
expression of DNMTs are implicated in a broad
spectrum of neurodevelopmental and neuropsy-
chiatric diseases, being the cause or mediator of
the underlying pathophysiology. Biallelic mis-
sense mutations in DNMT3B are causative for
the immunodeficiency-centromeric instability-
facial anomalies (ICF) syndrome, a rare autoso-
mal recessive disorder presenting with cognitive
and intellectual disability (Miniou et al. 1997;
Kondo et al. 2000; Jin et al. 2008). DNMT3B
mutations are associated with DNA
hypomethylation of genes relevant for the
immune system, but also for neurogenesis, neu-
ronal differentiation, and migration in the affected
patients (Jin et al. 2008). In line with this, another

study found that conditional Dnmt3B deletion in
the hippocampus impairs recognition memory
and revealed differential expression of K+ chan-
nel subunits in mice (Kong et al. 2020).
Mutations in DNMT3A that lead to different
variants of this methyltransferase (Lane et al.
2020) were reported for the Tatton-Brown-
Rahman syndrome (TBRS), a rare neurodeve-
lopmental congenital anomaly syndrome
characterized by macrocephaly and characteristic
facial features (Yokoi et al. 2020).

Patients suffering from schizophrenia
(SCZ) show a significant upregulation of
DNMT1 expression in postmortem GABAergic
interneurons (Veldic et al. 2005), which is
suggested to alter the expression of genes relevant
for GABAergic transmission (Linde and Zimmer-
Bensch 2020). These observations are in line
with the finding of disturbed interneuron func-
tionality as crucial hallmark of schizophrenia
(Nakazawa et al. 2012), and DNMT1 was
found to modulate GABAergic transmission of
cortical interneurons by regulating endocytosis-
dependent vesicle replenishment through DNA
methylation-dependent transcriptional control of
associated genes (Pensold et al. 2020). DNMT1
overexpression in SCZ patient brains is proposed
to cause hypermethylation of RELN, coding for
Reelin that is a key player in cortical development
(Kirkbride et al. 2012). In addition to abnormal
functionality in mature neurons, defects during
interneuron development are suggested to con-
tribute to the manifestation of neuropsychiatric
diseases such as schizophrenia (Linde and
Zimmer-Bensch 2020). In agreement with this,
altering the expression levels of Dnmts in embry-
onic cortical interneurons in mice elicited SZ-like
phenotypes in offspring (Matrisciano et al. 2013).
In line with the reported relevance of DNMT1 for
interneuron migration (Pensold et al. 2017),
dysregulated expression levels during develop-
ment could contribute to the manifestation of
SCZ. Furthermore, increased activity of DNMTs
as well as DNA hypermethylation has been
suggested to be implicated in the development
of epilepsy in humans as well as in rodent models
(Jesus-Ribeiro et al. 2021).
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15.8 DNMTs in Neuronal Aging

Brain aging is a dynamic process characterized by
structural, neurochemical, and physiological
alterations that altogether cause memory decline,
cognitive impairments, and behavioral changes
(Rozycka and Liguz-Lecznar 2017; Zimmer-
Bensch 2019b). Cognitive aging predominantly
manifests itself as attention and memory deficits
involving the function of the hippocampus and
frontal brain areas, such as the prefrontal cortex,
with the working memory function being affected
the most in aged individuals (Nolde et al. 1998;
Davidson and Glisky 2002; Glisky 2007). Neuro-
nal circuits formed within the hippocampus and
the synaptic connections with other brain regions
are widely considered to constitute the basis for
its function in learning and memory, indicating
that age-associated perturbances in these regions
increase susceptibility to learning deficits later in
life (Eichenbaum et al. 1992; Glisky 2007).
Thereby, healthy adult neurogenesis in the hippo-
campus is proposed to be essential for higher
cognitive functions (Bekinschtein et al. 2010).

In the mature CNS, neuronal plasticity and
long-term memory are modulated by DNA meth-
ylation through DNMT activity in the hippocam-
pus (Levenson et al. 2006). The neuronal
methylome changes dramatically upon neuronal
activity, in association with synaptic plasticity
genes gaining or losing DNA methylation (Guo
et al. 2011). Additionally, adult neurogenesis is
defined as a pivotal process in the generation of
neurons in adulthood, thus directly affecting
learning and memory functions (Ming and Song
2011). It has been shown that hypomethylation in
the brain during aging is responsible for a decline
in adult neurogenesis (Liu et al. 2009), which is in
line with the reported decline in the expression of
DNMTs in the brain upon aging (Oliveira et al.
2012).

The aging process hits different brain regions
and neuronal cell types distinctively. In addition
to reduced excitability and plasticity (Clark and
Taylor 2011), an increased vulnerability of inhib-
itory interneurons and GABAergic synapses
(Rozycka and Liguz-Lecznar 2017) has been

reported for particular regions of aged brains
(Shetty and Turner 1998; Stanley and Shetty
2004; Cheng and Lin 2013). Besides functional
and structural changes of GABAergic synapses,
several studies have reported reduced numbers of
cortical interneuron subtypes across different spe-
cies and brain regions upon aging (Zimmer-
Bensch 2019b). Features of cortical inhibitory
defects involve loss of synaptic contacts,
decreased neurotransmitter release, and reduced
post-synaptic responsiveness to
neurotransmitters. Due to the critical function of
GABAergic interneurons in cortical information
processing, the age-related structural and func-
tional defects are strongly suggested to be
implicated in the age-associated cognitive decline
(Rozycka and Liguz-Lecznar 2017).

DNMT1 has been described to be implicated
in the age-associated loss of cortical interneurons
(Hahn et al. 2020) (Fig. 15.2). Conditional
deletion of Dnmt1 in parvalbumin-expressing
cortical interneurons ameliorates their
age-related decline, which is accompanied by
improved senso-motoric performances of aged
mice (Hahn et al. 2020). However, DNMT1-
dependent regulation of cell death- and survival-
associated genes seems to play a rather subordi-
nate role, whereas the DNMT1-dependent regu-
lation of proteostasis-related gene expression
might be important (Hahn et al. 2020).

15.9 DNMTs in Neurodegeneration

Neurodegenerative diseases (NDDs) encompass a
wide variety of disorders characterized by func-
tional perturbances in neurons accompanied by
neuron loss and tissue degeneration in the periph-
eral or central nervous system (Vila and
Przedborski 2003). Aspects of cellular homeosta-
sis underlying NDDs range from dysfunctional
mitochondria and compromised proteostasis to
altered gene expression and abnormal transcrip-
tional regulation, with epigenetics gaining signif-
icant attention over the years due to its
involvement in these processes (Lovrečić et al.
2013). Furthermore, modern research has



frequently highlighted the role of epigenetics in
brain development where dynamic epigenetic
signatures, such as histone modifications and
DNA methylation, drive and coordinate impor-
tant processes such as neuronal differentiation
and cell survival (Zimmer-Bensch, 2018). Inter-
estingly, the dynamicity of epigenetic signatures
was revealed to carry on into the adult brain with
implications in memory acquisition and consoli-
dation as well as age-related loss of neural cells
(Sweatt 2016; Hahn et al. 2020). Unsurprisingly,
these findings have propelled epigenetic
mechanisms and dysregulations to the forefront
in investigations of NDDs for better diagnostic
agents and therapeutics.
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15.9.1 Alzheimer’s Disease
and Tauopathies

The vast majority of NDD patients are affected by
Alzheimer’s disease (AD) (Selkoe and Lansbury
Jr 1999; Zimmer-Bensch and Zempel 2021).
Symptomatically, AD manifests itself initially as
cognitive deficits, such as memory loss, confu-
sion, and poor judgment, with a high risk of
developing into a full-blown dementia where it
accounts for 60–80% of all cases (Korolev et al.
2016; Fishman 2017). The patient demise mainly
results from concomitant lack of adequate nutri-
tion and severe loss of body weight, but also from
typical diseases that affect bedridden patients,
such as pneumonia (Korolev et al. 2016). The
pathophysiology of AD is characterized by the
extracellular accumulation of plaques made up
of the Amyloid-beta (Aβ) protein, and the intra-
cellular aggregation of the microtubule-
associated protein TAU, encoded by the MAPT
gene (Zimmer-Bensch and Zempel 2021).

Albeit heavily debated, several studies agree
that abnormal levels of Aβ protein, cleaved out of
the amyloid precursor protein (APP) primarily by
the PSEN1/PSEN2 complex, as well as the extra-
cellular deposition of Aβ are the main culprits
behind the development and progression of AD
(Selkoe and Hardy 2016; Gulisano et al. 2018).
Indeed, mutations in the genes APP, PSEN1, and
PSEN2 were found to be causative for patients

with autosomal dominant inheritable forms of
early-onset AD (Zimmer-Bensch and Zempel
2021).

Interestingly, in the absence or suppression of
TAU protein, mouse and cell culture models for
AD failed to show a significant effect upon expo-
sure to Aβ or its overproduction, hinting toward a
possible role of the TAU protein as a mediator in
neurodegeneration (Roberson et al. 2007; Zempel
et al. 2013). Furthermore, the accumulation and
aggregation of TAU protein was found to corre-
late better with the AD-associated loss of
synapses and cognitive impairment, with
PET-imaging technologies being able to predict
structural brain deterioration in full-blown AD
(La Joie et al. 2020; Biel et al. 2021).

As the importance of the TAU protein in
neurodegeneration and neuronal dysfunction
became more evident, many studies went beyond
AD and started to investigate the heterogenous
group of TAU protein-related NDDs called
tauopathies that are characterized by the neural
and/or glial deposition of TAU. Histopathological
hallmarks of tauopathies include but are not lim-
ited to the hyperphosphorylation of the TAU pro-
tein and the formation of neurofibrillary tangles
(Zimmer-Bensch and Zempel 2021). Tauopathies
clinically manifest themselves as cognitive
deficits, motor neuron disease, and movement
disorders in diverse combinations or in an
isolated manner (Murley et al. 2020) and can be
classified into primary and secondary tauopathies
depending on whether TAU is instrumental to the
pathology or appears secondary alongside other
cerebral pathologies (Zimmer-Bensch and
Zempel 2021). Despite growing appeals, genetic
and signaling-based aberrations, such as familial
mutations in the MAPT gene, fail to illustrate a
mechanistic basis for the emergence and progres-
sion of both sporadic and genetic forms of AD
and tauopathies. Epigenetics may provide a fur-
ther piece of the puzzle and contribute to a better
understanding of environmental triggers that are
involved in AD and tauopathies.

Abnormal gene expression, loss of chromatin
structure, and genomic instability are considered
to be hallmarks of both aging and complex
diseases such as AD (López-otín et al. 2013;



Spiegel et al. 2014). These changes in cellular
homeostasis are deeply associated with epigenetic
mechanisms that can respond to environmental
cues (Grant et al. 2002; Rowbotham et al.
2015), such as DNA methylation catalyzed by
DNMTs (Greenberg 2020). Prior studies have
pointed out that altered expression levels of
DNMTs (Cui and Xu 2018) are associated with
changes in synaptic plasticity, memory, and
learning (Levenson et al. 2006; Morris and
Monteggia 2014), further emphasizing the role
of DNMTs in aging and AD-related symptoms.
In particular, the aging-associated decrease in
Dnmt3A2 expression is implicated in cognitive
impairment, as the symptoms were alleviated
upon a rescue of the Dnmt3A2 expression levels
in mice (Oliveira et al. 2012).
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As mentioned previously, the expression
of DNMTs decreases upon aging, accompanied
by a global hypomethylation and local
hypermethylation in aging brains of various spe-
cies (Johnson et al. 2012; Hahn et al. 2020). Such
changes are presumed to contribute to transcrip-
tional alterations seen in AD and tauopathies
(McKinney et al. 2019; Salameh et al. 2020).
Hence, DNA methylation could pose as a mecha-
nism in the transcriptional regulation of
AD-associated genes. Indeed, previous studies
have revealed an age-related hypomethylation in
the promoter region of APP, PSEN1, and PSEN2
(Fig. 15.3), which were linked to the extracellular
deposition of Aβ in the aged brain (Tohgi et al.
1999a, b).

Similarly, an age-related decrease in MAPT
expression was evidenced alongside alterations
in the methylation levels of its promoter region,
emphasizing the role of DNA methylation in
tauopathies (Tohgi et al. 1999b). Furthermore,
aberrant methylation levels in the promoter
regions of genes involved in TAU phosphoryla-
tion, such as GSK3B (Nicolia et al. 2017) and
Cdk5 (Li et al. 2015), as well as their increased
expression, were shown to play a crucial role in
tauopathies and AD (Yu et al. 2019). In addition
to DNMTs, the hyperphosphorylation of TAU
could be further influenced by TET-dependent,
active DNA demethylation (Zimmer-Bensch and
Zempel 2021). Indeed, this becomes evident for

BDNF, a key player in synaptic plasticity and
synaptogenesis in the hippocampus (Song et al.
2015). BDNF, whose transcriptional accessibility
is regulated partly via TET1 (Ambigapathy
et al. 2015), is implicated in TAU hyperpho-
sphorylation (Tanila 2017), indicating that a
TET-mediated demethylation of BDNF could
influence the phosphorylation of the TAU
protein.

Overall, these findings underline the role of
DNMTs as well as TETs in AD and tauopathies
(Fig. 15.3). Although a substantial number of the
affected genes are proposed to be downstream
effectors of Aβ pathology, the majority are
suggested to be upstream of TAU pathology
which seems to be the driving force behind the
cognitive dysfunction seen in AD and tauopathy
patients (Zimmer-Bensch and Zempel 2021). In
the future, the modulation of DNMT activity to
restore its healthy function or locus-specific gene
editing methods to re-establish DNA methylation
patterns could open new doors for targeted epige-
netic therapies against AD and tauopathies.

15.9.2 Huntington’s Disease

The interest in the role of epigenetics in neurode-
generative diseases was further fueled by
recent developments in Huntington’s disease
(HD) research. HD is a neurodegenerative disease
predominantly caused by an inherited expansion
mutation in the Huntingtin protein (HTT), leading
to N-terminal polyQ repeats and a subsequent
misfolding of HTT (Zimmer-Bensch 2020). This
mutant form of HTT (mHTT) is prone to
aggregations and forms intracellular inclusion
bodies, ultimately leading to severe atrophy in
the dorsal striatum accompanied by an abnormal
increase in astrocytes as well as a loss of striatal
and cortical neurons (Hedreen et al. 1991;
DiFiglia et al. 1997; Lee et al. 2013).

For decades, researchers have been trying to
decipher the exact functions of healthy and
mutated HTT where prominent progress has
been made on the epigenetics front. Multiple
studies have suggested that HTT can interact
with transcription factors and histone modifying
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Fig. 15.3 The implications of DNMTs in neurodegenera-
tive diseases and cancers of the brain. Upper panel:
Altered methylation level in Alzheimer’s disease and
other tauopathies. Promoter hypomethylation of amyloid
precursor protein gene (APP) and PSEN1/2, encoding for
proteins involved in APP-cleavage, leads to increased
extracellular deposition of amyloid-beta protein (Aβ),
regarded as a hallmark for the development and progres-
sion of Alzheimer’s disease (AD). Genes encoding for
proteins involved in the hyperphosphorylation of TAU
protein such as GSK3B and CDK5 are similarly
hypomethylated in their promoter regions in AD and
related tauopathies. Middle panel: In Huntington’s disease
(HD), the recruitment or eviction of DNMTs mediated by

the mutant Huntingtin protein (mHTT) and its interactions
with epigenetic writers and readers, such as PRC2 and
MeCP2, is proposed to lead to aberrant 5-mC/5-hmC
profiles of genes involved in neuronal development, func-
tion, and survival, leading to significant cerebral atrophy.
Lower panel: In the context of cancer, differential global
activity of DNMTs, as well as reduced TET activity in
promoter regions, results in promoter hypermethylation
and genome-wide hypomethylation, leading to the repres-
sion of tumor suppressor genes and the activation of
oncogenes. Resulting aberrant expression profiles facili-
tate tumorigenesis and metastasis by enhanced migration,
invasion, proliferation, and survival while decreased DNA
repair activity accelerates the mutation rate



enzymes, e.g., REST, PRC2, and MeCP2, thus
highlighting HTTs ability to interact with key
epigenetic players (Seong et al. 2009; Buckley
et al. 2010). In the case of mHTT, disruptions of
these interactions could potentially contribute to
the abnormal transcriptional regulation which is a
hallmark of HD.

15 Role of DNMTs in the Brain 381

In addition to HTT’s interaction with histone
modifying complexes and transcription factors,
the academic community has extensively
explored changes in DNA methylation levels
and signatures, such as 5-mC and 5-hmC patterns,
where aberrations were reported in HD patients
and transgenic mice (Fig. 15.3) (Ng et al. 2013;
Villar-Menéndez et al. 2013; Wood 2013). The
oxidation of 5-mC to 5-hmC is a vital step in
active DNA demethylation and crucial for the
dynamic DNA methylation-dependent transcrip-
tional regulation (Xu and Wong 2015). Abnormal
5-mC/5-hmC profiles were seen for genes
implicated in neuronal development, function,
and survival (Wang et al. 2013) and could thus
be attributed to the decline in neuronal function
and neuronal death present in HD. Yet, little
research has been conducted to investigate the
mechanistic behind such changes in DNA meth-
ylation patterns in full molecular detail, whether
they are direct consequences due to the altered
interactome of mHTT, or whether these occur
indirectly, e.g., as adaptive response to impaired
cellular physiology.

Beside the ability of HTT to directly interact
with histone modifying enzymes, abnormal,
mHTT-mediated deposition and/or removal of
histone marks can lead to the eviction or recruit-
ment of DNMTs (Zimmer-Bensch 2020)
(Fig. 15.3). Prior studies suggest the enrichment
of histone marks to correlate with DNA methyla-
tion, inversely or positively, depending on
whether they are associated with the decondensed
euchromatin or the tightly packed heterochroma-
tin. The euchromatin-associated H3K4me3 has an
inverse correlation with DNA methylation levels
and was shown to preclude DNMT3-dependent
DNA methylation (Rose and Klose 2014).
In contrast, the heterochromatin-associated
H3K9me3 and H3K27me3 were found to have a
positive correlation with DNA methylation where
both were shown to directly recruit DNMTs

(Lehnertz et al. 2003; Viré et al. 2006; Hashimoto
et al. 2009; Liu et al. 2018). Similarly, the binding
of DNA demethylases such as TETs could be
influenced, adding another layer to this mechanis-
tic conundrum.

Based on observations made in prior studies,
another scenario could be that altered expression
of DNMTs leads to the abnormal DNA methyla-
tion signatures seen in HD (Thomas 2016). The
expression of Dnmt1 was found to be decreased
in a HD cell model (Tobin and Signer 2000), and
a reduced striatal and cortical Dnmt1 expression
was documented in transgenic HD mice. Despite
the assumption that reduced Dnmt1 expression
correlates with lower levels of DNA methylation,
mHTT-expressing neurons showed increased
methylation levels in promoter regions of key
HD-relevant genes such as Bdnf (Pan et al.
2016). These counter-intuitive findings were
attributed to reduced expression levels of DNA
demethylases leading to elevated methylation
levels in HD patients and model systems (Thomas
2016). It was proposed that this increase in meth-
ylation levels could lead to a diminished expres-
sion of Dnmts by means of a feedback-regulation.
Indeed, the reduced expression of Dnmts may be
favorable in the context of HD, as both the inhi-
bition of DNMTs and a knockdown ofDnmt1 and
Dnmt3A were shown to decrease mHTT-
associated neurotoxicity in primary striatal and
cortical neurons (Pan et al. 2016).

Altogether, these findings add another level of
complexity to the pathophysiology of NDDs,
while further emphasizing the hierarchical
dilemma of epigenetics, i.e., the imperative dis-
tinction between the cause and the consequence
of the observed changes in DNA methylation.

15.10 Role of DNMTs in Brain Cancer

Cancer is a group of diseases, arising from abnor-
mal gene expression programs that shift the bal-
ance of oncogenic and tumor suppressive
mechanisms. Making up 2% and 23% of all pri-
mary tumors in adults and children, respectively,
brain cancer is one of the most malignant forms of
cancer with more than a quarter of all pediatric
cases resulting in the patient’s demise (Marie and



Shinjo 2011). Gliomas are the most frequent and
malignant type of brain tumor in adults, with
glioblastoma (GBM) having a median overall
survival of 14.6 months. In turn, medulloblas-
toma, which starts in the cerebellum, accounts
for the most cases of malignant, pediatric brain
tumors (Marie and Shinjo 2011; Bartlett et al.
2013). Prior studies on glioblastoma (Parsons
et al. 2008) and medulloblastoma (Parsons et al.
2011) demonstrated the presence of mutations
implicated in their initiation and development.
Yet, in the case of medulloblastoma, the tumors
tend to have a low mutational burden as pediatric
patients are incapable of acquiring spontaneous
mutations due to their young age (Blaeschke et al.
2019). Indeed, cumulative evidence points to the
involvement of other mechanisms beside somatic
mutations in the formation of brain tumors, such
as structural and numerical aberrations in
chromosomes (Larsen 2010) and epigenetic
alterations (Sharma et al. 2010).
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Over the past decade, epigenetics has taken a
center stage in cancer research due to its crucial
role in the maintenance and regulation of gene
expression programs. Many studies have shown
how exposure to environmental agents, genetic
alterations, or even aging can perturb the epige-
netic machinery, creating a permissive environ-
ment for cancer to develop and progress
(Easwaran and Baylin 2019). As one of the key
epigenetic mechanisms, aberrant DNA methyla-
tion signatures were implicated in various types
of cancer, with diverse gene-bodies, intergenic
regions, and repetitive elements being
hypomethylated (Ehrlich and Lacey 2013)
(Fig. 15.3). The global hypomethylation seen in
cancer has been implicated in the dysregulation
of the genome, leading to genomic instability,
oncogenic activation, loss of genomic imprinting,
and the reactivation of transposable elements,
ultimately resulting in increased mutational
rates and tumorigenesis (Chen et al. 1998; Eden
et al. 2003; Gaudet et al. 2003; Holm et al.
2005; Hur et al. 2014). Interestingly, a local
hypermethylation accompanies this global
hypomethylation, potentially indicating a differ-
ential activity of epigenetic modifiers, such as
DNMTs, depending on the genomic region
(Easwaran and Baylin 2019).

15.10.1 Promoter Methylation

One of the proposed mechanisms for the abnor-
mal activation of oncogenes and the inactivation
of tumor suppressor genes is the methylation of
cytosines in promoter regions of genes, with the
gain/presence of methylation being associated
with gene silencing, and the loss/absence being
associated with transcriptional activation (Ehrlich
and Lacey 2013) (Fig. 15.3). DNA methylation in
the promoter region prevents the binding of key
transcription factors (TFs) and by this directly
inhibits gene expression (Moore et al. 2013).
Additionally, DNA methylation can also influ-
ence post-translational modifications of histones
through methyl-binding proteins (MBD). MBDs
act as adaptors for histone modifying enzymes
that can change the chromatin state and regulate
the accessibility of the methylated site (Ng et al.
2000). In addition, DNMTs themselves were
found to crosstalk with histone modifying
enzymes in a methylation-independent fashion
(Symmank et al. 2018), further complexifying
DNMT-mediated transcriptional regulation.

In the context of glioma, mutations in
isocitrate dehydrogenase genes IDH1 and IDH2
lead to the production and accumulation of
2-hydroxyglutarate instead of α-ketoglutarate,
the subsequent inhibition of α-ketoglutarate-
dependent enzymes such as TET2, and ultimately
to DNA hypermethylation (Dang et al. 2009;
Figueroa et al. 2010; Scourzic et al. 2015). Fur-
thermore, the epigenetic silencing of the DNA
repair gene MGMT via promoter
hypermethylation represents another prominent
epigenetic alteration in glioma with the promoter
methylation status of theMGMT gene becoming a
predictive biomarker in neuro-oncology. The
hypermethylation of the promoter, resulting in
the absence of MGMT, was found to be beneficial
in the treatment of glioma via temozolomide
(TMZ), as active MGMT can repair
O6-methylguanine, a toxic DNA lesion caused
by TMZ, and diminish the effects of the treatment
(Hegi et al. 2005).

In medulloblastoma, the promoters of tumor
suppressor genes CASP8, HIC1, and CDKN2A
(Lindsey et al. 2004; Sexton-Oates et al. 2015)



and the DNA repair gene MGMT (von Bueren
et al. 2012) were found to be methylated. In line
with the role of Sonic-Hedgehog (SHH) and Wnt
signaling pathways in the activation of tumor
formation in medulloblastoma (Cambruzzi
2018), PTCH1 and the SFRP family of proteins
that are involved in the negative regulation of
SHH and Wnt signaling, respectively, were
found to be silenced via promoter methylation
(Pritchard and Olson 2008; Kongkham et al.
2010).
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15.10.2 Methylation of Distal
Regulatory Elements

Distal regulatory elements in the genome are able
to modulate the transcription of distinct genes
through structuring the chromatin organization.
Due to their enrichment for TF binding sites,
changes in methylation levels and/or patterns in
enhancer regions might interfere with the binding
of TFs (Easwaran and Baylin 2019), either by
changes in methylation itself or by secondary
changes in histone modifications that result in an
altered chromatin structure. Indeed, this was
shown to be the case in gliomas with mutated
IDH, where the hypermethylation of the binding
site for the transcriptional regulator CTCF leads
to the eviction of the CTCF/cohesion complex,
resulting in an interaction between the enhancer
and the oncogene PDGFRA. Notably, this inter-
action was not found in healthy individuals or
glioma cases without the IDH mutation (Flavahan
et al. 2016).

15.10.3 Implications of Altered DNMT
Expression and Targeting
in Brain Cancer and Therapy
Resistance

As DNMTs catalyze DNA methylation, alteration
in their expression could mediate the aberrant
methylation signatures in cancer. Indeed, signifi-
cant overexpression of DNMT1 and DNMT3B
was shown in gliomas where the promoter

regions of DNMT1 and DNMT3B had a differen-
tial histone code with distinct marks for euchro-
matin, compared to normal tissue that are
predominantly enriched with repressive histone
marks (Rajendran et al. 2011) (Fig. 15.3). In
human glioma biopsies, the expression levels of
DNMT1 and DNMT3B were shown to coregulate
the methylation status of the apoptosis-related
BIRC5, TMS1, and CASP8, but not of other
apoptosis-related genes such as BCL2, BCL2L2,
and BAX, indicating that DNMTs could orches-
trate the emergence of the apoptosis evasion phe-
notype in glioma by mediating the regulation of
distinct apoptosis-associated genes (Hervouet
et al. 2010).

A similar overexpression of DNMTs was
observed for medulloblastoma patients, with the
overexpression of DNMT3B being the most com-
mon (Pócza et al. 2016). Yet, no correlation was
found between the expression levels of DNMTs
and the age of onset, histological subtype, or
overall survival in medulloblastoma (Pócza et al.
2016).

Apart from transcriptional dysregulation of
DNMTs, their targeting to specific genomic loci
could cause the alterations in DNA methylation
signatures seen in the different types of brain,
mediating pathophysiological processes and/or
therapy resistance. Emerging evidence proposes
lncRNAs to orchestrate the recruitment of epige-
netic writers such as DNMTs or histone
modifying complexes to specific genomic sites
(Wang et al. 2015; Jain et al. 2016; Xiong et al.
2018). Modern research has enabled genome-
wide studies of tumor samples, which have
identified a great number of lncRNAs implicated
in various types of cancer (Bhan et al. 2017).
Even though lncRNAs were shown to directly
interact with DNMTs as well (Wang et al.
2015), relatively little is known about this inter-
action in the context of cancer. Recent studies
have begun to slowly close the gap in literature,
with the lncRNA–DNMT interactions having
been demonstrated in renal, breast, and thyroid
cancer (Wu et al. 2018; Song et al. 2019; Zhao
and Hu 2019). In GBM, an overexpression of the
lncRNA HOTAIRM1 was found to promote



tumor growth and upregulate the expression of
the oncogene HOXA1 by evicting DNMTs, G9A,
and EZH2, leading to the demethylation of H3K9
and H3K27 and a reduction in DNA methylation
levels (Li et al. 2018). In TMZ-resistant glioma,
the lncRNA SNHG12 was shown to be
upregulated due to a loss of DNA methylation in
its promoter region, with clinical studies
evidencing poor survival of GBM patients in
presence of an SNHG12 overexpression
(Lu et al. 2020).

384 C. B. Yildiz and G. Zimmer-Bensch

15.10.4 Crosstalk of DNMTs
and miRNA-Mediated
Translational Control

In addition to the transcriptional level within the
nucleus, lncRNAs but also small non-coding
RNAs (sncRNA) such as microRNAs (miRNAs)
can modulate post-transcriptional events in the
cytoplasm (Wei et al. 2017). miRNAs can regu-
late the expression of target genes on a post-
transcriptional level by binding to complementary
sequences in mRNA molecules and silencing
them (Bartel 2009). The expression of many
miRNAs is increased or decreased in brain cancer
leading to dysregulations in cellular pathways
involved in proliferation, apoptosis, cell survival,
and metastasis (Li et al. 2013; Haltom et al.
2020). The expression of miRNAs can be
modulated via DNMT-mediated DNA methyla-
tion, underlining the crosstalk between the two
epigenetic regulatory mechanisms (Chuang and
Jones 2007). Indeed, this was evidenced by Zhou
et al. (2015), as DNMT1 expression was shown to
be downregulated in a TMZ-resistant GBM cell
line compared to the control, leading to a
hypomethylation of the miR-20a promoter and
an increase in its expression. The overexpression
of DNMT1 was shown to suppress miR-20a
expression and restore sensitivity to TMZ,
highlighting the crucial role of DNMT1 in the
development of chemoresistance in glioma. Con-
versely, miRNAs are able to influence the expres-
sion of DNMTs. In a previous study, miR-152-3p
was shown to directly target DNMT1 and lower
its expression (Sun et al. 2017). Due to the

downregulation of miR-152-3p in GBM tissue
and glioma cells, the expression of DNMT1
was found to be increased, leading to a
hypermethylation of the tumor suppressor gene
NF2 and its subsequent downregulation. Both the
overexpression of miR-152-3p and the knock-
down of DNMT1 were shown to result in a rescue
of NF2 expression, increased apoptosis, and
reduced invasive activity (Sun et al. 2017).

In summary, abnormal DNA methylation
signatures seen in brain cancer could be attributed
to alterations in the recruitment and activity of
DNMTs in distinct genomic regions, rather than a
global loss or gain of their activity, as the global
hypomethylation is accompanied by a concomi-
tant hypermethylation of specific genomic loci.
Indeed, preclinical studies, where DNMT activity
was inhibited in in vivo and in vitro models of
glioma, have shown efficacy (Rajendran et al.
2011), but have not been translated into success-
ful therapies so far (Stewart et al. 2009). Beyond
changes in the expression levels or activity of
DNMTs, understanding how DNMTs target or
avoid distinct loci in the genome, which results
in the global hypomethylation and the local
hypermethylation seen in cancer, remains the
most challenging problem to this date, and solv-
ing it might be the key in discovering epigenetic
biomarkers or therapies for cancer.

15.11 Conclusions

DNMTs are widely and distinctively expressed in
different cell types of the brain, being implicated
in orchestrating brain development, functionality,
and age-related processes. Their dysregulated
expression and function have been proposed to
be implicated in a wide range of diseases, includ-
ing neurodevelopmental and neuropsychiatric
disorders, neurodegenerative diseases as well as
brain cancer. However, to approach their full-
blown potential as therapeutic targets, we need
to dissect their interactome, mechanisms of tran-
scriptional regulation, context-specific targeting
to specific genomic sites, and regulation of their
activity. DNMTs have been shown to crosstalk
with histone modifying and miRNA-mediated
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mechanisms, and to bind specific lncRNAs. How
are these specific interactions and the recruitment
to distinct genomic sites achieved? What role do
post-translational modifications of the different
DNMTs play in this diverse spectrum of
interactions? These questions have to be
addressed in cell-type specific contexts. The enor-
mous progress that has been achieved in
sequencing-based technologies, allowing single
cell resolution even at multi-omics level, might
provide an answer to these challenging questions
in the near future. Furthermore, we need to com-
bine multi-omics approaches with functional
readouts, reaching a higher integrational level of
analyses. CRISPR-Cas mediated epigenomic and
genomic editing in combination with iPSC
approaches might allow the development of
targeted and personalized therapeutics, even for
so-far incurable diseases of the brain.
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