
FMD-cGAN: Fast Motion Deblurring
Using Conditional Generative Adversarial

Networks

Jatin Kumar1(B) , Indra Deep Mastan2 , and Shanmuganathan Raman1

1 IIT Gandhinagar, Gandhinagar, India
kumar jatin@alumni.iitgn.ac.in, shanmuga@iitgn.ac.in

2 LNMIIT Jaipur, Jaipur, India

indradeep.mastan@lnmiit.ac.in

Abstract. In this paper, we present a Fast Motion Deblurring-
Conditional Generative Adversarial Network (FMD-cGAN) that helps in
blind motion deblurring of a single image. FMD-cGAN delivers impres-
sive structural similarity and visual appearance after deblurring an
image. Like other deep neural network architectures, GANs also suf-
fer from large model size (parameters) and computations. It is not easy
to deploy the model on resource constraint devices such as mobile and
robotics. With the help of MobileNet [1] based architecture that consists
of depthwise separable convolution, we reduce the model size and infer-
ence time, without losing the quality of the images. More specifically, we
reduce the model size by 3–60x compare to the nearest competitor. The
resulting compressed Deblurring cGAN faster than its closest competi-
tors and even qualitative and quantitative results outperform various
recently proposed state-of-the-art blind motion deblurring models. We
can also use our model for real-time image deblurring tasks. The cur-
rent experiment on the standard datasets shows the effectiveness of the
proposed method.

Keywords: Fast deblurring · Generative adversarial networks ·
Depthwise separable convolution · Hinge loss

1 Introduction

Image degradation by motion blur generally occurs due to movement during
the capture process from the camera or capturing using lightweight devices such
as mobile phones and low intensity during camera exposure. Blur in the images
degrades the perceptual quality. For example, blur distorts the object’s structure
(Fig. 1).
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Fig. 1. The figure shows object detection on images becomes easy after deblurring
using FMD-cGAN.YOLO [2] object detection on the (a) blurry picture and on the (b)
sharp picture from the GoPro dataset [3]

Image Deblurring is a method to remove the blurring artifacts and distortion
from a blurry image. Human vision can easily understand the blur in the image.
However, it is challenging to create metrics that can estimate the blur present
in the image. Image degradation model using non-uniform blur kernel [4,5] is
given in Eq. 1.

IB = K(M) ∗ IS + N (1)

where, IB denotes a blurred image, K(M) denotes unknown blur kernels depend-
ing on M’s motion field. IS denotes a latent sharp image, ∗ denotes a convolution
operation, and N denotes the noise. As an inverse problem, we retrieve sharp
image IS from blur image IB during the deblurring process. The deblurring prob-
lem generally classified as non-blind deblurring [9] and blind deblurring [10,11],
according to knowledge of blur kernel K(M) is known or not.

Our work aims at a single image blind motion deblurring task using deep-
learning. The deep-learning methods are effective in performing various com-
puter vision tasks such as object removal [15,16], style transfer [17], and image
restoration [3,19,20]. More specifically, convolution neural networks (CNNs)
based approaches for image restoration tasks are increasing, e.g., image denoising
[18], super-resolution [19], and deblurring [3,20].

The applications of Generative Adversarial Networks (GANs) [30] are
increasing immensely, particularly image-to-image conversion GANs [7] have
been successfully used on image enhancement, image synthesis, image editing
and style transfer. Image deblurring could be formulated as an image-to-image
translation task. Generally, applications that interact with humans (e.g., Object
Detection) require to be faster and lightweight for a better experience. Image
deblurring could be useful pre-processing steps of other computer vision tasks
such as Object Detection (Fig. 1 and Fig. 2).

In this paper, we propose a Fast Motion Deblurring conditional Generative
Adversarial Network architecture (FMD-cGAN). Our FMD-cGAN architecture
is based on conditional GANs [40] and the resnet network architecture [6] (Fig. 5).
We also used depthwise separable convolution (Fig. 3) inspired from MobileNet
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Fig. 2. First-row images are from the GoPro dataset [22], and second-row images are
from the REDS dataset [38] processed by Fast Deblurring cGAN.

to improve efficiency. A MobileNet network [1] has fewer Multiplications and
Additions (smaller complexity) operations, and fewer parameters (smaller model
size) compare to the same network with regular convolution operation.

Unlike other GAN frameworks, where we give the sharp image (real example)
and output image from generator network (fake example) as the inputs into
Discriminator network [7,40], we train our Discriminator (Fig. 4) by providing
input as combining blurred image with the output image from the generator
network (or blurred image with sharp image).

Different from previous work, we propose to use Hinge loss [31] and Percep-
tual loss [8] to improve the quality of the output image. Hinge loss improves
the fidelity and diversity of the generated images [49]. Using the Hinge loss in
our FMD-cGAN allows building lightweight neural network architectures for the
single image motion deblurring task compared to standard Deep ResNet archi-
tectures. The Perceptual loss [8] is used as content loss to generate photo-realistic
images in our GAN framework.

Contributions: The major contributions are summarized as below.

• We propose a faster and light-weight conditional GAN architecture (FMD-
cGAN) for blind motion deblurring tasks. We show that FMD-cGAN (ours)
is efficient with lesser inference time than DeblurGAN [3], DeblurGANv2 [27],
and DeepDeblur [22] models (Table 1).

• We have performed extensive experiments on GoPro dataset and REDS
dataset (Sect. 6). The results shows that our FMD-cGAN outputs images
with good visual quality and structure similarity (Fig. 6, Fig. 7, and Table 2).

• We also provide two variants (WILD and Comb) of FMD-cGAN to show that
image deblurring task could be improved by pre-training network (Table 1 and
Sect. 5).

• We have also performed ablation study to illustrate that our network design
choices improves the deblurring performance (Sect. 7).
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2 Background

2.1 Image Deblurring

Images can have different types of blur problems, such as motion blur, defocus
blur, and handshake blur. We have described that image deblurring is classified
into two types: Non-blind image deblurring and Blind image deblurring (Sect. 1).

Non-blind deblurring is an ill-posed problem. The noise inverse process is
unstable; a small quantity of noise can cause critical distortions. Most of the
earlier works [12–14] aims to perform non-blind deblurring task by assuming that
blur kernels K(M) are known. Blind deblurring techniques for a single image,
which use Deep-learning based approaches, are observed to be effective in single
image deblurring tasks [22,39] because most of the kernel-based methods are not
sufficient to model the real world blur [37]. The task is to estimates both the
sharp image IS and the blur kernel K(M) for image restoration. There are also
classical approaches such as low-rank prior [46] and dark channel prior [47] that
are useful for deblurring, but they also have shortcomings.

2.2 Generative Adversarial Networks

Generative Adversarial Network (GAN) was initially developed and introduced
by Ian Goodfellow and his fellow workers in 2014 [30]. GAN framework includes
two competing network architectures: a generator network G and a discriminator
network D. Generator (G) task is to generate fake samples similar to input by
capturing the input data distribution, and on the opposite side, the Discrimina-
tor (D) aims to differentiate between the fake and real samples; and pass this
information to the G so that G can learn. Generator G and Discriminator D
follows the minimax objective defined as follows.

min
G

max
D

V (D,G) = Ex∼pdata(x)[log(D(x))] + Ez∼pz(z)[log(1 − D(G(z))] (2)

Here, in Eq. 2, the generator G aims to minimize the value function V , and the
discriminator D tries to maximize the value function V . Moreover, the generator
G faces problems such as mode collapse and gradient diminishing (e.g., Vanilla
GAN).

WGAN and WGAN-GP: To deal with mode collapse and gradient diminish-
ing, WGAN method [25] uses Earth-Mover (Wasserstein-1) distance in the loss
function. In this implementation, the discriminator output layer is a linear one,
not sigmoid (discriminator output’s a real value). WGAN [25] performs weight
clipping [−c, c] to enforce the Lipschitz constraint on the critic (i.e., discrimina-
tor). This method faces the issue of gradient explosion/vanishing without proper
value of weight clipping parameter c. WGAN with Gradient penalty (WGAN-
GP) [26] resolve above issues with WGAN [25]. WGAN-GP enforces a penalty
on the gradient norm for random samples x̃ ∼ Px̃. The objective function of
WGAN-GP is as below.
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V (D,G) = min
G

max
D

Ex̃∼pg
[D(x̃)] − Ex∼pr

[D(x)] + λEx̃∼Px̃
[(||∇x̃D(x̃)||2 − 1)2]

(3)
WGAN-GP [26] makes the WGAN [25] training more stable and does not require
hyperparameter tuning. The DeblurGAN [3] used WGAN-GP method (Eq. 3) for
single image blind motion deblurring.

Hinge Loss: In our method, we used Hinge loss [31,32] which is giving better
result as compared to WGAN-GP [26] based deblurring method. Hinge loss
output also a real value. Generator loss LG and Discriminator loss LD in the
presence of Hinge loss is defined as follows.

LD = − E(x,y)∼pdata
[min(0,−1 +D(x, y))]− Ez∼pz,y∼pdata [min(0,−1−D(G(z), y))] (4)

LG = −Ez∼pz,y∼pdata
D(G(z), y) (5)

Here, D tries that a real image will get a large value, and a fake or generated
image will get a small value.

Fig. 3. Modified resnet block Fig. 4. The figure shows the architecture
of the critic network (Discriminator).

3 Related Works

The deep learning-based methods attempt to estimate the motion blur in the
degraded image and use this blurring information to restore the sharp image [21].
The methods which use the multi-scale framework [22] to recover the deblurred
image are computationally expensive. The use of GANs also increasing in blind
kernel free single image deblurring tasks such as Ramakrishnan et al. [24] used
image translation framework [7] and densely connected convolution network [23].
The methods above performs image-deblurring task, when input image may
have blur due to multiple sources. Kupyn et al. [3] proposed the DeblurGAN
method, which uses the Wasserstein GAN [25] with gradient penalty [26] and
the Perceptual loss [8]. Kupyn et al. [27] proposed a new method DeblurGAN-
v2, which is faster and has better results than the previously proposed method;
this method uses the feature pyramid network [28] in the generator. A study of
various single image blind deblurring methods is provided in [29].
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4 Our Method

In our proposed method, the blur kernel knowledge is not present, and from
a given blur image IB as an input, our purpose is to develop a sharp image
IS from IB . For the deblurring task, we train a Generator network denoted
by GθG

. During the training period, along with Generator, there is one another
CNN also present DθD

referred to as the critic network (i.e., Discriminator). The
Generator GθG

and the Discriminator DθD
are trained in an adversarial manner.

In what follows, we describe the network architecture and the loss functions for
our method.

4.1 Network Architecture

The generator network, a chief component of proposed model, is a transformed
version of residual network architecture [6] (Sect. 4.1). The discriminator archi-
tecture, which helps to learn the Generator, is a transformed version of Marko-
vian Discriminator (PatchGAN) [7] (Sect. 4.1). The residual network architec-
ture helps us to build deeper CNN architectures. Also, this architecture is effec-
tive because we want our network to learn only the difference between pairs of
sharp and blur images as they are almost alike in values.

We used the depthwise separable convolution in place of the standard con-
volution layer to reduce the inference time and model size [1]. Generator aims
to generate sharp images given the blurred images as input. Note that gener-
ated images need to be realistic so that the Discriminator thinks that generated
images are from the real data distribution. In this way, the Generator helps to
generate a visually attractive sharp image from an input blurred image. Discrim-
inator goal is to classify if the input is from the real data distribution or output
from the generator. Discriminator accomplish this by analyzing the patches in
the input image for making a decision. The changes which we made in the resnet
block displayed in Fig. 3, we convert structure (a) into structure (b).

Fig. 5. The figure shows the generator architecture of our Fast Motion Deblurring-
cGAN. Given a blurred image as input, Generator outputs a realistic-looking sharp
image as output.
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Generator Architecture. The Generator’s CNN architecture is displayed in
Fig. 5. This architecture is alike to the style transfer architecture which is pro-
posed by Johnson et al. [8]. The generator network has two strided convolu-
tion blocks in begining with stride 2, nine depthwise separable convolutions
based residual blocks (MobileResnet Block) [1,6], and two transposed convo-
lution blocks, and the global skip connection. In our architecture, most of the
computation is done by MobileResNet-Block. Therefore, we use depthwise sep-
arable convolution here to reduce computation cost without affecting accuracy.

Every convolution and transposed convolution layer have an instance normal-
ization layer [33] and a ReLU activation layer [34] behind it. Each Mobile Resnet
block consists of two depthwise separable convolutions [1], a dropout layer [35],
two instance normalization layers after each separable convolution block, and
a ReLU activation layer. In each mobile resnet block, after the first depth-wise
separable convolution layer, a dropout regularization layer with a probability of
zero is added. Furthermore, we add a global skip connection in the model, also
referred to as ResOut.

When we use many convolution layers, it will become difficult to generalize
over first-level features, deep generative CNNs often unintentionally memorize
high-level representations of edges. The network will be unable to retrieve sharp
boundaries at proper positions from the blur photos as a result of this. We
combine the head and tail of the network. Since the gradients value now can
reach from the tail straight to the beginning and affect the update in the lower
layers, generation efficiency improves significantly [36]. In the blurred image IB ,
CNN learns residual correction IR, so the resulting sharp image is IS = IB + IR.
From experiments, we come to know that such formulation improves the training
time, and generalizes the resulting model better.

Discriminator Architecture. In our model, we create a critic network DθD

also refer to as Discriminator. DθD
guides Generator network GθG

to generate
sharp images by giving feedback on the input is from real data distribution or
generator output. The architecture of Discriminator network is shown in Fig. 4.
We avoid high-depth Discriminator network as it’s goal is to perform the classifi-
cation task unlike image synthesis task of Generator network. In our FMD-cGAN
framework, the Discriminator network is similar to the Markovian patch discrim-
inator, also refer to as PatchGAN [7]. Except for the last convolutional layer,
InstanceNorm layer and LeakyReLU with a value of 0.2, follow all convolutional
layers of the network. This architecture looks for explicit structural characteris-
tics at many local patches. It also ensures that the generated raw images have a
rich color.
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Table 1. The table shows the results on GoPro test dataset. Here, FMD-cGANWILD

and FMD-cGANComb are our methods (Sect. 5). It could be observed that our frame-
works achieves good quantitative performance.

Method PSNR SSIM Time (GPU) Time (CPU) #Parameters MACs

Sun et al. [5] 24.64 0.842 N/A N/A N/A N/A

Xu et al. [41] 25.1 0.89 N/A N/A N/A N/A

DeepFilter [24] 28.94 0.922 0.3 s 3.09 s 3.20M N/A

DeblurGANWILD [3] 27.2 0.954 0.45 s 3.36 s 6.06M 35.07G

DeblurGANComb 28.7 0.958

DeblurGANv2Resnetv2 [27] 29.55 0.934 0.14 s 3.67 s 66.594M 274.20G

DeblurGANv2Mobnetv2 28.17 0.925 0.04 s 1.23 s 3.12M 39.05G

SRN [39] 30.10 0.932 1.6 s 28.85 s 6.95M N/A

DeepDeblur [22,48] 30.40 0.901 2.93 s 56.76 s 11.72M 4727.22G

FMD-cGANWILD 28.33 0.962 0.01 s 0.28 s 1.98M 18.36G

FMD-cGANComb 29.675 0.971

4.2 Loss Functions

The total loss function for FMD-cGAN deblurring framework is the mixture of
adversarial loss and content loss.

Ltotal = LGAN + λ · LX (6)

In Eq. 6, LGAN represents the advesarial loss (Sect. 4.2), LX represents the con-
tent loss (Sect. 4.2) and λ represents the hyperparameter which controls the
effect of LX . The value of λ is equal to 100 in the current experiment.

Adversarial Loss. To train a learning-based image restoration network, we
need to compare the difference between the restored and the original images
during the training stage. Many image restoration works are using an adversarial-
based network to generate sharp images [19,20]. During the training stage, the
adversarial loss after pooling with other losses helps to determine how good
the Generator is working against the Discriminator [22]. Initial works based on
conditional GANs use the objective function of the vanilla GAN as the loss
function [19]. Lately, least-square GAN [42] was observed to be better balanced
and produce the good quality desired outputs. We apply Hinge loss [31] (Eq. 4
and Eq. 5) in our model to provide good results with the generator architecture
[49]. Generator loss (LG) and Discriminator loss (LD) are computed as follows
(Eq. 7 and Eq. 8).

LG = −
N∑

n=1

DθD
(GθG

(IB)) (7)

LD = −
N∑

n=1

min(0,DθD
(IS) − 1) −

N∑

n=1

min(0,−DθD
(GθG

(IB)) − 1) (8)
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If we do not use adversarial loss in our network, it still converges. However,
the output images will be dull with not many sharp edges, and these output
images are still blurry because the blur at edges and corners is still intact. If we
only use adversarial loss in our network, edges are retained in images, and more
practical color assignment happens. However, it has two issues: still, it has no
idea about the structure, and Generator is working according to the guidance
provided by Discriminator based on the generated image. We remove these issues
with the adversarial loss by combining adding with the Perceptual loss.

Content Loss. Generally, there are two choices for the pixel-based content loss:
(a) L1 or MAE loss and (b) L2 or MSE loss. Moreover, above loss functions may
produce blurry artifacts on the generated image due to the average of pixels
[19]. Due to this issue, we used Perceptual loss [8] function for content loss.
Unlike L2 Loss, Perceptual compares the difference between CNN feature maps
of the restored image and the original image. This loss function puts structural
knowledge into the Generator, which helps it against the patch-wise decision of
the Markovian Discriminator. The equation of the Perceptual loss is as follows:

LX =
1

Wi,jHi,j

Wi,j∑

x=1

Hi,j∑

y=1

(φi,j(IS)x,y − φi,j(GθG
(IB))x,y)2 (9)

where Wi,j and Hi,j are the width and height of the (i, j)th ReLU layer of the
VGG-16 network [43], here i and j denote jth convolution ( after activation)
before the ith max-pooling layer. φi,j denotes the feature map. In our current
method, we use the output of activations from V GG3,3 convolutional layer. The
output from activations of the end layers of the network represents more features
information [19,44]. The Perceptual loss helps to restore the general content
[7,19]; on the other side adversarial loss helps to restore texture details. If we
do not use the Perceptual loss in our network or use simple MSE based loss on
pixels, the network will not converge to a good state.

4.3 Training Datasets

GoPro Dataset. The images of the GoPro dataset [22] are generated using
the GoPro Hero 4 camera. The camera captures 240 frames per second video
sequences. The blurred images are captured by averaging consecutive short-
exposure frames. It is the most commonly used benchmark dataset in motion
deblurring tasks, containing 3214 pairs of blur and sharp images. We use 1111
pairs of images for testing purposes and the remaining 2103 pairs of images for
training [22].
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REDS Dataset. The Realistic and Dynamic Scenes dataset [38] was designed
for video deblurring and super-resolution, but it is also helpful in the image
deblurring. The dataset comprises 300 video sequences having a resolution of
720 × 1280. Here, the training set contains 240 videos, the validation set contains
30 videos, and the testing set contains 30 videos. Each video has 100 frames.
REDS dataset is generated from 120 fps videos, synthesizing blurry frames by
merging subsequent frames. We have 240*100 pairs of blur and sharp images for
training, 30*100 pairs of blur and sharp images for testing.

5 Training Details

The Pytorch1 deep learning library is used to implement our model. The train-
ing of the model is accomplished on a single Nvidia Quadro RTX 5000 GPU
using different datasets. The model takes image patches as input and fully con-
volutional to be used on images of arbitrary size. There is no change in the
learning rate for the first 150 epochs; after it, we decrease the learning rate lin-
early to zero for the subsequent 150 epochs. We used Adam [45] optimizers for
loss functions in both the Generator and the Discriminator with a learning rate
of 0.0001. During the training time, we kept the batch size of 1, which gives a
better result. Furthermore, we used the dropout layer (rate = 0) and the Instan-
cenormalization layer instead of the batch-normalization layer concept both for
the Generator and the Discriminator [7]. The training time of the network is
approximately 2.5 days, which is significantly less than its competitive network.
We have provided training details in Table 3. We discuss the two variants of
FMD-cGAN as follows.

(1) FMD-cGANwild: our first trained model is WILD, which represents that
the model is trained only on a single dataset such as GoPro and REDS dataset
on which we are going to evaluate it. For example, in the case of the GoPro
dataset model is trained on 2103 pairs of blur and sharp images of the GoPro
dataset.

(2) FMD-cGANcomb: The second trained model is Comb, which is first trained
on the REDS training dataset; after training, we evaluate its performance on
the REDS testing dataset. Now we train this pre-trained model on the GoPro
dataset. We test both trained models Comb and WILD final performance on
the GoPro dataset’s 1111 test images.

1 https://pytorch.org/.

https://pytorch.org/
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Fig. 6. The figure shows visual comparison on the REDS dataset (images are best
viewed after zooming).

Table 2. The table shows the PSNR
and SSIM comparison between FMD-
cGAN (ours) and DeepDeblur [22,48]
on the REDS test dataset.

Method PSNR SSIM

DeepDeblur [22,48] 32.89 0.9207

FMD-cGAN (ours) 31.79 0.9804

Table 3. The table summarises training details
of our methods.

Model Dataset #Train
images

#Test
images

FMD-cGANWILD GoPro 2103 1111

FMD-cGANComb 1. REDS 24000 3000

2. GoPro 2103 1111

6 Experimental Results

We compare the results of our FMD-cGAN with relevant models using the stan-
dard performance metrics (PSNR, SSIM). We also show inference time of each
model (i.e., average running time per image) on a single GPU (Nvidia RTX
5000) and CPU (2 X Intel Xeon 4216 (16C)). To calculate Number of
parameters and Number of MACs operations in PyTorch based model, we use
pytorch-summary2 and torchprofile3 libraries.

2 https://github.com/sksq96/pytorch-summary.
3 https://github.com/zhijian-liu/torchprofile.

https://github.com/sksq96/pytorch-summary
https://github.com/zhijian-liu/torchprofile
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Table 4. Performance and efficiency com-
parison on the different no. of generator
filters (#ngf)

#ngf PSNR SSIM Time (CPU) #Param MACs

48 27.95 0.960 0.20 s 1.13M 10.60G

64 28.33 0.963 0.28 s 1.98M 18.36G

96 28.52 0.964 0.5 s 4.41M 40.23G

Table 5. Performance comparison after
applying convolution decomposition in
different parts of network and #ngf=64

Model PSNR SSIM #Param MACs

Only

ResNetBlock

28.33 0.963 1.98M 18.36G

Downsample +

ResNetBlock

28.24 0.962 1.661M 16.81G

Upsample +

ResNetBlock

28.19 0.961 1.663M 11.79G

6.1 Quantitative Evaluation on GoPro Dataset

Here, we discuss the performance of our method on GoPro Dataset. We used 1111
pairs of blur and sharp images from GoPro test dataset for evaluation. We com-
pare our model’s results with other state-of-the-art model’s results: where Sun
et al. [5] is a traditional method, while others are deep learning-based methods:
Xu et al. [41], DeepDeblur [22], DeepFilter [24], DeblurGAN [3], DeblurGANv2
[27] and SRN [39]. We use PSNR and SSIM value of other methods from their
respective papers.

We show the results in Table 1. It could be observed that FMD-cGAN (ours)
has high efficiency in terms of performance and inference time. FMD-cGAN
also has the lowest inference time, and in terms of no. of parameters and macs
operations also has the lowest value. Furthermore, FMD-cGAN output PSNR
and SSIM values comparable to the other models in comparison.

6.2 Quantitative Evaluation on REDS Dataset

We also show the performance of our framework on the REDS dataset. We used
3000 pairs of blur and sharp images from REDS test dataset for evaluation. We
compare the performance of FMD-cGAN (ours) with the DeepDeblur model [22].
We used the results of DeepDeblur from official GitHub repository - DeepDeblur-
PyTorch4.

We show the results in Table 2. It could be observed that our method achieves
high SSIM and PSNR values which are comparable to DeepDeblur [22]. We
emphasise that our network has a significantly lesser size as compared to Deep-
Deblur [22]. Currently, only the DeepDeblur model used the REDS dataset for
training and performance evaluation.

4 https://github.com/SeungjunNah/DeepDeblur-PyTorch.

https://github.com/SeungjunNah/DeepDeblur-PyTorch
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Fig. 7. The figure shows visual comparison on the GoPro dataset (images are best
viewed after zooming).

6.3 Visual Comparison

Figure 6 shows the visual comparison on the REDS dataset. It could be
observed that FMD-cGAN (ours) restore images comparable to the relevant
top-performing works such as DeepDeblur [22] and SRN [39]. For example, row
1 of Fig. 6 shows that our method preserves the fine object structure details (i.e.,
building) which are missing in the blurry image.
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Figure 7 shows the visual comparison results on the GoPro dataset. It could
be observed that the output of our method is visually appealing in the presence of
motion blur in the input image (see Example 3 of Fig. 7). To provide more clarity,
we show the results for both FMD-cGANWild and FMD-cGANComb (Sect. 5).
FMD-cGAN (ours) is faster and output better reconstruction than other motion
deblurring methods even though our model has fewer parameters (Table 1). We
have provided the extended versions of Fig. 6 and Fig. 7 in the supplementary
material for better visual comparisons.

7 Ablation Study

Table 4 shows an ablation study on the generator network architecture for dif-
ferent design choices. Here, we train and test our network’s performance only
on the GoPro dataset. Suppose #ngf denotes the initial layer’s filters count
in the generator network, affecting filters count of subsequent layers. Table 4
demonstrates how #ngf affects model performance. It could be observed that
if we increase the #ngf then image quality (PSNR) will increase. However, it
increases #parameters and MACs operations also, affecting inference time and
model size.

We divide our generator network into three parts according to its structure:
Downsample (two 3 × 3 convolutions), ResnetBlocks (9 blocks), and Upsample
(two 3 × 3 deconvolutions). To check the network performance, we put separable
convolution into different parts. Table 5 demonstrates model performance after
applying convolution decomposition in different parts of the generator network.
ResNet blocks do most of the computation in the network; from Table 5, we can
see applying convolution decomposition in this part giving better performance.

8 Conclusion

We proposed a Fast Motion Deblurring method (FMD-cGAN) for a single image.
FMD-cGAN does not require knowledge of the blur kernel. Our method uses
the conditional generative adversarial network for this task and is optimized
using the multi-part loss function. Our method shows that using MobileNetv1
architecture consists of depthwise separable convolution to reduce computational
cost and memory requirement without losing accuracy. We also proposed that
using Hinge loss in the network gives good results. Our method produces bet-
ter blur-free images, as confirmed by the quantitative and visual comparisons.
FMD-cGAN is faster with low inference time and memory requirements, and
it outperforms various state-of-the-art models for blind motion deblurring of
a single image (Table 1). We propose as future work to deploy our model in
lightweight devices for real-time image deblurring tasks.
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