
Chapter 4
Dielectric Confinement Affected
Exciton-Polariton Properties of the
Semiconductor Nanowires

K. H. Aharonyan, E. M. Kazaryan, and E. P. Kokanyan

Abstract The nonlocal susceptibility with the cylindrical symmetry in semicon-
ductor quantum wires embedded in the dielectric barrier environment (DQWW) is
calculated. The strong dependence from the wire radius R due to the dielectric mis-
match effect is established (∼ R−8/3). It has been received that the oscillator strength
of the one-dimensional (1D) excitons in DQWW increase strongly with decreasing
R. The Maxwell’s equations are solved in presence with the nonlocal excitonic
response to the dielectric polarization for the DQWW and in a result the effective
boundary conditions just considering a quantum wire presence in the structure have
been established. The scattering coefficient of the light incident on the DQWW is
obtained which strongly depends on the DQWW material parameters such as: (a)
quantum wire radius R and dielectric constant εw, (b) barrier environment dielectric
constant εb. This made it possible to obtain the dispersion spectrum and lifetime for
the 1D exciton-polaritons of the DQWW near the exciton resonance with the oppor-
tunities of the valuable manipulations along with the magnitudes of the DQWW
material parameters.

4.1 Introduction

The strong coupling of the low-dimensional excitons and localized photon states
(exciton-polaritons) has been a subject of considerable interest for a long time in
the optics of semiconductor nanostructures [1–3]. A number of unique physical phe-
nomena were discovered (a Rabbi splitting, a large decrease of the exciton resonance
lifetime [4, 5]) which can be directly aimed at promising applications in semiconduc-
tor optoelectronics. In this regard, intense theoretical efforts [6–10] have been carried
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out over the past time to realize the photonic structures such as planar and cylindrical
multilayeredmicrocavities, wide band-gap semiconductor photonic structures which
offer unique optical properties.

Toprovide a substantial enhancement of light-matter interactionwith thequantum-
confined excitons and thus to support high polariton stability, the photonic structures
should provide both the large exciton binding energy and the oscillator strength val-
ues [1, 2, 9]. Due to this a search for ways to enhance these physical values in
photonic structures is a decisive factor in this area [11–15].

In the bulk semiconductors a role of Wannier-Mott excitons to optical response is
insignificant compared to interband transitions since the exciton line dimensionless
oscillator strength (per unit crystal cell) is the order of (d0/a0ex )3 ≈ 10−4 ÷ 10−5,
where d0 is the lattice constant and a0ex is the excitons effective radii taking the
values as a0ex � d0.

Such an estimate follows from the physical condition that the dimensionless oscil-
lator strength is of the order of exciton radiative recombination probability (i.e. local-
ization probability of electron and hole in the same crystal lattice unit cell) propor-
tional to the|φex (0) |2 value as compared to the intensity of the absorption spectrum
of the semiconductor, where φex is the exciton wave function. Here the localization
probability is inversely proportional to the exciton effective volume Vex ∼ a3ex and
the absorption intensity is characterized by the localized Wannier functions linear
combinations of band states just within the crystal unit cell volume V0 and estimating
as proportional to V−1

0 ∼ d−3
0 .

In turn, the exciton effects in semiconductor low-dimensional structures-quantum
wells (QW), quantum wires (QWW) are much more prominent and accessible for
experimental detection than in bulk samples both in the absorption and in the emis-
sion. This, first of all, found the confident confirmation in experiments on optical
absorption and photoluminescence [16, 17]. Theoretically, this is explaining by an
increase in the exciton binding energy and in the oscillator strength of the correspond-
ing exciton transition with a decrease in the spatial dimensions of the semiconductor
quantum sample when takes place the compression of the exciton wave function in
the spatial confinement direction (quantum confinement (QC)). In particular, in the
thin QW there is a correspondingly fourfold and eightfold increase of the exciton
binding energy and the exciton transition oscillator strength [18, 19].

These results refers the physical situation, when the dielectric constants mismatch
between semiconductor quantum sample (semiconductor/dielectric quantum wells
(DQW) and quantum wires (DQWW)) and surrounding dielectric barrier environ-
ment (εw, εb) is small or neglected. The difference between εw and εb leads to
an unhomogeneous polarization of the quantum structure. In result for the case of
εw � εb and the distances between the charges as large as the QC spatial size (DQW
thickness d or DQWW radius R) the charges produced field in the barrier begins to
play a perceptible role and force electron and hole into the middle of the quantum
sample and, so, tomodify and enhance their interaction (dielectric confinement effect
(DC)) [20–22]. As correspondingly are shown in Refs. [23, 24] and [22] the effective
exciton volume in DQW and DQWWmight radically reduced since in the direction
normal to the DQW the exciton dimension is ∼ d and the in-plane effective radius
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Fig. 4.1 The cylindrical
DQWW of a radius R

due to DC effect takes the value ∼ √
a0exd , while in the direction normal to the

DQWW axes the exciton dimension is just ∼ R and in the direction parallel to axes
the exciton effective radius becomes the value (a0ex R2)1/3.

As follows, in addition to the existing enhancements from the QC effect, the DC
effect in turn might lead to the further strong increase of the exciton binding energy
and the exciton transition oscillator strength with decreasing of the DQW thickness
d or DQWW radius R. The latter creates the more favorable conditions in these
structures to provide a substantial enhancement of the light-matter interaction to
provide a substantial enhancement of the light-matter interaction with the quantum-
confined excitons and thus to support high polariton stability. In this connection in
Ref. [11] the contribution of the excitonic transition to the electromagnetic response
of the DQW and the possibilities of the propagation of the polariton waves are
considered (Fig. 4.1).

The aim of the present paper is to develop an analogous formalism for the analysis
of the particular features of the light-matter interactionwith the one-dimensional (1D)
DC enhanced dipole-allowed excitons in the DQWWwith the cylindrical symmetry
confinement. Specific azimuthal symmetry here substantially simplifies the convo-
lution of the problem, as together with the 1D wave vector an additional quantum
number (azimuthal) is available now.

The outline of presented paper is as follows. In Sect. 4.2, we describe the macro-
scopic theory of the electromagnetic response of the DQWW to the electromagnetic
field with frequency ω and projection of wave vector k on the wire axes (k‖). The
next section is devoted to obtaining explicitly effective boundary conditions which
are considering the dependence of the dielectric properties on the wire radius R.
The Sect. 4.4 consists of an application of the obtained effective boundary condi-
tions for the calculation of the light reflection coefficient from the structure under
consideration.
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4.2 Electromagnetic Linear Response to the
Electromagnetic Field in the Macroscopically
Homogeneous and Isotropic DQWW

We are considering an infinitely long cylindrical DQWW of a radius R filled by an
active material with the dielectric constant εw and immersed in a dielectric barrier
environment with the dielectric constant εb. Let take in the cylindrical polar coor-
dinates (ρ,φ, z) , where z axes coincides with the DQWW axes, and the plane of
incidence (ρ,φ) be normal to the wire axes. Here a strong spatial confinement regime
would be assumed presupposing that a quantum wire radius is small compared with
the exciton Bohr radius a0ex = εw�

2/μ∗
exe

2 for bulk samples ( a0ex � R), μ∗
ex is the

exciton reduced mass. Then, as follows, the distances along the wire axes |z| � R
would be essential in discussed case and therefore the one-dimensional (1D) long
wave region k‖ � R−1 could be appropriate here. For this case, it is quite reasonable
to introduce a spatially separated exciton wave function in the form

Ψk‖,Me,Mh (ρe,ρh, ze, zh) = φl (ze − zh) Υ j,Me (ρe) Υ j,Mh (ρh) . (4.1)

Here φ (z) is the 1D wave envelope function of the exciton pair relative motion,
l = 1, 2, ... numbers the 1D exciton sublevels, Υ (ρ,φ) is the one-particle wave
function describing the electron or hole transverse relative to theDQWWaxesmotion
and in the QC model of a square well with infinite walls is characterized by [22]

Υ j,M (ρ,φ) = 1

s1/2
ei |M |φ J|M |

(
λ

|M |
j

ρ

R

)
/J|M |+1

(
λ

|M |
j

)
, (4.2)

whereMe(h) = 0, 1, 2, . . . is the one-particle angularmomenta and j = 1, 2, ... num-
bers the QWW subbands, λ|M |

j are the roots of J|M | (x) = 0.
As shown in Ref. [22], for the DQWW satisfying the system of conditions a0ex �

R � a0ex/ (εr ln εr )
2, where εr = εw/εb, the effective radii of the exciton ground

and first excited bound states fall into the range of distances εr (R/z)2 ln (|z|/R) � 1
with |z| � R, where exciton interaction potential has the form

V (z) = − e2

εs R

√
εr ln εr

2

[
1 − |z|

R

√
2

εr ln εr

]
(4.3)

and for that the 1D wave function of exciton pair relative motion and 1D exciton
bound state energy spectrum have the form [25, 26]

φl (z) = N (μl)

a1/2ex

Φ

( |z|
aex

+ μl

)
, l = 1, 2, 3, . . . , - even states, (4.4)
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φl+1 (z) = N (ξl)

a1/2ex

|z|
z

Φ

( |z|
aex

+ ξl+1

)
, l = 1, 2, 3, . . . , - odd states, (4.5)

Eeven(odd)
l = − e2

εs R

√
εr ln εr

2

[
1 − μl (ξl+1)

21/3

√
2

εr ln εr

a0ex
R

]
, (4.6)

whereΦ (z) is theAiry function,μl are the solutions ofΦ
′
(z) = 0, ξl are the solutions

ofΦ (z) = 0, aex = (a0ex R2/2)1/3, N is the normalization constant (for more details
see [25, 26]). As follows from Eq. (4.6), the exciton binding energy of the DQWW is
determined by the dielectric properties of the surroundingwiremedium and increases
as ∼ R−1.

The oscillator strength (per unit length of the DQWW) of the associated optical
transition is

fx
L

= iω
2m0

�e2
μcv

∣∣∣∣
∫

ΨM (ρe = ρh, ze = zh) dρedze

∣∣∣∣
2

, (4.7)

where μcv is the dipole matrix element in the bulk material, L is the wire length, m0

is the electron free mass. In Eq. (4.7) only the 1D excitons with M = Me + Mh = 0
are allowed in the dipole approximation because the others have zero exciton wave
function at the origin of the relative coordinates. As follows from Eqs. (4.1), (4.2)
and (4.3) the 1D exciton effective volume Vex in DQWW decreases as (R/a0ex )8/3

and since |ΨM (0) |2 ∼ V−1
ex , so the 1D exciton line oscillator strength fex increases

as R−8/3.
The 1D excitonic transition contribution to the electromagnetic linear response of

the cylindrical DQWWinduces the dielectric polarization connectedwith the electric
field E as

Pα (ρ) =
∫

χαβ

(
k‖,ω,ρ,ρ′) Eβk‖ω

(
ρ′) dρ′, (4.8)

where the nonlocal dielectric Fourier-transformed polarizability χαβ is given by

χαβ

(
k‖,ω,ρ,ρ′) = χαβ

(
k‖,ω

) [
Υ j,M (ρ)

]2 [
Υ j,M

(
ρ′)]2 , (4.9)

which will be calculated in accordance with the second order perturbation theory.
Here we assume that the light wave propagate in the plane orthogonal to the

DQWW axes and consider only the exciton ground state in the wire which is charac-
terized by M = 0 angular momentum. Given the cylindrical symmetry of the exciton
ground state, the integral in Eq. (4.8) is nonzero only in the case of cylindrical light
waves having zero angular momentum. Thus in the following we limit the discussion
to that situation only.

After necessary actions with the excitonic wave functions (4.1), (4.2) and (4.4)
for the Fourier-transformed dielectric polarization Pα

(
k‖,ω,ρ

)
obtain
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Pα

(
k‖,ω,ρ

) = Λαβχ

(
k‖,ω; ρ

)
Ēβ, (4.10)

where

χ
(
k‖,ω;ρ

) = χ
(
k‖,ω

)
⎛
⎝ J|M |

(
λ

|M |
j

ρ
R

)

J|M |+1

(
λ

|M |
j

)
⎞
⎠

2

, (4.11)

and Ē = ∫ [
Υ j,M

(
ρ′)]2 Ek‖ω

(
ρ′) dρ′.

In the Eq. (4.11)

χ
(
k‖,ω

) =
(
2μ∗

exe
8
�
4
)1/3

[N (μl) Φ (μl)]
2

πε
1/3
s R8/3

|Vcv|2
εk‖

(
ε2k‖ − (�ω)2

) , (4.12)

where Vcv is the matrix element of the velocity operator corresponding to the transi-
tion from the valence to conduction band, εk‖ is the resonant energy of exciton
creation, including its kinetic energy in the state with momentum �k‖.

In Eq. (4.10) the coefficients Λαβ , where (α,β) = (ρ,φ, z), accounts the polar-
ization structure of the exciton transition, i.e., the symmetry of wave functions of the
c and v bands. As a rule, in assumption that the wire and barrier environments are
optically isotropic, these coefficients contain just two characteristic terms: Λz = Λ‖
and Λρ = Λ⊥.

Equation (4.11) exhibits clearly the strong increase of the excitonic oscillator
strength in DQWW as R decreases. Except that Eqs. (4.10)–(4.11) expresses the
nonlocal structure in rho, reflecting, as in the DQW [11–13], the peculiar “firmness”
of the exciton transverse to wire axes wave function (4.1). Thereby the exciton
creation probability defines by the field strength averaged over the electron and hole
transverse to wire axes wave func-tions and the spatial distribution of the induced
current itself is proportional to the same wave functions at ρe = ρh = ρ′.

4.3 Effective Boundary Conditions for the Electromagnetic
Fields in the Macroscopically Homogeneous and
Isotropic DQWW

The distribution of the electromagnetic field in the DQWW in presence of such polar-
izationwill be found in analogywith thewell establishedmethod related the effective
boundary conditions in QW systems [1, 11, 27] connected with the field magnitudes
in the neighboring media and are followed from the Maxwell’s equations. Here we
expand this method on the DQWW system case in the first time.

Thereby in accordance with the Eqs. (4.8), (4.9) and (4.10) the corresponding
electromagnetic field induction vector is given by
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Dα

(
k‖,ω; ρ

) = εwEαk‖ω (ρ) + 4πΛαβχ
(
k‖,ω, ρ

)
Ēβ, (4.13)

With the aim of to obtain the boundary conditions let now integrate the Maxwell
equations and take into consideration only the leading terms in the small quantities
k‖R and (ω/c)R together with the Eq. (4.13). In these equations we are dealing with
the monochromatic fields E, D and H vary in space according to the law

A (r, t) = A (ρ) ei(k‖z−ωt) =
∑
|M |

A (ρ) ei |M |φei(k‖z−ωt). (4.14)

The resulting solutions will be matched in the barrier and QWW regions and
the latter will be occurred only by these boundary conditions. Below, using these
boundary conditions, we will analyze the reflection coefficient from the DQWW
structure.

Let at first start from the integrating of the Maxwell equation divD = 0 . The
latter in the polar planar coordinates (ρ,φ) for the case of exciton ground state with
the condition M = 0 takes the form

eρ

∫ R

0

∫ 2π

0

1

ρ

∂

∂ρ

(
ρD(0)

ρ (ρ) eik‖z
)

ρdρdφ + ez

∫ R

0

∫ 2π

0

∂

∂z

(
D(0)
z (ρ) eik‖z

)
ρdρdφ = 0,

(4.15)

which after integrating together with Eq. (4.13) becomes

E(0)
ρ (R) = − i R

εw

ε‖
(
k‖ Ē

(0)
z (R)

)
eρ, (4.16)

where Ē (0)
1z (R) = ∫ R

0 E (0)
z (ρ) ρdρ and

ε‖ = εw + 4πΛ‖χ
(
k‖,ω

)

J 2
1

(
λ0
1

) , (4.17)

In Eq. (4.15) the term associatedwith an angular variation of the electric field com-
ponents is obviously omitted. Here Eq. (4.16) links the corresponding components
of the electric field.

To receive the complete set of these components let now deal with the equation
rotE = iω

c H as well. Analogous to the Eq. (4.15) for this case we have

− eρ

∫ R

0

∫ 2π

0

∂E (0)
φ

∂z
ρdρdφ + eφ

∫ R

0

∫ 2π

0

(
∂E (0)

ρ

∂z
− ∂E (0)

z

∂ρ

)
ρdρdφ + ez

∫ R

0

∫ 2π

0

1

ρ

∂(ρE (0)
φ )

∂ρ
ρdρdφ,

(4.18)

where eρ, eφ and ez are the polar directional unit vectors.
Let now multiply Eq. (4.18) vectorially by eρ and make use of the Eq. (4.14) then

we receive
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E(0)
φ eφ + E(0)

z ez = iωR

c

[
H̄

(0)
(R) eρ

]
+ Ē(0)

2z ez + ik‖R
2εw

D̄(0)
ρ

εw + 8πΛ⊥χ
[
J−2
1 − J−4

1

]

εw + 8πΛ⊥χ
ez ,

(4.19)

where H̄
(0)

(R) = ∫ R
0 H (0) (ρ) ρdρ, Ē (0)

2z (R) = ∫ R
0 E (0)

z (ρ) dρ, D̄(0)
ρ (R) =∫ R

0 D(0)
ρ (ρ) ρdρ.

If combining the Eqs. (4.16) and (4.19) we find the electric field boundary condi-
tions as

E (R) = − i R

εw

ε‖
(
k‖ Ē

(0)
1z (R)

)
eρ − iωR

c

[
H̄

(0)
eρ

]
+ Ē (0)

2z ez + ik‖R
εs

D̄ρ

εw + 8πΛ⊥χ
[
J−2
1 − J−4

1

]

εw + 8πΛ⊥χ
ez ,

(4.20)

From the magnetic field equations divD = 0, rotD = − iω
c D the similar manip-

ulations produce finally the corresponding boundary conditions as

H (R) = −i R
(
k‖ H̄ (0)

z (R)
)
eρ − iωR

c
ε‖

[
Ē

(0)
(R) eρ

]
+ H̄ (0)

z ez + i R
(
k‖H(0)

ρ

)
ez,

(4.21)

where H̄ (0)
z (R) = ∫ R

0 H (0)
z (ρ) ρdρ, Ē

(0)
(R) = ∫ R

0 E(0) (ρ) ρdρ, H̄ (0)
ρ (R) =∫ R

0 H (0)
ρ (ρ) ρdρ.

In Eqs. (4.20) and (4.21) E (R) and H (R) are the boundary values of the electric
and magnetic fields in the barrier region, c is the light velocity. Under boundary con-
ditions after Exps. (4.20) and (4.21), a presence of a DQWW, as already emphasized,
is taken into account up to the first-order terms in small parameters∼ k‖R andωR/c.

At the same time due to the Eq. (4.17) the first terms of the right hand sides in the
Eqs. (4.20) and (4.21), i.e. the terms ∼ ε‖ ωR

c , would be hold only in the discussions.
In turn, the last term in Eq. (4.20) will be taken into account in the narrow frequency
range with εw + 8πΛ⊥χ � 1.

4.4 The Scattering Coefficient of the Light from the
Macroscopically Homogeneous and Isotropic DQWW

In this section let calculate the scattering coefficient rDQWW of electromagnetic light
wave from the discussed DQWW structure based on the effective boundary con-
ditions after Eqs. (4.20) and (4.21).

As we admitted in Sect. 4.2 the electromagnetic waves of a cylindrical symmetry
propagate in the plane orthogonal to the DQWW axes (z axes) and along the latter
is directed the electric-field vector (p-polarized light). With that we consider only
the exciton ground state in the quantum wire, just characterized by zero angular
momentum and are interested in results close to the exciton resonance. We note that
in the case with M = 0 the excitonic polarization lies along the DQWW axes and
the mode under consideration has longitudinal nature. Accordingly, as in the [15],
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we consider the exciton resonant modes appearing as resonances of the Breit-Wigner
type in the rDQWW of the barrier waves.

Let establish the scattering coefficient rDQWW as the ratio of the amplitudes of
outgoing and incoming cylindrical waves in the DQWW barrier region at ρ = R
for which the p-polarized electromagnetic field correspondingly has the forms [15]
outgoing and incoming cylindrical waves in the DQWW barrier region at ρ = R for
outgoing and incoming cylindrical waves in the DQWW barrier region at ρ = R for
which the p-polarized electromagnetic field correspondingly has the forms [15]

{
Einc
z = H (1)

0 (kρ) = J0 (kρ) + i N0 (kρ)

Hinc
φ = i

√
εb

k
k0

(
H (1)

0 (kρ)
)

= i
√

εb
k
k0

(
J ′
0 (kρ) + i N ′

0 (kρ)
) , (4.22)

{
Eout
z = H (2)

0 (kρ) = J0 (kρ) − i N0 (kρ)

Hout
φ = i

√
εb

k
k0

(
H (2)

0 (kρ)
)

= i
√

εb
k
k0

(
J ′
0 (kρ) − i N ′

0 (kρ)
) , (4.23)

where =
√
k20 − k2‖ , k0 = √

εb
ω
c , J0 (x) and N0 (x) are the zeroth-order regular and

singular Bessel functions, respectively, J ′
0 (x) = −J1 (x) and N ′

0 (x) = −N1 (x) are
the first derivatives of these functions.

For this type of barrier resonant modes when taking into account the effective
boundary conditions after Eqs. (4.20) and (4.21) we have

{
Ez (kρ) |ρ=R+ = E (0)

2z (kρ) |ρ=R−

Hφ (kρ) |ρ=R+ = − iωR
c ε‖γE (0)

2z (kρ) |ρ=R−
, (4.24)

where
Ez (kρ) |ρ=R+ = Einc

z (kρ) |ρ=R+ + rDQWW Eout
z (kρ) |ρ=R+ , (4.25)

Hφ (kρ) |ρ=R+ = Hinc
φ (kρ) |ρ=R+ + rDQWW Hout

φ (kρ) |ρ=R+ (4.26)

and γ = Ē (0)
1z (R) /Ē (0)

2z (R) ∼ 1.
After substituting the Eqs. (4.22), (4.23), (4.25) and (4.26) in Eq. (4.24) we get

for the scattering coefficient rDQWW as

rDQWW = [ΛN0 (kR) − N1 (kR)] − i [ΛJ0 (kR) − J1 (kR)]

[ΛN0 (kR) − N1 (kR)] + i [ΛJ0 (kR) − J1 (kR)]
, (4.27)

where Λ = ωR
c
√

εb
ε‖γ and ε‖ is defined after Eq. (4.17).
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Equation (4.27) presents the scattering coefficient of p-polarized light from the
DQWW structure at normal to the wire axes incidence near ω = ωex = εk‖�

−1 and
strongly depends from the DQWW material parameters such as: (a) quantum wire
radius R and dielectric constant εw, (b) barrier dielectric constant εb.

Since here we are dealing with an accuracy of small parameters ∼ k‖R and ωR/c
then Eq. (4.27) will take the following limiting form

rDQWW = (2/π)
[
Λ ln (kR) + (kR)−1

] − iΛ

(2/π)
[
Λ ln (kR) + (kR)−1

] + iΛ
, (4.28)

where the asymptotic small parameter limits of the Bessel functions are taken into
account. If now substitute corresponding expressions for Λ, ε‖ and χ parameters in
Eq. (4.28) then after simple transformations we receive as in Ref. [15] a Breit-Wigner
type final form for the scattering coefficient of the p-polarized light

rDQWW = ω − ω̃p
(
k‖,ωex

) − iΓ
(
k‖,ωex

)

ω − ω̃p
(
k‖,ωex

) + iΓ
(
k‖,ωex

) , (4.29)

with

ω̃p
(
k‖,ωex

) = ωex + α(k0R)2 ln (kR)

εb + αεw(k0R)2 ln (kR)
Ωex , (4.30)

where

Ωex = (2μ∗
exe

8)1/3 [N (μl)Φ (μl)]
2 |Vcv|2

πε
1/3
w �5ω6

ex R
8/3

. (4.31)

Here the dispersion law for the DQWW structure exciton-polaritons and their
ra-diative broadening would be found from the following expressions

ω = ω̃p
(
k‖,ωex

)
(4.32)

and

Γ
(
k‖,ωex

) = αεb(k0R)2 ln (kR)

(εb + αεw(k0R)2 ln (kR))(εb + α(k0R)2 ln (kR))
Ωex . (4.33)

The Eqs. (4.30)–(4.33) made it possible to obtain the dispersion spectrum and
life-time for the 1D exciton-polaritons of the DQWW near the exciton resonance
with the opportunities of the valuable manipulations along with the magnitudes of
the DQWW material parameters.

In conclusion, following the typical procedure for the optics of 2D system [1,
2, 27], we have developed a theory to solve Maxwell’s equations together with the
non-local 1D excitonic response to the dielectric polarization of the DQWW in the
presence of the dielectric mismatch effect. This permits to calculate the dispersion
spectrum of 1D exciton-polaritons of the DQWW near the excitonic resonance.
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