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Approximate Solutions of a Kinetic
Theory for Graphene
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Abstract The effective mass approximation is analysed in a nonperturbative kinetic
theory approach to strong field excitations in graphene. This problem is highly actual
for the investigation of quantum radiation from graphene, where the collision inte-
grals in the photon kinetic equation are rather complicated functionals of the distri-
bution functions of the charge carriers. These functions are needed in the explicit
analytic definition as solutions of the kinetic equations for the electron-hole exci-
tations in the presence of a strong electromagnetic field. In the present work it is
shown that the suggested approach is rather effective in a certain range of nonlin-
earity parameters. In the standard massive quantum electrodynamics the usability of
the analogical approximation is limited to a very narrow region of parameters of the
external field.
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15.1 Introduction

It is well known that the interaction of carriers in graphene with an external elec-
tromagnetic field is strongly nonlinear with respect to the parameters of the external
field [1–3] and is nonanalytic in the fine structure constant [4, 5]. This renders
impossible applications of perturbation theory unjustified and stimulates the search
for nonperturbative approaches. Paradigms are here exactly solvable quantum field
theory models. However, these solutions in graphene are limited to narrow classes of
external field models (constant electric field [6], Eckart’s potential [7]). Alternative
cases are founded either on direct application of the basic equations of motion [8,
9] or on the nonperturbative kinetic theory [1–3, 10] constructed in analogy to the
standard strong field QED [11–14].

A higher level of description of the graphene excitations is connected with the
investigation of differentmechanisms of radiation. In the simplest case the question is
about the emission of a quasiclassical electromagnetic field by the plasma currents in
graphene [15, 16].There is also the radiationof a quantizedfield that is the result of the
direct interaction of the charge carriers with the photon field. A consistent realization
of this approach is based on a truncation procedure of the Bogoliubov-Born-Green-
Kirkwood-Yvon (BBGKY) chain of equations for the correlation functions of the
electron-hole-photon—system [3]. This leads to a closed system of kinetic equations
(KEs) with collision integrals (CIs) of non-Markovian type in the electron-hole and
photon sectors and with the Maxwell equation for the acting inner (plasma) field. As
far as the evolution of the electron-hole plasma is accompanied by high-frequency
quantum oscillations, in the standard strong field quantum electrodynamics known
as Zitterbewegung, any solution of this KE system turns out very susceptible to the
selection not only of the model and the parameters of the external field but also to
the necessary roughening in the process of calculating the physical quantities.

Belowwewill consider this problem on the examples of two approximative meth-
ods for the solution of the basic KEs describing the production of eh-pairs under the
action of an external field: the low density approximation [17] and the method of
the asymptotic decompositions [18] (Sect. 15.2). The ideas for these approaches are
borrowed from the standard QED. In the considered case of the massless theory, an
essential role plays the effective mass approximation [19]. The results of analytical
calculations of the basic functions of the kinetic theory are compared among them-
selves and with the exactly solvable model (Sect. 15.3). The considered examples
show that the introduction of the effective electromagnetic mass allows to obtain
rather simple expansions for the distribution functions of the electron-hole plasma
in graphene for time dependent electric fields with different pulse shape.
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15.2 The Basic KE and Its Approximate Solutions

The basic KE for description of excitation and evolution of the electron-hole plasma
in graphene under the action of an external quasiclassical spatially uniform time-
dependent electric field with the vector potential Aμ = (0, A(1)(t), A(2)(t), 0) in the
Hamiltonian gauge A(0) = 0 can be written in the integro-differential form [1–3, 10]

ḟ (p, t) = 1

2
λ(p, t)

∫ t

t0

λ(p, t ′)[1 − 2 f (p, t ′)] cos θ(p; t, t ′)dt ′ (15.1)

or as the equivalent system of ordinary differential equations

ḟ (p, t) = 1

2
λ(p, t)u(p, t), (15.2)

u̇(p, t) = λ(p, t)
[
1 − 2 f (p, t)

] − 2ε(p, t)

�
v(p, t), v̇(p, t) = 2ε(p, t)

�
u(p, t).

Here f (p, t) is the distribution function of charge carriers introduced by taking
into account the electroneutrality f (p, t) = fe(p, t) = fh(−p, t), while the auxiliary
functions u(p, t) and v(p, t) are defined as [2]

u(p, t) = i
[
f (+)(p, t) − f (−)(p, t)

]
, v(p, t) =

[
f (+)(p, t) + f (−)(p, t)

]
(15.3)

via the anomalous averages

f (+)(p, t) = 〈in|a+(p, t)b+(−p, t)|in〉, f (−)(p, t) = 〈in|b(−p, t)a(p, t)|in〉, (15.4)

where a+ (a) and b+ (b) are the creation (annihilation) operators for electrons and
holes, respectively. The excitation function λ(p, t) in the low energy model is deter-
mined as

λ(p, t) = ev2
F [E (1)(t)P2 − E (2)(t)P1]

ε2(p, t)
, (15.5)

where vF = 106 m/s is the Fermi velocity for electrons in graphene, E (k) =
− 1

c Ȧ
(k)(t) is the field strength (k = 1, 2), Pk = pk + e

c A
k(t) is the quasi-momentum

(generalized momentum) and ε(p, t) = vF

√
P2 is the quasi-energy. The electron

charge is −e. Finally, the quantity θ(p; t, t ′) in the KE (15.1) is the phase,

θ(p; t, t ′) = 2

�

∫ t

t ′
dt ′′ε(p, t ′′). (15.6)

The KE (15.1) is an integro-differential equation of the non-Markovian type with
a fastly oscillating kernel. There is an integral of motion [1, 2]

(1 − 2 f )2 + u2 + v2 = const, (15.7)
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where the constant is fixed with the corresponding initial condition.
The KEs (15.1), (15.2) for the case of graphene were obtained in the works [1–3,

10] by theBogoliubovmethod of canonical transformations that can by realized in the
massless D = 2 + 1 theory in an explicit form. On the other hand the system (15.2)
can be reduced from the general system of twelve KEs in the standard QED [20].

The massless low energy model of graphene with the lightlike dispersion law
ε(p, t) leads to the absence of the critical field that is characteristic for massive
QED and results in a specific feature of the momentum dependence of the excitation
function λ(p, t) (15.5): this function decreases in the ultraviolet area, λ(p, t) ∼
1/P → 0 at P → ∞ and is singular in the infra-red area λ(p, t) → ∞ at P → 0.
The last distinction also leads to a nonanalytic structure of the theory in its dependence
on the coupling constant and to the absence of the standard perturbation theory.

Let us write also the differential equation of the third order that is equivalent to
the system of equations (15.2),

...
g +g̈

[
ελ

(
1

ελ

)′
− λ̇

λ

]
+ ġ

[
4ε2 + λ2 − ελ

(
λ̇

ελ2

)′]
+ gελ

(
λ

ε

)′
= 0,

(15.8)
where g = 1 − 2 f . In Eq. (15.8) the ′ denotes also the time derivative.

At the present time, an exact solution of the KEs (15.1), (15.2) is not known.
However, below we will assume that the well-known exact solutions of the Dirac
equation for a constant electric field and the Eckart potential are at the same time
solutions of the KEs (15.1), (15.2). This assumption gives a basis for comparing
these exact solutions with the known approximate solutions of the KEs (15.1), (15.2)
and to construct then some new classes of approximate solutions.

In order to estimate the effectivity of the approximate solutions, we will compare
them to the exact solutions (analytical and numerical). Such a comparison will be
made on the level of an integral macroscopic quantity. The number density of pairs
n(t) will be considered as the simplest quantity of such type,

n(t) = N f

(2π�)2

∫
f (p, t)dp, (15.9)

where N f = 4 is the number of flavours. The integration allows here to smoothen out
some insignificant details in the momentum dependence of the distribution functions
in different approximations.

As the next step, we will consider two approximate methods of solving the KEs
(15.1), (15.2). To this end, we will consider the case of a linearly polarized electric
field A(1) = 0, A(2)(t) = A(t).



15 Approximate Solutions of a Kinetic Theory for Graphene 191

15.2.1 Low Density Approximation

This approximation corresponds to the limit f 	 1 in the r.h.s. KE (15.1). It was
introduced in the strong field vacuum production of charged particles [17] and was
used many times in strong field QED and in the kinetic theory of excitations in
graphene. It leads to the quadrature formula [1, 2]

f (t) = 1

4

[∫ t

−∞
dt ′λs(t

′)
]2

+ 1

4

[∫ t

−∞
dt ′λc(t

′)
]2

, (15.10)

where

λc(t) = λ(t) cos θ(t,−∞), λs(t) = λ(t) sin θ(t,−∞). (15.11)

In particular, it follows from Eq. (15.10), that f (p, t) ≥ 0.
In the low-density approximation, the two last KEs of the system (15.2) separate

from it,

u̇ = λ − 2ε

�
v, v̇ = 2ε

�
u. (15.12)

Then the distribution function f can be found from the first equation of the system
(15.2) alone.

The system of Eq. (15.12) corresponds to the ordinary differential equation,

�

2ε

d

dt

(
�

2ε

du

dt

)
+ u − �

2ε

d

dt

(
�λ

2ε

)
= 0 (15.13)

or

D2u + u − D
(

�λ

2ε

)
= 0, D = �

2ε

d

dt
. (15.14)

15.2.2 Effective Electromagnetic Mass Approximation

This well known approximation [19] was used already in the case of the harmonic
model of an external field in the analysis of the radiation effects in the electron-
positron plasma [21] and in the electron-hole plasma in graphene [3]. Below we will
consider a generalization of this approach to other models of the external field.

The idea of the method is that the time dependent value of the square of the
kinetic momentum P2(t) in the definition of the quasienergy ε(p, t) gets substituted
by corresponding time average ≺ P2(t) �, where the symbol ≺ ... � means the
averaging procedure over a characteristic time of the external field. In the case of the
linearly polarized electric field we obtain
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≺ P2
2 (t) �= p22 + (e/c)2 ≺ A2(t) �, (15.15)

if ≺ A(t) �= 0. Implying the substitution

P2
2 (t) →≺ P2

2 (t) �, (15.16)

in the square of quasienergy ε2(p, t) = v2
F [p21 + P2

2 (t)], one can introduce the lon-
gitudinal (with respect to external field) effective electromagnetic mass

(e/c)2 ≺ A2(t) �= m2
∗v

2
F , (15.17)

or

m2
∗ = e2

c2v2
F

1

2T

∫ T

−T
dt A2(t). (15.18)

Thus, this approximation corresponds to change

ε(p, t) → ε∗(p) = vF

√
p21 + (p22 + m2∗v2

F ). (15.19)

The appearance of the longitudinal mass is a reflection of the anisotropy of the
system stipulated by the presence of the external field and leads to a reduction of the
mobility of charge carriers along the direction of the action of the external field. In
the limiting case p2 	 m∗vF , we obtain a strong anisotropicmomentum dependence
of the quasienergy,

ε∗(p) = vF

√
m2∗v2

F + p21 . (15.20)

The approximation of the effective mass (15.16), (15.17) is valid in field models
with square integrable functions A(t) only.

The transition amplitude (15.5) in the effective mass approximation in the linearly
polarized external field will be

λ∗(p, t) = −ev2
F p1

ε2∗(p)
E(t) ≡ �(p)E(t), (15.21)

where p1 = cosϕ and ϕ is the polar angle between the vectors p and E(t).
The problem of evaluating the distribution function is now brought to the calcu-

lation of the integral

J (p, t) =
∫ t

−∞
dt ′E(t ′) cos θ∗(p; t ′,−∞), (15.22)

where θ∗(p; t ′,−∞) is defined by the relation (15.6) with the replacement ε(p, t) →
ε∗(p). The analogous integral with the replacement cos θ∗ → sin θ∗ is equal to zero,
if E(t) = E(−t). The distribution function (15.10) will then be
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f (p, t) = 1

4
�2(p)J 2(p, t). (15.23)

According to the relations (15.21) and (15.23), the anisotropy of the distribution
function ∼ cos2 ϕ is universal and does not depend on the selection of the external
field model. Another distinctive feature of the amplitude (15.21) is the singular slit
of the surfaces λ(p, t) on the plane (p1, p2) along the axis p1 = 0 (or ϕ = π/2)
for p2 �= 0, i.e. λ(p, t)|p1=0 = 0, and λ(p, t)|p1 �=0 �= 0. As it follows from the KEs
(15.1) and (15.2), this peculiarity is reproduced also in the distribution function,
f (p, t)|p1=0 = 0. This means that quasiparticles are not created in the directions
of the external field action in the strict sense. Figure15.1 demonstrates this on the
example of the Sauter impulse. This slit is evident in the figures shown below in the
case of the massless version of the theory. The introduction of a mass results in a
widening of this slit and in the appearance of the energy gap. Let us remark, that
the exact solution of the problem [7] in the case of the Sauter pulse field has the
singular line p1 = 0 in the case of the linearly polarized external field. The presence
of this infinitely thin slit is not reflected in calculations of the integral “observable”
macroscopical averages of the type of the pair number density (15.9).

15.2.3 Method of Asymptotic Decompositions

This method is adopted from the standard strong field QED [18]. We consider now
the dimensionless excitation amplitude in the exact case (15.5)

�(p, t) = e�v2
F E(t)p1/2ε3(p, t) (15.24)

and in the effective mass approximation

�∗(p, t) = e�v2
F E(t)p1/2ε3∗(p, t). (15.25)

In contrast to �(p, t), the amplitude �∗(p, t) (15.25) is limited everywhere,

�∗(p, t) ≤ �max
∗ = e�E0

3
√
3m2∗v3

F

, (15.26)

where�max∗ is the maximal value of the amplitude (15.25) in the point of time where
E(t) = E0 (see Fig. 15.1).

In order to clarify the physical meaning of the parameter�max∗ given in (15.26), let
us consider the case of a harmonic field, where themomentum of the electromagnetic
field is equal to pA = (e/c)A(t) ∼ eE0/ω. It corresponds to the contribution of the
electromagnetic field in the quasienergy εA = vF pA = eE0vF/ω. Then the relation
(15.26) can be rewritten as
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Fig. 15.1 The residual distribution function fout (x1, x2) for the Sauter field model with E =
1000 V/cm,κ = 1012 Hz, where x1,2 = p1,2/m∗vF are dimensionless momenta

�max
∗ = 2�ω2

3
√
3eE0vF

∼ �ω

εA
, (15.27)

which corresponds to the ratio of the energy of the absorbed quant of external field
to the part of energy of quasiparticle acquired as a result of acceleration in this field.

In the case of a sufficiently large low-frequency external field, �ω 	 eE0vF , one
can search a solution of the KE system (15.2) by means of an asymptotic decom-
position of the functions f, u, v for the small parameter �∗(p, t) 	 �max∗ 	 1,

f =
∑
n=0

fn, u =
∑
n=0

un, v =
∑
n=0

vn. (15.28)

Substituting these decompositions in the KE system (15.2) and equating the con-
tributions of the same orders, one can obtain the leading terms of the asymptotic
decompositions (15.28) as
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f4 = 1

4
�2

∗(p, t) = e2v4
F E

2(t)p21
16ε6∗

, (15.29)

u3 = 1

2ε∗
�̇∗(p, t) = ev2

F Ė(t)p1
4ε4∗

, v2 = �∗(p, t).

Formally, these expressions have the same form as the analogous results in stan-
dard QED which were obtained in the framework of the asymptotic decompositions
of the functional series in E0/Ec 	 1, where Ec = m2c3/e� is the critical field. In
a similar way one can obtain the post-leading terms.

The obtained asymptotic solutions of the KE (15.2) can be used for estimating
the convergences of the integral macroscopical physical values (e.g., the densities of
the conduction and polarization currents an so on) and also in analytical calculations
in theory of radiation and other transport phenomena.

Let us consider now the realization of the effective mass approximation for dif-
ferent external field models.

15.3 Approximate Solutions of KEs for Different External
Field Models in Graphene

15.3.1 The Sauter Pulse

The field of this pulse is given by

A(t) = −(cE0/κ) tanh κt, E(t) = E0/ cosh
2 κt . (15.30)

It is a classical example of the external field model leading to an exact solution of
the basic equations of motion of QED [11]. The analogous solution for the massless
graphene model was obtained in the work [7].

The effective electromagnetic mass (15.18) in this model is

m∗ = eE0/vFκ. (15.31)

The corresponding integral (15.22) is

J (p, t) = E0

κ

∫ κt

−∞
dx

cos[�(p)/κ]x
cosh2 x

, (15.32)

where �(p) = 2ε∗(p)/�. The corresponding distribution function f (p, t) is defined
then according to the Eq. (15.23). The vacuum polarization functions u(p, t) and
v(p, t) can be restored then with help of the Eq. (15.2). In the asymptotic limit
t → ∞ it follows that
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Jout (p) = 2E0

κ

π�(p)/2κ

sinh[π�(p)/2κ] . (15.33)

Then the distribution function (15.23) in the out-state will be

fout (p) =
[
eE0v

2
F p1

κε2∗(p)

π�(p)/2κ

sinh[π�(p)/2κ]
]2

. (15.34)

The corresponding expression for the pair number density (15.9) written in terms of
the dimensionless momentum xk = pk/m∗vF is

nout = N f

π

(
η2κ

8πvF

)2 ∫ ∞

0

dx x3

1 + x2
1[

sinh
(

η
2

√
1 + x2

)]2 , (15.35)

where

η = 2πm∗v2
F

�κ
= 2πeE0vF

�κ2
. (15.36)

The point η = 1 separates two domains: the domain η < 1, where the energy of
quasiparticles acquired in the external field eE0vF/κ is less than the energy of an
absorbed quant of the field �κ, and the domain η > 1, where the field acceleration
mechanism dominates.

Some results of the numerical comparison of the exact and approximate (15.35)
dependencies nout (η) are given in Fig. 15.2. From here it follows that the effective

nout (E0 ,  = 1012  s -1)
nout (E0 ,  = 1013  s -1)

10-2 10-1                    100                   101                 102                
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n ou
t (E

0 )
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m
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]

E0 [V cm-1]
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(A)

(B)

(B)

)C()C(

Fig. 15.2 Sauter field model for two values κ = 1012 s−1 and κ = 1013 s−1. Lines labelled (A) are
numerical solutions of the KE (15.1), lines (B) show the approximation of Eq. (15.35), and lines
(C) belong to the approximation of Eq. (15.37)
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electromagnetic mass approximation is valid in the domain η ≤ 1 and can be dubbed
“slow switching” with κ � (2πeE0vF/�)1/2. Assuming that η 	 1 on the r.h.s. of
Eq. (15.35), one can obtain

nout = −N f

π

(
eE0

2�κ

)2 [
1 + 1

2
ln

1

24
+ ln η

]
, η 	 1. (15.37)

This corresponds to the result obtained in [7].

15.3.2 The Gaussian Pulse

This field model

A(t) = −
√

π

2
cE0τerf

(
t√
2τ

)
, E(t) = E0 exp(−t2/2τ 2) (15.38)

results in the effective mass

m∗ = eE0τπ1/4

vF

(√
2 erf(1/

√
2)e−1/2 + √

π erf2(1/
√
2)/2 − erf(1)

)1/2

∼ 0.5257
eE0τ

vF
. (15.39)

The distribution function will be

f (p, t) = 1

2

[
eE0v

2
Fτ p1

ε2∗(p)
I

(
t√
2τ

,σ

)]2

, (15.40)

where σ = �(p)τ and

I

(
t√
2τ

,σ

)
=

∫ t/
√
2τ

0
dx cos(

√
2σx)e−x2 . (15.41)

A simple result follows fromEqs. (15.40) and (15.41) in the asymptotic case t → ∞,

fout (p) = π

2

{
eE0τv2

F p1
ε2∗(p)

exp

[
−2ε2∗τ 2

�2

]}2

. (15.42)

From here one can find after simple calculations the pair number density in the
out-state,

nout = −N f

(
eτE0

4�

)2 [
e−ξ2 + (1 + ξ2)Ei(−ξ2)

]
, (15.43)
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Fig. 15.3 The pair number densities nout for the numerical (upper lines) and approximate (lower
lines) solutions for the Sauter (κ = 1012 s−1) and Gaussian (τ = 10−12 s) pulses

where ξ = 2m∗v2
Fτ/� and Ei(−ξ2) is the exponential integral function. This result

in the region ξ 	 1 corresponds to Eq. (15.37) for the case of the Sauter pulse.
In Fig. 15.3 we compare the behaviour of the pair number densities nout for

the exact and approximate solutions for the Sauter (κ = 1012 s−1) and Gauss
(τ = 10−12 s) pulses.

15.3.3 The Harmonic Field Model

The harmonic field model

A(t) = −(cE0/ω) sinωt, E(t) = E0 cosωt; (15.44)

corresponds to the effective mass

m∗ = eE0/
√
2vFω. (15.45)

The distribution function in this field model was obtained in the work [3],

f (p, t) = f (0)(p) + f (2)(p, t), (15.46)

where the function
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f (0)(p) = (e�E0v
2
F p1)

2(4ε2∗ + �
2ω2)

8ε4∗(4ε2∗ − �2ω2)2
(15.47)

corresponds to a stationary background distribution while the function

f (2)(p, t) = (e�E0v
2
F p1)

2

8ε4∗(4ε2∗ − �2ω2)
cos 2ωt (15.48)

corresponds to the breathing mode on the doubled frequency of the external field.
The residual functions u, v can be reconstructed using Eqs. (15.46)–(15.48) and the
KE system (15.2)

u(p, t) = e�2v2
F p1

ε2∗(4ε2∗ − �2ω2)
Ė(t), (15.49)

v(p, t) = 2e�2v4
F p1

ε∗(4ε2∗ − �2ω2)
E(t). (15.50)

The distribution function (15.46)–(15.47) corresponds to the first and third harmonics
of the current density and radiation spectrum of the plasma oscillations [3]. These
results are valid in the case

�ω2/(
√
2eE0vF ) < 1. (15.51)

This limitation holds also for other field models, if the quantity ω is interpreted as
the corresponding characteristic frequency of the field alteration.

A general feature of the two outlined approximate approaches is the E2 - propor-
tionality of all the resulting distribution functions, f (p, t) ∼ (eE0)

2. This feature
was obtained in the work [22] on the basis of an analysis of the numerical solutions
of the corresponding KEs in standard QED, see also [23].

The effectiveness of the low density approximation in the standard strong field
QED for rather weak fields E0 	 Ec has been investigated in the work [24]. The
additional introduction of the effective mass approximation results herein a strong
restriction of the domain of applicability of the method.

15.4 Conclusion

In the present work we have outlined a simple and rather general approach to obtain
approximate solutions for the distribution functions of charge carriers in graphene
based on nonperturbative KEs. This was achieved by a combination of the low den-
sity approximation and the concept of an effective electromagnetic mass. Such an
approach is effective for a rather wide class of external field models with the param-
eters limited by the relation (15.51).
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The considered approximation is of particular interest for the investigation of such
complicated nonlinear single-photon effects in graphene as the emission (absorption)
and annihilation (photoproduction) and the more complex two-photon processes.
Such kind of nonlinear phenomena in graphene became accessible for experimental
verification recently, see [15, 16]. The first step in this direction was done in the
work [3], where the effect of quantum radiation was predicted which is identified
well on the background of the quasiclassical radiation of the plasma currents.
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