
Chapter 14
Effect of Molecular and Electronic
Geometries on the Electronic Density
in FLO-SIC

Simon Liebing , Kai Trepte , and Sebastian Schwalbe

Abstract Recently, Trepte et al. [J. Chem. Phys., vol. 155, 2021] pointed out the
importance of analyzing dipole moments in the Fermi-Löwdin orbital (FLO) self-
interaction correction (SIC) for cyclic, planarmolecules. In thismanuscript, the effect
of the molecular and electronic geometries on dipole moments and polarizabilities
is discussed for non-cyclic molecules. Computed values are presented for water,
formaldehyde, and nitromethane. Continuing the work of Schwalbe et al. [J. Chem.
Phys. vol. 153, (2020)], we reconfirm that systematic numerical parameter studies
are essential to obtain consistent results in density functional theory (DFT) and
SIC. In agreement with Trepte et al. [J. Chem. Phys., vol. 155, 2021], DFT agrees
well with experiment for dipole moments, while SIC slightly overestimates them. A
Linnett double-quartet electronic geometry is found to be energetically preferred for
nitromethane.

14.1 Introduction/Motivation

Electronic structure methods have become more important over recent years [1, 2].
These methods can be used to verify experimental observations [3–7]. However, the
role of electronic structure methods has changed significantly over the years, as they
allow to determine properties which are not easily accessible by experiments
[8–11]. Screening for novel materials utilizing purely theoretical and/or computa-
tional frameworks saves time, work andmoney [12–16]. The leading methodology is
Kohn-Sham (KS) density functional theory (DFT) [17], based on its suitable accuracy
and reasonable numerical effort. Machine learning (ML) strategies are used to speed-
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up DFT [18] even more or to find novel density functional approximations (DFAs)
[19, 20]. The accuracy of novel DFAs [20–22] is getting closer to chemical accuracy.

Some remaining limitations of DFT can be attributed to the so-called self-
interaction error (SIE), describing artificial interactions of electrons. The Perdew-
Zunger self-interaction correction (PZ-SIC) [23] approximately removes the one-
electron SIE. It has a long history of successes and failures [24]. In PZ-SIC, the
choice of orbitals is important. Lehtola et al. [25] showed that PZ-SIC suffers from
the local minima problem. A recent formulation of PZ-SIC utilizes so-called Fermi-
Löwdin orbitals (FLO-SIC) [26–30]. FLO-SIC depends on Fermi-orbital descriptors
(FODs) [29] to construct the localized orbitals used for PZ-SIC [31]. These FODs can
be imagined as semi-classical electron positions which form an electronic geometry.
Recently, Trepte et al. [31] showed that one can guide and classify local minima in
PZ-SIC with the help of special sets of FODs that reflect chemical bonding theories
of Lewis [32] and Linnett [33, 34]. The latter is known as Linnett’s double-quartet
(LDQ) theory. While typically one is interested in the variational total energy of
the system, Trepte et al. [31] proposed to additionally monitor the dipole moment to
classify PZ-SIC solutions. The dipole moment is one of the most simple descriptor
for the electronic density—the key property in any DFA.

In this workwe investigate the influence ofmolecular and electronic geometries as
well as a properly chosen parameter space on the quality of density-related properties
in DFT and FLO-SIC. We show that numerical parameters need to be optimized
not only for the total energy but also for, e.g., the electric dipole moments and/or
polarizabilities. We discuss the results based on small, illustrative and educationally-
valuable molecules.

The manuscript is structured as follows. In the first two sections we outline the
theoretical background and the computational details, after which we present the
major results. In the last section we summarize and conclude our findings.

14.2 Theoretical Background

KS-DFT, see Fig. 14.1, is an approximation to solve the Schrödinger equation.
The total energy of a system is expressed as a functional of the electron density

EKS[nα, nβ ] = Ts[nα, nβ ] + V [n] + J [n] + KXC[nα, nβ ], (14.1)

where Ts[nα, nβ ] is the kinetic energy of the non-interacting system, V [n] is the exter-
nal potential energy, J [n] is the Coulomb functional, KXC[nα, nβ ] is the exchange-
correlation (XC) functional, n is the electron density, and α and β indicate spin
channels.

To compute the XC functional

KXC[nα, nβ ] =
∫

εhomXC [nα, nβ ]n(r)FXC dr, (14.2)
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Fig. 14.1 Simplified overview of a DFT calculation

one needs to evaluate an explicit density integral using a numerical quadrature, see
Sect. 14.3. Here, εhomXC [nα, nβ ] is the XC energy-density of the homogeneous electron
gas and FXC is an XC enhancement factor.

Several approximations exist for the XC enhancement factor, many of which
are available in Libxc [35]. These approximations lead to artificial interactions of
electrons with themselves; this is called self-interaction (SI). The corresponding SI
energy comes from an incomplete cancellation of the exchange-correlation energy
and the Coloumb energy for one-electron densities nσ

1

ESI[nσ
1 ] = KXC[nσ

1 , 0] + J [nσ
1 ]. (14.3)

In PZ-SIC, the total EKS is corrected orbital-by-orbital as

EPZ = EKS[nα, nβ ] + ESIC = EKS[nα, nβ ] −
∑

σ

N σ∑
i=1

ESI[nσ
i ]. (14.4)

A novel flavor of PZ-SIC is FLO-SIC. This formulation utilizes FODs to construct
Fermi orbitals (FO). These FOs are then orthogonalized to become FLOs. The FODs
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need to be optimized in the employed numerical parameter space using the respective
analytical gradients [36].With energy and gradient expressions at hand one can study,
e.g., ionization potentials, atomization energies or barrier heights. However, guided
by Trepte et al. [31] our focus is not only on energies, i.e., Eqs. (14.1) and (14.4), but
on properties characterizing the density. Thus, having introduced energy expressions
for DFT and PZ-SIC, we continue to discuss dipole moments and polarizabilities as
fingerprints of the electron density.

Density-related properties can be analyzed using small applied electric fields. The
total energy of a system under an external electrical field ε can be written as

E(ε) = E0 +
∑
i

μiεi +
∑
i j

αi jεiε j +O(ε3). (14.5)

Here, E0 refers to a ground state energy, e.g., KS-DFT EKS (see Eq. (14.1)) or
PZ-SIC EPZ (see Eq. (14.4)). From this energy expression we can derive the electric
dipole moment as

μi =
(

∂E(ε)

∂εi

)
ε=0

. (14.6)

Commonly, the dipole moment is directly calculated from the electronic density

μ =
∑
A

ZARA −
∫

d r n(r) r, (14.7)

where ZA, RA, and n(r) are nuclear charges and positions and the total electron
density, respectively. Note, we only discuss the electric dipole moment in this work
and refer to it simply as dipole moment. The dipole moment is a measure for the
polarity of a system and tells us about the charge separation in this system.

As an example, the molecular electrostatic potential [39] (MEP) and the dipole
moment of the H2O molecule is visualized in Fig. 14.2. The dipole points from the
more electronegative O atom to the less electronegative H atoms. This can be directly
seen in the coloring scheme of the MEP.

Having the possibility to calculate the total energy of the system under the influ-
ence of an external electric field allows to study dipole moments using, e.g., a 2-point
finite difference (FD) stencil

μFD,i = E(+εi ) − E(−εi )

2εi
. (14.8)

One can also derive the electric polarizability αi j from Eq. (14.5) as

αi j =
(

∂E(ε)

∂εiε j

)
ε=0

. (14.9)
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Fig. 14.2 Illustration of the dipole moment μ in the H2O molecule using the geometry [37] from
CCCBDB[38]. The molecular electrostatic potential (MEP) [39] was calculated using DFT with
LDA-PW, aug-pc-3, and a grid=(200,1454) in PySCF. The visualization was done using Jmol [40]

The electric polarizability can be calculated using analytical approaches, e.g., solv-
ing the coupled perturbed Hartree-Fock (CPHF) equation [41–43]. It describes the
tendency of a system to acquire an induced dipole moment in the presence of an
external electric field. Similar to the dipole moment we will refer to the electric
polarizability as polarizability.

With the dipole moment at hand, i.e., Eqs. (14.7) or (14.8), one can calculate the
directional components of the polarizability tensor as vector components

[αFD,i x , αFD,iy, αFD,i z] = μ(+εi ) − μ(−εi )

2εi
, (14.10)

which is a row in Eq. (14.11).
To further simplify the characterization of the density, we introduce scalar values.

The vectorial dipolemomentμ = (μx , μy, μz)will be represented asμ = |μ|, while
the tensorial polarizability

αi j =
⎡
⎣αxx αxy αxz

αyx αyy αyz

αzx αzy αzz

⎤
⎦ (14.11)

will be represented as α = Tr(αi j )/3. As shown by Trepte et al. [31], dipolemoments
are sensitive to the chemical bonding described by the electronic geometry. Moving



172 S. Liebing et al.

FODs changes the dipolemoment in FLO-SIC. Dipolemoments in FLO-SIC provide
insights into whether the electronic density respects the molecular symmetry or
not [31].

In practical FLO-SIC calculations, the quality of the density is determined by the
used basis set, numerical quadrature, molecular and electronic geometry. Computa-
tional details and the used electronic structure codes are discussed next.

14.3 Computational Details

All scripts to produce the data presented in the manuscript are available at https://
gitlab.com/opensic/dippo [44]. The calculationswere performedwith the all-electron
Gaussian-type orbital (GTO) codes PySCF [42] and PyFLOSIC2. PyFLOSIC2, see
https://gitlab.com/opensic/pyflosic2, is the successor of PyFLOSIC [30]. It offers
a cleaner and more modular code structure and can now easily be installed via the
Python package manager pip. For calculations of real- and complex-valued SIC,
i.e., RSIC and CSIC [25, 45, 46], we used the ERKALE code [47]. In previous
studies [30, 31] we observed that the pc-n basis sets [48, 49] perform well for
DFT as well as SIC calculations. Therefore, for all calculations in this work we use
pc-n basis set variants. All codes use the Libxc [35] library, offering access to a
vast variety of exchange-correlation functionals. From this library we access LDA-
PW [50], PBEsol [51], and r2SCAN [22]. The used codes are Open-Source codes,
meaning they are freely available to anyone [52, 53]. Open-Source codes enable
faster code development, re-usable concepts, and versatile tool-boxes.

PySCF and PyFLOSIC2 arewritten in Python, where only numerically demand-
ing parts in PySCF are written in C. Python is simple and elegant, has a friendly
and helpful community, and provides various well-maintained libraries. These are
only some reasons why it is easy for students or non-programmers to start coding
with Python. This allows to solve even non-trivial tasks, like writing a DFT code
from scratch [54] in the limited time of a master thesis when guided and educated
with novel strategies [55].

A numerical quadrature [56] is needed to evaluate XC properties in DFT and SIC,
see Eq. (14.2) in Sect. 14.2. We will refer to it simply as grid. A typical grid consists
of a radial and an angular part. Its size is given as a pair of numbers, i.e., the number
of radial shells and the number of angular points. SIC requires significantly finer
grids than DFT [45, 46, 57]. In analogy to [30, 31], we prune the used grids neither
for DFT nor for SIC. This is done as the orbital densities evaluated in SIC are not as
smooth as the total density used in DFT [58], thus requiring a finer resolution [46].

FLO-SIC has two major variational degrees of freedom, the density matrix (DM)
and the FODs. All FLO-SIC calculations in this work are realized with a two-step
FLO-SICSCF cycle, which follows the idea proposed by [59]. In FLO-SIC, the initial
DM and initial molecular coefficients are typically the ones from a DFT calculation.
The initial FODs can be generatedwith various procedures, e.g., Python-based center
of mass PyCOM, Fermi-orbital descriptor Monte-Carlo fodMC, or other so-called
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FODgenerators [29]. All initial FODconfigurations used in thisworkwere generated
using the fodMC.

Within a full FLO-SIC calculation, the FODs are fully optimized in an inner
FOD loop for a given DM. All SIC properties are calculated for this DM and the
respective optimized FODs. Based on this, the unified Hamiltonian [30, 60–62] is
updated which then provides the next DM in the outer DM loop. The initial FODs in
the inner FOD loop are optimized using the SciPy L-BFGS-B [63–70] optimization
algorithm with a maximum force component threshold of fmax,tol = 2 · 10−4 Eh/a0.
This two-step procedure is repeated until the FOD forces reach fmax,tol and the DM
is not changing anymore.

The computational methods introduced in this section have been applied to cal-
culate dipole moments and polarizabilities. The results for water, formaldehyde, and
nitromethane are discussed in the next section.

14.4 Results

14.4.1 Sisyphus Rock: The Importance of Grid and Basis Set
Size

For the correct description of density-related properties, it is important to converge the
used numerical parameters space consisting of grid and basis set. Systematic param-
eters studies have been performed utilizing CCCBDB molecular geometries [38],
and FODs generated with the fodMC in the case of FLO-SIC to exemplify this.
The determined trends and optimal values should be transferable to other molecular
geometries and other FOD arrangements.

We carried out systematic grid convergence tests varying the number of radial
shells with a fixed number of angular points and vice versa. Detailed information
can be found at https://gitlab.com/opensic/dippo [44]. The DFT values converge at
smaller grids than the respective SIC values, see Table14.1. For LDA-PW, a value of
Nrad = 200 for the radial shells gives converged results for both DFT and SIC. The
angular dependency for DFT as well as for FLO-SIC is converged at Nang = 590.
However,we use a value of Nang = 1454 to resolve all one-electron and total densities
accurately.

Note that we investigated the convergence of the density in DFT using the dipole
moment as well as the polarizability. Both density fingerprints deliver the same
optimal parameters for the tested molecules. Thus, for FLO-SIC we only used the
dipole moment to determine optimal parameters.

Having an optimal grid of (200,1454) enabled us to determine a suitable basis set.
The convergence of the basis set for water is shown in Fig. 14.3 using DFT and in
Fig. 14.4 using FLO-SIC. The aug-pc-3 basis set shows convergence w.r.t. the basis
set size. Those parameters are optimal for water, formaldehyde, and nitromethane.
However, such convergence checks need to be done for any molecule—a Sisyphus

https://gitlab.com/opensic/dippo
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Table 14.1 Optimal numerical parameters for DFT and FLO-SIC regarding the molecular geome-
tries reported in CCCBDB[38] for H2O[37], CH2O[71] and CH3NO2 [72]

System DFT FLO-SIC

nrad nang basis set nrad nang basis set

H2O 100 302 aug-pc-3 150 590 aug-pc-3

CH2O 100 302 aug-pc-3 200 590 aug-pc-3

CH3NO2 150 590 aug-pc-3 200 590 aug-pc-3

Fig. 14.3 H2O (DFT, LDA-PW): Convergence of the total energy Etot, the dipole moment μ and
the polarizability α w.r.t. increasing basis set size for LDA-PW DFT using PySCF. We used pc-n,
aug-pc-n, and unc-aug-pc-n with n=0-4 [48, 49]. Each plot shows the difference to the largest used
basis set

Fig. 14.4 H2O (FLO-SIC, LDA-PW): Convergence of the total energy Etot and the dipole moment
μw.r.t. increasing basis set size for LDA-PWFLO-SIC using PyFLOSIC2.We used pc-n, aug-pc-n,
and unc-aug-pc-n with n=0-4 [48, 49]. Each plot shows the difference to the largest used basis set.
Only the density matrix was optimized, while the FODs were fixed

work. Otherwise, the meaning of absolute values for dipole moments or polarizabil-
ities are questionable.

Having established a suitable numerical parameter space, we continue to discuss
the influence of molecular geometries on dipole moments and polarizabilities.

14.4.2 Pandora’s Box: The Quality of Molecular Geometries
Matters

Amolecular geometry is needed to perform electronic structure theory calculations;
in case of DFT see Fig. 14.1. While such geometries can be optimized within most
theories, it is not uncommon to use a fixed molecular geometry to be comparable to
other approximations or to simply save computational time.
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Table 14.2 Molecular information for H2O, CH2O, and CH3NO2 with number of atoms, electrons,
α and β electrons Nnuc, Nelec, Nα and Nβ . Experimental references for the dipole moments [79]
and polarizabilities [38] are provided

System Nnuc Nelec Nα Nβ μREF [D] αREF [a30]

Water (H2O) 3 10 5 5 1.85 10.13

Formaldehyde
(CH2O)

4 16 8 8 2.33 18.69

Nitromethane
(CH3NO2)

7 32 16 16 3.46 32.39

For quantum chemical calculations there exist a vast a variety of seemingly
promising databases, such as CCCBDB [38], ChemSpider [73, 74], PubChem [75],
and many more. However, the quality of the geometries in these databases can
vary [76]. CCCBDB offers access to a vast variety of molecular geometries. In
this work, we used the CCCBDB geometries which can be found in the experimen-
tal section. Note that those geometries are not necessarily experimental ones. For
example, for water [37] the geometry is derived semi-empirically utilizing experi-
mental reference values. PubChem provides molecular geometries calculated using
the MMFF94s [77] force field. For other databases such as ChemSpider it is even
not that trivial to find the quality of the geometries.

The question of the quality of the molecular geometry might be important for
other fields as well. For example, machine learning [78] models might be trained on
low quality geometries, which could affect the predictability of the resulting models.
For SIC calculations, the quality of the molecular geometry is of great importance, as
the orbital densities are sensitive to the underlying molecular geometry. Molecular
geometry optimizations are a standard task for commonly used approaches like DFT.
However, for more computational demanding methods like FLO-SIC, full geometry
optimization require high computational effort. This is caused by the coupled degrees
of freedoms of nuclei and FODs [31].

The following results are based on the small, educational systemsH2O,CH2O, and
CH3NO2.We summarized some essential molecular information for thosemolecules
in Table14.2, including experimental reference values for dipole moments and polar-
izabilities.

The effect of molecular geometries on density fingerprints, i.e., dipole moments
and polarizabilities, is significant even at the DFT level (see Fig. 14.5). For the used
test systems the molecular geometries from CCCBDB provide the best molecular
geometries; the dipole moments and polarizabilities are close to the values obtain
from a DFT optimized geometry. The basis set size affects the density-related prop-
erties significantly, and only the aug-pc-3 basis set provides converged results. The
molecular geometries from PubChem and ChemSpider should be used with care, as
the dipolemoments deviate significantly from values obtained from aDFT optimized
geometry.
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Fig. 14.5 Influence of molecular geometries on density fingerprints, e.g., dipole moments and
polarizabilities. For these DFT calculations, LDA-PW was used with a grid=(200,1454) in PySCF.
Molecular geometries are taken from common chemical databases. In addition, DFT optimized
geometries were used. These DFT geometry optimizations were started from the CCCBDB geome-
tries utilizingERKALEwith aug-pc-3 and grid=(200,1454). The used reference values are provided
in Table14.2

Table 14.3 Finite-difference (FD) errors of polarizabilities in a30 for the chosen step size of ε =
10−7 a.u. utilizing the 2-point FD approximation and LDA-PWDFT. The analytical α as calculated
with PySCF were used as reference

Database aug-pc-0 aug-pc-1 aug-pc-2 aug-pc-3 aug-pc-4

CCCBDB 0.00 0.29 −0.01 −0.01 −0.01

ChemSpider 0.00 −0.08 0.00 −0.02 −0.00

PubChem −0.01 0.02 0.02 −0.01 0.33

DFTopt 0.00 0.00 −0.03 −0.01 0.01

For all calculations, the finite difference approximations, see Eqs. (14.8) and
(14.10), agree well with the analytical results. Themean error for the dipolemoments
is 0.00 D, while the respective mean errors for the polarizabilities are given in
Table14.3.

Accordingly, for the investigated systems and the employed method the chosen
value of 10−7 a.u. for the magnitude of ε regarding the 2-point finite difference
approximation delivers reliable numerical results. Note that this finding might not be
reproducible for other systems using the same value. Having examined the depen-
dence on the molecular geometry, in Sect. 14.4.3 we proceed to investigate electronic
degrees of freedom in FLO-SIC, i.e., DM and FODs.



14 Effect of Molecular and Electronic Geometries … 177

14.4.3 The Sword of Damocles: Curse and Blessing
of Approximations

Approximations are often needed and can be useful to enable the treatment or compu-
tation of a specific property at a certain level of theory. However, each approximation
needs to be carefully investigated regarding the limits of its predictive power.

Effect of initial FODs Continuing the work of Trepte et al. [31], we show for
CH3NO2 that it is possible to find several FOD configurations following chemical
bonding theories. One possible FOD configuration can be based on Lewis theory of
bonding. There, the FODs formone doubleN=Oandone singleN-Obond in the -NO2

group, see Fig. 14.6. Clearly, there exist two identical Lewis configuration where the
double and single bonds are exchanged with each other. These Lewis configuration
haveN-O bond orders of 2 and 1, respectively. Regarding LDQ theory, 2 FODs of one
spin channel and 1 FOD of the other spin channel are placed between the N and the
O. This leads to bond orders of 1.5 in both N-O bonds. Besides FOD configuration
which follow chemical bond theories, other FOD configuration are possible. For
example, one can generate a configuration with an over-binding N atom, placing
two N=O double bonds in the molecule. We denote this FOD configuration as other.
Changing the N-O bond order affects the local chemical environment, and with that
the resulting SIC solution.

In electronic structure theories there exist several possibilities to treat the spin
of the system. In FLO-SIC, we can do restricted calculations where all electrons
are paired, Nα = Nβ , and unrestricted calculations where Nα and Nβ can vary. In
restricted FLO-SIC only one set of FODs is needed, while in unrestricted FLO-SIC
two sets of FODs are required.

Given that the calculations for CH3NO2 are more computational demanding, we
use a grid=(200,1454) and the aug-pc-2 basis set. As seen in Sect. 14.4.1, using this
basis set comes with errors in the order of mEh and mD w.r.t. to the basis set limit.
However, the energy difference of the considered FOD configurations, see Fig. 14.6,
are in the order of 10−2 Eh. The differences in the dipole are in the order of 10−1 D.
Thus, using the aug-pc-2 basis set should deliver reliable trends.

We performed restricted FLO-SIC calculations for the Lewis configuration of
CH3NO2. The FODs converge to an electronic geometry which does not follow
any bonding theory. The double bond FODs are not lying on the N-O bond axis.
Instead, they are distorted towards the respective O atoms. Given this non-symmetric
arrangement of FODs, the density of CH3NO2 becomes non-symmetric. This leads
to an energy of Efinal = −245.80939 Eh and a non-symmetric dipole moment with
an absolute value of μ = 4.06 D.

The effect of various unrestricted FOD configurations for CH3NO2 is shown in
Fig. 14.6. The differences in these configurations can already be seen for the initial
FODs. Only optimizing the density shows significantly different dipole moments,
and only the LDQ value is close to the experimental value. The energy for the
initial LDQ arrangement is also the lowest. Upon full optimization of the density
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Fig. 14.6 Total energies and dipole moments for various unrestricted FOD configurations for
CH3NO2, evaluated at the initial and the final FODs. Other represents a structure with two N=O
double bonds. Any additionally tested structure converged into the LDQ solution. Calculations were
performed using PyFLOSIC2 employing LDA-PW, the aug-pc-2 basis set and a grid=(200,1454).
In addition, the RSIC center of mass (COM) obtained from ERKALE are shown in the light green
box as comparison to the final LDQ FODs. Color code: C-gray, H-white, O-red, N-blue, spin-up
FOD/COM - green, spin-down FOD/COM - red. There are situations where spin-up and spin-down
FODs/COMs have the same position. Then, only one color is seen

matrix as well as the FODs, the configuration based on LDQ deliver the lowest
energy. In the unrestricted calculations, both the initial LDQ and the initial Lewis
configuration converge to a final FOD arrangement which can be characterized via
LDQ. Interestingly, the other FODs stay in the their configuration, but the final
energy is higher than for the LDQ FODs.

LDQ not only gives the lowest energy but also the best SIC dipole moment for
CH3NO2. As a highlight, the center of mass (COM) for the optimal RSIC localized
orbitals using ERKALE also reflect the LDQ chemical bonding motif, see the RSIC
box in Fig. 14.6. In this section, we reconfirm that the choice of the initial FODs sig-
nificantly influences dipole moments in FLO-SIC. Next, we describe how the FOD
optimization itself can influence dipole moments.

Effect of FOD optimizationWe continue the discussion for H2O and CH2O. These
two molecules only have one meaningful FOD configuration, see Fig. 14.7. Having
one FOD configuration may allow finding the same local minima in a reproducible



14 Effect of Molecular and Electronic Geometries … 179

Fig. 14.7 Displaying both themolecular and electronic geometries for H2O and CH2O. The picture
is generated with the PyFLOSIC2 graphical user interface (GUI). Note, only H2O and CH2O are
shown as they have only one trivial initial FOD configuration, whereas CH3NO2 is more complex;
see Fig. 14.6

(a) H2O (b) CH2O

Fig. 14.8 Effect of FOD optimization vs. basis set size using the LDA-PW XC functional for (a)
H2O and (b) CH2O. The tag initial represents FODs generated by the fodMC, loose represents
FODs with a maximal force criterion of fmax,tol = 5 · 10−3 Eh/a0, and tight refers to optimized
FODs with fmax,tol = 2 · 10−4 Eh/a0. A grid=(200,1454) was used. Note that when initial and
loose give the same result, the initialized FODs are already at a force threshold of 5 · 10−3 Eh/a0

fashion. Thus, those molecules are promising candidates for systematic FOD con-
vergence studies.

In FLO-SIC it is rather easy to make various approximations. A common approx-
imation is to use fixed FODs which are not optimized for the numerical parameter
space of the respective calculation. Optimizing the FODs is, however, critical to
obtain reasonable FLO-SIC solutions. Such optimizations are carried out until a
specific threshold for the maximum FOD force, fmax,tol, is reached. The influence
of the FOD optimization on the total energy and the dipole moment for water and
formaldehyde is shown in Fig. 14.8.

FLO-SIC values for the total energy and the dipole moment change drastically
when going from an initial set of FODs to optimized FODs. Here, optimized FODs
are characterized by fmax,tol = 2 · 10−4 Eh/a0. Stopping the optimization too early,
i.e., at fmax,tol = 5 · 10−3 Eh/a0 can lead to insufficiently converged densities and
energies. This furthermore leads to an incorrect prediction of trends; increasing the
basis set size should smoothly converge the dipole moments, see Fig. 14.5. However,
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Table 14.4 Dipolemoments for DFT and FLO-SIC using three XC functionals. Using the aug-pc-3
basis set and a grid=(200,1454) in PySCF for DFT and PyFLOSIC2 for FLO-SIC

XC functional H2O CH2O

μDFT μFLO-SIC μDFT μFLO-SIC

LDA-PW 1.86 1.99 2.28 2.72

PBEsol 1.82 1.95 2.23 2.65

r2SCAN 1.83 1.96 2.31 2.62

with insufficiently optimized FODs these trends can be predicted incorrectly, as can
be seen in Fig. 14.8.

Accordingly, global statements and generalization of trends are only valid for
optimized FODs in combination with a sufficient basis set and grid. In the tested
cases, the aug-pc-3 basis set with a grid=(200,1454) deliver converged results, in
analogy to Sects. 14.4.1 and 14.4.2.

As proposed by the authors [31], monitoring the dipole moment is important
to classify and analyze SIC solutions. We showed here that converging the total
energy is necessary, but might not be sufficient when one aims to study density-
related properties, i.e., dipole moments or polarizabilities. All calculations in the
previous sections utilized the LDA-PW functional. Next, we discuss how changing
the exchange-correlation functional influences dipole moments.

Effect of exchange-correlation functional For H2O and CH2O, we find that already
LDA-PW describes dipole moments qualitatively correctly for DFT and SIC. How-
ever, comparing three exchange-correlation functionals the absolute dipole moments
differ, see Table14.4. Note that for CH3NO2 this comparison was not carried, see
Effect of initial FODs for more information.

All three pure DFAs agree quite well with the experimental dipole reference
values, see Table14.2. FLO-SIC tends to overshot the dipole moment in order of
10−1 D w.r.t. the DFT values. This trend has also been observed in the literature,
see [31]. For DFT, LDA-PW performs best for H2O while r2SCAN agrees the most
for CH2O. In case of FLO-SIC, the best dipoles are given by PBEsol for H2O and
by r2SCAN for CH2O.

In the previous sections we have discussed results for FLO-SIC. To investigate
the influence of a specific flavor of SIC on dipole moments, we compare FLO-SIC,
RSIC, and CSIC in the next section.

Effect of SIC methods To verify the used numerical parameter space, i.e., the aug-
pc-3 basis set and a grid=(200,1454), we carried out RSIC and CSIC calculations
using ERKALE. There is no significant difference between FLO-SIC and RSIC
values, see Table14.5. This is noteworthy as the results are calculated with two
independent electronic structure codes. Thus, the used numerical parameter space
is sufficient to deliver reproducible results. SIC suffers from the multiple local-
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Table 14.5 Comparison of μ in D using the aug-pc-3 basis set, a grid=(200,1454) and the LDA-
PW functional. Molecular structures from the CCCBDB database [38] were used, coming from the
following sources: H2O[37], CH2O[71] and CH3NO2 [72]. DFT values are obtained from PySCF,
FLO-SIC values are obtained from PyFLOSIC2, and RSIC and CSIC values come from ERKALE

Molecule μDFT μFLO-SIC μRSIC μCSIC

H2O 1.86 1.99 1.99 2.06

CH2O 2.28 2.72 2.72 2.70

CH3NO2 3.50 3.67 3.70 3.90

minima problem [25], see Sect. 14.1. Accordingly, we recommend to verify FLO-SIC
results with independent SIC methods such as RSIC. For example for nitromethane,
see Effect of initial FODs, only the LDQ FLO-SIC dipole agrees with the RSIC
solution. FLO-SIC, RSIC and CSIC together deliver a consistent SIC description.
The advantage of FLO-SIC is the access to bonding information. This information
allows to easily classify and further analyze PZ-SIC solutions [31].

In the next section we summarize and conclude our findings.

14.5 Summary and Conclusion

As shown in Sect. 14.4.1, and already stated in earlier works [30, 31, 45], SIC needs
finer numerical quadrature meshes in comparison to DFT calculations. Global state-
ments about the predictive power of SIC are only meaningful using very accurate
numerical parameter spaces.

In this work we show how density-related properties, i.e., dipole moments and
polarizabilities, can help to determine an appropriate numerical parameter space for
DFT and SIC. For our investigated molecules, the aug-pc-3 basis set and a numerical
grid of (200,1454) is such an appropriate parameter space. Note, even trends can
clearly change using other numerical parameters. While it is mandatory to converge
the energy it is not necessarily sufficient for the study of density-related properties.

Furthermore, using water, formaldehyde, and nitromethane we show that these
density-related properties are not only sensitive to the used numerical parameter
space. They are also significantly influenced by the used molecular geometry, see
Sect. 14.4.2.Molecular geometries from common chemical database, i.e., CCCBDB,
PubChem, or ChemSpider, can deliver very different dipole moments and polariz-
abilities. Only molecular geometries from the CCCBDB database deliver reasonable
trends in comparison to optimized geometries.

Continuing thework of [31], for FLO-SICwe showed that density-fingerprints are
also sensitive to the chemical bonding situation introduced by FODs.We demonstrate
that the numerical quality of the FODs, represented by their gradients, as well as
the choice of initial FODs clearly influences the dipole moments. For molecules
with non-trivial bonding situations, e.g., nitromethane, it is highly recommended to
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use various initial FOD configurations. This allows to reasonably sample the FOD
configuration space to determine the most reasonable FOD configuration. Such FOD
configurations typically follow chemical bonding theories [31], i.e., Lewis and LDQ.
In case where several FOD configurations are possible, FODs based on LDQ are
often superior in FLO-SIC. This has been shown in [31] and verified here again for
nitromethane in Sect. 14.4.3.

When computational timematters, the simplest density functional approximation,
i.e., a local density approximation like LDA-PW, provides reasonable trends for
dipole moments in FLO-SIC, as seen in Sect. 14.4.3. If computational time is not
limited we recommend to use higher rung functional like PBEsol or r2SCAN to
verify and further analyze determined trends.
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