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Preface

The 9th International Symposium “Optics and its Applications” was held in
Yerevan & Ashtarak, Armenia from January 15 to 19, 2022. This Symposium
was dedicated to the Academician of the National Academy of Sciences (NAS) of
Armenia, Prof. Eduard Kazaryan, on the occasion of his 80th birthday. Therefore, it
is not accidental that many of the issues discussed at the symposium concerned topics
within the research field covered by the work of Prof. Kazaryan and his scientific
group. The symposium was opened with a report by Prof. Hayk A. Sarkisyan from
the Russian-Armenian University in Yerevan dedicated to the scientific activities and
the main scientific results of Prof. Eduard Kazarian.

The symposiumwas attended by 85 participants fromArmenia, France, Germany,
Iran, Italy, Mongolia, Poland, Russia, Ukraine and USA. See the group photo shown
in next page.

During 5 days a total of 50 reports were presented, 9 of them in plenary talks.
Special sessions were organized for student presentations and for poster presenta-
tions. The prize for the “Best Student Talk” was awarded to Ms. Astghik Torosyan
from the Laboratory of Information Technologies at the JINR Dubna, Russia.

The program of the symposium included reports on the optical properties of
solids, optics of atoms, optical processes in semiconductor nanostructures, problems
of propagation of electromagnetic waves in various media, issues of technological
growth of semiconductor nanostructures and studies of their optical characteristics.

Among the invited reports, big interest was raised by the talk on “Current-induced
Optical Activity: First Observation and Comprehensive Study” by Prof. Vadim
Shalygin from the St. Petersburg Polytechnical University, which was dedicated
to the electro-optical analogue of the magneto-optical Faraday effect.

A special session by Prof. Andrey Varlamov from the Tor Vergata University
of Rome, dedicated to the popularization of physics, was also received with great
resonance.
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Group Photo of the Participants at the 9th Symposium “Optics & its Applications”

1. Vahagn Abgaryan, 2. Astghik Torosyan, 3. Alexander Gusev, 4. Ochbadrakh Chuluunbaatar, 5.
Olha Kravchuk, 6. Ali Ojaghloo, 7. Fatemeh Shahi. 8. Gyulnara Khachatryan, 9. Tigran Kotanjyan,
10. Hayk Mikayelyan, 11. Tigran Sargsyan, 12. Hayk Gevorgyan, 13. Tigran Petrosyan, 14. Nune
Badalyan, 15. Petros Petrosyan, 16. Levon Davtyan,17. Eduard Aleksanyan, 18. Mikayel Khan-
bekyan, 19. Henrik Parsamyan, 20.MusheghRafayelyan, 21. ArsenBabajanyan, 22. LilitMelikyan,
23. Valeriia Chekubasheva, 24. Simon Liebing, 25. Anna Grigoryan, 26. Volodymyr Rohovets, 27.
Gor Chalyan, 28. Hayk Harutyunyan, 29. Arzunik Gevorgyan, 30. Astghik Margaryan, 31. Milena
Safaryan, 32. Astghik Ghazaryan, 33. Tsovinar Karapetyan, 34. Lusine Tsarukyan, 35. Edvard
Grigoryan, 36. Hrayr Hakobyan, 37. Tatevik Sarukhanyan, 38. Narine Gevorgyan, 39. Ishkhan
Harutyunyan, 40. Etienne Brasselet, 41. Roland Avagyan, 42. Aram Saharian, 43. Rafik Hakobyan,
44. David Blaschke



Preface vii

It should be especially noted that the symposium traditionally included presen-
tations of both purely theoretical nature as well as experimental and technological
methods for studying the optical properties of various systems. On one hand, purely
theoretical reports were presented on optical processes in systems such as graphene
or quantum dots of the Core/Shell/Shell type. On the other hand, experimental
results were discussed on far, mid and near infrared photoconductivity phenomena in
GaAs/AlGaAs quantum wells. Also were presented the results of a detailed study of
nucleation processes, characterization and optical properties of graded gap quantum
dots.

Based on the results of the Symposium, 17 representative articles have been
selected for publication in the present volume of Proceedings.

The 9th International Symposium “Optics & its applications” was organized by
the Russian-Armenian University, the Armenian Territorial Committee of the Inter-
national Commission for Optics, the Institute for Physical Research (IPR) of the
NAS of Armenia, the Faculty of Physics of Yerevan State University (YSU), the
A. Alikhanyan National Laboratory, the Greek-Armenian industrial company LT-
PYRKAL, and the University ofWroclaw. Co-organizing student organizations were
the OPTICA YSU&NAS Armenia Student Chapter, the EPS Yerevan Young Minds,
the IPR Armenia OPTICA Student Chapter, the YSU SPIE Student Chapter, and the
EPS Artsakh Young Minds.

The symposiumwas supported by the International Commission forOptics (ICO),
the Russian-Armenian University, the University of Wroclaw, the A. Alikhanyan
National Laboratory, the Faculty of Physics of Yerevan State University.

The official symposium website is: http://optics2022.uni.wroc.pl/.
The 1st international Symposium “Optics & its applications” was held in 2011 in

Yerevan, Armenia, and by now it took place in Armenia, Germany, Italy and Poland.
The upcoming 10th Symposium of this series will be held in the cities of Armenia
and Cali, Colombia from 5 to 9 December 2022 as an ICTP event (https://indico.
ictp.it/event/9846/).

We are grateful to Narine Gevorgyan and Hayk Ghaltaghchyan for their help in
preparing this book.

Wroclaw, Poland
St. Petersburg, Russia
Ashtarak, Armenia
Yerevan, Armenia

David Blaschke
Dmitry Firsov
Aram Papoyan

Hayk A. Sarkisyan

http://optics2022.uni.wroc.pl/
https://indico.ictp.it/event/9846/
https://indico.ictp.it/event/9846/


Eduard Kazaryan—Biography

Professor Eduard Kazaryan

January 16, 2022 marked the 80th anniversary of the birth of the famous Armenian
scientist, specialist in the field of physics of semiconductors and semiconductor
nanostructures, Academician of the National Academy of Sciences of Armenia,
Prof. Eduard Mushegh Kazaryan. (Figs. 1–3)

E. M. Kazaryan was born on January 16, 1942, in the family of the famous
Armenian journalist Mushegh Kazaryan. During his school years, the future physics
professor faced the problem of choosing between a sports career as a football player
(in 1958 he was included in the USSR national football team for school return

Fig. 1 Professor Eduard Kazaryan
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x Eduard Kazaryan—Biography

Fig. 2 First paper of Eduard Kazaryan

players) and an academic career as a physicist. Initially, the choice was in favor
of football, but Eduard’s father insisted on his son’s scientific career, and Eduard
Kazaryan was enrolled in the Physics Department of Yerevan State University in
1959. In his third year of study, Eduard Kazaryan became one of the best students
and was sent to continue his studies at the leading University of the USSR at the
Moscow State University, the Department of Semiconductor Physics at the Faculty
of Physics. Here, at the Moscow State University, the young Eduard takes his first
steps in science under the supervision of V. L. Bonch-Bruevich, one of the famous
specialists of the Soviet Union in the physics of semiconductors.

Professor Bonch-Bruevich was a representative of the world-famous scientific
school of Nikolai Bogolyubov, which was one of the most powerful centers of theo-
retical physics in the USSR. During these years, intensive research was carried out
on the physical properties of semiconductors based on the methods of quantum field
theory. Therefore, it was not accidental that the student Kazaryan received the task
to study the plasmon absorption mechanism by a semiconductor with indirect band
structure, based on themethods ofGreen’s functions. E.Kazaryan copedwith the task
brilliantly. At the same time, the result turned out to be so interesting, that Prof. Dirk
ter Haar, the editor of the international journal Physics Letters, invited to urgently
publish it in this authoritative edition. So at 23, Eduard Kazaryan became the author
(at the same time, the only author) of a scientific publication on “Indirect transitions
due to the Coulomb interactions” in one of the most famous international journals.

In 1966, after graduating with honors from the Faculty of Physics of the Moscow
State University, Kazaryan started the postgraduate degree under Prof. Bonch-
Bruevich’s supervision. After completing his postgraduate studies in 1969, he
defended his Ph.D. thesis on semiconductor physics.

In 1970 began Kazaryan’s active scientific and didactic career in Armenia.
During these years, the physics of low-dimensional semiconductors began to develop
and Eduard Kazaryan immediately understood and appreciated the prospects and
importance of these studies, becoming the founder of theoretical nanophysics in
Armenia. Already in 1971, the journal Soviet Physics—Semiconductors (Fizika
i Tekhnika Poluprovodnikov) published an article by E. M. Kazaryan and
R. Enfiajyan “To the theory of light absorption in thin semiconductor films in



Eduard Kazaryan—Biography xi

Fig. 3 Eduard Kazaryan in 1970, Leningrad (now Saint-Petersburg)

the presence of size-quantized effect” dedicated to exciton absorption in quantum
films—two-dimensional nanostructures, which are currently known as quantum
wells.

In parallelwith his active scientific activity,Kazaryan delivers lectures for students
of the Yerevan University and starts his own scientific school on the physics of
semiconductor nanostructures. With his young students, Prof. Kazaryan carries out
active research on the optical, Coulomb, few particle properties of quantum wells,
wires and of quantum dots since the mid-80s. During the period from the early 70s
to the 90s, the Kazaryan School obtained a number of important results that are
recognized by the scientific community. In particular:

• Comprehensive study of the interaction of semiconductors with intense laser
radiation is carried out, taking into account the complex band structure of
semiconductors,

• Theoretical investigation of the possibility of excitonic Bose condensation in
quantum wells and quantum dots,

• Discussion of the phonon mechanism of light absorption in semiconductor
quantum dots, etc.

In the early 90s, Prof. Kazaryan’s attention was focused on the study of quantum
dotswith non-trivial geometry. Togetherwith his scientific teams,Kazaryan conducts
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an extensive cycle of studies of exciton and impurity states, as well as the optical
properties of quantumdotswith the geometry of a strongly oblate or prolate ellipse. In
this case, the calculations are carried out based on the adiabatic approximation, which
allows obtaining a number of important analytical results. In particular, interband
transitions in these structures were studied, including the consideration of exciton
effects.

The use of the adiabatic approximation turned out to be a rather effective tool
for describing not only strongly prolate and oblate ellipsoidal quantum dots but
also lens-shaped and conical ones. It should be emphasized that a series of studies
devoted to long-wave absorption in electron and hole gases, localized in strongly
oblate lens-shaped quantum dots have been carried out. Kazaryan’s team presented
the possibility of realizing a generalization of Kohn’s theorem in such structures.
In 2016, this assumption was experimentally confirmed by a group of Prof. Dmitry
Firsov from St. Petersburg Polytechnic University, for the case of a heavy hole gas,
localized in strongly oblate Ge/Si lens-shaped quantum dots.

Currently, the scientific school of Prof. E. M. Kazaryan within the framework of
the Russian-Armenian University is conducting a series of studies, devoted to linear
and nonlinear optical, magnetic and thermodynamic properties, as well as Coulomb
and spin characteristics of quantum dots of various geometric shapes and sizes.

E. M. Kazaryan is the founder of the Institute of Physics and Engineering at
the Russian-Armenian University. Today, the representatives of four generations
of Kazaryan’s scientific school are cooperating within this University. It is very
important that young researchers and students are actively involved in the study of the
physical processes of quantum nanostructures, ensuring the continuity of generations
of Kazaryan’s scientific school.
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Chapter 1
Current-Induced Optical Activity: First
Observation and Comprehensive Study

Vadim A. Shalygin

Abstract The effect of current-induced optical activity represents a circular birefrin-
gence linear in electric current which results in the rotation of the light polarization
plane. It may be considered as an electro-optic analog of the magneto-optic Faraday
effect. The current-induced optical activity was experimentally observed for the first
time in 1978 in a tellurium single crystal. The microscopic origin of the effect in
tellurium is directly associated with the current-induced spin polarization of holes.
This review article includes discussion of the results of long-term studies of the
current-induced optical activity; it presents details of the first experiments and some
results of further research which have not been published earlier.

1.1 Introduction

The term “current-induced optical activity” was introduced in a 1979 paper devoted
to a new physical effect that was experimentally found in a tellurium single crystal
[1]. The effect consists of a light polarization plane rotation caused by an electric
current flowing in somemedium along the light propagation direction (see Fig. 1.1a).
The rotation angle ϕ ( j) is proportional to a current density j , and a change in the
polarity of the electric current leads to the inversion of the rotation direction of the
polarization plane. Baranova et al. were the first to theoretically predict the possibility
of the light polarization plane rotation as a result of current flow, which they called
as the electrical analog of the magneto-optic Faraday effect (experimental config-
uration for observing the Faraday effect is shown in Fig. 1.1b) [2]. They indicated
that the electrical analog of the Faraday effect may appear only in the right-left-
nonsymmetrical conducting medium and estimated the magnitude of the effect for
the gyrotropic liquid. Ivchenko and Pikus theoretically predicted in 1978 the same
effect in tellurium, which is a gyrotropic crystal [3].

A gyrotropic medium may be defined as a medium that allows for natural optical
activity, i.e., for a light polarization plane rotation that occurs in the absence of an

V. A. Shalygin (B)
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2 V. A. Shalygin

applied magnetic or electric field. In the framework of phenomenological theory, the
natural optical activity is reduced to the spatial dispersion of the dielectric permittivity
and can be described in terms of linear in the light wavevector contributions to
dielectric tensor components [4],

εik (ω, q) = ε0ik (ω) + iξikl (ω) ql , (1.1)

where ω and q are the frequency and the wavevector of the light wave, respectively;
subscripts i , k, l run through x , y, z; the diagonal tensor ε0ik (ω) describes the dielectric
permittivity of themediumwithout regard for the spatial dispersion; and thegyrotropy
is characterized by the third-rank tensor ξ. The tensor ξ is asymmetric with respect
to the transposition of the first two subscripts: ξikl = −ξkil [5].

For the light propagating along an optical axis (we denote it as the z axis) of
the optically transparent uniaxial crystal, q ≡ |q| = qz , and the Fresnel equation is
reduced to the form

n2∓ = ε0⊥ ± Imεxy (ω, q) = ε0⊥ ± ξxyz (ω) qz, (1.2)

where n− and n+ are the refractive indices for the normal waves with the left-
hand (σ−) and right-hand (σ+) circular polarization, respectively [6]. Due to the
circular birefringence (n− �= n+), the linearly polarized light undergoes the rotation
of the polarization plane. Indeed, the linearly polarized wave can be considered as a
superposition of two circularly polarized waves, and the polarization plane rotation
angle is determined by the phase shift that occurs between the circularly polarized
waves when they are transmitted through the crystal. The magnitude of the rotation
angle θ is equal to half the phase shift and in the approximation of relatively weak
effects of the spatial dispersion can be obtained with the following expression [6]:

θ = ωL

2c
(n− − n+) = ωL

2c

ξxyz (ω)√
ε0⊥

qz, (1.3)

where L is the crystal length. One can conclude that the linear in the light wavevector
contributions to the dielectric tensor due to spatial dispersion cause the circular
birefringence which results in the natural optical activity.

The current-induced optical activity can be described phenomenologically by
linear terms in the expansion of εik with respect to the electric current j , that is,

εik ( j) = ε0ik (ω) + iξikl (ω) ql + iΘikl (ω) jl . (1.4)

Since the electric current density j , as well as the light wave vector q, is a polar
vector that changes its sign due to the time reversal, one can conclude that the tensor
�ikl (ω) is transformed in the same manner as the tensor ξikl (ω) and differs from
zero only in gyrotropic crystals. In particular, the tensor Θikl (ω) is asymmetric with
respect to the transposition of the first two subscripts: �ikl = −Θkil .
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Let us now consider expansion (1.4) as applied to tellurium crystals. It is assumed
that the electric current flows along the optical axis of the tellurium crystal (it coin-
cides in direction with the threefold screw axisC3, we denote this direction as z axis)
and that the light propagates in the same direction. In this case the Fresnel equation
can be rewritten in a following way:

n2∓ ( j) = ε0⊥ ± Imεxy ( j) = ε0⊥ ± ξxyz (ω) qz ± Θxyz (ω) jz . (1.5)

Thus, there is a change in the circular birefringence magnitude determined by
the last term in the Eq.1.5. Accordingly, the light polarization plane undergoes an
additional rotation that is proportional to the current density

ϕ ( j) = ωL

2c

[
n− ( j) − n+ ( j)

] = ωL

2c

Θxyz (ω)√
ε0⊥

jz . (1.6)

Therein lies the phenomenon of current-induced optical activity. When the elec-
tric current reverses its direction, the polarization plane also rotates in the opposite
direction. In contrast to the Faraday effect, which is observed even in isotropicmedia,
the current-induced optical activity occurs only in gyrotropic media and, generally
speaking, is observed against the background of the polarization plane rotation θ due
to the natural optical activity (see Fig. 1.1a). Among the exceptions, there are crystals
with a wurtzite lattice, in which no natural optical activity occurs (θ = 0) and the
current-induced optical activity can be observed in the pure form.

It should be noted that when the light beam passes twice through the crystal
(forward and backward), the resulting polarization plane rotation due to the current-
induced optical activity doubles (as in the Faraday effect). In the case of natural
optical activity, on the other hand, the resulting polarization plane rotation in the
same experimental configuration turns out to be equal to zero. Thus, the effect of
current-induced optical activity is not reduced to a current-induced change in the
magnitude of the effect of natural optical activity. This is a new physical effect not
related to spatial dispersion.

The microscopic origin of the effect of current-induced optical activity is associ-
ated with the current-induced spin polarization (CISP) of charge carriers when there
arises an average (homogeneous over the sample) charge carrier spin in the region
with a constant current density. The microscopic theory of the effect in tellurium
was created by Ivchenko and Pikus [1, 3, 7]. Results of the experimental studies of
the current-induced optical activity and CISP in tellurium were discussed in [1, 6,
8]. Later the CISP in tellurium was also experimentally investigated using nuclear
magnetic resonance (NMR) technique [9, 10]. Recently ab initio calculations of the
current-induced optical activity and CISP in tellurium were performed by Tsirkin
et al. [11], who suggested to designate these effects as “kinetic Faraday effect” and
“kinetic magnetoelectric effect”, respectively.

The CISP in deformed III-V crystals was theoretically examined by Aronov and
Landa-Geller [12]. Spin polarization of conduction electrons due to an electric cur-
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Fig. 1.1 Experimental configuration for observing the current-induced optical activity (a) and
Faraday effect (b). Vectors of the current density, magnetic field strength and light wavevector are
denoted as j , H , and q, respectively; e(e

′
) indicates the light polarization vector at the sample input

(output). The plane polarization rotation angles θ and ϕ ( j) are determined by Eqs. (1.3) and (1.6),
respectively. The Faraday rotation angle is denoted as ϕ (H)

rent is also possible in semiconductor quantumwell structures (see Refs. [13, 14] and
references therein) and in disordered two-dimensional systems [15]. Besides bulk
tellurium, to date electrically polarized spins have been experimentally observed in
GaAs, I nGaAs, ZnSe, and GaN epitaxial layers [16–18]; and single heterojunc-
tions and quantum wells based on III-V semiconductors [19–22].

Section1.2 of the present paper contains a story on the history of the first experi-
ments to observe the current-induced optical activity.Microscopic theory of the effect
is considered in Sect. 1.3. Then, in Sect. 1.4, comprehensive studies of this effect in
tellurium are described, and the results obtained are discussed. The final Sect. 1.5 of
the article summarizes the results of long-term studies of the current-induced optical
activity.

1.2 First Experimental Observation
of the Current-Induced Optical Activity

Electro-optical experiments on telluriumwere started in Leningrad Polytechnic Insti-
tute (its current name is Peter the Great St. Petersburg Polytechnic University) in the
beginning of 1978. The experiments were carried out by Shturbin, Shalygin and
Vorob’ev on tellurium single crystals grown by Farbshtein and Galetskaya at Ioffe
Institute.

A sketch of the original experimental setup is shown in Fig. 1.2. A self-madeCO2

laser operating in CW regime was used as a source of linearly polarized IR radiation
at a wavelength of λ = 10.6µm. The laser beamwas focused on the samplemounted
in a vacuum-free liquid nitrogen cryostat of original design. The sample geometry
used in the first experiments is illustrated in Fig. 1.4a. The samples were cut along



1 Current-Induced Optical Activity: First Observation … 5

Fig. 1.2 Sketch of the original experimental setup

the C3 axis from a tellurium single crystal using an electric spark machine and their
facets were mechanically polished. Two contacts were made from a SnBi Sb alloy
which provided an electric current flowing along the C3 axis. The pulsed electric
voltage with a pulse duration of a few μs and a repetition rate of less than 1 Hz
was applied to the contacts. This regime made it possible to avoid Joule heating
of the samples. To prevent the formation of acoustoelectric domains, which cause
strong modulation of optical absorption, a relatively weak electric field was applied
to the samples (the electric field strength in the samples did not exceed 100−200
V/cm). The Rogowski belt was used to measure the amplitude of the current. The
polarization measurements were carried out using a linear polarizer mounted in front
of a CdHgTe photodetector. The radiation intensity modulation was recorded by
an oscilloscope at various azimuth angles of the linear polarizer. Analysis of the
experimental data led to the conclusion that a new physical phenomenon has been
observed for thefirst time, namely, a radiation polarization plane rotation causedby an
electric current flowing in a gyrotropic crystal along the light propagation direction.
The priority has been protected by an invention application from 11.12.1978 [23].

Several months earlier, this phenomenon had been independently predicted by
theoreticians Ivchenko and Pikus from Ioffe Institute [3]. In their article devoted to
the circular photogalvanic effect (CPGE) in gyrotropic crystals, they also discussed
a possibility to observe a reciprocal effect. In particular, they considered CPGE due
to interband carrier transitions in tellurium and associated its microscopic origin
with the optical spin polarization of electrons and holes that results in appearance
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Fig. 1.3 Sample geometry (a) and dependence of the polarization plane rotation angle on the
current density for a dextrorotatory tellurium crystal with p = 1.5 · 1017 cm−3 at T = 77 K (b).
The electric current co-directional with the laser beam is considered as positive. Sample dimensions
are indicated in millimeters. Measurements were carried out at λ = 10.6 µm

of a photocurrent owing to the spin-orbit interaction. In the reciprocal effect, an
electric current leads to a partial spin polarization of free carriers, which should be
accompanied by a light polarization plane rotation proportional to the current density
[3].

In the beginning of 1979, the experimenters and theoreticians published a joint
paper devoted to the current-induced optical activity [1]. Experimental study of the
effect was carried out on a tellurium crystal of 11 mm length with a free hole concen-
tration of p = 1.5 · 1017 cm−3 at a temperature of T = 77 K. The examined crystal
was dextrorotatory. In the absence of electric current, it demonstrated a positive
polarization plane rotation angle of θ = 102◦ = 1.78 rad. At pulsed electric current
co-directional with the laser beam, there was observed a negative change in the
polarization plane rotation angle Δθ ≡ ϕ ( jz) < 0.

In other words, in the considered case of dextrorotatory tellurium, the electric
current co-directional with the radiation wavevector induced the left-handed rotation
of the polarization plane. In particular, at a current density of jz = +1860 A/cm2 the
current-induced rotation angle of ϕ ( jz) = −4◦ = −0.069 rad was determined from
the experimental data on radiation intensity modulation measured at various azimuth
angles of the linear polarizer. A change in the polarity of the electric current leaded
to the inversion of the rotation direction of the polarization plane. The experimental
dependence of the rotation angle on the electric current density was well approxi-
mated by a linear dependence over the entire range of electric current densities from
−1860 to 1860 A/cm2 (see Fig. 1.3b). Microscopic theoretical model of the current-
induced optical activity in tellurium was developed by Ivchenko and Pikus and was
outlined also in Ref. [1]. The model will be described below in Sect. 1.3.
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1.3 Microscopic Mechanism of the Effect in Tellurium

Tellurium has a specific band structure due to strong spin-orbit interaction. It has
been established that the two upper branches of the valence band (we denote them
as V+ and V−) are anisotropic and obey the substantially non-parabolic dispersion
law (see [24, 25] and references therein):

EV± = −Δ − Ak2z − Bk2⊥ ±
√

Δ2 + β2k2z , (1.7)

where kz is the component of the electron wavevector along the C3 axis and param-
eters Δ, A, B, and β are determined experimentally. Corresponding electron wave
functions are superpositions of the states with the spins (i.e. angular momentum
projections) Mz = +3/2 and Mz = −3/2:

ΨV± = C±
3/2 |+3/2〉 + C±

−3/2 |−3/2〉 , (1.8)

where the weight factors C±
3/2 and C±

−3/2 depend monotonically on the electron
wavevector. As a result, in each branch of the valence band of tellurium there is
a one-to-one correspondence between the electron wavevector and spin. In particu-
lar, in the V+-branch of the valence band, the state of the electronwith thewavevector
projection kz is characterized by the average spin of

Mz (kz) =
(

+3

2

) ∣∣∣C+
3/2

∣∣∣
2 +

(
−3

2

) ∣∣∣C+
−3/2

∣∣∣
2 = 3

2

βkz√
Δ2 + β2k2z

. (1.9)

As it was shown in Ref. [24], the positive sign of the constant β in Eq. (1.9) cor-
responds to levorotatory tellurium crystals, while its negative sign is related to dex-
trorotatory crystals. For the latter case the dependence Mz (kz) is shown in Fig. 1.4b.
The monotonic dependence of the electron spin Mz on the electron wavevector kz
(which is a direct consequence of the spin-orbit interaction in tellurium) underlies
the microscopic mechanism of the current-induced optical activity.

Let us consider propagation of light in tellurium crystal along the z axis. If the
photon energy �ω is less than the band gap energy Eg , then the magnitude of the
refractive indices for normal waves σ− and σ+ is determined by virtual transitions of
electrons from the valence band V+ to the conduction bandC . In Fig. 1.4a, the virtual
transitions excited by the σ− circularly polarized wave are shown by blue vertical
arrows, and red arrows correspond to the transitions excited by the σ+ circularly
polarized wave. We don’t take into account the spatial dispersion, i.e. we put the
light wavevector q equal to 0 and depict the optical transitions with vertical (rather
than tilted) arrows. In the valence band V+, the electron states with a spin of Mz =
−3/2 dominate at kz > 0 (Fig. 1.4b). Electrons from these states can be exited to
the conduction band C by σ+ photons only (the latter have an angular momentum
of +1). As a result, electrons with spin −1/2 appear in metastable states in the
C-band. The σ− photons with angular momentum of −1 cannot excite electron
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Fig. 1.4 Microscopic mechanism of the current-induced optical activity in dextrorotatory tellurium
(β < 0). Illustration for a degenerated p-type crystal (EF denotes the Fermi energy). (a) Diagram
of virtual interband transitions of electrons excited from the states around the Fermi energy by
circularly polarized photons with the energy �ω < Eg . (b) Dependence of the average spin Mz
for states of the valance subband V+ on the electron wave vector component kz . (c) Equilibrium
electron distribution function f 0e and its variationΔ fe due to an electric current flow (for the electron
states in the V+-band with kx = 0 and ky = 0)
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transitions from these states tometastable states in theC-band because in this case the
electron spins in those states should be equal to −5/2 due to the angular momentum
conservation law but such states are absent in the conduction band. There are the
states with spins of −1/2 and +1/2 only. Similarly, the electron states at kz < 0
are mainly excited by σ− circularly polarized wave. In this case electrons undergo
virtual transitions from the valence band states with spin of +3/2 to metastable C-
band states with spin of +1/2 (see Fig. 1.4a). The virtual transitions excited by σ+
and σ− photons with the same energy deficit give the same contribution to a refractive
indices n+ and n−, respectively. In the absence of an electric current, the electron
distribution function f 0e in the valence band V+ is an even function of kz (see dashed
curve in Fig. 1.4c). Consequently, n+ = n−, i.e. there is no circular birefringence (if
neglecting the spatial dispersion).

When an electric current j co-directional with the light beam flows through the
tellurium crystal, the electron distribution function in the V+-band shifts in k-space
against the current j . Therefore, a non-equilibrium addition to the distribution func-
tionΔ fe is an odd function of kz (it is plotted in Fig. 1.4c by a solid line). The positive
Δ fe at positive values of kz increases the refractive index for the σ+-polarized wave,
while the negative Δ fe at negative values of kz decreases the refractive index for
the σ−-polarized wave (in the considered case of β < 0). Both the factors lead to
a current-induced circular birefringence, namely,

[
n− ( j) − n+ ( j)

]
< 0. In accor-

dance with the phenomenological formula (1.6), it results in a negative rotation of the
polarization plane of linearly polarized light: ϕ ( j) < 0. This qualitative description
explains the existence and sign of the current-induced optical activity observed in
the experiment (see Fig. 1.3).

Ivchenko and Pikus performed a microscopic simulation of the effect [1]. They
considered probabilities of the virtual interband electron transitions excited in tel-
lurium by σ+- and σ−-polarized light in the conditions of electric current flow. Non-
equilibrium distribution function of holes in the V+-band was calculated using the
Boltzmann kinetic equation in the approximation of relaxation time. It was found that
the specific current-induced rotation angle γ = ϕ ( jz) /( jzl), where l is a distance
between the electrical contacts, is proportional to the term

βEg

E2
g − (�ω)2

. (1.10)

The theoretically calculated value of |γ| is 9 · 10−5 rad · cm/A, which is rather
close to the value of γ = −6 · 10−5 rad · cm/A found from the experimental data
presented in Fig. 1.3.
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1.4 Comprehensive Study of the Effect and Discussion
of Its Results

For studying the microscopic mechanism of the current-induced optical activity,
it was of particular interest to examine its spectral and temperature dependences.
Previously, the sample preparation technique was improved.

Pieceswith a length of 11−16 mmalong theC3 axiswere cut from single tellurium
crystals (4−8 mm diameter) using an electric spark machine or chemical cutting
technique. The end faces were subjected to optical polishing. Some samples had
the shape of a hexagonal prism, in which the lateral surface was a natural facet of
the single crystal (Fig. 1.5b). Other samples were made by cleaving the hexagonal
prism at T = 77 K and had the form of a triangular prism (Fig. 1.5a). To provide a
more homogeneous current distribution in a sample, ring electrical SnBi Sb contacts
were made on the lateral surface of every crystal near its ends. Moreover, to increase
additionally the homogeneity of electric current in the samples with a cross section
area S exceeding 6 mm2 (see Table1.1), gold from a solution of chloroauric acid was
deposited on the sample ends. In the central parts of the sample ends, regions with a
diameter of 1−3 mm were left uncovered by gold for the passage of the laser beam
(see Fig. 1.5b).

A crucial issue was the optical alignment of the light beam relative to the sam-
ple. In the case when the light beam in the crystal is not strictly parallel to the C3

axis, the strong linear birefringence of tellurium causes noticeable distortions in the
natural/current-induced optical activity [26]. By moving the sample in two direc-

Fig. 1.5 Twovariants of the sample design (a,b) and current dependence of the induced polarization
plane rotation in p-tellurium samples with different hole concentrations (c). Measurements were
carried out using CO2 laser (λ = 10.6 µm) at T = 77 K
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Table 1.1 Sample parameters at T = 77K [26]

Sample
number

151 161 163 165 166 171

signθ +1 −1 +1 +1 +1 +1

p (cm−3) 5 · 1015 1 · 1016 3.2 · 1016 4 · 1016 4.8 · 1016 1.5 · 1017
Geometry Figure1.5b Figure1.5b Figure1.5b Figure1.5b Figure1.5a Figure1.3a

L (mm) 12.4 15 15 12.5 12 11

l (mm) 10.5 13 13 9 9.5 6

S (mm2) 25 37 19 6.8 0.6 1.6

γ (rad ·
cm/A)

−5.7 · 10−5 +9 · 10−5 −8.5 · 10−5 −9.5 · 10−5 −6.9 · 10−5 −6 · 10−5

tions and rotating it around two axes, a linearly polarized light beam from a CO2

laser was adjusted so that the degree of linear polarization of light at the exit from
the crystal Plin was maximum. The quite high values of Plin = 0.95 − 0.99 were
obtained for different samples. This ensured the propagation of the light along the
optical axis of the crystal even if the normal to the input face formed a small angle
with the optical axis (the deflection of the laser beam relative to the optical axis did
not exceed 0.5◦). Note, that in the first experiment (Fig. 1.3a) quality of alignment
was lower (Plin = 0.83) [1].

The current-induced optical activity was investigated in p-type tellurium crys-
tals with various hole concentrations in the range of 5 · 1015 − 1.5 · 1017 cm−3 (at
T = 77 K), see Table1.1. The electron mobility at this temperature varied insignifi-
cantly from sample to sample and ranged from 1700 to 3300 cm2/(V · s). The studies
were carried out on both dextrorotatory (signθ = +1) and levorotatory (signθ = −1)
tellurium crystals. Current dependence of the induced polarization plane rotation
experimentally measured with a CO2 laser at T = 77 K is presented in Fig. 1.5c.
For all samples, this dependence turned out to be linear. The values of specific
current-induced rotation γ = ϕ ( j) /( jl) are negative for the dextrorotatory crystals
and positive for the levorotatory ones (see Table1.1). These facts are consistent with
the theory of the current-induced optical activity created by Ivchenko and Pikus (See
Ref. [1]) and with ab-initio calculations made recently by Tsirkin et al. [11].

Studies of the effect on the crystals with p < 5 · 1015 cm−3 are difficult because of
their high resistivity: acoustoelectric domains arise in them at relatively low current
densities [27]. As the hole concentration increases, the threshold of the generation
of acoustoelectric domains moves to the region of higher currents, and, accordingly,
higher values of the current-induced rotation angles ϕ ( j) become observable (see
Fig. 1.5c). On the other hand, it is practically impossible to measure current-induced
polarization plane rotation on the crystals with p > 2 · 1017 cm−3 due to their low
optical transmission (less than 1% at λ = 10.6 µm).

Note, that the specific current-induced rotation angle γ does not show a strong
concentration dependence in the examined range of hole concentrations, namely,
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when p changed by one and a half orders of magnitude, the value of γ changed by
no more than 1.5 times (see Table1.1). Such a small difference in the magnitude
of the effect seems to be associated not so much with the different concentration
of holes, but with the varying degrees of perfection of the crystal structure and of
the electric field homogeneity in different samples. Indeed, the maximum values
of |γ| = (8 − 9) · 10−5 rad · cm/A were observed in the samples with a large cross
section (S = 7 − 37 mm2), the lateral surface of which was a natural facet of the
single tellurium crystal and was not subjected to any mechanical processing (see
Table1.1, samples 161, 163, 165). It is obvious that electric field homogeneity in
the sample 165 (Fig. 1.5b) is higher than in the sample 171 (Fig. 1.3a) due to special
design of the electrical contacts. With this we associate a lower value of |γ| obtained
in the first experiments (Fig. 1.3).

In order to obtain data on the spectral dependence of the current-induced optical
activity in tellurium, additional experiments were carried out using a carbon monox-
ide (CO) laser, which generates radiation in a shorter wavelength range than a CO2

laser. The optical scheme of the experimental setup was modified as follows. Since
the CO laser simultaneously generates a whole series of lines in the 5.2 − 6.2 µm
wavelength range, it was used in tandem with a monochromator. A Ge:Au resistor
was utilized as a photodetector.

The experimental results on the specific value of the current-induced optical activ-
ity in p − T e (sample 165) for several wavelengths at a fixed temperature are pre-
sented in Fig. 1.6. For comparison, the experimental spectral dependence of the spe-
cific value of the natural optical activity (θ/L) is shown in the same figure [6, 28]. As
the threshold of interband transitions (λg = 2πc�/Eg = 3.7µm) is approached with
decreasing wavelength, the magnitudes of both the effects increase monotonically,
but their rate of rise differs significantly. Spectral dependence of the current-induced
optical activity is well described by the theoretical expression (1.10), while the nat-
ural optical activity has much stronger spectral dependence in accordance with a
theoretical model developed by Natory [29]:

θ

L
∝ 1√

Eg − �ω
+ 1√

Eg + �ω
− 2√

Eg
, (1.11)

This circumstance confirms the idea that the current-induced optical activity is
not a simple consequence of the modulation of the natural optical activity by the
electric field. The latter effect, which is referred to as the electro-optical activity or
the electrogyration effect, is associated with spatial dispersion and is not possible in
tellurium in the considered geometry of the experiment [1]. As it was already men-
tioned in Sect. 1.1, the phenomenon of current-induced optical activity is qualitatively
different from the effects associated with the spatial dispersion.

Experimental study of the temperature dependence of the effect in p-tellurium
(sample 163) revealed a 6-fold decrease of its magnitude upon increasing the temper-
ature from 77 to 350 K (see Fig. 1.7). Theoretical simulation of the γ (T ) dependence
in the framework of the model from Ref. [1] was performed in Ref. [8]. The equi-
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Fig. 1.6 Spectral dependences of the current-induced optical activity (γ) and natural optical activity
(θ/L) in the dextrorotatory tellurium. Circles demonstrate results of our experiments at T = 77 K
[6], and triangles represent experimental data from Ref. [28]. Results of the theoretical simulation
of the γ (λ) dependence according to formula (1.10) are shown by thick black line. The theoretical
spectral dependence of θ/L was obtained using the model from Ref. [29] and is shown by thin blue
curve. The threshold wavelength for the interband electron transitions is indicated by an arrow

Fig. 1.7 Temperature
dependence of the
current-induced optical
activity in p-tellurium at
λ = 10.6 µm. Circles
demonstrate experimental
results. Four curves represent
results of simulation
according to the theoretical
model form Ref. [1].
Numbers near the curves
indicate different values of
the scattering parameter n
(see Eq. (1.12))
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librium hole distribution in k-space was described by the Boltzmann distribution
function and a non-equilibrium hole distribution function was calculated using the
Boltzmann kinetic equation in the approximation of relaxation time. It was assumed
that the momentum relaxation time τ has a power-law dependence on the hole
energy Eh :

τ (Eh) ∝ En
h , (1.12)

where n is a parameter that depends on the scattering mechanism of holes. The
calculation was carried out for various values of n in the range from −1/2 to +3/2,
which obviously overlaps the limits of variation of this parameter in tellurium in the
examined temperature range. The simulation results are plotted in Fig. 1.7 as four
lines. The figure shows that the specific current-induced polarization plane rotation
angle at T = 77 Kweakly depends on the parameter n, and its calculated values are in
good agreement with the experimental value of |γ| = (8.5 ± 0.7) · 10−5 rad · cm/A.
However, the experimentally observed dependence of γ on temperature is much
stronger than that which is calculated for any possible value of n (see Fig. 1.7).

The sharp decrease in the absolute value of the current-induced optical activity
with increasing temperature was explained in the theoretical work of Averkiev [30].
The contributions to the effect from the virtual optical transitions between three bands
(V+, V−, and C) were considered. A change in the occupations of these bands with
an increase in the temperature was taken into account. It was shown, that at higher
temperatures, the electron contribution to the total electric current begins to dominate
over the hole contribution. On the other hand, it was found that asymmetry in the
distribution of electrons in the C band (caused by the electric current flow) makes a
much smaller contribution to the current-induced optical activity compared to that
of holes in the V+ band. This is precisely the additional reason for the decrease in γ
upon increasing temperature.

As discussed above, themicroscopic origin of the effect of current-induced optical
activity is associated with the CISP of charge carriers when there arises an average
charge carrier spin in the region with a constant current density. The dependence of
the degree of spin polarization of holes in tellurium on the electric current density
was considered in Ref. [6].

In the absence of an electric current, the distribution of holes in k-space is
described by the Fermi-Dirac functionwith the Fermi level EF that can be determined
by the normalization to hole concentration p. This equilibrium distribution function,
denoted below as f 0h (k), is an even function of kz , consequently, the average spin
of the holes 〈Mz〉 is equal to zero, because Mz (kz) is an odd function. It should be
noted that the dependences Mz (kz) in the electron band EV+ (k) and in the hole
band Eh (k) are described by the same relationship, Eq. (1.9) [6]. When the electric
current is flowing through the sample, the addition to the distribution function of
the holes, Δ fh (k), appears, which is an odd function of kz , and the average spin the
holes 〈Mz〉 ceases to be equal to zero:
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Fig. 1.8 Dependences of the
average hole spin on the
current density for the
dextrorotatory (red line) and
levorotatory (blue line)
tellurium crystals.
Simulations were made for
tellurium crystals with a hole
concentration of
p = 4 · 1016 cm−3 at
T = 77 K under condition of
j ‖ z ‖ C3

〈Mz〉 = 1

p

∫
Mz (kz)Δ fh

(
kx , ky, kz

) d3k

(2π)3
. (1.13)

The non-equilibrium addition to the distribution function of the holes can be found
using the Boltzmann kinetic equation in the approximation of relaxation time τ [6]:

Δ fh (k) = f 0h (k)
[
1 − f 0h (k)

] eEz

kBT

1

�

∂Eh

∂kz
τ (Eh) , (1.14)

where j ‖ E ‖ z ‖ C3 is assumed, and kB is the Boltzmann constant.
Figure1.8 presents the calculated dependence of the average hole spin on the

electric current in tellurium for the range of electric current densities corresponding
to experiments on the current-induced optical activity (see Fig. 1.8). The calcula-
tions were performed for the dextrorotatory (signθ = −signβ = +1) and levorota-
tory (signθ = −signβ = −1) tellurium crystals using Eqs. (1.9), (1.13), and (1.14).
Results of the simulations for a p-tellurium crystal (p = 4 · 1016 cm−3) at T = 77 K
are presented in the figure. In the framework of the considered model, the average
spin of the holes and the current density are related by a linear expression. It can
be seen from Fig. 1.8 that, in the case of the dextrorotatory tellurium crystal, the
direction of the average hole spin is opposite to the direction of the electric current.
And vice versa, in the levorotatory crystal, the electric current and the average spin
of the holes have the same direction.

Since the holes in tellurium are in a superposition of states with the z-projections
of the angular momentum ±3/2, the degree of spin polarization of the holes is
conveniently determined using the expression

ρh = 〈Mz〉
3/2

. (1.15)
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In accordance with our simulations, the maximum absolute value of the spin
polarization of the holes in considered experiments on the current-induced optical
activity in p-tellurium reaches 1.4 · 10−2 (at p = 4 · 1016 cm−3, T = 77 K, and jz =
1400 A/cm2). The spin polarization of the holes is spatially uniform in the region of
current flow and is characterized by a very high spin density of 560 spins/µm3 [6].
This agrees surprisingly well with the value of 561 spins/µm3 obtained by Tsyrkin
et al. from ab initio calculations at the same conditions [11].

A significantly weaker CISP was observed in other bulk materials. The value of
the volume-uniform spin density under lateral electric current flow in the 1.5 µm-
thick epitaxial layer of the n-ZnSe gyrotropic semiconductor at T = 20 K did not
exceed 12 spins/µm3 [16]; in this case the degree of electron spin polarization ρe
was only 1.3 · 10−6. The CISP, uniform over the volume of semiconductor, was also
observed in strained n-I nGaAs epitaxial layers grown on aGaAs substrate [17]. The
maximum value of the electron spin density detected at T = 5 K was 8.1 spins/µm3

(ρe = 2.7 · 10−4). In contrast to tellurium, where spins are oriented along the direc-
tion of the electric current, in the n-ZnSe and n-I nGaAs semiconductors, when the
electric current flows along the epitaxial layer, the spin polarization of electrons has
been observed in the layer plane in the direction perpendicular to the current [16,
17]. As the authors noted, the microscopic origin of the observed effects is not quite
clear. The measurements of CISP in Refs. [16, 17] were carried out using magne-
tooptical methods. The Faraday and Kerr rotation angles detected in these studies did
not exceed 4 · 10−5 rad, which is four orders of magnitude less than the maximum
current-induced rotation angle of the polarization plane observed in tellurium [6].

A few years ago there was published a conference abstract titled as “Current
induced optical activity in topological insulator Bi2T e2Se” [31]. Unfortunately, this
publication does not contain any experimental data on the magnitude of the observed
effect. It seems that in terms of the magnitude of the current-induced polarization
plane rotation, tellurium is a unique semiconductor. Moreover, tellurium is the only
material for which the CISP has been also detected using NMR technique [9, 10].
Namely, a current-induced shift of 125T e NMR spectrum was measured which was
attributed to the appearance of amagnetic field that is parallel to the applied current. It
was shown that the current-induced magnetization has opposite polarities in dextra-
and levorotatory tellurium crystals. For a crystal of given chirality, the magnetization
is linear in current, and a reversal of the current leads to a reversal of the magne-
tization. It is important to mention, that comparison of the current-induced NMR
shift [10] with the experimental data on CISP from current-induced optical activity
measurements [6] enables one to determine a constant of the hyperfine coupling of
125T e in elemental trigonal tellurium.

Current-induced optical activity can play a significant role in the optical noise
spectroscopy. As it was shown in Refs. [32, 33], in addition to the spin noise, in
gyrotropic systems, the spectrum of the Faraday and Kerr rotation fluctuations con-
tains information about the electric current fluctuations. In tellurium, for instance,
stochastic fluctuations of electric current give rise to a stochastic rotation of the
light polarization plane as it passes through a gyrotropic system due to the effect of
current-induced optical activity. The microscopic theory of the noise of the Faraday
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or Kerr rotation effects has been recently developed for bulk tellurium, ensembles
of carbon nanotubes, and two-dimensional systems, such as GaAs quantum wells
grown along different crystallographic directions [32]. The estimates showed that
among the studied systems the effect is the strongest in quantum well structures. It
was found for zinc-blende lattice quantum wells grown along the [110] axis, that
contribution from current fluctuations dominates near the optical resonance, while
contribution from spin fluctuations dominates far away from it [33].

1.5 Conclusion

This review paper summarizes results of the experimental and theoretical investiga-
tions of the current-induced optical activity by a number of researchers in 1978–2021.
This effect is also designated as the electrical analog of the Faraday effect, or kinetic
Faraday effect.

Phenomenologically, the effect is associated with linear terms in the expansion
of dielectric tensor components with respect to the electric current. In a gyrotropic
uniaxial medium, when an electric current is flowing along the optical axis, it may
result in a circular birefringence for the light propagating co-directionally with the
electric current. In the case of linearly polarized light, the circular birefringence
leads to rotation of the light polarization plane. This is precisely the effect of current-
induced optical activity.

So far, p-tellurium is the only material for which comprehensive studies of the
current-induced optical activity have been performed. The spectral, temperature and
concentration dependences of the effect have been experimentally examined. The
microscopic theory of the effect has been developed and ab initio calculations have
been carried out. They are in good agreement with the experimental results.

The microscopic origin of the effect in tellurium is associated with the spin-orbit
interaction that leads to a very particular kind of the electron wave functions in
the topmost valence subband. Namely, the valence band electron spin orientation is
locked with its wavevector, hence, the electric current magnitude in the valence band
is directly related to the average spin of the holes (and therefore, to the degree of
hole spin polarization).

One of the possible applications of the effect is an infrared modulator. Its main
advantages are high speed and linear dependence of the modulation magnitude on
current [23, 26]. Unlike hot electron infrared modulators, the modulator based on
the effect of current-induced optical activity does not distort the signal waveform.
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Chapter 2
Optically Pumped Terahertz Radiation
Sources Based on Impurity Carrier
Transitions in QuantumWells

Dmitry Firsov , Ivan Makhov , Vadim Panevin , Hayk A. Sarkisyan,
and Leonid Vorobjev

Abstract A review of the results of studies of terahertz radiation associated with
impurity electron transitions in n-doped GaAs/AlGaAs quantum wells under con-
ditions of interband optical excitation of nonequilibrium charge carriers is presented.
The principles of radiation generation and methods of controlling its intensity are
described: a decrease in the lifetime of electrons at impurity levels due to stimulated
interband radiation and the introduction of a compensating acceptor impurity.

2.1 Introduction

Terahertz (THz) radiation (wavelength 30–300µm) has a wide range of applications.
High penetrating power for dry non-metallic objects allows its use in the field of non-
destructive testing and in security systems. In the terahertz frequency range, many
organic molecules have characteristic absorption bands, which makes it possible to
create systems for the diagnosis of materials. Terahertz radiation is non-ionizing,
unlike X-rays, which are used in medical diagnostics. It makes terahertz radiation
safer for living organisms. Despite the vast areas of possible application of terahertz
radiation, its use is significantly limited due to the difficulties with the creation of
affordable compact and efficient sources of terahertz radiation.

To date, the most efficient and compact source of terahertz radiation is a quantum
cascade laser, the operation principle of which is based on intersubband electron tran-
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sitions during their vertical transport in nanostructures with tunnel-coupled quantum
wells [1]. Themost important factor limiting thewidespread use of terahertz quantum
cascade lasers is the extreme technological complexity of these devices. Therefore,
the problem of finding and developing alternative mechanisms and schemes for gen-
erating terahertz radiation is urgent.

In n-type semiconductors, under conditions of optical interband excitation of
nonequilibrium charge carriers, terahertz radiation can arise when nonequilibrium
electrons are captured from the conduction band to donor impurity states, the depop-
ulation of which occurs due to spontaneous electron-hole recombination during elec-
tron transitions from the ground donor state to the valence band. Terahertz radiation of
this type was previously observed in bulk semiconductors [2–6]. Placing an impurity
center in a quantum well opens up the possibility of controlling its energy spectrum
due to the size quantization effect by changing the parameters of doped quantumwells
and the possibility of controlling the frequency of impurity terahertz luminescence.

In this paper,we review the results of studying the terahertz impurity luminescence
under the conditions of interband photoexcitation of nonequilibrium charge carriers
in nanostructures with doped GaAs/AlGaAs quantum wells. An increase in the
intensity of the observed radiation can be obtained due to the effective depopulation
of the ground donor state. To this end, two approaches were used: the fast depopu-
lation of the ground impurity states by stimulated near-infrared (NIR) emission and
a substantial compensation of impurities in quantum wells. In the latter case, the
compensation of impurities leads to the appearance of an additional recombination
channel of the “donor-acceptor” type, and also decreases the equilibrium population
of impurity states.

2.2 Terahertz Photoluminescence Under Interband
Photoexcitation of Quantum Wells Doped with Shallow
Donors

2.2.1 Mechanism of Terahertz Emission

Let us consider the mechanism of impurity terahertz photoluminescence in quantum
wells doped with shallow donors under interband optical excitation. A diagram illus-
trating optical transitions of charge carriers in doped quantum wells under interband
photoexcitation is shown in Fig. 2.1. At a low temperature of the crystal lattice, the
donor is neutral, i.e. in equilibrium, an electron is located in the ground state of the
donor 1s. Under interband optical pumping, depending on the photon energy of the
exciting radiation, the generation of electron-hole pairs will occur either directly in
the quantumwells or also in the barrier layers of the structure (this optical transition is
marked with a solid arrow labeled “optical pumping” in Fig. 2.1). Then, nonequilib-
rium photoexcited electrons and holes, being thermalized, will descend to the lower
subbands of the size quantization of electrons e1 and heavy holes hh1. After this,
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Fig. 2.1 Diagram of optical
transitions of charge carriers
in donor-doped quantum
wells under interband optical
excitation

the recombination of an electron in the ground state 1s of the donor impurity with
a nonequilibrium hole from the hh1 subband is possible, accompanied usually by
spontaneous emission of a photon corresponding to the near-infrared range. After the
1s donor ground state is depopulated, a nonequilibrium electron from the first elec-
tron subband e1 can be captured by an ionized donor with a spontaneous emission
of a terahertz photon.

This section presents the results of the first studies of low-temperature impu-
rity terahertz photoluminescence in nanostructures with GaAs/AlGaAs quantum
wells doped with shallow donors under conditions of interband optical excitation of
nonequilibrium charge carriers.

2.2.2 Experimental Samples and Techniques

Investigations of impurity terahertz photoluminescence were performed on samples
with quantum wells of various widths. Here, we present the results for a nanostruc-
ture containing 50 periods of GaAs quantum wells of 30 nm, separated by tunnel-
nontransparent Al0.3Ga0.7As barriers with a thickness of 7 nm. Each quantum well
of the nanostructure was dopedwith silicon in a narrow layer 4 nmwide, shifted from
the center of the quantum well by 6 nm. The surface concentration of the dopant was
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3 · 1010 cm−2. The nanostructure had a 20 nm thick GaAs cover layer doped with
donors with a volume concentration of 5 · 1017 cm−3.

For measurements in the temperature range from 4 to 320 K, a Janis PTCM-4-7
optical closed-cycle cryostat was used. Interband photoexcitation of nonequilibrium
charge carriers was carried out by modulated radiation of a continuous-wave solid-
state Nd:YAG laser with frequency doubling in a lithium iodate crystal (Li I O3) with
a wavelength of 532 nm.

The terahertz photoluminescence emission of the sample was collected by an off-
axis parabolic mirror of a Bruker Vertex 80v vacuum infrared Fourier spectrometer
operating in the step-scan mode. In order to prevent the scattered pumping radiation
from entering the measuring channel of the setup, a black polyethylene filter 100µm
thick was installed in front of the entrance window of the Fourier spectrometer. An
Infrared Laboratories, Inc., liquid helium-cooled silicon bolometer was used as a
terahertz radiation detector. The photoresponse signal from the bolometer preampli-
fier was measured with a phase-sensitive detector lock-in amplifier SR-830 at the
modulation frequency of the pumping radiation. The measured signal interferogram
was converted into a spectrum using the OPUS software.

We also studied photoluminescence spectra in the near-infrared frequency range
using an experimental setup based on a Horiba JobinYvon FHR 640 monochromator
with a holographic grating consisted of 1200 groves per mm and a liquid nitrogen
cooled silicon CCD matrix.

2.2.3 Experimental Results

When the structure is illuminated, optical generation of electron-hole pairs can occur
not only in low-dimensional layers, but also in a semi-insulating GaAs substrate,
which can contain residual impurities. In addition, nonequilibrium photoexcited
charge carriers can reach the substrate due to diffusion from the active layers of
the nanostructure, since the total thickness of the active layers of the nanostructure
is comparable with the diffusion lengths of charge carriers in GaAs [7]. As a result,
two bands were found in the terahertz photoluminescence spectrum of the nanostruc-
ture, one of which is associated with impurities in the quantum wells. The second
band, which was also observed in the sample, which is a substrate without epitaxial
layers, is associated with optical transitions of charge carriers in the semi-insulating
substrate of the structure. Note that the first band of terahertz photoluminescence
cannot be caused by intersubband optical transitions of charge carriers in quantum
wells. This is due to the fact that, in accordance with the selection rules, such optical
transitions are allowed only for light polarized along the growth axis of the structure,
while in the geometry of the experiment performed, radiation polarized in the plane
of quantum wells was recorded.

The terahertz photoluminescence spectra of the nanostructure with quantumwells
for various lattice temperatures are shown in Fig. 2.2 [11, 12].
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Fig. 2.2 Terahertz photoluminescence spectra of 30 nm GaAs/AlGaAs quantum wells at various
temperatures of the crystal lattice

In accordance with the calculation of the energy spectrum of shallow donors in
GaAs/Al0.3Ga0.7As QWs 30 nm wide, the binding energy of the donor impurity
is about 9 meV [8]. Since the spectral position of the terahertz photoluminescence
band of the nanostructure is close to the calculated value of the donor binding energy
in quantum wells, the observed photoluminescence can be associated with optical
transitions of nonequilibrium electrons with the participation of shallow donor states.

The observed radiation can be associated with several optical transitions of elec-
trons. Firstly, this band can be caused by intracenter optical transitions of electrons
between the excited 2px,y and ground 1s donor states. The calculated value of the
transition energy is about 6.6 meV and is marked with an arrow 2px,y-1s in Fig.
2.2. Secondly, this terahertz photoluminescence band can be associated with optical
transitions of electrons from the first electron subband e1 to the 1s ground state of
the donor impurity. The calculated value of the optical transition energy e1 − 1s is
8.8 meV and is indicated by the arrow e1 − 1s in Fig. 2.2. The significant width of
the spectrum is caused by the broadening of impurity states due to the high concentra-
tion of donor impurity centers [9], as well as by the broadening of the donor binding
energy due to the finite width of the doping region of quantum wells. Narrow lines
of impurity terahertz luminescence are observed in semiconductors with an impurity
concentration much lower than in our case [10].

An increase in the lattice temperature from 4.5 K to 10 K leads to a 1.5-fold
decrease in the integral luminescence intensity. Such quenching of impurity ter-
ahertz photoluminescence with increasing temperature has already been observed
for the case of doped bulk semiconductors [3] and was attributed to a decrease in
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the probability of capture of nonequilibrium charge carriers by ionized donor cen-
ters with increasing lattice temperature. In addition, the decrease in the intensity of
impurity terahertz photoluminescence with an increase in the lattice temperature can
be caused by the expansion of the distribution function of charge carriers in the QW
subband with temperature.

The photoluminescence spectra of the near-infrared range were also investigated.
In accordance with the mechanism of the observed terahertz impurity luminescence,
these spectra exhibit features associated with radiative electron-hole recombination
between the ground donor state and the first hole subband of the quantum well.

Similar measurements were performed for a nanostructure with narrower quan-
tum wells 16.1 nm wide [13]. The calculated value of the binding energy of the
donor impurity of silicon in such quantum wells is about 10 meV, which led to a
short-wavelength shift of the impurity terahertz photoluminescence band relative to
the impurity luminescence band of wide quantum wells and to the corresponding
modification of the photoluminescence spectra of the near-infrared range.

2.3 Influence of Stimulated Near-Infrared Radiation on
Terahertz Photoluminescence

2.3.1 Introduction

According to the proposed mechanism of terahertz impurity photoluminescence, the
depopulation of the donor ground state occurs due to spontaneous radiative or nonra-
diative recombination during transitions of charge carriers between the donor ground
state and the states of the first hole subband. There are a number of approaches that
make it possible to increase the efficiency of impurity terahertz photoluminescence
in doped quantumwells. One of them is an increase in the rate of depletion of the final
state for the impurity terahertz transition of an electron (i.e., the ground donor state),
since the capture of nonequilibrium electrons to the ground impurity state, accompa-
nied by the emission of photon in the terahertz range, in particular, is determined by
the population of the ground donor state. An increase in the rate of depopulation of
the ground donor state can be achieved due to the organization of stimulated emis-
sion in the near-infrared range in the same nanostructure, namely, the organization
of stimulated optical transitions of charge carriers from the ground state of the donor
to the hole subband.

A similar mechanism has already been demonstrated earlier in [14, 15] when
observing mid-infrared radiation from laser diode structures with vertically cou-
pled self-organized I nGaAs/AlGaAs quantum dots and I nGaAs/GaAs quantum
wells. Laser generation, realized in the near-infrared range of the spectrum in struc-
tures with quantum dots during transitions of charge carriers between the lower
electron and hole levels, led to an increase in the intensity of spontaneous intraband
transitions of charge carriers between the levels of quantum dots, accompanied by
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the emission of photons in the mid-infrared range. At the same time, in the absence
of lasing in the near-infrared range of the spectrum, spontaneous emission of the
mid-infrared region was not observed at all in structures with quantum dots. In struc-
tures with quantumwells, spontaneous emission of mid-infrared radiation associated
with intersubband transitions of nonequilibrium charge carriers in the wells was also
observed, but it did not have a threshold character as in structures with quantum dots.

This section presents the results of studies of the spectra of spontaneous terahertz
photoluminescence in laser nanostructures with doped quantum wells with a waveg-
uide for near-infrared radiation. When lasing in the near-infrared range occurs in
such a nanostructure, the rate of depopulation of the ground donor state increases
due to stimulated transitions from the ground donor state to the first hole subband,
which in turn should be reflected in an increase in the intensity of terahertz radiation
when electrons are captured from the first electron subband and excited donor states
to the ground donor state.

2.3.2 Experimental Samples and Techniques

We studied a nanostructure with doped quantumwells with waveguide layers, as well
as a semi-insulating GaAs substrate, which did not contain epitaxial layers. A sam-
ple of a nanostructure with quantum wells was grown by molecular beam epitaxy on
a semi-insulating GaAs substrate. The quantum wells were formed by 7.6 nm thick
GaAs layers separated by 5 nm thick Al0.3Ga0.7As barriers. Doping of quantum
wells with a surface concentration of 5 · 1010 cm−2 was carried out with silicon in
the central region of each quantum well with a width of 2.6 nm. In total, the nanos-
tructure contained 10 quantum wells, which were placed in a symmetric gradient
waveguide for near-infrared radiation, formed by wide-gap gradient AlxGa1−x As
layers (composition x varied from 0.4 to 0.6) 0.6 µm thick. The nanostructure had
a 10 nm thick GaAs cover layer doped with silicon with a volume concentration of
5 · 1017 cm−3.

To get lasing in the near-infrared range, the GaAs semi-insulating substrate was
grinded down to a thickness of about 100µm, and then high-Q cavity of total internal
reflection with sides of about 600 · 600 µm2 was cleaved out of it.

During the experiment, the samples were placed on a copper holder in a Janis
PTCM-4-7 closed cycle optical cryostat, which made it possible to change the sam-
ple temperature in the range of 4 − 320 K. The photoluminescence studies of both
terahertz and near-infrared ranges were carried out simultaneously. The pump radia-
tion was directed to the sample in a cryostat using a system of mirrors and a spherical
lens. In this case, the lens was installed in a defocused position to illuminate the entire
surface of the laser nanostructure resonator. Terahertz photoluminescence radiation
was collected by an off-axis parabolic mirror of a Fourier spectrometer from the
sample surface. Spontaneous and stimulated near-infrared radiation was collected
from the facet of the nanostructure cavity using a system of lenses and mirrors and
directed to the entrance slit of the grating monochromator.
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To achieve lasing in the near-infrared spectral range, high-power optical excitation
of the samples was carried out by a pulsed solid-state Nd:YAG laser with frequency
doubling in a Li I O3 crystal. The pumping radiation parameters are as follows: the
radiation wavelength is 532 nm, the pulse duration is 250 ns, and the repetition rate
is 8 kHz. The intensity of the polarized pumping laser radiation was varied using
an adjustable attenuator consisting of a combination of a half-wave plate and a
Glan-Taylor prism, and was additionally modulated by a mechanical chopper at a
frequency of 87 Hz. The need for additional modulation of the pulsed pump radiation
at a low frequency is caused by the limited bandwidth of the bolometer, which acts
as a photodetector of terahertz radiation. The photoresponse signal of bolometer was
measured with a phase-sensitive lock-in amplifier SR-830 at a frequency of 87 Hz.

Except for the details described above, the technique for studying the terahertz
and near-infrared photoluminescence spectra of samples does not differ from the
technique described in Sect. 2.2.2.

2.3.3 Experimental Results, Their Analysis and Discussion

The spectral dependence of the terahertz photoluminescence intensity measured at
a low pulsed optical excitation power of 40 W/cm2 for a nanostructure with doped
quantum wells and a waveguide for near-infrared radiation, prepared in the form of a
total internal reflection cavity, is shown in Fig. 2.3 [21]. In this case, in the spectra of
spontaneous near-infrared photoluminescence, an emission band is observed, asso-
ciated with radiative electron-hole recombination through donor states. As can be
seen, in the terahertz photoluminescence spectrum, one emission band is observed
with a maximum intensity near the photon energy of 20 meV. Note, that, under the
same conditions, terahertz radiation from a semi-insulating GaAs substrate was not
observed.

In accordance with the calculation of the energy spectrum of donor states [16], the
binding energy of a donor impurity located in the center of a GaAs/Al0.3Ga0.7As
quantum well with a width of 7.6 nm is approximately 13.5 meV. Therefore, the
observedbandof terahertz radiationwith amaximum intensity near the photon energy
of 20 meV (see Fig. 2.3) is associated with optical transitions of nonequilibrium
electrons from the first electron subband e1 to the ground state of the donor impurity
1s.

A significant shift of the spectral position of the intensity maximum of the tera-
hertz photoluminescence band from the binding energy of the donor impurity in the
quantum well can be explained as follows. It is known that the wave functions of
electrons on donor impurity states are formed mainly by the wave functions of the
conduction band. Therefore, optical transitions of electrons between the 1s donor
ground state and the first electron subband e1 are forbidden in the standard dipole
approximation, since the wave functions of the initial and final states in this case
have the same symmetry. However, this condition is strictly fulfilled only for the
zero value of the wave vector of the electron. Theoretical calculations of the spec-
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Fig. 2.3 Terahertz photoluminescence spectra of a nanostructure with doped quantum wells, mea-
sured at a temperature T = 5 K and various optical excitation powers (a); Diagram of impurity
optical transitions of charge carriers in quantum wells. Dotted and dash-dotted arrows show optical
transitions in the terahertz and near-infrared ranges of the spectrum, respectively (b)

tral dependence of the photoionization cross section (which is proportional to the
photodeionization cross section [17]) of shallow donors in quantum wells performed
in [18] showed that the maximum value of the donor photoionization cross section
in quantum wells is located at photon energies exceeding the binding energy of the
donor impurity. Thus, the maximum of the photodeionization cross section, which
determines the shape of the spectrum of impurity photoluminescence associated with
the e1-1s transitions, should be shifted to the short-wavelength region of the spec-
trum relative to the binding energy of the donor impurity, which agrees with the
observed spectrum of terahertz photoluminescence (see Fig. 2.3a).

The next step was to increase the optical excitation power of the nanostructure,
which should lead to the appearance of stimulated near-infrared radiation during
donor impurity transitions of charge carriers. This, in turn, should lead to a more
efficient depopulation of the ground donor state, which is the final state for terahertz
electron transitions. Figure 2.4 shows the dependence of the intensity of the near-
infrared radiation, integrated over the entire photoluminescence spectrum, on the
optical excitation power. This dependence has a threshold character, which indicates
the appearance of lasing in the near-infrared range of the spectrum. The threshold
value of the pumping power for the appearance of lasing is about 120 W/cm2.

In the near-infrared photoluminescence spectra, when the pumping power reaches
120 W/cm2, a high-intensity narrow emission line appears against the background of
a broad photoluminescence spectrum. Based on the results of calculating the energy
spectrum of donor states in quantum wells, the arising stimulated emission line is
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Fig. 2.4 Dependence of the integrated intensity of the near-infrared photoluminescence of a nanos-
tructure with doped quantum wells on the optical excitation power

associated with the radiative electron-hole recombination between the excited state
of the donor 2s and the first hole subband hh1 (see Fig. 2.3 b).

Lasing in the near-infrared range initially occurs during optical transitions of
charge carriers with the participation of an excited rather than a ground donor state.
This may be due to the different gain for optical transitions with the participation of
the excited and ground donor states.

The dependence of the integrated intensity of terahertz radiation on the power of
optical excitation of the nanostructure is shown in Fig. 2.5.

It can be seen from this dependence that at low excitation levels, i.e. at pumping
powers not exceeding the near-infrared lasing threshold (the threshold value is indi-
cated by the arrow 2s-hh1 in Fig. 2.5), the integral intensity of the impurity terahertz
photoluminescence is proportional to the square root of the optical pumping power
(the square root dependence is shown by the dashed line in Fig. 2.5). As follows
from the terahertz photoluminescence spectra measured at low pumping powers (see
Fig. 2.3a), an increase in the terahertz photoluminescence intensity in this range of
photoexcitation powers is associated with an increase in the intensity of the e1-1s
band. This dependence of the terahertz impurity photoluminescence intensity on the
pump power is in a good agreement with the theoretical and experimental results for
terahertz impurity radiation upon interband optical pumping of bulk semiconductors
[4].

When the pumping power corresponding to the onset of near-infrared lasing at
2s − hh1 transitions is reached, the rate of increase in the terahertz photolumi-
nescence intensity associated with optical transitions e1-1s begins to decrease (see
Fig. 2.5). The intensity of such terahertz photoluminescence I e1T Hz , associated with
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Fig. 2.5 Dependence of the integrated intensity of terahertz photoluminescence of a nanostructure
with doped quantum wells on the level of interband optical excitation, measured at a temperature
of T = 5 K

electron transitions e1-1s, in the first approximation depends on the concentra-
tion of electrons n (e1) in the n+ (1s) subband and the concentration of free donor
states 1s:

I e1T Hz ∝ n (e1) · n+ (1s) . (2.1)

Without taking into account the compensation of impurities, the concentration
n+(1s) of free donor 1s states can be determined as follows:

n+ (1s) = ND − n (1s) − n
(
2px,y

) − n (2s) , (2.2)

where ND is the total donor concentration in quantum wells, and n (1s), n
(
2px,y

)
,

and n (2s) are the quasi-equilibrium electron concentrations in donor states 1s, 2px,y
and 2s, respectively. The presence of the last two terms in expression (2.1) is caused
by the fact that the considered donor impurity centers are singly charged, i.e. one
donor impurity center cannot capturemore than one electron [19]. The concentrations
n (e1) and n+ (1s) themselves are determined by the rates of capture of electrons
from the first electron subband e1 to excited and ground donor states and the rates
of recombination of electrons from donor states with holes from the valence sub-
bands. Probably, the arising stimulated emission line caused by stimulated impurity
transitions 2s-hh1 leads to a faster depopulation of the excited donor state 2s in
the QW compared to depletion due to spontaneous transitions, which leads to the
corresponding more efficient nonradiative capture of electrons from the first electron
subband e1 into an excited donor state 2s. It follows that, with the onset of stimulated
2s-hh1 transitions, the rate of increase in the electron concentration in the subband
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n (e1) with increasing pumping power can decrease, as well as a change in the con-
centration n+ (1s) of free donor states 1s capable of capturing an electron from the
e1 subband.

A subsequent increase in the optical excitation power to a level of 400 W/cm2

leads to a decrease in the integrated intensity of the impurity terahertz photolumi-
nescence with an increase in the level of optical excitation of the nanostructure (see
Fig. 2.5). As follows from the corresponding terahertz photoluminescence spectra
measured at photoexcitation powers exceeding 270 W/cm2, the decrease in the inte-
grated terahertz photoluminescence intensity is accompanied by a decrease in the
intensity of the terahertz luminescence band associated with optical transitions of
electrons e1-1s.

The decrease in the integrated intensity of impurity terahertz photoluminescence
at pumping powers above 400 W/cm2 is accompanied by the appearance of an addi-
tional line of impurity stimulated near-infrared emission, observed in the correspond-
ing spectra. The appearance of the second line of impurity stimulated emission is
associated with stimulated transitions of charge carriers 2px,y-hh1. Such transitions
probably lead to a faster nonradiative capture of nonequilibrium electrons from the
first electron subband e1 to excited donor states 2px,y , which in turn leads to a
decrease in the intensity of impurity terahertz electron transitions e1-1s. This is due
to a change in the concentration of electrons in the first electron subband and free
ground donor states included in expression (2.1), by analogy with the effect of stimu-
lated transitions 2s-hh1 on the intensity of terahertz photoluminescence at transitions
e1-1s.

A further increase in the optical excitation power above 1 kW/cm2 leads to the
appearance of a third line of stimulated near-infrared radiation, which is associated
with radiative recombination of electrons from the ground donor state with nonequi-
librium holes from the first subband of heavy holes hh1.

It is the onset of stimulated optical transitions 1s-hh1 that should lead to the
effective depopulation of the 1s donor ground state and, accordingly, to an increase
in the intensity of impurity terahertz photoluminescence. Indeed, the dependence
of the integral intensity of the impurity terahertz photoluminescence on the optical
excitation power shows an increase in the terahertz photoluminescence intensity with
increasing pumping at photoexcitation powers exceeding 2 kW/cm2 (see Fig. 2.5),
i.e. exceeding the threshold for lasing at impurity transitions 1s-hh1.

It is noteworthy that in the terahertz photoluminescence spectra, the appearance
of stimulated emission in the near-infrared range during the 1s-hh1 transitions leads
to the appearance of a new terahertz radiation line near the photon energy of 9 meV.
In accordance with the results of calculating the energy spectrum of donor impurity
states in our quantum wells [16], a new terahertz radiation line at a photon energy of
9 meV is associated with intracenter optical transitions of nonequilibrium electrons
between the excited 2px,y and ground 1s donor states in quantum wells. Probably, at
pump powers exceeding 2 kW/cm2, the ground donor states 1s begin to depopulate
by near-infrared stimulated radiation faster than excited states 2px,y , which leads
to the appearance of radiative transitions 2px,y-1s, accompanied by the emission of
terahertz photons.
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2.4 Terahertz Photoluminescence in Compensated
QuantumWells

2.4.1 Introduction

There is another way to increase the intensity of terahertz photoluminescence asso-
ciated with impurity transitions of electrons in quantum wells. The intensity of the
impurity terahertz photoluminescence depends on the population of the donor ground
state, which is final for terahertz electron transitions. In this section, we consider the
possibility of increasing the intensity of impurity terahertz radiation due to additional
doping of quantum wells with acceptors, i.e., due to compensation of donors with
acceptors. Firstly, such compensation of donor impurities by acceptor impurities will
significantly lower the equilibriumpopulation of donor states. Secondly, an additional
recombination channel will arise for electrons from the 1s ground donor state due
to recombination of the donor-acceptor type. The above factors should increase the
intensity of impurity terahertz photoluminescence for compensated quantumwells as
compared to uncompensated ones. In compensated quantum wells, emission bands
associated with donor-acceptor recombination and recombination of the “first elec-
tron subband-acceptor” type can appear in the photoluminescence spectra of the
near-infrared range. In the terahertz photoluminescence spectra, an emission band
associated with the capture of holes from the first hole subband into acceptor states
can also be detected.

2.4.2 Experimental Samples and Techniques

On semi-insulating GaAs substrates, two structures were grown, each containing
50 periods of quantum wells formed by GaAs layers 7.6 nm wide and separated
by 5 nm wide Al0.3Ga0.7As barriers. Quantum wells in the first nanostructure were
doped only with a donor impurity (Si) with a surface concentration of 3 · 1010 cm−2.
The quantum wells in the second nanostructure, in addition to the same donor impu-
rity, contained a compensating acceptor (Be) impurity with the same concentration.
Doping was carried out into the central region of the quantum wells 2.6 nm wide.
Both nanostructures had a 5 nm thick GaAs cover layer doped with silicon with a
volume concentration of 5 · 1017 cm−3.

The technique for studying the photoluminescence of the near-infrared and tera-
hertz spectral ranges in the described nanostructures is completely analogous to the
technique described in Sect. 2.2.2.

In order to compare the terahertz photoluminescence intensities of two nanos-
tructures, the dependences of the integrated terahertz photoluminescence intensity
on the optical excitation power were measured. For these studies, a Ge:Ga photore-
sistor sensitive to terahertz radiation (sensitivity range 8 − 30 meV) was installed
opposite to the surface of the sample placed on a copper holder in a closed-cycle
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Fig. 2.6 Terahertz photoluminescence spectra of nanostructures with quantum wells doped with
donors (a) and donors and acceptors (b), measured at a temperature of T = 8 K. The scales of the
vertical axes in figures (a) and (b) differ

cryostat. The distance between the sample and the Ge:Ga photodetector was about
12 mm. Thus, upon optical pumping of the sample, the integrated intensity of tera-
hertz radiation from the sample surface was recorded by a Ge:Ga photodetector. In
order to prevent penetration of the reflected and scattered pumping radiation, as well
as the near-infrared radiation of the photoluminescence of the sample, to the Ge:Ga
photodetector, cold filters made of black polyethylene (approximately 100µm thick)
and high-resistive germanium compensated with antimony and gold (1 mm thick)
were installed at the input of the photodetector.

2.4.3 Experimental Results, Their Analysis and Discussion

In the spectra of near-infrared photoluminescence for both nanostructureswith doped
quantum wells, an emission band appears, associated with optical transitions of
charge carriers through donor impurity states [25]. In addition, for a nanostructure
with compensated quantum wells, the spectrum contains emission bands associated
with impurity optical transitions of charge carriers between the first electron subband
and acceptor states, as well as between the states of donors and acceptors in quantum
wells.

The terahertz photoluminescence spectrum of a nanostructure with
GaAs/AlGaAs quantum wells doped only by donors is shown in Fig. 2.6a.

In the photoluminescence spectrum, two emission bands are observed with inten-
sity maxima near the photon energies of 10 and 21 meV. No terahertz photolumines-
cence signal from the semi-insulating GaAs substrate was observed under similar
experimental conditions; therefore, the observed emission bands are caused by opti-
cal transitions of nonequilibrium charge carriers in low-dimensional doped layers.
The detected bands of terahertz radiation cannot also be caused by intersubband
transitions of charge carriers in quantum wells, since they are forbidden for radiation
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polarized in the plane of quantum wells (it is this polarization of radiation that was
used in experiments).

In accordance with the results of calculating the energy spectrum of the states of
shallow donors in quantum wells GaAs/Al0.3Ga0.7As [16], the binding energy of
the ground donor state in quantumwells 7.6 nmwide is about 13.5 meV (this value is
indicated by the arrow ED in Fig. 2.6 a). Thus, the terahertz photoluminescence band
with a maximum intensity near the quantum energy of 21 meV can be associated
with optical transitions of nonequilibrium electrons from the first electronic subband
e1 to the ground donor state 1s. The corresponding luminescence band is indicated
by the arrow e1-1sD in Fig. 2.6a.

The second band of terahertz photoluminescencewith amaximum intensity near a
quantum energy of 10 meV is probably associated with intracenter optical transitions
of electrons between the excited 2px,y and ground 1s states of donors in quantum
wells. This luminescence band is marked with an arrow 2pD

x,y-1s
D in Fig. 2.6a. The

spectral position of the observed band caused by intracenter transitions of electrons
is in a good agreement with the results of calculating the energy spectrum of shallow
donors in quantum wells from [16], according to which the energy gap between the
ground 1s and excited 2px,y donor states is about 10 meV.

In the terahertz photoluminescence spectra of a nanostructure with quantumwells
doped with both donors and acceptors, emission bands associated with optical tran-
sitions of charge carriers with the participation of both donor and acceptor impurity
states should appear. Such a spectrum is shown in Fig. 2.6 b on the same line for the
crystal lattice temperature of the nanostructure T = 8 K. Since, in the 6 − 28 meV
photon energy range, the emission spectrum of this nanostructure exhibits terahertz
luminescence bands similar to those found for a nanostructure with quantum wells
doped only by donors (see Fig. 2.6a), then emission in this spectral range is also
associated with optical transitions of nonequilibrium photoexcited electrons from
the first electron subband e1 and excited donor states 2px,y to the ground donor state
1s. These bands of impurity terahertz photoluminescence are marked with arrows
2pD

x,y-1s
D and e1-1sD in Fig. 2.6b.

The terahertz photoluminescence band, located near the photon energy of 36 meV,
is observedonly for a nanostructurewith quantumwells, inwhich donors are compen-
sated by acceptors, which makes it possible to associate this terahertz radiation band
with the presence of acceptor impurities in the quantum wells. The binding energy
of a beryllium acceptor located in the center of a GaAs/Al0.3Ga0.7As quantum well
7.6 nmwide is about 35 meV [22]. Therefore, the terahertz photoluminescence band
near a photon energy of 36 meV is associated with optical transitions of nonequi-
librium electrons between the ground acceptor state and the first subband of size
quantization of heavy holes hh1. This photoluminescence band is marked with an
arrow 1s A-hh1 in Fig. 2.6b on the same line. It should be noted that the true shape
of the terahertz photoluminescence band associated with the presence of acceptor
impurity states in quantum wells may differ from that presented. This is caused by
the possible influence of lattice absorption in the GaAs layers, since the energy of
the transverse optical phonon in GaAs is about 33.8 meV [23], which is very close
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to the binding energy of the beryllium impurity in quantum wells. The energy of a
transverse optical phonon is marked with an arrow �ω0 in Fig. 2.6b.

Next, we compared the intensities of terahertz photoluminescence associated with
donor impurity transitions of nonequilibrium electrons in quantum wells of both
types. Comparative studies of the integrated intensity of terahertz photoluminescence
for two nanostructureswere performed usingGe:Ga photoresistor, which is sensitive
to terahertz radiation in the 8–30 meV photon energy range [24] and does not detect
short-wavelength radiation associated with optical transitions with participation of
acceptors.

The dependences of the integrated terahertz photoluminescence intensity on the
optical pumping power in both studied nanostructures, measured in a wide range
of photoexcitation powers at a grating temperature T = 8 K look similar. However,
a nanostructure in which donors in quantum wells are compensated by acceptors
demonstrates an order of magnitude greater integrated intensity of terahertz pho-
toluminescence associated with donor impurity electron transitions, compared to a
nanostructure in which shallow donors in quantum wells are not compensated. This
is observed in the sufficiently wide range of photoexcitation powers.

2.5 Conclusion

This paper presents the results of experimental studies of low-temperature terahertz
photoluminescence associated with impurity transitions of nonequilibrium charge
carriers in quantum wells under interband optical excitation.

The spectral dependences of the intensity of spontaneous terahertz photolu-
minescence under interband optical pumping of nanostructures with donor-doped
GaAs/AlGaAs quantum wells of various widths are studied for the first time. Two
approaches have been implemented to increase the efficiency of terahertz impurity
luminescence:

• Increase in the rate of depletion of the ground donor state due to stimulated radi-
ation in the near infrared range, implemented in the same nanostructure.

• Compensation of donorwith acceptors,which leads to a decrease in the equilibrium
population of donor states and to an additional depopulation of the donor ground
state due to electron transitions from the donor ground state to acceptor states.
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Chapter 3
Broadband Absorption of Microwaves
in Periodic Cylindrical Structures

Lilit Gevorgyan, Henrik A. Parsamyan, and Hovhannes Haroyan

Abstract The absorption efficiency of a subwavelength conductive wire can be
essentially increased in the broad microwave spectrum from 4 to 12GHz by the
appropriate choice of the radius and height of a wire. Such functional dependence
ensuresmatchingbetween the configuration and the incident field oriented by thewire
axis. Theoretical results obtained within the limits of electrostatic approximation and
numerical calculations reveal that the absorption cross-section of a wire can exceed
the geometrical one by about 10 times, whereas the scattering efficiency is negligibly
small. Such properties allow one to achieve relatively high absorption of the incident
wave by a system consisting of the wires periodically distributed on a flat surface.

3.1 Introduction

For many years, electromagnetic absorbers have been widely used in the field of
electromagnetic compatibility, sensors, bolometers, solar energy harvesting, heat
emitters and new passive cooling technologies [1–3]. Effective materials that shield
and absorbmicrowave radiation, particularly in the 2−18GHz radar frequency range,
are required for different defense and aerospace applications, for example creation
of “stealth” aircraft [4, 5] camouflaging military ground devices and units from radar
surveillance, and the design of anechoic chambers. In this context, the research and
development of radio-absorbing materials have become essential.

In order to control electromagnetic waves to eliminate interference between dif-
ferent devices in a wide frequency band from RF to millimeter-wave spectrum,
high-efficiency electromagnetic wave absorbers are required. This has an important
role in future 5G wireless networks [6].
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As wireless communication technology is advancing, electronic equipment
becomes widely used in many fields, thus leading to an increase in electromagnetic
pollution [7]. In this regard, microwave absorbers effectively absorb electromagnetic
waves, lowering the effects of electromagnetic pollution.

Commonly, the absorbing principles in absorbent materials are mainly linked to
the dielectric loss or the magnetic loss. Nevertheless, because of the impedance mis-
matching at broad frequency ranges, these absorbers hardly achieve ultra-wideband
absorption [8, 9].

Many absorbers have been developed, however themain drawbacks include thick-
ness and difficulty of broadband impedancematching to free space. An ideal absorber
should enjoy the benefits of a lightweight, low thickness, cost-effectiveness, wide
bandwidth and good processability. The operating bandwidth is one of the most chal-
lenging problems, because different applications mostly demand wide-bandwidth
absorbers. Multilayer structures and lossy materials with a tapered shape are com-
monly used to obtain wider operating bandwidths. However, this may result in a bulk
volume and high cost [4, 10].

Many attempts have focused on developing metamaterial/metasurface-based
absorbers from the microwave band to optical band. Limited by the resonance prop-
erty, the operating bandwidth of the perfect metamaterial absorber (PMA) is usually
narrow. In microwave band PMAs [11], typically comprised of dielectric thin-films
sandwiched by a metallic split-ring resonator and cutting wire, can show near 100%
absorbance at the resonant frequency, but they generally exhibit a narrow absorption
bandwidth.

In recent years, all-dielectric metamaterial absorbers, composed of traditional
microwave absorbing materials have shown their unique potential in improving
impedance matching in a wide frequency band. One can achieve impedance match-
ing with the surrounding by varying specific structures in these absorbers. Other-
wise, material properties such as plasma frequency can be modified according to the
targeted operating frequency. It is challenging to improve the absorbance and the
bandwidth simultaneously because of the fundamental trade-off between the oper-
ational bandwidth and the attainable absorption. Therefore, most of the broadband
perfect absorption structures are based on near to 90% absorption, and by trying to
obtain higher absorbance, the bandwidth will drop dramatically. Consequently, fur-
ther research is needed for obtaining the broadband absorption structure with higher
absorbance.

3.2 Theory

Let ε1 be the dielectric permittivity of the medium of a prolate spheroid with semi-
axes a, b and c (so that a > b = c) placed in the environment with a real dielectric
constant ε2. Within the limits of electrostatic approximation (the dimensions of the
spheroid are much smaller than the incident wavelength in the surrounding), the total
dipole moment of the prolate spheroid is determined by the relation [12]:
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Px = ab2

3

ε1 − ε2

ε2 + (ε1 − ε2)n(x)
Ex , (3.1)

where

n(x) = 1 − e2

e3
(arctanh e − 1), e =

√
1 − b2

a2
. (3.2)

In the investigated case, when b � a, we have [13]:

n(x) ≈ b2

a2
ln

2a

2.7b
. (3.3)

Henceforth, we will assume that the medium of the spheroid is a lossy material
with the complex dielectric permittivity ε1 = ε1r + i · ε1i . Within the range of elec-
trostatic approximation, the absorption and scattering cross-sections of the prolate
spheroid are as follows:

σabs = 8π2

λ

a3

3 ln 2a
2.7b

ε2ηi

(ε2 + ηr )2 + (ηi )2
, (3.4)

σscat = 27π5

34
a6

λ4

1(
ln 2a

2.7b

)2 (ηr )
2 + (ηi )

2

(ε2 + ηr )2 + (ηi )2
. (3.5)

Here

ηr = (ε1r − ε2)
b2

a2
ln

2a

2.7b
, ηi = ε1i

b2

a2
ln

2a

2.7b
. (3.6)

and λ is the wavelength in the surrounding medium.
In order to quantitatively describe the absorption and scattering properties of

the investigated configuration, we employ the absorption and scattering efficiency
factors:

Qabs = σabs

S
and Qscat = σscat

S
. (3.7)

We consider the case when λ � a � b. Therefore under specific conditions (the
real and imaginary parts of dielectric constant of wires materials are the same order
∼103 for the fixed geometry: r = 20µm, L = 5mm within considered frequency
range (4−12GHz)), the scattering efficiency is negligible compared to the absorp-
tion.
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3.3 Results and Discussion

Full-wave numerical analysis based on the finite element method (FEM) was con-
ducted to reveal the dependence of the absorption properties of the geometrical
parameters. To simplify the simulated geometry, prevent simulation model from
memory overflow due to the high density of the meshes in narrow regions, the pro-
late spheroid was replaced by an equivalent cylindrical wire having radius r=b and
height L = 2a, schematically illustrated in Fig. 3.1a. The wire is illuminated by ax-
polarized plane wave propagating along the y-axis. Within all simulations, we will
assume that the wire height L = 5mm.

Fig. 3.1 a Schematic sketch of the prolate spheroid and the equivalent wire and b absorption
efficiency spectra of the prolate spheroid obtained according to Eqs. (3.4) and (3.7) (solid line) and
simulated (symbol). The sizes of the wire are for r = 20µm, L = 5mm, wire dielectric constant
ε1 = ε1r + i · ε1i = 1000 + i · 3500. The surrounding medium is air with ε2 = 1

Figure3.1b shows the theoretical (lines) and simulated (symbols) efficiency factor
of the absorption for r = 20µm, L = 5mm, wire material dielectric constant is
ε1 = ε1r + i · ε1i = 1000 + i · 3500, which can be obtained by composite materials
like graphite mixtures. The surrounding medium is air with ε2 = 1. One sees that the
theoretical results of the absorption efficiency for a prolate spheroid and simulations
for an equivalent wire are rather in good agreement. Both numerical and theoretical
analyses show that the absorption efficiency of the structures linearly depends on
the frequency and increases for higher frequencies reaching to about 13 (Fig. 3.1b).
However, the small mismatch of the numerical and theoretical results appearing at
higher frequencies is the result of neglecting the quadrupole effects in the theoretical
analysis.

To realize the absorption metasurface the periodical structure of appropriate dis-
tributed rods (wires) can be used. In this case, a trade off rod spacing should be chosen
to minimize interaction, thereby reducing incident wave reflections without a large
transition coefficient. In Fig. 3.2 is shown the geometry of the simulation, consisting
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Fig. 3.2 Modeling geometry for one layer

Fig. 3.3 Dependency of the reflection (asterisk), absorption (circle) and transmission (diamond)
coefficients from the imaginary part of the dielectric permittivity, consisting of one layer of infinite
rods, with parameters r = 20µm, εr = 1000, f = 11GHz. The distance between the two elements
were a 1mm and b 2mm

of one layer of periodically distributed rods at distance of 1000µm from each other.
The grey rectangle illustrates the simulation domain composed of orderly arranged
cylinders placed in free space. The incident plane wave is excited and received using
the port boundary condition (Port1 and Port2, respectively). Arrows show the prop-
agation direction of the incident electromagnetic waves.

Figure3.3 shows the change in the coefficients of reflection (asterisk), absorption
(circle) and transmission (diamond) (respectively R, A and T ) as a function of the
imaginary part of dielectric constant of the rods with parameters ε1r = 1000, r =
20µm, L = 5mm, f = 11GHz with a distance between the two elements of 1mm
(Fig. 3.3a), and 2mm (Fig. 3.3b). The absorption coefficient is calculated using the
following expression A = 1 − R2 − T2, where R = |S11|2 and T = |S21|2 are the
reflection coefficient and the transmission coefficients, respectively. It is seen that
the distance between the elements affects the reflection and absorption coefficient of
the absorber: in the case of 1mm A ∼ 0.48, R ∼ 0.16, T ∼ 0.36, and in the case of
2mm, A ∼ 0.41, R ∼ 0.07, T ∼ 0.52.

It should be noted that the weak dependence of A, R, T parameters on the imagi-
nary part of the dielectric constant of awire enables do not to have precision quantities
of the mixture components of graphite mixture which makes easier the fabrication
of such structures.
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Fig. 3.4 Modeling geometry for five layers

Fig. 3.5 Dependency of the reflection (asterisk), absorption (circle) and transmission (diamond)
coefficients from the imaginary part of the dielectric permittivity of the absorber layers, the distance
between the two elements of the layers were 1mm. The distance between the layers were 1mm
(a), and 2mm (b)

The efficiency of the absorption can be increased by creating an absorbing system
consisting of multiple layers of such wires (Fig. 3.4).

The improvement of absorption feature of multilayer structure is clearly seen in
Fig. 3.5. The dependence of the reflection (asterisk), absorption (circle) and transmis-
sion (diamond) coefficients on the imaginary part of the dielectric permittivity of the
absorber wire, in the case of a five-layer structure presented in Fig. 3.5. The distance
between two elements in one layer were 2mm, r = 20µm, εr = 1000, f = 11GHz
a the distance between the layers 1mm, b distance between layers 2mm.

Further improvement of absorption can be reached by optimizing the distance
between twonearby layers. Tofind the optimal distance between the layers, numerical
analyses were carried out at different distances between the layers.

Figure3.6 shows that increasing the distance between layers respectively increases
the absorption coefficient and decreases the reflectance. However, at some point (in
our case, from a distance of 10mm), the absorption coefficient decreases.

To describe the dependency of absorption on the number of layers, the simulations
were carried out by regularly adding the layers. Figure3.7 shows that an increase in
the number of layers leads to an increase in the absorption coefficient, but at some
point (in our case from the 9th layer) the absorption coefficient becomes almost
constant.
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Fig. 3.6 Dependency of the reflection and absorption coefficients from the distance between the
layers of a five-layer system

Fig. 3.7 Dependency of the absorption coefficient on the number of layers

As shown in Fig. 3.7, there is a significant increase in absorptance (0.85 andmore)
in the number of layers up to 5−7, after which the growth rate decreases sharply.
This suggests that in practice, it is possible to not use too many layers, especially
since an increase in the number of layers leads to an increase in the total thickness
of the absorber. For example, in the case of having 5 layers, if the distance between
the layers is 2mm, the thickness of the system will be 1 cm, which, for example, at
an operating frequency of 10GHz is three times less than the wavelength.

The proposed structure is polarization-sensitive and it can absorb only linearly
polarized incident field parallel to wires. This issue can be solved in a multilayer
system by applying additional through one layers perpendicular to the initial ones.

Thus, depending on the formulation of the problem, it is possible to achieve
different rates of absorption depending on the dielectric permittivity of the rods,
their radius, the distance between them, and the distance between the layers.
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3.4 Conclusion

Conductive subwavelength wires oriented to the polarization of the incident wave
can serve as an effective basic element of broadband absorbers in the 4−12GHz
microwave range. The absorption capacity of such absorbing rods can be signifi-
cantly increased due to the correct choice of the geometrical and electrodynamics
parameters of the structure. To obtain absorbing metasurfaces, periodic systems of
absorber rods canbe used,withwhich it is possible to provide surfaceswith an absorp-
tion coefficient near 0.9. In particular, the results of numerical calculations show that
the corresponding periodic arrangement of rods with a radius of r = 20µm, length
L = 5mm, ε1 = 1000 + i · 3500 can lead to broadband absorption of the order of
0.9, which is nearly uniform in a broad spectrum from 4 to 12GHz.
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Chapter 4
Dielectric Confinement Affected
Exciton-Polariton Properties of the
Semiconductor Nanowires

K. H. Aharonyan, E. M. Kazaryan, and E. P. Kokanyan

Abstract The nonlocal susceptibility with the cylindrical symmetry in semicon-
ductor quantum wires embedded in the dielectric barrier environment (DQWW) is
calculated. The strong dependence from the wire radius R due to the dielectric mis-
match effect is established (∼ R−8/3). It has been received that the oscillator strength
of the one-dimensional (1D) excitons in DQWW increase strongly with decreasing
R. The Maxwell’s equations are solved in presence with the nonlocal excitonic
response to the dielectric polarization for the DQWW and in a result the effective
boundary conditions just considering a quantum wire presence in the structure have
been established. The scattering coefficient of the light incident on the DQWW is
obtained which strongly depends on the DQWW material parameters such as: (a)
quantum wire radius R and dielectric constant εw, (b) barrier environment dielectric
constant εb. This made it possible to obtain the dispersion spectrum and lifetime for
the 1D exciton-polaritons of the DQWW near the exciton resonance with the oppor-
tunities of the valuable manipulations along with the magnitudes of the DQWW
material parameters.

4.1 Introduction

The strong coupling of the low-dimensional excitons and localized photon states
(exciton-polaritons) has been a subject of considerable interest for a long time in
the optics of semiconductor nanostructures [1–3]. A number of unique physical phe-
nomena were discovered (a Rabbi splitting, a large decrease of the exciton resonance
lifetime [4, 5]) which can be directly aimed at promising applications in semiconduc-
tor optoelectronics. In this regard, intense theoretical efforts [6–10] have been carried
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out over the past time to realize the photonic structures such as planar and cylindrical
multilayeredmicrocavities, wide band-gap semiconductor photonic structures which
offer unique optical properties.

Toprovide a substantial enhancement of light-matter interactionwith thequantum-
confined excitons and thus to support high polariton stability, the photonic structures
should provide both the large exciton binding energy and the oscillator strength val-
ues [1, 2, 9]. Due to this a search for ways to enhance these physical values in
photonic structures is a decisive factor in this area [11–15].

In the bulk semiconductors a role of Wannier-Mott excitons to optical response is
insignificant compared to interband transitions since the exciton line dimensionless
oscillator strength (per unit crystal cell) is the order of (d0/a0ex )3 ≈ 10−4 ÷ 10−5,
where d0 is the lattice constant and a0ex is the excitons effective radii taking the
values as a0ex � d0.

Such an estimate follows from the physical condition that the dimensionless oscil-
lator strength is of the order of exciton radiative recombination probability (i.e. local-
ization probability of electron and hole in the same crystal lattice unit cell) propor-
tional to the|φex (0) |2 value as compared to the intensity of the absorption spectrum
of the semiconductor, where φex is the exciton wave function. Here the localization
probability is inversely proportional to the exciton effective volume Vex ∼ a3ex and
the absorption intensity is characterized by the localized Wannier functions linear
combinations of band states just within the crystal unit cell volume V0 and estimating
as proportional to V−1

0 ∼ d−3
0 .

In turn, the exciton effects in semiconductor low-dimensional structures-quantum
wells (QW), quantum wires (QWW) are much more prominent and accessible for
experimental detection than in bulk samples both in the absorption and in the emis-
sion. This, first of all, found the confident confirmation in experiments on optical
absorption and photoluminescence [16, 17]. Theoretically, this is explaining by an
increase in the exciton binding energy and in the oscillator strength of the correspond-
ing exciton transition with a decrease in the spatial dimensions of the semiconductor
quantum sample when takes place the compression of the exciton wave function in
the spatial confinement direction (quantum confinement (QC)). In particular, in the
thin QW there is a correspondingly fourfold and eightfold increase of the exciton
binding energy and the exciton transition oscillator strength [18, 19].

These results refers the physical situation, when the dielectric constants mismatch
between semiconductor quantum sample (semiconductor/dielectric quantum wells
(DQW) and quantum wires (DQWW)) and surrounding dielectric barrier environ-
ment (εw, εb) is small or neglected. The difference between εw and εb leads to
an unhomogeneous polarization of the quantum structure. In result for the case of
εw � εb and the distances between the charges as large as the QC spatial size (DQW
thickness d or DQWW radius R) the charges produced field in the barrier begins to
play a perceptible role and force electron and hole into the middle of the quantum
sample and, so, tomodify and enhance their interaction (dielectric confinement effect
(DC)) [20–22]. As correspondingly are shown in Refs. [23, 24] and [22] the effective
exciton volume in DQW and DQWWmight radically reduced since in the direction
normal to the DQW the exciton dimension is ∼ d and the in-plane effective radius
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Fig. 4.1 The cylindrical
DQWW of a radius R

due to DC effect takes the value ∼ √
a0exd , while in the direction normal to the

DQWW axes the exciton dimension is just ∼ R and in the direction parallel to axes
the exciton effective radius becomes the value (a0ex R2)1/3.

As follows, in addition to the existing enhancements from the QC effect, the DC
effect in turn might lead to the further strong increase of the exciton binding energy
and the exciton transition oscillator strength with decreasing of the DQW thickness
d or DQWW radius R. The latter creates the more favorable conditions in these
structures to provide a substantial enhancement of the light-matter interaction to
provide a substantial enhancement of the light-matter interaction with the quantum-
confined excitons and thus to support high polariton stability. In this connection in
Ref. [11] the contribution of the excitonic transition to the electromagnetic response
of the DQW and the possibilities of the propagation of the polariton waves are
considered (Fig. 4.1).

The aim of the present paper is to develop an analogous formalism for the analysis
of the particular features of the light-matter interactionwith the one-dimensional (1D)
DC enhanced dipole-allowed excitons in the DQWWwith the cylindrical symmetry
confinement. Specific azimuthal symmetry here substantially simplifies the convo-
lution of the problem, as together with the 1D wave vector an additional quantum
number (azimuthal) is available now.

The outline of presented paper is as follows. In Sect. 4.2, we describe the macro-
scopic theory of the electromagnetic response of the DQWW to the electromagnetic
field with frequency ω and projection of wave vector k on the wire axes (k‖). The
next section is devoted to obtaining explicitly effective boundary conditions which
are considering the dependence of the dielectric properties on the wire radius R.
The Sect. 4.4 consists of an application of the obtained effective boundary condi-
tions for the calculation of the light reflection coefficient from the structure under
consideration.
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4.2 Electromagnetic Linear Response to the
Electromagnetic Field in the Macroscopically
Homogeneous and Isotropic DQWW

We are considering an infinitely long cylindrical DQWW of a radius R filled by an
active material with the dielectric constant εw and immersed in a dielectric barrier
environment with the dielectric constant εb. Let take in the cylindrical polar coor-
dinates (ρ,φ, z) , where z axes coincides with the DQWW axes, and the plane of
incidence (ρ,φ) be normal to the wire axes. Here a strong spatial confinement regime
would be assumed presupposing that a quantum wire radius is small compared with
the exciton Bohr radius a0ex = εw�

2/μ∗
exe

2 for bulk samples ( a0ex � R), μ∗
ex is the

exciton reduced mass. Then, as follows, the distances along the wire axes |z| � R
would be essential in discussed case and therefore the one-dimensional (1D) long
wave region k‖ � R−1 could be appropriate here. For this case, it is quite reasonable
to introduce a spatially separated exciton wave function in the form

Ψk‖,Me,Mh (ρe,ρh, ze, zh) = φl (ze − zh) Υ j,Me (ρe) Υ j,Mh (ρh) . (4.1)

Here φ (z) is the 1D wave envelope function of the exciton pair relative motion,
l = 1, 2, ... numbers the 1D exciton sublevels, Υ (ρ,φ) is the one-particle wave
function describing the electron or hole transverse relative to theDQWWaxesmotion
and in the QC model of a square well with infinite walls is characterized by [22]

Υ j,M (ρ,φ) = 1

s1/2
ei |M |φ J|M |

(
λ

|M |
j

ρ

R

)
/J|M |+1

(
λ

|M |
j

)
, (4.2)

whereMe(h) = 0, 1, 2, . . . is the one-particle angularmomenta and j = 1, 2, ... num-
bers the QWW subbands, λ|M |

j are the roots of J|M | (x) = 0.
As shown in Ref. [22], for the DQWW satisfying the system of conditions a0ex �

R � a0ex/ (εr ln εr )
2, where εr = εw/εb, the effective radii of the exciton ground

and first excited bound states fall into the range of distances εr (R/z)2 ln (|z|/R) � 1
with |z| � R, where exciton interaction potential has the form

V (z) = − e2

εs R

√
εr ln εr

2

[
1 − |z|

R

√
2

εr ln εr

]
(4.3)

and for that the 1D wave function of exciton pair relative motion and 1D exciton
bound state energy spectrum have the form [25, 26]

φl (z) = N (μl)

a1/2ex

Φ

( |z|
aex

+ μl

)
, l = 1, 2, 3, . . . , - even states, (4.4)
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φl+1 (z) = N (ξl)

a1/2ex

|z|
z

Φ

( |z|
aex

+ ξl+1

)
, l = 1, 2, 3, . . . , - odd states, (4.5)

Eeven(odd)
l = − e2

εs R

√
εr ln εr

2

[
1 − μl (ξl+1)

21/3

√
2

εr ln εr

a0ex
R

]
, (4.6)

whereΦ (z) is theAiry function,μl are the solutions ofΦ
′
(z) = 0, ξl are the solutions

ofΦ (z) = 0, aex = (a0ex R2/2)1/3, N is the normalization constant (for more details
see [25, 26]). As follows from Eq. (4.6), the exciton binding energy of the DQWW is
determined by the dielectric properties of the surroundingwiremedium and increases
as ∼ R−1.

The oscillator strength (per unit length of the DQWW) of the associated optical
transition is

fx
L

= iω
2m0

�e2
μcv

∣∣∣∣
∫

ΨM (ρe = ρh, ze = zh) dρedze

∣∣∣∣
2

, (4.7)

where μcv is the dipole matrix element in the bulk material, L is the wire length, m0

is the electron free mass. In Eq. (4.7) only the 1D excitons with M = Me + Mh = 0
are allowed in the dipole approximation because the others have zero exciton wave
function at the origin of the relative coordinates. As follows from Eqs. (4.1), (4.2)
and (4.3) the 1D exciton effective volume Vex in DQWW decreases as (R/a0ex )8/3

and since |ΨM (0) |2 ∼ V−1
ex , so the 1D exciton line oscillator strength fex increases

as R−8/3.
The 1D excitonic transition contribution to the electromagnetic linear response of

the cylindrical DQWWinduces the dielectric polarization connectedwith the electric
field E as

Pα (ρ) =
∫

χαβ

(
k‖,ω,ρ,ρ′) Eβk‖ω

(
ρ′) dρ′, (4.8)

where the nonlocal dielectric Fourier-transformed polarizability χαβ is given by

χαβ

(
k‖,ω,ρ,ρ′) = χαβ

(
k‖,ω

) [
Υ j,M (ρ)

]2 [
Υ j,M

(
ρ′)]2 , (4.9)

which will be calculated in accordance with the second order perturbation theory.
Here we assume that the light wave propagate in the plane orthogonal to the

DQWW axes and consider only the exciton ground state in the wire which is charac-
terized by M = 0 angular momentum. Given the cylindrical symmetry of the exciton
ground state, the integral in Eq. (4.8) is nonzero only in the case of cylindrical light
waves having zero angular momentum. Thus in the following we limit the discussion
to that situation only.

After necessary actions with the excitonic wave functions (4.1), (4.2) and (4.4)
for the Fourier-transformed dielectric polarization Pα

(
k‖,ω,ρ

)
obtain
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Pα

(
k‖,ω,ρ

) = Λαβχ

(
k‖,ω; ρ

)
Ēβ, (4.10)

where

χ
(
k‖,ω;ρ

) = χ
(
k‖,ω

)
⎛
⎝ J|M |

(
λ

|M |
j

ρ
R

)

J|M |+1

(
λ

|M |
j

)
⎞
⎠

2

, (4.11)

and Ē = ∫ [
Υ j,M

(
ρ′)]2 Ek‖ω

(
ρ′) dρ′.

In the Eq. (4.11)

χ
(
k‖,ω

) =
(
2μ∗

exe
8
�
4
)1/3

[N (μl) Φ (μl)]
2

πε
1/3
s R8/3

|Vcv|2
εk‖

(
ε2k‖ − (�ω)2

) , (4.12)

where Vcv is the matrix element of the velocity operator corresponding to the transi-
tion from the valence to conduction band, εk‖ is the resonant energy of exciton
creation, including its kinetic energy in the state with momentum �k‖.

In Eq. (4.10) the coefficients Λαβ , where (α,β) = (ρ,φ, z), accounts the polar-
ization structure of the exciton transition, i.e., the symmetry of wave functions of the
c and v bands. As a rule, in assumption that the wire and barrier environments are
optically isotropic, these coefficients contain just two characteristic terms: Λz = Λ‖
and Λρ = Λ⊥.

Equation (4.11) exhibits clearly the strong increase of the excitonic oscillator
strength in DQWW as R decreases. Except that Eqs. (4.10)–(4.11) expresses the
nonlocal structure in rho, reflecting, as in the DQW [11–13], the peculiar “firmness”
of the exciton transverse to wire axes wave function (4.1). Thereby the exciton
creation probability defines by the field strength averaged over the electron and hole
transverse to wire axes wave func-tions and the spatial distribution of the induced
current itself is proportional to the same wave functions at ρe = ρh = ρ′.

4.3 Effective Boundary Conditions for the Electromagnetic
Fields in the Macroscopically Homogeneous and
Isotropic DQWW

The distribution of the electromagnetic field in the DQWW in presence of such polar-
izationwill be found in analogywith thewell establishedmethod related the effective
boundary conditions in QW systems [1, 11, 27] connected with the field magnitudes
in the neighboring media and are followed from the Maxwell’s equations. Here we
expand this method on the DQWW system case in the first time.

Thereby in accordance with the Eqs. (4.8), (4.9) and (4.10) the corresponding
electromagnetic field induction vector is given by
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Dα

(
k‖,ω; ρ

) = εwEαk‖ω (ρ) + 4πΛαβχ
(
k‖,ω, ρ

)
Ēβ, (4.13)

With the aim of to obtain the boundary conditions let now integrate the Maxwell
equations and take into consideration only the leading terms in the small quantities
k‖R and (ω/c)R together with the Eq. (4.13). In these equations we are dealing with
the monochromatic fields E, D and H vary in space according to the law

A (r, t) = A (ρ) ei(k‖z−ωt) =
∑
|M |

A (ρ) ei |M |φei(k‖z−ωt). (4.14)

The resulting solutions will be matched in the barrier and QWW regions and
the latter will be occurred only by these boundary conditions. Below, using these
boundary conditions, we will analyze the reflection coefficient from the DQWW
structure.

Let at first start from the integrating of the Maxwell equation divD = 0 . The
latter in the polar planar coordinates (ρ,φ) for the case of exciton ground state with
the condition M = 0 takes the form

eρ

∫ R

0

∫ 2π

0

1

ρ

∂

∂ρ

(
ρD(0)

ρ (ρ) eik‖z
)

ρdρdφ + ez

∫ R

0

∫ 2π

0

∂

∂z

(
D(0)
z (ρ) eik‖z

)
ρdρdφ = 0,

(4.15)

which after integrating together with Eq. (4.13) becomes

E(0)
ρ (R) = − i R

εw

ε‖
(
k‖ Ē

(0)
z (R)

)
eρ, (4.16)

where Ē (0)
1z (R) = ∫ R

0 E (0)
z (ρ) ρdρ and

ε‖ = εw + 4πΛ‖χ
(
k‖,ω

)

J 2
1

(
λ0
1

) , (4.17)

In Eq. (4.15) the term associatedwith an angular variation of the electric field com-
ponents is obviously omitted. Here Eq. (4.16) links the corresponding components
of the electric field.

To receive the complete set of these components let now deal with the equation
rotE = iω

c H as well. Analogous to the Eq. (4.15) for this case we have

− eρ

∫ R

0

∫ 2π

0

∂E (0)
φ

∂z
ρdρdφ + eφ

∫ R

0

∫ 2π

0

(
∂E (0)

ρ

∂z
− ∂E (0)

z

∂ρ

)
ρdρdφ + ez

∫ R

0

∫ 2π

0

1

ρ

∂(ρE (0)
φ )

∂ρ
ρdρdφ,

(4.18)

where eρ, eφ and ez are the polar directional unit vectors.
Let now multiply Eq. (4.18) vectorially by eρ and make use of the Eq. (4.14) then

we receive
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E(0)
φ eφ + E(0)

z ez = iωR

c

[
H̄

(0)
(R) eρ

]
+ Ē(0)

2z ez + ik‖R
2εw

D̄(0)
ρ

εw + 8πΛ⊥χ
[
J−2
1 − J−4

1

]

εw + 8πΛ⊥χ
ez ,

(4.19)

where H̄
(0)

(R) = ∫ R
0 H (0) (ρ) ρdρ, Ē (0)

2z (R) = ∫ R
0 E (0)

z (ρ) dρ, D̄(0)
ρ (R) =∫ R

0 D(0)
ρ (ρ) ρdρ.

If combining the Eqs. (4.16) and (4.19) we find the electric field boundary condi-
tions as

E (R) = − i R

εw

ε‖
(
k‖ Ē

(0)
1z (R)

)
eρ − iωR

c

[
H̄

(0)
eρ

]
+ Ē (0)

2z ez + ik‖R
εs

D̄ρ

εw + 8πΛ⊥χ
[
J−2
1 − J−4

1

]

εw + 8πΛ⊥χ
ez ,

(4.20)

From the magnetic field equations divD = 0, rotD = − iω
c D the similar manip-

ulations produce finally the corresponding boundary conditions as

H (R) = −i R
(
k‖ H̄ (0)

z (R)
)
eρ − iωR

c
ε‖

[
Ē

(0)
(R) eρ

]
+ H̄ (0)

z ez + i R
(
k‖H(0)

ρ

)
ez,

(4.21)

where H̄ (0)
z (R) = ∫ R

0 H (0)
z (ρ) ρdρ, Ē

(0)
(R) = ∫ R

0 E(0) (ρ) ρdρ, H̄ (0)
ρ (R) =∫ R

0 H (0)
ρ (ρ) ρdρ.

In Eqs. (4.20) and (4.21) E (R) and H (R) are the boundary values of the electric
and magnetic fields in the barrier region, c is the light velocity. Under boundary con-
ditions after Exps. (4.20) and (4.21), a presence of a DQWW, as already emphasized,
is taken into account up to the first-order terms in small parameters∼ k‖R andωR/c.

At the same time due to the Eq. (4.17) the first terms of the right hand sides in the
Eqs. (4.20) and (4.21), i.e. the terms ∼ ε‖ ωR

c , would be hold only in the discussions.
In turn, the last term in Eq. (4.20) will be taken into account in the narrow frequency
range with εw + 8πΛ⊥χ � 1.

4.4 The Scattering Coefficient of the Light from the
Macroscopically Homogeneous and Isotropic DQWW

In this section let calculate the scattering coefficient rDQWW of electromagnetic light
wave from the discussed DQWW structure based on the effective boundary con-
ditions after Eqs. (4.20) and (4.21).

As we admitted in Sect. 4.2 the electromagnetic waves of a cylindrical symmetry
propagate in the plane orthogonal to the DQWW axes (z axes) and along the latter
is directed the electric-field vector (p-polarized light). With that we consider only
the exciton ground state in the quantum wire, just characterized by zero angular
momentum and are interested in results close to the exciton resonance. We note that
in the case with M = 0 the excitonic polarization lies along the DQWW axes and
the mode under consideration has longitudinal nature. Accordingly, as in the [15],
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we consider the exciton resonant modes appearing as resonances of the Breit-Wigner
type in the rDQWW of the barrier waves.

Let establish the scattering coefficient rDQWW as the ratio of the amplitudes of
outgoing and incoming cylindrical waves in the DQWW barrier region at ρ = R
for which the p-polarized electromagnetic field correspondingly has the forms [15]
outgoing and incoming cylindrical waves in the DQWW barrier region at ρ = R for
outgoing and incoming cylindrical waves in the DQWW barrier region at ρ = R for
which the p-polarized electromagnetic field correspondingly has the forms [15]

{
Einc
z = H (1)

0 (kρ) = J0 (kρ) + i N0 (kρ)

Hinc
φ = i

√
εb

k
k0

(
H (1)

0 (kρ)
)

= i
√

εb
k
k0

(
J ′
0 (kρ) + i N ′

0 (kρ)
) , (4.22)

{
Eout
z = H (2)

0 (kρ) = J0 (kρ) − i N0 (kρ)

Hout
φ = i

√
εb

k
k0

(
H (2)

0 (kρ)
)

= i
√

εb
k
k0

(
J ′
0 (kρ) − i N ′

0 (kρ)
) , (4.23)

where =
√
k20 − k2‖ , k0 = √

εb
ω
c , J0 (x) and N0 (x) are the zeroth-order regular and

singular Bessel functions, respectively, J ′
0 (x) = −J1 (x) and N ′

0 (x) = −N1 (x) are
the first derivatives of these functions.

For this type of barrier resonant modes when taking into account the effective
boundary conditions after Eqs. (4.20) and (4.21) we have

{
Ez (kρ) |ρ=R+ = E (0)

2z (kρ) |ρ=R−

Hφ (kρ) |ρ=R+ = − iωR
c ε‖γE (0)

2z (kρ) |ρ=R−
, (4.24)

where
Ez (kρ) |ρ=R+ = Einc

z (kρ) |ρ=R+ + rDQWW Eout
z (kρ) |ρ=R+ , (4.25)

Hφ (kρ) |ρ=R+ = Hinc
φ (kρ) |ρ=R+ + rDQWW Hout

φ (kρ) |ρ=R+ (4.26)

and γ = Ē (0)
1z (R) /Ē (0)

2z (R) ∼ 1.
After substituting the Eqs. (4.22), (4.23), (4.25) and (4.26) in Eq. (4.24) we get

for the scattering coefficient rDQWW as

rDQWW = [ΛN0 (kR) − N1 (kR)] − i [ΛJ0 (kR) − J1 (kR)]

[ΛN0 (kR) − N1 (kR)] + i [ΛJ0 (kR) − J1 (kR)]
, (4.27)

where Λ = ωR
c
√

εb
ε‖γ and ε‖ is defined after Eq. (4.17).
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Equation (4.27) presents the scattering coefficient of p-polarized light from the
DQWW structure at normal to the wire axes incidence near ω = ωex = εk‖�

−1 and
strongly depends from the DQWW material parameters such as: (a) quantum wire
radius R and dielectric constant εw, (b) barrier dielectric constant εb.

Since here we are dealing with an accuracy of small parameters ∼ k‖R and ωR/c
then Eq. (4.27) will take the following limiting form

rDQWW = (2/π)
[
Λ ln (kR) + (kR)−1

] − iΛ

(2/π)
[
Λ ln (kR) + (kR)−1

] + iΛ
, (4.28)

where the asymptotic small parameter limits of the Bessel functions are taken into
account. If now substitute corresponding expressions for Λ, ε‖ and χ parameters in
Eq. (4.28) then after simple transformations we receive as in Ref. [15] a Breit-Wigner
type final form for the scattering coefficient of the p-polarized light

rDQWW = ω − ω̃p
(
k‖,ωex

) − iΓ
(
k‖,ωex

)

ω − ω̃p
(
k‖,ωex

) + iΓ
(
k‖,ωex

) , (4.29)

with

ω̃p
(
k‖,ωex

) = ωex + α(k0R)2 ln (kR)

εb + αεw(k0R)2 ln (kR)
Ωex , (4.30)

where

Ωex = (2μ∗
exe

8)1/3 [N (μl)Φ (μl)]
2 |Vcv|2

πε
1/3
w �5ω6

ex R
8/3

. (4.31)

Here the dispersion law for the DQWW structure exciton-polaritons and their
ra-diative broadening would be found from the following expressions

ω = ω̃p
(
k‖,ωex

)
(4.32)

and

Γ
(
k‖,ωex

) = αεb(k0R)2 ln (kR)

(εb + αεw(k0R)2 ln (kR))(εb + α(k0R)2 ln (kR))
Ωex . (4.33)

The Eqs. (4.30)–(4.33) made it possible to obtain the dispersion spectrum and
life-time for the 1D exciton-polaritons of the DQWW near the exciton resonance
with the opportunities of the valuable manipulations along with the magnitudes of
the DQWW material parameters.

In conclusion, following the typical procedure for the optics of 2D system [1,
2, 27], we have developed a theory to solve Maxwell’s equations together with the
non-local 1D excitonic response to the dielectric polarization of the DQWW in the
presence of the dielectric mismatch effect. This permits to calculate the dispersion
spectrum of 1D exciton-polaritons of the DQWW near the excitonic resonance.
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Chapter 5
Broadband Infrared Absorption Due to
Low Q-factor Dipole Modes of Cr Strips

H. A. Parsamyan, D. S. Hambaryan, and H. S. Haroyan

Abstract The absorption properties of a metamaterial absorber based on the
chromium rectangular strips is studied in the long-wavelength infrared spectrum.
Theoretical analysis in the framework of electrostatic approximation is performed
for an individual elongated oblate ellipsoid, and the resonant condition ensuring
strong absorption and negligible scattering is established. The analysis shows that the
absorption cross-section of such a particle exceeds the geometrical cross-section by
about 15 times with the absorption line width of the order of the resonant wavelength.
The results were applied to an equivalent rectangular strip to design a broadband
absorber. The analysis reveals that the absorption bandwidth of a periodic system of
strips distributed on a metal-grounded dielectric surface can reach 10.7 µm in the
spectrum from 8.88 to 19.58 µm.

5.1 Introduction

During the past two decades due to advances in nanotechnology investigations of the
interaction of subwavelength metallic configurations with electromagnetic radiation
and their resonant characteristics have been grown enormously. Metallic configura-
tions with subwavelength sizes, such as spheres, rods, disks, cubes etc. show resonant
behaviour under the incident electromagnetic waves due to so-called localized sur-
face plasmon resonance (LSPR) [1, 2]. The LSPR of noble metal particles (e.g.,
Au and Ag), conditioned by the collective oscillations of the conduction electrons
of metals with electromagnetic waves mostly lies in the visible and near-infrared
(NIR) spectrum. However, resonant properties of noble metal configurations disap-
pear when one aims to shift the working spectrum to the longer wavelength range
due to the rapid increase in the imaginary part and the absolute value of the real
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part of dielectric permittivities of these metals. This is mainly conditioned by the
extremely high carrier concentrations of the order of∼ 10−22 − 1023 cm−3 such that
the plasma frequency of these metals lies in the ultraviolet [3]. Because of the LSPR
resulting in the strong absorption of the noble metal particles in the visible and NIR,
various optical devices for label-free biosensing, photodetection, electromagnetic
wave energy confinement and absorption have been proposed [4].

The plasma frequency can be effectively manipulated, for instance, by consider-
ing semiconductor configurations with various doping levels allowing one to shift
the LSPR to the mid- and long-wave infrared [5]. This opens up new benefits for
controlling absorption and scattering at longer wavelengths by subwavelength con-
figurations and particularly to increase the absorption of the electromagnetic waves
[1]. Metamaterial- and metasurface-based configurations have been widely used for
absorption and filtering of electromagnetic waves [6]. Such systems are mainly com-
posed of orderly arranged subwavelength periodic units [7]. The common method to
achieve wideband or multiband absorption is based on combining several resonant
configurations in a single unit cell of the metastructure and thus merging the absorp-
tion spectra of each element, which also makes systems more complex and difficult
to analyze [8–10]. Near-perfect metamaterial absorbers were proposed across the
electromagnetic spectrum from the visible to microwaves [11–13]. Although in the
visible and NIR perfect absorption is associated with the plasmonic resonances and
the absorber structures are straightforward, at longer wavelengths due to the absence
of any plasmonic effects in the common configurations (spheres, cubes, rods etc.),
the researchers modify the configurations in a certain way to reduce the effective
dielectric permittivity of the whole system. A cure to this can be so-called poor met-
als, such as chromium (Cr), nickel (Ni), titanium (Ti) and tungsten (W ) whose real
and imaginary parts of dielectric permittivities are of the same order in magnitude
[14–16].

In this article, we suggest to exploiting a broadband mid- and long-wave infrared
absorber composed of rectangular strips made of Cr. First, absorption and scattering
properties of an individual oblate ellipsoidal particle are theoretically investigated
by applying electric-dipole approximation. A functional dependence between geo-
metrical and material parameters of the strip is derived ensuring strong absorption
and negligible scattering. Numerical analysis based on the finite element method
(FEM) is carried out for an equivalent rectangular strip-like configuration to derive
the absorption and scattering cross-sections (ACS and SCS, respectively). The sim-
ulation and theoretical results were compared showing good agreement. Using the
results obtained for an individual strip, a 3D periodic structure was designed com-
posed of a number of such strips and a dielectric layer. Efficient (>90%) broadband
and polarization-sensitive absorption is achieved in such a system from ∼8.88 to
19.58 µm corresponding to the absolute bandwidth (BW) of 10.7 µm and the rela-
tive bandwidth (RBW) which is the ratio of the BW to the center wavelength of the
absorption band in precents is around 75%.
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5.2 Results and Discussion

5.2.1 Theory

Let’s assume an oblate ellipsoidal configuration with semi-axes ax < ay � az and
complex dielectric permittivity of ε1 embedded in a medium with a real dielectric
constant of ε3 is illuminated by electromagnetic waves polarized along the long
semi-axis. By applying electric-dipole approximation, i.e., considering that az � λ,
where λ is the incident wavelength in the surrounding, one can derive the absorption
and scattering cross-section of the prolate ellipsoid as follows [17, 18]:

σabs = k

ε0
Im (α) , (5.1)

σscat = k4

6πε0
|α|2 , (5.2)

where

α ≈ 4πε0

3
· a3z
0.4 − ln η

· n(z)

ε2/(ε1 − ε2) + n(z)
, (5.3)

is the polarizability of the particle, η = ay/az , γ = ax/az and n(z) = ηγ ln (1.5/η) is
the so-called depolarization factor which depends only on the shape of a particle. The
wavelength-dependent dielectric permittivity of a metallic particle can be presented
by the form ε1 (λ) = ε1r (λ) + i · ε2i (λ), where ε1r < 0. The absorption resonance
of a particle occurswhen the following condition between the dielectric permittivities
of the particle and surrounding (the right-hand side) and the depolarization factor
related to the geometrical parameters of the particle is met:

axay
a2z

(
0.4 − ln

ay
az

)
= |ε1r |ε2

|ε1|2 . (5.4)

Thus, the absorption of a particle with given metallic material can be maximized
by varying the sizes of a particle so that condition (5.4) is satisfied. Throughout the
paper, we will use ACS and SCS normalized by the longitudinal geometrical cross-
section of a particle (σgeom = πayaz) known as absorption and scattering efficiencies
[12]:

Qabs = σabs

σgeom
and Qscat = σscat

σgeom
. (5.5)

Investigating the optical response of an ellipsoid made of poor metals (e.g., Cr or
Ti) in the long-wavelength infrared spectrum, where the real and imaginary parts of
the dielectric permittivities of these metals are of the same order in magnitude, one
obtains that



62 H. A. Parsamyan et al.

Qabs ∼ 8πax |ε1|2/(3λε2ε1i ), (5.6)

which is noticeably larger than the unity, whereas the scattering efficiency

Qscat ∼ (2π)2a2xayaz|ε1|2/λ4. (5.7)

is negligibly small.
Figure 5.1 left axis plots the real (solid black) and imaginary (dotted black) parts

of the dielectric permittivity of Cr [19].

5.2.2 Numerical Analysis

Full-wave numerical analysis based on the FEM was conducted to reveal the depen-
dence of the absorption and scattering properties of the geometrical parameters. To
simplify the simulated geometry, the oblate spheroid with semi-axes ai (i = x, y, z)
was replaced by an equivalent rectangular strip having width dx = 2ax , depth
dy = 2ay and height dz = 2az , schematically illustrated in Fig. 5.2a. The strip is
illuminated by a z-polarized plane wave propagating along the x-axis.

We choose Cr as the material of the configurations since the real and imaginary
parts of the dielectric permittivity of this metal in the infrared are of the same order
and for given geometrical parameters condition (5.4) can be satisfied ensuring strong
absorption and low scattering. Theoretical values of absorption (Qabs) and scattering
(Qscat ) efficiencies of an oblate ellipsoid as a function of the wavelength obtained

Fig. 5.1 Real (solid black) and imaginary (dotted black) parts of the dielectric permittivity of Cr
according to Ref. [19] (left axis). Graphical representation of condition (5.4) of the absorption
resonance (right axis). Dashed and solid red lines stand for the left-hand [L-Eq. (5.4)] and right-
hand [R-Eq. (5.4)] sides of condition (5.4). The geometrical parameters are: ax = 5 nm, ay = 25
nm and az = 1 µm. As a metal and surrounding Cr and air (ε2 = 1) were used, respectively
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Fig. 5.2 a Schematic sketch of the oblate elongated ellipsoid and the equivalent rectangular strip
and b absorption and scattering efficiencies of the oblate ellipsoidal Cr particle obtained according
to Eqs. (5.1) and (5.2); represented by black and red solid lines, respectively. The same for a
rectangular strip represented by black and red rings. The sizes of the strip are: dx = 10 nm, dy = 50
nm and dz = 2 µm. The surrounding medium is air with ε2 = 1

according to Eqs. (5.1) and (5.2) are presented in Fig. 5.2b by solid black and red
lines, respectively. Simulated Qabs and Qscat spectra of a strip with sizes of dx = 10
nm, dy = 50 nm and dz = 2 µm are depicted by black and red rings, correspond-
ingly. One sees that the theoretical and simulated results are in good correspondence.
Particularly, the resonant wavelength in both cases is around 12.5 µm and the slight
difference between the Qabs values (Qth

abs ∼ 12 and Qsim
abs ∼ 14.7) can be associated

with the strong concentrations of charges at the sharp corners of the strip. In the
theoretical part, an oblate ellipsoid is considered. The approximation of the oblate
elliptical configuration to a rectangular strip is valid since condition az � ax , ay
is applied to semi-axes of the ellipsoid. Note that longitudinal cross-section areas
of an ellipsoid and equivalent strip are close enough (Sel/Sst ∼ 0.8). The validity
of the electrostatic approximation is worsened as ay and ax increase. On the other
hand, although Sst is slightly larger than Sel , at the resonance Qst > Qel meaning
that the absorption properties are improved with a strip. The scattering efficiency is
negligibly small compared to the Qabs so that the absorption-to-scattering ratio of
the suggested configuration is about 50, the full width at half maximum (FWHM)
of the absorption resonance is ∼5.6 µm, which is of the same order as the resonant
wavelength. The complex dielectric permittivity of Cr is εCr = −1523.8 + 844.26i
(see Fig. 5.1) at the absorption resonance λ ∼ 12.5 µm [19].

The spectral dependencies of the absorption and scattering efficiencies on the
strip dx and dy sizes are plotted in Fig. 5.3a–b and c–d, respectively. The absorption
resonance in both cases blueshifts by increasing dx and dy . Increasing dx from 10
to 50 nm results in a rapid increase of the Qabs from 14 to 39, nevertheless, Qscat

also increases drastically from 0.3 to about 7.5. The absorption-to-scattering ratio,
in this case, decreases from 50 to 4.9. However, the scattering efficiency is quite
small compared with the absorption for dx values up to around 35nm. One sees from
Eqs. (5.6) and (5.7) that Qabs linearly depends on dx , whereas Qscat is a quadratic
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function of dx and such dependencies are conformed by numerical simulations. On
the contrary, both the absorption and scattering efficiencies slightly depend on dy .
The peak value of Qabs practically remains unchanged as dy increased from 50 up
to 100nm and only FWHM undergoes a minor decrease. Note that the absorption-
to-scattering ratio is more tolerant to dy variations in contrast to dx changes thus
fabrication imperfections in the dy will not noticeably affect the absorption and scat-
tering performance of the configuration.The blueshift of the absorption resonance as
dx and dy are increased directly follows from condition (5.4). The graphical repre-
sentation of condition (5.4) is illustrated in Figure 5.1 right axis. Here the right-hand
side of Eq. (5.4) depending on the metal and surrounding dielectric permittivities is
a monotonically decreasing function from wavelength [R-Eq. (5.4)]. The left-hand
side of Eq. (5.4) depending only on the geometrical parameters is depicted by the red
dashed line [L-Eq. (5.4)]. The intersection point corresponds to the absorption peak
wavelength (λ = 12.5 µm in the considered case), which means that increasing dx
or dy will lead condition (5.4) to be satisfied at lower wavelengths as the intersection
point moves to left. Note that the natural logarithm in the left-hand side is a slowly
varying function of dx/dz � 1. Recall that Cr is used since the real and imaginary
parts of its dielectric permittivity are of the same order in magnitude. Comparing
the absorption and scattering properties with Au strip, one will see that the Qabs and
Qscat are of the same order. It is due to the significant contrast between the real and
imaginary parts of the dielectric permittivity of Au.

In this case, for a strip with the same sizes, condition (5.4) is satisfied at λ ∼ 6µm
leading to Qabs and Qscat being of the same order since the resonant wavelength
approaches to the dz height of the strip. Dielectric permittivity of Au at λ = 6 µm is
εAu = −1818.4 + 428.48i [20].

Until this point, we investigated the interaction of the incident plane waves with a
rectangular strip-like particle by means of electrostatic approximation using scatter-
ing and absorption cross-sections. However, for practical applications, absorptance
of the system should be introduced. To use such strips for efficient absorption of elec-
tromagnetic waves one needs to follow the conventional design path [21] and create
a periodic system composed of a bottom reflector, dielectric spacer and rectangular
strips. The lateral (along the incident plane) and azimuthal (the surface of the dielec-
tric) cross-sections of the unit cell are illustrated in Fig. 5.4a. Here the unit cell is
composed of a Cr reflector, a dielectric spacer and aCr strip. The unit cell is periodic
along y- and z-axes (“PC” notations) with periodicities of py and pz . tm , td and dx are
the thickness of metal ground, dielectric spacer and strip, respectively. The unit cell
is illuminated by a z-polarized plane wave. First, to explore the absolute absorptance
of the strip only, a system whose unit cell consists of a dielectric substrate and a strip
(i.e., the bottom reflector is absent) is considered and its performance is compared
with that of the substrate coated by a uniform Cr layer. The results are shown in
Fig. 5.4b, where the solid line stands for the case of strip and the dashed line for the
uniform metal layer.

The absorptance in such a system is calculated by general expression A = 1 −
R − T , where R is the reflection and T is the transmission coefficient. One sees that
the absorptance of the uniform metal film is approximately constant in the studied
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Fig. 5.3 Evaluations of the absorption (the first column) and scattering (the second column) effi-
ciency as a function of the wavelength and (a − b)dx and (c − d)dy . The height dz = 2 µm is set
in all cases. The surrounding medium is air

spectrum and is of the order of 0.18. On the contrary the absorption spectrum of
a system with a strip has resonant nature with an absorptance peak value ∼0.42 at
λ ∼ 13µm.

Introducing ametal ground layer of a thickness tm = 100 nm reasonably improves
the absorptance of the system. Here again comparison between a system composed
of a strip with the one consisting of a uniform metal layer of the same thickness is
performed and the results are shown in Fig. 5.4c. A narrow absorption resonance
with a peak value of ∼0.93 at λ = 4.08 µm is observed of a system with a uniform
Cr layer which is associated to the asymmetric Fabry-Perot mode of the structure. In
contrast, the ground reflector increases the absorptance as the wave interacts twice
with the strip (through the forward wave and the wave reflected from the ground
metal), and also broadens the bandwidth. Since the ground plane prevents light
transmission in the forward direction and T = 0, the absorptance of such a system is
calculated by a simplified expression A = 1 − R. Two absorption peaks are observed
with the absorption rates of ∼0.7 and 0.81 at resonant wavelengths λ1 = 5.7 µm
and λ2 = 15.3 µm, respectively. The physical origin of broadband absorption of the
structure is associated with low-Q-factor dipole modes of the rectangular strip, as
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Fig. 5.4 Absorption performance of the periodic structure composed of aCr strip, dielectric spacer
and Cr reflector. a zx- and zy-plane view of the unit cell of the periodic structure. py and pz are
periodicities, tm , td and dx are the thickness of the bottom reflector, the dielectric spacer and the
strip. b Comparison of the absorptance of a system composed of a dielectric substrate and orderly
arranged rectangular Cr strips (without a bottom reflector) with a continuous Cr layer. c The same
as in (b) but with a bottom Cr reflector. The inset images show the distributions of the electric
field magnitude at (1) and (2) resonances. During the analysis the following parameters were used:
td = 1 µm, pz = 2.5 µm, py = 350 nm, dx = 10 nm, dz = 2 µm, nd = 1.5. Both the strip and
continuous layer have the same thickness dx . tm = 100nm is used for the metal ground thickness
throughout the analysis

follows from Fig. 5.4c insets showing electric field distributions along the strip at two
absorption maxima (5.7 µm and 15.3 µm). The low-Q-factor modes are due to the
large loss tangent ofCr in the considered part of the infrared spectrum. For instance,
at λ2 = 15.3 µm the real and the imaginary parts of the dielectric permittivity of Cr
are εr = ∼2120.7 and εim = 1372.1, respectively, yielding tan δ ∼ 0.647. At the
same time, loss tangent of Au is tan δ ∼ 0.55.

This basic structure of an absorber can be further optimized to achieve higher
absorptance and wider bandwidth. Particularly, Fig. 5.5a shows the absorption spec-
trum at the dielectric spacer thickness of 1, 1.5 and 2 µm. One sees that the absorp-
tance level, aswell as the absorption bandwidth, are changed noticeably by increasing
the dielectric thickness. Here>90% absorption from about 8.88 up to 19.58mmwith
the absorption BW ∼ 10.7µm is achieved for a metamaterial structure with unit cell
sizes as follows: pz = 2.5 µm, py = 350 nm and td = 2 µm. The sizes of the strip
are dz = 2 µm, dy = 50 nm and dx = 10 nm. The relative bandwidth of the absorber
is calculated according to the expression RBW = BW/λc × 100%, where λc is the
central wavelength of the efficient absorption band. Considering that at the optimized
thickness of the dielectric spacer λc ∼ 14.23 µm and BW ∼ 10.7 µm, RBW of the
absorber is calculated to be around 75%.

The absorption spectrum at py values of 300 nm (dots), 350 nm (dashed line)
and 400 nm (solid line) are depicted in Fig. 5.5b. The dielectric layer thickness and
z-periodicity are td = 2 µm and pz = 2.5 µm. It is seen that the absorption band-
width slightly decreases by increasing the periodicity in the y-direction. However,
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Fig. 5.5 Absorption spectrum at different values of a dielectric spacer thickness td of 1 µm (tri-
angles), 1.5 µm (squares) and 2 µm (rings) and b periodicity py of 300 nm (dots), 350 nm (dashed
line) and 400 nm (solid line). The following geometrical parameters are used if otherwise is not
stated: pz = 2.5 µm, py = 350 nm, td = 2 µm, dz = 2 µm, dy = 50 nm and dx = 10 nm

the absorptance is improved. For instance, at py = 300 nm the absorptance breaks
A = 0.9 level with an absorption dip of ∼0.86 in the ∼11.15 − 15µm wavelength
range. As py increases, the average absorptance in the spectrum corresponding to
also increases from 94.3% at py = 350 nm to ∼95.2% at py = 400 nm. The total
thickness of the absorber optimized unit cell is 2.11 µm, which is ∼6.75 times
smaller than the central wavelength of the efficient absorption band.

5.3 Conclusion

Summarizing, we investigated absorption and scattering features of an elongated
oblate ellipsoid and equivalent rectangular strip in the framework of electrostatic
approximation. The analysis reveals that dominant-over-scattering absorption can
be ensured by careful choice of the geometrical and material parameters leading
to the absorption cross-section being 15 times larger than the lateral geometrical
cross-section and 50 times larger than that of the scattering. The performance of
such configurations was studied as unit cell elements of a metamaterial structure.
Broadband and efficient (A ≥ 90%) absorption in the spectrum from 8.88 µm up
to 19.58 µm with the bandwidth of 10.7 µm is achieved by considering a metal-
dielectric-metal system, where the top metal is a Cr strip. Such favourable properties
are achieved with a structure of a total thickness of 6.75 times smaller than the central
wavelength of the efficient absorption band.
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Chapter 6
Microwave and Joule Heating
Visualization by a Thermo-Elastic
Microscope for Carbon Composite
Materials

Sh. Arakelyan, A. Babajanyan, G. Berthiau, B. Friedman, and K. Lee

Abstract Microwave heating visualization for the carbon fiber/polyether ether
ketone composite material was implemented using the thermo-elastic optical indica-
tor microscopy (TEOIM) system. Losses of an anisotropic composite material were
characterized due to themicrowave radiation influence. TEOIMvisualization showed
that the near-field distribution stretches along the composite material high conductiv-
ity axis and takes different forms when some defects in the composite material were
analyzed.The visualized microwave heat was measured to be 0.2 K when the probe
feeding power was around 15 dBm.The Obtained microwave heat visualization data
was in good agreement with the simulated result. Additionally, noninvasive Joule
heating (around 1 K) made by 0.3 A DC flux was observed in order to characterize
mechanical faults in a composite material.

6.1 Introduction

Reinforced carbon fiber composites have wide range of applications in medicine
(surgical and dental pharmaceutical applications), aircraft construction, engineer-
ing, industry, etc. [1–4]. The carbon fibers are stable under high mechanical stress,
have refined elastic properties and can resist high mechanical deformation by chang-
ing shape whereas other materials such as metals or ceramics would be destroyed. In
some applications, carbon fibers composite materials can successfully replacemetals
[5]. Depending on the required properties carbon fibers with various structural com-
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binations are used.An example of such a fiber configuration is a unidirectional carbon
fiber/polyether ether ketone (PEEK) composite material, the mechanical properties
of which are well studied [6–8].

Due to its nature the electrical andmechanical properties of the carbon fiber/PEEK
composite material are spatially anisotropic. Such anisotropic properties are attrac-
tive from the point of view material science particularly, when investigating the
interaction between the electromagnetic field and a material. Recent examples of
such studies include: microwave absorption properties investigation [9, 10] and
its enhancement for radar absorption purposes [11, 12], carbon-based composites
mechanical properties enhancement by microwave curing [13, 14], characterization
of anisotropic electrical properties of a carbon fiber/PEEK composite [15], testing
and inspection of reinforced carbon composites by a microwave microscopy [16]
etc. The heating process due to the microwave absorption is important in the above
studies and thus we have undertaken a detailed investigation. In the heating of high
electrical conductivity materials induction currents are responsible whereas for low
conductivity materials the heat generally is created due to displacement currents [17,
18]. From this point of view, the investigation of composite material anisotropy prop-
erties presents a wide area of interest, since the anisotropic electrical conductivity
of the unidirectional carbon fiber/PEEK composite material is drastically changed
depending on the fibers orientation. However, to characterize the microwave heating
mechanisms and losses in the composite material onemust use temperature detection
systems with a high sensitivity. An example of such a system is the thermo-elastic
optical indicatormicroscopy (TEOIM) techniquedevelopedbyH.Lee and co-authors
for the temperature and microwave near-field visualization [19]. The TEOIM tech-
niquewith slide glass indicators visualizes the thermal distributionwithout a scanning
process and is more sensitive (up to 4 mK) compared to other thermal detectors such
as infrared devices [20, 21].

In this paper, we present microwave energy losses characterization in car-
bon fibers/PEEK composite material by the TEOIM visualization. We visualize
microwave heating of the composite material sheet and observe its changes when
artificial defects in the form of hole have been made in a composite material sheet.
We also provide a COMSOL Multiphysics simulation for the best understanding of
the anisotropic material heating phenomenon and comparable analysis of obtained
experimental results. Taking into account the thermal distributions due to the conduc-
tive and dielectric losses it will be possible to realize a qualitative estimation of the
electromagnetic field distribution. In addition, to characterize mechanical defects in
a composite material we perform Joule heat visualization caused by a direct current
(DC) flux. The proposed defect measurement technique may become a supplement
to the mechanical property testing used for carbon fiber reinforced composites. Such
investigation may also be a useful tool for the study of electromagnetic shielding
properties in an anisotropic material.
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Fig. 6.1 a The experimental setup of the thermo-elastic imaging system, b the fibers orientation
in the composite material, and c the visualized thermal pattern caused by microwave field at 5 GHz
from end of MW probe at 1 cm distance

6.2 Materials and Methods

The temperature distribution in a material with electrical and thermal anisotropy was
measured by the TEOIM technique [19]; a schematic diagram is shown in Fig. 6.1a.

The composite material with 6 cm × 6 cm surface area used in our experi-
ments consists of PEEK and unidirectional aligned carbon fibers with diameters
of 1 µm Fig. 6.1b. The volume fraction of fibers in the composite material is 3 : 5
(or 60%). The electrical and thermal conductivities of the composite sheet are diag-
onal tensors with elements of σxx

∼= 3.9 × 104S/m, σyy = σzz
∼= 7.7S/m [22] and

kxx ∼= 4.5W/(m · K ), kyy = kzz ∼= 0.67W/(m · K ) [23] respectively. In all exper-
iments, composite material fibers were aligned along the x-axis. As an indicator,
we have used a borosilicate glass substrate (Corning Eagle XG) with a 200 nm Pt
deposited layer. Indicator has 4 cm × 4 cm sizes and placed at distance of 5 mm from
sample. An Agilent E5071B network analyzer in the continuous mode was used as
a power source for feeding of a microwave (MW) probe with diameter of 1mm.
All measurements were performed by a microwave signal with 15 dBm power and
5 GHz frequency at 1 cm distance from sample. The visualized thermal distribution
(without sample) caused by microwaves at 5 GHz and at 1cm distance from MW
probe end is presented in Fig. 6.1c. For Joule heating measurements, an HP E3631A
programmable DC power supply has replaced the network analyzer. A reliable con-
tact on the carbon fiber/PEEK sheet has been provided by using a silver paste on the
composite material edges, alight emitted diode (λ = 530nm) matrix was used as a
light source, a polarizer and a quarter-wave plate provide the circular polarized light
incidence on the indicator film as shown in the Fig. 6.1a configuration. By a beam
splitter the circular polarized light is being directed to the indicator, then during the
reflection from the indicator the light polarization state is being changed to elliptical
due to the mechanical stresses in the indicator and recorded by CCD camera with
resolution of 1024 × 640.



72 Sh. Arakelyan et al.

Fig. 6.2 Image-processing steps in LabVIEW: a and e correspond to the measured β1 and β2
images, respectively; b and c are d2β1/dx2 and −d2β1/dy2, respectively; f and g are d2β2/dxdy
and d2β2/dydx , respectively. d and h represent (b)+(c) and (f)+(g), respectively. The final obtained
image is the sum of (d) and (h)

During the measurements the analyzer orientation has been changed to be 0◦
or 45◦ with respect to the xy-plane and by choosing the corresponding orientation
of the analyzer the charge-coupled device (CCD)-camera detects mechanical stress
distribution images (β1 and β2). For the temperature distribution calculation, we
solved the inverse problem of mechanical stress formation caused by the heat in a
thin indicator film. The solution of that inverse problem i.e. the relation between the
heat source density and mechanical stress distributions has the following form

q = C

(
∂2β1

∂x2
− ∂2β2

∂y2
+ 2

∂2β2

∂x∂y

)
, (6.1)

where q is the heat source density, β1 and β2 are linear birefringent distribution
images corresponding to 0◦ and 45◦ of the analyzer orientation, andC is the constant
related to the indicator parameters and the wavelength of the probing light.

Figure 6.2 illustrates image processing steps corresponding to the measured
mechanical stress distributions. As Eq. (6.1) shows the obtained final image will
be (b) + (c) + (f) + (g) which will represent the temperature difference between
two states i.e. in the presence and absence of the heat source. More details about the
visualization technique used and image processing are described in [19].

6.3 Results and Discussion

One should take into consideration the microwave loss mechanisms in a material to
understand the origin of microwave heating. Since the carbon/PEEK does not have
magnetic losses the losses due to the imaginary part of the relative permeability can
be neglected. Thus in a composite material heating, the conductive and dielectric
losses are responsible [18]. In our experiment, at the microwave probe apex the
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Fig. 6.3 COMSOL Multiphysics simulation: a geometry of the model with indications of MW
probe and boundary condition (BC), b simulated microwave heat distribution in the carbon/PEEK

electromagnetic near-field symmetry following to the symmetry of its geometry; the
electric field is concentrated around the probe head area whereas the magnetic field
intensity is zero in that area due to eddy behavior. When the composite sheet is
placed close to the microwave probe, the field symmetry is stretched along the high
conductivity axis and the field distribution becomes elliptical. The induced current
in the composite material leads heating of the sample.

Wemodeled the carbonfiber/PEEKmicrowaveheating inCOMSOLMultiphysics
interface to compare obtained experimental data with the theoretical model. The
geometry of the simulated microwave heating is shown in Fig. 6.3a. The model was
built by the multiphysical coupling of two modules: the “Electromagnetic Wave”
and “Heat Transfer in Solids”. In the model, we used “Coaxial Lumped Port” with
power of 15 dBm as a microwave source for the probe feeding, we set “Scattering”
and “Temperature” boundary conditions for the “Electromagnetic Wave” and “Heat
Transfer in Solids” modules, respectively, and configured the “Frequency Domain”
and “Stationary” solvers for them. Thermal and electrical conductivities of the car-
bon/PEEK were set corresponding to the data mentioned in section “Material and
Methods”, 1320 kg/m3 and 6 J(kg · K) were chosen as a density and heat capacity
respectively, air was taken as an ambient environment, and the microwave probe
was set to be perfect electric conductor. The simulation result is shown in Fig. 6.3b
where the elliptic distribution is caused by the anisotropy of thermal and electrical
conductivities, since the induced current flows easily through the high electrical con-
ductivity direction and the largest portion of its generated heat transfers along the
same direction.

Figure 6.4a shows the microwave heat distribution in the carbon fiber/PEEK visu-
alized by the TEOIM technique. Here the orientation of the ellipse foci coincides
with the high electrical conductivity direction as it was theoretically assumed and
simulated above. Note that the 0.1K of difference of the simulated andmeasured heat
magnitude may be caused by choosing the microwave probe as a perfect conductor
or some material properties mismatch. By varying simulation parameters one can
perfectly match the experimental and simulated results, however we skip that since
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Fig. 6.4 Measured images for microwave heating distribution in the carbon/PEEK: a defect-free
sample and sample with defect diameters of b 0.1 mm, c 0.2 mm, and d 0.4 mm

the simulated model initially has been built for the qualitative understanding of the
microwave heat origin in the carbon fibers/PEEK. We made some artificial defects
in the composite material in order to observe the heat distribution changes caused
by defects. We varied the diameter of circle shaped hole type defects in the range of
0.1–0.4 mm.

As shown in Fig. 6.4b–d the hole in the center of the sample changes the heat
distribution. One can see that even for the smallest defect size (0.1 mm) the shape of
the visualized heat distribution has shrunken along the high conductivity direction.
The reason for such shrinking phenomenon is that the defect interrupts the carbon
fibers continuity and leads to the changes of the induced current distribution around
the defect location. Depending on the growth of the defect size the changes in the heat
distribution become more important. The image asymmetry in Fig. 6.4d comes from
the position of the microwave probe with respect to the hole center. The symmetry in
the resulting image was drastically changed only when the defect size was more than
themicrowave probe size (0.1mm). Summarizing themicrowave heat visualizations,
we claim that fabrication faults and defects in a composite material sheet can be
discovered by the microwave heating visualization and comparison of defect-free
and custom/testing samples.

Figure 6.5 shows the Joule heat visualization for the defective carbon/PEEK com-
posite material when the DC flux has been 0.3 A. Note that along the high electrical
conductivity direction the Young’s modulus (a measure of the stiffness) also is high,
that is to say the mechanical defect can be discovered by the Joule heating visualiza-
tion. In Fig. 6.5b high intensities correspond to the areas where the high electrical
conductivity was interrupted by the defects. Those areas represent themselves the
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Fig. 6.5 aOptical image and b heat distribution visualization of the defective carbon/PEEK sample
under the 0.3 A DC flux

mechanical defect areas. In this experiment the diameters of defective holes were
around 2 mm which simply could be observed by the CCD camera without apply-
ing any heat visualization technique. However, in many cases optical observation is
impossible e.g. when the defect is located inside of the material or when it is too
small for the CCD camera observation. Note that the spatial resolution of the TEOIM
technique is around 200 nm [19] whichmakes possible even single fiber defect detec-
tion. Since the system works as polarization microscope, the TEOIM sensitivity and
spatial resolution caused by ability of high accuracy polarization detection and CCD
camera pixel density, as well as data processing but not by optical light intensity and
wavelength. We used linear polarized green light (530 nm) but similar measurement
accuracy provided using a blue light (400 nm) and even white light sources. We
suggest that this technique can be applied successfully for non-destructive testing
and examination purposes.

6.4 Conclusion

The loss properties investigation for the carbon/PEEK composite material was
performed by microwave heat visualization. The described loss mechanisms for
microwave power give information about the heat mapping which can be used
for material defect characterization and discovery. We succeeded in visualizing
microwave and Joule heat in a carbon fiber/PEEK composite material.

Taking into account that this visualization technique is appropriate for investiga-
tions of DC and microwave influence on the composite material, we assert that this



76 Sh. Arakelyan et al.

technique can be a promise tool for nondestructive testing and analysis during design
and fabrication processes.
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Chapter 7
Acceptor-Assisted Intraband
Photoconductivity in GaAs/AlGaAs
QuantumWells

Maxim Vinnichenko , Ivan Makhov , Vadim Panevin, Ratmir Ustimenko,
Grigorii Melentev, Sergey Sorokin, Irina Sedova, David Hayrapetyan,
and Dmitry Firsov

Abstract The present work is devoted to the experimental investigation of the far-,
mid- andnear-infraredphotoconductivity related to theoptical hole transitions involv-
ing acceptor states in GaAs/AlGaAs quantum wells. Photoconductivity spectra are
studied at low lattice temperatures. It is shown that themain contribution to the far- and
mid-infraredphotoconductivity is associatedwith the optical hole transitions from the
ground acceptor state to the delocalized states of the valence subbands, delocalized
states above the quantumwell and to the excited states of the acceptors. The relaxation
times of impurity-assisted photocurrent in quantumwells were also studied. The ion-
ization energies of the acceptor impurity obtained by various experimental methods
are in a good agreement with theoretical calculations.

7.1 Introduction

Technological progress in opto- and nanoelectronics allows to develop devices oper-
ating in the near-, mid- and far-infrared (IR) spectral ranges for a wide range of
applications. Far-IR radiation can pass through a large number of different non-
conducting materials. This feature of radiation gives a promising list of applications
for devices based on it, for example, spectroscopy, astronomy, physical research of
materials, medicine and security systems, etc. [1]. The mid-infrared spectral range as
well as far-infrared one contains a large number of absorption lines of various gases
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and molecules that are important for gas and bio sensing technologies. In accor-
dance with the above, the development of sources and detectors operating in far- and
mid-infrared spectral ranges is a promising task nowadays.

To date, the most efficient and compact source of far- and mid-infrared radiation
is a quantum cascade laser [2, 3]. It has high enough output power, a fairly high
efficiency and, most importantly, it has a small physical size. Despite the fact that
quantum cascade lasers have several serious disadvantages, such as the complexity
of the technological manufacturing and, accordingly, the high cost, they remain the
most promising far- and mid-IR radiation sources.

The most well-proven detectors of far- and mid-IR radiation realized on semi-
conductors are based on intersubband optical transitions of charge carriers in 2D
nanostructures with quantum wells (so-called quantum well infrared photodetectors
(QWIP) [4, 5]) and interband optical transitions in bulk materials. The main diffi-
culty with using QWIPs is associated with the need to fulfill the conditions of the
selection rules for intersubband optical transitions according to which intersubband
optical transitions of charge carriers can occur only for the light polarized along the
growth axis of the structure. As a result, it leads to a complication of the photodetector
structure design. Mid- and far-infrared photodetectors based on interband transitions
are realized on semiconductors with a very narrow energy gap, such as I nx As1−x Sb
[6] and HgxCd1−x T e [7] alloys. Having a high sensitivity such alloys are difficult
to grow as well as difficult to achieve the required doping profiles.

On the other hand, detection of infrared radiation can be realized with the use of
charge carrier transitions involving impurity states. For example, the effective detec-
tion of far- and mid-infrared radiation is realized with bulk Ge : Ga and Ge : Hg
photoresistors, respectively. The properties of impurities in bulk materials are com-
prehensively investigated to date. However, the energy spectrum of a certain impurity
in a bulk semiconductor remains unchanged without external influences. In quantum
well (QW) structures binding energy of an impurity center can be significantly varied
by changing the QW parameters. The position of the impurity center in QW and the
width of QW affect the energy spectrum of the impurity center [8]. Thus, doped
QWs could expand the operating spectral range of devices based on impurity-related
optical transitions. There is a significant amount of works related to the investiga-
tion of optical and photoelectrical properties of heterostructures with QWs doped
with donor impurity centers. For example, far-infrared absorption [9, 10], photocon-
ductivity [11, 12] and photoluminescence [12–15] are studied in GaAs/AlGaAs
quantum wells doped with shallow donors.

The optical properties of acceptors in QWs have not been studied in detail due to
the non-trivial energy spectrumof acceptor and valence subband states. However, this
feature allows to significantly expand the spectral range in which various acceptor-
related optical phenomena can be observed. Moreover, p-type QWs have several
advantages over n-type QWs. Firstly, acceptors have higher binding energy, it can
even exceed the energy of optical phonons in GaAs. This can significantly increase
the lifetime of photoexcited charge carriers, which is important for the development
of mid- and far-infrared photodetectors. Secondly, according to the selection rules,
intersubband optical transitions in p-type QWs are possible for radiation with a
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polarization vector lying in the plane of the QW layers. This makes devices based
on such structures promising for detectors and modulators of infrared radiation [16].

The present work is devoted to the experimental investigation of the infrared
photoconductivity related to the optical hole transitions involving acceptor states in
GaAs/AlGaAs quantum wells.

7.2 Samples and Methods

200 GaAs/Al0.4Ga0.6As quantum wells were MBE grown on a semi-insulating
GaAs substrate. Each QW was 3 nm wide; the barriers between QWs were 7 nm
wide. The central part of each QW (∼ 0.7 nm) was doped with beryllium (acceptor)
with a surface concentration of about 1011 cm−2. For photoconductivity studies, the
ohmic indium contacts were deposited on the sample surface. The contacts were
annealed in a dry nitrogen atmosphere with smooth heating of the sample to 450 ◦C
for 5 minutes, then this temperature was maintained for 5 min, and then sample was
cooled to the room temperature for 5 min. The distance between the contacts was
5.1 mm, the length of the contacts was 5.8 mm.

The results of numerical calculations of the energy spectrum of acceptor states
and valence subbands of the structure under study were previously presented by
us in [17]. The system of differential equations for bulk semiconductors can be
solved analytically, but for the case under study with QW, the eigenvalues of the
Hamiltonian can be obtained only numerically, for example, by the finite difference
method [18] or using the transfermatrix formalism [19]. In [17],well-provenmethods
were used for determining the energy of impurity levels by solving the Schrödinger
equation with the Luttinger-Kohn Hamiltonian with the addition of the confining
potential of the quantum well and the energy of the Coulomb interaction with a
charged acceptor [20]. The calculated energy spectrum of valence subbands and
acceptor states for a 3 nm wide GaAs/Al0.4Ga0.6As QW is shown in Fig. 7.1. In
the calculations, it was assumed that the impurity is located in the center of the QW.
In [19] the momentum-dependent decomposition coefficients were used to calculate
the optical matrix elements of the hole transitions from localized acceptor states
to higher energy states in QW in dipole approximation. Calculated spectral and
polarization dependencies of the infrared optical absorption due to photoionization
of acceptors were verified by experimentally measured impurity-assisted absorption
for two polarizations of light [17]. In this work, we continue the investigations of
impurity-assisted optical transitions in p-dopedGaAs/Al0.4Ga0.6As quantumwells
started in [17].

Experimental studieswere performedusing theBrukerVertex 80vvacuumFourier
transform spectrometer operating in a rapid- or step-scan mode (see scheme of the
experiment presented in Fig. 7.2) with spectral resolution of about 1 meV. The spec-
trometer was equipped with a Mylar, K Br or CaF2 beam splitters (BMS) for the
far-infrared, mid-infrared and near-infrared studies, respectively. A globar was used
as a source of broadband infrared radiation. For good heat dissipation, the sample
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Fig. 7.1 Calculated energy spectrum of acceptor states and valence band subbands for a
GaAs/Al0.4Ga0.6As QW of 3 nm wide. Blue curve corresponds to the first hole subband (hh—
heavy holes), and red one corresponds to the second hole subband (lh—light holes). The extension
of impurity levels is shown schematicallywith solid and dashed horizontal lines without considering
the degree of localization of impurity states in the k-space

Fig. 7.2 Experimental setup scheme for investigation of the photoconductivity spectra

was indium-soldered to a copper holder of a Janis PTCM-4-7 closed-cycle optical
cryostat with an operating temperature range of 4 − 320 K. The entrance window
of the cryostat was made of K Br or TPX for mid-infrared and far-infrared stud-
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ies, respectively. The sample in the cryostat was shielded all around from external
background radiation to prevent undesirable photoionization of impurities.

Photoconductivity measurements were carried out under 5 V bias voltage applied
to the sample using a SR-570 current preamplifier. The light from the globar passed
through the interferometer of the Fourier spectrometer and then was modulated with
an optical chopper. Infrared radiation was directed to the sample through a cold
polished stainless steel pipe of a 5 mm diameter. A chopper was synchronized with
lock-in amplifier SR-830. The photocurrent from the sample was registered by the
above-mentioned SR-570 current preamplifier, and then measured by lock-in ampli-
fier SR-830. This signal after analog-digital converter (ADC) was accumulated in
personal computer (PC), where obtained interferogram was converted to spectrum
by Fourier transform in OPUS software.

7.3 Experimental Results

7.3.1 Photoconductivity Spectra

The interband photoconductivity spectra of the GaAs/Al0.4Ga0.6As quantum well
structure in the near-IR spectral range at various cryogenic temperatures are shown
in Fig. 7.3. The photocurrent increases at the photon energy close to the GaAs
energy gap value, which corresponds to the interband transitions of charge carriers
in GaAs (marked with arrow Eg in Fig. 7.3). It is associated with the contribution
to the photocurrent from the GaAs substrate and the p − GaAs cap layer of the
nanostructure. We observed in the photoconductivity spectra two dips corresponding
to the photon energies of optical transitions associated with formation of heavy hX
and light l X free excitons in QW (the corresponding photon energies are shown
with arrows in Fig. 7.3). Photon energy values for these optical transitions were
obtained using free heavy and light exciton binding energies as 10 meV and 13 meV,
respectively, calculated in [21]. Spectral position of heavy free exciton line was also
verified by low-temperature near-infrared photoluminescence studies (see inset to
Fig. 7.3). These excitons are formed by charge carriers located in the ground QW
subbands. The total photocurrent of the structure decreases at the hX and l X photon
energies at rather low crystal lattice temperatures because excitons with such high
binding energies cannot contribute to the photocurrent. The positive contribution of
excitons to the photocurrent may be observed at higher lattice temperatures, when the
energy of thermalmotion of charge carriers is comparable to the binding energy of the
exciton. In this case, the excitons formed under the action of radiation can contribute
to the photocurrent due to thermal dissociation into a nonequilibrium electrons and
holes in the subbands of the conduction and valence bands. The luminescence band
related to the optical transitions of electrons from the first electron subband to the
ground acceptor state was also observed in the near-infrared photoluminescence
spectrum (see inset to Fig. 7.3). The arrow e1 − A1 in inset to Fig. 7.3 shows the
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Fig. 7.3 Spectra of interband near-infrared photoconductivity at different temperatures. The inset
shows near-infrared photoluminescence spectrum measured at T = 4 K

calculated position of the energy of optical electron transition from the first electron
subband to the ground state of acceptor impurity. It should be noted that contribution
of the optical transitions of charge carriers from the acceptor states to the first electron
subbands was not revealed in the near-infrared photoconductivity spectra because
in equilibrium the acceptor states are unoccupied by electrons at low crystal lattice
temperatures.

The long-wavelength part of the photoconductivity spectra (photon energy below
1700 meV) is related to the charge carriers generated in the near-surface heavily
doped (near the critical acceptor concentration forMott transition)GaAs cap layer as
well as in semi-insulating compensated GaAs substrate, which contains substantial
concentration of ionized donors. At low temperatures, ionized impurity scattering is
the main scattering mechanism indoped GaAs [22]. With increasing temperature,
the intensity of the impurity scattering decreases, which leads to an increase in the
mobility of photoexcited charge carriers and to an increase in photoconductivity
with temperature. The inverse temperature dependence of photoconductivity at high
photon energies (photon energies above 1750 meV) can be explained by the fact that
layers with quantum wells make a significant contribution to photoconductivity in
this spectral region. At low temperatures, the acceptors in quantum wells are non-
ionized and the mobility of charge carriers is determined by phonon scattering, the
intensity of which increases with temperature.

The impurity-assisted time-resolved photoconductivity spectra were measured in
step-scan mode of Fourier-spectrometer in mid-infrared spectral range. The time-
resolved photoconductivity spectra at T = 4 K are shown in Fig. 7.4. Photoconduc-
tivity spectra at the liquid helium temperature were alsomeasured in rapid scanmode
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Fig. 7.4 Time-resolved spectra of impurity-assisted photoconductivity in the mid-IR range at T =
7 K. Inset: photocurrent dynamic at the photon energy of 150 meV

of the Fourier-transform spectrometer for different values of scanning velocity f of
the interferometer. The results are shown in the Fig. 7.5. It should be noted that cur-
rent preamplifier bandwidth was of about 1 MHz. The wide peak observed near the
photon energy of 205 meV is associated with the optical transitions of holes from the
ground acceptor state A1 to the continuum states above the QW. The small shoulder
in the photocurrent at a photon energy of about 240 meV could be associated with
the contribution of deep impurity centers in the layers of the nanostructure to the
photocurrent [23] or with some features of joint density of states for hole transitions.
We associate the photocurrent peak at the photon energy of about 150 meV with
optical transitions of holes from the ground impurity state A1 to the bottom of the
third hole subband (or the second subband of heavy holes hh2, which is not shown
in Fig. 7.1). It is important to note that in the calculation presented in Fig. 7.1, we
used the expansion of the hole wave function in the states of the first two valence
subbands only. So, in order to obtain third hole subband hh2 we used the standard
solution of the Schrödinger equation in the framework of the parabolic model. The
photocurrent peak at the photon energy of about 90 meV (see Fig. 7.5) is associated
with the optical transitions of holes from the ground state of acceptor impurity A1 to
states near the bottom of the second hole subband lh1 near k‖ = 0 (arrow A1 − lh1
in Fig. 7.1). In general, from Fig. 7.5 it is clearly seen that with an increase in the
scanning speed of the interferometer, the intensity of the photocurrent decreases. It is
connected with finite relaxation time of holes from the valence subbands and excited
impurity states to the ground impurity states. This time is estimated as a few mil-
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Fig. 7.5 Impurity-assisted
photoconductivity spectra in
the mid-IR range at T = 7 K
for different scanning
velocity f of interferometer

liseconds. Also, this time can be obtained from the time-resolved spectrum (see Fig.
7.4). We approximated the photocurrent dynamics (see inset to Fig. 7.4 for photon
energy of about 150 meV) with an expression derived from the rate equation:

I = I0 (1 + A · exp (t/τ)) , (7.1)

where I—photocurrent intensity; I0 and A—fitting parameters; τ—relaxation time.
Using this approximation method, we got relaxation times for three observed opti-
cal transitions in the range of 0.58–0.67 ms. The obtained relaxation time for the
acceptor-related optical transitions is quite large. It can be related to the large bind-
ing energy of acceptors in our 3 nm wide quantum wells. The calculated value of
acceptor binding energy is about 40 meV, that exceeds the GaAs optical phonon
energy resulting in a significant suppression of the carrier capture to acceptor with
optical photon scattering. It also should be noted that in semi-insulating GaAs, the
relaxation time for optical transitions of electrons from the conduction band to the
ground acceptor state at low crystal lattice temperatures is about tens microseconds
or more [24].

We also measured the spectra of impurity-assisted photoconductivity in the mid-
IR spectral range for different cryogenic temperatures from 4 K with a step of 2 K.
All photocurrent peaks gradually decrease and at a temperature of about 30 K the
photocurrent disappears due to impurity ionization. The reference samples without
QWs did not exhibit any features in the photocurrent spectra. This confirms that
all the features observed in the mid-infrared photoconductivity spectra of QWs are
associated with impurity transitions in QWs and agrees well with theoretical calcu-
lations.

The far-infrared impurity-assisted photoconductivity spectra are shown in the Fig.
7.6 for different lattice temperatures. The wide long-wavelength peak near a photon
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Fig. 7.6 Impurity-assisted
photoconductivity spectra in
the far-infrared spectral
range at different
temperatures

energy of about 20 meV is associated with the optical hole transitions from the
ground acceptor state A1 to the first excited state of the acceptor A2 (arrow A1 − A2
in Fig. 7.1). These excited carriers in A2 state can contribute to the photocurrent
due to thermal ejection into the first subband of the valence band hh1. The peak in
photoconductivity spectra located near the photon energy of about 40 meV could be
associated with the hole transitions from the ground state of the acceptor impurity A1
to the first subband of heavy holes hh1, which also agrees well with the calculated
value of the acceptor binding energy (arrow A1 − hh1 in Fig. 7.1). The photocurrent
peak at the photon energy of about 60 meV is associated with intracenter optical
transitions of holes between the ground state of the impurity A1 and the impurity
states located below the second hole subband lh1 (arrow A1 − An in Fig. 7.1). All
photocurrent peaks gradually decrease with temperature and at the temperature of
about 15 K the photoconductivity disappear due to impurity ionization.

7.3.2 Temperature Dependence of Electroconductivity

It was shown above that investigations of photoconductivity have confirmed our
calculation of the energy spectrum of impurity states and the band diagram of QWs.
Additionally, we have determined the binding energy of acceptors in the QW from
the analysis of the temperature dependence of the electroconductivity σ (see red
dots in Fig. 7.7). Firstly, we assumed that electroconductivity is proportional to the
concentration of ionized holes in the valence band. This is correct if the hole mobility
is assumed to be temperature independent. Secondly, it was important to consider that
hole gas is non-degenerate. To prove this, let’s find the temperature dependence of the
concentration. In the impurity conductivity range, two-dimensional concentration of
ionized holes in the valence band ns can be written as [25]
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Fig. 7.7 Temperature
dependence of
electroconductivity. Red
dots—experimental data,
blue line—theoretical
calculations according to Eq.
(7.6). Inset: calculated
temperature dependence of
two-dimensional
concentration of ionized
holes in the valence band ns ,
NV—effective density of
states in valence subband,
NA—concentration of
acceptors

ns = NA − Nh, (7.2)

where NA—concentration of acceptors, Nh—concentration of unionized holes at the
impurity levels. The hole concentration at acceptor levels according to the Fermi
statistics is

Nh = NA

1 + β exp
(

−EA−μ

kT

) , (7.3)

where β—impurity degeneracy factor of the ground acceptor state, equal to 4 for
holes in the QW; EA—ionization energy of an acceptor impurity; μ—Fermi energy.
Substituting expression (7.3) into (7.2) one can obtain the Fermi energy

μ = −EA − kT ln

(
ns
Nhβ

)
, (7.4)

It is also known that for the two-dimensional Fermi-Dirac statistics, Fermi energy
can be written as

μ = kT ln

(
exp

[
ns
NV

]
− 1

)
, (7.5)

where NV = mkT/
(
π�

2
)
is the two-dimensional effective density of states in

valence subband, m—effective mass of holes. Equating μ from (7.4) and (7.5), we
obtain the relationship between concentration of ionized holes in the valence band
ns and temperature with EA as parameter

exp

(
EA

kT

)
= ns

(NA − ns)β

(
exp

[
ns
NV

]
− 1

)
, (7.6)
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Using Eq. (7.6) and assuming that σ (T ) ∼ ns (T ) we plotted dependence σ (T )

(see blue line in Fig. 7.7) with fitting parameter EA = 40 meV. It gives the best
fit between the experimental and calculated data. Also, from Eq. (7.6) we received
dependence ns (T ) (see black line in the inset to Fig. 7.7). One can see that concen-
tration of free holes ns is much less than the effective density of states NV in the hole
subband. This confirms that the hole gas is non-degenerate.

The value of the acceptor ionization energy obtained from σ (T ) is compatible
with calculated one (see Fig. 7.1) and with values obtained from near-infrared pho-
toluminescence (see inset to Fig. 7.3) and far-infrared photoconductivity studies (see
Fig. 7.6). Also, the obtained ionization energy of acceptors in the QW is in a good
agreement with the results of other authors [26, 27].

7.4 Conclusion

The results of studies of low-temperature acceptor-assisted photoconductivity of
p − GaAs/AlGaAs QW were presented in the near-, mid- and far-infrared spec-
tral ranges. The mid- and far-infrared photoconductivity spectra contain the bands
associated with the hole transitions from the ground acceptor state to the delocalized
states of the valence subbands, delocalized states above the QW and to the excited
states of the acceptor. The features of near-infrared photoluminescence and photo-
conductivity spectra are related to the interband optical transitions with assistance
of impurities as well as with exciton transitions. Time-resolved photoconductivity
spectra allowed us to find the relaxation time of impurity-assisted transitions. The
ionization energies of the acceptor impurity determined by various experimental
methods are in a good agreement with theoretical calculations.
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Chapter 8
Charge Carriers’ States and Optical
Transitions in CdS/HgS/CdS
Core/Shell/Shell Cylindrical
Nanostructure in the Presence of Strong
Uniform Electrostatic Field

V. A. Harutyunyan

Abstract The single-particle states of charge carriers and optical transitions in
a cylindrical layered β-CdS/β-HgS/β-CdS core/shell/shell nanoheterostructure
(quantum nanotube) in the presence of a strong lateral uniform electrostatic field
are considered in this report. The consideration is carried out for the case, when the
strong size quantization regime is realized for charge carriers in the HgS layer of
the structure under consideration. It is shown that a strong external field radically
changes the nature of the movement of charge carriers along the angular variable.
Expressions for the envelope wave functions and energy spectrum of charge carriers
in β-HgS in the presence of an external field are obtained in an explicit analytical
form. The threshold frequency of interband transitions under the action of an elec-
trostatic field is shifted towards low frequencies. The external field also leads to an
explicit dependence of the intensity of interband transitions on the effective masses
of charge carriers.

8.1 Introduction

Nanoparticles based on metacinnabar (β-HgS) in the form of planar quantum layers
and films, homogeneous and inhomogeneous quantum dots, various layered struc-
tures such as core/shell/shell, etc. (see e.g. Refs. [1–10] and literature therein) have
been intensively researched in recent decades. These nanoparticles are currently
widely used. They are used in various electronic and optoelectronic devices with low
energy consumption [11–14], solar and photo-electrochemical batteries [6, 15–17],
as a promising material for the implementation of new quantum states—excitonic
insulators [6, 13, 18], in areas of biomedicine [19, 20], ecology [20, 21], etc.

Among the aforementioned quantum nanostructures based on β-HgS, a separate
class is made up of core/shell/shell structures with cylindrical symmetry. In particu-

V. A. Harutyunyan (B)
Russian-Armenian University, 0051 Yerevan, Armenia
e-mail: volodya.harutyunyan@rau.am

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
D. Blaschke et al. (eds.), Optics and Its Applications, Springer Proceedings
in Physics 281, https://doi.org/10.1007/978-3-031-11287-4_8

91

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-11287-4_8&domain=pdf
mailto:volodya.harutyunyan@rau.am
https://doi.org/10.1007/978-3-031-11287-4_8


92 V. A. Harutyunyan

lar, layered core/shell/shell cylindrical nanoheterostructures β-CdS/β-HgS/β-CdS
(β-HgS nanotubes), the study of which is devoted to a large number of works (see
e.g. Refs. [22–28] and references in them). The interest of researchers to these het-
erophase structures is primarily due to the fact that they combine the properties
of both quantum films and quantum wires and, from an applied point of view, are
more multifunctional than individual quantum films and quantum wires. In Refs.
[22–24], the energy spectrum of charge carriers in a layered cylindrical β-CdS/β-
HgS/β-CdS heterostructure was calculated, and the specificity of the conduction
mechanism in such structure was considered. In Ref. [25], Raman scattering of elec-
trons in a cylindrical layer of a β-CdS/β-HgS quantum dot was considered, and Ref.
[26] was devoted to the study of the influence of hydrostatic pressure and temperature
factor on the diamagnetic properties of the electron subsystem in a β-CdS/β-HgS
cylindrical layered structure.

One of the powerful factors of modulating effect on semiconductor materials, as
it is well known, is an external static electric field. At the same time, one of the
most productive methods for studying of the band structure of semiconductors is the
optical method. In a number of previous works by the author and coauthors, optical
transitions and exciton states in the cylindrical structure of β-CdS/β-HgS/β-CdS
have been investigated both in the absence and in the presence of electrostatic fields
of various intensities [27–32].

In this work, the effect of a strong lateral uniform electrostatic field on the energy
spectrum of charge carriers and on the optical absorption spectrum in the cylindrical
core/shell/shell structure β-CdS/β-HgS/β-CdS is considered theoretically, when
strong quantization mode is realized in β-HgS layer.

8.2 Model Approximations

Further calculations will be carried out within the framework of the two-zone model
in the approximation of an isotropic effective mass. Table8.1 shows the physical
characteristics of the bulk crystals of β-CdS and β-HgS required in the following.

It is clear from the data presented that, due to the large value of the energy offset
at the interface of contacting materials, in the radial direction the HgS layer plays

Table 8.1 Some characteristics of bulk semiconductors β-CdS and β-HgS (Data taken from Refs.
[8, 27, 32, 33])

Material Latt. const
a0 (nm)

Static
dielect.
const ε

Electron
effect.
mass
μe/μ0

Hole
effect.
mass
μh/μ0

Band gap
Eg (eV)

c-band
energy
offset
�Uc (eV)

v-band
energy
offset
�Uv (eV)

CdS 0.5818 9.1 0.2 0.7 2.5 − −
HgS 0.5851 18.2 0.036 0.044 0.5 1.2 0.8

Here: m0—is the mass of free electron
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Table 8.2 Excitonic characteristics of the structural components of the β-CdS/β-HgS/β-CdS
structure (Data taken from Refs. [8, 27, 32])

Material 3D Exciton
binding energy
E3D
ex (meV)

3D Exciton Bohr
radius a3Dex (nm)

Electron 3D Bohr
radius a3De (nm)

Hole 3D Bohr
radius a3Dh (nm)

CdS 27 3 2.4 0.69

HgS 0.81 50 27 22

the role of a two-dimensional quantum well, and the core and the outer layer-shell
of CdS play the role of two-dimensional barriers. Let us present now the exciton
characteristics of the components of the structure under consideration obtained using
Table8.2.

It is easy to conclude from this table that for the thickness of the mercury sulfide
layer L = 5 ÷ 15 nm, when the condition

L < a3Dex , a3De , a3Dh (8.1)

within the β-HgS layer, the strong quantization mode will be realized with sufficient
accuracy for charge carriers.At the same time,we assume that the following condition
is also fulfilled in the considered composition:

L2 � R2
1, R

2
2 . (8.2)

Here R1, R2 = R1 + L are the inner and outer radii of β-HgS layer, respectively.
For specific calculations, in what follows, we will take R1 = 30 nm.

From Table8.1 for the size quantization energy of charge carriers at L = 5 ÷ 15
nm, we have the following estimates:

Ee
rad ∼ �

2

2μeL2
= 42, 4 ÷ 4, 7meV � �Uc = 1, 2eV—for electrons (8.3)

Eh
rad ∼ �

2

2μh L2
= 34, 7 ÷ 3.8meV � �Uv = 0, 8eV—for holes (8.4)

It has been shown in a number of works (see, for example, the review [32]) that
under conditions (8.1)–(8.4) in the corresponding Schrödinger equation in cylindrical
coordinates (r,φ, z), it is possible to separate the variables, and the β-HgS quantum
well can be approximated by a rectangular infinitely deep potential well in radial
direction. As a result, for the wave functions and energy of single-particle states
in the β-HgS layer in the absence of an external field, we arrive to the following
expressions:

Ψ (r,φ, z) = Φn (r) fm (φ) u (z) =
√

2

L

sin πn
L (r − R1)√

r

ei |m|φ
√
2π

eikz√
d

(8.5)
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E = Ee,h
rad + Ee,h

rot + Ee,h
long = π2

�
2n2e,h

2μe,h L2
+ �

2m2
e,h

2μR2
0

+ �
2k2e,h
2μe,h

; (8.6)

ne,h = 1, 2, . . . ;me,h = 0,±1,±2, . . . ; (8.7)

R−2
0 = 0.5

(
R−2
1 + R2−2

) ;k = k (0, 0, k) (8.8)

Here d is the normalizing length of the structure along the symmetry axis (z).
Using wave functions (8.5), the intensity and selection rules will be determined, and
using the energy spectrum (8.6), it is possible to calculate the values of the threshold
frequencies and the frequency dependence of interband and intersubband transitions.

Let us now turn, within the framework of the proposed model, to consider single-
particle states in the β-HgS layer of the structure under consideration in the presence
of a strong transverse electrostatic field.

8.3 Single-Particle States in a Layer in the Presence
of a Strong Transverse Field

An external field of strength F is assumed to be directed along the x axis: F =
F (F, 0, 0). For the potential energy of a particle with a charge q within the layer, in
this case we have [32]:

V (r,φ) = qF

(
Br + C

r

)
cosφ = V (r) cosφ; B = 6R2

2

9R2
2 − R2

1

;C = BR2
1

3
.

(8.9)
In the Schrödinger equation, the motion along the variable z, as in the case of

absence of a field, is separated (see Exps. (8.5)–(8.6)). Correspondingly for the
transverse motion of a particle we will have the following equation:

− �
2

2μ

(
1

r

∂

∂r
r

∂

∂r
+ 1

r2
∂2

∂φ2

)
Ψ (r,φ) + qF

(
Br + C

r

)
cosφΨ (r,φ) = EtrΨ (r,φ)

(8.10)

Here EF
tr is the total transversal energy of the particle in β-HgS layer in the

presence of external field. Let us make the following substitution in Eq. (8.10):

Ψ (r,φ) = χ (r,φ)√
r

(8.11)
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Instead of Eq. (8.10) we now get:

− L2 ∂2χ (r,φ)

∂r2
− �

2

2μr2
2μL2

�2
χ (r,φ) + V (R)

�2/2μL2
cosφχ (r,φ)

− �
2

2μr2
2μL2

�2

∂2χ (r,φ)

∂φ2
= EF

trχ (r,φ)

�2/2μL2
(8.12)

Let us now turn to the strong field factor. Within the framework of this problem,
the field can be considered strong if the energy received by the particle within the
layer from the external field is much greater than its dimensional quantization energy,
i.e. if the following condition is met:

|V (r) |
�2/2μL2

� 1 (8.13)

In this case, the function can be expanded in a series and limited to the first terms
of the expansion:

cosφ ∼ 1 − φ2/2 (8.14)

Taking into account conditions (8.2) and (8.13), the adiabatic approximation can
be used to solve Eq. (8.12). Equation (8.12) in this case splits into the following two
equations:

− �
2

2μ

d2G (ρ)

dρ2
+ βρG (ρ) = EF

radG (ρ) ; ρ = R2 − r; ρ [0; L] ;β = 1

2
|e|F;

(8.15)

− �
2

2μ

d2 g (φ)

dφ2
+ β

(
Br + C

r

)
φ2g (φ) = EF

angg (φ) ; (8.16)

Here χ (ρ,φ) = G (ρ) g (φ), EF
rad + EF

ang = EF
tr .

In the presence of size quantization, the effect is most pronounced for the lowest
energy states. Therefore, when solving Eq. (8.15), we restrict ourselves to calculating
the ground state. When condition (8.13) is fulfilled in the lowest states, the particle
is “captured” by the external field, and the motion in this case will actually occur
already in the triangular potential well. The ground electronic state can be described
with sufficient accuracy by the variational method. We choose the trial function in
the following form:

G (ρ) = Aρ exp−αρ2

2
. (8.17)
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Here A, α are the variation parameters. Carrying out standard calculations, for
the trial wave function and the ground state energy of Eq. (8.15), we obtain:

Ge (ξ) =
√

2

L

√
4ae
3π

ξ exp−
(
2

3

a2/3e

π1/3

ξ2

2

)−2/3

; ξ = ρ

L
; ae = βL

�2/2μeL2
(8.18)

(
EF
rad

)
e,min

�2/2μeL2
≈ 2.346

(
βL

�2/2μeL2

)2/3

(8.19)

As you can see, with an increase of the strength of the external field, the main
energy level of the radial motion of the particle in the layer-well rises, which is quite
natural.

When solving equation (8.16), firstly, taking into account condition (8.2) and result
(8.6), the value �

2/2μer2 of centrifugal energy within the layer can be replaced by
the value �

2/2μe R2
0 . Secondly, due to the fulfillment of condition (8.13), the quantity

β (Br + C/r)without distorting the physical essence of the problem can be replaced
simply by the average value of the potential energy of a particle within the β-HgS
layer:

〈β (Br + C/r)〉 = |e|F
2

[(BR2 + C/R2) − (BR1 + C/R1)] ≈ βL

2
(8.20)

Then we come to the following equation:

d2 g (φ)

dφ2
+ (

γ2 − λ2φ2
)
g (φ) = 0; γ2 = 2μe R2

0E
F
ang

�2
;λ2 = βLμe R2

0

2�2
(8.21)

The solutions of this equation are the functions of the harmonic oscillator. For the
envelope wave functions and the energy of motion along the angular variable, we
obtain, respectively:

gse (φ) =
(

1

2se se!
√

λ

π

)1/2

Hse

(√
λφ

)
exp

[
−λφ2

2

]
(8.22)

(
EF
ang

)
se

�2/2μeL2
=

(
βL

�2/2μeL2

)1/2 L

R0

(
se + 1

2

)
; se = 0, 1, 2, . . . . (8.23)

As we see, in the presence of a strong external field, the motion of an electron
along the angular coordinate is reduced to oscillations in a narrow angular segment
in the vicinity of φ = 0. The solution of the equations for a particle with a positive
charge shows that under the action of a strong external field, holes will oscillate in a
narrow segment in the vicinity of φ = π.
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8.4 Discussion of Results

The results obtained show that in the presence of a strong external field, the energy
of charge carriers in the β-HgS layer, where the strong size quantization regime is
realized, increases significantly. According to expression (8.19), the position of the
main level of radial motion in the presence of a field is determined by the expression

(
EF
rad

)
e,min = 2, 345

(
βL

Erad
e

)
· Erad

e . (8.24)

So, even with not too strong fields, for the ground level in the presence of a field
we have: (

EF
rad

)
e,min ∼ 11Ee

rad >
π2

�
2

2μeL2
. (8.25)

As for the motion along the angular variable, a strong external field in this case
radically changes the structure of the energy spectrum: the rotational motion of
carriers around the circumference of the layer (expressions (8.5)–(8.6)) transforms
into oscillations in a narrow angular segment in the vicinity of the opposite ends of
the layer diameter: in the vicinity angle φ = 0 for electrons, and φ = π for holes,
respectively. Moreover, the energy of these angular oscillations is determined not
only by the magnitude of the external field, but also by the relationship between the
thickness and the average radius of the layer:

(
EF
ang

)
min

= 1

2

(
βL

�2/2μeL2

)1/2 L

R0

�
2

2μeL2
> Ee

rot ∼ �
2

2μe R2
0

. (8.26)

A change in the energy spectrum of carriers is also reflected in the parameters of
optical absorption in the sample. In the absence of a field, the threshold frequency of
interband transitionswas determined by the size quantization energy of the transverse
motion of charge carriers in the β-HgS layer:

�ω(0)
c,v = EL

g + (
Ee
rad

)
min

+ (
EF
h

)
min

+ (
Ee
rot

)
min

+ (
Eh
rot

)
min

. (8.27)

In the presence of an external field instead Exp. (8.27) we get:

�ω(F)
c,v = EL

g + (
EF
rad

)
e,min + (

EF
rad

)
h,min + (

EF
ang

)
e,min

+ (
EF
ang

)
h,min

− βL .

(8.28)
Here EL

g is the band gap of bulk β-HgS, and the energy count is carried out
from the bottom of the conduction band. As can be seen, the external field shifts
the threshold of interband absorption in a layer of β-HgS to the region of low
frequencies.
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As for the frequency dependence of interband absorption, in this case it will be
determined by the multiplier

(
�ω − �ωF

c,v

)−1/2
which is characteristic for quasi-one-

dimensional systems.
The external field also leads to the dependence of the intensity of interband tran-

sitions Ic,v from the effective mass of charge carriers. In particular, for the intensity
of transitions on the threshold frequency, we have:

Ic,v ∼ (μeμh)
3/2

(μe + μh)
(
μ
2/3
e + μ

2/3
h

)3 . (8.29)

8.5 Conclusions

The proposed model allows us to get the desired quantitative description of the
problem under consideration and obtain results explicitly analytically. The results
of the work show that combining changes in the geometric sizes of the system with
changes in the intensity of the external field, you can obtain the desired interval of
frequency of transmission and absorption for incident on the sample light.
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Chapter 9
Quasi-conical Quantum Dot Helium

K. S. Khachatryan and M. A. Mkrtchyan

Abstract By the analogywith the real helium atom theory, amodel of a two-electron
system, localized in a quasi-conical quantum dot, (quasi-conical helium atom) is
constructed in the framework of the perturbation theory. The presence of the electron
spin is considered in the Russell–Saunders approximation and the wave function is
considered as the multiplication of the coordinate and spin parts. The Coulomb and
exchange corrections to the energy states of the system are determined. The behavior
of the Coulomb and exchange energy on the geometric parameters of the quantum
dot is discussed. The exchange time of states between the electrons is calculated.

9.1 Introduction

The investigation of the few- and multi-particle complexes in the semiconductor
quantum dots (QD) continue to be an actual problem in the physics of quantum
nanostructures [1–8]. Such problems are of great practical importance and can reveal
the characteristic features of physical data. In particular, in [5] the authors have
considered a system, consisting of two electrons in a QD with a three-dimensional
potential of harmonics limitation under the action of a magnetic field. Two different
confinement conditionswere considered: isotropic three-dimensional and anisotropic
quasi-two-dimensional conditions. The properties of singlet and triplet lowest states,
such as energy and exchange coupling, are analyzed. In [8], the authors studied one-
and two-particle states in electrostatically induced QDs in gapped bilayer graphene.
Based on these single-particle states, they obtained the orbital, spin, and valley states
of two interacting electrons in a QD. The interaction strength of two-particle were
also found.

The simplest few particle system is a two-electron system, localized inside of
QD. Such systems are very often called as “artificial” helium atoms [9, 10]. An
essential advantage of these helium-like systems in comparison with the real helium
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atom is the possibility of the flexible manipulation of a two-electron artificial helium
atom by changing the geometric sizes and shape of a QD. If the localization of
electrons in real helium atom is realized due to the attractive nuclear forces, then the
localization of electrons in an “artificial” Helium atom occurs due to the influence
of the QD’s confining potential. It is clear the spectrum of two-electron system in
QD can be theoretically controlled by changing the confining potential. From the
mathematical description point of view, the closest systems to a real helium atom are
spherical QDs. The symmetry in the case of single-particle states is spherical. For
such systems one can successfully adapt the descriptionmethods such as perturbation
theory and the Hartree Fogh method, as well as give a successful implementation
of two-particle model of the Mashinsky atom [11–14]. On the other hand, modern
methods for the growth of QDs make it possible to implement zero-dimensional
structures of various geometric shapes such as cylindrical, ellipsoidal, pyramidal,
lens-shaped, etc. [15–24]. It is obvious that the investigation of two-electronic states
in the above mentioned systems can lead to the revealing of the interesting features
of the studied energy spectrum. The above is all the more relevant, because the
abovementionedQDs are not systemswith spherical symmetry and the classification
of states of helium-like systems in them requires a separate consideration. Two-
electron states were considered in QDs with different geometries [25–27]. Relatively
recently, conical QDs have been implemented, in which states close in character to
quantum wires (strongly prolate conical QDs) and quantum wells (strongly oblate
conical QDs) can be realized [28–30]. Such structures are considered as successful
candidates for the role of an element base for LEDs based on QDs. In particular,
in [29] the prospect of “core/shell” QDs has been described, which may further to
contribute to the development of highly efficient and stable sensitized QDs of solar
cells. In the theoretical work [31] the possibility of the implementation of the active
medium for LEDs, using ensembles of conicalQDs of various sizes, was theoretically
demonstrated.

The theoretical description of the single-particle states in conical QDs requires
independent consideration; in the general case this problem requires numerical mod-
eling. In the case of a strongly prolate or strongly oblate QD geometry it is possible to
successfully apply the adiabatic description [32], which allows obtaining a number
of analytical results. On the other hand, a conical QD can be approximately modeled
as a spherical segment. The convexity of the con’s bottom in several cases may have
an insignificant effect on the nature of the charge carrier energy. However, the one-
particle Schrodinger equation for such geometry can be solved exact analytically. The
optical properties of such system were investigated in the work [33] in which, the
selection rules for interband transitions for models of simple zones are determined. It
is clear that this model of a conical QDmakes it possible to describe relatively simple
two-electron states in the framework of perturbation theory, since the analytical form
of the wave functions of one-electron states is known. In this case, a significant dif-
ference between the considered QD and the spherical one is that the orbital quantum
number ceases to be integer. In this paper, a quasi-conical helium atom is investigated
in the framework of perturbation theory and the Russell–Saunders approximation.
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Fig. 9.1 Quasi-conical QD

9.2 Theory

Let’s discuss two electron states quasi-conical QD made from I nAs (Fig. 9.1). The
confining potential in the radial and polar directions has the following forms:

V rad
con f (r) =

{
0, r < r0
∞, r ≥ r0

, (9.1)

V pol
con f (θ) =

{
0, θ < θ0
∞, θ ≥ θ0

, (9.2)

where d is the quasi-con’s base radius, θ0 is the half of the opening angle, r0 is the
side edge of the quasi-con, r is the electrons’ radius vector.

The Hamiltonian of the system can be written as:

Ĥ = Ĥ1 + Ĥ2 + Ve−e, (9.3)

where

Ĥi = − �
2

2μ
∇2

i + Vcon f (r i ) , (9.4)

is the one-particle Hamiltonian (i = 1, 2), μ is the electron effective mass (for I nAs
μ = 0.023 · m, where m is electron mass), Vcon f (r i ) = V rad

con f (r) + V pol
con f (θ) and

Ve−e is the Coulomb interaction term between electrons:

Ve−e = e2

εd |r i − r j | , (9.5)
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where εd = 15.5 is the dielectric constant of the material and e is electron charge.
Let’s proceed to the discussion of the one-particle Schrodinger equation, which

in spherical coordinates can be written as:

− �
2

2μ
∇2

r,θ,φψ (r, θ, φ) +
(
V rad
con f (r) + V pol

con f (θ)
)

ψ (r, θ, φ) = Eψ (r, θ, φ) .

(9.6)
The wave function for (9.6) has the form [33]:

ψ (r, θ, φ) = R (r) P (θ) eimφ, (9.7)

where R (r) and P (θ) can be determined by solving the following equations [33]:

d2P (θ)

dθ2
+ cot θ

dP (θ)

dθ
+

(
l (l + 1) − m2

sin2 θ

)
P (θ) = 0, (9.8)

d2R (r)

dr2
+ 2

r

dR (r)

dr
+

(
k2 − l (l + 1)

r2

)
R (r) = 0. (9.9)

Here m = 0;±1;±2; . . . is the magnetic quantum number, k =
√

2μE
�2 and l are

radial and orbital quantum numbers, respectively. It is worth to note, that l is not
integer in this case. The solution of (9.8) is a linear combination of two functions,
namely:

{
m ≥ 0, P (θ) = C sinm θ

2 cos
m θ

2 2F1
(
m + l + 1,m − l,m + 1, sin2 θ

2

)
m < 0, P (θ) = C sin−m θ

2 cos
m θ

2 2F1
(
l + 1,−l, 1 − m, sin2 θ

2

) , (9.10)

To continue, solution of the radial part of wave function (9.9) has the form:

R (r) = D
1√
r
Jl+ 1

2

(√
2μE

�2
r

)
, (9.11)

where 2F1 is the hypergeometric function and Jl+ 1
2
is the Bessel function.

The values of the quantum numbers and as well as energy can be found from the
fulfillment of the boundary conditions:

R (r0) = 0, P (θ0) = 0. (9.12)

It should be highlighted, that in the further calculations we will be focused on the
first two |klm〉 states of the one-particle problem, namely, the ground and the first
excited states, which will be denoted by |110〉 and |210〉 by the analogy with work
[32].

The total wave function of the problem in the scope of Russell–Saunders approx-
imation is considered as a product of two parts, namely, coordinate and spin parts.
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Within the framework of the theory of the helium atom, we have investigated two
electronic states, considering the Coulomb interaction between electrons as a per-
turbation. By analogy with this theory, the wave function for the singlet state can be
written as follows:

ψsinglet = 1√
2
[ψ1 (r1, θ1, φ1) ψ2 (r2, θ2, φ2) + ψ2 (r1, θ1, φ1) ψ1 (r2, θ2, φ2)]

χa (σ1, σ2) , (9.13)

where ψ1 (r1, θ1, φ1), ψ2 (r2, θ2, φ2) are ground and first exited states of (9.7),
χa (σ1, σ2) is the spin wave function, which is asymmetric to the permutation and
has well-known form:

χa (σ1, σ2) = 1√
2
[α1β2 − α2β1] , α = �

2

(
1
0

)
, β = �

2

(
0
1

)
(9.14)

Here α describes the state of spin up and β—state of spin down.
The wave function for the triplet state is as follows:

ψtr i plet = 1√
2
[ψ1 (r1, θ1, φ1) ψ2 (r2, θ2, φ2) − ψ2 (r1, θ1, φ1) ψ1 (r2, θ2, φ2)]

χs (σ1, σ2) , (9.15)

where χ
′
s = α1α2, χ

′′
s = β1β2, χ

′′′
s = 1√

2
[α1β2 + α2β1].

The singlet and triplet states’ energies have the following forms, respectively [33]:

Esinglet = E1 + E2 + K + P, (9.16)

Etriplet = E1 + E2 + K − P, (9.17)

where E1 and E2 are the single particle energies for the first and the second states,
respectively, K is the energy correction of Coulomb interaction and P is the exchange
interaction energy.

For Ve−e one can write:

Ve−e = e2

εd

√
r21 + r22 − 2r1r2 (cos θ1 cos θ2 + sin θ1 sin θ2 cos (φ1 − φ2))

. (9.18)

It is worth to mention, that the relative angle θ between the r1 and r2 is taken
into account and for θ we have the expression: cos θ = cos θ1 cos θ2 + sin θ1 sin θ2
cos (φ1 − φ2). The schematic plot for θ is presented in Fig. 9.2.
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Fig. 9.2 Schematic plot of
the relative angle between
two electrons

For K and P we have the following integrals:

K =
∫ R

0

∫ 2π

0

∫ θ0

0

∫ R

0

∫ 2π

0

∫ θ0

0

Ψ ∗
01Ψ01 · sin θ1dθ1dφ1r21dr1 · sin θ2dθ2dφ2r22dr2√

r21 + r22 − 2r1r2 (cos θ1 cos θ2 + sin θ1 sin θ2 cos (φ1 − φ2))

, (9.19)

P =
∫ R

0

∫ 2π

0

∫ θ0

0

∫ R

0

∫ 2π

0

∫ θ0

0

Ψ ∗
01Ψ02 · sin θ1dθ1dφ1r21dr1 · sin θ2dθ2dφ2r22 dr2√

r21 + r22 − 2r1r2 (cos θ1 cos θ2 + sin θ1 sin θ2 cos (φ1 − φ2))

, (9.20)

where
Ψ01 = ψ1 (r1, θ1, φ1) ψ2 (r2, θ2, φ2) , (9.21)

Ψ02 = ψ1 (r2, θ2, φ2) ψ2 (r1, θ1, φ1) , (9.22)

where ψ1 (r2, θ2, φ2) is the wave function of the first particle in the second state,
ψ2 (r1, θ1, φ1) is thewave function of the secondparticle in the first state, respectively.
The calculations of these integrals will be carried out numerically.

9.3 Results

Based on the theory, described in Sect. 9.2, let’s proceed to the discussion of the
obtained results. Figure9.3 shows the dependences of the Coulomb energies on
the geometrical parameters of the considered QD. In particular, Fig. 9.3a shows the
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Fig. 9.3 Dependence of the Coulomb interaction energy on the quasi-conical QD’s base radius (a)
and on the opening angle (b)

Fig. 9.4 The schematic plot of changing the QD’s base radius d and the angle θ0. a—the angle θ0
is fixed and the base radius d changes, b—the base radius d is fixed and the angle θ0 changes

dependence K on the quasi-con’s base radius d, when the θ0 is fixed, and Fig. 9.3b—
the dependence of K on θ0 for the fixed value of d.

It is obvious from the Fig. 9.3a, that the Coulomb interaction between electrons
decreaseswith the increase of theQD’s base radius. This behavior can be explained by
the fact, that with the increase of the quasi-con’s geometrical parameter the electrons’
localization region increases, and, as a sequence, they are located at a greater distance
from each other, due to the repulsion. The same behavior for the Coulomb interaction
occurs in the Fig. 9.3b, where θ0 is changed. It is worth to note, that the interaction
energy between electrons is more sensitive to the decrease of θ0 angle. The changes
of the QD’s geometric parameters are shown in the Fig. 9.4.

The result of the state exchange between electrons for a certain time is interpreted
as exchange energy between electrons [34]. Adhering to this interpretation, let us
consider two electrons’ case in the quasi-conical QD.
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Fig. 9.5 Dependence of the exchange energy P on the quasi-conical QD’s base radius (a) and on
the opening angle (b)

In order to calculate time, needed for the transition of the system from Ψ01 state
to the Ψ02 state, we have used the following formula [34]:

τ = π�

2P
. (9.23)

The dependence of the exchange energy on the quasi-conical QD’s radius d and
angle θ0 is shown in Fig. 9.5.

It follows from theFig. 9.5, that the dependences both in (a) and (b) have the similar
behaviors as in the case of the Coulomb interaction. The exchange interaction is due
to the degree of the electrons’ wave functions’ overlapping, localized in the QD. It
is also clear, that the wave functions’ overlapping decreases with the increase of the
QD’s geometrical parameters, since the distance between electrons increases, which,
in its turn, leads to the decrease of the exchange energy. Note, that ground and first
exited states are again considered here.

Finally, Fig. 9.6 shows the dependences of τ on the quasi-conical QD’s geomet-
rical parameters. In particular, Fig. 9.6a shows the dependence on the base radius,
while Fig. 9.6b shows the dependence of the exchange time on the opening angle.

It can be seen from the figure, that the dependences for the exchange time have
the opposite behavior for the exchange energy, i.e. the exchange time increases with
the increase of the quasi-cone’s base radius (Fig. 9.6a). It is also obvious, that the
discussion for Fig. 9.6a is correct for Fig. 9.6b. Note, that in the case of the spherical
QD [35],when the electrons are located diametrically at a large distance, the exchange
time τ is about 10−10 s, and in the case of a spherical sector, due to thewave functions’
overlap, the exchange time decreases and has order of 10−11 s.
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Fig. 9.6 Dependences of the electrons’ exchange time on the base radius (a) and on the opening
angle (b)

9.4 Conclusion

Two electronic states in the quasi-conical QD are theoretically investigated. The
differences between Coulomb and exchange interactions have been discussed. The
increase of the quasi-conical QD’s base radius results in the decrease of the energy of
Coulomb and exchange interactions. It has been shown, that exchange energy as well
as the state exchange time can be controlled by changing the geometrical parameters
of the QD.
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Chapter 10
Radiation of Surface Polaritons
in Cylindrical Waveguides

A. A. Saharian , L. Sh. Grigoryan , H. F. Khachatryan ,
and A. S. Kotanjyan

Abstract We investigate the radiation of surface polaritons in a cylindrical waveg-
uide by a charged particle. Two types of motion of the latter are considered: a particle
moving parallel to the axis of the cylinder and a particle rotating around the cylin-
der. The general case is discussed when the cylinder is immersed in a homogeneous
medium. Exact expressions are provided for the radiation intensity on a given mode
of the cylindrical waveguide. The radiation of surface polaritons is present in the
spectral range where the dielectric permittivities of the cylinder and surrounding
medium have opposite signs and there is no velocity threshold for their generation.
The spectral range of the emitted surface polaritons becomes narrower with decreas-
ing energy of the particle.

10.1 Introduction

The interaction of charged particles with matter results in different types of radiation.
The examples, widely investigated both theoretically and experimentally, include
the Cherenkov, transition and diffraction radiations. They arise as a consequence of
dynamical polarization and further relaxation of the medium by the electromagnetic
field of the charge. In problems with two contacting media, the presence of inter-
faces between them gives rise to new types of channels for the radiation losses by a
moving particle. They correspond to the radiation of various types of surface waves.
Among those waves, the surface plasmon polaritons (for reviews see Refs. [1–4])
have attracted a great deal of attention in the past decade. The growing interest is
motivated by wide range of applications in surface imaging, nanophotonics, spec-
troscopy, data storage, biosensors, solar cells, communication devices, etc. Surface
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plasmon polaritons are collective excitations of the electromagnetic field and electron
subsystem propagating along ametal-dielectric interface. Among themost important
properties of these waves we mention here the confining of electromagnetic fields
beyond the diffraction limit of light waves and enhancing the local field strengths by
orders of magnitude [1, 2]. The surface polariton type waves can also be supported
by other materials instead of metals, such as semiconductors, organic and inorganic
dielectrics, ionic crystals. An important issue in the investigations of surface polari-
tons, partially motivated by applications in ultrahigh-speed communications, is the
extension of the corresponding frequency range to the terahertz frequencies. This can
be done by a suitable choice of the active medium such as doped semiconductors,
dielectric-film-coated metal surfaces, textured metal surfaces, graphene surfaces and
artificially constructed materials [5–8].

The extensive applications require effective techniques for exciting surface polari-
tons. Themethods used include electron and laser beams, prism and grating coupling,
guided photonic modes from waveguides (see references [1–3, 9]). The main part of
the previous studies consider the excitation of surface polaritons on planar surfaces.
The investigations of the effects induced by the curvature of the interface on the gen-
eration and propagation of surface polaritons are worthy of attention in many points
of view, from fundamental aspects to practical applications. In the present paper,
partly based on our previous research presented in [10, 11], we consider the excita-
tion of surface polaritons on a cylindrical interface between two media by a charged
particle. Two cases of the motion will be discussed: a particle uniformly moving
along a rectilinear trajectory parallel to the cylinder axis and a particle uniformly
rotating around a cylinder along a concentric circular trajectory.

The organization of the paper is as follows. In the next section we describe the
scheme for the evaluation of the radiation intensity. The electric field generated by
a charge moving along a trajectory parallel to the cylinder axis is presented. The
corresponding radiation intensity for surface polaritons is investigated in Sect. 10.3.
The electric field and the radiation intensity for a circular motion of a charge around
a dielectric waveguide are discussed in Sect. 10.4. The corresponding results are
compared with the characteristics in the problem with rectilinear motion. The main
results are summarized in Sect. 10.5.

10.2 Electric Field for the Rectilinear Motion

We consider a cylindrical waveguide with dielectric permittivity ε0 and radius rc
immersed in a homogeneous medium with permittivity ε1 (magnetic permeabilities
will be taken to be unit). In the discussion below the electromagnetic fields will be
presented in cylindrical coordinates (r,φ, z), where the z-axis is directed along the
cylinder axis. If E is the electric field strength generated by a point charge q in a
given state of motion, then the energy losses per unit time can be evaluated in terms
of the work done by the electric field on the particle:
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dW

dt
=

∫ ∞

0
dr

∫ 2π

0
dφ

∫ ∞

−∞
dz r j · E, (10.1)

where j is the current density. First we study the case when the charge follows
the rectilinear trajectory r = rq , φ = φq parallel to the cylinder axis, assuming that
rq > rc. For the motion with a constant velocity v the components of the current
density are expressed as

jl = δl3
qv

r
δ(r − rq)δ(φ − φq)δ(z − vt), (10.2)

with δ(x) being the Dirac delta function. Here and below the vector component
indices l = 1, 2, 3 correspond to the cylindrical components (r,φ, z).

The electric field generated by the charge is Fourier expanded as

E(t, r) =
∞∑

n=−∞
ein(φ−φq )

∫ ∞

−∞
dkz e

ikz(z−vt)En(kz, r), (10.3)

where the Fourier components obey the relationE−n(−kz, r) = E∗
n(kz, r) and the star

stands for the complex conjugate. Note that the angular frequency corresponding to
the Fourier mode with given n and kz is given by ω = kzv. The electric and magnetic
fields can be found by using the electromagnetic field Green tensor from [12]. For
the motion described by (10.2), in the evaluation of the energy losses in accordance
with (10.1), the component of the electric field along the z-axis is required only. In
the region r > rq the corresponding Fourier component is given by the expression

En,3(kz, r) = qkz
4ε1

∑
p=±1

g(p)n Hn(λ1r), (10.4)

where Hν(x) = H (1)
ν (x) is the Hankel function of the first kind and the coefficients

g(p)n with p = ±1 are defined by the formula

g(p)n = (
1 − β2

1

)
Jn(λ1r0) + Hn(λ1r0)

V H
n

[ (
β2
1 − 1

)
V J
n

+
√

β2
1 − 1

2i pkz
π

Jn(λ0rc)

rcαn

Jn+p(λ0rc)

V H
n+p

]
. (10.5)

Here, Jν(x) is the Bessel function,

λ2
j = k2z (β

2
j − 1), β2

j = (v/c)2ε j , j = 0, 1, (10.6)

the functions V J
n and V H

n are defined as
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V J
n = Jn(λ0rc)∂rc Jn(λ1rc) − [∂rc Jn(λ0rc)]Jn(λ1rc),

V H
n = Jn(λ0rc)∂rc Hn(λ1rc) − [∂rc Jn(λ0rc)]Hn(λ1rc), (10.7)

and

αn = ε0

ε1 − ε0
+ 1

2

∑
l=±1

[
1 − λ1

λ0

Jn+l(λ0rc)Hn(λ1rc)

Jn(λ0rc)Hn+l(λ1rc)

]−1

. (10.8)

It canbe seen that the coefficients g(p)n obey the relation g(p)−n = (−1)ng(−p)
n . Fromhere

it follows that E−n,3(kz, r) = En,3(kz, r). It can be shown that the Fourier component
En,3(kz, r), as a function of kz , is regular at possible zeros of the functions V H

n and
V H
n+p, and it has poles at zeros of the function αn . We note that the equation αn = 0

determines the eigenmodes of the dielectric cylinder.
The special case ε0 = ε1 corresponds to the problem where the charge moves in

a homogeneous medium. In this case λ0 = λ1 and we get V J
n = 0, V H

n = 2i/πrc.
The function αn tends to infinity and the second and third terms in the right-hand
side of (10.5) become zero. Hence, the first term in the right-hand side of of (10.5)
determines the z-component of the electric field in a homogeneous medium with
dielectric permittivity ε1. The corresponding Fourier component is given by

E (0)
n,3(kz, r) = qkz

2ε1

(
1 − β2

1

)
Jn(λ1r0)Hn(λ1r), (10.9)

The remaining terms in (10.5) correspond to the part in the field that is induced by the
cylinder. The expression for the Fourier component En,3(kz, r) in the exterior region
in the range rc < r < rq is obtained from (10.4) by the replacements J → H , H →
J in the part corresponding to the field in homogeneous medium with permittivity
ε1 (in (10.9)). The Fourier components have poles at the zeros of the function αn . As
it has been mentioned before, those zeros determine the eigenmodes of the cylinder.
The fields inside the cylinder can be found by using the corresponding expressions
for the Green tensor components from [12].

10.3 Radiation Intensity for Surface Polaritons

Substituting (10.2) and (10.3) into (10.1), for the energy losses per unit of path length
one gets

dW

dz
= q2

∞∑′

n=0

Re

⎡
⎣

∫ ∞

0
dkz

kz
ε1

∑
p=±1

g(p)n Hn(λ1r0)

⎤
⎦ , (10.10)

where the prime on the sign of the summation means that the term n = 0 should be
multiplied by an additional coefficient 1/2. The expression (10.10) for the energy
losses is valid for general case of complex dielectric permittivities for the cylinder
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and surrounding medium. In what follows we will assume that the permittivities ε0
and ε1 are real functions (a small imaginary part for ε0 will be introduced when
considering the contour of the integration over kz near the poles on the real axis). In
this case the only energy losses are in the form of radiation.

In the problem at hand we can have three types of radiation. The first one corre-
sponds to the Cherenkov radiation propagating in the exteriormedium. This radiation
is present under theCherenkov conditionβ1 > 1 and propagates along theCherenkov
angle θ = θCh = arccos (1/β1) with respect to the cylinder axis. With that condition
the equationαn = 0 has no solutions and the integrand in (10.10) is a regular function
on the positive semiaxis. It is easily seen that the part in the energy losses coming
from the first term in the righ-hand side of (10.5) coincides with the standard result
for the Cherenkov radiation in a homogeneous medium. The last two terms in (10.5)
describe the effects of the cylinder on theCherenkov radiation intensity. Those effects
have been investigated in [11] by evaluating the energy flux at large distances from
the radiating source. It has been shown that the influence of the cylinder on the spec-
tral distribution of the Cherenkov radiation is essential in the case ε0 > ε1. Under
this condition strong narrow peaks appear in the spectral distribution of the radiation
intensity coming from the terms in (10.10) with large values of n. The locations of
the spectral peaks are related to the zeros of the function that is obtained from the
function αn , given by (10.8), when we replace the Hankel functions by the Neuman
functions Yn(λ1rc) and Yn+l(λ1rc). In [11] we have analytically estimated the heights
and widths of the spectral peaks of the Cherenkov radiation by using the asymptotic
expressions of the cylinder functions for large arguments.

For β1 < 1 one has λ1 = i |kz|γ1 with γ1 =
√
1 − β2

1 . In this case the Fourier
component (10.4) exponentially decays for large r and the Cherenkov radiation in
the exterior medium is absent. Introducing the Macdonald function Kν(x) instead of
the Hankel functions, the expression for the function (10.8) is presented as

αn = ε0

ε1 − ε0
+ 1

2

∑
l=±1

[
1 + l

|λ1|
λ0

Jn+l(λ0rc)Kn(|λ1|rc)
Jn(λ0rc)Kn+l(|λ1|rc)

]−1

. (10.11)

This expression is real for both real and purely imaginary values of λ0. The parts of
the integrand in (10.10) coming from the first term in the right-hand side of (10.5)
and from the first term in the square brackets are purely imaginary and those parts
are regular functions of kz . Hence, they do not contribute to the radiation losses. By
taking into account this and introducing theMacdonald function, the energy radiated
per unit time, given by I = −vdW/dz, is presented in the form

I = −2q2v

π

∞∑′

n=0

Im

⎡
⎣

∫ ∞

0
dkz γ1

k2z Jn(λ0rc)

ε1rcV K
n αn

∑
p=±1

Jn+p(λ0rc)

V K
n+p

K 2
n (kzγ1rq)

⎤
⎦ ,

(10.12)
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where

V K
n = Jn(λ0rc)∂rc Kn(kzγ1rc) − [∂rc Jn(λ0rc)]Kn(kzγ1rc). (10.13)

Of course, the fact that the first term in the right-hand side of (10.5) does not contribute
to the energy losses corresponds to the absence of the Cherenkov radiation in a
homogeneous medium with permittivity ε1 under the condition β1 < 1.

For points on the real semiaxis of kz , different from the zeros of the function
αn , the integrand in (10.12) is real for both real and imaginary λ0. Hence, the only
nonzero contribution to the energy losses can come from the poles of the integrand
been the roots of the equation αn = 0. We will denote those roots with respect to
kzrc by kzrc = xn,s , where s = 1, 2, . . . enumerates the roots for a given n. For the
corresponding angular frequencies one has ωn,s = xn,sv/rc. The eigenmodes of the
cylinder, given by xn,s , correspond to two types of the waves radiated by the charge.
For the first one we have β2

0 > 1 and the Cherenkov condition for the material of the
cylinder is satisfied. In this case the radial dependence of the electric and magnetic
fields inside the cylinder is expressed in terms of the Bessel functions Jn(λ0r) and
Jn±1(λ0r) with λ0 > 0. This type of modes are referred to as guiding modes. The
second type of the waves are radiated when β2

0 < 1 and for them λ2
0 < 0. The radial

dependence of the fields inside the cylinder is expressed in terms of the modified
Bessel functions In(|λ0|r), In±1(|λ0|r) and they correspond to surface polaritons.
Here we are interested in the radiation intensity for the latter type of the waves.

For λ2
0 < 0 the function (10.11) that determines the eigenfrequencies ωn,s =

vxn,s/rc is expressed in terms of the modified Bessel functions:

αn = ε0

ε1 − ε0
+ 1

2

∑
l=±1

[
1 + |λ1|

|λ0|
In+l(|λ0|rc)Kn(|λ1|rc)
In(|λ0|rc)Kn+l(|λ1|rc)

]−1

, (10.14)

where |λ j | = kz
√
1 − β2

j . Note that the last term in (10.14) is always positive. It

can be shown that the equation αn = 0 has solutions in the spectral range where
the dielectric permittivities ε0 and ε1 have opposite signs (for dispersion relations
corresponding to surface polaritons on cylindrical interfaces see also [13, 14]). This
condition for the excitation of surface polaritons on planar boundaries is well known.
Here we will consider the case ε0 < 0 < ε1. The roots of the equation αn = 0 with
respect to kzrc are functions of two combinations of the parameters: ε0/ε1 and β1.
For given values of these combinations we can have one or two roots xn,s (s = 1
or s = 1, 2). For the modes with n = 0 there is a single root in the range ε0 <
ε(∞)
0 ≡ −ε1/(1 − β2

1) and there are no roots for ε0 > ε(∞)
0 . In the limit kzrc → 0 we

have ε0 → −∞ . The distribution of the roots as functions of the permittivity ε0
for the n = 0 mode is presented on the left panel of Fig. 10.1 for different values
of the ratio v/c (the numbers near the curves). In the limit ε0 → ε(∞)

0 the single
root kn,1rc tends to infinity. For n ≥ 1 the surface modes are allowed in the finite
range ε(m)

0 ≤ ε0 < −ε1 for the dielectric permittivity of the cylinder, where ε(m)
0 is
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Fig. 10.1 Localization of the eigenvalues for kzrc as functions of ε0 for ε1 = 1 (left panel) and the
spectral distribution of the number of radiated surface polaritons for the mode n = 0. The numbers
near the curves correspond to the values of the ratio v/c. The graphs on the right panel are plotted
for rq/rc = 1.05

a function of n and v/c. For ε0 close to ε(m)
0 we have two roots ane there is a single

root in the remaining region. In the limit kzrc → 0 one has ε0 → −ε1. For n ≥ 1
and v/c 	 1 the surface modes are present in the narrow range for the permittivity
ε0 near ε0 = −ε1 with the length of the order β2

1 .
Having specified the properties of the surface modes we return to the radiation

intensity given by (10.12). The integrand has poles at the zeros of the function
(10.14) and for the evaluation of the integral the contour near the poles needs to be
specified. Let us consider αn as a function of kzrc and ε0: αn = αn(kzrc, ε0). For the
derivative of this function with respect to the second argument we have checked that
∂ε0αn(xn,s, ε0) > 0 for λ2

0 < 0. In order to fix the integration contour we note that
in physically realistic situations the dielectric permittivity ε0 has an imaginary part,
ε0 = ε′

0 + iε′′
0. Expanding the function αn(kzrc, ε0) near the zeros for the leading

term we get
αn(kzrc, ε0) ≈ α′

n(xn,s)
(
kzrc − xn,s + iε′′

0bn,s
)
, (10.15)

where

α′
n(xn,s) = dαn(kzrc, ε′

0)

d (kzrc)

∣∣∣∣
kzrc=xn,s

, bn,s = ∂ε′
0
αn(xn,s, ε′

0)

α′
n(xn,s)

. (10.16)

Note that in the problem at hand ω = kzv and in the presence of dispersion one has
ε0 = ε0(kzv). If the dispersion is taken into account, the derivative in the definition
of α′

n(xn,s) is taken with respect to both the arguments. From (10.15) we see that
the poles are shifted from the real axis in the complex plane kz as kzrc = xn,s −
iε′′

0(ωn,s)bn,s , where ε′′
0(ω) > 0 for ω > 0. By taking into account that for surface

polaritons ∂ε′
0
αn(xn,s, ε′

0) > 0, we conclude that the poles kz = xn,s/rc in (10.12)
should be avoided by semicircleswith small radius fromabove (below) forα′

n(xn,s) >
0 (α′

n(xn,s) < 0). The integrals along those semicircles are expressed in terms of
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the corresponding residues. Introducing the radiation intensity In,s on the angular

frequency ωn,s in accordance with I =
∑′∞

n=0

∑
s
In,s , from (10.12) we obtain

In,s = δn
2q2v

ε1r2c
γ1x

2
n,s

[
Kn(γ1xn,s)

I ′
n(γ0xn,s)

In(γ0xn,s)
− K ′

n(γ1xn,s)

]−1 K 2
n (γ1xn,srq/rc)

|α′
n(xn,s)|

×
∑
p=±1

[
Kn+p(γ1xn,s)

I ′
n+p(γ0xn,s)

In+p(γ0xn,s)
− K ′

n+p(γ1xn,s)

]−1

, (10.17)

where δ0 = 1/2 and δn = 1 for n ≥ 1, and γ0 = √
1 − v2ε0/c2. Note that ε0 < 0 and

γ0 > 1.
We recall that the roots xn,s are completely determined by ε0/ε1 and β1 and for

given values of these parameters the roots do not depend on the cylinder radius.
From here it follows that the dependence of the radiation intensity on the cylin-
der radius enters in the form of the function K 2

n (γ1xn,srq/rc)/r
2
c . In particular, for

small values of the cylinder radius the radiation intensity is suppressed by the factor
exp(−2γ1xn,srq/rc)/rc. Similarly, for large values of rq the radiation intensity decays
as exp(−2γ1xn,srq/rc)/rq . For large values of xn,s , corresponding to high frequen-
cies, the radiation intensity In,s is suppressed by the factor exp[−2γ1xn,s(rq/rc − 1)].
The radiation intensity tends to zero in the limit of small values of xn,s as well.

For the numerical example wewill consider the radiation on themode with n = 0.
In this case the equation αn = 0 for the eigenmodes is simplified to

ε0 I1(γ0x)

γ0 I0(γ0x)
+ ε1K1(γ1x)

γ0K0(γ1x)
= 0,

where x = kzrc. The roots of this equation are plotted in the left panel of Fig. 10.1
as functions of of the negative permittivity of the cylinder for different values of the
ratio v/c (the numbers near the curves). For the permittivity in the region r > rc we
have taken ε1 = 1. For n = 0 the general formula (10.17) is reduced to

I0,s = 2q2v

ε1r2c
γ1x

2
s

[
1 + I1(γ0xs)

I0(γ0xs)

K0(γ1xs)

K1(γ1xs)

]−1 K 2
1 (γ1xsrq/rc)

K 2
1 (γ1xs)|α′

0(xs)|

×
[
I0(γ0xs)

I1(γ0xs)
+ K0(γ1xs)

K1(γ1xs)
+ 1

γ1xs
− 1

γ0xs

]−1

, (10.18)

where xs = x0,s . As it has beenmentioned before and it is also seen from Fig.10.1, in
the case n = 0 for a given ε0 we have a single root. On the right panel of Fig. 10.1 we
have plotted the quantity rcNn,s for n = 0, where Nn,s = In,s/(�ωn,sv) is the number
of the radiated quanta in the formof the surface polaritons per unit length of the charge
trajectory, as a function of the radiation angular frequency ω = ωn,s = xn,sv/rc,
measured in units of c/rc. The graphs are plotted for rq/rc = 1.05 and the numbers
near the curves are the values of the ratio v/c. Note that for a given value of the
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permittivity ε0 wehave a single value for the frequency that is determined from the left
panel of Fig. 10.1. The features of the radiation of surface polaritons for the special
case of dispersion ε0(ω) = ε∞ − ω2

p/ω
2, with ε∞ and ωp being the background

dielectric constant and the plasma frequency, have been discussed in [11].
The radiation on the guidingmodes of the cylinder in the setup under consideration

have been investigated in [11]. The corresponding waves are radiated under the
conditions ε1 < c2/v2 < ε0. For the radiation from an electron of the energy 2 MeV
and for ε1 = 1, ε0 = 3.8, rq/rc = 1.05, the quantity (�c/q2)rcNn,s is of the order 1
for the modes with n = 1, 2 and decreases with increasing n. Comparing with the
data presented in Fig. 10.1, we see that the number of the radiated quanta for surface
polaritons on a given eigenmode of the cylinder can be essentially larger than the
corresponding quantity for guiding modes.

10.4 Electric Field and the Radiation Intensity
for a Circular Motion

Nowwe turn to the radiation from a point charge q moving along a circular trajectory
of radius rq around the cylinder with the velocity v = ω0rq . The components of the
corresponding current density are expressed as

jl = q

r
vδl2δ(r − rq)δ(φ − ω0t)δ(z). (10.19)

For the evaluation of the energy losses in accordance with (10.1) the azimuthal
component of the electric field is required. The corresponding Fourier expansion is
given by

E2(t, r) = 2Re

[ ∞∑′

n=0

einφ−iωn t
∫ ∞

−∞
dkz e

ikz z E2,n(kz, r)

]
, (10.20)

where ωn = nω0. In this case the n = 0 mode is time independent and will not
contribute to the radiation fields.

By using the Green tensor from [12] for the Fourier component of the required
field, with n �= 0, in the region r > rq we get

E2,n(kz, r) = − qv

8ωnε1

∑
p

g(p)(c)n

[(
λ2
1 + 2k2z

)
Hn+p(λ1r) − λ2

1Hn−p(λ1r)
]
,

(10.21)
where the notations λ j , j = 0, 1, for the circular motion are defined as

λ2
j = ω2

nε j/c
2 − k2z , (10.22)
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and

g(p)(c)n = Jn+p(λ1rq) − V J
n+p

V H
n+p

Hn+p(λ1rq)

+i p
λ0 Jn(λ0rc)

πrcαn

Jn+p(λ0rc)

V H
n+p

∑
l=±1

Hn+l(λ1rq)

V H
n+l

. (10.23)

Other notations are the same as in (10.7) and (10.8). The part in the field coming
from the first term in the right-hand side of (10.23) does not depend on the dielectric
permittivity of the cylinder and corresponds to the field in a homogeneous medium
with permittivity ε1 (that is directly seen taking the limit ε0 → ε1). The Fourier
component in the region rc < r < rq is obtained from (10.21) by the replacements
J � H in that part.

Substituting (10.19) and (10.20) in (10.1), for the energy losses we get

dW

dt
= −q2v2

2
Re

{ ∞∑
n=1

∫ ∞

0
dkz

∑
p

g(c,p)n

ωnε1

× [(
λ2
1 + 2k2z

)
Hn+p(λ1rq) − λ2

1Hn−p(λ1rq)
] }

. (10.24)

The factor λ1 in the arguments of the Hankel functions, considered as a function of
kz , is defined as λ1(kz) = √

ω2
nε1/c

2 − k2z in the region 0 ≤ kz ≤ ωn
√

ε1/c and as
λ1(kz) = i

√
k2z − ω2

nε1/c
2 in the integration range kz ≥ ωn

√
ε1/c. The part of (10.24)

in the integration region 0 ≤ kz ≤ ωn
√

ε1/c corresponds to the energy losses in the
form of the synchrotron radiation propagating in the exterior medium. In particular,
the contribution in that region coming from the first term in the right-hand side of
(10.23) corresponds to the radiation in a homogeneous medium with permittivity ε1.

The spectral-angular distribution of the radiation intensity at large distances from
the cylinder has been investigated in [12, 15] by evaluating the energy flux through
a cylindrical surface with large radius, coaxial with the dielectric cylinder. It has
been shown that under the Cherenkov condition for the velocity vc = ω0rc of the
charge image on the cylinder surface and for the cylinder dielectric permittivity,
vc

√
ε0/c > 1, strong narrow peaks may appear in the angular distribution of the

radiation intensity. The locations, heights and widths of those peaks were estimated
based on the anlysis of the eigenmode equation for the cylinder. The generalization
of the corresponding results for a helical motion of a charge around a cylinder is
discussed in [16, 17]. New interesting features of the radiation at large distances
arise for a particle rotation around a cylinder with a negative real part of dielectric
permittivity [18].

Here we are interested in the radiation losses corresponding to the integration
range kmin < kz < ∞, where kmin = ωn

√
ε1/c. In this range one has λ2

1 < 0 and the
corresponding contributions to the fields exponentially decay in the exterior medium.
Introducing the Macdonald functions instead of the Hankel functions containing in



10 Radiation of Surface Polaritons in Cylindrical Waveguides 123

the arguments the factor λ1, we see that the contribution to the integral coming from
the first two terms in the right-hand side of (10.23) is purely imaginary and the
corresponding integrand is regular in the integration range. Hence, those terms do
not contribute to the radiation losses. For the energy losses in the range ωn

√
ε1/c <

kz < ∞, corresponding to the radiation on the eigenmodes (em) of the cylinder we
get

dW(em)

dt
= q2v2

2πrc
Im

{ ∞∑
n=1

∫ ∞

kmin

dkz
λ0 Jn(λ0rc)

ε1ωnαn

∑
l=±1

Kn+l(|λ1|rq)
V K
n+l

×
∑
p, j

p

(
k2z + j

ω2
n

c2
ε1

)
Jn+ j p(λ0rc)

V K
n+ j p

Kn+p(|λ1|rq)
}
. (10.25)

Similar to the case of a rectilinear motion, the integrand in (10.25) is real for points
different from the poles corresponding to the zeros of the function αn . These zeros
present two types of the eigenmodes for the cylinder. For the first one we have
k2min < k2z < ω2

nε0/c
2 and λ2

0 > 0. As a necessary condition for the presence of those
modes onegets ε0 > ε1 and they correspond toguidingmodes.The radiation intensity
for that types ofmodes has been investigated in [17, 19]. For the second typeofmodes,
presenting the surface polaritons, one has λ2

0 < 0 and as a necessary condition one
gets ε0ε1 < 0. We are interested in the emission of surface polaritons, radiated in the
spectral range, where ε0 < 0 < ε1.

We will denote by kzrc = yn,s the roots of the eigenmode equation αn = 0, with
αn defined by (10.14). For the circular motion the factors in the arguments of the
modified Bessel functions in (10.14) are defined as

|λ0|rc =
√
x2 − n2β2

c1ε0/ε1, |λ1|rc =
√
x2 − n2β2

c1, x = kzrc, (10.26)

where βc1 = vc
√

ε1/c. These definitions of λ j differ from those for the rectilinear
motion and, hence, the roots yn,s are different from the roots xn,s considered in
Sects. 10.2 and 10.3. The roots x = yn,s are completely determined by two combi-
nations of the parameters, βc1 and ε0/ε1. Introducing a small imaginary part for the
permittivity ε0, we can see that in the evaluation of the integral (10.25) the poles
kz = xn,s/rc should be avoided by small semicircles in the upper half-plane of the
complex variable kz forα′

n(xn,s) > 0 and by small semicircles in the lower half-plane
for α′

n(xn,s) < 0. The integrals are expressed in terms of the residues. The radiation
intensity for surface polaritons is obtained as I = −dW(em)/dt . It is presented in the
form I = ∑

n In , where for the radiation intensity on a given harmonic n with the
frequency ωn = nω0, after some transformations, we get
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In = q2v2

rcc2
∑
s

ωnu(0)n,s K
−2
n (u(1)n,s)

y(1)n,sun,s |α′
n(xn,s)|

[
u(0)n,s

I ′
n(u

(0)
n,s)

In(u
(0)
n,s)

− u(1)n,s

K ′
n(u

(1)
n,s)

Kn(u
(1)
n,s)

]

×
⎡
⎢⎣∑

p

pKn+p(u(1)n,srq/rc)

u(1)n,s
I ′
n(u

(0)
n,s )

In(u
(0)
n,s )

− u(0)n,s
K ′

n(u
(1)
n,s )

Kn(u
(1)
n,s )

+ pnun,s

⎤
⎥⎦

2

, (10.27)

with the notations

u( j)n,s =
√
y2n,s − n2ε j

v2c

c2
, un,s = u(0)n,s

u(1)n,s

− u(1)n,s

u(0)n,s

. (10.28)

For a given value of the rotation frequency, the roots yn,s do not depend on the
radius of the rotation orbit. The dependence on the radius enters through the function
Kn+p(u(1)n,srq/rc) and for large values of the ratio rq/rc the radiation intensity decays
like r2q exp(−2u(1)n,srq/rc).

We can find the behavior of the roots yn,s in the asymptotic regions by using
the corresponding approximations of the modified Bessel functions in (10.14). For
yn,s  nvc

√|ε j |/c one gets

yn,s ≈ nvc
c

√
ε0ε1

ε0 + ε1
. (10.29)

This result coincides with the corresponding relation between the projection of the
wave vector and frequency for surface polaritons on planar boundaries. In the limit
under consideration the wavelength of the surface polariton is small and the effect
of the curvature on the dispersion relation is weak. By taking into account that yn,s
is large, from (10.29) we conclude that the large values of kz are realized in the
spectral range where the ratio ε0/ε1 is close to -1. The allowed values for yn,s are
restricted from below by the condition yn,s > nβc1. By using the expression (10.14)
for αn it can be seen that for n = 1 we have yn,s → nβc1 for ε0 → −∞. Combining
this with the behavior of the roots for large values of yn,s , we conclude that for
n = 1 one has modes for all values of the cylinder dielectric permittivity in the
range −∞ < ε0 < −ε1. The situation is different for the modes with n > 1. In this
case the eigenmodes corresponding to surface polaritons are present in the finite
region ε0n < ε0 < −ε1, with critical value ε0n , and there are no modes in the region
ε0 < ε0n . For the mode n = 1, the locations of the roots of the eigenvalue equation
αn = 0 with respect to the ratio ckz/ω, ω = nω0 , is depicted on the left panel of
Fig. 10.2 as functions of the permittivity ε0 for ε1 = 1. The numbers near the curves
are the values of the ratio vc/c. As seen, depending on the region for ε0, for a given
ε0 one can have one, two or three roots of the equation αn = 0.

Let us consider the behavior of the radiation intensity (10.27) in asymptotic regions
of the parameters. For the values of dielectric permittivity ε0 close to the limitingvalue
−ε1 the eigenvalues yn,s are large andwe can replace themodifiedBessel functions by
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Fig. 10.2 The solutions of the eigenmodes equation αn = 0 with respect to the ratio ckz/ωn (left
panel) and the number of radiated surface polaritons (right panel) as functions of ε0 for ε1 = 1 and
n = 1. The numbers near the curves correspond to the values of vc/c on the left panel and to the
values for v/c on the right panel. The right panel is plotted for rc/rq = 0.95

their asymptotic expressions for large arguments. In this waywe can see that the radi-
ation intensity is suppressed by the factor exp

[−2nβc1
(
rq/rc − 1

)
/
√|ε0/ε1 + 1|].

In the spectral range where ε0 	 −ε1 the surface polaritons are radiated on the har-
monic n = 1 only. In that range we have a single root yn,s which is close to the lower
bound βc1 and, hence, the quantity u(1)n,s in (10.28) is small. By using the correspond-
ing asymptotic for theMacdonald function, we see that the radiation intensity decays
as (|ε0|/ε1) exp(−√|ε0|/ε1/βc1) and vanishes in the limit ε0 → −∞. For the modes
n > 1 the surface polaritons are present in the finite range ε0n < ε0 < −ε1 of the
dielectric permittivity of the cylinder. In the limit ε0 → ε0n the radiation intensity
tends to a nonzero limiting value.

On the right panel of Fig. 10.2 we have displayed the number of the radiated
quanta, Nn = T In/(�ωn), per period of the particle rotation, T = 2π/ω0, for the
harmonic n = 1 as a function of ε0. The graphs are plotted for ε1 = 1, rc/rq = 0.95,
and the numbers near the curves present the values of v/c. As it has been explained by
the asymptotic analysis, the radiation intensity tends to zero in the limits ε0 → −ε1
and ε0 → −∞.

Similar to the case of rectilinear motion, it is of interest to compare the radiation
intensities for surface polaritons and guiding modes. Numerical exmaples for the
radiation of guiding modes are presented in [19]. In particular, for an electron with
energy 2 MeV and for ε1 = 1, ε0 = 3.74, rc/rq = 0.99, the corresponding quantity
(�c/q2)Nn for the mode n = 1 is approximately equal to 0.53. Again, we see that
the number of quanta for the radiated surface polaritons can be essentially larger.

10.5 Conclusion

Wide applications of surface polaritons as a research tool motivate the investigations
of various mechanisms for the control of their excitation and propagation. In the
present paper we have considered two geometries for the emission of surface polari-
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tons by charged particles in cylindrical waveguides. In the first setup the charge
is uniformly moving along the trajectory parallel to the axis of the cylinder. If the
Cherenkov condition is not satisfied in the exterior medium, depending on the spec-
tral range, two types of the waves are generated propagating inside the waveguide.
The first one corresponds to guiding modes with oscillatory radial dependence of the
electric andmagnetic fields. Thesemodes are radiated under theCherenkov condition
for dielectric permittivity of the cylinder. Here, we were interested in the radiation of
surface polaritons, emitted in the spectral range where the real parts of the dielectric
permittivities for the cylinder and exterior medium have opposite signs. There is
no velocity threshold for the generation of this type of modes. The corresponding
fields are peaked near the cylinder surface. The radiation intensity is evaluated in
terms of the energy losses and for the radiation on a given eigenmode of the cylin-
der it is expressed as (10.17), where xn,s in the arguments of the modified Bessel
functions are determined solving the eigenmode equation for dielectric cylinder. The
frequency and the projection of wavevector on the cylinder axis for radiated surface
polaritons are expressed as ω = ωn,s = xn,sv/rc and kz = xn,s/rc. For n = 0 one has
a single mode in the range ε0 < ε(∞)

0 and there are no surface modes in the region
ε0 > ε(∞)

0 . In the case n ≥ 1, a single or two surface modes exist in the finite range
ε(m)
0 ≤ ε0 < −ε1.
In the second part of the paper we have considered the emission of surface polari-

tons by a charged particle circulating around a cylinder. Unlike to the case of a
rectilinear motion, there exist a lower threshold for the projection of the correspond-
ing wave vector, |kz| > ωn

√
ε1/c. The radiation intensity for surface waves on a

given harmonic n = 1, 2, . . . is given by (10.27). The surface polaritons on the har-
monic n = 1 are emitted for all values of the permittivity ε0 in the range ε0 < −ε1.
For harmonics n > 1, one has a critical value ε0n with the absence of surface polari-
tons in the region ε0 < −ε0n . The radiation wavelength decreases with approaching
ε0 to −ε1 from below. In that range, the wavelength of surface polaritons is much
smaller compared to the wavelength of corresponding electromagnetic radiation in
free space. In both cases of rectilinear and circular motions the radiation intensity
exponentially decreases with increasing distance of the charge trajectory from the
cylinder surface. The results presented show that the number of the radiated quanta
for surface polaritons can significantly exceed the corresponding number for guid-
ing modes of the cylinder. It should also be noted that the numerical analysis was
presented in terms of the ratio rq/rc and the absolute values for rq and for the radius
of the cylinder were not fixed. For a given energy of the radiating particle, the spec-
tral range of the radiation is determined by rq (≈ rc). The features of the radiation
described above are not sensitive to the spectral range. The radiation spectrum can
be controlled by tuning the waveguide radius.
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Crossing Points in Spectra and Light
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Abstract Webriefly review the analysis of the energy spectrum, the envelope eigen-
functions of electron, hole and exciton states, and the direct interband light absorp-
tion in cone-shaped and spheroidal impenetrable quantum dots. We apply high-order
finite elementmethod and calculation schemes ofKantorovichmethod in comparison
with the adiabatic approximation (in the strong size quantization limit) for solving
boundary-value problems that describe axially symmetric quantum dots. We demon-
strate the efficiency of the algorithms and software by benchmark calculations of
spectral and optical characteristics of the cone-shaped and spheroidal quantum dots
and crossing points in their spectra.
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11.1 Introduction

The study of spectral and optical characteristics of quantum wells, wires and dots
with complicated geometry is an urgent problem of both computational and theoret-
ical physics. To solve boundary-value problems (BPVs) that describe corresponding
mathematical models, they commonly use finite-difference and variational meth-
ods [1], finite element method (FEM) [2–7], Kantorovich method (KM)-reduction
to ordinary differential equations(ODEs) [8–14], known in physics as adiabatic
method [15], and adapted in the field [16–21].

In this paper, we present a brief review of application of high-order FEM calcu-
lation schemes implemented on unstructured grids with triangle elements [4, 5] and
KM for solving the BVPs that describe spectral and optical characteristics of cone-
shaped and spheroidal quantum dots and crossing points in their spectra to obtain
independent estimates of the applicability range and accuracy of conventional adi-
abatic approximation (AA) (in the strong size quantization limit), i.e., a diagonal
set of the KM-ODEs developed early by our team. We discuss the application of
these methods and appropriate software to the calculation of the energy spectra of
electron, hole and exciton states the direct interband light absorption and the light
absorption coefficient in ensembles of non-interacting cone-shaped and spheroidal
impenetrable quantum dots (QDs).

The paper is organized as follows. In Sect. 11.2we set the boundary value problem.
Section 11.3 presents the basis equations of the Kantorovich method. In Sect. 11.4
we describe the numerical calculations of the energy spectrum of the QDs. Section
11.5 is devoted to the adiabatic approximation. In Sect. 11.6 we give examples of
the interband absorption in QDs. In Conclusions we resume the results and discuss
the prospects.

11.2 Setting the Problem

Within the effective mass approximation we consider a class of QDmodels in which
the calculationof energy levels and corresponding envelope eigenfunctions is reduced
to self-adjoint BVPs for elliptic differential equations [2]

(H − E t ) �t (x) ≡
⎛
⎝− 1

g0(x)

d∑
i j=1

∂

∂xi
gi j (x)

∂

∂x j
+ V (x) − Et

⎞
⎠�t (x) = 0. (11.1)

We assume that g0(x) > 0, g ji (x) = gi j (x) and V (x) are real-valued functions,
continuous together with their generalized derivatives to a given order in the domain
x ∈ �̄ = � ∪ ∂� with the piecewise continuous boundary S = ∂�, which provides
the existence of a nontrivial solution obeying the mixed boundary conditions (BCs)
of the first (I) and/or the second kind (II), i.e., Dirichlet and/or Neumann conditions:
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(I ) �t (x)|S = 0, (I I )
∂�(x)

∂nD

∣∣∣
S
= 0,

∂�t (x)

∂nD
=

d∑
i j=1

(n̂, êi )gi j (x)
∂�t (x)

∂z j
, (11.2)

where ∂�t (x)
∂nD

is the derivative along the conormal direction, n̂ is the outer normal

to the boundary of the domain S = ∂�, êi is the unit vector of x = ∑d
i=1 êi xi ,

and (n̂, êi ) is the scalar product in Rd . The eigenfunctions �t (x) from the Sobolev
space Hs≥1

2 (�), �t (x) ∈ Hs≥1
2 (�), corresponding to the real eigenvalues of energy

spectrum E :E1≤E2≤ . . . ≤Et≤. . . satisfy the orthonormality conditions

〈�t (x)|�t ′(x)〉 =
∫

�

dxg0(x)�t (x)�t ′(x) = δt t ′ , dx = dx1...dxd . (11.3)

We solve this problem using high-accuracy finite element schemes, implemented in
the appropriate algorithms and programs [4, 5].

11.3 Kantorovich Method

The axially symmetric solutions of the BVP (11.1)–(11.3) at d = 3, periodical with
respect to the azimuthal angle ϕ, are sought in the form of a product �t (x f , xs,ϕ) =
�mσ

t (x f , xs)eimϕ/
√
2π, wherem = 0,±1,±2, . . . is the magnetic quantum number

and divided into even (σ = +1) and odd (σ = −1) reflection parity ones, or marked
σ = 0, i.e., without parity separation. The function �mσ

t (x f , xs) is solution of the
BVP (11.1)–(11.3) at d = 2 and satisfies the equation in the 2D domain �:
� = �x f (xs)∪�xs⊂R2\{0}, �x f (xs) = (xmin

f (xs), xmax
f (xs)), �xs = (xmin

s , xmax
s ):

(
Ĥ(x f , xs)−2Et

)
�mσ

t (x f , xs) = 0, Ĥ(x f , xs) = Ĥ1(x f ; xs)+Ĥ2(x f ; xs). (11.4)

The Hamiltonian of the slow subsystem Ĥ2(x f ; xs) is expressed as

Ĥ2(x f ; xs) = Ȟ2(x f ; xs) = − 1

g1s(x f ; xs)
∂

∂xs
g2s(xs)

∂

∂xs
+ V̌s(x f ; xs), (11.5)

and the Hamiltonian of the fast subsystem Ĥ1(x f ; xs) is expressed through the
reduced Hamiltonian Ȟ f (x f ; xs) and the weighting factor g3s(x f ; xs):

Ĥ1(x f ; xs) = g−1
3s (x f ; xs)Ȟ f (x f ; xs), (11.6)

Ȟ f (x f ; xs) = − 1

g1 f (x f )

∂

∂x f
g2 f (x f )

∂

∂x f
+V̌ f (x f )+V̌ f s(x f ; xs).
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Fig. 11.1 Contour lines of the first five even-parity wave functions σ = +1 at m = 0 in the xz
plane of an oblate SQD with the major semiaxis a = 2.5 and different values of the minor semiaxis
c (ζca = c/a ∈ (1/5, 1)). Arrows indicate the shape transformations of the eigenfunctions when
passing through the exact crossing points of pairs of eigenvalues

The choice of fast variable x f (or slow variable xs), as well as the interaction poten-
tials, is determined by the QD geometry and construction. The separation of Hamil-
tonian (11.4) into two Hamiltonians (11.5) and (11.6) with partial derivatives with
respect to independent slow variable xs and fast variable x f is possible, when one of
the QD dimensions is small compared to the other ones. Then the size quantization
in the direction x f (xs) turns to be much stronger (weaker) compared to that in other
directions. This feature allows using adiabatic or diagonal Kantorovich approxima-
tion in the strong size quantization limit to estimate the lower-energy part of the
QD spectrum. Note, for a convergence of the KM it is sufficient if the Hamiltonian
of the fast subsystem has a pure discrete spectrum, while an appropriate choice of
the fast and slow variables and parametric basis provides a more high rate of the
convergence.
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Table 11.1 The values of conditionally fast x f and slow xs independent variables, coefficients
gis(x f ; xs), g j f (x f ), and potentials V̌ f (x f ), V̌s(x f ; xs), V̌ f s(x f , xs), in Eqs. (11.4)–(11.6) for
OCQD and PCQD, or SQD, OSQD and PSQD in cylindrical (CC) and spherical (SC) coordinates,
and oblate & prolate spheroidal (OSC & PSC) coordinates with ( f/2)2 = ±(a2−c2), + for OSC,
− for PSC, f is a focal distance, a and c are semiaxes

CC SC OSC & PSC

OCQD/OSQD PCQD/PSQD SQD OSQD & PSQD

x f z ρ η η

xs ρ z r ξ

g0(x f ; xs) ρ ρ r2 ( f/2)(ξ2 ± η2)

g1 f (x f ) 1 ρ 1 1

g2 f (x f ) 1 ρ 1 − η2 1 − η2

g1s(x f xs) ρ 1 r2 g0
g2s(xs) ρ 1 r2 ξ2 ± 1

g3s(x f xs) 1 1 r2 g0
V̌ f (x f ) 0 m2ρ2 m2g2 f m2g2 f
V̌s(x f xs) m2ρ2 0 0 ∓m2(g0g2s)

V̌ f s(x f , xs) V̌ (z, ρ) V̌ (ρ, z) V̌ (r, η) V̌ (ξ, η)

Table 11.1 contains the values of conditionally fast x f and slow xs indepen-
dent variables, the coefficients g0(x f ; xs), g1s(x f ; xs), g2s(xs), g3s(x f ; xs), g1 f (x f ),
g2 f (x f ), and the reduced potentials V̌ f (x f ), V̌s(x f ; xs), V̌ f s(x f , xs), entering Eqs.
(11.4)–(11.6) for QDs: spherical SQD, oblate and prolate spheroidal OSQD and
PSQD or cone-shaped OCQD and PCQD in cylindrical coordinates (CC) (x =
(z, ρ,ϕ)), spherical coordinates (SC) (x = (r, η = cos θ,ϕ)), and oblate/prolate
spheroidal (x = (ξ, η,ϕ)) coordinates [22].

In Table 11.1 for the consideredQDswith impenetrable walls the potentials V̌ f s =
0 are zero, since the potential is reformulated below in the form of BCs with respect
to the variables x f and xs . The solution �mσ

t (x f , xs) of the problem (11.4)–(11.6) is
sought in the form of KM expansion [17]

�mσ
t (x f , xs) =

∑ jmax

j=1
�mσ

j (x f ; xs)χ(mσt)
j (xs), (11.7)

using as a set of trial functions the eigenfunctions �mσ
j (x f ; xs) of the Hamiltonian

Ȟ f (x f ; xs) from (11.6), i.e., the solutions of the parametric BVP

{
Ȟ f (x f ; xs) − λ̌i (xs)

}
�mσ

i (x f ; xs) = 0, (11.8)

in the interval x f ∈ �x f (xs) depending on the conditionally slow variable xs ∈ �xs
as a parameter. These solutions obey the boundary conditions
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lim
x f →xtf (xs )

(
N (mσ)

f (xs)g2 f (x f )
d�mσ

j (x f ; xs)
dx f

+ D(mσ)
f (xs)�

mσ
j (x f ; xs)

)
= 0 (11.9)

at the boundary points {xmin
f (xs), xmax

f (xs)} = ∂�x f (xs), of the interval �x f (xs). In

Eq. (11.9), N (mσ)
f (xs) ≡ N (mσ)

f , D(mσ)
f (xs) ≡ D(mσ)

f , unless specially declared, are

determined by the relations N (mσ)
f = 1, D(mσ)

f = 0 at m = 0, σ = +1, (or at σ = 0,

i.e., without parity separation), N (mσ)
f = 0, D(mσ)

f = 1 atm = 0, σ = −1 or atm �=0.
The eigenfunctions satisfy the orthonormality condition in the same interval:

〈i | j〉 = 〈
�mσ

i |�mσ
j

〉 =
xmax
f (xs )∫

xmin
f (xs )

�mσ
i (x f ; xs)�mσ

j (x f ; xs)g1 f (x f )dx f = δi j . (11.10)

Here λ̌1(xs)< . . . <λ̌ jmax(xs)< . . . is the desired set of real-valued eigenvalues. The
corresponding set of potential curves of Eqs. (11.6) is determined by the condi-
tion 2E j (xs) = g−1

3s (x f ; xs)λ̌ j (xs). The solutions of the problem (11.8)–(11.10) are
calculated in the analytical form [18, 20], or by the program ODPEVP [12].

Substituting the expansion (11.7) into Eq. (11.4) in consideration of (11.8)
and (11.10), we get a set of ODEs with respect to unknown χ(t)(xs) =
(Ø(t)

1 (xs), . . .,χ
(t)
jmax

(xs))T

∑ jmax

j=1

〈
i |g1s(x f ; xs)[Ĥ(x f , xs) − 2Et ]| j

〉
χ(mσt)

j (xs) = 0, (11.11)

where the matrix elements read as

〈
i |g1s(x f ; xs)Ĥ(x f , xs)| j

〉
= −δi j

d

dxs
g2s(xs)

d

dxs
+< i |( g1s(xs)

g3s(xs)
| j > λ̌ j (xs)

+< i |g1s(xs)V̌s(xs)| j > +g2s(xs)

[
Wi j (xs)+Qij(xs)

d

dxs

]
+dg2s(xs)Qi j (xs)

dxs
, (11.12)

Here Wi j (xs), and Qi j (xs), 〈i |g1s(xs)| j〉 and etc. are given by integrals

〈i |g1s(xs)| j〉 =
xmax
f (xs )∫

xmin
f (xs )

g1 f (x f )�
mσ
i (x f ; xs)g1s(x f ; xs)�mσ

j (x f ; xs)dx f , (11.13)

Wi j (xs) = Wji (xs) =
xmax
f (xs )∫

xmin
f (xs )

g1 f (x f )
∂�mσ

i (x f ; xs)
∂xs

∂�mσ
j (x f ; xs)
∂xs

dx f ,

Qi j (xs) = −Q ji (xs) = −
xmax
f (xs )∫

xmin
f (xs )

g1 f (x f )�
mσ
i (x f ; xs)

∂�mσ
j (x f ; xs)
∂xs

dx f ,
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calculated analytically [18, 20] or by using the programODPEVP [12]. The solutions
χ(mσt)(xs) = χ(t)(xs) of discrete spectrum E = 2E : 2E1<2E2≤. . .≤2Et≤. . . obey
the BCs at points xts = {xmin

s , xmax
s } = ∂�xs bounding the interval �xs :

lim
xs→xts

(
N (mσ)
s g2s(xs)

dχ(mσt)(xs)

dxs
+ D(mσ)

s χ(mσt)(xs)

)
= 0, (11.14)

where N (mσ)
s = 1, D(mσ)

s = 0 at m = 0,σ = +1, (or at σ = 0, i.e without parity
separation), N (mσ)

s = 0, D(mσ)
s = 1 at m = 0,σ = −1 or at m �= 0. They obey the

orthonormality conditions (11.3)with g1s(x f ; xs) fromTable 11.1 and theKMexpan-
sion (11.7), that after integration (11.13) over x f are reduced to

〈
χ(mσt)|χ(mσt ′)

〉
=

jmax∑
i, j=1

∫ xmax
s

xmin
s

χ(mσt)
i (xs) 〈i |g1s(xs)| j〉χ(mσt ′)

j (xs)dxs = δt t ′ . (11.15)

Solutions of BVP (11.11)–(11.15) are calculated with a given accuracy not vorse
then six significant digits by the program KANTBP [9, 11].

Remark 1. Note t is the eigenvalue number in the ascending energy sequence
E1≤E2≤. . .≤Et ≤. . . corresponding to the number v of the eigenvalue Et; j1≤Et; j2
≤. . .≤Et; jv≤. . . counted at each 〈 j〉 = j , in diagonal approximation of the KM
Eqs. (11.11)–(11.12) or a crude AA Eq. (11.16) without diagonal nonadiabatic terms
Wj j (xs), where number v determines the number v−1 of nodes of the solution
χ(v)

j (xs) at fixed value j and the quantity 〈 j〉 = 〈
χ(t)| j |χ(t)

〉
is the averaged quantum

number [10].

11.4 Numerical Calculations of the Energy Spectrum

After the separation of the angular variable ϕ, the axially symmetric BVP
for the electron, hole, and exciton eigenstates in an impenetrable cone-shaped
quantum dot (CQD) or spheroidal quantum dot (SQD) is reduced to the BVP
(11.1)–(11.3) at d = 2 with respect to the radial x1 = ρ and the axial x2 =
z variables, where g0(x) = ρ, g11(x) = g22(x) = ρ, g12(x) = g21(x) = 0, V (x) =
V (ρ, z) = m2/ρ2+2VC(ρ, z), with the BCs at the boundary ∂� = ∂�1 ∪ ∂�2,
∂�1 = {(ρ, z)|z = 0, ρ = ρmax(z)}, ∂�2 = {(ρ, z)|ρ = 0} of the 2D domain � =
{(ρ, z)|ρ≥0, z≥0, ρ≤ρmax(z)}

�
(mσ)
t (ρ, z)|∂�2 = 0, lim

ρ→0

(
ρ
�

(mσ)
t (ρ, z)

∂ρ
δm0 + �

(mσ)
t (ρ, z)(1 − δm0)

)∣∣∣∣∣ ∂�1 = 0.

Below we restrict ourselves to the case m = 0. For CDQ ρmax(z) = R(1−z/H),
where R is the base radius and H is the height, σ = 0, for SDQ, ρ2/a2+z2/c2 = 1,
where a and c are the spheroid semiaxes, and ρmax(z) = a

√
1−z2/c2, σ = +1.

For oblate and prolate SDQs the BVP (11.1)–(11.3) at d = 2 was also solved
in the spheroidal coordinates (x1 = ξ, x2 = η), g0(x) = ( f/2)2(ξ2 ± η2), g11(x) =
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Table 11.2 The first three eigenvalues, Et (nb, lmin), t = 1, 2, 3, at m = 0, σ = +1 in the units of
ER , for the oblate SQD a = 2.5, c = 0.5 obtained on the different FEM grid with the maximal
element size lmin. The number nb determines the length of the polygonal boundary approximating
the boundary of SQD. KM—Kantorovich method with 60 basis functions from [20]. SPH—FEM
in spheroidal coordinates on non-uniform grid in the rectangular domain 0 < ξ0 < c/

√
a2 − c2 =

1/2
√
6, 0 ≤ η ≤ 1

lmin 0.0625 0.125 0.03125 0.0625 KM SPH

nb 0.03125 0.03125 0.015625 0.015625

t = 1 12.76518 12.76516 12.76490 12.76490 12.764809 12.77105

t = 2 20.04147 20.04143 20.04086 20.04085 20.040651 20.04933

t = 3 29.74910 29.74902 29.74780 29.74779 29.747387 29.75713

(ξ2 ± 1), g22(x) = (1−η2), g12(x) = g21(x) = 0, ( f/2)2 = ±(a2−c2), f is a focal
distance, V (x) = V (ξ, η) = m2/(ξ2±1)(1−η2), and using the Kantorovich method
Eqs. (11.11)–(11.15) with jmax = 60 of basis functions [18].

The comparison of results obtained for eigenvalues of oblate SDQ in the cylindri-
cal coordinates on different FEM grids, in the spheroidal coordinates, and using the
(KM) is resented in Table 11.2 1. As seen from Table 11.2, the results coincide to five
significant digits, and the maximal contribution to the error in cylindrical coordinates
is due to the error of approximating the curved boundary by triangle finite elements
with rectilinear boundaries.

Figures 11.1 and 11.2 show the lower part of non-equidistant spectrum Ẽ(ζca)/ER

= 2Et (or Ẽ(ζac)/ER = 2Et ) and the eigenfunctions�mσ
t from (11.7) for even states

oblate (or prolate) SQD at m = 0.
For an oblate (or prolate) SQD a correspondence rule holds: j = no = nzo+1

= 2n−(1+σ)/2, n = 1, 2, . . ., nρo = (l−|m|−(1−σ)/2)/2 (or j = nρp+1 = np =
n = nr+ 1, j = 1, 2, . . ., nzp = l−|m|) between the spherical quantum numbers
(n, l,m, σ̂) of an SQD with radius r0 = a = c and spheroidal quantum numbers
{nξ = nr , nη = l−|m|,m,σ} of an oblate (or prolate) SQD with the major semiaxis
a (or c) and the minor semiaxis c (or a), and the adiabatic set of cylindrical quantum
numbers [nzo, nρo,m,σ] (or [nρp, nzp,m,σ]) upon continuous variation of parameter
ζca = c/a (or ζac = a/c).

The crossing of similar-parity energy levels in Figs. 11.1 and 11.2 upon the change
of symmetry from spherical ζca = 1 (ζac = 1) to axial, i.e., upon the variation of the
parameter 0 < ζca<1 (0 < ζac<1), in the BVP with two variables at fixed m for
an impenetrable oblate (prolate) SQDs is caused by the possibility to separate the
variables (ξ, η ϕ) and the additional integral of motion given explicitly [18] with

1 For electron(e) and hole(h) states 2VC (ρ, z) = 0, and for exciton states 2VC (ρ, z) =
−2/

√
ρ2 + z2, 2VC (ρ, z) = ṼC (ρ̃, z̃)/ER , ṼC (ρ̃, z̃) = −2e/(κ

√
ρ̃2 + z̃2), where e and me are

the electron charge and mass, κ is the static permittivity. For GaAs model we use the reduced
atomic units, m∗

e = 0.067me, m∗
h = m∗

e/0.12, κ = 13.18, aB = 104Å, ER = 5.275 meV, i.e.,

E = 2E = Ẽ/ER , �(ρ, z) = a3/2B �̃e(ρ̃, z̃), ρ = ρ̃/aB , z = z̃/aB , where Ẽ , ṼC (ρ̃, z̃), ρ̃ and z̃ are
dimensioned quantities.
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Fig. 11.2 Contour lines of the first five wave functions σ = +1, m = 0 in the xz plane of prolate
SQD for the major semiaxis c = 2.5 and different values of the minor semiaxis a (ζac = a/c ∈
(1/5, 1)). Arrows show transformations of a shape of eigenfunctions passing thought exact crossing
points of pairs of eigenvalues

eigenvalues of a separation parameter having branch points for complex values f
of the focal distance or parameter ( f/2)

√
2E of the propagation constant [23, 24].

Thus, the values of parameter 0 < ζca<1, or 0 < ζac<1, corresponding to crossing
points of the eigenvalues Ẽ(ζca)/ER = 2Et , or Ẽ(ζac)/ER = 2Et of the lower parts
of spectra of oblate or prolate SQDs, strongly restrict the range of applicability of
the AA (in the strong size quantization limit), or diagonal approximation of the KM
for their estimations.
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11.5 Adiabatic Approximation and Size Quantization

For classification and approximate calculation of the spectrum under the size quanti-
zation (SQ) conditions for electron (e) hole (h) states the AA is used,�mσ

jv (x f , xs) =
�mσ

j (x f ; xs)χ(mσv)
j (xs). For prolate SQD a/c � 1 and CQD with small apex angle

R/H � 1, the parametric spectrum 2Emσ
j (z) and eigenfunctions �

(mσ)
j (ρ; z) at

x f = ρ, xs = z of the ‘fast’ subsystem are solutions of BVP (11.8)–(11.10) at each
value of parameter z that are expressed in terms of the cylindrical Bessel function of
the first kind [20, 21]

2Emσ
j (z) = α2

nρp+1,|m|
ρmax(z)2

, �mσ=0
j (ρ; z) =

√
2J|m|(ρ

√
2Ei (z))

ρmax(z)J|m+1|(αnρp+1,|m|)
,

where αnρp+1,|m| is the j = np = nρp+1-th positive node of the Bessel function [22]
J|m|(ρmax(z)), j = np = nρp+1 = 1, 2, ....

A low part of the spectrum Et; jv = 2Et; jv , and eigenfunctions χ
mσv

j (z) of the
‘slow’ subsystem are solutions of the BVP of the KM Eqs. (11.11)–(11.15) in
diagonal approximation without diagonal nonadiabatic termsWj j (xs), i.e. in a crude
AA, where number v = nzp+1 determines the number v−1 = nzp of nodes of the
solutions χ(mσv)

j (z) at fixed j :

(− ∂2

∂z2
+ 2Emσ

j (z) − Et; jv)χ(mσv)
j (z) = 0, (11.16)

that are subjected to orthogonal and normalization conditions

zmax∫

zmin

dzχmσv
j (z)χmσv′

j (z) = δvv′ (11.17)

with theBCsχmσv
j (0) = χmσv

j (H) = 0 atσ = 0 forCQD,orχmσv
j (−c) = χmσv

j (c) =
0 at σ = ±1 for SQD. Considering (11.16), (11.17) in the linear or quadratic approx-
imation for the prolate CQD or SQD leads to the spectrum in the analytical form [20,
21]

ECQD
(t;npnzpm) = 2E (0)

npm + 2εnzp = 2α2
np,|m|
R2

−
(
2α2

np,|m|
R2H

)2/3

βnzp+1,

E PSQD
(t;npnzpm) = α2

np,|m|
a2

+ α2
np,|m|
ac

(2nzp + 1),

where βnzp+1 is the v-th negative node of the Airy function of the first kind [22]. For
oblate SQD c/a�1 and CQD H/R � 1, using the AA at x f = z, xs = ρ, one has
the spectrum and eigenfunctions classified by set [nzo, nρo,m,σ].
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Table 11.3 Comparison of the Coulomb interaction energy Eeh
t between electron and hole, and

the size quantization energy E SQ
t in the units of ER . Here H = 10aB , m = 0. The corresponding

values of E SQ
(t;n pnzpm)

(adiabatic calculation) and Eeh
(t;n pnzpm)

(first-order perturbation theory) adopted

from Ref. [21] are labeled by an asterisk ∗

R (aB) (t; nρp, nzp) = (1; 0, 0) (t; nρp, nzp) = (18; 1, 0) (t; nρp, nzp) = (2; 0, 1)
E SQ
t Eeh

t E SQ
t Eeh

t E SQ
t Eeh

t

0.5 30.42114 –2.64009 142.96526 –4.19801 36.95117 –1.88114

0.5 26.624* –1.121* 141.542* –1.113* 34.483* –0.95*

1.0 8.88906 –1.71413 39.22966 –2.27799 11.93808 –1.25028

1.0 8.359* –0.902* 36.272* –1.021* 10.287* –0.608*

1.5 4.49383 –1.33844 18.79476 –1.66173 6.51718 –0.99660

1.5 4.071* –0.781* 18.085* –0.762* 5.193* –0.503*

Table 11.3 presents the comparison of the energy of Coulomb interaction of exci-
ton Eeh

t = EC
t m

∗
h/(m

∗
e + m∗

h)−E SQ
t with the size quantization electron energy E SQ

t

at different geometric parameters of a CQD, where exciton energy EC
t with the

electron-hole reduced mass meh = m∗
em

∗
h/(m

∗
e + m∗

h) in the exciton center-of-mass
frame and size quantization electron energy E SQ

t with the electron mass m∗
e were

obtained by solving the BVP (11.1)–(11.3) with Coulomb potential 2VC(ρ, z) and
without it, correspondingly. FromTable 11.3 the correction energy Eeh

t is always seen
to be negative, and with the increasing radius R the relative contribution of Coulomb
energy of exciton becomes significant. The comparison with E SQ

(t;npnzpm) and Eeh
(t;npnzpm)

calculated using the AA and the perturbation theory [21] show the contribution of
nonadiabatic corrections and the applicability of the AA.

Figure 11.3 shows the dependence of the charge carrier energies upon the base
radius of fixed-height CQDs and the minor semiaxis of fixed-major semiaxes SQDs,
and upon the apex angle of fixed-volume CQDs and SQDs, respectively. Note that
each eigenlevel of the ‘fast’ subsystem has a family of ‘slow’ subsystem eigenlevels
positioned thereupon. For example, for CQD with R̃ = 0.5aB , H̃ = 10aB , the first
level ((t, nρ, nz) = (1, 0, 0), Ẽ SQ

1 /ER = 30.42114) and the eighteenth ((t, nρ, nz) =
(18, 1, 0), Ẽ SQ

18 /ER = 142.96526 ) one belong to the ‘fast’ subsystem levels. For
R̃ = 1.5aB the first level and the seventh one belong to the ‘fast’ subsystem, while
five levels between them belong to the ‘slow’ subsystem, etc. The carrier energy is
seen to decreasewith the increasing base radius R̃ or small semiaxis ã, because the SQ
contribution to the energy decreases. The crossing of the seventh level with the eighth
one at R̃≈1.5aB corresponds to the crossing of the same levels at θ0≈ arctan(3/20).

Figure 11.3a and b show that for prolate CQD and SDQ the faster growth of
energy at small apex angles θ0 is caused by the size quantization in radial variable ρ
and angular variableϕ. The slower increase in energy at the apex angles approaching
the right angle is caused by the size quantization in longitudinal variable z, i.e., the
height. The difference in the rate of energy level variation in the adiabatic domains
of variation of geometric parameters is due to the nonuniform scale, since the radius
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Fig. 11.3 Energy levels Et = 2Et = Ẽ SQ
t /ER at m = 0: a for prolate and oblate CQDs of equal

volume V = πR2H/3 = (15/2)πa3B at the base of H = 10 and R = 1.5 versus the stretch angle
θ0 = arctan(H/R) at the base of θ0 ≈ 8.53◦, and b for prolate and oblate SQDs of equal volume
V = 4πa2c/3 = (125/6)πa3B at the base of a = c = 2.5 versus θ0 = arctan(a/c) at the base of
θ0 = 45◦

varies as (tan θ0)
2/3 and the height as (cot θ0)1/3. It is also seen that for the angle values

beyond the adiabatic domains there are series of quasicrossings and exact crossings
of energy levels for CQD (for comparison, see a discussion of crossing points in the
spectra of triangles [25–27]) and SQD, respectively, and its transformation to the
oblate QDs.

Remark 2. The above analysis shows the following: the small values of parame-
ters 0 < ζca<1 and H/R � 1, or 0 < ζac<1 and R/H � 1, corresponding to exact
crossing and quasicrossings points of eigenvalues in the lower part of the energy spec-
trum of oblate or prolate QDs strongly restrict the applicability range of the adiabatic
approximation (in the strong size quantization limit), or diagonal approximation of
Kantorovich method for their estimations.

11.6 Interband Absorption

Consider the direct interband absorption in cone-shaped quantum dots in the regime
of strong size quantization, when the Coulomb interaction between an electron and a
hole can be neglected. Furthermore, consider the case of a heavy hole withm∗

e � m∗
h ,

where m∗
e and m∗

h are the electron and hole effective mass, respectively. Then the
absorption coefficient is given by [28]

K̃ (ω̃ ph) =
∑
νν ′

K̃νν ′(ω̃ ph) = K̃0

∑
νν ′

∣∣∣∣
∫

�̃e
ν�̃

h
ν ′dr

∣∣∣∣
2

δ(�ω̃ ph − Ẽg − Ẽe
ν − Ẽh

ν ′),

(11.18)
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where �̃
e(h)

ν(ν ′) are envelopes of the electron and hole wave functions, ν = [nρpnzpm]
and ν ′ = [n′

ρpn
′
zpm

′] (ν = [nzonρom] and ν ′ = [n′
zon

′
ρom

′]) are sets of quantum
numbers corresponding to the electron and the heavy hole prolate(oblate) SQD
or CQD, respectively, Ẽg is the band gap of the bulk semiconductor (for GaAs
Ẽg/ER = 1.43/(5.27 · 10−3)), ω̃ ph is the frequency of the incident light, and K̃0 is
proportional to the square of the transition matrix element calculated with Bloch
functions [28]. Here the following selection rules for the transitions between the
levels with different quantum numbers are valid in the adiabatic classification. In
the case of the prolate(oblate) SQD and CQD for the magnetic quantum number the
transitions between the levels with m = −m ′ are allowed. For the prolate(oblate)
SQD the transitions between the levels with nρp = n′

ρp and nzp = n′
zp ( nzo = n′

zo
and nρo = n′

ρo), respectively, are allowed. For the prolate(oblate)CQD transitions
between the levels with nρp = n′

ρp (nzp = n′
zp) are allowed, however there is no

selection rule for the axial(radial) quantum numbers nzp (nρo) and any transitions
between different levels are allowed: nzp → ∀n′

zp (nρo → ∀nρo) respectively, like
for prolate (oblate) SQD in uniform electric field [20].

The difference between energy levels for CQD of the same family increases with
the increase in the axial quantum number. For example, �Ẽ10 = 1.1ER , when R̃ =
1.5aB and H̃ = 10aB (nρp = 0, m = 0), and �Ẽ10 = 3.4ER , when R̃ = 1.5aB and
H̃ = 10aB (nρp = 1,m = 0).Note that the transition frequencybetween these energy
levels is �ω̃

ph
10 (nρp = 0,m = 0) = 1.43 · 1012sec−1 and �ω̃

ph
10 (nρp = 1,m = 0) =

4.3 · 1012sec−1, which falls into the IR range of spectrum.
In CQD the decrease in the base radius increases the absorption edge energy.

It is due to the fact that with the decrease in R̃ the effective width of the bandgap
increases due to smaller influence of the CQDwalls. The energy levels corresponding
to high values of the cone height are located above. Note that the interband transition
frequency between the energy levels is ω̃

ph
000 = 5.07 · 10−14sec−1 for R̃ = 0.2aB and

H̃ = 15aB , which falls into the visible spectral range [21].
For the Lifshits-Slezov distribution, Fig. 11.4 displays the total absorption coef-

ficient K̃ (ω̃ ph)/K̃0 and the partial absorption coefficients K̃ν,ν(ω̃
ph)/K̃0, that form

the corresponding partial sum (11.18) over a fixed set of quantum numbers ν, ν ′ at
m = −m ′ = 0. In the regime of strong dimensional quantization, the frequencies of
the interband transitions (h→e) in GaAS between the levels no = nzo+1 = 1, nρo =
0,m = 0 for oblate SQD or np = nρo+1 = 1, nzp = 0,m = 0 for prolate SQD at the
fixed values ã = 2.5ae and c̃ = 0.5ae for oblate SQD or ã = 0.5ae and c̃ = 2.5ae
for prolate SQD, are equal to �ω̃

ph
100/(2π) = 16.9 THz or �ω̃

ph
100/(2π) = 33.3 THz,

where �ω̃
ph
100/(2π) = (W̃100,100−Ẽg)/(2π�), W̃ν,ν ′ = Ẽg+Ẽe

ν+Ẽh
ν ′ correspond to

the IR spectral region, taking the band gap value (2π�)−1 Ẽg = 346 THz [20].
With the decreasing semiaxis the threshold energy increases, because the ‘effec-

tive’ band gap width increases, which is a consequence of the dimensional quanti-
zation enhancement. Therefore, the above frequency is greater for prolate QD than
for oblate QD, because the QD implemented in two directions of the plane (x,y) is
effectively larger than that in the direction of the z axis solely at similar values of
semiaxes. Higher-accuracy calculations reveal essential difference in the frequency
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Fig. 11.4 Absorption coefficient K/K0, Eq. (11.18), consisting of a sumof the first partial contribu-
tions versus the energy λ = λ1 = (ω̃ ph − Ẽg)/Ẽg of the optical interband transitions for ensembles
of GaAs SQDs (h → e) with the Lifshits-Slezov distribution of the random small semiaxis for an
ensemble of a oblate SQDs c̄ = 0.5, a = 2.5 and b prolate SQDs ā = 0.5, c = 2.5

behavior of the AC for interband transitions in the systems of semiconductor oblate
or prolate QDs having a distribution of minor semiaxes, which can be used to verify
the above models.

11.7 Conclusion

In this paperwe briefly review the efficientmethods and software for calculating elec-
tron, hole and exciton states in axially symmetricQDs by the example of cone-shaped
and spheroidal impenetrable QDs. Our analysis shows that the calculation schemes
of high-order FEM implemented on unstructured grids together with complemen-
tary KM and AA (in the strong size quantization limit) provide useful numerical
and analytical tools for describing the energy spectra and their crossing points that
determine the range of AA applicability, and the optical absorption coefficient in an
ensemble of non-interacting axially symmetric QDs.

Further development and application of such approach and software is associated
with the investigation of spectral and optical characteristics of quantum wells, wires
and dots with complex geometry.
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Chapter 12
Electronic and Magnetic Properties
of Laser Dressed Quantum Dot and Ring
with Rashba Spin-Orbit Coupling

Vram Mughnetsyan, Aram Manaselyan, Manuk Barseghyan,
Albert Kirakosyan, Laura M. Pérez, and David Laroze

Abstract The possibility of the control of energy spectrum and magnetization of
circular quantum dots and quantum rings in a transverse magnetic field is considered.
The dressing of the confining potential by an intense laser field as well as induction
of Rashba spin-orbit interaction by an external electric field is shown to be effective
tools for the manipulation of magnetic properties of quantum dots and rings. The
temperature effect on magnetization is also considered. It is shown that the intense
laser field creates an anisotropy in the systemdue towhich the energy spectrumbreaks
to groups of states. The Rashba spin-orbit interaction, in its turn, creates several
level anticrossings in energy spectrum. Both of these effects have their signatures on
magnetization of quantum dots and rings.

12.1 Introduction

Spin-orbit coupling in semiconductor nanostructures is considered as a useful tool
for spintronics and quantum information processing since it translates the spatial
motion of an electron into rotation of its spin [1–3]. The Rashba spin-orbit interaction
(RSOI) in semiconductor quantumdots (QDs) is of late receiving increasing attention
because of its relevance to spin transport in low-dimensional electron channels [4].
A major goal of this type of work is to find ways to tune the RSOI field and thereby
coherently manipulate electron spins in QDs [5]. Detailed theoretical studies of the
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influence of RSOI on the electronic properties of QDs with isotropic and anisotropic
confinement potential have already been reported earlier [6–9]. The results have
been shown, that the RSOI mainly manifests in multiple level crossings and level
repulsions in the energy spectrum. On the other hand by considering the anisotropy
of the confinement potential of QD, it has been shown that the Fock-Darwin spectra
display a strong signature of RSOI.

Manipulation of electron spin via the RSOI in a quantum ring (QR) would be
a promising avenue for quantum information processing [10, 11], as well as for
spintronics in reduced dimensions. On the other hand some unique electronic and
magnetic properties of QRs subjected to a RSOI effect have been demonstrated [12].
In particular it has been shown that for a nonzero SO coupling, the deviations from
the linear behavior of the line-width versus temperature are directly proportional to
the strength of the SO coupling.

It is worth to note, that the anisotropy is nearly always present during the fabrica-
tion process of QDs and QRs [10, 13]. Whereas, the studies of the influence of THz
intense laser field (ILF) on electronic properties of QDs and QRs have shown that
the ILF is the useful tool to control the shape anisotropy, and therefore, the physical
properties of such systems [14–19].

In this work the possibility of the control of energy spectrum and magnetization
of circular QD and QR in a transverse magnetic field are discussed. The dressing of
the confining potential by an ILF as well as induction of RSOI by an external electric
field is shown to be effective tools for the manipulation of magnetic properties of
QDs and QRs. The manuscript is arranged as follows: in Sect. 12.2 the theoretical
model is presented, in Sect. 12.3 the results and the corresponding discussion are
given, and the conclusions are presented in Sect. 12.4.

12.2 Theoretical Model

In our model we consider the confinement of electron in QD of radius R and QR
of inner and outer radii R1 and R2, with rectangular potential profile. Namely, for
QD we take V (r) = 0 when r ≤ R and V (r) = V0 when r > R wearies for QR the
potential is defined as follows: V (r) = 0 when R1 ≤ r ≤ R2 and V (r) = V0 when
r < R1 or r > R2.We considered here planar structures, in which the sizes in growth
direction (z-axis) are much smaller then lateral dimensions (Lz << R, R1, R2). As
a result we can consider the electron motion in the structures as two-dimensional.

The single electron Hamiltonian of the system under the influence of ILF and
taking into account RSOI can be written as follows:

[
1

2m

(̂
p + e

c
A(t)

)2 + V (x, y) + α

�
(σ × p)z + EZ

]
�(x, y, t) = i

∂

∂t
�(x, y, t),

(12.1)
wherem is the electron effective mass, p̂ is the two dimensional momentum operator,
A(t) = AI LF (t) + Am is the combined vector potential of the fields, e is the elemen-
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tary charge, α is the Rashba parameter, σ is the operator of spin and EZ = geμBσz/2
is the Zeeman term where ge is the Lande factor, μB is the Bohr magneton.

We consider a linearly polarized laser field in the dipole approximation with
the vector potential AI LF (t) = A0ex cos(ωt). The vector potential of the homoge-
neous magnetic field is Am = (0, Bx, 0), where B is the magnetic field induction.
SinceAI LF (t) · Am = 0 and the laser field is only time-dependent [20] the Kramers-
Henneberger unitary transformation can be applied [21]. Following the Floquet the-
ory [22–27], one can obtain the following time-independent Schrödinger equation
in the high-frequency limit [8, 19]:

[
1

2m

(̂
p + e

c
Am

)2 + Vd + α

�
(σ × p)z + EZ

]
�d(x, y) = Ed�d(x, y) . (12.2)

Here, Vd = Vd(x, y, α0) shows the time-averaged laser-dressed potential, given by
[20]

Vd(x, y, α0) = ω0

2π

∫ 2π/ω0

0
V (x + α0sin(ω0t), y)dt , (12.3)

whereα0 =
(
8πe2 I/m2ε

1/2
h cω4

0

)1/2
is the so called ILF dressing parameter, I stands

for the intensity and ω0 for the frequency of the ILF and εh is the high-frequency
dielectric constant. The parameter α0 simultaneously depends on intensity and fre-
quency of the ILF which can be chosen for a broad range in units of KW/cm2 and
terahertz correspondingly [26].

The laser dressed energy spectra and the wave functions of the electron in QD
and QR can be calculated using exact diagonalization technique. The eigenfunctions
are presented as a linear expansion of the eigenfunctions of the two-dimensional
rectangular infinitely high potential well [14, 15, 17]. In our calculations we have
used 361 basis states for QD and 625 basis states for QR which is adequate for
determining the first few energy eigenvalues with high accuracy.

At zero temperature the magnetization of the QR is defined as M = − ∂E0
∂B , where

E0 is the ground state energy of the system [28, 29]. In this paper we have calcu-
lated the magnetic field dependence of M by evaluating the expectation values of the
magnetization operator m̂ = − ∂H

∂B , where H is the Hamiltonian of the system with
laser dressed potential. We then need to evaluate the expectation values of magneti-
zation operator m̂ using the laser dressed states of the system. We have also studied
the temperature dependency of magnetization, following the thermodynamic model
discussed in [29]. The temperature dependence of magnetization is evaluated from
the following thermodynamic expression

M = −
∑
i

∂Ei

∂B
e−Ei /kT /

∑
i

e−Ei /kT , (12.4)

where the partial derivatives are evaluated as expectation values of operator m̂ for
the state i .
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Fig. 12.1 Magnetic field dependence of low-lying energy levels of a QD without and with RSOI.
The results are for different values of ILF parameter α0. The insets demonstrate the shift of level
crossing to anti-crossing due to SO coupling
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Fig. 12.2 Magnetic field dependence of low-lying energy levels of a QR without and with RSOI.
The results are for different values of ILF parameter α0
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12.3 Numerical Results and Discussion

Numerical calculations are carried out for the InAs QD and QR inside undoped
GaAs matrix with parametersm = 0.042m0, V0 = 280meV, R = 10nm, R1 = 5nm,
R2 = 15nm respectively.

In Fig. 12.1 the magnetic field dependencies of low-lying energy levels of a QD
with and without RSOI are presented for various values of ILF parameter α0. When
the external ILF and the RSOI are absent, we obtain the well known energy spectrum
of the cylindrical QD (Fig. 12.1a). In this case, the energy levels of the ground and
excited states at zero magnetic field are degenerated. This degeneracy disappears in
the case of the shape anisotropy of the system [30]. The ILF applied on a QD creates
an anisotropy in the confinement potential (Fig. 12.1b and c) as a result of which
the effective length of the confinement along the x direction decreases in the lower
part of the QD potential well [18]. It is worth noting that with the increase in α0,
the anisotropy of the QD is strengthened and the degeneracy of the excited states at
B = 0 partially disappears. As a result the energy spectrum transforms to doublets
degenerated at B = 0. With the increase of α0 the distances between neighboring
doublets increase. The Rashba SO interaction in its turn couples angular momentum
of the electron with spin due to which the degeneracy of energy levels at B = 0
disappears even without ILF (Fig. 12.1d). In Fig. 12.1e and f the combined effect of
RSOI and ILF on energy spectra is presented. As it can be seen the effect of ILF
is much stronger compared with SO interaction. Nevertheless several shifts of level
crossing to anti-crossing can be observed due to SO coupling as it is demonstrated
in insets of Fig. 12.1c and d.

In Fig. 12.2 the magnetic field dependencies of low-lying energy levels of a QR
with and without RSOI are presented for various values of ILF parameter α0. In this
case when the external ILF and the RSOI are absent, we obtain the energy spectrum
of the cylindrical QR with well known Aharonov-Bohm oscillations (Fig. 12.2a).
Similar with the case of QD, the ILF applied on a QR creates an anisotropy in
the confinement potential [17]. Here also with the increase of α0, the anisotropy of
the QR is strengthened due to which the degeneracy of the excited states at B = 0
partially disappears. With the increase of α0 due to the reduced symmetry from C∞
to C2, the energy spectrum splits into non-crossing quartets of states which in turn
cross repeatedly as B increases. A similar behavior of the energy levels, which can
be called ‘unusual’ AB oscillations, was reported earlier in QRs by other authors
that is caused by the effective mass anisotropy [31, 32] and structural distortions in
QRs [33]. For α0 = 2.5 nm, only the first group of levels feel the deformation of the
potential (Fig. 12.2b). Similarly, for larger values of α0 more excited states start to
feel the deformation of the QR confinement potential, and two periodically crossing
groups of levels can be visible in energy spectra (Fig. 12.2c). For the case of QR the
effect of RSOI again removes the degeneracy of energy levels at B = 0 and creates
several level anti-crossings in energy spectra. It should be noted that the effect of SO
coupling is stronger for QR compared with QD (Fig. 12.2d–f).
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Fig. 12.3 The
magnetization of the QD for
various values of the RSOI
and ILF parameters

In Fig. 12.3 the magnetization of the QD is presented for various values of the
RSOI and ILF parameters and for two values of temperature. At low temperatures
(T = 5K) with the increase of magnetic field the ground state magnetization at first
increases and then starts to decrease for larger values of magnetic field. At B = 0
the magnetization is equal to zero due to spin degeneration of ground state. For non
zero magnetic fields the ground state is with spin +1/2 due to Zeeman splitting, thus
we observe a positive value of magnetization. With further increase of magnetic
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Fig. 12.4 The
magnetization of the QR for
various values of the RSOI
and ILF parameters

field the magnetization decreases linearly due to the diamagnetic effect. With the
increase of temperature the ground state mixes with nearest exited states due to
which electron populations change. Therefore we have to calculate also the effect of
excited states on the magnetization of the system using Eq. (12.4). At higher values
of temperature (T = 40K) the thermodynamic weights of spin up and spin down
states in magnetization are almost equal therefore the magnetization is a decreasing
function of magnetic field. As can be seen from the figure, the effect of ILF on
magnetization is considerable only for higher values of magnetic field induction and
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leads to the decrease of the magnetization. The RSOI has a small impact on the
magnetization that becomes even smaller with the increase of ILF parameter.

In Fig. 12.4 the magnetization of the QR is presented for various values of the
RSOI and ILF parameters and for two values of temperature. At low temperatures the
magnetic field dependencies of magnetization for all cases have step like behaviour
with several periodic jumps of magnetization (see solid curves on Fig. 12.4), which
is a usual picture for semiconductor quantum rings and is the direct signature of
Aharonov-Bohm oscillations in QR. In QRs, with increase of the magnetic field,
the ground state changes periodically, and after each change of the ground state the
angular momentum quantum number increases by one. This change of ground state
angular momentummanifests itself in persistent currents and inmagnetization of QR
[34]. With the increase of temperature, due to the mixing of the ground state with
nearest exited states, instead of sharp jumps smooth curves of magnetization can be
observed (Fig. 12.4 doted lines). With the increase of laser parameter α0, due to the
broken symmetry of QR from C∞ to C2 the first group of states are energetically
separated from others (Fig. 12.2c and f). As a result all effects observed in Fig. 12.4b
and c weaken. The RSOI in its turn increases the value of magnetization of QR.
It should be noted that for given parameters of the considered systems the Rashba
effect on magnetization is more pronounced for the case of QR compared with QD.
With the increase of ILF the effect of RSOI on magnetization weakens.

12.4 Conclusion

We have studied the combined effect of ILF and RSOI on electronic and magnetic
properties of circular QDs and QRs subjected to transverse magnetic field. The tem-
perature effect on magnetization of considered systems is also taken into account.
We have demonstrated that the ILF creates an anisotropy due to which the energy
spectrum breaks to groups of states for both systems. The RSOI, in its turn, creates
several level anticrossings in energy spectrum. Both of these effects have their sig-
natures in magnetization which allows effectively control the magnetic properties of
QD and QR.
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Chapter 13
Magnetically Induced Atomic Transitions
of Alkali Metal Atoms

A. Sargsyan , A. Tonoyan , G. Hakhumyan , and D. Sarkisyan

Abstract Atomic transitions of alkali metals, which in the absence of an external
magnetic field have a zero probability, meanwhile in the presence of it have high
probabilities are called magnetically induced (MI). Interest in them is due to the high
probabilities, which, in a wide range of magnetic fields, exceed the probabilities of
ordinary atomic transitions. There are two typesMI 1 andMI2which exhibit different
behavior depending on the magnetic field. Sub-Doppler resolution with a simple
single-beam geometry, providing a linear response of atomic media for transmission
experiments can be attained using spectroscopic nanocells filled with the Rb and
Cs atomic vapors with a thickness of the order of resonant wavelength or half of
resonant wavelength. This makes it possible to spectrally resolve a large number of
atomic transitions closely spaced in frequency and study individual behavior of MI
transitions. Good agreement between the experiment and theoretical calculations is
observed, and possible practical applications are noted.

13.1 Introduction

Atomic transitions in alkali metals that are excited by laser radiations which have
circular (σ+, σ−) or linear (π) polarizations and have zero probability in the absence
of a magnetic field but have large probabilities in the presence of a magnetic field
are called magnetically induced (MI). MI transitions in atoms of Cs, Rb, K, Na
represent a large class of about one hundred atomic transitions exhibiting interesting
and important specific features [1–6]. Interest to MI atomic transitions is caused
mainly by the fact that probabilities of such transitions in a wide range of magnetic
field B can considerably exceed probabilities of ordinary atomic transitions allowed
in the absence of magnetic field. In addition, frequency shifts of MI transitions in
strongmagnetic fields can reach∼30GHz,which is of practical interest for expanding
the frequency range for, e.g., laser-frequency stabilization at frequencies strongly
shifted relative to the frequencies of transitions in unperturbed atoms [7].
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The development of new techniques for sub-Doppler spectroscopy of atomic
vapors of alkali metal based on a nanometric thick cell (i.e. nanocell) containing
atomic vapors and strong permanent magnets allows successful study of the behav-
ior of hyperfine atomic transitions in the optical domain in a wide range of magnetic
fields. A high spectral resolution allows numerous individual transitions between
magnetic sublevels to be distinguished and identified, while inside a nanometric
thick zone of the atomic vapor column there is high magnetic field uniformity when
using strong permanent magnets, whose B-field has a strong gradient.

It is reasonable to divide all MI transitions into two types: type 1 (MI 1) and
type 2 (MI 2). Using representation in the form |F,mF 〉, where F is the total atomic
momentum and mF is its projection, transitions |Fg, 0〉 → |Fe = Fg, 0′〉 between
ground (Fg) and excited (Fe) levels the probabilities of which equal to zero in the
absence of magnetic field but experience giant increase with increase in the applied
magnetic field, asymptotically approaching a constant value with further increase
in the B-field, belong to transitions of the first type (MI 1) (primes denote excited
levels). In the present workMI 1 transitions that belong to the D2 line of the Rb atoms
were studied in detail. The total number of the MI 1 transitions in alkali metals in
the region of the D1 and D2 lines is 28.

Transitions |Fg,mF 〉 → |Fe,m ′
F 〉 between ground (Fg) and excited (Fe) levels,

where Fe = Fg ± 2 and m ′
F − mF = 0,±1, belong to the second type of transitions

(MI 2). Probabilities of MI 2 transitions experience giant growth with increase in
the B-field. However, this probability tends to zero again upon further increase in
the magnetic field B � B0, where B0 is a characteristic magnetic induction B0 =
Ah f s/μB , where Ah f s is the magnetic dipole constant of the ground state of an atom
andμB is the Bohrmagneton [8], was introduced in [9] for quantitative determination
of the degree of atom’s interaction with magnetic field. For Cs, 85Rb, 87Rb atoms
B0 = 1.7 kG, 0.7 kG and 2.4 kG respectively. The total number of theMI 2 transitions
in alkali metals in the region of D2 lines is about 70 transitions.

13.2 Experiment

13.2.1 Experimental Setup

The nanocell (NC) design, which consists of windows made of technical sapphire
of 2.4mm thickness and a vertical side arm -sapphire tube (a metal reservoir) is
presented in [10, 11]. The NC is filled with a natural mixture of 85Rb (72.2%)
and 87Rb (27.8%). The regions of the NC either L � λ or L � λ/2 are used, where
λ = 780 nmwhenRb D2 line is used, orλ = 852 nmwhenCs D2 line is used. TheNC
operated with a specially designed oven (made from non-magnetic materials) with
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Fig. 13.1 Sketch of the experimental setup. ECDL—diode lasers, lasing wavelengths are either
780nmor 852nm, FI—Faraday isolator, 1-mainRb (Cs) nanocell, 1′—anauxiliaryRb (Cs) nanocell
(reference), G—Glan polarizer, pair 3 and pair 3′ are—permanent magnets, 4—photodetectors, 5—
digital storage oscilloscope, E—electrical field of laser radiation, B—magnetic field applied to the
nanocell. Configurations of the B, E and k are presented in the insets, a for this case B‖E, b for this
case B‖k, where k is wave vector, and quarter-wave plate 2 is used (it is absent for the case of a)

two ports for laser beam transmission. The temperature of the NC reservoir (which
contains either Rb or Cs atoms) was ∼ 120 ◦C, but the windows were maintained
at a temperature that was by 20 ◦C higher. At the first stage of the experiment the
π-polarized beam of extended cavity diode laser (ECDL, λ = 780 nm, PL = 10mW,
γL < 1 MHz) resonant with the 87Rb, D2 transition frequency, is focused (the laser
spot diameter is ∼0.7mm) at nearly normal incidence onto the NC 1 with the vapor
column thickness L = λ = 780 nm. To avoid feedback a Faraday insulator is applied.
A Glan polarizer (G) is used to purify initial linear radiation polarization of the
laser. A part of the laser radiation was directed to the auxiliary NC (1′) and the
transmission spectrum of this NC is used as a frequency reference. The transmission
signal was detected by a photodiode 4 and was recorded by Tektronix TDS 2014B
four-channel storage oscilloscope 5. In order to produce strong magnetic fields two
strong permanent magnets pair 3′ is used. Magnetic field B is directed along the laser
radiation electric field direction E (B‖E). Configuration of the B and E is presented
in the inset (a) in Fig. 13.1.
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Fig. 13.2 a 87Rb, D2 line, diagram of the atomic transitions Fg = 1 → Fe = 1, 2, 3 including
MI 1 and MI 2 transitions for π-polarization excitation, selection rule is m′

F − mF = 0, b the
probabilities of the transitions as a function of the B-field

13.2.2 Experimental Results and Discussion

13.2.2.1 Magnetically Induced Transitions MI 1 and MI 2 of the 87Rb
Atom D2 Line

Atomic transitions Fg = 1 → Fe = 0, 1, 2, 3 betweenmagnetic sub-levels of hyper-
fine states for the 87Rb, D2 line in the case of π—polarized laser radiation excitation
are depicted in Fig. 13.2a. Note that when B = 0 according to the selection rules the
�F = 2 transitions Fg = 1 → Fe = 3 (denoted MI 2) as well as atomic transition
Fg = 1,mF = 0 → Fe = 1,m ′

F = 0 (denoted MI 1) are forbidden, while all other
presented transitions with �F = Fe − Fg = 0,±1 and �mF = 0 are allowed [12].
In Fig. 13.2b the probabilities of these four transitions are presented. As it is seen
the probability of the MI 1 transition is zero at zero B-field, then it rapidly increas-
ing with B increase and asymptotically approaching a constant value with further
increase of the B-field. As to the probability of MI 2 transition it also zero at zero
B-field, then it rapidly increasing with B increase, however the probability tends
to zero again upon further increase of the magnetic field when B � B0. As to the
probabilities of ordinary transitions with numbers 1, 2 at B = 0 they are determined
by Clebsch-Gordan coefficients, then they are increasing with B increase and asymp-
totically approaching a constant value when B � B0 (so called Pashen-Back regime
[9]).

As it was demonstrated earlier in the transmission spectra of the NC when thick-
ness is L � λ so called narrow velocity selective optical pumping (VSOP) resonance
are formed [2]. This allows one to obtain, identify, and investigate each individual
atomic transition between the Zeeman sub-levels in the transmission spectrum of the
87Rb D2 line in a very wide range of magnetic fields from a few tens up to several kG.
Thus, NCwas used to implement themethod, which ensured the narrowing of atomic
transitions in the transmission spectrum T (ν). To further narrow atomic lines, we
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Fig. 13.3 87Rb, D2 line,
π-polarization, the upper
curve is SD transmission
spectrum of the nanocell
with thickness L = 780 nm,
atomic transitions
Fg = 1 → Fe = 1, 2, 3, the
spectrum contains MI 1 and
MI 2 transitions, B = 500 G,
laser power 50 µW. The
lower graph (black line) is
the reference spectrum of the
87Rb,
Fg = 1 → Fe = 0, 1, 2 at
B = 0

performed double differentiation of the transmission spectrum T ′′(ν), which ensured
the additional significant narrowing of atomic lines in the second derivative (SD) of
the spectrum [13]. In Fig. 13.3 SD transmission spectrum when NC thickness is
L � λ = 780 nm, B = 500 G is presented by the upper curve. As it is seen the
amplitudes of the four VSOP resonances is close to that predicted by the theory
presented in Fig. 13.2b for B = 500 G.

It is important to note that in the case when laser radiation has circular polarization
σ+ or σ− only MI 2 transitions can be detected (for this case the MI 1 transitions
are absent). In Fig. 13.4a, b atomic transitions frequency shifts and the probabilities
are shown for σ+ circular polarization for Fg = 1 → Fe = 3 which are indicated
by 1–3 in circles (denoted MI 2) and ordinary transitions Fg = 1 → Fe = 2 which

Fig. 13.4 a 87Rb, D2 line, frequency shift of Fe = 1 → Fe = 2, 3 transitions, when using σ+-
polarized radiation as a function of magnetic induction B, transitions with numbers 1–3 (in circles)
are MI 2 transitions, b probabilities of MI 2 transitions with numbers 1–3 (in circles) and Fg =
1 → Fe = 2 transitions for σ+ polarized radiation as a function of magnetic induction B
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Fig. 13.5 87Rb, D2 line, SD
transmission spectrum of
Fg = 1 → Fe = 2, 3
transitions for σ+ circular
polarization when NC
thickness is
L � λ = 780 nm, transitions
labeled 2 and 3 in circles are
MI 2 transitions. Diagram of
atomic transitions
Fg = 1 → Fe = 2, 3 is
presented in the inset

are indicated by 1, 2, 3. Diagram of the atomic transitions Fg = 1 → Fe = 2, 3
is presented in the inset in Fig. 13.5. In Fig. 13.5 the SD transmission spectrum of
Fg = 1 → Fe = 2, 3 transitionswhenNC thickness is L � λ = 780nm is presented.
For this case, as well as for below experiments B‖k, where k is wave vector, and
quarter-wave plate λ/4 is used (see the inset (b) in Fig. 13.1.). It is important to note
that in the wide range of B-field the probability of MI 2 transition with number 3 in
circle is the largest for all transitions of the 87Rb starting from Fg = 1.

Although the probability of MI 2 transition with number 3 in circle tends to
zero when B � B0, it is still detectable at B = 8 kG, while demonstrating a giant
frequency shift of∼30GHz from the initial frequency position at B = 0,which could
be important for practical applications. Note, that MI 2 transitions indicated by 2,
3 in circles recently have been successfully used to obtain the electromagnetically
induced transparency phenomenon in strong magnetic fields [14].

It is important to note that we have deduced a general rule applicable for the
D2 lines of all alkali atoms, that is a transition probability is larger for the case of
σ+ (as well as the number of MI 2 transitions is greater) than for σ− excitation
for Fe − Fg = �F = +2, whereas the probability (as well as the number of MI 2
transitions is greater) is bigger in the case ofσ− than forσ+ polarization for�F = −2
[5].

Significant change in the probabilities of atomic transitions, in particular, a giant
increase in the probabilities of MI 1 and MI 2 transitions, is caused by the effect of
“mixing” of magnetic sublevels for ground Fg or excited levels Fe with magnetic
sublevels of the nearest transition (the explanation is shown inFig. 13.6); the “mixing”
effect is induced by an external magnetic field [1–5]. A perturbation induced by the
externalmagnetic field only couples themagnetic sublevelswith�mF = 0 (indicated
in Fig. 13.6 by circular arrows), which must also obey the follows selection rules:
�L = 0,�J = 0, and �F = 0,±1 [1–3]. As it is seen in Fig. 13.6 the “mixing” is
absent only for the transition |2,+2〉 → |3′,+3′〉, which is called guiding (GT), and
whose probability is independent of the B-field [15].
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Fig. 13.6 The scheme is illustrating the “mixing” of Zeeman magnetic sublevels. Significant mod-
ification in the probabilities of atomic transitions, in particular, a giant increase in the probabilities
of MI 1 and MI 2 transitions, is caused by the “mixing” effect of magnetic sublevels of ground Fg
or excited levels Fe with magnetic sublevels of the nearest transitions. The “mixing” is absent only
for transition called guiding (GT)

13.2.2.2 Magnetically Induced MI 2 Transitions of the 85Rb Atom D2

Line

Diagram of the transitions Fg = 2 → Fe = 3, 4 of the 85Rb, including magnetically
induced fiveMI 2 transitions for laser circular polarization σ+ is shown in the Inset of
Fig. 13.7a. MI 2 transitions are indicated by 1–5 in circles. As it is seen at B > 750 G
the group of MI 2 transitions are separated from the group of ordinary transitions
1–5. The probabilities of MI 2 transitions are presented in Fig. 13.7b. As it is seen in
the range of B-field 100–1000 G the probability of the MI 2 indicated by 5 in circle
is the biggest among all transitions Fg = 2 → Fe = 3, 4, which is important for an
applications.

In Fig. 13.8 the upper curve (1) shows the SD transmission spectrum when NC
thickness is L � λ = 780 nm, transitions are Fg = 2 → Fe = 3, 4, including MI 2
transitions indicated by 4, 5 in circles, B-field=1000 G. There is a good agree-
ment of the frequency positions of Fg = 2 → Fe = 3, 4 transitions with the theory
presented in Fig. 13.7a. The middle curve (2) in Fig. 13.8 shows the calculated trans-
mission spectrum and there is a good agreement with the experiment. Note, that
MI 2 transitions labeled 4, 5 in circles recently have been successfully used for the
electromagnetically induced transparency phenomenon in strongmagnetic field [16].

13.2.2.3 Magnetically Induced Transitions MI 2 of the Cs Atom D2 Line

Diagram of the transitions Fg = 3 → Fe = 4, 5 of the 133Cs, including magnetically
induced five MI 2 transitions for laser polarization σ+ is shown in the inset of
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Fig. 13.7 a 85Rb, the D2 line, frequency shift of Fg = 2 → Fe = 3, 4 transitions labeled 1–5
(in circles) are MI 2 transitions when using σ+-polarized radiation as a function of magnetic
induction B, b the probabilities of MI transitions with numbers 1–5 (in circles) and Fg = 2 →
Fe = 3 transitions for σ+-polarized radiation as a function of B

Fig. 13.8 85Rb, D2 line the upper curve (1) is SD transmission spectrumwhenNC thickness is L �
λ = 780 nm, B = 1 kG, transitions are Fg = 2 → Fe = 3, 4, including MI 2 transitions labeled
4, 5 in circles. The middle curve (2)-calculated transmission spectrum, a good agreement with
the experiment is seen. The lower graph—reference spectrum of the 87Rb, Fg = 1 → Fe = 0, 1, 2
transitions, B = 0

Fig. 13.9b. The MI 2 transitions are indicated by 1–7 in circles. In the range of
B-field 300–3200 G the probability of the MI 2 indicated by 7 in circle is the biggest
among all transitions Fg = 2 → Fe = 3, 4, which is important for applications. The
probability of MI 2 transition indicated by 7 in circle tends to zero when B � B0,
however it is still possible to detect it at B = 8 kG, while there is a big frequency
shift of ∼25GHz from the initial position at B = 0, which could be important for
practical applications.

In Fig. 13.10 the calculated spectra forMI 2 transitions which are indicated by 1–7
in circles for polarization σ+ (are shown in red on the high-frequency wing) and for
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Fig. 13.9 a 133Cs, D2 line, frequency shift of Fg = 3 → Fe = 4, 5 transitions labeled 1–5 (in cir-
cles) areMI 2 transitions, when using σ+-polarized radiation as a function of magnetic induction B,
b probabilities of MI 2 transitions with numbers 1–7 (in circles) and Fg = 3 → Fe = 4 transitions
for σ+-polarized radiation as a function of B

Fig. 13.10 133Cs, D2 line,
calculated spectra for MI 2
transitions numbered 1–7 in
circles for circular
polarization σ+ (in red on
the high-frequency wing)
and for circular polarization
σ− (in blue on the
low-frequency wing) are
presented when B-field is
varying from 0.2 kG from
the bottom up to 5 kG at the
top, MI 2 transition labeled 7
in circle is the strongest
transition in the group

circular polarization σ− (are shown in blue on the low-frequency wing) are presented
when B-field is varying from 0.2 kG from the bottom to up to 5 kG at the top. For
clarity, the ordinary transitions 1–7 are not shown. First, it can be seen that using
σ+ polarization there are seven transitions 1–7, while using σ− polarization there is
only one MI 2 transition. Secondly, it is seen the probability of transitions (i.e. the
amplitudes) for σ+ polarization is 2–3 times bigger than that for σ− polarization. As
it is mentioned above that for the case of σ+ excitation for Fe − Fg = �F = +2 the
probability of the MI 2 transitions is bigger. The number of MI 2 transitions is also
higher than in the case of excitation with σ− polarization. Third, with an increase in
the magnetic field, the MI amplitudes decrease, but their amplitudes become almost
the same andMI 2 are located equidistantly in frequency. This behavior is typical for
ordinary transitions in Pashen-Back regime, but the difference is that the probabilities
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Fig. 13.11 133Cs, D2 line,
SD transmission spectrum of
the NC with
L = λ/2 = 426 nm,
transitions
Fg = 3 → Fe = 4, 5, there
are seven MI 2 transitions
labeled 1–7 in circles and
ordinary Fg = 3 → Fe = 4
transitions labeled 2–7,
B = 3.4 kG

of some ordinary transitions at B � B0 tend to a fixed value, while the probabilities
of the MI 2 transitions tends to zero.

As it is predicted theoretically in Fig. 13.9b at B > 3000 G the group of MI 2
transitions numbered 1–7 in circles is separated from the group of ordinary transitions
numbered 1–7. A narrowband cw external-cavity diode laser with a wavelength of
λ = 852 nm and of 1MHz-linewidth was used to detect the transmission spectrum.
The nanocell with the thickness L = λ/2 = 426 nm was placed between strong
permanent magnets (with a small hole for the transmission of laser radiation) [11].
A quarter-wave plate λ/4 was used to form radiation with σ+ circular polarizations
Configuration of the B, E and k is presented in the inset (b) in Fig. 13.1, magnetic
induction B = 3.4 kG, laser power 0.1 mW, and NC temperature is 120 ◦C. SD
transmission spectrum of the NC containing Cs atomic vapor, transitions Fg = 3 →
Fe = 4, 5 is presented in Fig. 13.11. There are seven MI 2 transitions numbered 1–7
in circles and ordinary Fg = 3 → Fe = 4 transitions numbered 2–7. As it is seen in
Figs. 13.3, 13.5, 13.7 and 13.10a, a high spectral resolutionwith a simple single-beam
geometry, providing a linear response of atomic media for transmission experiments
can be attained using NC filled with an atomic vapor of alkali metal with a thickness
of the order of resonant wavelength, or half of resonant wavelength. This makes it
possible to spectrally resolve a large number of atomic transitions closely spaced in
frequency. For Cs atoms the MI 1 and MI 2 transitions are considered in paper [17].

13.3 Conclusion

Atomic transitions in alkali metals are considered that have zero probability in the
absence of a magnetic field, while have large probabilities in the presence of a
magnetic field are called magnetically induced (MI). They are of interest because
of their large probabilities, which exceed the probabilities of usual transitions in a
wide magnetic field range. Magnetically induced transitions are classified as type-
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1 (MI 1) and type-2 (MI 2) and the total number is about 100 transitions. Using
nanocells filled with the Rb and Cs atomic vapors with a thickness of the order of
resonant wavelength or half of resonant wavelength it makes possible to spectrally
resolve a large number of atomic transitions closely spaced in frequency and study
individual behavior of MI 1 and MI 2 transitions. Good agreement between the
experiment and theoretical calculations is observed. The 87Rb atom MI 2 transitions
Fg = 1 → Fe = 3, 85Rb atomMI 2 transitions Fg = 2 → Fe = 4 and Cs atomMI 2
transitions Fg = 4 → Fe = 2 have been successfully implemented and described in
the papers [14, 16] to obtain electromagnetically induced transparency phenomena
in a strong magnetic fields.

Acknowledgements The work was supported by the Science Committee of RA, in the frames of
the research project No 21T-1C005.

References

1. Tremblay, P.,Michaud, A., Levesque,M., Thériault, S., Breton,M., Beaubien, J., Cyr, N.: Phys.
Rev. A 42(5), 2766 (1990)

2. Hakhumyan, G., Leroy, C., Mirzoyan, R., Pashayan-Leroy, Y., Sarkisyan, D.: Europhys. J. D
66, 119 (2012)

3. Sargsyan, A., Tonoyan, A., Hakhumyan, G., Papoyan, A., Mariotti, E., Sarkisyan, D.: Laser
Phys. Lett. 11(5), 055701 (2014)

4. Sargsyan,A., Tonoyan,A.,Hakhumyan,G., Sarkisyan,D.: JETPLett. 106(11), 700–705 (2017)
5. Tonoyan, A., Sargsyan, A., Klinger, E., Hakhumyan, G., Leroy, C., Auzinsh, M., Papoyan, A.,

Sarkisyan, D.: Europhys. Lett. 121(5), 53001 (2018)
6. Sargsyan, A., Klinger, E., Leroy, C., Vartanyan, T.A., Sarkisyan, D.: Opt. Spectrosc. 127(3),

411–417 (2019)
7. Sargsyan, A., Tonoyan, A., Mirzoyan, R., Sarkisyan, D., Wojciechowski, A.M., Stabrawa, A.,

Gawlik, W.: Opt. Lett. 39(8), 2270–2273 (2014)
8. Zentile, M., Keaveney, J., Weller, L., Whiting, D.J., Adams, C.S., Hughes, I.G.: Comput. Phys.

Commun. 189, 162 (2015)
9. Olsen, B.A., Patton, B., Jau, Y.Y., Happer, W.: Phys. Rev. A 84, 063410 (2011)
10. Sargsyan, A., Klinger, E., Amiryan, A., Tonoyan, A., Sarkisyan, D.: Phys. Lett. A 390, 127114

(2021)
11. Sargsyan, A., Tonoyan, A., Sarkisyan, D.: JETP Lett. 113(10), 605–610 (2021)
12. Demtröder, W.: Laser Spectroscopy: Basic Concepts and Instrumentation. Springer, Berlin

(2004)
13. Sargsyan, A., Amiryan, A., Pashayan-Leroy, Y., Leroy, C., Papoyan, A., Sarkisyan, D.: Opt.

Lett. 44, 5533 (2019)
14. Sargsyan, A., Tonoyan, A., Papoyan, A., Sarkisyan, D.: Opt. Lett. 44(6), 1391 (2019)
15. Sargsyan, A., Hakhumyan, G., Papoyan, A., Sarkisyan, D.: JETP Lett. 101, 303 (2015)
16. Sargsyan, A., Tonoyan, A., Sarkisyan, D.: JETP 133(1), 16–25 (2021)
17. Sargsyan, A., Tonoyan, A., Vartanyan, T.A., Sarkisyan, D.: Opt. Spectrosc. 128, 1939–1947

(2020)



Chapter 14
Effect of Molecular and Electronic
Geometries on the Electronic Density
in FLO-SIC

Simon Liebing , Kai Trepte , and Sebastian Schwalbe

Abstract Recently, Trepte et al. [J. Chem. Phys., vol. 155, 2021] pointed out the
importance of analyzing dipole moments in the Fermi-Löwdin orbital (FLO) self-
interaction correction (SIC) for cyclic, planarmolecules. In thismanuscript, the effect
of the molecular and electronic geometries on dipole moments and polarizabilities
is discussed for non-cyclic molecules. Computed values are presented for water,
formaldehyde, and nitromethane. Continuing the work of Schwalbe et al. [J. Chem.
Phys. vol. 153, (2020)], we reconfirm that systematic numerical parameter studies
are essential to obtain consistent results in density functional theory (DFT) and
SIC. In agreement with Trepte et al. [J. Chem. Phys., vol. 155, 2021], DFT agrees
well with experiment for dipole moments, while SIC slightly overestimates them. A
Linnett double-quartet electronic geometry is found to be energetically preferred for
nitromethane.

14.1 Introduction/Motivation

Electronic structure methods have become more important over recent years [1, 2].
These methods can be used to verify experimental observations [3–7]. However, the
role of electronic structure methods has changed significantly over the years, as they
allow to determine properties which are not easily accessible by experiments
[8–11]. Screening for novel materials utilizing purely theoretical and/or computa-
tional frameworks saves time, work andmoney [12–16]. The leading methodology is
Kohn-Sham (KS) density functional theory (DFT) [17], based on its suitable accuracy
and reasonable numerical effort. Machine learning (ML) strategies are used to speed-
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up DFT [18] even more or to find novel density functional approximations (DFAs)
[19, 20]. The accuracy of novel DFAs [20–22] is getting closer to chemical accuracy.

Some remaining limitations of DFT can be attributed to the so-called self-
interaction error (SIE), describing artificial interactions of electrons. The Perdew-
Zunger self-interaction correction (PZ-SIC) [23] approximately removes the one-
electron SIE. It has a long history of successes and failures [24]. In PZ-SIC, the
choice of orbitals is important. Lehtola et al. [25] showed that PZ-SIC suffers from
the local minima problem. A recent formulation of PZ-SIC utilizes so-called Fermi-
Löwdin orbitals (FLO-SIC) [26–30]. FLO-SIC depends on Fermi-orbital descriptors
(FODs) [29] to construct the localized orbitals used for PZ-SIC [31]. These FODs can
be imagined as semi-classical electron positions which form an electronic geometry.
Recently, Trepte et al. [31] showed that one can guide and classify local minima in
PZ-SIC with the help of special sets of FODs that reflect chemical bonding theories
of Lewis [32] and Linnett [33, 34]. The latter is known as Linnett’s double-quartet
(LDQ) theory. While typically one is interested in the variational total energy of
the system, Trepte et al. [31] proposed to additionally monitor the dipole moment to
classify PZ-SIC solutions. The dipole moment is one of the most simple descriptor
for the electronic density—the key property in any DFA.

In this workwe investigate the influence ofmolecular and electronic geometries as
well as a properly chosen parameter space on the quality of density-related properties
in DFT and FLO-SIC. We show that numerical parameters need to be optimized
not only for the total energy but also for, e.g., the electric dipole moments and/or
polarizabilities. We discuss the results based on small, illustrative and educationally-
valuable molecules.

The manuscript is structured as follows. In the first two sections we outline the
theoretical background and the computational details, after which we present the
major results. In the last section we summarize and conclude our findings.

14.2 Theoretical Background

KS-DFT, see Fig. 14.1, is an approximation to solve the Schrödinger equation.
The total energy of a system is expressed as a functional of the electron density

EKS[nα, nβ ] = Ts[nα, nβ ] + V [n] + J [n] + KXC[nα, nβ ], (14.1)

where Ts[nα, nβ ] is the kinetic energy of the non-interacting system, V [n] is the exter-
nal potential energy, J [n] is the Coulomb functional, KXC[nα, nβ ] is the exchange-
correlation (XC) functional, n is the electron density, and α and β indicate spin
channels.

To compute the XC functional

KXC[nα, nβ ] =
∫

εhomXC [nα, nβ ]n(r)FXC dr, (14.2)
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Fig. 14.1 Simplified overview of a DFT calculation

one needs to evaluate an explicit density integral using a numerical quadrature, see
Sect. 14.3. Here, εhomXC [nα, nβ ] is the XC energy-density of the homogeneous electron
gas and FXC is an XC enhancement factor.

Several approximations exist for the XC enhancement factor, many of which
are available in Libxc [35]. These approximations lead to artificial interactions of
electrons with themselves; this is called self-interaction (SI). The corresponding SI
energy comes from an incomplete cancellation of the exchange-correlation energy
and the Coloumb energy for one-electron densities nσ

1

ESI[nσ
1 ] = KXC[nσ

1 , 0] + J [nσ
1 ]. (14.3)

In PZ-SIC, the total EKS is corrected orbital-by-orbital as

EPZ = EKS[nα, nβ ] + ESIC = EKS[nα, nβ ] −
∑

σ

N σ∑
i=1

ESI[nσ
i ]. (14.4)

A novel flavor of PZ-SIC is FLO-SIC. This formulation utilizes FODs to construct
Fermi orbitals (FO). These FOs are then orthogonalized to become FLOs. The FODs
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need to be optimized in the employed numerical parameter space using the respective
analytical gradients [36].With energy and gradient expressions at hand one can study,
e.g., ionization potentials, atomization energies or barrier heights. However, guided
by Trepte et al. [31] our focus is not only on energies, i.e., Eqs. (14.1) and (14.4), but
on properties characterizing the density. Thus, having introduced energy expressions
for DFT and PZ-SIC, we continue to discuss dipole moments and polarizabilities as
fingerprints of the electron density.

Density-related properties can be analyzed using small applied electric fields. The
total energy of a system under an external electrical field ε can be written as

E(ε) = E0 +
∑
i

μiεi +
∑
i j

αi jεiε j +O(ε3). (14.5)

Here, E0 refers to a ground state energy, e.g., KS-DFT EKS (see Eq. (14.1)) or
PZ-SIC EPZ (see Eq. (14.4)). From this energy expression we can derive the electric
dipole moment as

μi =
(

∂E(ε)

∂εi

)
ε=0

. (14.6)

Commonly, the dipole moment is directly calculated from the electronic density

μ =
∑
A

ZARA −
∫

d r n(r) r, (14.7)

where ZA, RA, and n(r) are nuclear charges and positions and the total electron
density, respectively. Note, we only discuss the electric dipole moment in this work
and refer to it simply as dipole moment. The dipole moment is a measure for the
polarity of a system and tells us about the charge separation in this system.

As an example, the molecular electrostatic potential [39] (MEP) and the dipole
moment of the H2O molecule is visualized in Fig. 14.2. The dipole points from the
more electronegative O atom to the less electronegative H atoms. This can be directly
seen in the coloring scheme of the MEP.

Having the possibility to calculate the total energy of the system under the influ-
ence of an external electric field allows to study dipole moments using, e.g., a 2-point
finite difference (FD) stencil

μFD,i = E(+εi ) − E(−εi )

2εi
. (14.8)

One can also derive the electric polarizability αi j from Eq. (14.5) as

αi j =
(

∂E(ε)

∂εiε j

)
ε=0

. (14.9)
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Fig. 14.2 Illustration of the dipole moment μ in the H2O molecule using the geometry [37] from
CCCBDB[38]. The molecular electrostatic potential (MEP) [39] was calculated using DFT with
LDA-PW, aug-pc-3, and a grid=(200,1454) in PySCF. The visualization was done using Jmol [40]

The electric polarizability can be calculated using analytical approaches, e.g., solv-
ing the coupled perturbed Hartree-Fock (CPHF) equation [41–43]. It describes the
tendency of a system to acquire an induced dipole moment in the presence of an
external electric field. Similar to the dipole moment we will refer to the electric
polarizability as polarizability.

With the dipole moment at hand, i.e., Eqs. (14.7) or (14.8), one can calculate the
directional components of the polarizability tensor as vector components

[αFD,i x , αFD,iy, αFD,i z] = μ(+εi ) − μ(−εi )

2εi
, (14.10)

which is a row in Eq. (14.11).
To further simplify the characterization of the density, we introduce scalar values.

The vectorial dipolemomentμ = (μx , μy, μz)will be represented asμ = |μ|, while
the tensorial polarizability

αi j =
⎡
⎣αxx αxy αxz

αyx αyy αyz

αzx αzy αzz

⎤
⎦ (14.11)

will be represented as α = Tr(αi j )/3. As shown by Trepte et al. [31], dipolemoments
are sensitive to the chemical bonding described by the electronic geometry. Moving
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FODs changes the dipolemoment in FLO-SIC. Dipolemoments in FLO-SIC provide
insights into whether the electronic density respects the molecular symmetry or
not [31].

In practical FLO-SIC calculations, the quality of the density is determined by the
used basis set, numerical quadrature, molecular and electronic geometry. Computa-
tional details and the used electronic structure codes are discussed next.

14.3 Computational Details

All scripts to produce the data presented in the manuscript are available at https://
gitlab.com/opensic/dippo [44]. The calculationswere performedwith the all-electron
Gaussian-type orbital (GTO) codes PySCF [42] and PyFLOSIC2. PyFLOSIC2, see
https://gitlab.com/opensic/pyflosic2, is the successor of PyFLOSIC [30]. It offers
a cleaner and more modular code structure and can now easily be installed via the
Python package manager pip. For calculations of real- and complex-valued SIC,
i.e., RSIC and CSIC [25, 45, 46], we used the ERKALE code [47]. In previous
studies [30, 31] we observed that the pc-n basis sets [48, 49] perform well for
DFT as well as SIC calculations. Therefore, for all calculations in this work we use
pc-n basis set variants. All codes use the Libxc [35] library, offering access to a
vast variety of exchange-correlation functionals. From this library we access LDA-
PW [50], PBEsol [51], and r2SCAN [22]. The used codes are Open-Source codes,
meaning they are freely available to anyone [52, 53]. Open-Source codes enable
faster code development, re-usable concepts, and versatile tool-boxes.

PySCF and PyFLOSIC2 arewritten in Python, where only numerically demand-
ing parts in PySCF are written in C. Python is simple and elegant, has a friendly
and helpful community, and provides various well-maintained libraries. These are
only some reasons why it is easy for students or non-programmers to start coding
with Python. This allows to solve even non-trivial tasks, like writing a DFT code
from scratch [54] in the limited time of a master thesis when guided and educated
with novel strategies [55].

A numerical quadrature [56] is needed to evaluate XC properties in DFT and SIC,
see Eq. (14.2) in Sect. 14.2. We will refer to it simply as grid. A typical grid consists
of a radial and an angular part. Its size is given as a pair of numbers, i.e., the number
of radial shells and the number of angular points. SIC requires significantly finer
grids than DFT [45, 46, 57]. In analogy to [30, 31], we prune the used grids neither
for DFT nor for SIC. This is done as the orbital densities evaluated in SIC are not as
smooth as the total density used in DFT [58], thus requiring a finer resolution [46].

FLO-SIC has two major variational degrees of freedom, the density matrix (DM)
and the FODs. All FLO-SIC calculations in this work are realized with a two-step
FLO-SICSCF cycle, which follows the idea proposed by [59]. In FLO-SIC, the initial
DM and initial molecular coefficients are typically the ones from a DFT calculation.
The initial FODs can be generatedwith various procedures, e.g., Python-based center
of mass PyCOM, Fermi-orbital descriptor Monte-Carlo fodMC, or other so-called
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FODgenerators [29]. All initial FODconfigurations used in thisworkwere generated
using the fodMC.

Within a full FLO-SIC calculation, the FODs are fully optimized in an inner
FOD loop for a given DM. All SIC properties are calculated for this DM and the
respective optimized FODs. Based on this, the unified Hamiltonian [30, 60–62] is
updated which then provides the next DM in the outer DM loop. The initial FODs in
the inner FOD loop are optimized using the SciPy L-BFGS-B [63–70] optimization
algorithm with a maximum force component threshold of fmax,tol = 2 · 10−4 Eh/a0.
This two-step procedure is repeated until the FOD forces reach fmax,tol and the DM
is not changing anymore.

The computational methods introduced in this section have been applied to cal-
culate dipole moments and polarizabilities. The results for water, formaldehyde, and
nitromethane are discussed in the next section.

14.4 Results

14.4.1 Sisyphus Rock: The Importance of Grid and Basis Set
Size

For the correct description of density-related properties, it is important to converge the
used numerical parameters space consisting of grid and basis set. Systematic param-
eters studies have been performed utilizing CCCBDB molecular geometries [38],
and FODs generated with the fodMC in the case of FLO-SIC to exemplify this.
The determined trends and optimal values should be transferable to other molecular
geometries and other FOD arrangements.

We carried out systematic grid convergence tests varying the number of radial
shells with a fixed number of angular points and vice versa. Detailed information
can be found at https://gitlab.com/opensic/dippo [44]. The DFT values converge at
smaller grids than the respective SIC values, see Table14.1. For LDA-PW, a value of
Nrad = 200 for the radial shells gives converged results for both DFT and SIC. The
angular dependency for DFT as well as for FLO-SIC is converged at Nang = 590.
However,we use a value of Nang = 1454 to resolve all one-electron and total densities
accurately.

Note that we investigated the convergence of the density in DFT using the dipole
moment as well as the polarizability. Both density fingerprints deliver the same
optimal parameters for the tested molecules. Thus, for FLO-SIC we only used the
dipole moment to determine optimal parameters.

Having an optimal grid of (200,1454) enabled us to determine a suitable basis set.
The convergence of the basis set for water is shown in Fig. 14.3 using DFT and in
Fig. 14.4 using FLO-SIC. The aug-pc-3 basis set shows convergence w.r.t. the basis
set size. Those parameters are optimal for water, formaldehyde, and nitromethane.
However, such convergence checks need to be done for any molecule—a Sisyphus

https://gitlab.com/opensic/dippo
 5113 38384 a 5113 38384 a
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Table 14.1 Optimal numerical parameters for DFT and FLO-SIC regarding the molecular geome-
tries reported in CCCBDB[38] for H2O[37], CH2O[71] and CH3NO2 [72]

System DFT FLO-SIC

nrad nang basis set nrad nang basis set

H2O 100 302 aug-pc-3 150 590 aug-pc-3

CH2O 100 302 aug-pc-3 200 590 aug-pc-3

CH3NO2 150 590 aug-pc-3 200 590 aug-pc-3

Fig. 14.3 H2O (DFT, LDA-PW): Convergence of the total energy Etot, the dipole moment μ and
the polarizability α w.r.t. increasing basis set size for LDA-PW DFT using PySCF. We used pc-n,
aug-pc-n, and unc-aug-pc-n with n=0-4 [48, 49]. Each plot shows the difference to the largest used
basis set

Fig. 14.4 H2O (FLO-SIC, LDA-PW): Convergence of the total energy Etot and the dipole moment
μw.r.t. increasing basis set size for LDA-PWFLO-SIC using PyFLOSIC2.We used pc-n, aug-pc-n,
and unc-aug-pc-n with n=0-4 [48, 49]. Each plot shows the difference to the largest used basis set.
Only the density matrix was optimized, while the FODs were fixed

work. Otherwise, the meaning of absolute values for dipole moments or polarizabil-
ities are questionable.

Having established a suitable numerical parameter space, we continue to discuss
the influence of molecular geometries on dipole moments and polarizabilities.

14.4.2 Pandora’s Box: The Quality of Molecular Geometries
Matters

Amolecular geometry is needed to perform electronic structure theory calculations;
in case of DFT see Fig. 14.1. While such geometries can be optimized within most
theories, it is not uncommon to use a fixed molecular geometry to be comparable to
other approximations or to simply save computational time.
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Table 14.2 Molecular information for H2O, CH2O, and CH3NO2 with number of atoms, electrons,
α and β electrons Nnuc, Nelec, Nα and Nβ . Experimental references for the dipole moments [79]
and polarizabilities [38] are provided

System Nnuc Nelec Nα Nβ μREF [D] αREF [a30]

Water (H2O) 3 10 5 5 1.85 10.13

Formaldehyde
(CH2O)

4 16 8 8 2.33 18.69

Nitromethane
(CH3NO2)

7 32 16 16 3.46 32.39

For quantum chemical calculations there exist a vast a variety of seemingly
promising databases, such as CCCBDB [38], ChemSpider [73, 74], PubChem [75],
and many more. However, the quality of the geometries in these databases can
vary [76]. CCCBDB offers access to a vast variety of molecular geometries. In
this work, we used the CCCBDB geometries which can be found in the experimen-
tal section. Note that those geometries are not necessarily experimental ones. For
example, for water [37] the geometry is derived semi-empirically utilizing experi-
mental reference values. PubChem provides molecular geometries calculated using
the MMFF94s [77] force field. For other databases such as ChemSpider it is even
not that trivial to find the quality of the geometries.

The question of the quality of the molecular geometry might be important for
other fields as well. For example, machine learning [78] models might be trained on
low quality geometries, which could affect the predictability of the resulting models.
For SIC calculations, the quality of the molecular geometry is of great importance, as
the orbital densities are sensitive to the underlying molecular geometry. Molecular
geometry optimizations are a standard task for commonly used approaches like DFT.
However, for more computational demanding methods like FLO-SIC, full geometry
optimization require high computational effort. This is caused by the coupled degrees
of freedoms of nuclei and FODs [31].

The following results are based on the small, educational systemsH2O,CH2O, and
CH3NO2.We summarized some essential molecular information for thosemolecules
in Table14.2, including experimental reference values for dipole moments and polar-
izabilities.

The effect of molecular geometries on density fingerprints, i.e., dipole moments
and polarizabilities, is significant even at the DFT level (see Fig. 14.5). For the used
test systems the molecular geometries from CCCBDB provide the best molecular
geometries; the dipole moments and polarizabilities are close to the values obtain
from a DFT optimized geometry. The basis set size affects the density-related prop-
erties significantly, and only the aug-pc-3 basis set provides converged results. The
molecular geometries from PubChem and ChemSpider should be used with care, as
the dipolemoments deviate significantly from values obtained from aDFT optimized
geometry.
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Fig. 14.5 Influence of molecular geometries on density fingerprints, e.g., dipole moments and
polarizabilities. For these DFT calculations, LDA-PW was used with a grid=(200,1454) in PySCF.
Molecular geometries are taken from common chemical databases. In addition, DFT optimized
geometries were used. These DFT geometry optimizations were started from the CCCBDB geome-
tries utilizingERKALEwith aug-pc-3 and grid=(200,1454). The used reference values are provided
in Table14.2

Table 14.3 Finite-difference (FD) errors of polarizabilities in a30 for the chosen step size of ε =
10−7 a.u. utilizing the 2-point FD approximation and LDA-PWDFT. The analytical α as calculated
with PySCF were used as reference

Database aug-pc-0 aug-pc-1 aug-pc-2 aug-pc-3 aug-pc-4

CCCBDB 0.00 0.29 −0.01 −0.01 −0.01

ChemSpider 0.00 −0.08 0.00 −0.02 −0.00

PubChem −0.01 0.02 0.02 −0.01 0.33

DFTopt 0.00 0.00 −0.03 −0.01 0.01

For all calculations, the finite difference approximations, see Eqs. (14.8) and
(14.10), agree well with the analytical results. Themean error for the dipolemoments
is 0.00 D, while the respective mean errors for the polarizabilities are given in
Table14.3.

Accordingly, for the investigated systems and the employed method the chosen
value of 10−7 a.u. for the magnitude of ε regarding the 2-point finite difference
approximation delivers reliable numerical results. Note that this finding might not be
reproducible for other systems using the same value. Having examined the depen-
dence on the molecular geometry, in Sect. 14.4.3 we proceed to investigate electronic
degrees of freedom in FLO-SIC, i.e., DM and FODs.
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14.4.3 The Sword of Damocles: Curse and Blessing
of Approximations

Approximations are often needed and can be useful to enable the treatment or compu-
tation of a specific property at a certain level of theory. However, each approximation
needs to be carefully investigated regarding the limits of its predictive power.

Effect of initial FODs Continuing the work of Trepte et al. [31], we show for
CH3NO2 that it is possible to find several FOD configurations following chemical
bonding theories. One possible FOD configuration can be based on Lewis theory of
bonding. There, the FODs formone doubleN=Oandone singleN-Obond in the -NO2

group, see Fig. 14.6. Clearly, there exist two identical Lewis configuration where the
double and single bonds are exchanged with each other. These Lewis configuration
haveN-O bond orders of 2 and 1, respectively. Regarding LDQ theory, 2 FODs of one
spin channel and 1 FOD of the other spin channel are placed between the N and the
O. This leads to bond orders of 1.5 in both N-O bonds. Besides FOD configuration
which follow chemical bond theories, other FOD configuration are possible. For
example, one can generate a configuration with an over-binding N atom, placing
two N=O double bonds in the molecule. We denote this FOD configuration as other.
Changing the N-O bond order affects the local chemical environment, and with that
the resulting SIC solution.

In electronic structure theories there exist several possibilities to treat the spin
of the system. In FLO-SIC, we can do restricted calculations where all electrons
are paired, Nα = Nβ , and unrestricted calculations where Nα and Nβ can vary. In
restricted FLO-SIC only one set of FODs is needed, while in unrestricted FLO-SIC
two sets of FODs are required.

Given that the calculations for CH3NO2 are more computational demanding, we
use a grid=(200,1454) and the aug-pc-2 basis set. As seen in Sect. 14.4.1, using this
basis set comes with errors in the order of mEh and mD w.r.t. to the basis set limit.
However, the energy difference of the considered FOD configurations, see Fig. 14.6,
are in the order of 10−2 Eh. The differences in the dipole are in the order of 10−1 D.
Thus, using the aug-pc-2 basis set should deliver reliable trends.

We performed restricted FLO-SIC calculations for the Lewis configuration of
CH3NO2. The FODs converge to an electronic geometry which does not follow
any bonding theory. The double bond FODs are not lying on the N-O bond axis.
Instead, they are distorted towards the respective O atoms. Given this non-symmetric
arrangement of FODs, the density of CH3NO2 becomes non-symmetric. This leads
to an energy of Efinal = −245.80939 Eh and a non-symmetric dipole moment with
an absolute value of μ = 4.06 D.

The effect of various unrestricted FOD configurations for CH3NO2 is shown in
Fig. 14.6. The differences in these configurations can already be seen for the initial
FODs. Only optimizing the density shows significantly different dipole moments,
and only the LDQ value is close to the experimental value. The energy for the
initial LDQ arrangement is also the lowest. Upon full optimization of the density
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Fig. 14.6 Total energies and dipole moments for various unrestricted FOD configurations for
CH3NO2, evaluated at the initial and the final FODs. Other represents a structure with two N=O
double bonds. Any additionally tested structure converged into the LDQ solution. Calculations were
performed using PyFLOSIC2 employing LDA-PW, the aug-pc-2 basis set and a grid=(200,1454).
In addition, the RSIC center of mass (COM) obtained from ERKALE are shown in the light green
box as comparison to the final LDQ FODs. Color code: C-gray, H-white, O-red, N-blue, spin-up
FOD/COM - green, spin-down FOD/COM - red. There are situations where spin-up and spin-down
FODs/COMs have the same position. Then, only one color is seen

matrix as well as the FODs, the configuration based on LDQ deliver the lowest
energy. In the unrestricted calculations, both the initial LDQ and the initial Lewis
configuration converge to a final FOD arrangement which can be characterized via
LDQ. Interestingly, the other FODs stay in the their configuration, but the final
energy is higher than for the LDQ FODs.

LDQ not only gives the lowest energy but also the best SIC dipole moment for
CH3NO2. As a highlight, the center of mass (COM) for the optimal RSIC localized
orbitals using ERKALE also reflect the LDQ chemical bonding motif, see the RSIC
box in Fig. 14.6. In this section, we reconfirm that the choice of the initial FODs sig-
nificantly influences dipole moments in FLO-SIC. Next, we describe how the FOD
optimization itself can influence dipole moments.

Effect of FOD optimizationWe continue the discussion for H2O and CH2O. These
two molecules only have one meaningful FOD configuration, see Fig. 14.7. Having
one FOD configuration may allow finding the same local minima in a reproducible
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Fig. 14.7 Displaying both themolecular and electronic geometries for H2O and CH2O. The picture
is generated with the PyFLOSIC2 graphical user interface (GUI). Note, only H2O and CH2O are
shown as they have only one trivial initial FOD configuration, whereas CH3NO2 is more complex;
see Fig. 14.6

(a) H2O (b) CH2O

Fig. 14.8 Effect of FOD optimization vs. basis set size using the LDA-PW XC functional for (a)
H2O and (b) CH2O. The tag initial represents FODs generated by the fodMC, loose represents
FODs with a maximal force criterion of fmax,tol = 5 · 10−3 Eh/a0, and tight refers to optimized
FODs with fmax,tol = 2 · 10−4 Eh/a0. A grid=(200,1454) was used. Note that when initial and
loose give the same result, the initialized FODs are already at a force threshold of 5 · 10−3 Eh/a0

fashion. Thus, those molecules are promising candidates for systematic FOD con-
vergence studies.

In FLO-SIC it is rather easy to make various approximations. A common approx-
imation is to use fixed FODs which are not optimized for the numerical parameter
space of the respective calculation. Optimizing the FODs is, however, critical to
obtain reasonable FLO-SIC solutions. Such optimizations are carried out until a
specific threshold for the maximum FOD force, fmax,tol, is reached. The influence
of the FOD optimization on the total energy and the dipole moment for water and
formaldehyde is shown in Fig. 14.8.

FLO-SIC values for the total energy and the dipole moment change drastically
when going from an initial set of FODs to optimized FODs. Here, optimized FODs
are characterized by fmax,tol = 2 · 10−4 Eh/a0. Stopping the optimization too early,
i.e., at fmax,tol = 5 · 10−3 Eh/a0 can lead to insufficiently converged densities and
energies. This furthermore leads to an incorrect prediction of trends; increasing the
basis set size should smoothly converge the dipole moments, see Fig. 14.5. However,
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Table 14.4 Dipolemoments for DFT and FLO-SIC using three XC functionals. Using the aug-pc-3
basis set and a grid=(200,1454) in PySCF for DFT and PyFLOSIC2 for FLO-SIC

XC functional H2O CH2O

μDFT μFLO-SIC μDFT μFLO-SIC

LDA-PW 1.86 1.99 2.28 2.72

PBEsol 1.82 1.95 2.23 2.65

r2SCAN 1.83 1.96 2.31 2.62

with insufficiently optimized FODs these trends can be predicted incorrectly, as can
be seen in Fig. 14.8.

Accordingly, global statements and generalization of trends are only valid for
optimized FODs in combination with a sufficient basis set and grid. In the tested
cases, the aug-pc-3 basis set with a grid=(200,1454) deliver converged results, in
analogy to Sects. 14.4.1 and 14.4.2.

As proposed by the authors [31], monitoring the dipole moment is important
to classify and analyze SIC solutions. We showed here that converging the total
energy is necessary, but might not be sufficient when one aims to study density-
related properties, i.e., dipole moments or polarizabilities. All calculations in the
previous sections utilized the LDA-PW functional. Next, we discuss how changing
the exchange-correlation functional influences dipole moments.

Effect of exchange-correlation functional For H2O and CH2O, we find that already
LDA-PW describes dipole moments qualitatively correctly for DFT and SIC. How-
ever, comparing three exchange-correlation functionals the absolute dipole moments
differ, see Table14.4. Note that for CH3NO2 this comparison was not carried, see
Effect of initial FODs for more information.

All three pure DFAs agree quite well with the experimental dipole reference
values, see Table14.2. FLO-SIC tends to overshot the dipole moment in order of
10−1 D w.r.t. the DFT values. This trend has also been observed in the literature,
see [31]. For DFT, LDA-PW performs best for H2O while r2SCAN agrees the most
for CH2O. In case of FLO-SIC, the best dipoles are given by PBEsol for H2O and
by r2SCAN for CH2O.

In the previous sections we have discussed results for FLO-SIC. To investigate
the influence of a specific flavor of SIC on dipole moments, we compare FLO-SIC,
RSIC, and CSIC in the next section.

Effect of SIC methods To verify the used numerical parameter space, i.e., the aug-
pc-3 basis set and a grid=(200,1454), we carried out RSIC and CSIC calculations
using ERKALE. There is no significant difference between FLO-SIC and RSIC
values, see Table14.5. This is noteworthy as the results are calculated with two
independent electronic structure codes. Thus, the used numerical parameter space
is sufficient to deliver reproducible results. SIC suffers from the multiple local-
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Table 14.5 Comparison of μ in D using the aug-pc-3 basis set, a grid=(200,1454) and the LDA-
PW functional. Molecular structures from the CCCBDB database [38] were used, coming from the
following sources: H2O[37], CH2O[71] and CH3NO2 [72]. DFT values are obtained from PySCF,
FLO-SIC values are obtained from PyFLOSIC2, and RSIC and CSIC values come from ERKALE

Molecule μDFT μFLO-SIC μRSIC μCSIC

H2O 1.86 1.99 1.99 2.06

CH2O 2.28 2.72 2.72 2.70

CH3NO2 3.50 3.67 3.70 3.90

minima problem [25], see Sect. 14.1. Accordingly, we recommend to verify FLO-SIC
results with independent SIC methods such as RSIC. For example for nitromethane,
see Effect of initial FODs, only the LDQ FLO-SIC dipole agrees with the RSIC
solution. FLO-SIC, RSIC and CSIC together deliver a consistent SIC description.
The advantage of FLO-SIC is the access to bonding information. This information
allows to easily classify and further analyze PZ-SIC solutions [31].

In the next section we summarize and conclude our findings.

14.5 Summary and Conclusion

As shown in Sect. 14.4.1, and already stated in earlier works [30, 31, 45], SIC needs
finer numerical quadrature meshes in comparison to DFT calculations. Global state-
ments about the predictive power of SIC are only meaningful using very accurate
numerical parameter spaces.

In this work we show how density-related properties, i.e., dipole moments and
polarizabilities, can help to determine an appropriate numerical parameter space for
DFT and SIC. For our investigated molecules, the aug-pc-3 basis set and a numerical
grid of (200,1454) is such an appropriate parameter space. Note, even trends can
clearly change using other numerical parameters. While it is mandatory to converge
the energy it is not necessarily sufficient for the study of density-related properties.

Furthermore, using water, formaldehyde, and nitromethane we show that these
density-related properties are not only sensitive to the used numerical parameter
space. They are also significantly influenced by the used molecular geometry, see
Sect. 14.4.2.Molecular geometries from common chemical database, i.e., CCCBDB,
PubChem, or ChemSpider, can deliver very different dipole moments and polariz-
abilities. Only molecular geometries from the CCCBDB database deliver reasonable
trends in comparison to optimized geometries.

Continuing thework of [31], for FLO-SICwe showed that density-fingerprints are
also sensitive to the chemical bonding situation introduced by FODs.We demonstrate
that the numerical quality of the FODs, represented by their gradients, as well as
the choice of initial FODs clearly influences the dipole moments. For molecules
with non-trivial bonding situations, e.g., nitromethane, it is highly recommended to
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use various initial FOD configurations. This allows to reasonably sample the FOD
configuration space to determine the most reasonable FOD configuration. Such FOD
configurations typically follow chemical bonding theories [31], i.e., Lewis and LDQ.
In case where several FOD configurations are possible, FODs based on LDQ are
often superior in FLO-SIC. This has been shown in [31] and verified here again for
nitromethane in Sect. 14.4.3.

When computational timematters, the simplest density functional approximation,
i.e., a local density approximation like LDA-PW, provides reasonable trends for
dipole moments in FLO-SIC, as seen in Sect. 14.4.3. If computational time is not
limited we recommend to use higher rung functional like PBEsol or r2SCAN to
verify and further analyze determined trends.
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Chapter 15
Approximate Solutions of a Kinetic
Theory for Graphene

D. B. Blaschke, V. V. Dmitriev, N. T. Gevorgyan, B. Mahato, A. D. Panferov,
S. A. Smolyansky, and V. A. Tseryupa

Abstract The effective mass approximation is analysed in a nonperturbative kinetic
theory approach to strong field excitations in graphene. This problem is highly actual
for the investigation of quantum radiation from graphene, where the collision inte-
grals in the photon kinetic equation are rather complicated functionals of the distri-
bution functions of the charge carriers. These functions are needed in the explicit
analytic definition as solutions of the kinetic equations for the electron-hole exci-
tations in the presence of a strong electromagnetic field. In the present work it is
shown that the suggested approach is rather effective in a certain range of nonlin-
earity parameters. In the standard massive quantum electrodynamics the usability of
the analogical approximation is limited to a very narrow region of parameters of the
external field.
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15.1 Introduction

It is well known that the interaction of carriers in graphene with an external elec-
tromagnetic field is strongly nonlinear with respect to the parameters of the external
field [1–3] and is nonanalytic in the fine structure constant [4, 5]. This renders
impossible applications of perturbation theory unjustified and stimulates the search
for nonperturbative approaches. Paradigms are here exactly solvable quantum field
theory models. However, these solutions in graphene are limited to narrow classes of
external field models (constant electric field [6], Eckart’s potential [7]). Alternative
cases are founded either on direct application of the basic equations of motion [8,
9] or on the nonperturbative kinetic theory [1–3, 10] constructed in analogy to the
standard strong field QED [11–14].

A higher level of description of the graphene excitations is connected with the
investigation of differentmechanisms of radiation. In the simplest case the question is
about the emission of a quasiclassical electromagnetic field by the plasma currents in
graphene [15, 16].There is also the radiationof a quantizedfield that is the result of the
direct interaction of the charge carriers with the photon field. A consistent realization
of this approach is based on a truncation procedure of the Bogoliubov-Born-Green-
Kirkwood-Yvon (BBGKY) chain of equations for the correlation functions of the
electron-hole-photon—system [3]. This leads to a closed system of kinetic equations
(KEs) with collision integrals (CIs) of non-Markovian type in the electron-hole and
photon sectors and with the Maxwell equation for the acting inner (plasma) field. As
far as the evolution of the electron-hole plasma is accompanied by high-frequency
quantum oscillations, in the standard strong field quantum electrodynamics known
as Zitterbewegung, any solution of this KE system turns out very susceptible to the
selection not only of the model and the parameters of the external field but also to
the necessary roughening in the process of calculating the physical quantities.

Belowwewill consider this problem on the examples of two approximative meth-
ods for the solution of the basic KEs describing the production of eh-pairs under the
action of an external field: the low density approximation [17] and the method of
the asymptotic decompositions [18] (Sect. 15.2). The ideas for these approaches are
borrowed from the standard QED. In the considered case of the massless theory, an
essential role plays the effective mass approximation [19]. The results of analytical
calculations of the basic functions of the kinetic theory are compared among them-
selves and with the exactly solvable model (Sect. 15.3). The considered examples
show that the introduction of the effective electromagnetic mass allows to obtain
rather simple expansions for the distribution functions of the electron-hole plasma
in graphene for time dependent electric fields with different pulse shape.
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15.2 The Basic KE and Its Approximate Solutions

The basic KE for description of excitation and evolution of the electron-hole plasma
in graphene under the action of an external quasiclassical spatially uniform time-
dependent electric field with the vector potential Aμ = (0, A(1)(t), A(2)(t), 0) in the
Hamiltonian gauge A(0) = 0 can be written in the integro-differential form [1–3, 10]

ḟ (p, t) = 1

2
λ(p, t)

∫ t

t0

λ(p, t ′)[1 − 2 f (p, t ′)] cos θ(p; t, t ′)dt ′ (15.1)

or as the equivalent system of ordinary differential equations

ḟ (p, t) = 1

2
λ(p, t)u(p, t), (15.2)

u̇(p, t) = λ(p, t)
[
1 − 2 f (p, t)

] − 2ε(p, t)

�
v(p, t), v̇(p, t) = 2ε(p, t)

�
u(p, t).

Here f (p, t) is the distribution function of charge carriers introduced by taking
into account the electroneutrality f (p, t) = fe(p, t) = fh(−p, t), while the auxiliary
functions u(p, t) and v(p, t) are defined as [2]

u(p, t) = i
[
f (+)(p, t) − f (−)(p, t)

]
, v(p, t) =

[
f (+)(p, t) + f (−)(p, t)

]
(15.3)

via the anomalous averages

f (+)(p, t) = 〈in|a+(p, t)b+(−p, t)|in〉, f (−)(p, t) = 〈in|b(−p, t)a(p, t)|in〉, (15.4)

where a+ (a) and b+ (b) are the creation (annihilation) operators for electrons and
holes, respectively. The excitation function λ(p, t) in the low energy model is deter-
mined as

λ(p, t) = ev2
F [E (1)(t)P2 − E (2)(t)P1]

ε2(p, t)
, (15.5)

where vF = 106 m/s is the Fermi velocity for electrons in graphene, E (k) =
− 1

c Ȧ
(k)(t) is the field strength (k = 1, 2), Pk = pk + e

c A
k(t) is the quasi-momentum

(generalized momentum) and ε(p, t) = vF

√
P2 is the quasi-energy. The electron

charge is −e. Finally, the quantity θ(p; t, t ′) in the KE (15.1) is the phase,

θ(p; t, t ′) = 2

�

∫ t

t ′
dt ′′ε(p, t ′′). (15.6)

The KE (15.1) is an integro-differential equation of the non-Markovian type with
a fastly oscillating kernel. There is an integral of motion [1, 2]

(1 − 2 f )2 + u2 + v2 = const, (15.7)
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where the constant is fixed with the corresponding initial condition.
The KEs (15.1), (15.2) for the case of graphene were obtained in the works [1–3,

10] by theBogoliubovmethod of canonical transformations that can by realized in the
massless D = 2 + 1 theory in an explicit form. On the other hand the system (15.2)
can be reduced from the general system of twelve KEs in the standard QED [20].

The massless low energy model of graphene with the lightlike dispersion law
ε(p, t) leads to the absence of the critical field that is characteristic for massive
QED and results in a specific feature of the momentum dependence of the excitation
function λ(p, t) (15.5): this function decreases in the ultraviolet area, λ(p, t) ∼
1/P → 0 at P → ∞ and is singular in the infra-red area λ(p, t) → ∞ at P → 0.
The last distinction also leads to a nonanalytic structure of the theory in its dependence
on the coupling constant and to the absence of the standard perturbation theory.

Let us write also the differential equation of the third order that is equivalent to
the system of equations (15.2),

...
g +g̈

[
ελ

(
1

ελ

)′
− λ̇

λ

]
+ ġ

[
4ε2 + λ2 − ελ

(
λ̇

ελ2

)′]
+ gελ

(
λ

ε

)′
= 0,

(15.8)
where g = 1 − 2 f . In Eq. (15.8) the ′ denotes also the time derivative.

At the present time, an exact solution of the KEs (15.1), (15.2) is not known.
However, below we will assume that the well-known exact solutions of the Dirac
equation for a constant electric field and the Eckart potential are at the same time
solutions of the KEs (15.1), (15.2). This assumption gives a basis for comparing
these exact solutions with the known approximate solutions of the KEs (15.1), (15.2)
and to construct then some new classes of approximate solutions.

In order to estimate the effectivity of the approximate solutions, we will compare
them to the exact solutions (analytical and numerical). Such a comparison will be
made on the level of an integral macroscopic quantity. The number density of pairs
n(t) will be considered as the simplest quantity of such type,

n(t) = N f

(2π�)2

∫
f (p, t)dp, (15.9)

where N f = 4 is the number of flavours. The integration allows here to smoothen out
some insignificant details in the momentum dependence of the distribution functions
in different approximations.

As the next step, we will consider two approximate methods of solving the KEs
(15.1), (15.2). To this end, we will consider the case of a linearly polarized electric
field A(1) = 0, A(2)(t) = A(t).



15 Approximate Solutions of a Kinetic Theory for Graphene 191

15.2.1 Low Density Approximation

This approximation corresponds to the limit f 	 1 in the r.h.s. KE (15.1). It was
introduced in the strong field vacuum production of charged particles [17] and was
used many times in strong field QED and in the kinetic theory of excitations in
graphene. It leads to the quadrature formula [1, 2]

f (t) = 1

4

[∫ t

−∞
dt ′λs(t

′)
]2

+ 1

4

[∫ t

−∞
dt ′λc(t

′)
]2

, (15.10)

where

λc(t) = λ(t) cos θ(t,−∞), λs(t) = λ(t) sin θ(t,−∞). (15.11)

In particular, it follows from Eq. (15.10), that f (p, t) ≥ 0.
In the low-density approximation, the two last KEs of the system (15.2) separate

from it,

u̇ = λ − 2ε

�
v, v̇ = 2ε

�
u. (15.12)

Then the distribution function f can be found from the first equation of the system
(15.2) alone.

The system of Eq. (15.12) corresponds to the ordinary differential equation,

�

2ε

d

dt

(
�

2ε

du

dt

)
+ u − �

2ε

d

dt

(
�λ

2ε

)
= 0 (15.13)

or

D2u + u − D
(

�λ

2ε

)
= 0, D = �

2ε

d

dt
. (15.14)

15.2.2 Effective Electromagnetic Mass Approximation

This well known approximation [19] was used already in the case of the harmonic
model of an external field in the analysis of the radiation effects in the electron-
positron plasma [21] and in the electron-hole plasma in graphene [3]. Below we will
consider a generalization of this approach to other models of the external field.

The idea of the method is that the time dependent value of the square of the
kinetic momentum P2(t) in the definition of the quasienergy ε(p, t) gets substituted
by corresponding time average ≺ P2(t) �, where the symbol ≺ ... � means the
averaging procedure over a characteristic time of the external field. In the case of the
linearly polarized electric field we obtain
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≺ P2
2 (t) �= p22 + (e/c)2 ≺ A2(t) �, (15.15)

if ≺ A(t) �= 0. Implying the substitution

P2
2 (t) →≺ P2

2 (t) �, (15.16)

in the square of quasienergy ε2(p, t) = v2
F [p21 + P2

2 (t)], one can introduce the lon-
gitudinal (with respect to external field) effective electromagnetic mass

(e/c)2 ≺ A2(t) �= m2
∗v

2
F , (15.17)

or

m2
∗ = e2

c2v2
F

1

2T

∫ T

−T
dt A2(t). (15.18)

Thus, this approximation corresponds to change

ε(p, t) → ε∗(p) = vF

√
p21 + (p22 + m2∗v2

F ). (15.19)

The appearance of the longitudinal mass is a reflection of the anisotropy of the
system stipulated by the presence of the external field and leads to a reduction of the
mobility of charge carriers along the direction of the action of the external field. In
the limiting case p2 	 m∗vF , we obtain a strong anisotropicmomentum dependence
of the quasienergy,

ε∗(p) = vF

√
m2∗v2

F + p21 . (15.20)

The approximation of the effective mass (15.16), (15.17) is valid in field models
with square integrable functions A(t) only.

The transition amplitude (15.5) in the effective mass approximation in the linearly
polarized external field will be

λ∗(p, t) = −ev2
F p1

ε2∗(p)
E(t) ≡ �(p)E(t), (15.21)

where p1 = cosϕ and ϕ is the polar angle between the vectors p and E(t).
The problem of evaluating the distribution function is now brought to the calcu-

lation of the integral

J (p, t) =
∫ t

−∞
dt ′E(t ′) cos θ∗(p; t ′,−∞), (15.22)

where θ∗(p; t ′,−∞) is defined by the relation (15.6) with the replacement ε(p, t) →
ε∗(p). The analogous integral with the replacement cos θ∗ → sin θ∗ is equal to zero,
if E(t) = E(−t). The distribution function (15.10) will then be
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f (p, t) = 1

4
�2(p)J 2(p, t). (15.23)

According to the relations (15.21) and (15.23), the anisotropy of the distribution
function ∼ cos2 ϕ is universal and does not depend on the selection of the external
field model. Another distinctive feature of the amplitude (15.21) is the singular slit
of the surfaces λ(p, t) on the plane (p1, p2) along the axis p1 = 0 (or ϕ = π/2)
for p2 �= 0, i.e. λ(p, t)|p1=0 = 0, and λ(p, t)|p1 �=0 �= 0. As it follows from the KEs
(15.1) and (15.2), this peculiarity is reproduced also in the distribution function,
f (p, t)|p1=0 = 0. This means that quasiparticles are not created in the directions
of the external field action in the strict sense. Figure15.1 demonstrates this on the
example of the Sauter impulse. This slit is evident in the figures shown below in the
case of the massless version of the theory. The introduction of a mass results in a
widening of this slit and in the appearance of the energy gap. Let us remark, that
the exact solution of the problem [7] in the case of the Sauter pulse field has the
singular line p1 = 0 in the case of the linearly polarized external field. The presence
of this infinitely thin slit is not reflected in calculations of the integral “observable”
macroscopical averages of the type of the pair number density (15.9).

15.2.3 Method of Asymptotic Decompositions

This method is adopted from the standard strong field QED [18]. We consider now
the dimensionless excitation amplitude in the exact case (15.5)

�(p, t) = e�v2
F E(t)p1/2ε3(p, t) (15.24)

and in the effective mass approximation

�∗(p, t) = e�v2
F E(t)p1/2ε3∗(p, t). (15.25)

In contrast to �(p, t), the amplitude �∗(p, t) (15.25) is limited everywhere,

�∗(p, t) ≤ �max
∗ = e�E0

3
√
3m2∗v3

F

, (15.26)

where�max∗ is the maximal value of the amplitude (15.25) in the point of time where
E(t) = E0 (see Fig. 15.1).

In order to clarify the physical meaning of the parameter�max∗ given in (15.26), let
us consider the case of a harmonic field, where themomentum of the electromagnetic
field is equal to pA = (e/c)A(t) ∼ eE0/ω. It corresponds to the contribution of the
electromagnetic field in the quasienergy εA = vF pA = eE0vF/ω. Then the relation
(15.26) can be rewritten as
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Fig. 15.1 The residual distribution function fout (x1, x2) for the Sauter field model with E =
1000 V/cm,κ = 1012 Hz, where x1,2 = p1,2/m∗vF are dimensionless momenta

�max
∗ = 2�ω2

3
√
3eE0vF

∼ �ω

εA
, (15.27)

which corresponds to the ratio of the energy of the absorbed quant of external field
to the part of energy of quasiparticle acquired as a result of acceleration in this field.

In the case of a sufficiently large low-frequency external field, �ω 	 eE0vF , one
can search a solution of the KE system (15.2) by means of an asymptotic decom-
position of the functions f, u, v for the small parameter �∗(p, t) 	 �max∗ 	 1,

f =
∑
n=0

fn, u =
∑
n=0

un, v =
∑
n=0

vn. (15.28)

Substituting these decompositions in the KE system (15.2) and equating the con-
tributions of the same orders, one can obtain the leading terms of the asymptotic
decompositions (15.28) as
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f4 = 1

4
�2

∗(p, t) = e2v4
F E

2(t)p21
16ε6∗

, (15.29)

u3 = 1

2ε∗
�̇∗(p, t) = ev2

F Ė(t)p1
4ε4∗

, v2 = �∗(p, t).

Formally, these expressions have the same form as the analogous results in stan-
dard QED which were obtained in the framework of the asymptotic decompositions
of the functional series in E0/Ec 	 1, where Ec = m2c3/e� is the critical field. In
a similar way one can obtain the post-leading terms.

The obtained asymptotic solutions of the KE (15.2) can be used for estimating
the convergences of the integral macroscopical physical values (e.g., the densities of
the conduction and polarization currents an so on) and also in analytical calculations
in theory of radiation and other transport phenomena.

Let us consider now the realization of the effective mass approximation for dif-
ferent external field models.

15.3 Approximate Solutions of KEs for Different External
Field Models in Graphene

15.3.1 The Sauter Pulse

The field of this pulse is given by

A(t) = −(cE0/κ) tanh κt, E(t) = E0/ cosh
2 κt . (15.30)

It is a classical example of the external field model leading to an exact solution of
the basic equations of motion of QED [11]. The analogous solution for the massless
graphene model was obtained in the work [7].

The effective electromagnetic mass (15.18) in this model is

m∗ = eE0/vFκ. (15.31)

The corresponding integral (15.22) is

J (p, t) = E0

κ

∫ κt

−∞
dx

cos[�(p)/κ]x
cosh2 x

, (15.32)

where �(p) = 2ε∗(p)/�. The corresponding distribution function f (p, t) is defined
then according to the Eq. (15.23). The vacuum polarization functions u(p, t) and
v(p, t) can be restored then with help of the Eq. (15.2). In the asymptotic limit
t → ∞ it follows that
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Jout (p) = 2E0

κ

π�(p)/2κ

sinh[π�(p)/2κ] . (15.33)

Then the distribution function (15.23) in the out-state will be

fout (p) =
[
eE0v

2
F p1

κε2∗(p)

π�(p)/2κ

sinh[π�(p)/2κ]
]2

. (15.34)

The corresponding expression for the pair number density (15.9) written in terms of
the dimensionless momentum xk = pk/m∗vF is

nout = N f

π

(
η2κ

8πvF

)2 ∫ ∞

0

dx x3

1 + x2
1[

sinh
(

η
2

√
1 + x2

)]2 , (15.35)

where

η = 2πm∗v2
F

�κ
= 2πeE0vF

�κ2
. (15.36)

The point η = 1 separates two domains: the domain η < 1, where the energy of
quasiparticles acquired in the external field eE0vF/κ is less than the energy of an
absorbed quant of the field �κ, and the domain η > 1, where the field acceleration
mechanism dominates.

Some results of the numerical comparison of the exact and approximate (15.35)
dependencies nout (η) are given in Fig. 15.2. From here it follows that the effective

nout (E0 ,  = 1012  s -1)
nout (E0 ,  = 1013  s -1)
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Fig. 15.2 Sauter field model for two values κ = 1012 s−1 and κ = 1013 s−1. Lines labelled (A) are
numerical solutions of the KE (15.1), lines (B) show the approximation of Eq. (15.35), and lines
(C) belong to the approximation of Eq. (15.37)
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electromagnetic mass approximation is valid in the domain η ≤ 1 and can be dubbed
“slow switching” with κ � (2πeE0vF/�)1/2. Assuming that η 	 1 on the r.h.s. of
Eq. (15.35), one can obtain

nout = −N f

π

(
eE0

2�κ

)2 [
1 + 1

2
ln

1

24
+ ln η

]
, η 	 1. (15.37)

This corresponds to the result obtained in [7].

15.3.2 The Gaussian Pulse

This field model

A(t) = −
√

π

2
cE0τerf

(
t√
2τ

)
, E(t) = E0 exp(−t2/2τ 2) (15.38)

results in the effective mass

m∗ = eE0τπ1/4

vF

(√
2 erf(1/

√
2)e−1/2 + √

π erf2(1/
√
2)/2 − erf(1)

)1/2

∼ 0.5257
eE0τ

vF
. (15.39)

The distribution function will be

f (p, t) = 1

2

[
eE0v

2
Fτ p1

ε2∗(p)
I

(
t√
2τ

,σ

)]2

, (15.40)

where σ = �(p)τ and

I

(
t√
2τ

,σ

)
=

∫ t/
√
2τ

0
dx cos(

√
2σx)e−x2 . (15.41)

A simple result follows fromEqs. (15.40) and (15.41) in the asymptotic case t → ∞,

fout (p) = π

2

{
eE0τv2

F p1
ε2∗(p)

exp

[
−2ε2∗τ 2

�2

]}2

. (15.42)

From here one can find after simple calculations the pair number density in the
out-state,

nout = −N f

(
eτE0

4�

)2 [
e−ξ2 + (1 + ξ2)Ei(−ξ2)

]
, (15.43)



198 D. B. Blaschke et al.

Gauss
Sauter

109

108

107

106

105

104

103

102

n ou
t (E

0 )
 [c

m
-2
]

10-2               10-1         100     101                E0 [V cm-1]

Fig. 15.3 The pair number densities nout for the numerical (upper lines) and approximate (lower
lines) solutions for the Sauter (κ = 1012 s−1) and Gaussian (τ = 10−12 s) pulses

where ξ = 2m∗v2
Fτ/� and Ei(−ξ2) is the exponential integral function. This result

in the region ξ 	 1 corresponds to Eq. (15.37) for the case of the Sauter pulse.
In Fig. 15.3 we compare the behaviour of the pair number densities nout for

the exact and approximate solutions for the Sauter (κ = 1012 s−1) and Gauss
(τ = 10−12 s) pulses.

15.3.3 The Harmonic Field Model

The harmonic field model

A(t) = −(cE0/ω) sinωt, E(t) = E0 cosωt; (15.44)

corresponds to the effective mass

m∗ = eE0/
√
2vFω. (15.45)

The distribution function in this field model was obtained in the work [3],

f (p, t) = f (0)(p) + f (2)(p, t), (15.46)

where the function
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f (0)(p) = (e�E0v
2
F p1)

2(4ε2∗ + �
2ω2)

8ε4∗(4ε2∗ − �2ω2)2
(15.47)

corresponds to a stationary background distribution while the function

f (2)(p, t) = (e�E0v
2
F p1)

2

8ε4∗(4ε2∗ − �2ω2)
cos 2ωt (15.48)

corresponds to the breathing mode on the doubled frequency of the external field.
The residual functions u, v can be reconstructed using Eqs. (15.46)–(15.48) and the
KE system (15.2)

u(p, t) = e�2v2
F p1

ε2∗(4ε2∗ − �2ω2)
Ė(t), (15.49)

v(p, t) = 2e�2v4
F p1

ε∗(4ε2∗ − �2ω2)
E(t). (15.50)

The distribution function (15.46)–(15.47) corresponds to the first and third harmonics
of the current density and radiation spectrum of the plasma oscillations [3]. These
results are valid in the case

�ω2/(
√
2eE0vF ) < 1. (15.51)

This limitation holds also for other field models, if the quantity ω is interpreted as
the corresponding characteristic frequency of the field alteration.

A general feature of the two outlined approximate approaches is the E2 - propor-
tionality of all the resulting distribution functions, f (p, t) ∼ (eE0)

2. This feature
was obtained in the work [22] on the basis of an analysis of the numerical solutions
of the corresponding KEs in standard QED, see also [23].

The effectiveness of the low density approximation in the standard strong field
QED for rather weak fields E0 	 Ec has been investigated in the work [24]. The
additional introduction of the effective mass approximation results herein a strong
restriction of the domain of applicability of the method.

15.4 Conclusion

In the present work we have outlined a simple and rather general approach to obtain
approximate solutions for the distribution functions of charge carriers in graphene
based on nonperturbative KEs. This was achieved by a combination of the low den-
sity approximation and the concept of an effective electromagnetic mass. Such an
approach is effective for a rather wide class of external field models with the param-
eters limited by the relation (15.51).
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The considered approximation is of particular interest for the investigation of such
complicated nonlinear single-photon effects in graphene as the emission (absorption)
and annihilation (photoproduction) and the more complex two-photon processes.
Such kind of nonlinear phenomena in graphene became accessible for experimental
verification recently, see [15, 16]. The first step in this direction was done in the
work [3], where the effect of quantum radiation was predicted which is identified
well on the background of the quasiclassical radiation of the plasma currents.
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Chapter 16
Possibility of Creating a Low-Cost Robot
Assistant for Use in General Medical
Institutions During the COVID-19
Pandemic

V. Chekubasheva , O. Glukhov , O. Kravchuk , Y. Levchenko ,
E. Linnyk , and V. Rohovets

Abstract This article analyzes the experience and prospects of creating a robot
assistant formedical institutions using in themodern conditions ofUkraine. Themain
directions of fundamental and applied research are proposed, taking into account
budget equipment. Recently, the creation of a system for monitoring the condition of
patients in difficult epidemiological conditions has become of particular relevance
in the world. It involves the use of an integrated autonomous control system for
robotic patients to work with patients in hospitals. For medical institutions, the task
of equipping with modern pieces of equipment is also relevant. Autonomous systems
carry out independent processing of medical premises and instruments, especially
in infectious diseases departments and also premises with increased requirements
for cleanliness. One of the possible solutions to this problem is the use of medical
autonomous robotic assistants.

16.1 Introduction

Today, slowing down the spread of the infectious disease caused by the SARS-CoV-2
virus is one of the priorities of biomedical research. The main centers that have a
significant impact on this are the infectious diseases departments of hospitals. Junior
medical personnel is at the greatest risk due to prolonged direct contact with the
infected people, whose task is to take all the main medical parameters of patients
and monitor patients’ conditions. At the same time, due to the huge influx of infected
people, medical facilities require constant disinfection to reduce the risk of infection.
Including roomswith increased requirements for cleanliness, such as surgical rooms.
The performance of such work by personnel exposes them to a constant high risk of
infection and requires a lot of time.
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The solution to these problems can be an autonomous robotic system that replaces
part of the functions of juniormedical staff and thereby reduces the time of interaction
with sick patients. Such systems using frees you from daily everyday activities and
allows you to focus on more seriously ill patients.

At the moment, robotic systems are being widely implemented in various fields:
medicine [1], agriculture [2], logistics [3], industrial and space sectors [4], military
industry [5], etc. The use of cross solutions from different areas makes it possible
to improve the existing [6] robotic system and equip it with a set of devices for
performing specialized tasks. In addition, the use of already known [7, 8] and
available technologies can reduce the cost of a robotic system compared to existing
analogs [9–11].

Thus, the purpose of this work is to create a budget autonomous robotic system
with a replaceable set of blocks for various functional purposes to perform certain
medical tasks. Namely: disinfection of premises, assistance in the delivery of tests
and drugs, in the removal of basic medical indications of patients.

16.2 Methods and Materials

Pathophysiological mechanisms of COVID-19 involve inflammation, fever, hypoxia,
electrolytes, acid-base balance disorder, shock, and other basic pathological pro-
cesses. According to existing studies and literature reports, patients with COVID-19
have been found to often suffer from the following dysfunctions: dyspnea, fever,
fatigue, poor appetite, tachycardia, and decreased oxygen-carrying capacity. That is
why the primary parameters that nursing staff control when bypassing patients are
saturation, body temperature, pressure, pulse, diuresis, and respiratory rate [12].
The first four earlier noted parameters measurements can be carried out based on a
robotic system using sensors of certain functionality [13].

Often the patient’s condition remains stable during the bypass, but in just a few
hours it can deteriorate sharply. In overcrowded hospitals, when patients are placed
literally in corridors and other departments that are not equipped for emergency
needs, it is extremely difficult to conduct a high-quality and timely examination of
each patient. Because doctors have to spend a lot of time on especially seriously ill
people. In addition, it ismedical workers who aremost at risk, not only from infection
but also from professional overtimework and nervous strain. In this way, a functional
diagram of the robotic platform was developed based on the above provisions (see
Fig. 16.1).

This article proposes a development that combines the functions of processing
rooms for various needs, as well as daily patient surveys, which improves the capa-
bilities and equipment of hospital wards, can record a standard number of polled
parameters with their sorting. Also, this device can be used as local delivery of
medicines and food to patients. This system will help reduce the workload on them
and compensate for the shortage of personnel.
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Fig. 16.1 The functional scheme

16.3 Results and Their Analysis

The system is modular and allows you to combine blocks depending on the task.
The robot consists of 7 blocks (see Fig. 16.2): a mobile platform for autonomous
movement; battery pack; a processing unit for a room without a person present,
represented by an ozone generator; sensor unit for monitoring human parameters;
a block for placing things necessary for medical personnel, patient test results, and
drugs; a tablet for visualizing the attending physician and an interface for managing
the system; block for processing premises with the presence of people.

16.3.1 Navigation Algorithm, the Motion Platform

TurtleBot 3WafflePi [14] is used as amobile platformas the best option to provide the
necessary functions: reliability, functionality (support for ROS), optimal dimensions
(281mm/306mm/141mm), high transported weight (maximum payload 30 kgs).
This has the following parameters: implementation on Raspberry Pi 3, maximum
translational velocity is 0.26 m/s and rotational velocity is 104.27 deg/s, presence
of lidars, camera module, gyroscope, and accelerometer to implement the vSLAM
method [15] to optimize the movement of the robot. The device is equipped with a
camera that allows you to effectively analyze the space, remembering the location
of objects on the territory and using the ceiling for orientation. This format builds a
more accurate floor plan that can be viewed in a mobile application. Difference from
the first type: the user can interact with the map. The application provides access to
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Fig. 16.2 The 3D model image of robotic assistant

building virtual walls and designating specific places for local processing [16]. It
is also necessary to use methods [17] for determining the presence of people in the
room.

16.3.2 Power Supply Design

The main method of charging the batteries of the assistant robot is an induction
charging station, which is provided using two insulated coils. The maximum power
transmitted by the charging station is 24W, while the efficiency is 86%, the time
for a full charge is 5–6 hours. The main advantage of this system is the minimal
participation of a person in ensuring the process of charging the device. Power is
supplied through shielded coils. Before power is applied, the transmitter sends a test
signal to determine the receiver, after which a connection is established. The receiver
tells the transmitter how much power to send and when (see Fig. 16.3). In addition,
UV lamps are placed on the docking station to ensure the treatment of the external
surfaces of the system.

To ensure maximum efficiency of charging stations it is necessary to ensure accu-
rate positioning of the mating and receiving parts with an error of nomore than 5mm.
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Fig. 16.3 Block diagram of an induction charging station

To accomplish this task, an induction positioning system is used based on two Hall
sensors at the charging station and neodymium magnets attached to the robot body.

The system also provides for charging from a 220/110 V network. This allows
you to charge the device in less than 2h. This option is appropriate if there is a need
to urgently prepare an assistant for operation. To provide a different input voltage, a
dual-circuit power part of the battery charge controller is used.

16.3.3 Disinfection Equipment

The ozone generator uses allows for a higher degree of purification compared to a
bactericidal recycler (90% for recirculators [18] and 99% for ozone generator [19]).
First, ozone is more effective at inactivating viruses than any other treatment, while
leaving no chemical waste. Daily ozone exposures increase mortality and respira-
tory morbidity rates. In short-term pulmonary function studies, lung inflammation,
lung permeability, respiratory symptoms, increasedmedication usage,morbidity, and
mortality [20]. Therefore, it is important to use ozonation strictly indoors without
people.

The best solution for the premises treatment is to use ultraviolet bactericidal
recirculators. They are safer in comparison with open-type ultraviolet and quartz
emitters because they do not irradiate the entire room and people in it, but the air
that is passed through the mechanism. Ultraviolet glass in recirculators transmits
part of the UV spectrum radiation that is harmful to pathogenic microorganisms, but
delays ozone-forming rays [21]. UV radiation destroys the DNA of bacteria and
microorganisms.
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16.3.4 Health Parameters Measurement Unit

The device is capable ofmeasuring the following parameters: temperature, heart rate,
saturation, and pressure. This unit is a retractable platform with a recess under the
patient’s arm for ease of use of the system.

The human body temperature recording is carried out by a non-contact thermome-
ter MLX90614. It has an error measurement of 0.02 ◦C. It is necessary to take into
account the temperature of the area where the measurement is carried out. The skin
temperature on the wrist is 30.4 ◦C . In addition, the measurement is carried out tak-
ing into account the possible decrease in blood circulation in the limbs of patients.
However, for this block, the task is not to accurately determine the temperature, but
to define a sharp increase in this parameter by 3 ◦C.

Its connection is carried out by a serial I2C interface. The measurement of satura-
tion is carried out bymethods ofmeasuring changes in light absorption in oxygenated
and deoxygenated blood. The physical substantiation of this method lies in the dif-
ference in the processes of absorption of saturated and unsaturated blood by oxygen.
Therefore, the simplest and most affordable solution would be to use a human fin-
ger. In addition, a detectable period between an increase and a decrease in blood
oxygenation makes it possible to measure the pulse rate.

The blood pressure non-contactmeasurement provides it is necessary to use poten-
tially alternative methods, one of which is the method of estimating blood pressure
based on the time of passage of a pulse wave obtained using photoplethysmography
(PPG) on the wrist and on the finger [22–24] (see Fig. 16.4).

16.3.5 UX-UI Interface

This block provides access to the functions of the robot.
A tablet is used as themain interface,which allows for remote contactwith the doc-

tor if necessary. Due to the specifics of the robot application, namely the assumption
that patients will use the system from a prone position, the tablet has mechanisms for
adjusting the level of inclination. This unit is equipped with a microphone, speaker,
and camera to realize feedback. Also, the robot assistant is equipped with a voice
recognition system as an alternative UX interface and the ability to comfortably
position the tablet.

16.3.6 Data Storing

A database with remote access is used to store patient data. The system contains the
following information-personal data (name, address, contact details of the patient
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Fig. 16.4 Principle of implementation of the PPG method

and authorized representative), RFID identifier, examination results and indications
of daily rounds, as well as personal complaints of the patient.

16.3.7 Control Algorithm

The microcontroller waits for a signal to be sent to the input panel, when the power
is turned on. Medical staff can choose one of two work algorithms: the first is if it is
necessary to complete a daily survey of the condition of patients and the processing
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of premises, and the second is only disinfection, for example, of a surgical room or
corridors of an institution. Next, healthcare workers need to mark the key points of
the movement trajectory on the hospital map. The robot will perform the specified
actions when it arrives at the specified locations. During the movement, at intervals
of 1min, the robot checks whether the goal has been reached. If not, then it processes
the premises all the way, depending on the presence of a person.

The process of questioning the patient begins with his identification. The robot
reads the RFID tag of a person and then proceeds to interrogate the unit for measuring
body parameters. An interruption of the optocoupler signal detects the presence of
the patient’s hand inside the unit, after which the temperature, saturation, and heart
rate sensors are turned on. These data are recorded in a database and updated in
real time on the attending physician’s computer. When the parameter crosses the
acceptable threshold of the body’s vital activity, the application sends a sound signal
notifying about the need for resuscitation.

After completing these steps, the robot returns to the docking station for recharging
(Fig. 16.5).

16.4 Conclusion

The article market analyzes in the segment of medical robots that can combine
the functions of monitoring the patients state and safe and efficient processing of
disinfection. Themain aspects of the development of this subject have been identified:
the reduction in the cost of existing technologies and the combination of the necessary
functionality in a modular system that can be adapted to the needs of a particular
medical institution. Based on these observations, the concept of an assistant robot, its
3D model and functional diagram have been developed. The element base selection
has been made and the device control algorithm have been developed.

A robotic IoT patient care system for medical institutions has been developed.
The assistant provides the following features: daily rounds of patients, disinfection
of empty rooms and in the presence of patients and staff in the room, delivery of
medicines, tests, and remote survey, examination by a doctor. The robot can measure
the following patient parameters: temperature, pressure, saturation, pulse. Due to the
specific application of the device, non-contact optical sensors are used to measure all
parameters, and all measurement methods are modified to suit operating conditions.
The time of continuous battery life of the device is 5h without recharging.

The developed device allows not only to conduct a daily survey of patients but
also allows for effective bactericidal treatment of premises due to the equipping of
several room disinfection systems. An ozone generator - which is great for empty
rooms and kills over 90% of harmful microorganisms and a closed-type UV recycler
- which is suitable for rooms where patients and staff are located.

Due to the modularity of the developed system, the user can configure it at his
discretion, depending on the needs of a particular medical institution, which will
significantly affect the final cost of the device. Modularity is achieved through the
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Fig. 16.5 Device operation algorithm
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use of a programmable data bus. This will make it possible to use the developed
device not only in epidemiological conditions but also as an auxiliary system in
non-infectious departments of hospitals to prevent staff overtime.

Among the features of the system, one can also note the ability to build a doctor’s
round of patients, choosing the optimal trajectory of movement, the ability to inde-
pendently fix the need for recharging and finding a wireless docking station, UI-UX
interface for communication between a doctor and a patient with support for video
communication and voice control, real-time transmission data on the state of health
of people for comfortable and quick information of the medical database.

This set of functions favorably distinguishes the developed device from competi-
tors both in the range of options provided and in the availability for purchase or
manufacture and is an effective means of combating the spread of various infectious
diseases.
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