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liency in transportation systems is taken into concern in this 
article. 
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Abstract 

Evaluating road networks’ performance during and after a 
disruption and/or malfunction is of great importance. The 
performance of the road networks includes four concepts: 
reliability, vulnerability, robustness, and resilience. 
Among these concepts, the concept of resilience, which 
evaluates the road network’s performance after a 
disruption/malfunction, is very significant. On the other 
hand, given that the road network is one of the primary 
sources of air pollution and plays a crucial role in urban 
sustainability, the amount of polluted emission should be 
considered in road network performance (resilience) 
analysis. The literature presents several measures such 
as travel time, queue length, recovery time, network’s 
total cost, etc., to study road network resiliency. A review 
of previous studies demonstrates that the number of 
studies that considered environmental aspects in road 
network resiliency evaluation is scarce. Therefore, in this 
study, new network resilience measures that consider 
environmental factors are presented. These new measures 
show how the amount of polluted emission will change 
when a disruption occurs in the road network. After 
introducing and defining these new environmental 
resiliency measures, the Sioux Falls road network is 
simulated as the case study in Aimsun. The Sioux Falls 
road network (based on new resiliency measures) is 
evaluated when the speed of links (sections) is reduced 
randomly. The London Emission Model (LEM) is used 
for estimating the amount of polluted emission. 
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1 Introduction 

Evaluation of transportation network performance under 
incident or disruption/malfunction conditions is of great 
importance. The transportation network’s performance 
includes four concepts: reliability, vulnerability, robustness, 
and resilience (Calvert & Snelder, 2018). These concepts are 
very close to each other in such a way that reliability, vul-
nerability, and robustness are mentioned as resilience char-
acteristics in previous studies (El Rashidy, 2014). The 
concept of resilience has attracted widespread interest in the 
last few years. This concept was born in the field of ecology 
and, at its origin, it was identified with an ecological sys-
tem’s resistance to change (MacArthur, 1955). Later on, it 
has found application in economics (Rose & Krausmann, 

Although resiliency concepts have been evolved for 
many years (since the 1950s), many researchers concluded 
that there is no unified definition of resiliency. So that, each 
researcher has given a specific definition to resilience 
according to the objectives of their project and the type of 
infrastructure being studied (Gauthier et al., 2018; Lhomme 
et al., 2013). Therefore, according to the objectives, resi-

Resiliency in transportation systems is defined as “The 
ability to prepare for changing conditions and withstand, 
respond to, and recover rapidly from disruptions.” (Scope, 
2015). There are two types of incident or disruption (that 
leads to changing conditions) in the transportation system:
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(1) natural disaster (2) abnormal conditions. Natural disas-
ters include earthquakes, floods, adverse weather conditions, 
etc., and result in network-wide failures. Usually, natural 
disaster leads to speed and capacity reduction at the network 
level. While abnormal conditions such as road maintenance 
sites, accidents, malfunction, etc., result in a road closure of 
specific links (Mehrabani et al., 2021). Usually, abnormal 
conditions occur in two ways: (1) incidents (for example, 
accident, road maintenance sites, man-made disasters); 
(2) road assets’ malfunction, which leads to speed/capacity 
reduction (for example, pavement cracks). This article 
examines the road network's resiliency in abnormal condi-
tions, which leads to speed/capacity reduction. 
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2 Literature Review 

There are four different methods for the resiliency analysis of 
transportation networks: (1) topological models of resiliency 
(Gauthier et al., 2018; Lhomme et al., 2013; Zhang et al., 
2015) (2) optimization models of resiliency (Kaviani et al., 
2017; Omer et al., 2013; Patil & Bhavathrathan, 2016) 
(3) big data analysis (Liu & Song, 2020; Tympakianaki 
et al., 2018) (4) operational and simulation models of resi-
liency (Aghababaei et al., 2020; Bala et al., 2019; Ganin 
et al., 2017; Kamga et al., 2011; Sgambi et al., 2020). In 
what follows, some studies in each of the above groups are 
examined. 

One of the studies using topological models for analyzing 
resiliency in natural disaster (flood) conditions is Lhomme 
et al., (2013). This study used Geographic Information 
System (GIS) to achieve network topological features. Using 
resistance capacity, absorption capacity, and recovery 
capacity, a new redundancy measure is defined. Zhang et al. 
(2015) evaluate the resiliency of various road network 
structures. The authors argue that different network struc-
tures (e.g., grid network, ring network, etc.) have different 
resiliency levels. Average degree and cyclicity metrics are 
used to indicate the redundancy level of the road network. 
The results suggest that the redundancies level and the 
resilience level have a direct relationship with each other. 
Another view of topological models of resiliency is pre-
sented in the study of Gauthler et al., (2018). The difference 
between this study and other topological models is that the 
traffic demand distribution and the road traffic dynamics are 
considered. This study concluded that various resiliency 
metrics lead to different importance levels for the network’s 
links. The topological models of resiliency are able to ana-
lyze any system and require little time for their implemen-
tation. However, they are inefficient since they cannot 
capture the network’s specific characteristics compared to 
other approaches (Sgambi et al., 2020). 

The number of studies in which optimization models of 
resiliency are presented is less than the other approaches. 
One of these studies is the study of Omer et al., (2013). The 
model of this study tried to minimize the network travel 
time. This study used three measures for road network 
resiliency: (1) cost resiliency, (2) environmental resiliency, 
and (3) travel time resiliency. The environmental resiliency 
is captured by producing the CO2 emission per fuel and the 
fuel consumed in the whole network. Although this study is 
among a few studies which consider environmental issues, 
the emission model (used for calculating the environmental 
resiliency measure) is at the macroscopic level, which does 
not account for vehicles characteristics in pollutant emission. 
A similar optimization model was reported by Patil and 
Bhavathrathan (2016). The transportation network’s resi-
liency is evaluated using travel time optimization and dif-
ferent road network measures. This study presented a 
generalized index of resiliency using network cost. Besides, 
Kaviani et al. (2017) introduce a bi-level optimization 
model. This model finds the optimal location of guidance 
devices through the whole road network. The optimization 
model tries to minimize total travel time, which is an 
essential measure for road network resiliency. This paper’s 
outcomes indicate that when the proposed optimization 
model optimizes roadside guidance devices’ location, the 
recovery phase time is less than the usual condition. 

Although topological and optimization methods of road 
network resiliency can be applied to any graph modeling, the 
following drawbacks still exist in these studies (Gauthier 
et al., 2018; Liu & Song, 2020): (1) they are usually 
demand-insensitive (2) less attention has been paid to 
recovery simulation (3) although, after a disaster, the entire 
capacity of a network does not get affected, these studies 
usually consider the complete removal of nodes or links. 
(4) different traffic modes cannot be viewed in graph theory, 
and (5) the specific characteristics of one system in relation 
to another are overlooked. 

The studies that implement big data analysis for evalu-
ating resiliency compare the traffic data before and after a 
disruption. For instance, Tympakianaki et al., (2018) 
employed link sensor counts, automated vehicle location, 
automated passenger count, automated fare collection, 
automated number plate recognition, taxi floating car data, 
and google floating car data to assess the effect of tunnel 
closure on multimodal transport. The results indicate that 
travel times are higher on closure days than on other days. 
This approach’s disadvantage is that it requires a consider-
able amount of data; therefore, this approach is inefficient 
when no data is available. 

In Kamga et al.’s (2011) study, the Chicago road network 
is simulated in incident conditions using VISTA software 
with a dynamic traffic assignment method. Network-wide
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total travel time is employed as a network performance 
measure. The results demonstrate that incidents affect both 
the incident location and the entire road network simulta-
neously (network-wide effects). Besides, the authors pointed 
out that the availability of information on the presence of 
incidence could help the incident management process. 
Ganin et al.’s (2017) study extracted the topological features 
from OpenStreetMap (OSM) data. This study’s transporta-
tion model (a gravity-like model) uses the population of each 
zone, distances between zones, and distance factors as input 
and presents the flow between each origin–destination pair 
(origin–destination matrix) as output. Extra delays caused by 
5% link disruption are employed as road network resiliency 
measures. The results show that many inefficient road links 
in normal conditions are resilient in an abnormal state. In 
contrast, some efficient links (in normal conditions) are not 
resilient in an abnormal conditions. This circumstance 
indicates the resiliency and the efficiency of the road net-
work should be examined separately. Balal et al. (2019) 
aimed to compare different resiliency measures and 
employed the DynusT traffic simulator. The candidate resi-
liency measures in this study are detour road delay, upstream 
road delay, segment travel time, segment speed, and queue 
length. The finding of this study demonstrates that different 
resilience measures lead to different resiliency and efficiency 
levels of importance for links. Therefore, they recommend 
that each researcher should consider their measures based on 
their project objective. Using Aimsun mesoscopic simulator, 
Aghababaei et al., (2020) evaluate the New Zealand road 
network’s performance after a natural disaster (earthquake). 
This study is one of the few studies that has examined the 
road network’s performance at the country level (New 
Zealand). However, it should be pointed out that this study 
only considered the state highways and did not consider the 
main roads. Evaluated measures in this study include den-
sity, delay time, total traveled distance, travel time, traffic 
flow, and traffic count. The operational and simulation 
models of resiliency (used as the modeling approach in the 
current study) require much more work than topological 
models for their realization. However, they are more effec-
tive in analyzing network behavior (Sgambi et al., 2020). 
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On the one hand, the literature review demonstrates that 
many measures such as travel time, queue length, emission, 
time of recovery, peak distribution, network total cost, etc., 
(Murray-Tuite, 2006; Shang, 2016) have been employed as 
network performance and resiliency measures. Besides, 
some studies introduce new measures such as new redun-
dancy indicators (Lhomme et al., 2013), generalized index of 
resilience (Patil & Bhavathrathan, 2016), and general link 
performance indicator for resilience (Calverta & Sneldera, 
2018). Evaluating these measures suggests that most of the 
presented measures are based on capacity, delay, travel time, 
and network cost (traffic-related measures) (Balal et al., 

2019; Kaviani et al., 2017; Murray-Tuite, 2006; Shang, 
2016). 

On the other hand, the transport sector accounts for 25% 
of greenhouse gas emissions, which is continuing to rise 
(Mehrabani et al., 2021). Besides, in previous studies, it has 
been stated that environmental issues are one of the princi-
ples of infrastructures’ resiliency (Twumasi-Boakye & 
Sobanjo, 2018). However, despite the importance of envi-
ronmental issues, fewer studies have considered environ-
mental issues to measure network resiliency (Omer et al., 
2013; Shang, 2016). Therefore, in this study, in addition to 
the existing road network resiliency measures, network 
resiliency measures in which environmental issues are taken 
into account have been studied. To achieve this goal, 
vehicle-based simulation (VBS) is used in the Aimsun 
environment. 

In what follows, the network resiliency measures that 
have been examined in this study are introduced (Sect. 3). 
Then, in Sect. 4, the modeling process in Aimsun with some 
explanations about the case study will be presented. In 
Sect. 5, modeling outcomes are given. Finally, in Sect. 6, 
recommendations and suggestions for future studies are 
expressed. 

3 Road Network Resiliency Measures 

Road network resiliency measures can be grouped into three 
categories (Sun et al., 2018). The first group compares the 
functionality (loss) before and after a disruption. These 
measures are either traffic-related (travel time, throughput, 
capacity, etc.) or topology-based (e.g., connectivity and 
centrality). The second group uses measures that cover the 
recovery process after a malfunction. The second group’s 
measures are usually calculated using the resilience triangle. 
The third group uses resilience measures to quantify an 
event’s impact on society and the economy (environmental). 
In this study, four resiliency measures are considered, two of 
which are traffic-related and the two others are 
environmental-related. 

3.1 Travel Time Resiliency 

This measure compares normal conditions’ travel time (for 
the entire network) with abnormal conditions’ travel time. 
This measure’s value is obtained by dividing the travel time 
in abnormal conditions (capacity or speed reduction in the 
network) by the travel time in normal conditions. Travel 
time resiliency is calculated by Eq. (1). 

RT ¼ Travel time in abnormal condistionð  
Travel time in normal conditionð ð1Þ



Þ
ð Þ

Þ
Þ

Þ
Þ

In normal conditions (without a disruption), the travel 
time resiliency is equal to 1. A disruptive event raises travel 
time between two nodes. Therefore, the resiliency approa-
ches values greater than 1. The more the value is near to 1, 
the more resilient the network is. 
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3.2 Mean Speed Resiliency 

This measure compares the network mean speed before and 
after a disruptive event, given by Eq. (2). 

RS ¼ Mean Speed in normal conditionð  
Mean Speed in abnormal condistion

ð2Þ 

When an abnormal condition occurs in the network, the 
vehicles’ speed usually decreases, so the higher the intensity 
of the abnormal condition in the network, the greater this 
measure’s value. The more the value is near to 1, the more 
resilient the network is. 

3.3 Environmental Resiliency 

Environmental issues are one of the issues that have attracted 
much attention in recent years. After disruptive events in 
road networks, the vehicles’ speed usually reduces, which is 
caused by capacity reduction. This speed reduction across 
the road network increases vehicle emissions. Therefore, in 
this study, the following measures are defined to examine 
whether the road network is environmentally resilient or not. 

Emitted NOx in abnormal condistion 
RE1 

ð¼
Emitted NOx in normal condition

ð3Þð  

Emitted CO2 in abnormal condistion 
RE2 

ð¼
Emitted CO2 in normal condition

ð4Þð  

In this study, environmental resiliency is investigated by 
how the amount of polluted emission (by vehicles) changes 
before and after abnormal conditions. The amount of emitted 
pollution by vehicles is calculated using the London Emis-
sion Model (LEM), a mesoscopic traffic emission model. 
Please refer to Aimsun User’s manual (2018) for more 
information about this model. It should be noted that the 
LEM is already embedded in Aimsun. 

4 Traffic Simulation 

The Sioux Falls road network is simulated in the Aimsun 
environment. The first step of traffic simulation is to import 
road network data (supply data) into the Aimsun. To do so, 
Sioux Falls road network information is extracted from 

OpenStreetMap. A code was implemented in the 
Overpass-Turbo environment to extract some specific types 
of roads. The types of roads extracted from OpenStreetMap 
and their features are illustrated in Table 1. 

Table 1 Road network information 

Type of road Speed (km/hr) Capacity (pcu/hr/ln) 

Motorway 120 2500 

Primary 100 2300 

Secondary 90 2100 

Tertiary 80 2000 

The demand data (origin–destination matrix) is extracted 
from Leblanc et al.’s (1975) study, presenting 76 links and 
24 nodes for the Sioux Falls road network. The origin– 
destination matrix is given in hundreds of vehicles per day. 
Therefore, the peak hour demand matrix is extracted using 
daily volume distribution (NCHRP, 2004). Finally, the 
morning peak hour (7:00–8:00) is simulated with 24 nodes 
and more than 2000 links (section) in Aimsun. The simu-
lated network in the present study and the Sioux Falls graph 
(Leblanc et al., 1975) are shown in Fig. 1. 

As mentioned earlier, the objective of the current paper is 
the network resiliency investigation under abnormal condi-
tions. These abnormal conditions can be due to incidents such 
as car accidents or pavement failures. Therefore, it is clear 
that these abnormal conditions occur randomly in different 
road sections, and it is not possible to determine the place of 
speed reduction. As a result, in this study, ten speed reduction 
scenarios are considered for simulation. In the first scenario, 
the speed of 10% of the sections is reduced by 50%. In the 
second scenario, the speed of 20% of the sections is reduced 
by 50%. This process is done for 30, 40, …, 100% of sec-
tions. The candidate sections for speed reduction are chosen 
randomly using Aimsun scripting. The scenarios examined in 
this paper are given in Table 2. Since the size of the studied 
network in this study (Sioux Falls network) is on a city scale, 
microscopic simulation is very time-consuming. Therefore, 
mesoscopic simulation has been used. The traffic assignment 
method used in this simulation is dynamic user equilibrium 
(DUE) (Which considers 20 iterations for convergence). 

5 Results 

Ten scenarios were simulated in Aimsun, and for each of 
these scenarios, the values of road network resiliency mea-
sures (introduced in Sect. 3) were calculated. Simulation 
results and the calculated values of road network resiliency 
measures are given in Table 3. For better evaluation of the 
simulation results, the values of these measures are illus-
trated in Figs. 2, 3, 4, and 5.
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Fig. 1 a Sioux falls network by Leblanc et al. (1975), b Sioux falls simulated network in Aimsun (present study) 

Table 2 Simulation scenarios No. Speed reduction 
amount (%) 

Section selection 
criteria 

Percentage of sections in which speed reduction 
occurs (Percent of disruption) 

1 50 Randomly 10 

10 100 

Figure 2 shows the values of the travel time resiliency 
measure (RT ). The line graph shows the value of RT from 1 
to 2 on the Y-axis against the percentage of disruption from 
10 to 100 on the X-axis. As the percent of disruption 
increases, the value of RT increases. In other words, there is 
a direct relationship between the number of sections affected 
by speed reduction and network travel time. Consequently, 
road network resiliency decreases with the increase in the 
number of section in which the speed is reduced. As can be 
seen, the variation rate in travel time resiliency changes 
nonlinearly. The rate of change in low and medium per-
centages of disruption (10–70) is very high, but it gets lower 
when we get closer to the end of the graph (percent of 
disruption 70–100). Therefore, it can be concluded that the 

network is less sensitive to speed reduction beyond the 
percent of disruption 70% (the breakpoint). This figure also 
shows that if the whole network’s speed decreases by 50%, 
the total travel time will be less than doubled (RT = 1.8). 
The mean speed resiliency measure is another measure 
studied in this paper. The values of this measure are shown 
in Fig. 3. As can be seen, with a 50% reduction in speed in 
all sections (scenario 10), the average speed in the entire 
network is increased by 80% (RS = 1.8). Comparison of this 
measure with travel time resiliency measure (Fig. 2 versus 
Fig. 3) shows that the behavior of these two measures is 
very similar to each other. This circumstance is because 
speed and travel time have a direct relationship with each 
other.
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Table 3 Simulation results 

No Percent of disruption RT RS RE1 RE2 

1 10 1.022 1.020 0.997 1.001 

2 20 1.224 1.156 1.081 1.143 

3 30 1.270 1.270 1.092 1.181 

4 40 1.428 1.359 1.166 1.304 

5 50 1.482 1.386 1.159 1.291 

6 60 1.505 1.460 1.159 1.323 

7 70 1.670 1.640 1.193 1.385 

8 80 1.749 1.725 1.233 1.426 

9 90 1.702 1.741 1.219 1.423 

10 100 1.812 1.835 1.259 1.482 
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Fig. 2 Travel time resiliency measure in different scenarios 
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Fig. 3 Mean speed resiliency measure in different scenarios 
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Fig. 4 Environmental resiliency measure (RE1) in different scenarios 
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Fig. 5 Environmental resiliency measure (RE2) in different scenarios 

The last measures examined in this study are the ones 
related to environmental resiliency (RE1 and RE2) for com-
parison of emitted pollutants under normal and abnormal 
conditions. The RE1 is used for the emittion of NOx, and the 
RE2 is defined for the amount of emitted CO2. These mea-
sures are illustrated in Fig. 4 and Fig. 5, respectively. 
Examining these measures also shows that the amount of 
emitted NOx and CO2 by vehicles increases with the per-
centage of disruption in the sections. So that if the speed of 
all sections is reduced by 50%, the amount of polluted 
emission will be approximately 1.5 times (RE1 = 1.259; 
RE2 ¼ 1:482). It can be concluded that the amount of pol-
luted emission by vehicles in abnormal conditions increases 
significantly. Therefore, environmental-related measures are 
highly important among traditional road network resiliency 
measures and should be considered in the decision-making 
process and evaluating road network performance. However, 
it should be noted that the rates of changes in 
environmental-related measures are lower than those of 
traffic-related measures. In other words, the network is less 
sensitive to emitted pollution than travel time and speed. 

To compare the above measures better (RT , RS, RE1, RE2), 
the correlation matrix of these measures is shown in Table 4.



As can be seen, these four measures have a significant cor-
relation with each other, which indicates that the disruption 
scenarios have almost the same effect on increasing travel 
time/emission and decreasing average speed. However, the 
rates of change are not the same. The rate of changes in RT 

and RS are very close to each other, while RE1 and RE2 has a 
lower rate of change in disruption scenarios. 
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Table 4 Correlation matrix of resiliency measures 

RT RS RE1 RE2 

RT 1 0.988** 0.987** 0.991** 

RS 0.988** 1 0.965** 0.973** 

RE1 0.987** 0.965** 1 0.996** 

RE2 0.991** 0.973** 0.996** 1 

**Correlation is statistically significant at 0.01 level 

6 Conclusion 

The study of network resiliency in speed or capacity 
reduction scenarios (caused by natural disasters (e.g., 
earthquakes, floods, etc.) or abnormal conditions (e.g., 
vehicle accident, road maintenance sites, etc.)) is one of the 
issues that has attracted the attention of many researchers in 
recent years. Previous studies have introduced many mea-
sures for examining road network resiliency. Most of which 
are formed on traffic-related criteria (e.g., travel time, delay, 
etc.). A critical issue that has been overlooked in previous 
studies is the study of environmental issues in road network 
resiliency. 

Therefore, in this study, four road network resilience 
measures were introduced, two of which are calculated using 
the total travel time and the average speed in the whole 
network (traffic-related measures). The other measures are 
based on polluted emissions by vehicles (NOx and CO2). In 
the simulated scenarios, the speed decreases by 50% in a 
certain percentage of sections (which are selected randomly). 
For each scenario, the values of the above measures were 
calculated. These measures’ values showed that the higher 
the percentage of speed deceleration in the sections (percent 
of disruption), the lower the network resiliency is. 

The introduction of new network environmental resi-
liency measures showed that vehicles’ amount of polluted 
emission increases under abnormal conditions. Although the 
four measures of RT , RS, RE1, and RE2, have almost the same 
behavior, the rates of change (when the network is in 
abnormal conditions) for the environmental-related measures 
(RE1andRE2) are less than those of the traffic-related mea-
sures (RT and RS). 

Examining the resiliency measures’ values shows that 
these measures vary nonlinearly in different failure 

scenarios. A noteworthy point that can be concluded from 
the measures’ values is that the rates of change of the 
measures in low and medium percentages of disruption (10– 
70) are higher than high percentages of disruption (70–100). 
The results propose a nonlinear relationship between the 
percent of disruption and resiliency measures up to a 
breakpoint (percent of disruption = 70%). Beyond the 
breakpoint (percent of disruption = 70%), the changes’ rates 
are meager and almost linear. This clarifies the need to 
present a nonlinear relationship between the percent of dis-
ruption and network resiliency measures in future studies. 
Besides, different traffic demand levels should be evaluated 
as the breakpoint is related to traffic demand. 

Therefore, environmental-related indicators should be 
considered in the network resiliency studies and 
decision-making by decision-makers and policymakers. It 
can be concluded that a resilience network is a network in 
which not only traffic-related measures are considered but 
also other measures, including environmental-related ones, 
are taken into account. Moreover, the evaluation of these 
measures showed that they have a significant correlation. 
Therefore, future studies can focus on defining an indicator 
by combining the measures introduced in this study. 

In the current study, the sections in which the speed 
reduction occurs were selected randomly, so it is suggested 
that the effect of speed reduction in pre-selected sections can 
be examined in future studies. So, the importance of each 
section and, consequently, the most critical sections can be 
specified. Also, this study considered a 50% reduction in 
speed. Other percentages of speed reduction should also be 
considered. 
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