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Implementation and Evaluation of a MLaaS 
for Document Classification with Continuous 
Deep Learning Models 

Franz Frederik Walter Viktor Walter-Tscharf 

Abstract 

This paper indicates an approach of a continuous training 
pipeline to enhance deep learning models and assessing 
their feasibility based on an evaluation. The purpose of 
this research is to analyze the quality effect of a 
continuously learning neural network algorithm for 
document classification by taking user feedback into 
account. The hypothesis implies that user feedback 
through active learning increases the precision and thus 
makes the process of document classification more 
efficient. For this purpose, based on a utility analysis, 
the available technologies are identified, and necessary 
ones are selected for designing a software concept. 
TensorFlow as a deep learning framework, Tesseract as 
an OCR engine, and Apache Airflow for the life cycle 
management and for orchestrating the elements for the 
continuous training pipeline are used. This implementa-
tion of a machine learning as a service prototype allows 
for exploration into the synergistic effect between the use 
of active learning, in the form of user feedback, and the 
quality of document classification achieved by deep 
learning. In an experiment, the implemented service is 
used to analyze the models behavior based on three 
different states. This includes synthetic data and active 
learning in the form of user feedback through data from 
data augmentation and simulated realistic data. The result 
shows that active learning enhanced models indicate a 
higher accuracy than artificially generated models. The 
evaluation experiment confirms the hypothesis that user 
feedback with continuously learning models perform 
better in terms of generalizing within the document 
classification. In conclusion, the paper demonstrates the 
technical requirements for implementing a machine 

learning as a service and affirms that the use of active 
learning can be integrated into existing industrial systems. 
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1 Introduction 

Each year, approximately 500 billion electronic invoices and 
documents are sent to customers or consumers worldwide 
(Koch, 2019, p. 12). On average, the cost of processing each 
business transaction is estimated at 17 US dollars (Pezza & 
Jan, 2012, p. 6), and is partly due to the process of capturing 
and digitizing or processing documents, which is still man-
ual today. Former Chief Scientist Andrew Ng of search 
engine company Baidu described this process as follows: 
“The industrial revolution freed humanity from much 
repetitive physical drudgery; I now want AI to free humanity 
from repetitive mental drudgery, such as driving in traffic” 
(Ng, 2017). With this, he expresses that artificial intelligence 
is intended to help relieve humans of repetitive tedious work. 
The authors Luger and Stubblefield also define artificial 
intelligence as “The branch of computer science that is 
concerned with the automation of intelligent behavior” 
(Luger & Stubblefield, 1998). They reference methods and 
technologies within information technology, which aim to 
perform tasks that require intelligence in their execution 
(Theobald, 2019, p. 115). According to a study by McKin-
sey, the industries with the highest potential for automation 
are tourism and hospitality with 73% and manufacturing 
with 60% (Manyika et al., 2017, p. 7). Companies are now 
investing in the automation of tasks that were originally 
assumed to be performed only by clerks. A key issue is
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information extraction or document recognition. Many of the 
use cases focus on data collection, processing, and consoli-
dation from formats such as email, PDF, or fax (Denecken, 
2018). Instead of the time-consuming manual extraction of 
information from documents before the transferal to an 
Enterprise Resource Planning–ERP–system, a clerical 
salesperson’s work focus can be concentrated on more 
demanding activities through automation. 
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A deep learning model must be developed for recogniz-
ing key information within a document to enable generic 
document processing, therefore, requiring a large and 
annotated dataset. The downsides are addressed throughout 
this paper, for example in preparation, the data must be 
labeled, which requires time and work. This research deals 
with the incorporation of user feedback into deep learning 
models for document classification. As the concept of active 
learning is a new and promising topic, the goal is to con-
tinuously extend the models with user feedback through this 
method. 

2 Literature Review 

For the thematic classification of the present work, the state 
of the art research, related methods, and concepts of relevant 
scientific papers are briefly introduced and differentiated. 
This involves work on document recognition, extraction, and 
annotation. For several years, different methods have been 
developed focusing on research approaches for text classi-
fication, which concentrate on the interpretation of the 
content of a document, as well as object recognition algo-
rithms, which identify the layout or important areas. 

2.1 Theoretical Background 

Chen et al. in their work on “Convolutional Neural Net-
works for Page Segmentation of Historical Document Ima-
ges” (Chen et al., 2017) develop a page segmentation 
method based on a convolutional neural network—CNN. 
They focus the page segmentation problem on pixel labeling 
and propose to train features of raw image pixels through a 
CNN. Although the focus of their work is on recognizing 
handwritten documents, their approach implies that the basic 
idea of using a CNN to recognize important regions in PDF 
documents has potential. Research papers such as “Page 
Object Detection from PDF Document Images by Deep 
Structured Prediction and Supervised Clustering “(Li et al., 
2018) or” ICDAR2017 Competition on Page Object 
Detection” (Gao et al., 2017) deal with structure and range 
detection of documents and also use a CNN in their 
approach. Their model focuses on the use of object recog-
nition by deep learning algorithms in images of documents 

where—among others—tables, mathematical formulas, 
graphs, or figures are identified. Another approach to doc-
ument classification is presented in the conference paper 
“Fast CNN-Based Document Layout Analysis” (Oliveira & 
Viana, 2017). The authors focus on document layout anal-
ysis to extract information from document images. Their 
model presents a one-dimensional approach for document 
layout analysis considering text, figures, and tables based on 
a CNN. They take the approach of reducing the data rep-
resentativeness, of text and table blocks, to a 
one-dimensional CNN, which compared to the classical 
two-dimensional CNN approaches, should significantly 
improve the overall performance without affecting accuracy. 
This paper especially (Oliveira & Viana, 2017, Fig. 1) 
indicates an adequate abstract method to differentiate the 
structure of documents. The research paper “DeepDeSRT: 
Deep Learning for Detection and Structure Recognition of 
Tables in Document Images” (Schreiber et al., 2017) outli-
nes a novel end-to-end system for identifying tables in 
images of documents through deep learning; rows, columns, 
and cell positions are identified. The DeepDeSRT model 
fundamentally consists of a CNN in conjunction with object 
recognition to identify the position of tables. For this, 
transfer learning with a pre-trained Faster R-CNN model is 
used. 

For structure detection, DeepDeSRT uses a fully convo-
lutional network (FCN)-based segmentation model, provid-
ing a reliable concept for document content classification. In 
the evaluation of the evaluation results, values between 
91.44% and 96.77% are achieved for table and structure 
recognition. 

2.2 Related Work 

The topic of continuously augmenting neural networks with 
user feedback is sparsely covered in current literature. It was 
introduced and presented by Google in 2017 with the title 
“TFX: A TensorFlow-Based Production-Scale Machine 
Learning Platform” (Baylor, et al., 2017). TensorFlow 
Extended (TFX) is a platform developed by Google for data 
preparation, training, validation, and deployment of machine 
learning models in production environments. The platform is 
based on TensorFlow Core and takes as its initial idea the 
problem of maintaining a machine learning service. 
A pipeline is described consisting of different components 
including an analysis, transformation and validation of data, 
as well as a component for generating the machine learning 
model with the processed data. Likewise, a phase for the 
evaluation of the previously developed model exists, as well 
as a unit for the deployment of the model into the productive 
system. The integration of the platform and the accompa-
nying orchestration of the components into a pipeline is



intended to reduce development time and increase perfor-
mance (Baylor et al., 2017, p. 1394). TFX is intended to 
provide an interactive platform for the user to afford deeper 
insight into the operation and decision path of a specific 
machine learning model. By building the pipeline (Baylor 
et al., 2017, p. 1389), the concept for a “continuously 
training pipeline” (Baylor et al., 2017, p. 1393) is defined. 
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Fig. 1 Architecture of the MLaaS 

Another scientific contribution is provided by the article 
“TensorFlow-Serving: Flexible and High-Performance ML 
Serving” (Olston et al., 2017). The authors describe an 
approach to use machine models productively and provide 
ways to feed TensorFlow with new data for training a new 
machine learning model. The main task of TensorFlow 
Serving (TFS) is to be able to productively deploy different 
machine learning models. RPC and HTTP interfaces are 
provided to interact with the model. Through TFS, execution 
paths for discovering new machine learning models and 
performing predictions of result values have been optimized 
to avoid performance issues of the native implementation 
through TensorFlow Core (Olston et al., 2017, p. 1). Routine 
tasks such as adding, removing, and updating a machine 
learning model are also handled. Additionally, rollback and 
canary requests, which are central to resilience, are sup-
ported. TFS is part of the end-to-end machine learning 
pipelines and is actively used in TFX (Olston et al., 2017, 
p. 6). Concepts for incorporating user feedback into the 
training process is provided in “Active Learning Literature 
Survey” (Settles, 2010). The topic is classified under the 
term active learning and the paper outlines its application 
scenarios. The implementation of these individual 

methods is based on the mathematical logic of (Settles, 
2010, Fig. 2—1, 2, and 3). Of central importance is the 
“membership query” type. In this method, the artificial 
intelligence algorithm proposes a classification and the ora-
cle or the user can agree or correct it (Fischer, 2000, p. 6). 
The scientific article “From Theories to Queries: Active 
Learning in Practice” (Settles, 2011) shows the practical 
implementation of these individual methods. 

A large number of scientific papers address the topic of 
artificial intelligence in the area of machine learning and 
deep learning. The current scientific consensus is that the 
performance of deep learning models improves by increas-
ing the amount of data compared to traditional machine 
learning algorithms. Object recognition methods based on 
artificial neural networks are successfully used for document 
classification. However, a new approach is the combination 
of transfer learning and active learning. By using both 
concepts, an autonomous self-learning system for document 
classification is developed utilizing user feedback. 

3 Concept and Design 

A clear concept and design are essential when creating a 
deep learning model and continuously integrating user 
feedback. An OCR technology which converts PDF docu-
ments into machine-readable code is necessary. Far more 
important, however, is a machine learning framework that 
can use a model to detect where critical information is 
located in the document. The model should be able to be



improved by feedback from the user and continuously 
deploy new advanced deep learning models. This requires a 
pipeline that can process, validate, share, and transform 
feedback data. It must also be able to train and monitor 
neural networks. From these requirements for the system’s 
functionalities, the necessary parts can be derived; an OCR 
engine that converts the PDF document, a serving compo-
nent that provides the deep learning model and continuously 
waits for the latest version, and a pipeline that handles the 
deep learning lifecycle management. These different services 
are difficult to orchestrate. Figure 1 shows an overview of 
the described components. 
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The task of the serving component in the container-based 
microservices architecture is to make the developed model 
accessible via Web interfaces. For this purpose, the pipeline 
provides the functionalities to continuously extend the 
existing neural network with the user feedback from the 
frontend and make the new model available to the serving 
component. The output of the current deep learning model is 
processed by the OCR component after transformations have 
been performed in the API gateway and thus the required 
information is determined. 

3.1 Serving 

The serving component with TFS is used to address the deep 
learning model via Web http requests. In addition, a service 
is needed to continuously wait for a newly trained deep 
learning model in order to incorporate it at runtime when it 
arrives and to use it via the interfaces. Currently, only one 
deep learning model is needed to perform the structure 
determination of the document, however, TFS can manage 
multiple versions of the model. Through the API interface, 
the neural network can be integrated into the target envi-
ronment of the productive system quickly, flexibly, and with 
high performance. For this purpose, TFS provides a REST 
Web API and a gRPC interface for integration. Both can be 
accessed independently of the programming language. For 
setting up TFS and the developed deep learning model, 
Google provides an official Docker image that includes all 
required resources. The drawbacks are minor; the additional 
software requires packages, dependencies, or libraries, 
which increase complexity and maintenance efforts. More-
over, an additional service can decrease the comprehensi-
bility of the developed code, however, the effort to send an 
image file to a Web API endpoint would be significantly 
greater when implementing the interfaces natively or without 
TFS. In the architecture, TFS is used to address a deep 
learning model and identify ROIs—Region of Interests— 
based on images. This refers to the structure determination of 
the uploaded image document using object recognition in 
images. The return values of the ROIs are the coordinates 

and the designation of areas which contain important 
information from the document. Also returned is the preci-
sion of the particular ROI, which distinguishes between the 
areas Header, Content, Customer, Type, and Identification. 
Another aspect that would be difficult to implement without 
TFS is continuously waiting for new neural networks trained 
by the pipeline or TensorFlow. The versioning capability is 
intended to support jumping back to an earlier version of the 
model. Versioning is intended to ensure resilience and pre-
vent significant impacts on mean average precision—mAP 
— which may have occurred due to the evaluation of the test 
datasets, the use of the MLaaS with the new deep learning 
model or limits to the functional capability of the service. 

3.2 Pipeline 

The pipeline enables the continuous processing of user 
feedback and thus accomplishes a constant improvement of 
the system. The amount of data that can be used for a new 
deep learning model increases with the user feedback which, 
along with the object classes and their coordinates, are stored 
in a CSV file and are then used to continuously train new 
versions of the model. The machine learning pipeline has 
eight phases, which allow for the required workflow for the 
training process and continuous integration (Google, 2019c). 
The data collection phase is responsible for preparing the 
collected data of the user feedback for the upcoming training 
process. The data preprocessing phase is used to measure 
and analyze the collected data. Based on the amount of data, 
a random determination of a dataset for evaluation and actual 
training is performed. In the third phase, the TensorFlow 
record files are created from these datasets. Phase four is 
used to monitor the evolution of the neural network and 
assess the model at runtime of the training process, based on 
the test dataset, using metrics for accuracy. The central 
utility for this purpose is TensorBoard, which is integrated in 
TensorFlow. The tool can be used for validating and ana-
lyzing deep learning specific parameters. Important param-
eters are mAP, Total Loss, Localization, Precision, and 
Recall. Phase five executes the training process, which 
includes developing a new model graph that is responsible 
for the prediction. The TensorFlow API provides the nec-
essary Estimator, which represents the code for our model 
and manages the training process. The Estimator can be seen 
as a pre-built framework for training the neural network. 
Among other things, it also supports routine tasks like sav-
ing the learning progress of the training into so-called 
“check-points” or exporting the trained graph as a Saved-
Model, which can then be used in production environments. 
These steps are part of the “Save Training” and the “Export 
Interference Graph” phase. The final phase involves making 
the new deep learning model available through interaction



with the serving component. The model is initiated 
dynamically without interrupting the service at runtime. 
After all phases of the pipeline have been executed, the 
result is a new deep learning model available at the serving 
component which has been augmented with user feedback 
from the previous queries. An overview and abstract 
framework of the flow is described in Fig. 2. 
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Fig. 2 Deep learning lifecycle management pipeline 

The phases must be combined to form an overall 
structure, the result of which is the Continuous Training 

Pipeline. This monitors the correct progress of the indi-
vidual phases in a targeted manner takes over the orches-
tration or arrangement of the phases and merges them into 
an overall construct. Google recommends Apache AirFlow 
(Google, 2019a) for these requirements. In Airflow, the 
combined flow or pipeline is called a DAG— directed 
acyclic graph. Here, the DAG consists of a collection of all 
the tasks required to fulfill the workflow (Apache Airflow, 
2020). In practice, DAGs are Python files, which in turn 
contain multiple operators describing a single task in a 
workflow. In the described pipeline, the operators represent 
the different phases and, using AirFlow, the logs and code 
of these can be viewed individually. In addition, Airflow 
provides interfaces to trigger the modeled pipeline or the 
DAG via Web requests. The REST API can also be used to 
activate/deactivate the DAG, query the status, and retrieve 
execution time or task information. These functionalities 
are only indirectly accessible from the client. The gateway 
component manages this REST API and corresponding 
requests are only forwarded if required. This approach is 
chosen to comply with the architecture guidelines and the 
SoC. 

Fig. 3 Adding feedback to the 
suggested tags of a document in 
form of content areas, movable as 
rectangles 

The Web application is developed with the frameworks 
ReactJS and UIKit as demonstrated in Fig. 3. The user has 
the possibility to define the content of specific tags by 
moving the rectangles and thus providing corrections which 
form the necessary feedback. For the implementation of the 
animation and graphical functionality, the D3.JS framework



is used and communication with the backend utilizes the JS 
Fetch API. The gateway is implemented using FlaskREST-
Plus. The serving component in the container-based 
microservices architecture allows the developed model to 
be accessible via Web interfaces and is implemented using 
TensorFlow Serving. The pipeline continuously augments 
the existing neural network with user feedback and provides 
the new model to the Serving component. The deep learning 
model will be developed using TensorFlow and for the 
orchestration, AirFlow is used. A translation of the images 
into text is achieved with the OCR component by Tesseract 
and Flask. In combining these subcomponents, a document 
classification service through a continuous deep learning 
training pipeline is outlined and available (Walter-Tscharf, 
2021). 
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4 Evaluation 

An assessment and evaluation of the benefits of user feed-
back as well as the continuous expansion of the deep 
learning models are carried out via an experiment with the 
developed prototype. The basis of the assessment is a model 
that is continuously extended through active learning and is 
available in a total of three different states, which compared 
using an evaluation dataset. 

– Model 1: Faster R-CNN and synthetic data 
– Model 2: Model 1 and active learning in the form of data 

augmentation 
– Model 3: Model 2 and active learning in the form of data 

simulation 

The Faster R-CNN model acts as the foundation. 

4.1 Metric 

The methodology behind the assessment follows the 
approach of the Pascal Challenge (Everingham et al., 2010, 
pp. 313–314). The research paper “A Comparative Analysis 
of Object Detection Metrics with a Companion OpenSource 
Toolkit” (Padilla, 2019) shows an applicable approach for 
evaluating the deep learning models. The focuses are the 
metrics Accuracy, Precision, Recall, Loss, and the F1-score 
demonstrated in Eqs. 1–6. 
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In practice, these values were determined by combining 
the Toolkit and the TensorBoard. 

4.2 Experiment 

Model 1 is developed using only synthetic data and transfer 
learning. Models 2 and 3 represent a use of the developed 
prototype to directly extract user feedback from the docu-
ment classification system to extend the neural network. 
Model 2 is intended to assess what impact user feedback 
with data augmentation has on document classification. 
Model 3 will be used to investigate the impact of using data 
with simulated real-world scenarios. 

The different training patterns are shown in Figs. 4, 5, 6, 
7, 8, and 9. 
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Fig. 4 Detection boxes precision/mAP of experiments
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Fig. 7 RPN Loss/localization loss of experiments 

Fig. 8 Total loss of experiments 
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Fig. 9 Train total loss of experiments 

After the performed training of the models, the three 
states of the model exhibit the characteristic values given in 
Table 1. 

It is remarkable that for Models 2 and 3, which both use 
user feedback, the mAP decreases. Further analysis is 
required into the behavior of the models when an evaluation 
dataset from a real-world scenario is present, which the 
models are not trained for. That is to say, if the generaliza-
tion for Models 2 and 3 increased. In addition, the new 
evaluation dataset also includes new types of documents that 
were not previously considered. Relevant to this is the use of 
documents without content or arbitrary documents and 
without object classes or labels. Each of the mentioned 
models is run with the evaluation dataset to test the 
hypothesis of the impact of user feedback. Central to this is 
the analysis of the different states of the models using the 
metrics, see Table 2.
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Table 1 Overview of the results 
from the three models in the 
different stages 

Model Iteration Recall (AR) Precision (mAP) F1-score Total loss 

Model 1 82,532 0.9777 0.9693 0.9735 1.4017 

Model 2 80,150 0.8617 0.8451 0.8533 1.2648 

Model 3 80,925 0.7852 0.8221 0.8032 1.1916 

Table 2 Evaluation of the 
different models 

Model Iteration Recall (AR) Precision (mAP) F1-score Total loss 

Model 1 82,532 0.9777 0.9693 0.9735 1.4017 

Model 2 80,150 0.8617 0.8451 0.8533 1.2648 

Model 3 80,925 0.7852 0.8221 0.8032 1.1916 

5 Results 

Discussing the results, a distinction must be made between 
training the models and running the experiment with an 
evaluation dataset. Training the models assesses whether the 
transfer learning is performed correctly, whereas the evalu-
ation assesses the quality in terms of the respective gener-
alizability of the three models as a result of an experiment 
with the same dataset— the evaluation dataset. Figures 4, 5, 
6, 7, 8, and 9. show the metrics relevant for the training 
process; mAP, Recall/AR, BC Loss, RPN Loss and Total 
Loss refer to the test dataset, and train Total Loss refers to 
the training dataset. For model 1, the mAP increases steeply 
up to the 10,000– 15,000 iteration line and then converges to 
a value between 0.95 and 0.98. Models 2 and 3 have a 
similar trend; the mAP level increases steeply up to the value 
15,000 and converges to a range of values from 0.81 to 0.87 
and 0.78 to 0.82, respectively. This indicates a lack of 
diversity or the greater homogeneity of the training dataset in 
Model 1 compared to Models 2 and 3. AR and mAP are 
similar in the course and with respect to their values. It can 
be inferred that FN and FP have similar values. The values 
of mAP and AR of 0.96–0.80 from Table 1 conclude that 
only low values for FN and FP occur. All values of the 
Failure or Loss functions are absolute values and do not 
represent percentages. The value of the Box Classifier 
Localization Loss of all models varies between 0.15 and 
0.35, implying that all models are at a similar level with 
respect to the different test datasets and the region of interest 
detected. Here, the BC Loss of the localization refers to the 
last layer of the Faster R-CNN model, which is responsible 
for determining the position of a bounding box (Lee et al., 
2019, p. 1). The RPN Loss of the models is in a comparable 
range; the converging values are at 0.45 for model 1 and 
0.52 for Models 2 and 3. The low first value could be due to 
the small horizontal and vertical displacement of the data. 
The Total Loss of the three models is within the range of 1.2 
and 1.5 after the 20,000 iteration. The low variation could be 

on account of the minimum of a loss function not being 
found among the summed Total Loss. To evaluate the 
training process, the Total Loss of the training dataset is 
described in addition. A low value here corresponds to a 
model with a higher quality— unless the model tends to 
overfit the training data (Arsalan Soltani & Chen, 2015). 
Each of the models has a value below 0.2, therefore, the loss 
functions of the training should be sufficiently minimized. 
Crucial for the final assessment of the training quality of the 
models is the F1-score, presented in Table 1; the values 
range from 0.97 for model 1, 0.85 for model 2, and 0.80 for 
model 3 for a comparable number of iterations. The pre-
dictive ability of model 1 result values is the highest, how-
ever, this is accompanied by an increasing Total Loss— 1.40 
for model 1 compared to 1.26 for model 2 and 1.19 for 
model 3. This means that while the accuracy of the first 
model increases compared to Models 2 and 3, the misses 
also increase. This indicates increasing generalizability of 
Model 2 and 3 compared to Model 1. The values of the three 
models show little change with further iterations. The 
improvement of the mAP and AR values are minimal. The 
values of the loss functions are minimized or have a small 
increasing tendency. 

Therefore, the models are sufficiently trained (Srivastava 
et al., 2014, p. 1). Another training would not increase the 
performance, resulting in an overfitting of the models. The 
requirements for the models to perform an evaluation are 
thus fulfilled. 

Results of the evaluation experiment are given in Table 2. 
The F1-scores for the three models when tested with the 
same evaluation dataset (Table 1) are lower than the 
F1-scores of the test dataset in training (Table 2). The reason 
for this is the larger variance of the data of the evaluation 
dataset compared to the test dataset of the training. It is 
noticeable that contrary to the results of the training, the 
F1-score in the evaluation experiment increases from model 
1 with 0.6, to model 2 with 0.65, to model 3 with 0.72. This 
is evidence that the predictive ability of the models trained 
using active learning is greater than the first model trained



using only synthetic data Model 3, which was trained 
based on data augmentation and data simulations using 
active learning, achieves the highest results. The lower total 
loss of Model 1 (2.23), Model 2 (1.55), and Model 3 (1.19) 
also illustrates increasing quality by incorporating user 
feedback. 
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6 Discussion and Limitations 

The experiments and results confirm that active learning 
improves the quality of models in terms of diversification 
and applied generalization. It also reduces the effort of the 
manual labeling of data. The results of increasing accuracy 
of document recognition by the developed MLaaS show that 
systems which learn and continuously improve with active 
learning through user feedback have a higher probability of 
achieving a desired prediction of results than alternative 
systems. The result of the evaluation is the behavior of a 
deep learning model studied in three different states. These 
are created by continuous training with different data; the 
basis is a model based on synthetic data, and the other two 
models—for investigating the continuous augmentation of 
deep learning models—are implemented by incorporating 
user feedback. The data used is generated using data aug-
mentation and a simulation of real data. The result of the 
training is that the F1-score for the models with active 
learning decreases due to the homogeneity between training 
and test datasets and the different structure of the datasets. 
The evaluation experiment confirms the hypothesis that the 
continuously extended models have a better generalizability 
with regard to document recognition. 

The limitations and opportunities of the present prototype 
naturally span across different domains. Enhancements in the 
area of text classification, a model metadata database, or the 
development of an outsourced service for autonomous 
model validation are considerable. The scope of the current 
implementation does not include functionalities for user 
authentication. The service OCR, serving, and pipeline are 
not able to simply adapt authentication methods— such as a 
“bearer token”. A limitation occurs due to the storage of user 
feedback in a CSV list, which compromises the ACID 
principle (atomicity, consistency, isolation, and permanence 
or persistence), which is supposed to ensure transaction 
security. Therefore, a database like SQLite or PostgreSQL 
would be useful for the metadata of the model. Google has 
introduced the MLMD—ML Metadata— concept for this 
purpose, which makes all relevant information for the model 
accessible (Google, 2010b). Another significant limitation is 
associated to the belief that the user will provide qualified 
valuable feedback. The pipeline would continue to produce 
new models, however, the models would be redundant, 
missing an improved increase in the precision An interesting 

approach to solve this would be by taking a psychological 
factor into account, for instance a reward system for the user. 
Even though these limitations exist, the developed prototype 
can simply be transferred to other related use cases without 
significant challenges. Apart from the defined object classes 
or label names, all approaches presented in the concept are 
free of context-specific algorithms. Essentially, they are 
defined by the data used for training. If a comparable dataset 
was available for a similar use case, the overall system could 
be transferred with little effort. 

7 Conclusion 

The objective of this paper is to develop a generalized sci-
entific concept as a basis for the further development of deep 
learning models using user feedback. The working hypoth-
esis is the assumption that a software learns via user feed-
back and thus improves the system’s efficiency. The topic of 
artificial intelligence in relation to machine learning and 
deep learning is covered increasingly extensively in the 
current research literature. Deep learning is well suited for 
object recognition tasks, as the performance of the models 
and the algorithms improve as the size of the data increases. 
Relevant error tolerances for the training process of deep 
learning models are overfitting and underfitting. The paper 
shows that object recognition methods based on CNNs can 
be successfully used for document classification. In order to 
create the possibility to continuously extend a deep learning 
model, a pipeline and a lifecycle management are necessary. 
The combination of transfer learning and active learning is 
novel in this context. It is used to develop an autonomous 
and self-learning system for document classification based 
on user feedback data. The practical implementation of 
single partial solutions is already presented in the literature: 
however, the combination as a complete system exists only 
as a theoretical approach. 

The software solution developed in this paper is able to 
capture documents and independently determine the content 
relevant to the business process. The user can supplement 
the data determined and suggested by the system as needed 
and furthermore has the possibility to adjust the data. The 
development concept of a prototype requires two basic 
technologies; an OCR engine and a machine learning 
framework to identify content areas using the deep learning 
model. TensorFlow as a deep learning framework and 
Tesseract for text recognition are selected. The 
container-based microservice architecture consists of the 
components frontend, middleware (API gateway), and 
backend services (Serving, Pipeline and OCR). For the 
frontend, React is provided as the Web framework and UIkit 
and D3 for the design. The API gateway in the software 
solution is based on Python in combination with Flask for



Acknowledgements The research for this paper was nancially sup-the required interfaces. The API is designed and documented 
in the software solution using a Swagger UI. Serving, as a 
component of the backend service, allows the deep learning 
algorithm to be accessible via the Web. A pipeline allows for 
the existing neural network to be continuously extended with 
user feedback from the frontend and provides the serving 
component with the new model. Apache Airflow is used for 
lifecycle management and the accompanying orchestration 
of the elements of the pipeline. The OCR microservice uses 
Tesseract to translate images into text. As a result, the 
implementation of the software concept has created a pro-
totype that is used to classify documents, and the system is 
continuously being extended as part of active learning with 
the Faster R-CNN deep learning model. The quality of the 
deep learning models can be technically monitored and 
compared using the TensorBoard. Metrics for validation 
include Mean Average Precision, Average Recall, Total 
Loss, and F1-score. 
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Via the frontend, a user can easily move the recommen-
dation of the recognized content area—visualized by a 
rectangle in the image of the document—and thus correct the 
classification of the uploaded document. Challenges in the 
implementation are the conversion of relations with regard to 
the selection mask, the displayed images of the document, 
and the original sizes of the document. 

The subject of the evaluation is an experiment with a 
deep learning model using the newly developed machine 
learning as a service. This uses active learning with user 
feedback from the document classification system directly, 
thereby continuously expanding the neural network. The 
behavior of the model is analyzed based on three states 
which are created by continuous training with different data. 
The first state is a model based on synthetic data and the 
other two models are implemented by using the service and 
considering user feedback—for the second state with data 
from data augmentation and for the third state additionally 
with real data generated in a simulation. The experiment 
consists of both training and experimental components, 
which gather opposite results. The training shows that the 
F1-score for the models with active learning decreases. This 
is caused by the homogeneity between training and test 
datasets and the different structure of the datasets for each 
model. However, in the experiment with a test dataset of 
potentially simulated realistic images, the recognition quality 
of the models increases when using active learning. Hence, a 
deep learning model trained with only synthetic data per-
forms worse in evaluation and practice than enhanced 
models trained with user feedback through active learning. 
The evaluation experiment, therefore, confirms the hypoth-
esis that the continuously augmented models have improved 
generalizability and a continuous training pipeline increases 
accuracy with respect to document recognition. 
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