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Abstract. Certain MRI acquisitions, such as Sodium imaging, produce
data with very low signal-to-noise ratio (SNR). One approach to improve
SNR is to acquire several images, each of which takes may take more than
a minute, and then average these measurements. A consequence of such a
lengthy acquisition procedure is subject motion between each image. This
work investigates a solution for retrospective motion correction in this sce-
nario, where the high level of Rician noise renders standard registration
tools less effective. We employ a simple generative model for the data based
on tissue segmentation maps, and provide a differentiable approximation
of the Rician log-likelihood to fit the model to the observations. We find
that this approach substantially outperforms a Gaussian log-likelihood
baseline on synthetic data that has been corrupted by Rician noise of vary-
ing degrees. We also provide results of our approach on real Sodium MRI
data, and demonstrate that we can reduce the effects of substantial motion
compared to a general purpose registration tool.
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1 Introduction

Subject motion is a common issue in long MRI acquisition protocols; in situations
where several images have been acquired, motion can be retrospectively corrected
using image registration. For brain MRI images with reasonable signal-to-noise-
ratio (SNR), general purpose linear image registration tools, e.g. [2,3,8,10,13],
have been shown to be highly effective. However, in low SNR MRI data, such as
acquired with Sodium MRI, traditional cost functions may become less effective.
One cause is the noise properties of the analysed data, which consists of the
magnitude of the complex signal components. The noise in such data is described
using a Rician distribution [6]. When the SNR of the acquired complex signal is
high, the resulting noise is approximately Gaussian. Conversely, when the SNR
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Fig. 1. Illustration of the generative model, which predicts noise free images, ŷ, param-
eterised by: T1 estimated tissue segmentation maps, G, multiplied by estimated tissue
intensities, x. These are transformed by a translation, t and rotation θ. The error
between the observations, y and predictions is described using a Rician likelihood,
which is used to drive the parameter estimation.

is low the Rician distribution is asymmetric and dissimilar from a Gaussian. This
distinction is particularly significant for registration approaches considering cost
functions derived from a Gaussian, e.g. sum-of-squared differences.

This paper introduces a linear motion correction model using a simple gener-
ative model of the data. This is inspired by the seminal “Unified Segmentation”
paper [1]. A diagram of our approach is given in Fig. 1. Our model produces
noise-free predictions, which are rigidly aligned to each of the observed images.
The novel contribution of this work lies in our approximation of the Rician log-
likelihood that enables gradient estimates through automatic differentiation [14].
This is in contrast to previous work using Rician likelihoods for motion correc-
tion [16], which required a gradient-free optimisation of the transformations.

We demonstrate how our approach can be used to remove substantial motion
from Sodium MRI data. Sodium is an emerging imaging modality, with several
potential biomedical applications [11,19]. However, it has poor SNR due to the
relatively low concentration and magnetic susceptibility of Sodium, as shown
in Fig. 1. Our results illustrate the effectiveness of this approach in removing
substantial motion from high noise situations in both real and synthetic datasets.

2 Background: The Rice Distribution

The noise in magnitude MR images is known to follow a Rice distribution [6]:

p(y|ŷ, σ) = Rice(y; ŷ, σ) =
y
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yŷ
σ2

)
(1)



Motion Correction Using an Approximate Rician Log-Likelihood 149

where I0 is a modified Bessel function of the first kind with order zero (described
in Sect. 3.2). Unlike the Gaussian, this distribution: is not symmetric with respect
to its first parameter, ŷ; does not fulfill any of the algebraic conjugacy properties
that enable derivation of closed-form parmeter updates; it also does not provide
an obvious cost function for directly comparing two images, as it requires a
parameterisation in terms of the clean signal, ŷ. Generative models can be used
to provide such a parameterisation [1].

3 Method

We consider a generative model for the image data based on 5 probabilistic tissue
segmentation maps, G, derived from a T1 image acquired in the same space. We
denote G as a matrix of size N ×5, where N corresponds to the number of voxels.
The intensity of any voxel can be predicted by matrix multiplication with x, a
vector containing the intensity for each tissue class. We consider a geometric
transformation associated with each observed image:

ŷi = P(T(Gx, ti,θi)) (2)

where T provides a rigid transformation of Gx, according to translation t and
rotation parameters given by θ. We also include a convolution, P, which corre-
sponds to the point-spread function of the acquisition sequence; this is estimated
a-priori from the sequence reconstruction method [18]. The predictions ŷi can
now be fit to the observed data yi using an appropriate likelihood function.

3.1 Priors

In this problem, we are considering the registration of noisy data. Accordingly,
the model requires the specification of prior knowledge to enable robust infer-
ence. We choose a physiologically based Gaussian prior over the concentration
of Sodium, measured in mM, for different tissue types:

p(x) = N ([40, 30, 140, 50, 50], [4, 4, 6, 10, 10]2) (3)

where the means are from [11] and the standard deviations are empirically
selected.

The translations have a Normal prior, with a standard deviation specified
in mm. The rotations, which are described through an axis-angle representation
(in Radians), also employ a Normal prior distribution:

p(ti) = N (0, 1.252)
p(θi) = N (0, 0.0252)
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3.2 A Stable Approximation of the Rician Log-Likelihood

Most of the Rician likelihood (Eq. 1) is amenable to efficient calculation in a
differentiable manner. However, I0, corresponds to a modified Bessel function of
the first kind with order zero [20], which is an infinite series:

I0(z) =
∞∑
k=0

( 14z2)k

(k!)2
(4)

The result can be approximated as a sum of the first Nk terms. However,
this necessitates a differentiable form for the factorial in the denominator. By
noting both that k! = Γ(k + 1), where Γ is the Gamma function, and that we
only require the log probability, we can write an approximation for log I0(z) as:

log I0(z) ≈ log-sum-exp(k(log(0.25) + 2 ∗ log(z)) − 2 ln Γ(k + 1)) (5)

where ln Γ refers to the log Gamma function. k is a vector containing values from
0 to Nk, which is summed over. log-sum-exp(z) is a numerically stable and con-
vex function [5] for calculating the logarithm of the sum of exponentiated terms,
log-sum-exp(z) = log(

∑
i exp(zi)). This implementation is empirically numeri-

cally stable, although inefficient in terms of memory as we require multiplying
each voxel by Nk values. We found that Nk = 50 provided sufficient precision.

3.3 Inference

We perform maximum-a-posteriori (MAP) inference on the model parameters
Θ = {x, t,θ, σ}, with the following cost function:

L = −
N∑
i

[log p(yi|x, ti,θi, σ) + log p(ti) + log p(θi)] + log p(x) (6)

Updates alternated between two groups of parameters, those that are shared
for all images Θ1 = {x, σ} and those that vary per image Θ2 = {t,θ}. The
updates for Θ1 were calculated using batches of 5 images at a time, and Θ2 were
updated per image. To account for the batching in updating Θ1, we perform two
update steps on these parameters for every step for Θ2. The Adam [9] optimiser
was used to optimise the model parameters, with a fixed learning rate of 2e−2

for Θ1 and 1e−3 for Θ2 with β1 = 0.0 and β2 = 0.9. We stopped the inference
after 300 rounds of iterations, at which point the model parameters appeared to
have converged. This took approximately 3.5 min for 16 images, or 4.5 min for
32 images on an NVIDIA Quadro RTX 6000 with 24 GB of RAM.

4 Experiments

4.1 Synthetic Data

We generate synthetic data by drawing samples from our generative model with
random tissue parameters, drawn from Eq. 3, with additional random voxelwise
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variability with standard deviations [4, 4, 6, 10, 10] mM. These synthetic images
were then transformed to simulate random motion, with translations sampled
from N (0, 5 mm2) and angles from N (0, 0.12). Each of these images was then
corrupted with Rician noise at various levels. We then tried to correct for the
simulated motion using our model with either a Gaussian or Rician likelihood.

Fig. 2. Synthetic data experiments where the ground truth translation (mean euclidean
distance) and rotation error (mean Frobenius norm of the difference of log matrices)
are given in the above plots for varying Rician noise level. The dashed line indicates the
average initial error. As can be seen, the error when using a Gaussian likelihood rises
very quickly, whereas the Rician likelihood is less affected by noise. In this example,
σ = 40 is roughly equivalent to the Sodium MRI data.

Figure 2 illustrates that using the correct likelihood model has a substantial
impact on registration performance, particularly in high noise scenarios.

4.2 Real Sodium MRI

23Na MR images were acquired using a dual-tuned, 2-channel (one channel for
sodium and one for proton) birdcage 23Na 1H coil developed by RAPID Biomed-
ical GmbH on a 3T Siemens Prisma scanner. Sodium images were acquired using
the FLORET spiral sequence [15] with parameters TR = 120 ms, TE = 0.2 ms,
FOV = 256 × 256 × 256 mm, flip angle = 80◦, 3 hubs at 22◦, 200 interleaves,
pulse duration= 0.5ms and dwell time = 0.01 ms. Each acquisition took 1 min
and 10 s, and was repeated either 16 or 32 times. The k-space data were trans-
ferred offline and image reconstruction was performed in Matlab using 3D re-
gridding [15] with density compensation [22]. The data was reconstructed with
an isotropic resolution of 4 mm3 and an image size of 64×64×64. Examples slices
are shown in Fig. 1. A T1-weighted image (2 mm3 isotropic) was also acquired
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using the same coil prior to the Sodium data. This was used for preparing tissue
segmentation maps using SPM12.

To enable quantification, a set of 4 Sodium phantoms with known concen-
trations (30, 50, 70, 120 mM) were attached to the head. We use these to map
the tissue specific priors, defined in Eq. 3, to the correct intensity range in each
image. This mapping is inferred through linear regression of the median signal
for each of these phantoms from the true concentrations.

Fig. 3. Bar chart illustrating the mean and std. dev. voxelwise σ, estimated using
scipy.stats.Rice, over the motion corrected images for 4 subjects either sleeping (s) or
awake (a). These numbers are normalised by the estimated σ in the background.

Using this acquisition protocol, we collected data for 4 subjects either when
they are asleep (32 Sodium images) or awake (16 images). The data acquired
when sleeping is much more likely to contain motion artefacts due to both the
length of the scan and unintentional movements during sleep. Accordingly, we
use a more permissive transformation prior (with double the standard deviation
for rotation and translations) for these examples.

We experiment with motion correcting the sodium magnitude images using
either our proposed approach or “mcflirt” [8], using a cost function of normalized
correlation and co-registering to the average image. Nearest neighbour interpo-
lation was used as the final step for both approaches for comparable results
without introducing additional smoothness or distortion of noise characteristics.

Validation of the proposed model is complicated by the low SNR exhibited
in the motion corrected and averaged images, see Fig. 4 for some examples.
Desirable properties of aligned images include: similar values at each voxel over
images, and sharp boundaries between regions in the average image. We can
measure the first of these by fitting a Rice distribution to each voxel, see Fig. 3.
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Fig. 4. Example average images calculated by averaging 32 Sodium MRI acquisition.
Norm σ refers to the mean voxelwise Rice σ, normalised by an estimate of σ in the
image background. In this example, where a lot of motion was detected, our approach
leads to a visibly sharper average image.

Fig. 5. Boxplot illustrating the absolute gradient of the average image in voxels on the
boundary of CSF. Larger values indicate the presence of stronger edges.

We observe that for sleeping acquisitions that are corrupted with visible motion,
particularly subject 3 and 4, our approach reduces the mean voxelwise noise
compared to other methods. However, in some awake acquisitions, the use of
either motion correction approach increases σ; we hypothesise this may be due
to interpolation artefacts when correcting sub-voxel motion.

Considering the sharpness of the average image, we can visually observe
sharper looking average images in examples with large motion, particularly in
subject 3 shown in Fig. 4, where we estimated a mean translation of 7.75 mm
(6.49 mm std. dev.) and rotation norm of 0.145 (0.12 std. dev.). To quantify
the image sharpness, we examine the distribution of absolute gradient values in
voxels that lie on the boundary between CSF and anything else, which should
have high contrast. We observe that our motion correction induces stronger edges
in most of the acquisitions of sleeping participants.
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5 Discussion

The presented approach uses a very simple generative model for the image data,
which prevents it overfitting to the high level of noise in the data. However, it also
prevents it from making use of strong distinctive features such as the eyes, which
contain a high level of Sodium, or the phantoms that are attached to the head.
Future work will consider using more complex statistical models and techniques,
such as variational inference [7], to build a voxelwise generative model. Amortised
inference strategies could also be investigated to improve efficiency [4].

In our experimentation, we observed that in some cases where low motion
was observed, our algorithm overestimated the level of movement. We found that
this was removed by introducing variable transformation permissiveness based
on our prior beliefs on the level of motion. Future work will consider methods
for inferring these parameters, and using auto-regressive priors on motion [21].

This work has not investigated preprocessing the data using denoising meth-
ods, e.g. [12]; although such approaches may produce cleaner representations for
aligning the data, they also manipulate the underlying image statistics being
modelled, which may lead to biased results. We also have not compared against
the use of robust cost functions [17], although these are generally more suited
to heavy tailed rather than asymmetric noise distributions as we have here.

We have published our code on GitHub1. The data are not currently available
for distribution as the initial analysis of a wider dataset is ongoing.

6 Conclusions

This paper has introduced an algorithm for data modelling and motion correction
of low SNR MRI data using a differentiable approximation of the Rician log-
likelihood. Our synthetic experiments illustrated the importance of choosing the
right cost function for generative models for motion correction, as the Gaussian
likelihood performs very poorly where the errors take a different form. On real
Sodium MRI data, our results provide support for the use of our method in
resolving substantial motion artefacts and creating sharper average images.
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