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Preface

The 10th International Workshop on Biomedical Image Registration (WBIR 2022,
https://2022.wbir.info) was held in Munich, Germany, during July 10–12, 2022. After
manymissed conferences due to the COVID-19 pandemic, we sincerely hoped that 2022
would be a fresh restart for in-person and hybrid meetings that support exchange and
collaboration within the WBIR community.

The WBIR 2022 meeting was a two-and-a-half-day workshop endorsed by the
MICCAI society and supported by its new “Special Interest Group on Biomedical
Image Registration” (SIG-BIR). It was organized in close spatial and temporal proximity
to the Medical Imaging with Deep Learning (MIDL 2022) conference to enable
interested researchers tominimize travel. Preceding editions ofWBIRhave runmostly as
standalone two-dayworkshops at various locations: Bled, Slovenia (1999); Philadelphia,
USA (2003); Utrecht, The Netherlands (2006); Lübeck, Germany (2010); Nashville,
USA (2012); London, UK (2014); Las Vegas, USA (2016); Leiden, The Netherlands
(2018), and Portorož, Slovenia (2020 / virtually). As with previous editions, the major
appeal ofWBIR 2022 was bringing together researchers from different backgrounds and
countries, and at different points in their academic careers, who all share a great interest
in image registration. Based on our relaxed two-and-a-half-day format with tutorials,
three keynotes, and a main scientific program with short and long oral presentations, as
well as in-person poster presentations, WBIR 2022 enabled space for lots of interaction
and ample discussion among peers. As everyone’s mindset is on image registration, it
makes it easier for students to approach and meet their distinguished colleagues.

The WBIR 2022 proceedings, published in the Lecture Notes in Computer Science
series, were established through two cycles of peer-review using OpenReview (for the
first time). Full papers were reviewed in a double-blind fashion, with each submission
evaluated by at least threemembers of the ProgramCommittee. The ProgramCommittee
consisted of 25 experienced scientists in the field of medical image registration. All
papers and reviews were afterwards discussed in an online meeting by the Paper
Selection Committee to reach decisions. Short papers were categorized as either exciting
early-work or abstracts of recently published/submitted long articles. Those submissions
went through a lighter peer-review process, each being assigned to two members of
the Paper Selection Committee. From a total of 34 submissions, 30 were selected for
oral and poster presentation and 26 original works are included in these proceedings.
Prominent topics include optimization, deep learning architectures, neuroimaging,
diffeomorphisms, uncertainty, topology, and metrics. The presenting authors at WBIR
2022 represented a delightful diverse community with approximately 45% female
speakers, nine papers from groups outside of Europe (primarily the USA), and academic
levels ranging from Master’s and PhD students to lecturers. To further stimulate
participation fromAsia,Africa, andSouthAmericawe established a scholarship program
that received 25 applications.

We were grateful to have three excellent keynote speakers at WBIR 2022. With
rich experience in conducting numerous medical image computing projects from early

https://2022.wbir.info


vi Preface

feasibility to product implementation, WolfgangWein from ImFusion (Germany) spoke
about combining visual computing with machine learning for improved registration in
image-guided interventions. Maria Vakalopoulou, who is an expert on deep learning for
biomedical image analysis from Paris-Saclay University (France), discussed classical
and deep learning-based registration methods and their impacts on clinical diagnosis.
Finally, JosienPluim, head of theMedical ImageAnalysis group at EindhovenUniversity
of Technology (The Netherlands), provided a historical overview of trends in image
registration, going back to the first papers on the topic and taking us through some of
the most important advances until today.

Manypeople contributed to the organization and success ofWBIR2022. In particular,
we would like to thank the members of the Program Committee and the additional
Paper Selection Committee members (Stefan Klein and Žiga Špiclin) for their work that
assured the high quality of the workshop. We thank the MICCAI SIG-BIR group for
their financial support and theMICCAI Society for their endorsement. Finally, wewould
like to thank all authors and participants of WBIR 2022 for their contributions.

June 2022 Mattias Heinrich
Alessa Hering
Julia Schnabel
Daniel Rückert
Enzo Ferrante

Miaomiao Zhang
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1 Introduction

Medical image registration allows comparing images from different patients,
modalities or time-points, but often suffers from missing correspondences due
to pathologies and inter-patient variations. The handling of non-corresponding
regions has been tackled with several approaches in the literature. For evolv-
ing processes, metamorphoses models have been used that model both spatial
and appearance offsets to align images from different time-points [1,2]. Other
approaches mask out [3] or weight down [4,5] the image distance measure in
non-corresponding regions based on outlier detection [3], estimation of matching
uniqueness [4] or correspondence probabilities [5].

Our recently published paper “Deep learning-based simultaneous registra-
tion and unsupervised non-correspondence segmentation of medical images with
pathologies” [6] proposes a convolutional neural network (CNN) for joint image
registration and detection of non-corresponding regions. As in previous itera-
tive approaches [3], non-correspondences are considered as outliers in the image
distance measure and are masked out. The conversion to a deep learning-based
approach allows a two-step training procedure that results in better separation
of spatial displacement and non-correspondence segmentation. Network training
does not require manual segmentations of non-correspondences that are found
in a single run, overcoming limitations of other CNN-based approaches [7–10].

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
A. Hering et al. (Eds.): WBIR 2022, LNCS 13386, pp. 3–7, 2022.
https://doi.org/10.1007/978-3-031-11203-4_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-11203-4_1&domain=pdf
http://orcid.org/0000-0002-9113-3954
http://orcid.org/0000-0003-2024-2958
http://orcid.org/0000-0003-2163-5905
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2 Materials and Methods

The joint non-correspondence detection and image registration network (NCR-
Net) is inspired by the U-Net [11] but follows a Y-shaped architecture with
one encoder and two separate decoders. The decoders output a diffeomorphic
deformation field φ and a non-correspondence segmentation S, respectively. Both
decoders are connected to the encoder with skip connections. Moving image M
and fixed image F serve as network input and outputs are generated on three
resolution levels. At each resolution level, the loss function is computed to enable
in-depth supervision of the network, with finer resolution levels being given more
weight.

Segmentation and registration performances of NCR-Net are extensively eval-
uated on two datasets. The first dataset consists of longitudinal OCT images
from 40 patients suffering from age-related macular degeneration. Three bound-
ary segmentations, but no pathological labels are given for these data. The sec-
ond dataset is the LPBA40 dataset, containing 40 whole-head MRI volumes
from healthy probands and manual segmentations of 56 anatomical regions. To
introduce known non-correspondences into the images, we simulate four different
stroke lesions, two of which are quite large and the other two are smaller.

The network training takes place in two phases. First, the encoding part of the
network as well as the deformation decoder are pre-trained with the “standard”
objective function for image registration

LReg(θ;M,F) =
∑

x∈Ω

D[F, φ ◦ M] + αRφ + λ Lopt (1)

consisting of image distance measure D and regularization of the deformation
Rφ. The last term Lopt is optional and may be used to provide supervision to the
registration or segmentation task. In this work, we use the Dice loss comparing
brain masks for MRI and retinal masks for OCT data in moving and fixed images
to support the registration task. In the second training phase, the entire CNN
is updated using

L(θ;M,F) =
∑

x∈Ω

(1 − S) · D[F, φ ◦ M] + αRφ + βRS + λ Lopt (2)

as loss function. Here, the image distance is evaluated in corresponding regions
only and the segmentation S is regularized with RS consisting of segmentation
volume and perimeter.

3 Results

In a first experiment, ablation studies are performed on the OCT data, com-
paring supervised and unsupervised versions of NCR-Net, i.e. versions trained
with and without Lopt, as well as versions trained with the proposed two-phase
training or with loss function (2) from scratch. Two main results arise from this
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experiment. First, unsupervised and supervised NCR-Net perform comparably,
allowing its use even for datasets without any given annotations. Second, the
two-phase training scheme significantly improves Hausdorff and average surface
distance of all three segmented retinal boundaries, indicating better disentan-
glement of spatial deformation and non-correspondence segmentation.

Fig. 1. Exemplary results for MRI (top row) and OCT (bottom row) data. Shown
are moving, fixed, warped moving and the difference image after registration as well
as the generated non-correspondence maps. Manually segmented retinal borders and
automatically generated brain masks are given in blue. For the MRI data, segmentation
results before and after region-growing are displayed in gray and white, respectively.
The ground truth lesion is outlined in red. (Color figure online)

The registration performance of NCR-Net is further evaluated on the
LPBA40 data by calculating average Jaccard indices of the given anatomical
labels and comparing NCR-Net to state-of-the-art registration algorithms in 2D
and 3D. NCR-Net significantly outperforms the competitive methods in the pres-
ence of large pathologies and performs comparable for images with small or no
lesion. Network training with small and large simulated lesions leads to improved
robustness against non-correspondences.

Finally, we evaluate the non-correspondence detection and segmentation per-
formance of NCR-Net using the MRI data. The generated segmentations are
compared to the ground truth lesion masks in two ways, first directly and sec-
ond after applying region growing inside the lesions. In 2D, mean Dice scores of
0.871, 0.870, 0.630 and 0.880 are achieved for the four lesion types considered.
Even though the segmentation performance in 3D is inferior, lesion detection
rates are still high with 83.7 % for the worst performing lesion type.
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4 Discussion

Our NCR-Net closes the gap between deep learning and iterative approaches
for joint image registration and non-correspondence detection. The proposed
network achieves state-of-the-art and robust registration of pathological images
while additionally segmenting non-correspondent areas. With a two-step training
scheme, the disentanglement of spatial deformations and non-correspondence
segmentation is improved. Manual annotations may provide more supervision to
the registration task, but can also be omitted without much performance loss.
The simulated stroke lesions are detected as non-correspondent regions by NCR-
Net very reliably and the generated segmentations are shown to be usable for
unsupervised lesion segmentation and for the monitoring of evolving diseases.
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{anton.francois,alexis.glaunes}@parisdescartes.fr
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Abstract. We present an extension of the Metamorphosis algorithm
to align images with different topologies and/or appearances. We pro-
pose to restrict/limit the metamorphic intensity additions using a time-
varying spatial weight function. It can be used to model prior knowledge
about the topological/appearance changes (e.g., tumour/oedema). We
show that our method improves the disentanglement between anatomi-
cal (i.e., shape) and topological (i.e., appearance) changes, thus improv-
ing the registration interpretability and its clinical usefulness. As clinical
application, we validated our method using MR brain tumour images
from the BraTS 2021 dataset. We showed that our method can better
align healthy brain templates to images with brain tumours than exist-
ing state-of-the-art methods. Our PyTorch code is freely available here:
https://github.com/antonfrancois/Demeter metamorphosis.

Keywords: Image registration · Metamorphosis · Topology variation ·
Brain tumour

1 Introduction

When comparing medical images, for diagnosis or research purposes, physicians
need accurate anatomical registrations. In practice, this is achieved by mapping
images voxel wise with a plausible anatomical transformation. Possible applica-
tions are: computer assisted diagnosis or therapy, multi-modal fusion or surgi-
cal planning. These mappings are usually modelled as diffeomorphisms, as they
allow for the creation of a realistic one to one deformation without modifying
the topology of the source image. There exists a vast literature dealing with
this subject. Some authors proposed to use stationary vectors fields, using the
Lie algebra vector field exponential [1,2,14], or, more recently, Deep-Learning
based methods [5,16,19,21,22,29]. Other authors used the Large Diffeomorphic

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
A. Hering et al. (Eds.): WBIR 2022, LNCS 13386, pp. 8–17, 2022.
https://doi.org/10.1007/978-3-031-11203-4_2
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Deformation Metric Mapping (LDDMM) that uses time varying vector fields
to define a right-invariant Riemannian metric on the group of diffeomorphisms.
One advantage of this metric is that it can be used to build a shape space, pro-
viding useful notions of geodesics, shortest paths and distances between images
[3,6,30,31]. A shortest path represents the registration between two images.

However, clinical or morphometric studies often include an alignment step
between a healthy template (or atlas) and images with lesions, alterations or
pathologies, like white matter multiple sclerosis or tumour. In such applications,
source and target images show a different topology, thus preventing the use of
diffeomorphisms, which are by definitions one-to-one mappings. Several solutions
have been proposed in order to take into account such topological variations. One
of the first methods was the Cost-Function Masking [7], where authors simply
excluded the lesions from the image similarity cost. It is versatile and easy to
implement, but it does not give good results when working with big lesions. Sdika
et al. [24] proposed an inpainting method which only works on small lesions.
Niethammer et al. proposed Geometric Metamorphosis [20], that combines two
deformations to align pathological images which need to have the same topology.
Another strategy, when working with brain images with tumours, is to use bio-
physical models [10,23] to mimic the growth of a tumour into an healthy image
and then perform the registration (see for instance GLISTR [11]). However, this
solution is slow, computationally heavy, specific to a particular kind of tumour
and needs many different imaging modalities. Other works proposed to solve this
problem using Deep-Learning techniques [8,12,15,25]. However, these methods
strongly depend on the data-set and on the modality they have been trained on,
and might not correctly disentangle shape and appearance changes.

The Metamorphic framework [13,27,30] can be seen as a relaxed version of
LDDMM in which residual time-varying intensity variations are added to the dif-
feomorphic flow, therefore allowing for topological changes. Nevertheless, even
if metamorphosis leads to very good registrations, the disentanglement between
geometric and intensity changes is not unique and it highly depends on user-
defined hyper-parameters. This makes interpretation of the results hard, thus
hampering its clinical usage. For instance, in order to align a healthy template
to an image with a tumour, one would expect that the method adds intensi-
ties only to create new structures (i.e., tumours) or to compensate for inten-
sity changes due to the pathology (i.e. oedema). All other structures should be
correctly aligned solely by the deformations. However, depending on the hyper-
parameters, the algorithm might decide to account for morphological differences
(i.e. mass effect of tumours) by changing the appearance rather than applying
deformations. This limitation mainly comes from the fact that the additive inten-
sity changes can theoretically be applied all over the image domain. However, in
many clinical applications, one usually has prior knowledge about the position
of the topological variations between an healthy image and a pathological one
(e.g., tumour and oedema position).
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To this end, we propose an extension of the Metamorphosis (M) model
[13,27], called Weighted Metamorphosis (WM), where we introduce a time-
varying spatial weight function that restricts, or limits, the intensity addition
only to some specified areas. Our main contributions are: 1./ A novel time-
varying spatial weight function that restricts, or limits, the metamorphic inten-
sity additions [13,27] only to some specified areas. 2./ A new cost function that
results in a set of geodesic equations similar to the ones in [13,27]. Metamor-
phosis can thus be seen as a specific case of our method. 3./ Evaluation on a
synthetic shape dataset and on the BraTS 2021 dataset [17], proposing a sim-
ple and effective weight function (i.e., segmentation mask) when working with
tumour images. 4./ An efficient PyTorch implementation of our method, avail-
able at https://github.com/antonfrancois/Demeter metamorphosis.

2 Methods

Weighted Metamorphosis. Our model can be seen as an extension of the
model introduced by Trouvé and Younès [27,30]. We will use the same notations
as in [9]. Let S, T : Ω → [0, 1] be grey-scale images, where Ω is the image domain.
To register S on T , we define, similarly to [27,30], the evolution of an image It

(t ∈ [0, 1]) using the action of a vector field vt, defined as v · It = −〈∇It, vt〉,
and additive intensity changes, given by the residuals zt, as:

İt = −〈∇It, vt〉 + μMtzt, s.t. I0 = S, I1 = T, μ ∈ R
+. (1)

where we introduce the weight function Mt : x ∈ Ω → [0, 1] (at each time
t ∈ [0, 1]) that multiplies the residuals zt at each time step t and at every
location x. We assume that Mt is smooth with compact support and that it can
be fully computed before the optimisation. Furthermore, we also define a new
pseudo-norm ‖ • ‖Mt

for z. Since we want to consider the magnitude of z only
at the voxels where the intensity is added, or in other terms, where Mt(x) is not
zero, we propose the following pseudo-norm:

‖zt‖2Mt
=

∥
∥
∥

√

Mtzt

∥
∥
∥

2

L2
= 〈zt,Mtzt〉L2 (2)

This metric will sum up the square values of z inside the support of Mt. As usual
in LDDMM, we assume that each vt ∈ V , where V is a Hilbert space with a
reproducing kernel Kσ, which is chosen here as a Gaussian kernel parametrized
by σ [18,28]. Similarly to [27,30], we use the sum of the norm of z and the one
of v (i.e., the total kinetic energy), balanced by ρ, as cost function:

EWM(v, I) =
∫ 1

0

‖vt‖2V + ρ‖zt‖2Mt
dt, s.t. I0 = S, I1 = T, ρ ∈ R

+ (3)

where z depends on I through Eq. 1. By minimising Eq. 3, we obtain an exact
matching.

https://github.com/antonfrancois/Demeter_metamorphosis
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Theorem 1. The geodesics associated to Eq. 3 are:
⎧

⎨

⎩

vt = − ρ
μKσ � (zt∇It)

żt = − ∇ · (ztvt)
İt = −〈∇It, vt〉 + μMtzt

(4)

where ∇ · (v) is the divergence of the field v and � represents the convolution.

Proof. This proof is similar to the one in [30], Chap. 12, but needs to be treated
carefully due to the pseudo-norm ‖zt‖2Mt

=
〈

zt,
1
μ (İt + vt · ∇It)

〉

L2
. We aim

at computing the variations of Eq. 3 with respect to I and v and compute the
Euler-Lagrange equations. To this end, we define two Lagrangians: LI(t, I, İ) =
EWM(•, v) and Lv(t, v, v̇) = EWM(I, •) and start by computing the variations h
with respect to v:

DvLv · h =
∫ 1

0

〈2(K−1vt +
ρ

μ
zt∇It), ht〉L2dt (5)

Then, noting that ∇vLv = 2(K−1vt + ρ
μzt∇It) and since ∇v̇Lv = 0, the Euler-

Lagrange equation is:

∇vLv − ∇̇v̇Lv = 0 ⇔ vt = − ρ

μ
K � (zt∇It) (6)

as in the classical Metamorphosis framework [30]. Considering the variation of I,
we have DI

∥
∥
√

Mtz
∥
∥
2

L2 =
〈

zt,
1
μvt · ∇ht

〉

L2
, thus obtaining:

DILI · h = 2
∫ 1

0

〈

zt,
1
μ

∇ht · vt

〉

L2

dt =
∫ 1

0

〈

− 2
μ

∇ · (ztvt), ht

〉

L2

dt (7)

and DİLI · h =
∫ 1

0
〈 2

μzt, ht〉L2dt. We deduce that ∇ILI = 2
μ∇ · (ztvt) and as

∇v̇Lv = 2
μzt, its Euler-Lagrange equation is:

∇ILI − ∇̇İLI = 0 ⇔ żt = −∇ · (ztvt) (8)

We can first notice that, by following the geodesic paths, the squared norms
over time are conserved (∀t ∈ [0, 1], ‖v0‖2V = ‖vt‖2V ) and thus one can actually
optimise using only the initial norms. Furthermore, since v0 can be computed
from z0 and I0, the only parameters of the system are z0 and I0. As it is often
the case in the image registration literature, we propose to convert Eq. 3 into an
unconstrained inexact matching problem, thus minimising:

JWM(z0) = ‖I1 − T‖2L2
+ λ

[

‖v0‖2V + ρ‖z0‖2M
]

, λ ∈ R
+, I0 = S (9)

where I1 is integrated with Eq. 4, ‖v0‖2V = 〈z0∇S,Kσ � (z0∇S)〉 and λ is the
trade-off between the data term (based here on a L2-norm, but any metric could
be used as well) and the total regularisation.



12 A. François et al.

Weighted Function Construction. The definition of the weight function Mt

is quite generic and could be used to register any kind of topological/appearance
differences. Here, we restrict to brain tumour images and propose to use an
evolving segmentation mask as weight function. We assume that we already
have the binary segmentation mask B of the tumour (comprising both oedema
and necrosis) in the pathological image and that healthy and pathological images
are rigidly registered, so that B can be rigidly moved onto the healthy image.
Our goal is to obtain an evolving mask Mt : [0, 1] × Ω → [0, 1] that somehow
mimics the tumour growth in the healthy image starting from a smoothed small
ball in the centre of the tumour (M0) and smoothly expanding it towards B. We
generate Mt by computing the LDDMM registration between M0 and B. Please
note that here one could use an actual biophysical model [10,23] instead of the
proposed simplistic approximation based on LDDMM. However, it would require
prior knowledge, correct initialisation and more than one imaging modality. The
main idea is to smoothly and slowly regularise the transformation so that the
algorithm first modifies the appearance only in a small portion of the image,
trying to align the surrounding structure only with deformations. In this way,
the algorithm tries to align all structures with shape changes adding/removing
intensity only when necessary. This should prevent the algorithm from changing
the appearance instead of applying deformations (i.e. better disentanglement)
and avoid wrong overlapping between new structures (e.g. tumour) and healthy
ones. Please refer to Fig. 1 for a visual explanation.

3 Results and Perspectives

Implementation Details. Our Python implementation is based on PyTorch
for automatic differentiation and GPU support, and it uses the semi-Lagrangian
formulation for geodesic shooting presented in [9]. For optimisation we use the
PyTorch’s Adadelta method.

Synthetic Data. Here, we illustrate our method on a 300× 300 grey-scale image
registration toy-example (Fig. 1). We can observe the differences in the geodesic
image evolution for LDDMM, Metamorphosis (M) and Weighted Metamorphosis
(WM) with a constant and evolving mask. First, LDDMM cannot correctly align
all grey ovals and Metamorphosis results in an image very similar to the target.
However, most of the differences are accounted for with intensity changes rather
than deformations. By contrast, when using the proposed evolving mask (fourth
row), the algorithm initially adds a small quantity of intensity in the middle
of the image and then produces a deformation that enlarges it and correctly
pushes away the four grey ovals. In the third row, a constant mask (Mt =
M1,∀t ∈ [0, 1]) is applied. One can observe that, in this case, the bottom and left
ovals overlap with the created central triangle and therefore pure deformations
cannot correctly match both triangle and ovals. In all methods, the registration
was done with the same field smoothness regularisation σ and integration steps.
Please note that the four grey ovals at the border are not correctly matched
with LDDMM and, to a lesser extent, also with our method. This is due to the
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Fig. 1. Comparison between LDDMM, Metamorphosis and our method.
Image registration toy example. Differently from the Source image (S), the Target
image (T) has a big central triangle that has grown “pushing” the surroundings ovals.
Note that the bottom and left ovals in S overlap with the triangle in T. The two last
rows show our method using a constant and time evolving mask (see Sect. 2). The used
mask is displayed on the top right corner of each image. see animations in GitHub

in notebook : toyExample weightedMetamorphosis.ipynb

L2-norm data term since these shapes do not overlap between the initial source
and target images and therefore the optimiser cannot match them.

Validation on 2D Real Data. For evaluation, we used T1-w MR images from
the BraTS 2021 dataset [4,17]. For each patient, a tumour segmentation is pro-
vided. We selected the same slice for 50 patients resizing them to 240 × 240
and making sure that a tumour was present. We then proceeded to register the
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Fig. 2. Registrations on MRI brains presenting brain tumours. Two examples
from BraTS database [4,17]. Comparison of geodesic shooting for LDDMM, Meta-
morphosis (M) and Weighted Metamorphosis (WM). (a&d) On the target images and
the geodesic integration, the temporal mask is indicated by the red outline. The final
result of each integration can be seen in the green outlined row. (b) The deforma-
tion grids retrieved from each method and (c) the template image deformed without
intensity additions for each concerned method. Purple arrows in columns 2 and 3 in
the top right part of each image show the evolution of one ventricle through registra-
tion: while M makes the ventricle disappear and reappear, WM coherently displaces
the structure. (d) Target images with the segmentation outlined in red; the colored
image is its superposition with the source. see animations in GitHub in notebook

: brains weightedMetamorphosis.ipynb
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healthy brain template SRI24 [26] to each of the selected slices (see Fig. 2 for
two examples). To evaluate the quality of the alignment we used three different
measures in Table 1: 1./ the Sum of Squared Differences (SSD) (i.e. L2-norm)
between the target (T) and the transformed source (S) images. This is a nat-
ural choice as it is used in the cost function. 2./ the SSD between T and the
deformed S without considering intensity changes. This is necessary since Meta-
morphoses could do a perfect matching without using deformations but only
intensity changes. 3./ A Dice score between the segmentations of the ventricles
in the deformed S and T. The ventricles were manually segmented. All methods
should correctly align the ventricles using solely pure deformations since the-
ses regions are (theoretically) not infiltrated by the tumour (i.e., no intensity
modifications) and they can only be displaced by the tumor mass effect.

Table 1. Quantitative evaluation for different registration methods. Results were com-
puted on a test set of 50 2D 240 × 240 images from BraTS 2021 dataset. - (∗) SSD for
CFM is computed over the domain outside the mask.

Method LDDMM [18] Meta. [9] WM (ours) MAE [8] Voxelm. [5] CFM [7]

SSD (final) 223± 51 36± 9 65± 71 497± 108 166.71± 37 49∗ ± 28

SSD (def.) – 112± 21 102± 76 865± 172 – –

Dice score 68.6± 11.9 74.1± 9.3 77.2± 10.1 60.6± 8.79 66.8± 10 45.0± 13.5

We compared our method with LDDMM [6], Metamorphosis [27], using the
implementation of [9], Metamorphic Auto-Encoder (MAE) [8], Voxelmorph [5]
and Cost Function Masking (CFM) [7] (see Table 1). Please note that we did not
include other deep-learning methods, such as [12,15], since they only work the
other way around, namely they can only register images with brain tumours to
healty templates. As expected, Metamorphosis got the best score for SSD (final)
as it is the closest to an exact matching method. However, WM outperformed
all methods in terms of Dice score obtaining a very low SSD (both final and
deformation-only). This means that our method correctly aligned the ventricles,
using only the deformation, and at the same time it added intensity only where
needed to globally match the two images (i.e., good disentanglement between
shape and appearance).

Perspectives and Conclusion. In this work, we introduced a new image reg-
istration method, Weighted Metamorphosis, and showed that it successfully
disentangles deformation from intensity addition in metamorphic registration,
by using prior information. Furthermore, the use of a spatial mask makes our
method less sensitive to hyper-parameter choice than Metamorphosis, since it
spatially constrains the intensity changes. We also showed that WM improves
the accuracy of registration of MR images with brain tumours from the BRATS
2021 dataset. We are confident that this method could be applied to any kind
of medical images showing exogenous tissue growth with mass-effect. A future
research direction will be the integration of methods from topological data anal-
ysis, such as persistent homology, to improve even more the disentanglement
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between geometric and appearance changes. We also plan to adapt our method
to 3D data.
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Abstract. The purpose of this work is to contribute to the state of
the art of deep-learning methods for diffeomorphic registration. We pro-
pose an adversarial learning LDDMM method for pairs of 3D mono-
modal images based on Generative Adversarial Networks. The method is
inspired by the recent literature on deformable image registration with
adversarial learning. We combine the best performing generative, dis-
criminative, and adversarial ingredients from the state of the art within
the LDDMM paradigm. We have successfully implemented two models
with the stationary and the EPDiff-constrained non-stationary parame-
terizations of diffeomorphisms. Our unsupervised learning approach has
shown competitive performance with respect to benchmark supervised
learning and model-based methods.

Keywords: Large deformation diffeomorphic metric mapping ·
Generative Adversarial Networks · Geodesic shooting · Stationary
velocity fields

1 Introduction

Since the 80s, deformable image registration has become a fundamental prob-
lem in medical image analysis [1]. A vast literature on deformable image reg-
istration methods exists, providing solutions to important clinical problems
and applications. Up to the ubiquitous success of methods based on Convo-
lutional Neural Networks (CNNs) in computer vision and medical image anal-
ysis, the great majority of deformable image registration methods were based
on energy minimization models [2]. This traditional approach is model-based or
optimization-based, in contrast with recent deep-learning approaches that are
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known as learning-based or data-based. Diffeomorphic registration constitutes
the inception point in Computational Anatomy studies for modeling and under-
standing population trends and longitudinal variations, and for establishing rela-
tionships between imaging phenotypes and genotypes in Imaging Genetics [3,4].
Model-based diffeomorphic image registration is computationally costly. In fact,
the huge computational complexity of large deformation diffeomorphic metric
mapping (LDDMM) [5] is considered the curse of diffeomorphic registration,
where very original solutions such as the stationary parameterization [6–8], the
EPDiff constraint on the initial velocity field [9], or the band-limited parameteri-
zation [10] have been proposed to alleviate the problem. Since the advances that
made it possible to learn the optical flow using CNNs (FlowNet [11]), dozens
of deep-learning data-based methods have been proposed to approach the prob-
lem of deformable image registration in different clinical applications [12], some
specifically for diffeomorphic registration [13–22]. Overall, all data-based meth-
ods yield fast inference algorithms for diffeomorphism computation once the
difficulties with training have been overcome. Generative Adversarial Networks
(GANs) is an interesting unsupervised approach where some interesting pro-
posals for non-diffeomorphic deformable registration have been made [23] (2D)
and [24,25] (3D). GANs have also been used for diffeomorphic deformable tem-
plate generation [26], where the registration sub-network is based on an estab-
lished U-net architecture [22,27], or for finding deformations for other purposes
like interpretation of disease evidence [28]. A GAN combines the interaction
of two different networks during training: a generative network and a discrim-
ination network. The generative network itself can be regarded as an unsuper-
vised method that, once included in the GAN system, is trained with the feed-
back of the discrimination network. The discriminator helps further update the
generator during training with information regarding how the appearance of
plausible warped source images. The main contribution of this work is the pro-
posal of a GAN-based unsupervised learning LDDMM method for pairs of 3D
mono-modal images, the first to use GANs for diffeomorphic registration. The
method is inspired by the recent literature for deformable image registration
with adversarial learning [24,25] and combines the best performing components
within the LDDMM paradigm. We have successfully implemented two models
for the stationary and the EPDiff-constrained non-stationary parameterizations
and demonstrate the effectiveness of our models in both 2D simulated and 3D
real brain MRI data.

2 Background on LDDMM

Let Ω ⊆ R
d be the image domain. Let Diff(Ω) be the LDDMM Rieman-

nian manifold of diffeomorphisms and V the tangent space at the identity ele-
ment. Diff(Ω) is a Lie group, and V is the corresponding Lie algebra [5].
The Riemannian metric of Diff(Ω) is defined from the scalar product in V ,
〈v, w〉V = 〈Lv,w〉L2 , where L is the invertible self-adjoint differential operator
associated with the differential structure of Diff(Ω). In traditional LDDMM
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methods, L = (Id − αΔ)s, α > 0, s ∈ R [5]. We will denote with K the inverse
of operator L. Let I0 and I1 be the source and the target images. LDDMM is
formulated from the minimization of the variational problem

E(v) =
1
2

∫ 1

0

〈Lvt, vt〉L2dt +
1
σ2

‖I0 ◦ (φv
1)

−1 − I1‖2L2 . (1)

The LDDMM variational problem was originally posed in the space of time-
varying smooth flows of velocity fields, v ∈ L2([0, 1], V ). Given the smooth flow
v : [0, 1] → V , vt : Ω → R

d, the solution at time t = 1 to the evolution equation

∂t(φv
t )

−1 = −vt ◦ (φv
t )

−1 (2)

with initial condition (φv
0)

−1 = id is a diffeomorphism, (φv
1)

−1 ∈ Diff(Ω). The
transformation (φv

1)
−1, computed from the minimum of E(v), is the diffeomor-

phism that solves the LDDMM registration problem between I0 and I1. The
most significant limitation of LDDMM is its large computational complexity. In
order to circumvent this problem, the original LDDMM variational problem is
parameterized on the space of initial velocity fields

E(v0) =
1
2
〈Lv0, v0〉L2 +

1
σ2

‖I0 ◦ (φv
1)

−1 − I1‖2L2 . (3)

where the time-varying flow of velocity fields v is obtained from the EPDiff
equation

∂tvt + K[(Dvt)T · Lvt + DLvt · vt + Lvt · ∇ · vt] = 0 (4)

with initial condition v0 (geodesic shooting). The diffeomorphism (φv
1)

−1, com-
puted from the minimum of E(v0) via Eqs. 4 and 2, verifies the momentum con-
servation constraint (MCC) [29], and, therefore, it belongs to a geodesic path on
Diff(Ω). Simultaneously to the MCC parameterization, a family of methods
was proposed to further circumvent the large computational complexity of the
original LDDMM [6–8]. In all these methods, the time-varying flow of velocity
fields v is restricted to be steady or stationary [30]. In this case, the solution
does not belong to a geodesic.

3 Generative Adversarial Networks for LDDMM

Similarly to model-driven approaches for estimating LDDMM diffeomorphic
registration, data-driven approaches for learning LDDMM diffeomorphic reg-
istration aim at the inference of a diffeomorphism (φv

1)
−1 such that the

LDDMM energy is minimized for a given (I0, I1) pair. In particular, data-driven
approaches compute an approximation of the functional

S(arg min
v∈V

E(v, I0, I1)) (5)

where S represents the operations needed to compute (φv
1)

−1 from v, and the
energy E is either given by Eqs. 1 or 3. The functional approximation is obtained
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via a neural network representation with parameters learned from a representa-
tive sample of image pairs. Unsupervised approaches assume that the LDDMM
parameterization in combination with the minimization of the energy E con-
sidered as a loss function are enough for the inference of suitable diffeomorphic
transformations after training. Therefore, there is no need for ground truth defor-
mations. GAN-based approaches depart from unsupervised approaches by the
definition of two different networks: the generative network (G) and the discrim-
ination network (D), and are trained in an adversarial fashion as follows. The
discrimination network D learns to distinguish between a warped source image
I0 ◦ (φv

1)
−1 generated by G and a plausible warped source image. It is trained

using the loss function

LD =
{− log(p) c ∈ P+

− log(1 − p) c ∈ P− (6)

where c indicates the input case, P+ and P− indicate positive or negative cases
for the GAN, and p is the probability computed by D for the input case. In the
first place, D is trained on a positive case c ∈ P+ representing a target image
I1 and a warped source image Iw0 plausibly registered to I1 with a diffeomor-
phic transformation. The warped source image is modeled from I0 and I1 with
a strictly convex linear combination: Iw0 = βI0 + (1 − β)I1. It should be noticed
that, although the warped source image would ideally be I1, the selection of
Iw0 = I1 (e.g. β = 0) empirically leads to the discriminator rapidly outperform-
ing the generator. This approach to discriminators has been successfully used in
adversarial learning methods for deformable registration [25]. Next, D is trained
on a negative case c ∈ P− representing a target image I1 and a warped source
image Iw0 obtained from the generator network G. The generative network in
this context is the diffeomorphic registration network. G is aimed at the approx-
imation of the functional given in Eq. 5 similarly to unsupervised approaches for
the inference of (φv

1)
−1. It is trained using the combined loss function

LG = Ladv + λE(v, I0, I1). (7)

where Ladv is the adversarial loss function, defined from Ladv = − log(p) where
p is computed from D; E is the LDDMM energy given by Eqs. 1 or 3; and λ
is the weight for balancing the adversarial and the generative losses. For each
sample pair (Iw0 , I1), G is fed with the pair of images and updates the network
parameters from the back-propagation of the information of the loss function
values coming from the LDDMM energy and the discriminator probability of
being a pair generated by G.

3.1 Proposed GAN Architecture

Generator Network. In this work, the diffeomorphic registration network G
is intended to learn LDDMM diffeomorphic registration parameterized on the
space of steady velocity fields or the space of initial velocity fields subject to the
EPDiff equation (Eq. 4). The diffeomorphic transformation (φv

1)
−1 is obtained
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from these velocity fields either from scaling and squaring [7,8] or the solution
of the deformation state equation [5]. Euler integration is used as PDE solver for
all the involved differential equations. A number of different generator network
architectures have been proposed in the recent literature, with predominance of
simple fully convolutional (FC) [23] or U-Net like architectures [24,25]. In this
work, we propose to use the architecture by Duan et al. [24] adapted to fit our
purposes. The network follows the general U-net design of utilizing an encoder-
decoder structure with skip connections. However, during the encoding phase,
the source and target images are fed to two encoding streams with different
resolution levels. The combination of the two encoding streams allows a larger
receptive field suitable to learn large deformations. The upsampling is performed
with a deconvolutional operation based on transposed convolutional layers [31].
We have empirically noticed that the learnable parameters of these layers help
reduce typical checkerboard GAN artifacts in the decoding [32].

Discriminator Network. The discriminator network D follows a traditional
CNN architecture. The two input images are concatenated and passed through
five convolutional blocks. Each block includes a convolutional layer, a RELU
activation function, and a size-two max-pooling layer. After the convolutions,
the 4D volume is flattened and passed through three fully connected layers. The
output of the last layer is the probability of the input images to come from a
registered pair not generated by G.

Generative-Discriminative Integration Layer. The generator and the dis-
criminator networks G and D are connected through an integration layer.
This integration layer allows calculating the diffeomorphism (φv

1)
−1 that warps

the source image I0. The selected integration layer depends on the velocity
parameterization: stationary (SVF-GAN) or EPDiff-constrained time-dependent
(EPDiff-GAN). The computed diffeomorphisms are applied to the source image
via a second 3D spatial transformation layer [33] with no learnable parameters.

Parameter Selection and Implementation Details We selected the param-
eters λ = 1000, σ2 = 1.0, α = 0.0025, and s = 4 and a unit-domain discretization
of the image domain Ω [5]. Scaling and squaring and Euler integration were per-
formed in 8 and 10 time samples respectively. The parameter β for the convex
linear modeling of warped images was selected equal to 0.2. Both the generator
network and the discriminator network were trained with Adam’s optimizer with
default parameters and learning rates of 5e−5 for G and 1e−6 for D, respectively.
The experiments were run on a machine equipped with one NVidia Titan RTX
with 24 GBS of video memory and an Intel Core i7 with 64 GBS of DDR3 RAM,
and developed in Python with Keras and a TensorFlow backend.
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Source Target DD SVF St. LDDMM SVF Flash V0 SVF-GAN SVF EPDiff-GAN V0

Fig. 1. Example of simulated 2D registration results. Up: source and target images of
five selected experiments. Down, left to right: deformed images and velocity fields com-
puted from diffeomorphic Demons (DD), stationary LDDMM (St. LDDMM), Flash,
and our proposed SVF-GAN and EPDiff-GAN. SVF stands for a stationary velocity
field and V0 for the initial velocity field of a geodesic shooting approach, respectively.

4 Experiments and Results

2D Simulated Dataset. We simulated a total of 2560 torus images by varying
the parameters of two ellipse equations, similarly to [19]. The parameters were
drawn from two Gaussian distributions: N (4, 2) for the inner ellipse and N (12, 4)
for the outer ellipse. The simulated images were of size 64 × 64. The networks
were trained during 1000 epochs with a batch size of 64 samples.

3D Brain MRI Datasets. We used a total of 2113 T1-weighted brain MRI
images from the Alzheimer’s Disease Neuroimaging Initiative (ADNI). The
images were acquired at the baseline visit and belong to all the available ADNI
projects (1, 2, Go, and 3). The images were preprocessed with N3 bias field
correction, affinely registered to the MNI152 atlas, skull-stripped, and affinely
registered to the skull-stripped MNI152 atlas. The evaluation of our gener-
ated GAN models in the task of diffeomorphic registration was performed in
NIREP dataset [34], where one image was chosen as reference and pair-wise reg-
istration was performed with the remaining 15. All images were scaled to size
176 × 224 × 176, and in this case trained for 50 epochs with a batch size of 1
sample. Inference of either a stationary or a time dependent velocity field takes
1.3 s.

Results in the 2D Simulated Dataset. Figure 1 show the deformed images
and the velocity fields obtained in the 2D simulated dataset by diffeomorphic
Demons [7], a stationary version of LDDMM (St. LDDMM) [8], the spatial ver-
sion of Flash [10], and our proposed SVF and EPDiff GANs. Apart from diffeo-
morphic Demons that uses Gaussian smoothing for regularization, all the consid-
ered methods use the same parameters for operator L. Therefore, St. LDDMM
and SVF-GAN can be seen as a model-based and a data-based approach for the
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minimization of the same variational problem. The same happens with Flash and
EPDiff-GAN. From the figure, it can be appreciated that our proposed GANs
are able to obtain accurate warps of the source to the target images, similarly to
model-based approaches. For SVF-GAN, the inferred velocity fields are visually
similar to model-based approaches in three of five experiments. For EPDiff-GAN,
the inferred initial velocity fields are visually similar to model-based approaches
in four of five experiments.

4.1 Results in the 3D NIREP Dataset

Quantitative Assessment. Figure 2 shows the Dice similarity coefficients
obtained with diffeomorphic Demons [7], St. LDDMM [8], Voxelmorph II [16], the
spatial version of Flash [10], Quicksilver [14] and our proposed SVF and EPDiff
GANs. SVF-GAN shows an accuracy similar to St. LDDMM and competitive
with diffeomorphic Demons. Our proposed method tends to overpass Voxelmorph
II in the great majority of the structures. On the other hand, EPDiff-GAN shows
an accuracy similar to Flash and Quicksilver in the great majority of regions,
with the exception of the temporal pole (TP) and the orbital frontal gyrus
(OFG), two small localized and difficult to register regions. Furthermore, the
two-stream architecture greatly improves the accuracy obtained by a simple U-
Net. SVF-GAN outperforms the ablation study model in which no discriminator
was used, though EPDiff-GAN only shows clear performance improvements in
some structures. It drives our attention that Flash underperformed in the supe-
rior frontal gyrus (SFG). All tested methods generate smooth deformations with
almost no foldings, as can be seen in table 1 from the supplementary material.
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Fig. 2. Evaluation in NIREP. Dice scores obtained by propagating the diffeomorphisms
to the segmentation labels on the 16 NIREP brain structures. Left, methods parameter-
ized with stationary velocity fields: diffeomorphic Demons (DD), stationary LDDMM
(St. LDDMM), Voxelmorph II, our proposed SVF-GAN with the two-stream architec-
ture, SVF-GAN without discriminator and SVF-GAN with a U-net. Right, geodesic
shooting methods: Flash, Quicksilver (QS), our proposed EPDiff-GAN, EPDiff-GAN
without discriminator, and EPDiff-GAN with a U-net.
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I0 I1 I0 − I1

SVF I0 ◦ (φv
1)−1 I0 ◦ (φv

1)−1 − I1

V0 I0 ◦ (φv
1)−1 I0 ◦ (φv

1)−1 − I1

I0 I1 I0 − I1

SVF I0 ◦ (φv
1)−1 I0 ◦ (φv

1)−1 − I1

V0 I0 ◦ (φv
1)−1 I0 ◦ (φv

1)−1 − I1

Fig. 3. Example of 3D registration results. First row, sagittal and axial views of the
source and the target images and the differences before registration. Second row,
inferred stationary velocity field, warped image, and differences after registration for
SVF-GAN. Third row, inferred initial velocity field, warped image, and differences after
registration for EPDiff-GAN.

Qualitative Assessment. For a qualitative assessment of the quality of the
registration results, Fig. 3 shows the sagittal and axial views of one selected
NIREP registration result. In the figure, it can be appreciated a high matching
between the target and the warped ventricles, and more difficult to register
regions like the cingulate gyrus (observable in the sagittal view) or the insular
cortex (observable in the axial view).

5 Conclusions

We have proposed an adversarial learning LDDMM method for the registration
of 3D mono-modal images. We have successfully implemented two models: one for
the stationary parameterization and the other for the EPDiff-constrained non-
stationary parameterization (geodesic shooting). The performed ablation study
shows how GANs improve the results of the proposed registration networks.
Furthermore, our experiments have shown that the inferred velocity fields are
comparable to the solutions of model-based approaches. In addition, the evalua-
tion study has shown the competitiveness of our approach with state of the art
model- and data- based methods. It should be remarked that our methods per-
form similarly to Quicksilver, a supervised method that uses patches for training,
and therefore, it learns in a rich-data environment. In contrast, our method is
unsupervised and uses the whole image for training in a data-hungry environ-
ment. Indeed, our proposed methods outperform Voxelmorph II, an unsupervised
method for diffeomorphic registration usually selected as benchmark in the state
of the art. Finally, our proposal may constitute a good candidate for the massive
computation of diffeomorphisms in Computational Anatomy studies, since once
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training has been completed, our method shows a computational time of over a
second for the inference of velocity fields.
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Abstract. Brain development during the first trimester is of crucial
importance for current and future health of the fetus, and therefore the
availability of a spatio-temporal atlas would lead to more in-depth insight
into the growth and development during this period. Here, we propose
a deep learning approach for creation of a 4D spatio-temporal atlas of
the embryonic and fetal brain using groupwise image registration. We
build on top of the extension of Voxelmorph for the creation of learned
conditional atlases, which consists of an atlas generation and registration
network. As a preliminary experiment we trained only the registration
network and iteratively updated the atlas. Three-dimensional ultrasound
data acquired between the 8th and 12th week of pregnancy were used.
We found that in the atlas several relevant brain structures were visible.
In future work the atlas generation network will be incorporated and
we will further explore, using the atlas, correlations between maternal
periconceptional health and brain growth and development.

Keywords: Embryonic and fetal brain atlas · Groupwise image
registration · First trimester ultrasound · Deep learning

1 Introduction

Normal growth and development of the human embryonic and fetal brain during
the first trimester is of crucial importance for current and future health of the
fetus [14,17]. Currently, this is monitored by manual measurements, such as the
circumference and volume of the brain [13,15]. However, these measurements lack
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overview: it is unclear how the different measurements relate. The availability
of an atlas i.e., a set of brain templates for a range of gestational ages, could
overcome these challenges by offering a unified and automatic framework to
compare development across subjects.

In literature several atlases are available [5–8,11,12,16,18,19]. However, these
are based on magnetic resonance imaging and/or acquired during the second and
third trimester of pregnancy. Here, we present to the best of our knowledge the
first framework for the development of a brain atlas describing growth of the
human embryo and fetus between 56 and 90 days gestational age (GA) based on
ultrasound imaging.

2 Method

The atlas is generated from three-dimensional (3D) ultrasound images Ii,t, for
subject i imaged at time t, where t is the GA in days. The atlas At is obtained by
groupwise registration of Ii,t for every pregnancy i = 1, ..., k on every time point
t, followed by taking the mean over the deformed images: At = 1

k

∑
i Ii,t ◦ φi.

Hereby the constraint
∑

i,t φi,t ≈ 0 is applied, as proposed by Balci et al. and
Bhatia et al. [1,3]. To ensure invertibility of the deformations we used diffeomor-
phic non-rigid deformations with the deformation field φi,t, obtained by integrat-
ing the velocity field νi,t.

The framework is based on the extension of Voxelmorph for learning condi-
tional atlases by Dalca et al. [4]. An overview of the framework can be found
in Fig. 1. Here, we only train the registration framework and we initialize the
atlas for every time t as the voxelwise median over all images Ii∀i. The median
was chosen over the mean, since this resulted in a sharper initial atlas. Next,
the atlas is updated for iteration n as the mean of Ii,t ◦ φn

i,t for every time t.
Subsequently, the network is trained until An

t ≈ An−1
t .

The loss function is defined as follows:

L (
At, Ii,t, φi,t, φ

−1
i,t

)
= λsimLsimilarity

(
At ◦ φ−1

i,t , Ii,t
)

+ λgroupLgroupwise (φi,t)

+ λmagLmagnitude

(
φ−1
i,t

)
+ λdifLdiffusion

(
φ−1
i,t

)

(1)

The first term computes the similarly between the atlas and image, we used the
local squared normalized cross-correlation, which was used before on this dataset
[2]. The second term approximates the constraint for groupwise registration by
minimizing the running average over the last c deformation fields obtained during
training. To balance the influence of this constraint with respect to time, we
sorted the data based on day GA within every epoch and took as window c the
average number of images per day GA in the dataset. Finally, the deformations
are regularized by: Lmag = ‖φ−1

i,t ‖2
2 and Ldif = ‖∇φ−1

i,t ‖2
2.
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Fig. 1. Overview of the proposed framework and characteristics of the used dataset.

3 Data and Experiments

The Rotterdam Periconceptional Cohort (Predict study) is a large hospital-based
cohort study conducted at the Erasmus MC, University Medical Center Rot-
terdam, the Netherlands. This prospective cohort focuses on the relationships
between periconceptional maternal and paternal health and embryonic and fetal
growth and development [14,17]. 3D ultrasound scans are acquired at multiple
points in time during the first trimester. Here, to model normal development, we
included only singleton pregnancies with no adverse outcome and spontaneous
conception with a regular menstrual cycle.

We included 871 ultrasound images of 398 pregnancies acquired between 56
and 90 days GA. For each day GA, we have at least 10 ultrasound images, as
shown in top-right graph in Fig. 1. The data was split such that for every day GA
80% of the data is in the training set and 20% in the test set. We first spatially
aligned and segmented the brain using our previously developed algorithm for
multi-atlas segmentation and registration of the embryo [2]. Next, we resized all
images to a standard voxelsize per day GA, to ensure that the brain always filled
a similar field of view despite the fast growth of the brain. This standard voxelsize
per day GA was determined by linear interpolation of the median voxelsize per
week GA. We trained the network using the default hyperparameters proposed
by Dalca et al. [4] for λgroup ∈ {0, 1, 10, 100}. We reported the mean percentage of
voxels having a non-positive Jacobian determinant %|J | ≤ 0, the groupwise loss
Lgroup and the similarity loss Lsim. Finally, for the best set of hyperparameters
the atlas was updated iteratively, and we visually analyzed the result.

4 Results

From the results given in Table 1 for iteration n = 1 we concluded that all tested
hyperparameters resulted in smooth deformation fields, since the percentage
of voxels with a non-positive Jacobian determinant %|J | ≤ 0 over the whole
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dataset was less then one percent. Furthermore, we observe that for λgroup = 1
Lgroup is similar to not enforcing the groupwise constraint. For λgroup = 100,
we observed that Lsim deteriorated, indicating that the deformation fields are
excessively restricted by the groupwise constraint. Hence, λgroup = 10 was used
to iteratively update the atlas. Finally, note that the difference between results
for training and testing are minimal: indicating a limited degree of overfitting.
In Fig. 2 a visualization of the results can be found for t = 68 and t = 82. In the
showed axial slices the choroid plexus and the fourth ventricle can be observed.

Table 1. Results for different hyperparameters, with the standard deviation given
between brackets.

Hyperparameters Training Test

λsim λgroup λmag λdif %|J | ≤ 0 Lgroup Lsim %|J | ≤ 0 Lgroup Lsim

1 0 0.01 0.01 0.26 (0.47) 1.45e−3 0.126 0.36 (0.55) 1.90e−3 0.130

1 1 0.01 0.01 0.25 (0.38) 1.27e−3 0.125 0.32 (0.42) 1.62e−3 0.129

1 10 0.01 0.01 0.17 (0.27) 7.80e−4 0.118 0.22 (0.28) 9.40e−4 0.126

1 100 0.01 0.01 0.04 (0.06) 1.61e−4 0.091 0.05 (0.07) 1.85e−4 0.101

Fig. 2. Axial slice of the atlas for different GA and iterations 0, 1, 2 and 3.

5 Discussion and Conclusion

We propose a deep learning approach for creation of a 4D spatio-temporal atlas
of the embryonic and fetal brain using groupwise image registration. Here, we
trained the registration network iteratively and visually inspected the resulting
atlas. We found that the registration network results in smooth deformation
field, and that several relevant brain structures were visible in the atlas.
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In this work, the window c of the groupwise loss term was set to the mean
number of samples per day GA, in future work this hyperparameter will be varied
to study its influence. As shown in Fig. 1, in future work also the atlas generator
network will be incorporated, where constraints for temporal smoothness and
sharp edges in the atlas can directly be incorporated in the loss. Finally, we will
evaluate if the relevant brain measurements of the atlas are close to clinically
known values and we will analyze if the morphology of the brain, modelled by the
deformations φi,t, shows the known correlation with maternal periconceptional
health factors found in previous research [9,10].
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Abstract. While deep neural networks often achieve outstanding results
on semantic segmentation tasks within a dataset domain, performance
can drop significantly when predicting domain-shifted input data. Multi-
atlas segmentation utilizes multiple available sample annotations which
are deformed and propagated to the target domain via multimodal image
registration and fused to a consensus label afterwards but subsequent
network training with the registered data may not yield optimal results
due to registration errors. In this work, we propose to extend a curricu-
lum learning approach with additional regularization and fixed weighting
to train a semantic segmentation model along with data parameters rep-
resenting the atlas confidence. Using these adjustments we can show that
registration quality information can be extracted out of a semantic seg-
mentation model and further be used to create label consensi when using
a straightforward weighting scheme. Comparing our results to the STA-
PLE method, we find that our consensi are not only a better approxima-
tion of the oracle-label regarding Dice score but also improve subsequent
network training results.

Keywords: Domain adaptation · Multi-atlas registration · Label
noise · Consensus · Curriculum learning

1 Introduction

Deep neural networks dominate the state-of-the-art medical image segmentation
[10,14,20], but their high performance is depending on the availability of large-
scale labelled datasets. Such labelled data is often not available in the target
domain and direct transfer learning leads to performance drops due to domain
shift [27]. To overcome these issues transferring existing annotations from a
labeled source to the target domain is desirable. Mutli-atlas segmentation is a
popular method, which accomplishes such a label transfer in two steps: First,
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A. Hering et al. (Eds.): WBIR 2022, LNCS 13386, pp. 37–46, 2022.
https://doi.org/10.1007/978-3-031-11203-4_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-11203-4_5&domain=pdf
https://doi.org/10.1007/978-3-031-11203-4_5


38 C. Weihsbach et al.

multiple sample annotations are transferred to target images via image regis-
tration [7,18,24] resulting in multiple “optimal” labels [1]. Secondly label fusion
can be applied to build the label consensus. Although many methods for finding
a consensus label have been developed [1,6,19,25,26], the resulting fused labels
are still not perfect and exhibit label noise, which complicates the training of
neural networks and degrades performance.

Related Work. In the past, various label fusion methods have been proposed,
which use weighted voting on registered label candidates to output a common
consensus label [1,6,19,26]. More elaborate fusion methods also use image inten-
sities [25], however when predicting across domains source and target intensities
can differ substantially complicating intensity-based fusion and would therefore
require handling of the intensity gap i.e. with image-to-image translation tech-
niques [29]. When using the resulting consensus labels from non-optimal regis-
tration and fusion for subsequent CNN training, noisy data is introduced to the
network [12]. Network training can then be improved with techniques of curricu-
lum learning to estimate label noise (i.e. difficulty) and guide the optimization
process accordingly [3,22] but the techniques have not been used in the context
of noise introduced through registered pixel-wise labels [2,3,11,22,28] or employ
more specialized and complex pipelines [4,5,15]. Other deep learning-based tech-
niques to address ambiguous labels are probabilistic networks [13].

Contributions. We propose to use data parameters [22] to weight noisy atlas
samples as a simple but effective extension of semantic segmentation models.
During training the data parameters (scalar values assigned to each instance
of a registered label) can estimate the label trustworthiness globally across all
multi-atlas candidates of all images. We extend the original formulation of data
parameters by additional risk regularization and fixed weighting terms to adapt
to the specific characteristics of the segmentation task and show that our adap-
tation improves network training performance for 2D and 3D tasks in the single-
atlas scenario. Furthermore, we apply our method to the multi-atlas 3D image
scenario where the network scores do not improve but yield equal performance
in comparison to normal cross-entropy loss training when using out-of-line back-
propagation. Nonetheless, we still can achieve an improvement by deriving an
optimized consensus label from the extracted weights and applying a straight-
forward weighted-sum on the registered atlases.

2 Method

In this section, we will describe our data parameter adaption1 and introduce
our proposed extensions when using it in semantic segmentation tasks, namely a
special regularization and a fixed weighting scheme. Furthermore, a multi-atlas
specific extension will be described, which improves training stability.

1 Our code is openly available on GitHub: https://github.com/multimodallearning/
deep staple.

https://github.com/multimodallearning/deep_staple
https://github.com/multimodallearning/deep_staple
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Data Parameters. Saxena et al. [22] formulate their data parameter and cur-
riculum learning approach as a modification altering the logits input of the
loss function. By a learnable logits-weighting improvements could be shown
in different scenarios when either noisy training samples and/or classes were
weighted during training. Our implementation and experiments focus on per-
sample parameters DPS of a dataset S = {(xs,ys)}n

s=1 with images xs and
labels ys containing n training samples. Since weighting schemes for multi-atlas
label fusion like STAPLE [26] use a confidence weight of 0 indicating “no con-
fidence” and 1 indicating “maximum confidence we slightly changed the initial
formulation of data parameters:

DPσ = sigmoid (DPS) (1)

According to Eq. 1 we limit the data parameters applied to our loss to DPσ ∈
(0, 1) where a value of 0 indicates “no confidence” and 1 indicates “maximum
confidence” such as weighting schemes like STAPLE [26]. The data parameter
loss �DP is calculated as

�DP (fθ (xB) ,yB) =
|B|∑

b=1

�CE,spatial (fθ (xb) ,yb) · DPσb
with B ⊆ S (2)

where B is a training batch, �CE,spatial is the cross-entropy loss reduced over spa-
tial dimensions and fθ the model. As in the original implementation, the parame-
ters require a sparse implementation of the Adam optimizer to avoid diminishing
momenta. Note, that the data parameter layer is omitted for inference—inference
scores are only affected indirectly by data parameters through optimized model
training.

Risk Regularisation. Even when a foreground class is present in the image
and a registered target label only contains background voxels, the network can
achieve a zero-loss value by overfitting. As a consequence, upweighting the over-
fitted samples will be of no harm in terms of loss reduction which leads to the
upweighting of maximal noisy (empty) samples. We therefore add a so called
risk regularisation encouraging the network to take risk

� = �DP −
|B|∑

b=1

# {fθ (xb) = c}
# {fθ (xb) = c} + # {fθ (xb) = c} · DPσb

(3)

where # {fθ (xb) = c} and # {fθ (xb) = c} indicate positive and negative pre-
dicted voxel count. According to this regularisation the network can reduce loss
when predicting more target voxels under the restriction that the sample has a
high data parameter value i.e. is classified as a clean sample. This formulation is
balanced because predicting more positive voxels will increase the cross-entropy
term if the prediction is inaccurate.
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step 2

+
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Fig. 1. Left: Inline backpropagation updating (red arrow) model and data parameters
together. Right: Out-of-line backpropagation first steps on model (gray arrow) using
normal cross-entropy loss and then steps on data parameters using the model’s weights
of the first step. (Color figure online)

Fixed Weighting Scheme. We found that the parameters have a strong cor-
relation with the ground-truth voxels present in their values. Applying a fixed
compensation weighting to the data parameters DPσb

can improve the correla-
tion of the learned parameters and our target scores

DPσ̃b
=

DPσb

log (# {(yb = c} + e) + e
(4)

where # {yb = c} denotes the count of ground-truth voxels and e Euler’s num-
ber.

Out-of-Line Backpropagation Process for Improved Stability. The inter-
dependency of data parameters and model parameters can cause convergence
issues when training inline, especially during earlier epochs when predictions
are inaccurate. We found that a two-step forward-backward pass, first through
the main model and in the second step through the main model and the data
parameters can maintain stability while still estimating label noise (see Fig. 1).
First only the main model parameters will be optimized. Secondly only the data
parameters will be optimized out-of-line. When using the out-of-line, two-step
approach data parameter optimization becomes a hypothesis of “what would
help the model optimizing right now?” without intervening. Due to the optimizer
momentum the parameter values still become reasonably separated.

Consensus Generation via Weighted Voting. To create a consensus CM

we use a simple weighted-sum over a set of multi-atlas labels M associated to a
fixed image that turned out to be effective

CM =

⎛

⎝
|M |∑

m=1

softmax(DPM)m · ym

⎞

⎠ > 0.5 with M ⊂ S (5)

where DPM are the parameters associated to the set of multi-atlas labels yM.
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3 Experiments

In this section, we will describe general dataset and model properties as well
as our four experiments which increase in complexity up to the successful
application of our method in 3D multi-atlas label noise estimation. We will
refer to oracle-labels2 as the real target labels which belong to an image and
“registered/training/ground-truth”-labels as image labels that the network used
to update its weights. Oracle-Dice refers to the overlapping area of oracle-labels
and “registered/training/ground-truth”-labels.

Dataset. For our experiments, we chose a challenging multimodal segmentation
task which was part of the CrossMoDa challenge [23]. The data contains contrast-
enhanced T1-weighted brain tumour MRI scans and high-resolution T2-weighted
images (initial resolution of 384/448 × 348/448 × 80 vox @ 0.5mm × 0.5mm ×
1.0−1.5mm and 512 × 512 × 120 vox @ 0.4 × 0.4 × 1.0−1.5mm). We used the
original TCIA dataset [23] to provide omitted labels of the CrossModa challenge
which served as oracle-labels. Prior to training isotropic resampling to 0.5mm×
0.5mm × 0.5mm was performed as well as cropping the data to 128 × 128 ×
128 vox around the tumour. We omitted the provided cochlea labels and train
on binary masks of background/tumour. As the tumour is either contained on
the right- or left side of the hemisphere, we flipped the right samples to provide
pre-oriented training data and omit the data without tumour structures. For the
2D experiments we sliced the last data dimension.

Model and Training Settings. For 2D segmentation, we employ a LR-
ASPP MobileNetV3-Large model [9]. For 3D experiments we use a custom 3D-
MobileNet backbone similar as proposed in [21] with an adapted 3D-LR-ASPP
head [8]. 2D training was performed with an AdamW [17] optimizer with a
learning rate of λ2D = 0.0005, |B|2D = 32, cosine annealing [16] as scheduling
method with restart after t0 = 500 batch steps and multiplication factor of 2.0.
For the data parameters, we used the SparseAdam-optimizer implementation
together with the sparse Embedding structure of PyTorch with a learning rate of
λDP = 0.1, no scheduling, β1 = 0.9 and β2 = 0.999. 3D training was conducted
with learning rate of λ3D = 0.01, |B|3D = 8 due to memory restrictions and
exponentially decayed scheduling with factor of d = 0.99. As opposed to Saxena
et al. [22] during our experiments we did not find weight-clipping, weight decay
or �2-regularisation on data parameters to be necessary. Parameters DPs were
initialized with a value of 0.0. For all experiments, we used spatial affine- and b-
spline-augmentation and random-noise-augmentation on image intensities. Prior
to augmenting we upscaled the input images and labels to 256 × 256 px in 2D-
and 192 × 192 × 192 vox in 3D-training. Data was split into 2/3 training and
1/3 validation images during all runs and used global class weights 1/nbins

0.35.

2 “The word oracle [...] properly refers to the priest or priestess uttering
the prediction.”. “Oracle.” Wikipedia, Wikimedia Foundation, 03 Feb 2022,
en.wikipedia.org/wiki/Oracle.
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Fig. 2. Left: Sample disturbance at strengths [0.1, 0.5, 1.0, 5.0]. Middle: Valida-
tion Dice when training with named disturbance strengths, either with data parameters
enabled ( ) or disabled ( ). Right: Parameter distribution for combinations of risk
regularization (RR) and fixed weighting (FW): RR+FW | RR | FW | NONE
. Saturated data points indicate higher oracle-Dice. Value of ranked Spearman-

correlation rs between data parameters and oracle-Dice given. (Color figure online)

Experiment I: 2D Model Training, Artificially Disturbed Ground-
Truth Labels. This experiment shows the general applicability of data parame-
ters in the semantic segmentation setting when using one parameter per 2D slice.
To simulate label-noise, we shifted 30% of the non-empty oracle-slices with differ-
ent strengths (Fig. 2, left) to see how the network scores behave (Fig. 2, middle)
and whether the data parameter distribution captures the artificially disturbed
samples (Fig. 2, right). In case of runs with data parameters the optimization
was enabled after 10 epochs.

Experiment II: 2D Model Training, Quality-Mixed Registered Single-
Atlas Labels. Extending experiment I, in this setting we train on real registra-
tion noise with 2D slices on single-atlases. We use 30 T1-weighted images as fixed
targets (non-labelled) and T2-weighted images and labels as moving pairs. For
registration we use the deep learning-based algorithm Convex Adam [24]. We
select two registration qualities to show quality influence during training: Best-
quality registration means the single best registration with an average of around
80% oracle-Dice across all atlas registrations. Combined -quality means a clipped,
gaussian-blurred sum of all 30 registered atlas registrations (some sort of consen-
sus). We then input a mix of 50%/50% randomly selected best/combined labels
into training. Afterwards we compare the 100% best, 50%/50% mixed and 100%
combined selections focusing on the mixed setting where we train with and with-
out data parameters. Validation scores were as follows (descending): best@no-
data-parameters 81.1%, mix@data-parameters 74.1%, mix@no-data-parameters
69.6% and combined@no-data-parameters 61.9%.

Experiment III: 3D Model Training, Registered Multi-atlas Labels.
Extending experiment II, in this setting we train on real registration noise but
with 3D volumes and multiple atlases per image. We follow the CrossMoDa [23]
challenge task and use T2-weighted images as fixed targets (non-labelled) and
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inline
16.6% dice, r=-0.13

out-of-line 
60.1% dice, r=+0.65

Fig. 3. Selected samples
with low- and high param-
eters: Oracle-label , net-
work prediction and
deeds registered label
(Color figure online)

Fig. 4. Inline and out-
of-line backpropagation.
Validation Dice ( ) and
Spearman-corr. of params.
and oracle-Dice ( )
(Color figure online)

Fig. 5. FG: Box plots of
STAPLE and DP consen-
sus quality, mean value on
the right. BG: Bar plot
of nnUNet scores; deeds
, Convex Adam (Color

figure online)

T1-weighted images and labels as moving pairs. We conducted registration with
two algorithms (iterative deeds [7] and deep learning-based algorithm Convex
Adam [24]). For each registration method 10 registered atlases per image are
fed to the training routine expanding the T2-weighted training size from 40 to
400 label-image pairs each. Figure 4 shows a run with inline and out-of-line (see
Sect. 2) data parameter training on the deeds registrations as an example how
training scores behave.

Experiment IV: Consensus Generation and Subsequent Network
Training. Using the training output of experiment III, we built 2× 40 consensi:
[10 deeds registered @ 40 fixed] and [10 Convex Adam registered @ 40 fixed].
Consensi were built by applying the STAPLE algorithm as baseline and opposed
to that our proposed weighted-sum method on data parameters (DP) (see Sect.
2). On these, we trained several powerful nnUnet-models for segmentation [10].
In Fig. 5 in the foreground four box plots show the quality range of generated con-
sensi regarding the oracle dice: [deeds, Convex Adam registrations]@[STAPLE,
DP]. In the background the mean validation Dice of nnUnet-model trainings
(150 epochs) is shown. As a reference, we trained directly on the T1-moving
data with strong data augmentation (nnUNet “insane” augmentation) trying
to overcome the domain gap directly (GAP). Furthermore, we trained on 40
randomly selected atlas labels (RND), all 400 atlas labels (ALL), STAPLE con-
sensi, data parameter consensi (DP) and oracle-labels either on deeds or Convex
Adam registered data. Note that the deeds data contained 40 unique moving
atlases whereas the Convex Adam data contained 20 unique moving atlases,
both warped to 40 fixed images as stated before (Fig. 3).
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4 Results and Discussion

In experiment I we could show that our usage of data parameters is gener-
ally effective in the semantic segmentation scenario under artificial label noise.
Figure 2 (middle) shows an increase of validation scores when activating stepping
on data parameters after 10 epochs for disturbance strengths >0.1. Stronger dis-
turbances lead to more severe score drops but can be recovered by using data
parameters. In Fig. 2 (right) one can see that data parameters and oracle-Dice
correlate most, when using the proposed risk regularization as well as the fixed
weighting-scheme configuration (see Sect. 2). We did not notice any validation
score improvements when switching between configurations and therefore con-
clude that a sorting of samples can also be learned inherently by the network.
However, properly weighted data parameters can extract this information, make
it explicitly visible and increase explainability. In experiment II we show that
our approach works for registration noise during 2D training: When comparing
different registration qualities, we observed that training scores drop from 81.1%
to 69.6% Dice when lowering registration input quality. By using data param-
eters we can recover to a score of 74.1% meaning an improvement of +4.5%.
Experiment III covers our target scenario—3D training with registered multi-
atlas labels. With inline training of data parameters (used in the former exper-
iments), validation scores during training drop significantly. Furthermore the
data parameters do not separate high- and low quality registered atlases well
(see Fig. 4, inline). When using our proposed out-of-line training approach (see
Sect. 2) validation Dice and ranked correlation of data parameter values and
oracle-Dice improve. Experiment IV shows that data parameters can be used
to create a weighted-sum consensus as described in Sect. 2: Using data param-
eters, we can improve mean consensus-Dice for both, deeds and Convex Adam
registrations over STAPLE [26] from 58.1% to 64.3% (+6.2%, ours, deeds data)
and 56.8% to 61.6% (+4.8%, ours, Convex Adam data). When using the con-
sensi in a subsequent nnUNet training [10], scores behave likewise (see Fig. 5).
Regarding training times of over an hour with our LR-ASPP MobileNetV3-Large
training, one has to consider that applying the STAPLE algorithm is magnitudes
faster.

5 Conclusion and Outlook

Within this work, we showed that using data parameters in a multimodal pre-
diction setting with propagated source labels is a valid approach to improve net-
work training scores, get insight into training data quality and use the extracted
info about sample quality in subsequent steps namely to generate consensus
segmentations and provide these to further steps of deep learning pipelines. Our
improvements over the original data parameter approach for semantic segmenta-
tion show strong results in both 2D- and 3D-training settings. Although we could
extract sample quality information in the multi-atlas setting successfully, we
could not improve network training scores in this setting directly since using the
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data parameters inline of the training loop resulted in unstable training. Regard-
ing that, we want to continue investigating how an inline training can directly
improve training scores in the multi-atlas setting. Furthermore our empirically
chosen fixed weighting needs more theoretical foundation. The consensus gener-
ation could be further improved by trying more complex weighting schemes or
incorporating the network predictions itself. Also we would like to compare our
registration-segmentation pipeline against specialized approaches of Ding et al.
and Liu et al. [4,5,15] which we consider as very interesting baselines.
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Abstract. Anatomical variabilities seen in longitudinal data or inter-
subject data is usually described by the underlying deformation, cap-
tured by non-rigid registration of these images. Stationary Velocity Field
(SVF) based non-rigid registration algorithms are widely used for reg-
istration. However, these methods cover only a limited degree of defor-
mations. We address this limitation and define an approximate metric
space for the manifold of diffeomorphisms G. We propose a method to
break down the large deformation into finite set of small sequential defor-
mations. This results in a broken geodesic path on G and its length now
forms an approximate registration metric. We illustrate the method using
a simple, intensity-based, log-demon implementation. Validation results
of the proposed method show that it can capture large and complex
deformations while producing qualitatively better results than state-of-
the-art methods. The results also demonstrate that the proposed regis-
tration metric is a good indicator of the degree of deformation.

Keywords: Large deformation · Inter-subject registration ·
Approximate registration metric

1 Introduction

Computational anatomy is an area of research focused on developing compu-
tational models of biological organs to study the anatomical variabilities in
the deformation space. Anatomical variations arise due to structural differences
across individuals and changes due to growth or atrophy in an individual. These
variations are studied using the deformation between the scans captured by a
registration step. The registration algorithms typically optimize an energy func-
tional based on a similarity function computed between the fixed and moving
images.

Many initial image registration attempts use energy functionals inspired by
physical processes to model the deformation as an elastic deformation [11], or
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viscous flow [20] or diffusion [14]. The diffusion-based approaches have been
explored for 3D medical images in general [6] and with deformations constrained
to be diffeomorphic [23] to ensure preservation of the topology. The two main
approaches used to capture diffeomorphisms are parametric and nonparametric
methods. The Free Form Deformation (FFD) model [5,12] is a widely used para-
metric deformation model for medical image registration, where a rectangular
grid with control points is used to model the deformation. Large diffeomorphic
deformations [12] are handled by concatenating multiple FFDs. Deformable Reg-
istration via Attribute Matching and Mutual-Saliency Weighting (DRAMMS) [7]
is a popular FFD-based method, which also handles inter-subject registration.
DRAMMS matches Gabor features and prioritizes the reliable matching between
images while performing registration. The main drawback of the deformations
captured by FFD models is that they do not guarantee invertibility. The non-
parametric methods represent the deformation with stationary or time varying
velocity vector field. The diffeomorphic log-demon [23] is an example of the for-
mer while the Large Deformation Diffeomorphic Metric Mapping (LDDMM) [15]
inspired from [8] is an example of the latter approach. In LDDMM, deforma-
tions are defined as geodesics on a Riemannian manifold, which is attractive;
however, the methods based on this framework are computationally complex.
The diffeomorphic log-demon framework [23], on the other hand, assigns a Lie
group structure and assumes a stationary velocity field (SVF) which leads to
computationally efficient methods, which is of interest to the community for
practical purposes. This has motivated the exploration of a stationary LDDMM
framework [16] that leverages the SVF advantage. The captured deformations
are constrained to be symmetric in time-varying LDDMM [1] and log-demon [21]
methods. Choosing an efficient optimization scheme such as Gauss-Newton as
in [10] reduces the computational complexity of LDDMM framework. However,
the log-demon framework is of interest to the community for practical purposes
because of its computational efficiency and simplicity.

The Lie group structure gives a locally defined group exponential map to map
the SVF to the deformation. Thus log-demon framework is meant to capture only
neighboring elements in the manifold, i.e., only a limited degree of deformations
can be captured. This will be referred to as the limited coverage issue of the
SVF methods in this paper. Notwithstanding the limited coverage, several SVF
based methods have been reported for efficient medical image registration with
different similarity metrics, sim, such as local correlation between the images
[17], spectral features [3], modality independent neighborhood descriptors [19]
and wavelet features [9,18].

SVF based algorithms cannot handle complex deformations because the
deformations are constrained to be smooth for the entire image and thus con-
strain the possible degree of deformation to some extent. We address this draw-
back by splitting the large deformation into finite set of smaller deformations.
The key contributions of the paper are: i) an SVF-based registration framework
to handle large deformations such as inter-subject variations computationally
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efficiently ii) an approximate metric to quantify structural variations between
two images.

1.1 Background

Let G be a finite-dimensional Lie group with Lie algebra g. Recall that g is the
tangent space TeG at the identity e of G. The exponential map exp : g → G
is defined as follows: Let v ∈ g. Then exp(v) = γv(1), where γ is the unique
one-parameter subgroup of the Lie group G with v being its tangent vector at
e. The vector v is called the infinitesimal generator of γ. The exponential map
is a diffeomorphism from a small neighborhood containing 0 in the Lie algebra
g to a small neighborhood containing e of G.

Due to the fact that a bi-invariant metric may not exist for most of the Lie
groups considered in medical image registration, the deformations considered
here are elements of a Lie group with the Cartan-Schouten Connection [24].
This is the same as the one considered in the log-demon framework [23]. This is
a left invariant connection [22] in which geodesics through the identity are one-
parameter subgroups. The group geodesics are the geodesics of the connection.
Any two neighboring points can be connected with a group geodesic. That is, if
the stationary velocity field v connecting two images in the manifold G is small
enough, then its group exponential map forms a geodesic. Similarly every g ∈ G
has a geodesically convex open neighbourhood [22].

2 Method

SVF based registration methods capture only a limited degree of deformation
because exponential mappings are only locally defined. In order to perform reg-
istration of a moving image towards a fixed image, SVF is computed iteratively
by updating it with a smoothed velocity field. This update is computed via
a similarity metric that measures the correspondence between the moving and
fixed images. The spatial smoothing has a detrimental effect as we explain next.
A complex deformation typically consists of spatially independent deformations
in a local neighbourhood. Depending on the smoothing parameter value, only
major SVF updates in each region is considered for registration. Thus, mod-
eling complex deformations with a smooth stationary velocity field is highly
dependent on the similarity metric and the smoothing parameter in a registra-
tion algorithm. Finding an ideal similarity metric and an appropriate smoothing
parameter applicable for any registration problem, irrespective of the complexity
of the deformation and the type of data, is difficult.

We propose to address this issue as follows: Deform the moving image toward
the fixed image by sequentially applying an SVF based registration. The SVF
based algorithm chooses the major or the predominant (correspondence-based)
deformation component among the spatially independent deformations in all the
neighbourhoods to register along these predominant directions. The subsequent
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steps in the algorithm captures the next set of predominant directions sequen-
tially. These sequentially captured deformations has a decreasing order of degree
of pixel displacement caused by the deformations. Mathematically speaking, the
discussion above can be summarised as follows. Consider complex deformations
as a set of finite group geodesics and use a registration metric approximation to
quantify the deformation between two images in terms of the length of a broken
geodesic connecting them; a broken geodesic is a piecewise smooth curve, where
each curve segment is a geodesic.

In the proposed method, the similarity-based metric selects the predomi-
nant deformation in each sequential step. The deformation that can bring the
moving image in a step maximally closer to the target is selected from the
one-parameter subgroup of deformations. In the manifold G every geodesic is
contained in a unique maximal geodesic. Hence the maximal group geodesic γi

computed using log-demon registration framework deforms the sequential image
Si−1 in the previous step maximally closer to SN . The maximal group geodesic
paths are composed to get the broken geodesic path. As the deformation seg-
ments are diffeomorphic, the composed large deformation of the segments also
preserves diffeomorphism to some extent.

In the proposed method, the coverage of the SVF method and the degree of
deformation determines the number of subgroups N needed to cover the space.
The feature based SVF methods in general, give more coverage for a single such
subgroup and reduce the value of N .

A broken geodesic γ : [0, T ] → M has finite number of geodesic segments γi

for partitions of the domain 0 < t1 < t2 < · · · < ti < · · · tN = T where i =
1, ....N . The proposed algorithm to deform S0 towards SN is given in Algorithm
1. We have chosen the registration algorithm from [21] to compute SVF, ui, in
Algorithm 1. The Energy term is defined as: Energy(Si, SN ) = sim(SN , Si) +
Reg(γi) where the first term is a functional of the similarity measure, which
captures the correspondence between images, with sim(SN , Si) = SN − Si−1 ◦
exp(vi). The second term is a regularization term, with Reg(γi) = ‖�γi‖2.

Algorithm 1. Proposed Algorithm
1: Input: S0 and SN

2: Result: Transformation γ = exp(v1) ◦ exp(v2) ◦ ... exp(vN )
3: Initialization: Emin=Energy(S0, SN )
4: repeat
5: Register Si−1 to SN → ui

6: Temp = Si−1 ◦ exp(ui)
7: Ei = Energy(Temp, SN )
8: if Ei < Emin then
9: vi = ui

10: Emin = Ei

11: Si = Temp
12: end if
13: until Convergence
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2.1 Registration Metric Approximation

Let γ be a broken geodesic decomposed into N geodesics γi with stationary
field vi, i.e. γ̇i = vi(γ(t)) ∈ Tγi(t)M . Each of the constant velocity paths γi is
parameterized by the time interval [ti−1, ti], and N ∈ N is minimized by requiring
each of the geodesics in the broken geodesic to be maximal geodesics. The length
of the broken geodesic is defined as,

l(γ) =
N∑

i

l(γi) =
N∑

i

d(Si−1, Si) (1)

where, d is a distance metric defined in Eq. 2.

d(Si−1, Si) = inf{‖vi‖V , Si−1 ◦ exp(vi) = Si}. (2)

A registration metric needs to be defined to quantify the deformation between
two images. The shape metric approximation in [25] can be used for the group
geodesics of the Cartan-Schouten connection defined in the finite dimensional
case as no bi-invariant metric exists. The length of a broken geodesic l(γ) on the
manifold G connecting S0 and SN , computed by Eq. 1 is defined as the proposed
approximate metric.

3 Results

The proposed method was implemented using a simple intensity based log-demon
technique [4] for illustrating the concept which is openly available at: http://dx.
doi.org/10.17632/29ssbs4tzf.1. This choice also facilitates understanding the key
strengths of the method independently. Two state-of-the-art (SOTA) methods
are considered for performance comparison with the proposed method: the sym-
metric LDDMM implementation in ANTs [1] and DRAMMS which is a feature
based, free-form deformation estimation method [7]. These two methods are
considered to be good tools for inter-subject registration [26]. Publicly available
codes were used for the SOTA methods with parameter settings as suggested
in [26] for optimal performance. Both methods were implemented with B-spline
interpolation, unless specified. 3D registration was done, and the images used in
the experiments are 1.5T T1 MRI scans sourced from [2] and [13] unless specified
otherwise. The number of maximum pieces in the broken geodesic path is set as
five in all the experiments. The proposed image registration algorithm was used
to register MRIs of different individuals.

3.1 Visual Assessment of Registration

To analyse the performance visually, six 3T MRI scans were collected. Three
images collected from 20–30 year old male subjects were considered as moving
images and three images collected from 40–50 year old female subjects were
considered as fixed images. Performing a good registration is challenging with

http://dx.doi.org/10.17632/29ssbs4tzf.1
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this selection of moving and fixed images. The high resolution MRI scans used for
this experiment are openly available at http://dx.doi.org/10.17632/gnhg9n76nn.
1. The registration results for these three different pairs are shown in Fig. 1-A.
where only a sample slice is visualized for the 3 cases. The quality of registration
can be assessed by observing the degree of match between images in the last two
rows of each column. The mean squared error (MSE) was used as a similarity
metric along with cubic interpolation. The results indicate that the proposed
method is good at capturing complex inter-subject deformations.

The performance of the proposed method on medical images was compared
with the state-of-the-art methods in Fig. 1-B. To apply the computed deforma-
tion, linear interpolation was used in all the methods. ANTs and the proposed
method used MSE as a similarity metric for fair comparison and DRAMMS used
its Gabor feature-based metric as it is a feature based method. The results shows
that the deformations at the sulcal regions are better captured by the proposed
method.

The quality of inverted deformations captured with ANTs and proposed
method were also compared as follows. In Fig. 1-C the moving image deformed
with moving-fixed deformation and fixed image deformed with inverted moving-
fixed deformation are analysed for both the methods. The arrows overlaid on
the registered images highlight regions where the proposed method yields error-
free results as opposed to the other method. The results with proposed method
shows better visual similarity with the target images in each case.

3.2 Quantitative Assessment of Registration

We present a quantitative comparison of the proposed method compared with
ANTs and DRAMMS under the same setting. The average MSE for 10 image pair
registrations with ANTs was 0.0036 ± 0.0009, with DRAMMS it was 0.0113 ±
0.0068 and with the proposed method it was 0.0012 ± 7.0552e−08.

The computed deformations in each method were used to transfer region
segmentation (labels) from the moving image to the fixed image. The transferred
segmentations are assessed using the Dice metric. Figure 2 shows a box plot of
the obtained Dice values calculated by registering 10 pairs of brain MRIs with
the fixed image, for white matter (WM), grey matter (GM) and 2 structures
(L & R-hippocampus). The segmentation results for larger structures (i.e., WM
and GM) are better with the proposed method compared to the other methods,
whereas the smaller structure segmentation is comparable to DRAMMS.

3.3 Validation of Proposed Registration Metric

Finally, a validation of the proposed registration metric was done using two
age-differentiated (20–30 versus 70–90 years) sets of MRIs, of 6 female subjects.
Images from these 3D image sets were registered to an (independently drawn)
MRI of a 20 year-old subject. The proposed registration metric was computed for
the 6 pairs of registrations. A box plot of the registration metric value for each
age group is shown in Fig. 3. Since the fixed image is that of a young subject,

http://dx.doi.org/10.17632/gnhg9n76nn.1
http://dx.doi.org/10.17632/gnhg9n76nn.1
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Fig. 1. A) Inter-subject image registration with proposed method for 3 pairs of volumes
(in 3 columns) using cubic interpolation. Only sample slices are shown. B) Inter-subject
image registration with 3 methods: DRAMMS, ANTs and the proposed method, imple-
mented with linear interpolation. The regions near same colour arrows can be compared
to check the registration accuracy. C) Forward and Backward Image Registration. Blue
(Red) arrow shows where proposed method yields error-free results in moving (fixed)
images, fixed (moving) images and warped moving (fixed) image using moving-fixed
(inverted moving-fixed) deformation. Inverted moving-fixed deformation applied on
fixed image and proposed method captures finer details compared to ANTs. (Color
figure online)

Fig. 2. Assessment of registration via segmentation of different structures using ANTS
(magenta), DRAMMS (red), and the proposed method (blue). Box plots for the Dice
coefficient are shown for White Matter (WM), Gray Matter (GM) and the Left and
Right Hippocampi. (Color figure online)
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the registration metric value should be higher for the older group than for the
younger group, which is confirmed by the plot. Hence, it can be concluded that
the proposed registration metric is a good indicator of natural deformations.

Fig. 3. Validation of the proposed registration metric. A) Central slices of images used
to perform registration B) Box plots of the proposed registration metric values for
registration of the fixed image with images of young and old subject group.

4 Discussion

Group exponential map based methods, with simple similarity registration met-
rics, fail to capture large deformations as the map is local in nature. We have
addressed this issue in this paper by modelling large deformations with broken
geodesic paths with the path length taken to be the associated registration met-
ric. From the experiments it is observed that five pieces in the broken geodesic
path is enough to capture very complex deformations. The proposed method
does not guarantee diffeomorphism in a strict mathematical sense of infinite
differentiability as the paths are modelled as piecewise geodesics. However, the
experiments we have done suggest that the proposed method produces diffeo-
morphic paths. The results of implementation with a simple log-demon method
show the performance to be superior to SOTA methods for complex/large defor-
mations. We plan to extend this work by implementing the proposed frame-
work using more efficient SVF based approaches such as in [3,9,17–19]. In sum-
mary, we have proposed a SVF-based registration framework that can capture
large deformations and an approximate metric to quantify the shape variations
between two images using the captured deformations.
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Abstract. Deformable image registration (DIR) is a key element in
adaptive radiotherapy (AR) to include anatomical modifications in the
adaptive planning. In AR, daily 3D images are acquired and DIR can be
used for structure propagation and to deform the daily dose to a reference
anatomy. Quantifying the uncertainty associated with DIR is essential.
Here, a probabilistic unsupervised deep learning method is presented to
predict the variance of a given deformable vector field (DVF). It is shown
that the proposed method can predict the uncertainty associated with
various conventional DIR algorithms for breathing deformation in the
lung. In addition, we show that the uncertainty prediction is accurate
also for DIR algorithms not used during the training. Finally, we demon-
strate how the resulting DVFs can be used to estimate the dosimetric
uncertainty arising from dose deformation.

Keywords: Deformable image registration · Proton therapy ·
Adaptive planning · Uncertainty · Deep learning

1 Introduction

Due to their peaked depth-dose profile, protons deposit a substantially lower
dose to the normal tissue than photons for a given target dose [19]. However, the
location of the dose peak is highly dependent on the tissue densities along the
beam path, which are subject to anatomical changes throughout the treatment.
Target margins are therefore applied, reducing the advantage of proton therapy
(PT) [19]. The need to account for anatomical uncertainties can be alleviated
using daily adaptive PT (DAPT), where treatment is reoptimized based on a
daily patient image [1]. DAPT yields a series of dose maps, each specific to a
daily anatomy. One important step of DAPT is to rely on the accurate accumu-
lation of these doses for quality assurance (QA) of the delivered treatment and to
trigger further adaptation [3,7,12,13]. To this end, the daily scans are registered
to a reference and their corresponding doses are deformed before summation. In
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
A. Hering et al. (Eds.): WBIR 2022, LNCS 13386, pp. 57–66, 2022.
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the presence of deforming anatomy, deformable image registration (DIR) is used
[7,22,25]. However, DIR is ill-posed [4], which results in dosimetric uncertainty
after deformation. Substantial work has been performed to quantify this, sum-
marized in [7], but there remains a clear need for methods predicting uncertainty
associated with DIR and its effect on dose deformation [4,18].

In this work, an unsupervised deep learning (DL) method is presented to
predict the uncertainty associated with a DIR result. Section 2 describes our
method. The results of hyperparameter tuning on the predicted registration
uncertainty are presented in Sect. 3, followed by the effect on the dosimetric
uncertainty arising from dose deformation. Section 4 provides a discussion and
conclusions are stated in Sect. 5.

2 Methods

Our work aims to estimate the uncertainty of the solution of an existing DIR
algorithm. It is based upon a probabilistic unsupervised deep neural network for
DIR called VoxelMorph [8]. The main equations from [8] are first summarized,
after which the changes are described.

2.1 Probabilistic VoxelMorph

With f and m respectively a fixed and a moving 3D volume, here CT images, a
neural network learns z, the latent variable for a parameterized representation
of a deformable vector field (DVF) Φz. The network aims to estimate the con-
ditional probability p(z|f,m), by assuming a prior probability p(z) = N (0, Σz),
with Σ−1

z = Λz = λ(D − A), λ a hyperparameter, D the graph degree matrix
and A the adjacency matrix. Further, f is assumed to be a noisy observation of
the warped moving image with noise level σ2

I , p(f |m, z) = N (m◦Φz, σ
2
II). With

these assumptions, calculation of p(z|f,m) is intractable. Instead, p(z|f,m) is
modelled as a multivariate Gaussian

qΨ (z|f,m) = N (μz|f,m, Σz|f,m) (1)

with Ψ the parameters of the network which predicts μz|f,m and Σz|f,m (Fig. 1).
The parameters Ψ are optimized by minimizing the KL divergence between
p(z|f,m) and qΨ (z|f,m), yielding, for K samples zk ∼ qΨ (z|f,m), a loss function

L(Ψ, f,m) =
1

2σ2
IK

∑

k

||f − m ◦ Φz||2 +
λ

4

m∑

i=1

∑

j∈N(i)

(μi − μj)2

+ tr(
λ

2
(D − A)Σz|f,m) − 1

2
log(|Σz|f,m|) + cte

(2)

with N(i) the neighboring voxels of voxel i. When Σz|f,m is diagonal, the last
two terms of Eq. 2 reduce to 1

2 tr(λDΣz|f,m − log(Σz|f,m)).
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2.2 Combining Deep Learning with Existing DIR Software

Because the performance of DL based DIR is generally below conventional meth-
ods [9,10,24], our network aims to predict the uncertainty associated with a DVF
generated by another algorithm without predicting the DVF itself. We therefore
extend the VoxelMorph architecture to include the output DVF of an existing
DIR algorithm (Fig. 1). First, an existing algorithm is ran on f and m, after
which the resulting DVF is concatenated to f and m as network input. The net-
work only predicts a diagonal matrix G, which is used to calculate Σz|f,m (see
Sect. 2.3), and the mean field μz|f,m is taken as the output of the DIR algorithm.

Fig. 1. Schematic network architecture. In case an existing DIR method is used, the
resulting DVF of this algorithm is concatenated with the fixed and moving image,
resulting in a 5×H×W×D tensor as network input. A 3D UNet predicts a diagonal
matrix G, and taking the DVF of the existing DIR as mean field μ, DVF samples
are generated with the reparametrization trick as z = μ + GCσcε (see Sect. 2.3) [15].
Contrarily if no existing DIR is used, the network only receives the fixed and moving
image as input and predicts a mean DVF besides G.

2.3 Non-diagonal Covariance Matrix

Dosimetric uncertainty will be estimated by sampling qΨ (z|f,m), requiring spa-
tially smooth samples. Nearby vectors can be correlated with a non-diagonal
covariance matrix. However, a full covariance matrix cannot be stored in mem-
ory because it would require storing (3×H ×W ×D)2 entries, which for a 32 bit
image of 256 × 265 × 96 requires 633 TB, compared to 25 MB for the diagonal
elements. In [8] a non-diagonal Σz|f,m is proposed by Gaussian smoothing of a
diagonal matrix G, i.e. Σz|f,m = Cσc

GGT CT
σc

, but it is shown that this is unnec-
essary because the implemented diffeomorphic integration smooths the samples
sufficiently. Because the existing DIR solutions are not necessarily diffeomorphic,
we do not apply integration, which implies the need for a non-diagonal Σz|f,m.

Similar to [8], we apply Gaussian smoothing but invert the order Σz|f,m =
GCσc

CT
σc

GT which yields a fixed correlation matrix ρ = Cσc
CT

σc
. This has the

advantage that the variance of the vector magnitude at voxel i is only dependent
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on the corresponding diagonal element Gi,i and not on its neighbors. Further-
more, it allows to simplify the calculation of the loss terms in Eq. 2. Rewriting
the last two terms of Eq. 2 with Σz|f,m = GCσc

CT
σc

GT results in

tr(
λ

2
(D − A)Σz|f,m) − 1

2
log(|Σz|f,m|)

=
m∑

i=1

m∑

j=1

(
λ

2
(D − A)i,j(Σz|f,m)i,j) − 1

2
log(|GGT |) − 1

2
log(|Cσc

CT
σc

|)
(3)

with i and j respectively the row and column indices, m the number voxels and
log(|Cσc

CT
σc

|) a constant which can be excluded from the loss function. For each
row (or voxel) i, the matrix (D−A) has only 7 non-zero elements (the voxel itself
and its 6 neighboring voxels), so that only the corresponding 7 elements in Σz|f,m

are needed to evaluate the loss function. By precomputing the 7 corresponding
elements of ρ = Cσc

CT
σc

, the first term of Eq. 3 becomes

m∑

i=1

m∑

j=1

(
λ

2
(D − A)i,j(Σz|f,m)i,j) =

m∑

i=1

∑

j∈N(i)

(
λ

2
(D − A)i,jρi,jGi,iGj,j) (4)

with N(i) the neighbors of voxel i, which allows fast evaluation of L without the
need of storing large matrices.

2.4 Training

52 CT scan pairs from 40 different patients with various indications treated at
the Centre for Proton Therapy (CPT) in Switzerland are used for training. The
pairs consist of one planning and one replanning or control CT from a proton
treatment, and are therefore representative of both daily and progressive anatom-
ical variations in DAPT. Scans are rigidly registered using the Elastix toolbox
[16] and resampled to a fixed resolution 1.95 × 1.95 × 2.00 mm, most frequently
occurring in the dataset. The Hounsfield units are normalized with HU+1000

4000 .
Patches with a fixed size 256×256×96 are randomly cropped from the full CTs
during training and axis aligned flipping is applied as data augmentation.

The network is implemented in Pytorch [20] and training is ran on GPUs
with 11 GB VRAM. A 3D UNet is used [8] with an initial convolution creating 16
feature maps, which are doubled in each of the 3 consecutive downsampling steps.
The features are upsampled 3 times to their original resolution. The parameters
are optimized with Adam [14] with initial learning rate 2 ·10−4, which is halved 6
times during 500 epochs. Gaussian smoothing of the diagonal covariance matrix
has a fixed kernel size of 61 voxels and blur σc = 15.

We train networks to predict the uncertainty associated with three existing
DIR algorithms: a b-spline and a demon implementation in Plastimatch and a
non-diffeomorphic VoxelMorph predicting both μz|f,m and Σz|f,m. The parame-
ters for b-spline and demon are taken from [2,17]. Furthermore, we verify whether
these networks can be used to predict the uncertainty of other DIR algorithms
by evaluating them on the results of a commercial DIR in Velocity.
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2.5 Validation

The hyperparameters λ and σ2
I are tuned for each method by quantitatively

evaluating the predicted uncertainty on the publicly available 4DCT DIRLAB
lung deformation dataset [5,6]. It contains 10 CT scan pairs with each 300 anno-
tated landmarks (LM). These scans are split equally in a validation and test set.
We maximize the probability of observing the moving landmarks xm given the
predicted probabilistic vector field, which, for a given set of CTs, is calculated
as

p(LMs) =
CTs∏

i

LM∏

j

p(xm,i,j |DV Fi), (5)

assuming for simplicity that each landmark is independent of the others, which
is reasonable if the landmarks are sufficiently far apart. Note that the probability
of observing exactly xm is infinitesimally small because the variables are contin-
uous. We therefore maximize the probability that xm is observed within a cube
of 1 mm3 around it with a homogeneous probability density, which is the same
as maximizing the probability density at xm. We discard the 1% least probable
points because p(LMs) is heavily affected by the outliers due to the extremely
low probability density at the tails of a normal distribution. Furthermore, we
maximize the mean log p(LMs) to avoid that the absolute value is dependent
on the number of landmarks.

3 Results

3.1 Hyper Parameter Tuning

The optimal hyperparameters are λ = 10 and σ2
I = 10−4 for both b-spline and

demon (Fig. 2). Further, using both the networks trained on demon and b-spline,
we find that the network trained with b-spline and λ = 5 and σ2

I = 10−4 yields
the highest average log p(LMs) for Velocity (not shown).

Fig. 2. Average log probability of observing moving landmarks xm of the validation
set for varying values of σ2

I and λ including an existing DIR output. Similar results
were found for the test set (not shown).
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For VoxelMorph, the hyperparameters influence both μz|f,m and Σz|f,m.
Equation 2 shows that the trade off between similarity and smoothness is deter-
mined by the product λσ2

I . Therefore, we first minimize the target registra-
tion error (TRE) on the validation set by varying λσ2

I (keeping λ = 2), which
yields a minimum TRE around λσ2

I = 2 · 10−3. Varying λ and σ2
I while keeping

λσ2
I = 2·10−3 results in a maximum p(LMs) for σ2

I = 5·10−4. p(LMs) is however
lower than for the networks including the conventional (i.e. non deep learning)
DIRs, indicating that these methods predict better probability distributions.

Figure 3 shows the uncertainty prediction for a lung CT in the DIRLAB
dataset. As expected, the predicted uncertainty is low in regions with high con-
trast and high where contrast is low. Further, the Jacobian determinant is <0
for on average 0.01% of the voxels in sampled DVFs for the DIRLAB dataset,
which, together with visual inspection, indicates that samples are sufficiently
smooth.

Fig. 3. Predicted uncertainty σp, i.e. the square root of the diagonal elements of Σz|f,m,
in the sagittal (left), coronal (middle) and axial (right) direction for one example patient
in the test set.

Comparing the target errors and their predictions for the tuned networks for
all DIRLAB scans yields several conclusions (Fig. 4). First of all, our method is
able to fairly accurately predict the uncertainty of multiple existing DIR algo-
rithms. Secondly, the error prediction of Velocity shows that it is possible to
predict the error from a DIR algorithm even if it was not used to train the
network. Lastly, the average error is higher and the uncertainty prediction is
worse for VoxelMorph than for the existing DIR algorithms, as expected from
[9,10,24]. However, the performance can likely be improved by diffeomorphic
integration, network adjustments or using more data, but this is not within the
scope of the current study.
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3.2 Dose Deformation

We create probabilistic dose maps by sampling the probabilistic DVF and warp-
ing the dose with the different samples. We focus here on the result of a single
deformation to highlight the dosimetric uncertainty associated with warping.
Even though the predicted DVFs have assumed to be Gaussian, the proba-
bilistic dose maps are not. We therefore keep the individual samples and use a
finite-sample distribution to approximate the probabilistic dose map.

The dose received by the tumor and organs at risk (OARs) is in PT fre-
quently evaluated with dose volume histograms (DVHs). Probabilistic DVHs
can be constructed from the probabilistic dose map. Here, the lower and upper
bound of the DVH depict for each volume increment respectively the 5th and
95th percentile of all sampled doses (Fig. 5).

Verifying whether the dosimetric uncertainty is realistic is non-trivial. Pre-
vious work [2,17] quantified it by warping the dose with several DIR algorithms
and calculating the dose differences between the results. Similarly, here we ver-
ify whether the warped dose with three conventional DIR algorithms falls in

(a) b-spline (b) demon

(c) velocity (d) VoxelMorph

Fig. 4. TRE as a function of the predicted uncertainty σp for all DIRLAB scans. For
each subplot, σp is divided into 15 equal intervals and the distribution of the TREs
within each interval is plotted as a box, together with the unregistered and registered
root mean squared error (RMSE). The number of landmarks nLM within each interval
is also shown (right axes). If the TREs were normally distributed and the networks
had a perfect prediction, the registered RMSE would be exactly equal to the predicted
σp (dashed line).
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between our predicted lower and upper bound (Fig. 5). Using the same dataset
of 7 lung cancer patients with each 9 repeated CTs as in [2,17], we find that
the dose in on average 97% of the volume of the OARs (heart, esophagus and
medulla) lies between the bounds predicted for b-spline. For the planning target
volume (PTV) and gross tumor volume (GTV) it is on average 81%.

4 Discussion

Despite the promising preliminary results, more work is required before the
method can be used in the clinic. Our approach should be verified on a dataset
including typical deformations that occur during the course of six weeks of treat-
ment, and not only during one breathing cycle. To that end, a dataset with
typical anatomical deformations is currently being landmarked at the CPT.

Fig. 5. Left: example of a deformed dose map with b-spline, overlayed with contours
of the gross tumor volume (GTV), planning target volume (PTV) and three OARs.
Right: corresponding probabilistic DVH as calculated with the optimal network for b-
spline (shaded area). The dashed, dotted and dash-dotted lines represent the DVH for
warped doses with three commercial DIR softwares, respectively Mirada, Raystation
Anaconda and Velocity.

Even for the dataset under study, the error prediction is clearly not perfect.
This can be due to several factors, among which imperfect annotation, lack of
training data or inaccurate model assumptions. One important assumption is
the Gaussian vector field. Although our results show that it is not unreasonable
to assume that the errors are Gaussian, further research should look whether
other probability distributions yield better results. Unfortunately, other analyti-
cal distributions are often mathematically more complex making exact treatment
as in Eqs. 2 and 3 difficult. Learning a discretized posterior could resolve this
[10,11,21,23].

The trained networks capture most of the dosimetric variations found in
the OARs when running conventional DIRs. By contrast, for the GTV and PTV
only 81% of the doses lie between the error bars, significantly below the expected
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90% given the 5th and 95th percentile error bounds. However, we found that this
value increases to 91% by simply adding a small margin to the error bounds (i.e.
by increasing the upper and decreasing lower bound by only 0.1% of the dose).
This indicates that the deviation from the error bounds is mostly very small.

5 Conclusion

In this work, a probabilistic unsupervised deep learning method for deformable
image registration is presented to predict the uncertainty associated with DIR
solutions. It is shown that the method can accurately predict the uncertainty of
various conventional DIR algorithms and that the combination of deep learning
with conventional DIR yields superior results than using deep learning alone.

Acknowledgments. This work has received funding from the European Union’s Hori-
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Abstract. Current approaches for analyzing structural patterns of the
human brain often implicitly assume that brains are variants of a sin-
gle type, and use nonlinear registration to reduce the inter-individual
variability. This assumption is challenged here. Regional anatomical and
connection patterns cluster into statistically distinct types. An advanced
analysis proposed here leads to a deeper understanding of the governing
principles of cortical variability.

Keywords: Structural patterns · Connectivity · Human cortex

1 Introduction

Cortical structures of the human brain show a puzzling complexity and inter-
individual variability. Numerous analytic approaches implicitly assume that
structural properties of brains, represented in any high-dimensional space, form
a single cluster and use nonlinear registration to reduce the inter-individual vari-
ability. We challenge this assumption. Depending on the features and similarity
criteria involved in the registration process, the total variance is reduced by only
20–40%. Consider a simplifying analogy: Suppose we want to study structural
properties of cars. We hardly doubt that a registration procedure can be designed
that successfully matches gross car parts (e.g., the passenger and engine com-
partment, the trunk and wheels). However, when zooming into details, objects
under study become distinct (e.g. a trunk of a truck vs. a sports car, a combustion
engine vs. an electric motor). Here, we demonstrate here that structural vari-
ants of brain regions with distinctive properties exist in a population. Avoiding
an arguable registration and embracing the actual variability leads to analytic
procedures that actually explain sources of variability at a considerably larger
proportion.

2 Methods

Data Source: We used anatomical and diffusion-weighted MRI data acquired in
nc = 1061 subjects of the publicly available Human Connectome Project [2].
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
A. Hering et al. (Eds.): WBIR 2022, LNCS 13386, pp. 67–71, 2022.
https://doi.org/10.1007/978-3-031-11203-4_8
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Anatomical processing: We started out from triangulated meshes representing
the white-gray matter interface of a hemisphere with a topological genus of zero.
Using local curvature and geodesic depth, the surface was segmented into patches
called basins that were centered around a locally deepest point, the sulcal root.
A most isometric mapping was used to transfer and re-parameterize vertex-
wise properties (e.g., basin label, depth, curvature) onto a common sphere with
nv = 163842 vertices. Thus, we represented structural information as an image
of nc× nv × np properties. Refer to [4] for details.

Tractography: Diffusion-weighted data were corrected for subject motion and
susceptibility distortions. Voxel-wise estimates of the orientation distribution
function of water mobility were computed using the constrained spherical decon-
volution method [3]. Probabilistic tracking [5] from basin-labeled surface seeds
was performed to determine connectivity between basins. Results were kept
in hemisphere-wise connectivity matrices C, where each element C(i, j) cor-
responded to the probability of connecting basin i to j. Thus, C can be regarded
as a discrete, empirical PDF of basin connectivity.

Distance Metrics: We computed a co-occurence matrix M of the basin label-
ing in hemispheres a, b and expressed the their structural distance by DM =
1 − NMI(Ma,b). For connectivity, we selected the Hellinger distance metric by
experimentation:

DC(a, b) =

√
√
√
√
√2

⎛

⎝1 −
√

2
∑

i

∑

j

√

Ca(i, j)Cb(i, j)

⎞

⎠. (1)

Statistical Assessment: We computed the distance metrics for all hemisphere
pairs a, b and compiled them in matrices for structure DM and connectivity DC

of dimensions nc×nc. Both matrices were mapped into a low-dimensional space
using the ISOMAP algorithm [6], with a target dimension of nd = 4 estimated
by the Grassberger-Procaccia method [1]. Thus, structural and connectivity of
a hemisphere were represented by a point in an 8-dimensional space. We used
a Gaussian mixture model to cluster into groups, where the number of classes
was determined from the maximal Bayesian information criterion and silhouette
coefficient. Note that this analysis can be restricted to any sub-region of the
whole hemisphere.

3 Results

Due to space limitations, we provided results for the central sulcus (CS) only. For
each dimension of the structural and connectivity matrices, we analyzed their
dependence on several variables using linear regression (Tab. 1). Dimensions and
their amount of represented variance were compiled in the second column. The
first dimension represented more than 50% of the variance, and corresponded to
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the “regularity” of the sulcus structure. Regular sulci were straight, deep, and
consisted of relatively few basins, in contrast to tortuous, shallow sulci with a
larger number of basins (Fig. 1). Considering the number of basins as a proxy for
structural regularity, we found that between 25% and 41% of the variance (R2)
were addressed to regularity. About 10% of the overall variance were explained
by subject sex, handedness, and brain volume.

Fig. 1. Clustering of the central sulcus (CS) into four distinct, mirror-symmetric con-
figurations on the left (top) and right (below) side. Rows 1, 3 show geodesic depth
(increasing from red to magenta). Rows 2, 4 show the connection strength (increasing
from magenta to red). (Color figure online)

Significant influences of subject sex, handedness, and brain volume were
typically found for the second structural dimension and the third connectiv-
ity dimension. We assessed the absolute difference of scores within subject pairs
grouped by genetic similarity. This heritability was typically reflected in the
second dimension, representing between 2% and 6% of the total variance.

Clustering yielded four distinct structural and connectivity patterns (Fig. 1),
with mirror-symmetric patterns on the left (top panel) and right side (below).
Patterns were sorted by increasing regularity from left to right, as determined
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from scores of the first dimension above. The first pattern (column 1) showed
a low regularity, consisting of two shallow centers of low variability. Patterns 2
and 3 revealed two stronger centers, in pattern 2 more prominent in the upper
CS, in pattern 3 more prominent in the lower CS. Finally, pattern 4 showed a
straight and deep sulcus with high regularity. Interestingly, more regular sulcal
patterns were related to a stronger, more distinctive connectivity (rows 2 and
4). Note that connection strength closely followed a lower basin variability not
only in the central sulcus, but also adjacent regions in the pre- and post-central
sulcus, and the mid-posterior insula on both sides.

4 Conclusion

By this short demonstration, we wanted to illustrate two points: (1) Structural
and connectivity patterns of the human brain do not originate from a continuum,
but show distinct properties, at least at the regional level. This finding renders
the application of registration processes as arguable, at least at the hemispheric
level. (2) Instead of attempting to reduce the inter-individual variability by reg-
istration, we suggest to embrace this variability and to analyze and identify their
sources. As demonstrated here, up to 80% of the total variance can be explained
by identifiable factors.
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Abstract. Registering CT images of the chest is a crucial step for sev-
eral tasks such as disease progression tracking or surgical planning. It
is also a challenging step because of the heterogeneous content of the
human abdomen which implies complex deformations. In this work, we
focus on accurately registering a subset of organs of interest. We regis-
ter organ surface point clouds, as may typically be extracted from an
automatic segmentation pipeline, by expanding the Bayesian Coherent
Point Drift algorithm (BCPD). We introduce MO-BCPD, a multi-organ
version of the BCPD algorithm which explicitly models three impor-
tant aspects of this task: organ individual elastic properties, inter-organ
motion coherence and segmentation inaccuracy. This model also provides
an interpolation framework to estimate the deformation of the entire
volume. We demonstrate the efficiency of our method by registering dif-
ferent patients from the LITS challenge dataset. The target registration
error on anatomical landmarks is almost twice as small for MO-BCPD
compared to standard BCPD while imposing the same constraints on
individual organs deformation.

1 Introduction

Registering CT images of the chest is an important step for several pipelines
such as surgical planning for liver cancer resection or disease progression track-
ing [1,2,10,15]. This step is both crucial and challenging as the deformations
involved are large and may contain complex patterns such as sliding motion
between organs. While traditional registration methods tend to fail on this task,
learning approaches such as [5,6,12] obtained promising results at the Learn2Reg
2020 challenge, task 3 [7]. Yet, traditional and learning approaches both aims at
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registering the whole image content instead of focusing on the relevant structures
of interests. This introduces undesired noise and complexity to the registration
process. To tackle this issue, we propose to exploit the recent availability of
high quality automatic segmentation pipelines such as [3,17] and register the
segmented structures. Specifically, structures are registered using their surface
point cloud representation, allowing for exploiting meaningful geometric infor-
mation of the different organs and finely modeling their dynamic properties. We
also stress that surface point clouds are easy to derive from segmentation masks
and are a lightweight representation of the structures of interest.

The Coherent Point Drift [13] (CPD) algorithm is one of the most popular
method for deformable point cloud registration considered as state of the art [11].
A recent work [9] extended this framework using a Bayesian formulation and
obtained more robust performances. CDP and BCPD both assume that points
move coherently as a group to preserve the structure coherence. This is mainly
because these frameworks are designed to register point clouds representing a
single object. Consequently, [9,13] are not adapted for registering multi-organ
points clouds. In particular, the coherency assumption doesn’t stand for organs
registration as each organ-specific point cloud may move independently to its
neighbour, especially if we aim at registering inter-patient images.

In this work, we introduce a Multi-Organ Bayesian Coherent Point Drift
algorithm (MO-BCPD) that models independent coherent structures. The con-
tribution of this work is four-fold. Firstly, we extend the Bayesian formulation of
CPD to model more complex structures interactions such as organ motion inde-
pendence. Secondly, given that points clouds are obtained using automated seg-
mentations, the proposed framework models partial segmentation errors allowing
MO-BCPD to recover them. Thirdly, we model individual organ elasticity as part
of the formulation. Fourthly, extensive experiments on 104 patients (10,712 pairs
of patients) from the LiTS public dataset [4] demonstrate the effectiveness of our
approach compared to BCPD. In particular, our method achieves an average tar-
get registration error on anatomical landmarks of 13 mm compared to 22 mm for
the standard BCPD.

2 Method

In this section, we present our Multi-Organ Bayesian Coherent Point Drift algo-
rithm. Let y = [ym]m∈{1...M} ∈ R

M,3 be the source point cloud and x =
[xn]n∈{1...N} ∈ R

N,3 be the target point cloud where N and M are respectively
the number of source and target points. We aim at finding the transformation
T that realistically aligns these point clouds. In particular here, unlike in [9,13],
the considered point clouds both represent a set of organ surfaces. Hence, each
point is associated with an organ. Let ly = [lym]m∈{1...M} ∈ {1 . . . L}M be the
organ labels of the source point cloud and lx = [lxn]n∈{1...N} ∈ {1 . . . L}N be the
organ labels of the target point cloud. L is the number of organs.

Transformation Model. Similarly to the BCPD, the Multi-Organ Bayesian Coher-
ent Point Drift (MO-BCPD), decomposes the motion in two components: a sim-
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Algorithm 1: Multi-Organ BCPD (y, x, ω, Λ, B, S, U, κ, γ, ε)
v ← 0M,3, Σ ← IdM , s ← 1, R ← Id3, t ← 03, < αm >← 1

M
,

σ2 ← γ
D

∑

m,n
u
l
y
m,lxn

∑

m,n

ul
y
m,lxn

‖xn − ym‖2, θ ← (v, α, c, e, ρ, σ2), P ← 1
M
1M,N

ν′ ← 1N , q1(., .) ← Dκ1M φ0,Σ ,

q2(c, e) ←
N∏

n=1

(1 − ν′
n)1−cn

(

ν′
n

M∏

m=1

(
pmn
ν′
n

)δn(em)
)cn

, q3(., .) ← δρδσ2

while L(q1q2q3) increases more than ε do
Update P and related terms:

∀m, n φm,n ← ul
y
m,lxn

φy′
m,σ2Id3(xn) exp − 3s2Σm,m

2σ2 ,

∀m, n pm,n ← (1−ω)<αm>φm,n

ωpout(xn)+(1−ω)
∑

m′
<αm′ >φm′,n

, ν ← P.1N , ν′ ← P T .1M ,

N̂ ← νT .1M , x̂ ← Δ(ν)−1.P.x,
Update displacement field and related terms:

Σ ←
(
G−1 + s2

σ2 Δ(ν)
)
, ∀d ∈ {1, 2, 3} vd ← s2

σ2 ΣΔ(ν)(ρ−1(x̂d) − yd),

u ← y + v, < αm >← exp{ψ(κ + νm) − ψ(κM + N̂)}
Update ρ and related terms: x̄ ← 1

N̂

M∑

m=1

νmx̂m, σ̄2 ← 1

N̂

M∑

m=1

νmσ2
m,

ū ← 1

N̂

M∑

m=1

νmum, Sxu ← 1

N̂

M∑

m=1

(x̂m − x̄)(um − ū)T ,

Suu ← 1

N̂

M∑

m=1

(um − ū)(um − ū)T + σ̄2Id3, ΦS′
xuΨT ← svd(Sxu),

R ← Φd(1, . . . , 1, |ΦΨ|)ΨT , s ← Tr(RSxu)
Tr(Suu)

, t ← x̄ − sRū, y′ ← ρ(y + v)

σ2 ← 1

3N̂

3∑

d=1

(
(xd)T Δ(ν′)xd − 2xdP Ty′d + (y′d)T Δ(ν)y′d

)
+ s2σ̄2

Update q: q1(., .) ← Dκ1M φv,Σ ,

q2(c, e) ←
N∏

j=1

(1 − ν′
j)

1−cj

(

ν′
j

M∏

i=1

(
pij

ν′
j

)δi(ej)
)cj

, q3(., .) ← δρδσ2

end

ilarity transform ρ : p −→ sRp + t and a dense displacement field v. Hence
the deformed source point could is [T (ym)]m∈{1...M} = [ρ(ym + vm)]m∈{1...M}.
While this parametrization is redundant, [9] has shown that this makes the algo-
rithm more robust to target rotations. Moreover, it is equivalent to performing
a rigid alignment followed by a non-rigid refinement which corresponds to the
common practice in medical image registration.

Generative Model. As in [9], MO-BCPD assumes that all points from the target
point cloud [xn]n∈{1...N} are sampled independently from a generative model.
A point xn from the target point cloud is either an outlier or an inlier which is
indicated by a hidden binary variable cn. We note the probability for a point
to be an outlier ω (i.e. P(cn = 0) = ω). If xn is an outlier, it is sampled from
an outlier distribution of density pout (typically, a uniform distribution over a
volume containing the target point cloud). If xn is an inlier (cn = 1), xn is
associated with a point T (ym) in the deformed source point cloud. Let en be a
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multinomial variable indicating the index of the point of the deformed source
point cloud with which xn is associated (i.e. en = m in our example). Let αm

be the probability of selecting the point T (ym) to generate a point of the target
point cloud (i.e. ∀n P(en = m|cn = 1) = αm). xn is then sampled from a
Gaussian distribution with covariance-matrix σ2Id3 (Id3 is the identity matrix
of R3) centered on T (ym). Finally, the organ label lxn is sampled according to
the label transition distribution P(lxn|lym) = ulxn,lym . The addition of the label
transition term is our contribution to the original generative model [9]. This
term encourages to map corresponding organs between the different anatomies
while allowing to recover from partial segmentation errors from the automatic
segmentation tool.

We can now write the following conditional probability density:

pe(xn, lxn, cn, en|y, ly,v, α, ρ, σ2)

= (ωpout(xn))1−cn

(
(1 − ω)

M∏
m=1

(
αmulym,lxn

φy′
m,σ2Id3(xn)

)δen=m

)cn

(1)

where φμ,Σ is the density of a multivariate Gaussian distribution N (μ,Σ) and
δ is the Kronecker symbol.

Prior Distributions. MO-BCPD also relies on prior distributions in order to regu-
larize the registration process and obtain realistic solutions. As in [9], MO-BCPD
defines two prior distributions: pv(v|y, ly) that regularizes the dense displace-
ment field and pα(α) that regularizes the parameters α of the source point cloud
selection multinomial distribution mentioned in the generative model. The prior
on α follows a Dirichlet distribution of parameter κ1M . In practice, κ is set to a
very high value which forces αm ≈ 1/M for all m. To decouple motion character-
istics within and between organs, we propose a novel formulation of the displace-
ment field prior pv. Specifically, we introduce 3 parameters: a symmetric matrix
S = [sl,l′ ]l,l′∈{0...L} and two vectors Λ = [Λl]l∈{0...L} and B = [Bl]l∈{0...L}. The
matrix S parametrizes the motion coherence inter-organs. The vectors Λ and B
respectively characterizes the variance of the deformation magnitude and motion
coherence bandwidth within each organ. We define the displacement field prior
for the MO-BCPD as:

pv(v|y, ly) = φ0,G(v1)φ0,G(v2)φ0,G(v3) (2)

G =

[
Λlyi

Λlyj
Slyi ,lyj

exp −‖yi − yj‖2

2Blyi
Blyj

]
i,j≤M

(3)

Note that G must be definite-positive, leading to strictly positive values for
variance of the displacement magnitude Λl and mild constraints on S.

Learning. Combining equations (1) and (2), the joint probability distribution of
the variables y, ly,x, lx, θ, where θ = (v, α, c, e, ρ, σ2) is defined as:

p(x, lx,y, ly, θ) ∝ pv(v|y, ly)pα(α)
N∏

n=1

pe(xn, lxn, cn, en|y, ly,v, α, ρ, σ2) (4)
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As in [9], we use variational inference to approximate the posterior distribution
p(θ|x,y) with a factorized distribution q(θ) = q1(v, α)q2(c, e)q3(ρ, σ2) so that
q = arg min

q1,q2,q3

KL(q|p(.|x,y)) where KL is the Kullback-Leibler divergence. Sim-

ilarly to [9], we derive the MO-BCPD algorithm presented in algorithm 1. The
steps detailed in Algorithm 1 perform coordinate ascent on the evidence lower
bound L(θ) =

∫
θ
q(θ) ln p(x,y,θ)

q(θ) dθ. In algorithm 1, γ is a hyper-parameter used
to scale the initial estimation of σ2 and ε is used for stopping criteria. We note
Δ(ν) the diagonal matrix with diagonal entries equal to ν.

Hyper-parameter Setting. The model has a large number of hyper-parameters
which can impact the performance of the algorithm. Regarding κ, the parameter
of the prior distribution pα, and γ, the scaling applied to the initial estimation of
σ2, we followed the guidelines in [9]. ω is set based on an estimate of the propor-
tion of outliers on a representative testing set. Regarding B and Λ, respectively
the vector of organ-specific motion coherence bandwidth and expected deforma-
tion magnitude, they characterise organs elastic properties. Concretely, a larger
motion coherence bandwidth Bl increases the range of displacement correlation
for organ l (points that are further away are encouraged to move in the same
direction). A larger expected deformation magnitude Λl increases the probabil-
ity of larger displacements for organ l. These are physical quantities expressed
in mm that could be set based on organs physical properties. The inter-organ
motion coherence matrix S should be a symmetric matrix containing values
between 0 and 1. Sl,l = 1 for all organs l ∈ {1 . . . L} and Sl,l′ is closer to 0 if
organs l and l′ can move independently.

ul,l′ is the probability that a point with label l′ generates a point with
label l. As points labels are in practice obtained from an automatic segmenta-
tion tool, we note [gy

m]m∈{1...M} and [gx
n]n∈{1...n} respectively the unknown true

organ labels of the source and target point clouds (as opposed to the estimated
ones [lym]m∈{1...M} and [lym]m∈{1...M}). We assume that points from the deformed
source point cloud generate points with the same true labels (i.e. P(gx

n = gy
m|en =

m) = 1). Hence, the probability for ym, with estimated organ label lym to gen-
erate a point with label lxn is given by: ulxn,lym =

∑
k p(gy

m = k|lym)p(lxn|gx
n = k)

where p(gy
m = k|lym) is the probability that a point labelled lym by the automatic

segmentation tool has true label k and p(lxn|gx
n = k) is the probability that the

automatic segmentation tool predicts the organ label lxn for a point with true
label k. These probabilities need to be estimated on a representative testing set.
We note that if the segmentation is error-free, the formula above gives U = IdL.
Indeed, in that case the points organ labels correspond exactly to the organ true
labels so a point belonging to a certain organ can only generate a point from the
same organ in the target anatomy. Properly setting the organ label transition
probability matrix U is crucial to recover from potential partial segmentation
errors. Figure 1 illustrates with a toy example a situation where the algorithm
converges to an undesired state if the segmentation error is not modeled properly.

Interpolation. Once the deformation on the organ point clouds is known, one
might want to interpolate the deformation back to image space in order to
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Fig. 1. Toy example registering a pair of organs (a blue and an orange organ) with
∼10% segmentation error (corrupted input labels). Both organs (orange and blue) of
the target point cloud are shown in (a) in transparent while the source point cloud is
shown in opaque. The blue (orange) dots on the left (right) of the figure corresponds
to simulated segmentation errors. (b) shows the registered point cloud without mod-
eling the inter-organ segmentation error, (c) shows the registered point cloud with
segmentation error modelization

resample the whole volume. As in [8] we propose to use Gaussian process regres-
sion to interpolate the deformation obtained by the MO-BCPD algorithm. This
interpolation process can also be used to register sub-sampled point clouds to
decrease computation time as in [8].

Given a set of points ỹ = [ỹi]i∈{1...M̃} with labels lỹ = [lỹi ]i∈{1...M̃}. We
compute the displacement for the set of points ỹ as:

vỹ = Gint(ỹ, lỹ,y, ly, B, Λ, S).G−1.v (5)

Gint(ỹ, lỹ,y, ly, B, Λ, S)i,j = Λlỹi
Λlyi

Slỹi ,lyi
exp −‖ỹi − yj‖2

2βlỹi
βlyj

(6)

Acceleration. The speed ups strategies mentioned in [9] are fully transferable to
the MO-BCPD pipeline. In our experiments though, the main improvement, by
far, came from performing a low rank decomposition of G at the initialization
of the algorithm. Indeed, this yielded consistent reliable ×10 speed-ups with
negligible error when using ≥ 20 eigen values. The Nystrom methods to approx-
imate P sometimes implied large error due to the stochasticity of the method
while yielding up to ×2 speed-ups which is why we did not use it. This allows
MO-BCPD to be run in a few seconds with M,N ≈ 5000.

3 Experiments

We evaluate the MO-BCPD algorithm by performing inter-patient registration
from the LITS challenge training dataset [4] which contains 131 chest-CT patient
images. 27 patients were removed due to different field of view, issues with the
segmentation or landmark detection. In total, 10,712 registrations were per-
formed on all the pairs of remaining patients. The segmentation was automat-
ically performed using an in-house tool derived from [17] which also provides a
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Table 1. Target registration error on landmarks. Results in mm (std).

Sim BCPD GMC-MO-BCPD OMC-MO-BCPD

Bladder 257 (26) 29 (15) 30 (15) 26 (15)

Left kidney bottom 128 (18) 23 (11) 22 (10) 8 (4)

Left kidney center 107 (13) 18 (10) 15 (8) 6 (3)

Left kidney top 101 (15) 23 (12) 21 (10) 9 (4)

Liver bottom 114 (15) 29 (14) 28 (14) 24 (13)

Liver center 65 (10) 12 (7) 12 (7) 11 (7)

Liver top 123 (15) 24 (12) 25 (12) 26 (14)

Right kidney bottom 98 (15) 26 (13) 24 (11) 10 (6)

Right kidney center 65 (11) 21 (12) 17 (9) 5 (3)

Right kidney top 64 (15) 25 (13) 21 (11) 9 (4)

Round ligament of liver 95 (20) 27 (14) 27 (13) 25 (13)

set of anatomical landmarks for each image which were used for evaluation. We
considered five organs of interest: the liver, the spleen, the left and right kid-
neys and the bladder. We compared 4 different algorithms: registration of the
point clouds with a similarity transform (Sim), BCPD, GMC-MO-BCPD which
is MO-BCPD with global motion coherence (S = 1L,L) and OMC-MO-BCPD
which is MO-BCPD with intra-organ motion coherence only (S = IdL). As the
segmentation tool performed very well on the considered organs, we set U = IdL

and ω = 0 for both MO-BCPD versions (ω = 0 for BCPD as well). We used for
all organs the same values for Λl and Bl respectively 10 mm and 30 mm as a trade
off between shape matching and preservation of individual organs appearance
(β = 30 and λ = 0.1 for BCPD which is the equivalent configuration). We also
set, γ = 1 and ε = 0.1. We compared those algorithms by computing the registra-
tion error on the anatomical landmarks belonging to those organs. We chose this
generic, relatively simple setting (same rigidity values for all organs, no outlier
modeling, only two extreme configurations for S) in order to perform large scale
inter-patient registration experiments but we would like to stress that further fine
tuning of these parameters for a specific application or even for a specific patient
would further improve the modeling and hence the registration outcome. Results
are presented in Table 1. We observe that while GMC-MO-BCPD induces some
marginal improvements with respect to BCPD, OMC-MO-BCPD allows a much
more precise registration. As illustrated in Fig. 2, the main improvement from
BCPD to GMC-MO-BCPD is that different organs no longer overlap. Indeed, as
highlighted by the green and blue ellipses, the spleen and the right kidney from
the deformed source patient overlap the liver of the target patient when using
BCPD. OMC-MO-BCPD properly aligns the different organs while preserving
their shape (see orange and purple ellipses for instance).
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Fig. 2. Qualitative comparison of registration output for the liver, left/right kidneys
and spleen. From left to right, BCPD, GMC-MO-BCPD, OMC-MO-BCPD. The target
organs are shown in transparency while the deformed point cloud are shown in opaque.

4 Conclusion

We introduced MO-BCPD, an extension of the BCPD algorithm specifically
adapted to abdominal organ registration. We identified three limitations of the
original work [9] on this task and proposed solutions to model: the segmentation
error between neighboring organs of interest, the heterogeneous elastic properties
of the abdominal organs and the complex interaction between various organs
in terms of motion coherence. We demonstrated significant improvements over
BCPD on a large validation set (N=10,712).

Moreover, we would like to highlight that segmentation error could also be
taken into account by tuning the outlier probability distribution pout and the
probability of being an outlier ω. When the point is estimated as a potential
outlier by the algorithm, its contribution to the estimation of the transformation
T is lowered. Hence, the segmentation error modelled by pout and ω corresponds
to over/under segmentation, i.e. when there is a confusion between an organ and
another class we don’t make use of in MO-BCPD (e.g. background). Hence, MO-
BCPD introduces a finer way of handling segmentation error by distinguishing
two types of errors: mis-labeling between classes of interest which is modelled
by U and over/under-segmentation of classes of interest modeled by ω and pout.

In this manuscript, we focused on highlighting the improvements yielded
by the MO-BCPD formulation specifically designed for multi-organ point cloud
registration. That being said, some clinical applications would require the defor-
mation on the whole original image volume. Hence, we present in supplementary
material preliminary results on a realistic clinical use case. In Figs. 3 and 4 we
see that MO-BCPD coupled with the proposed interpolation framework obtain
better alignment on the structures of interest than traditional intensity-based
baselines. It is also interesting to note that MO-BCPD also better aligns struc-
tures that are particularly challenging to align such as the hepatic vein while
not using these structures in the MO-BCPD.

Future work will investigate how MO-BCPD could be used as a fast, accurate
initialization for image-based registration algorithms. From a modeling stand-
point, we would also like to further work on segmentation error modeling (in
particular over/under segmentation) with a more complex organ specific outlier
distribution.
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Abstract. The majority of current research in deep learning based
image registration addresses inter-patient brain registration with moder-
ate deformation magnitudes. The recent Learn2Reg medical registration
benchmark has demonstrated that single-scale U-Net architectures, such
as VoxelMorph that directly employ a spatial transformer loss, often
do not generalise well beyond the cranial vault and fall short of state-
of-the-art performance for abdominal or intra-patient lung registration.
Here, we propose two straightforward steps that greatly reduce this gap
in accuracy. First, we employ keypoint self-supervision with a novel net-
work head that predicts a discretised heatmap and robustly reduces large
deformations for better robustness. Second, we replace multiple learned
fine-tuning steps by a single instance optimisation with hand-crafted fea-
tures and the Adam optimiser. Different to other related work, including
FlowNet or PDD-Net, our approach does not require a fully discretised
architecture with correlation layer. Our ablation study demonstrates the
importance of keypoints in both self-supervised and unsupervised (using
only a MIND metric) settings. On a multi-centric inspiration-exhale lung
CT dataset, including very challenging COPD scans, our method outper-
forms VoxelMorph by improving nonlinear alignment by 77% compared
to 19% - reaching target registration errors of 2 mm that outperform all
but one learning methods published to date. Extending the method to
semantic features sets new stat-of-the-art performance on inter-subject
abdominal CT registration.

Keywords: Registration · Heatmaps · Deep learning

1 Introduction

Medical image registration aims at finding anatomical and semantic correspon-
dences between multiple scans of the same patient (intra-subject) or across
a population (inter-subject). The difficulty of this task with plentiful clinical
applications lies in discriminating between changes in intensities due to image
appearance changes (acquisition protocol, density difference, contrast, etc.) and
nonlinear deformations. Advanced similarity metrics may help in finding a good
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contrast-invariant description of local neighbourhoods, e.g. normalised gradi-
ent fields [7] or MIND [14]. Due to the ill-posedness of the problem some form
of regularisation is often employed to resolve the disambiguity between several
potential local minima in the cost function. Powerful optimisation frameworks
that may comprise iterative gradient descent, discrete graphical models or both
(see [28] for an overview) aim at solving for a global optimum that best aligns the
overall scans (within the respective regions of interest). Many deep learning (DL)
registration frameworks (e.g. DLIR [30] and VoxelMorph [1]) rely on a spatial
transformer loss that may be susceptible to ambiguous optimisation landscapes
- hence multiple resolution or scales levels need to be considered. The focus
of this work is to reflect such local minima more robustly in the loss function
of DL-registration. We propose to predict probabilistic displacement likelihoods
as heatmaps, which can better capture multiple scales of deformation within a
single feed-forward network.

Related Work: Addressing large deformations with learning based registra-
tion is generally approached by either multi-scale, label-supervised networks
[15,21,22] or by employing explicitly discretised displacements [9,11]. Many vari-
ants of U-Net like architectures have been proposed that include among others,
dual-stream [18], cascades [32] and embeddings [5]. Different to those works,
we do neither explicitly model a discretised displacement space, multiple scales
or warps, nor modify the straightforward feed-forward U-Net of DLIR or Vox-
elMorph. Other works aimed at learning lung deformations through simulated
transformations [4,26].

Learning based point-cloud registration is another research field of interest
(FlowNet3d [20]) that has however so far been restricted to lung registration in the
medicaldomain [8].Foracomparisonofclassicalapproachesusingthin-platesplines
or expectation-maximisation e.g. coherent point drift to learning-based ones the
reader is referred to comparisonexperiments in [8]. Stackedhourglassnetworks that
predict discretised heatmaps of well-defined anatomical landmarks are commonly
used in human pose estimation [24]. They are, however, restricted to datasets and
registration applications where not only pairwise one-to-one correspondences can
be obtained as training objective but generic landmarks have to be found across all
potential subjects.Due toanatomicalvariations this restrictionoftenprevents their
use in medical registration. DRAMMS [25] also aims at matching keypoints across
scansand learnsdiscriminative featuresbasedonmutual saliencymapsbutdoesnot
offer the benefits of fast feed-forward prediction of displacements.

Combining an initial robust deformation prediction with instance optimisa-
tion or further learning fine-tuning steps (Learn-to-optimise, cf. [29]) has become
a new trend in learning-based registration, e.g. [16,27]. This paradigm, which
expects coarse but large displacements from a feed-forward prediction, can shift
the focus away from sub-pixel accuracy and towards avoiding failure cases in the
global transformation due to local minima. It is based on the observation that
local iterative optimisers are very precise when correctly initialised and have
become extremely fast due to GPU acceleration.
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Contributions: We demonstrate that a single-scale U-Net without any bells
and whistles in conjunction with a fast MIND-based instance optimisation can
achieve or outperform state-of-the-art in large-deformation registration. This is
achieved by focussing on coarse scale global transformation by introducing a
novel heatmap prediction network head. In our first scenario we employ weak
self-supervision, through automatic keypoint correspondences [12]. Here, the
heatmap enables a discretised integral regression of displacements to directly and
explicitly match the keypoint supervision. Second, we incorporate the heatmap
prediction into a non-local unsupervised metric loss. This enables a direct com-
parison within the same network architecture to the commonly used spatial
transformer (warping) loss in unsupervised DL registration and highlights the
importance of providing better guidance to avoid local minima. Our extensive
ablation experiments with and without instance optimisation on a moderately
large and challenging inspiration-exhale lung dataset demonstrate state-of-the-
art performance.

Our code is publicly available at:
https://www.github.com/mattiaspaul/VoxelMorphPlusPlus
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Fig. 1. Overview of method and qualitative result for held-out case #1 from [23]. The
key new element of our approach is the heatmap prediction head that is appended to a
standard VoxelMorph. It helps overcome local minima through a probabilistic loss with
either automatic keypoint correspondences or non-locally weighted MIND features.

2 Method

Keypoint correspondences are an excellent starting point to explore the benefits
of incorporating a heatmap prediction within DL-registration. Our method can

https://www.github.com/mattiaspaul/VoxelMorphPlusPlus
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be either trained when those automatically computed displacements at around
|K| ≈ 2000 locations per scan are available for training data, or we can use
a non-local unsupervised metric loss (see details below). In both scenarios, we
use Förstner keypoints in the fixed scan to focus on distinct locations within a
region of interest. We will first describe the baseline single-scale U-Net backbone,
followed by our novel heatmap prediction head and the non-local MIND loss
(which is an extension of [13] to 3D).

Baseline Backbone: Given two input CT scans, fixed and moving image F,M :
R

3 → R and a region of interest Ω ∈ R
3, we firstly define a feed-forward U-Net

[6] Θ(F,M,Ω, θ) → R
C with trainable parameters θ that maps the concatenated

input towards a shared C-dimensional feature representation z (we found C≈ 64
is expressive enough to represent displacements). This representation may have
a lower spatial resolution than F or M and is the basis for predicting a (sparse)
displacement field ϕ that spatially aligns F and M within Ω. Θ comprises in
our implementation a total of eleven 3D convolution blocks, each consisting
of a 3 × 3 × 3 convolution, instance normalisation (IN), ReLU, a 1 × 1 × 1
convolution, and another IN+ReLU. Akin to VoxelMorph, we use 2 × 2 × 2
max-pooling after each of the four blocks in the encoder and nearest neighbour
upsampling to restore the resolution in the decoder, but use a half-resolution
output. The network has up to C = 64 hidden feature channels and 901’888
trainable parameters.

Due to the fact that this backbone already contains several convolution blocks
on the final resolution at the end of the decoder, it is directly capable of predict-
ing a continuous displacement field ϕ by simply appending three more 1 × 1 × 1
convolutions (and IN + ReLU) with a number of output channels equal to 3.

Discretised Heatmap Prediction Head: The aim of the heatmap prediction
head is to map a C-dimensional feature vector (interpreted as a 1×1×1 spatial
tensor with |K| being the batch dimension) into a discretised displacement tensor
y ∈ Q with predefined size and spatial range R (see Fig. 1). Here we chose
R = 0.3, in a coordinate system that ranges from −1 to +1, which captures even
large lung motion between respiratory states. We define Q to be a discretised map
of size 11×11×11 to balance computational complexity and limit quantisation
effects. This means we need to design another nested decoder that increases the
spatial resolution from 1 to 11. Our heatmap network comprises a transpose 3D
convolution with kernel size 7 × 7 × 7, six further 3D convolution blocks (kernel
size 7× 7× 7 and IN+ReLU) once interleaved with a single trilinear upsampling
to 11 × 11 × 11. It has 462’417 trainable parameters and its number of output
channels is equal to 1.

Next, we can define a probabilistic displacements tensor P with a dimension-
ality of 6 (3 spatial and 3 displacement dimensions) using a softmax operation
along the combined displacement dimensions as:

P(x,Δx) =
exp(y(x,Δx))

∑
Δx exp(y(x,Δx))

, (1)
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where x are global spatial 3D coordinates and Δx local 3D displacements. In
order to define a continuous valued displacement field, we apply a weighted sum:

ϕ(x) =
∑

Δx

P(x,Δx) · Q(Δx) (2)

This output is used during training to compute a mean-squared error between
predicted and pre-computed keypoint displacements. Since, the training cor-
respondences are regularised using a graphical model, we require no further
penalty.

Non-local MIND Loss: To avoid the previously described pitfalls of directly
employing a spatial transformer (warping) loss, we can better employ the prob-
abilistic heatmap prediction and compute the discretely warped MIND vectors
of the moving scan implicitly by a weighted average of the underlying features
within pre-defined capture region (where c describes one of the 12 MIND chan-
nels) as:

MINDwarped(c,x) =
∑

Δx

P(x,Δx) · MIND(c,x + Δx) (3)

.
Implementation Details: Note that the input to both the small regression net-
work (baseline) and our proposed are feature vectors sampled at the keypoint
locations, which already improves the baseline architecture slightly. We use tri-
linear interpolation in all cases where the input and output grids differ in size
to obtain off-grid values. All predicted sparse displacements ϕ are extrapolated
to a dense field using thin-plate-splines with λ = 0.1 that yields ϕ∗.

For the baseline regression setup (VoxelMorph) we employ a common MIND
warping loss and a diffusion regularisation penalty that is computed based on the
Laplacian of a kNN-graph (k = 7) between the fixed keypoints. The weighting of
the regularisation was empirically set to α = 0.25. We found that using spatially
aggregated CT and MIND tensors the former using average pooling with kernel
size 2, the latter two of those pooling steps, leads to stabler training in particular
for the regression baseline.

Multi-channel Instance Optimisation: We directly follow the implementa-
tion described in [27]1. It is initialised with ϕ∗, runs for 50 iterations, employs
a combined B-spline and diffusion regularisation coupled with a MIND metric
loss and a grid spacing of 2. This step is extremely fast, but relies on a robust
initialisation as we will demonstrate in our experiments. The method can also be
employed when semantic features, e.g. segmentation predictions from an nnUNet
[19], are available in the form of one-hot tensors.

3 Experiments and Results

We perform extensive experiments on inspiration-exhale registration of lung CT
scans - arguably one of the most challenging tasks in particular for learning-based
1 https://github.com/multimodallearning/convexAdam.

https://github.com/multimodallearning/convexAdam
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registration [16]. A dataset of 30 scan pairs with large respiratory differences is
collected from EMPIRE10 (8 scan pairs #1, #7, #8, #14, #18, #20, #21
and #28) [23], Learn2Reg Task 2 [17] and DIR-Lab COPD [2] (10 pairs). The
exhale and inspiration scans are resampled to 1.75 × 1.25 × 1.75 mm and 1.75 ×
1.00 × 1.25 mm respectively to account for average overall volume scaling and
a fixed region with dimensions 192 × 192 × 208 voxels was cropped that centres
the mass of automatic lung masks. Note that this pre-processing approximately
halves the initial target registration error (TRE) of the COPD dataset. Lung
masks are also used to define a region-of-interest for the loss evaluation and to
mask input features for the instance optimisation. We split the data into five
folds for cross-validation that reflect the multi-centric data origin (i.e. approx.
two scans per centre are held out for validation each).

Fig. 2. Cumulative keypoint error of pro-
posed model compared to a VoxelMorph
baseline and using only Adam instance opti-
misation with MIND.

Table 1. Results of ablation study on
lung CT: VoxelMorph++ improves
error reduction of nonlinear alignment
from 18% to 77%.

UNet Heatmap Keypoints Error
w/o
Adam

Error
w/Adam

Initial/Adam 10.04 vx 7.41 vx

VoxelMorph � 8.17 vx 4.80 vx

VM + Heatmap � � 6.49 vx 3.18 vx

VM + Keypoints � � 6.30 vx 2.79 vx

VoxelMorph++ � � � 5.31 vx 2.34 vx

Keypoint Self-supervision: To create correspondence as self-supervision for
our proposed VoxelMorph++ method, we employ the corrField [12]2, which is
designed for lung registration and based on a discretised displacement search and
a Markov random field optimisation with multiple task specific improvements.
It runs within a minute per scan pair and creates ≈2000 = |K| highly accurate
(≈1.68 mm) correspondences at Förstner keypoints.

As additional experiments we also apply the same technique to the popu-
lar (but less demanding) DIR-Lab 4DCT lung CT benchmark and we extend
our method to the inter-subject alignment of 30 abdominal CTs [31] that was
also part of the Learn2Reg 2020 challenge (Task 3) and provides 13 difficult
anatomical organ labels for training and validation.

Ablation Study: We consider a five-fold cross-validation for all ablation exper-
iments with an initial error of 10.04 vx (after translation and scaling) across 30
scan pairs computed based on keypoint correspondences. Employing only the
2 http://www.mpheinrich.de/code/corrFieldWeb.zip.

http://www.mpheinrich.de/code/corrFieldWeb.zip
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Adam instance optimisation with MIND features results in an error of 8.17 vx,
with default settings of grid spacing = 2 voxels, 50 iterations and λAdam = 0.65.
Note that a dense displacement is estimated with a parametric B-spline model.
We start from the slightly improved VoxelMorph baseline with MIND loss, dif-
fusion regularisation and increased number of convolution operations described
above. This yields a keypoint error of 8.17 vx that represents an error reduction
of 19% and can be further improved to 4.80 vx when adding instance optimisa-
tion. A weighting parameter λ = 0.75 for diffusion regularisation was empirically
found with k = 7 for the sparse neighbourhood graph of keypoints. Replacing
the traditional spatial transformer loss with our proposed heatmap prediction
head that uses the nonlocal MIND loss much improves the performance to 6.49
vx and 3.18 vx (with and without Adam respectively). But the key improvement
can be gained when including the self-supervised keypoint loss. Using our base-
line VoxelMorph architecture that regresses continuous 3D vectors, we reach 6.30
and 2.79 vx. See Table 1 and Fig. 2 for numerical and cumulative errors. Our
heatmap-based network and the instance optimisation require around 0.43 and
0.41 s inference time, respectively. The complexity of transformations measured
as standard deviation of log-Jacobian determinants is on average 0.0554. The
number of negative values is zero (no folding) in 8 out of 10 COPD cases and
negligible (<10−4) in the others.

Comparison to State-of-the-Art on DIR-Lab: When evaluation the tar-
get registration error (TRE) in mm for the 10 pairs of DIR-Lab COPD [2]
one of the most challenging benchmarks in medical registration with an initial
misalignment of 23.36 mm (and 12.0 mm after pre-alignment), we reach 2.16 mm.
This compares very favourable to VoxelMorph+ with 7.98 mm and LapIRN with
3.68 mm (see Table 2). Of all published DL-methods only GraphRegNet [9] is
superior with 1.34 mm. The high visual quality of our registration is shown in
Fig. 3.

Table 2. Target registration error in mm for 10 pairs each of DIR-Lab 4D lung-CT
[3] and COPD [2] datasets in comparison to a selection of other published methods.

Method (citation) Before [26] [15] [4] [21]a [1] [9] Ours

TRE (4DCT) 8.46± 6.6 2.52± 3.0 1.14± 0.8 3.68± 3.3 1.60 1.71± 2.9 1.39± 1.3 1.33

TRE (COPD) 23.36± 11.9 – – – 3.83 7.98± 3.8 1.34± 1.3 2.16
aown experiments including instance optimisation

Limitations and Further Potential: We have not yet considered more
advanced network architectures as backbone, e.g. two-stream or multi-level,
which are likely to yield further improvements. However, based on our experi-
ments we expect that it could merely reduce the reliance on instance optimisa-
tion.
Inter-subject Abdominal CT Registration: We apply our proposed Vox-
elMorph++ model with nonlocal loss and no architectural modifications to
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COPD #4

COPD #4

COPD #9

COPD #9 Abdomen F#10 M#32

Abdomen F#10 M#32

Fig. 3. Exemplary results of our proposed method before (top row) and after (bottom
row) registration. Fixed exhale scans are shown in blue and inspiration in orange shades
respectively (adding up to grayscale when aligned). For abdominal alignment trans-
formed segmentation labels are shown, here: right kidney �, left kidney �, gallbladder
�, liver �, stomach �, aorta � and pancreas � are visible. (Color figure online)

another challenging task of inter-subject abdominal CT registration with ini-
tial Dice overlap for 13 organs of only 25.9% and weakly supervised learning
(45 registration pairs). Following [10], we decouple the semantic feature extrac-
tion and directly train an nnUNet model [19]. The best published VoxelMorph
model that was trained with label-supervision and extended to a two-stream
architecture reached 43.9% [27], the two top-ranked methods of the Learn2Reg
challenge yield 65.7% (ConvexAdam [27]) and 67% (LapIRN [22]) respectively.
Directly employing instance optimisation with 25 iterations on the nnUNet fea-
tures achieves 62.9%. We use 2048 keypoints that are sampled inversely propor-
tional to the predicted label maps and employ two warps (and inverse consistency
for the first of them). Our model substantially outperforms VoxelMorph with
52.3% and sets a new state-of-the-art performance after instance optimisation
reaching 69.6% with a total run time of less than a second.

4 Discussion and Conclusions

Our results demonstrate that contrary to previous belief, a simple single-scale U-
Net architecture can provide large deformation estimation that is robust enough
to reach high accuracy with a subsequent instance optimisation. The key insight
of our work is the importance to predict a discretised heatmap to alleviate the
problematic direct regression and use strong self-supervision either using auto-
matic keypoint correspondences or a nonlocal multichannel loss together with
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a straightforward instance optimisation. Our work is related to mlVIRN [15],
which also incorporates a keypoint loss for lung registration in addition to lobe
segmentations, but has to be trained with several hundreds of paired CTs and
did not report TRE values for DIRlab-COPD. Our network can be trained within
17 min on a single RTX A4000 requiring less than 2 GB of VRAM, indicating the
improved training efficiency with fewer scans when using heatmaps. GraphReg-
Net [9] is similar in that it also employs heatmaps (integral regression) but more
explicitly by defining the exact same discretised displacement grid beforehand
and computing an SSD cost tensor based on hand-crafted features as input.
While it outperforms our method with a TRE of 1.34 mm it appears to be more
tailored towards the specific task and might not be easily extendable to end-to-
end feature learning or abdominal registration.
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Abstract. In this work, we propose a learning-based framework for
unsupervised and end-to-end learning of diffeomorphic image registra-
tion. Specifically, the proposed network learns to produce and inte-
grate time-dependent velocity fields in an LDDMM setting. The pro-
posed method guarantees a diffeomorphic transformation and allows the
transformation to be easily and accurately inverted. We also showed
that, without explicitly imposing a diffeomorphism, the proposed net-
work can provide a significant performance gain while preserving the
spatial smoothness in the deformation. The proposed method outper-
forms the state-of-the-art registration methods on two widely used pub-
licly available datasets, indicating its effectiveness for image registration.
The source code of this work is available at: https://bit.ly/3EtYUFN.

Keywords: Image registration · Transformer · Deep neural networks

1 Introduction

Deformable image registration functions by establishing the spatial correspon-
dence between the moving and the fixed images. Traditionally, image registra-
tion has been accomplished by optimizing a pair-wise objective function itera-
tively [3,5,9,18]. Over the last decade, deep learning has emerged as a major
area of research in the field of medical image analysis, including registration
[4,7,8,12,15,16,20]. Learning-based registration models optimize a global func-
tional for a dataset during training, thereby obviating the time-consuming and
computationally expensive per-image optimization during inference.

Diffeomorphic image registration is appealing in many medical imaging appli-
cations, owing to its properties like topology preservation and transformation
invertibility. A diffeomorphic transformation can be achieved via the time inte-
gration of sufficiently smooth time-stationary [1,2,11] or time-dependent veloc-
ity fields [3,5]. Almost all existing end-to-end learning-based registration models
adopt stationary velocity fields because of their ease of implementation and rel-
atively low computational cost [8,15,16]. In this work, however, we demonstrate
how time-dependent velocity fields can be efficiently incorporated into an end-
to-end deep neural network framework, which results in diffeomorphisms (an
illustrative example is shown in Fig. 1) and improved registration performance.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
A. Hering et al. (Eds.): WBIR 2022, LNCS 13386, pp. 96–102, 2022.
https://doi.org/10.1007/978-3-031-11203-4_11
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Fig. 1. Inversion and composition of the deformation fields using the proposed method.
A neural network learns to generate time-dependent velocity fields for 8 time-steps.

2 Background on LDDMM

In the LDDMM setting [5], the transformation φt is computed as the flow of
a time-dependent velocity field vt, specified by the ODE: dφ

dt = vt(φt) with t ∈
[0, 1]. The final transformation at t = 1 is gained by integrating the velocity fields
in time: φ1 = φ0 +

∫ 1

0
vt(φt)dt with φ0 = Id. Then, the optimal transformation

is formulated as a variational problem of the form:

v∗ = arg min
v

(
λ

∫ 1

0

‖vt‖2
V dt + ‖I0 ◦ φ1 − I1‖2

L2

)
, (1)

where ‖ · ‖L2 denotes the standard L2-norm, ‖f‖V = ‖Lf‖L2 and L is a differ-
ential operator of the type (−αΔ + γ)βId with β > 1.5, and I0 and I1 are the
moving and fixed images, respectively. With sufficiently smooth v, a dffieomor-
phism is guaranteed in this setting.

3 Methods

In this work, a neural network was used to generate velocity fields with a pre-
determined discretized number of time-steps, specified by N (as shown in Fig. 2).
Then, the field integration layer integrates the generated velocity fields to form
the transformation at the end-point, i.e., φ1 ≈ Id+

∑N
t=1 vt ◦φt, and the inverse

transformation φ−1 is computed as Id−∑N
t=1 vt ◦φt. The proposed network may

be trained self-supervisedly, end-to-end, using moving and fixed image pairs. We
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Fig. 2. Network architecture. The network integrates N time-steps of velocity fields
to form a final deformation field. Note that skip connections and activation functions
were omitted for visualization.

chose our previously developed TransMorph [6] (denoted as TM) as the base
network since it showed state-of-the-art performance on several datasets. How-
ever, we underline that the proposed method is not architecture-specific and can
readily be integrated into any architecture. The loss function was derived from
Eq. 1 with an additional term to account the available label map information:

L(v, I0, I1) =
∑
t

‖Lvt‖2
L2 + ‖I0 ◦ φ1 − I1‖2

L2 +
1

M

∑
m

‖Sm
0 ◦ φ1 − Sm

1 ‖2
L2 , (2)

where S0 and S1 denote the M -channel label maps of the moving and fixed
images, respectively, where each channel corresponds to the label map of an
anatomical structure. We denote the model trained using this loss function as
TM-TVFLDDMM.

As a consequence of imposing a diffeomorphic transformation, excessive reg-
ularization may lead to a suboptimal registration accuracy measured by image
similarity or segmentation overlap. Here, we demonstrate that by integrat-
ing time-dependent velocity fields, we could implicitly enforce transformation
smoothness and improve performance without explicitly imposing a diffeomor-
phism. In this setting, we used a diffusion regularizer to regularize only the
velocity field at the end-point:

L(v, I0, I1) = ‖∇v1‖2
L2 + NCC(I0 ◦ φ1, I1) + Dice(S0 ◦ φ1, S1), (3)

where ∇v is the spatial gradient operator applied to v, NCC(·) denotes nor-
malized cross-correlation, and Dice(·) denotes Dice loss. We denote the model
trained using this loss function as TM-TVF.

4 Experiments and Results

We validated the proposed method using two publicly available datasets, one in
2D and one in 3D. The 2D dataset is the Radboud Faces Database (RaFD) [13],
and it comprises eight distinct facial expression images for each of 67 subjects.
We randomly divided the subjects into 53, 7, and 7 subjects, and used face
images of subjects glancing in the direction of the camera. A total of 2968, 392,
and 392 image pairs were used for training, validation, and testing. The images
were cropped then resized into 256 × 256. The 3D dataset is the OASIS dataset
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Table 1. SSIM [19] and FSIM [21] comparisons between the proposed method and the
others on the RaFD dataset.

VM-2 [4] VM-diff [8] CycleMorph [12] TM [6] TM-TVFLDDMM TM-TVF

SSIM↑ 0.858 ± 0.038 0.805 ± 0.044 0.875 ± 0.038 0.899 ± 0.035 0.829 ± 0.049 0.910 ± 0.028

FSIM↑ 0.669 ± 0.039 0.613 ± 0.041 0.687 ± 0.042 0.716 ± 0.043 0.620 ± 0.053 0.734 ± 0.033

% of |Jφ| ≤ 0 ↓ 0.798 ± 0.812 <0.001 0.092 ± 0.163 0.190 ± 0.194 <0.001 0.062 ± 0.107

SDlogJ↓ 0.086 ± 0.022 0.051 ± 0.011 0.059 ± 0.014 0.065 ± 0.016 0.046 ± 0.010 0.057 ± 0.013

Table 2. Validation and test results for the OASIS dataset from the 2021 Learn2Reg
challenge [10]. The validation results came from the challenge’s leaderboard, whereas
the test results came directly from the challenge’s organizers.

Validation Test

Dice↑ SDlogJ↓ HdDist95↓ Dice↑ SDlogJ↓ HdDist95↓
ConvexAdam [17] 0.846± 0.016 0.067 ± 0.005 1.500± 0.304 0.81 0.07 1.63

LapIRN [16] 0.861± 0.015 0.072± 0.007 1.514± 0.337 0.82 0.07 1.67

TM [6] 0.862± 0.014 0.128± 0.021 1.431± 0.282 0.820 0.124 1.656

TM-TVFLDDMM 0.833± 0.016 0.090± 0.005 1.630± 0.353 – – –

TM-TVF 0.869 ± 0.014 0.094± 0.018 1.396 ± 0.297 0.824 0.090 1.633

[14] obtained from the 2021 Learn2Reg challenge [10]. This dataset comprises a
total of 451 brain T2 MRI images, with 394, 19, and 38 images being used for
training, validation, and testing, respectively. We trained the proposed method
for 500 epochs using a learning rate of 1e−4. The number of time-steps, N , was
empirically set to 8. We set α = 0.01, γ = 0.01, and β = 2 for RaFD dataset,
and α = 0.01, γ = 0.001, and β = 2 for OASIS dataset. Note that due to the
absence of segmentation in the RaFD dataset, the segmentation losses in Eqs. 1
and 2 were omitted.

Table 1 and 2 show quantitative results of the proposed models on the RaFD
and OASIS datasets. On both datasets, the proposed TM-TVF yielded the high-
est performance against all other methods, including the first-ranking method
(LapIRN [16]) from the Learn2Reg challenge. Specifically, TM-TVF outper-
formed its base network TM in image similarity and segmentation overlap on
the two datasets, with p values < 0.0001 from paired t-tests. Although, a dif-
feomorphism was not explicitly guaranteed in TM-TVF, it still produced much
smoother transformations than TM and VM measured by SDlogJ and the per-
centage of non-positive Jacobian determinant. On the other hand, although
TM-TVFLDDMM guarantees a diffeomorphic transformation (as shown in Fig. 1,
3, and 4), it results in relatively poor registration performance, which is most
likely owing to the excessive regularization imposed on the transformation.

5 Conclusion

In conclusion, we have proposed a learning-based framework for learning to gen-
erate time-dependent velocity fields in the LDDMM setting. The quantitative



100 J. Chen et al.

results show that the framework outperformed state-of-the-art registration mod-
els, indicating the effectiveness of the proposed method. Moreover, the proposed
method is not architecture-specific and may be easily incorporated to improve
registration performance in any network architecture.

Acknowledgment. This work was supported by a grant from the National Cancer
Institute, U01-CA140204.

Appendix A. Additional Qualitative Results

Fig. 3. Qualitative comparisons of the deformation field smoothness. TM yielded
a deformation field with noticeable folded voxels, but TM-TVF generated a
smoother field with state-of-the-art registration accuracy (as seen in Tables 1 and 2).
TM-TVFLDDMM generated a highly regularized deformation field with nearly no visible
folded voxels.

Fig. 4. Qualitative comparisons of facial expression registration. TM-TVFLDDMM pro-
duced a smooth and invertible transformation, but all other transformations were not.
Additionally, TM-TVF yielded the best qualitative results for both forward and back-
ward registration. Note that the transformation inversions for VM-2, CycleMorph, and
TM were approximated using Id − u, where u denotes the displacement field.
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Abstract. In recent years, learning-based image registration methods have grad-
ually moved away from direct supervision with target warps to self-supervision
using segmentations, producing promising results across several benchmarks. In
this paper, we argue that the relative failure of supervised registration approaches
can in part be blamed on the use of regular U-Nets, which are jointly tasked with
feature extraction, feature matching, and estimation of deformation. We introduce
one simple but crucial modification to the U-Net that disentangles feature extrac-
tion and matching from deformation prediction, allowing the U-Net to warp the
features, across levels, as the deformation field is evolved. With this modifica-
tion, direct supervision using target warps begins to outperform self-supervision
approaches that require segmentations, presenting new directions for registra-
tion when images do not have segmentations. We hope that our findings in this
preliminary workshop paper will re-ignite research interest in supervised image
registration techniques. Our code is publicly available from https://github.com/bal
basty/superwarp.

Keywords: Image registration · Optical flow · Supervised learning

1 Introduction

In recent years, fully convolutional networks (FCNs) have become a universal framework
for tackling an array of problems in medical imaging, ranging from image denoising and
super-resolution [1, 2] to semantic segmentation [3–5], and from style transfer [6, 7] to
image registration. Among these, image registrationmethods have benefitted immensely
from FCNs, allowing methods to transition from an optimization-based paradigm to a
learning-based one and to accelerate the alignment of images with different contrasts or
modalities, for example.

An overwhelming majority of recent image registration networks [8–11] are trained
unsupervised, in the sense that ground-truth deformation fields are not required in the
supervision of these networks. Instead, a surrogate photometric loss is used to maximize
the similarity between the fixed image and the moving one—warped by the predicted
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Fig. 1. The SuperWarp U-Net for image registration (first four levels shown). The fixed and
moving images are concatenated along the batch axis and processed through the network. The
two image features are reconcatenated along the channel axis at each level of the U-Net’s upward
path to be processed into a residual deformation, used to warp the moving features, and scaled
and summed to produce the final deformation.

deformation field—in lieu of a loss that penalizes the differences between the predicted
and ground-truth deformation fields. Since images typically contain large untextured
regions as well as different contrasts and voxel intensities, merely minimizing differ-
ences in the fixed image and the moving one is insufficient to recover the ground truth
deformation, even when a smoothness prior (or regularization) is imposed on the pre-
dicted deformation field. While supervised [12–14] and self-supervised approaches [9,
10]—based on segmentations, for example—produce excellent results, direct supervi-
sion using target warps is still desirable in many cases especially if the images do not
have segmentations. However, supervised registration has not been as successful for
many applications due to severe optimization difficulties faced—the network is jointly
taskedwith feature extraction andmatching in addition to deformation estimation, which
is not handled well by a fully convolutional network.

In this work, we will propose SuperWarp, a supervised learning approach to medical
image registration.We first re-visit the classic optical flow equation of Horn and Schunck
[15] to analyze its implications for supervised registration—the duality of intensity-
invariant feature extraction and deformation estimation and the need for multi-scale
warping. With such implications in mind, we make one simple but critical modifica-
tion to the segmentation U-Net that repurposes it for subvoxel- (or subpixel-) accurate
supervised image registration. With this modification, direct supervision using target
warps outperforms self-supervised registration requiring segmentations. The network,
shown in Fig. 1, is strikingly similar to a segmentation U-Net except for warping and
deformation extraction layers, allowing U-Net to warp the features as the deformation
field is evolved.

2 Related Work

SuperWarp is heavily inspired by previous work on optical flow estimation, the aim of
which is to recover apparent motion from an image pair [15]. Expressed mathematically,
however, optical flow estimation and image registration are in fact identical problems
possibly except for the notion of regularity in each—an optical flowfield for the former is
typically assumed differentiable a.e. whereas a deformation field for the latter infinitely
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differentiable or diffeomorphic. This subtle distinction between the two problems does
however disappear under the supervised learning paradigm since the type of regularity
desired is reflected in the ground-truth optical flow (or deformation) fields of the training
data.

2.1 Optical Flow Estimation

Here, we briefly recap development in classical and learning-based optical flow estima-
tion methods—see e.g. [16] for a review. In their seminal work, Horn and Schunck [15]
formulated optical flow estimation via a regularized optimization problem, noting that
the problem is generally ill-posed in the absence of local smoothness priors. Several
works extend the original Horn–Schunck model [15] using sub-quadratic regularization
and data fidelity terms [17–21] that mitigate the deleterious effects of occlusions on
flow estimation. Oriented regularization terms [21–25] regularize the flow only along
the direction tangent to the image gradient while non-local terms [26–29] regularize
flow even across disconnected pixels subject to similar motion. Median filtering of inter-
mediate flows [23, 26] achieves similar effects to non-local regularity terms. Higher-
order regularizers [28, 30] assign zero penalty to affine trends in the flow to encourage
piecewise- linear flowpredictions.Despite the advances, designing a regularizer is highly
domain-specific, suggesting that it can be alleviated via supervised learning.

Orthogonally to the choice of regularizers, multi-scale schemes [31–34] have been
used to estimate larger flows. Descriptor matching [31, 32] introduces an extra data
fidelity term that penalizes misalignment of scale-invariant features (e.g. SIFT), over-
coming the deterioration of the conventional data fidelity term at large scales due to the
loss of small image structures. Since the optical flow equation no longer holds in the pres-
ence of a global brightness change, several authors propose to attenuate the brightness
component of the images as a first step using high-pass filters [18, 24, 35], structure-
texture decomposition [27, 36] or color space transforms [24]. Thus, in traditional
approaches, both multi-scale processing and brightness-invariant transforms require us
to handcraft suitable pre-processing filters, which can be highly time-consuming owing
to the image-dependent nature of such filters. As we will see, the U-Net architecture
used in the SuperWarp obviates the need to handcraft such filters, allowing the U-Net
to learn them directly from the training data, end-to-end, to enable brightness- invariant
image registration with exceptional generalization ability.

Fischer et al. [37] formulate optical flow estimation as a supervised learning problem.
They train a U-Net model to output the optical flow field directly for a pair of input
images, supervising the training using the ground-truth optical flow field as the target.
Later works extend [37], cascading multiple instances of the network with warping [38],
introducing a warping layer [39] or using a fixed image pyramid [40] to improve the
accuracy of flow prediction [38, 39] as well as reduce the model size. Some authors
propose to tackle optical flow estimation as an unsupervised learning task [41, 42],
using a photometric loss to penalize the intensity differences across the fixed and moved
images. Recent extensions in this unsupervised direction include occlusion-robust losses
[43, 44] based on forward-backward consistency, and self-supervision losses [42, 45].
These are also the building blocks of unsupervised image registration methods [9–11].
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3 Mathematical Framework

3.1 Optical Flow Estimation and Duality Principle

Under a sufficiently high temporal sampling rate, we can relate the intensities of a
successive pair of three-dimensional images (f0, f1) to components (u, v,w) of the
displacement between the two images using the optical flow equation

(∂f1/∂x) · u + (∂f1/∂y) · v + (∂f1/∂z) · w = f0 − f1 (1)

[15], where (∂/∂x, ∂/∂y, ∂/∂z) denotes the 3D spatial gradient operator. PDE (1) can
also be seen as a linearization of the small deformation model in image registration
[46]. Since (1) involves three unknowns for every equation, finding (u, v,w) given
(f0, f1) is an ill-posed inverse problem. Smoothness assumptions are therefore made in
optimization-based flow estimation [17–21] to render the inverse problem well-posed
again similar to image registration [9–11].

A global change in the brightness or contrast across the image pair (f0, f1) intro-
duces an additive bias in the right-hand side of (1) such that the equation no longer
holds. Compensating for this change in pre-processing would require knowledge of
the displacement field (u, v,w) that we seek in the first place. A similar issue is often
met in medical image registration, with different imaging modalities across f0 and f1
injecting additive and multiplicative biases in (1). If however we knew the ground-truth
displacement (u, v,w), harmonizing (f0, f1) in a normalized intensity space is readily
achieved via (1). Conversely, given a harmonized image pair, the displacement field can
be recovered using (1).

Image segmentation [47] is the ultimate form of image harmonization, since it
removes brightness and contrast from images altogether and turns them into piecewise
smooth (constant) signals by construction. This suggests that the use segmentation maps
to supervise registration [9, 10] can be beneficial. However, many types of images do not
have segmentations available or lack the notion of segmentation altogether, e.g. fMRI
activations, so supervision using the ground-truth warps instead can be an expedient way
of learning to register.

In practice, images (f0, f1) are acquired at a low temporal sampling rate so (1)
holds only over regions where both image intensities are linear functions of their spatial
coordinates [15]. Equivalently, (1) holds in the general case only if the magnitudes of the
components (u, v,w) are less than one voxel. Since this can pose a major limitation for
practical applications, multi-scale processing is used to linearize the images at gradually
smaller scales, with the displacement field estimated at the larger scale used to initialize
the residual flow estimation at the smaller scale. Linearizing images at larger scales,
however, results in the loss of small structures due to the smoothing filters. Handcrafting
filters that have an optimum tradeoff between linearization and preservation of image
features at every scale is image-dependent and can be time-consuming, implying that
learning such filters end-to-end can be beneficial for generalization ability.

3.2 Supervised Learning and Multi-scale Warping

SuperWarp exploits the duality principle (1) to supervise an image registration network
equipped with multi-scale warping to estimate large deformations. We train a U-Net
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model on pairs of images with different intensities related via our smoothly synthe-
sized ground-truth deformation fields. The downward path of the U-Net model first
extracts intensity-invariant features from the two images separately. The upward path
then extracts from the feature pair a deformation that minimizes the differences with
respect to the ground-truth target.

SuperWarp makes one important modification to the registration U-Net for large
displacement estimation. At each level of the network’s upward path, the features of the
moving image are first warped using the deformation field from the previous level, such
that only the residual deformation, less than a voxel in magnitude, need be extracted
at the current level. Processing the two images jointly as a single multi-channel image
through U-Net, as done in [9, 10], would entangle the features of the fixed and the
moving images, so that warping only the features of the moving one post hoc is not
feasible. Instead, we process the two images as a batch with the image pair interacting
only during deformation extraction, where the two image features are reconcatenated
along the channels axis and processed into deformation field using a convolution block.

Note from the left and the right-hand sides of (1) that it is (f1, f0 − f1), not (f1, f0),
which needs to be processed for displacement estimation. This suggests that feeding
the features of f1 and pre-computed feature differences between f0 and (warped) f1 into
deformation blocks can yield a saving of one convolution layer per block, which is sub-
stantial given that these blocks typically have no more than three convolution layers in
total. In practice, we reparameterize the input further to the features of (f0 + f1, f0 − f1)
to help the extraction blocks average the spatial derivatives of the features across the
two images, similarly to the practice in optimization-based approaches [16]. This repa-
rameterization can be seen as a Hadamard transform [48] across the two image feature
sets.

Table 1. Parameter ranges and probabilities used for random spatial transformation and intensity
augmentation of the image pair. Applied separately to each image in the pair.

3.3 Deep Supervision, Data Augmentation and Training

Following the approach of deep supervision for semantic segmentation [49], we super-
vise the deformation block at each level of the U-Net’s upward path with a dis-
placement target. We use the MSE loss between the predicted (u, v,w) and the tar-
get (p,q, r) to minimize E(u, v,w) = ‖(u, v,w) − (p,q, r)‖22. The loss is summed
across levels without weighting to produce the final training loss. The deformation
block at each level is supervised using the target ground-truth field down-sampled
to the spatial dimensions of its predictions. For evaluation, more forgiving EPE loss
EEPE(u, v,w) = ‖(u, v,w) − (p,q, r)‖2,1 is used instead.
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To generate training pairs of images with their corresponding ground-truth defor-
mation targets, we sample an image f from the training set and synthesize two different
smooth displacements (p0,q0, r0) and (p1,q1, r1) that warp f and produce f0 and f1,
respectively. The ground-truth displacement is given by

(p,q, r) = (Id + (p1,q1, r1))−1(Id + (p0,q0, r0)) − Id, (2)

in which the identity Id denotes the (vectorization) of the grid coordinates. To facilitate
computation, we restrict (p1,q1, r1) to affine fields so that the inverse coordinate map-
ping (·)−1 (2) can be computed by inverting a 4 × 4 matrix. We apply a small elastic
deformation on (p0,q0, r0) to approximate a higher-order (non-affine) component of the
spatial distortion typically seen in MR scans. We then transform the voxel intensities of
f0 and f1 using a standard augmentation pipeline (Gaussian noise, brightness multiplica-
tion, contrast augmentation, and gamma transform); see Table 1 for the hyperparameters
of these transforms.

For training, we use a batch size of 1, which actually becomes 2 because the moving
and fixed images are concatenated along the batch axis. The Adam [50] optimizer is
used with an initial learning rate of 10−4, linearly reduced to 10−6 across 200,000 itera-
tions. We find it beneficial to initially train the network for 20,000 iterations on training
examples with zero displacement and deformation but still with intensity augmentations
to enable the network to learn to extract contrast-invariant features, then introducing
deformations to train the network to predict deformations with brightness change across
the image pair.

In Fig. 2, we plot validation Dice and end-point error curves of SuperWarp U-Net
(ours) and a VoxelMorph-like U-Net baseline for the registration of MR brain scans. In
the Dice-supervised case, we train the networks to minimize the regularized Dice loss
between the segmentations of the fixed and moving images

EDice(u, v,w) = DDice(f1 ◦ (Id + (u, v,w)), f0) + R(u, v,w), (3)

in which R penalizes the (squared) Laplacian of the components u, v,w. In the MSE-
supervised case, the same networks are trained to minimize the MSE in the predicted
and target deformations. Regardless of the training objective, our SuperWarp U-Net
outperforms the baseline U-Net and also trains significantly faster, requiring only 20
iterations to reach maximum accuracy in the case where the Dice loss is used. Moreover,
SuperWarp U-Net trained using the MSE loss (no segmentations) outperforms the Dice
baseline requiring segmentations.
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Fig. 2. Validation registration accuracy. In both self-supervised (MSE) and supervised (Dice)
cases, the SuperWarpU-Net leads to better meanDice and endpoint error than the baseline (similar
to VoxelMorph) and trains faster, requiring only 40 epochs to reach the final accuracy, which are
0.954, 0.152 (Ours–Dice), 0.906, 0.711 (Baseline–Dice).

4 Experimental Evaluation

We validate our proposed SuperWarp approaches on two datasets—a set of 2D brain
magnetic resonance (MR) scans, as well as the Flying Chairs [37] optical flow dataset
widely used in computer vision. The brain image registration task allows us to benchmark
the performance of SuperWarp against related work in medical image registration [9, 10]
while Flying Chairs allows us to compare the SuperWarp U-Net with the state-of-the-art
optical flow estimation networks. In addition to Dice scores between fixed and moved
images, we also use the mean EPE to evaluate the accuracy of the displacements. All
U-Nets have 7 levels of [24, 32, 48, 64, 96, 128, 192] features and two convolution layers
at each level.

4.1 Invariant Registration of Brain MR Images

Here, we apply SuperWarp to deformable registration of 2D brain scans within a subject.
Obviously, SuperWarp could be applied to the cross-subject setting too but the accuracy
of predicted deformations is easier to assess in the within-subject case and facilitates
comparisons with other methods. We use the whole brain dataset of [51] containing
40 T1-weighted brain MR scans, along with the corresponding segmentations produced
using FreeSurfer [51]. For test, we use a collection of 500 T1-weighted brain MR scans
curated from: OASIS, ABIDE-I and -II, ADHD, COBRE, GSP, MCIC, PPMI, and
UK Bio. The scan pairs are generated as described in Sect. 3.3. We do not perform
linear registration of the images as a preprocessing step in any of the methods since
the displacements are rather small (Table 1) and this provides better insights into their
behavior.

To show the improvement in the accuracy of the deformation field recovered using
ourmethods, we plot statistics of the validation end-point error andDice scores produced
by all methods including the baseline—similar to VoxelMorph [9]—in Fig. 3. While our
Dice scores are higher than those of the baseline only by 0.04, our end-point errors are
more significantly reduced from the baselines (by 80%, on average across, foreground
pixels). Figure 4 shows the displacements predicted by our method, comparing them
with those from the baseline.
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To better understand the sources of improvement between the baseline and our app-
roach, we conduct an extensive set of ablation studies on SuperWarp as listed in Table
2. We see that the multi-scale loss used in [49] can actually hurt accuracy for this exper-
iment. Training with the EPE loss produces a worse EPE than training with the MSE
loss likely due to numerical instability at zero. The number of U-Net levels should also
be high enough (seven) to cover the largest displacements (about ± 64) at the coarsest
level of the U-Net.

Fig. 3. Test Dice (left) and endpoint error (right) statistics on 10 structures across 500 T1w brain
images. Regardless of the choice of the training loss function, the SuperWarp produces better Dice
and endpoint error than the baseline (similar to VoxelMorph). Note that Ours–MSE does not need
or use segmentation information.

4.2 Optical Flow Estimation

To further benchmark the network architecture used by the SuperWarp, we run addi-
tional experiments on the Flying Chairs optical flow dataset [37], popularly used by
the computer vision community. To facilitate a fair comparison, we set our network
and training hyperparameters very similarly to [39]: 7 U-Net levels for a total of 6.9M
learnable parameters, 1M steps, EPE loss for training, multi-scale loss (but weight all
scales equally) with the Adam optimizer. Table 3 lists the validation EPE of flow fields
predicted using the SuperWarp and other well-performing models.

Both PWC-Net [39] and FlowNet-C [37] attribute their good performance to the
use of the cost-volume layer but we find cost volumes to be unnecessary to achieve
a good accuracy at least on this dataset. While SPY-Net [40] also uses a multi-scale
warping strategy, it is based on a fixed image pyramid. This helps to bring down the
number of trainable parameters but can also lead to a loss of image structure at coarser
levels. FlowNet2 cascades multiple FlowNet models and warps in between, while the
SuperWarp U-Net incorporates warps directly in the model, significantly reducing the
model size with a comparable accuracy.
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5 Discussion

In this paper we have shown that supervising an image registration network with a
target warp can achieve state-of-the-art accuracy. Our approach outperforms previous
supervised ones due to the multi-scale nature of our prediction, where deformations
are composed across the upward path of the U-Net and applied to the features of the
moving image. This way, each spatial scale receives a moving image as input that has

Fig. 4. Visualization of predicted displacement fields (test). Both Dice and MSE variants of the
SuperWarp can produce highly accurate displacements (in the first example, 0.08 and 0.06 mm,
respectively) whereas the baseline (similar to VoxelMorph) prediction has larger errors (0.41mm).
Images are 2D, 256 × 256, 1 mm isotropic. Cf. Fig. 3 (right).
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Table 2. Ablation of network and training hyperparameters used and their influence on the best
epoch validation accuracy. Default hyperparameter: (7, MSE, False, True).

been warped by the composition of all larger spatial scales, ensuring that the optical
flow condition holds for the deformation at that level. This recovers the accuracy of the
deformation estimation that was likely lost in previous supervised techniques due to the
lack of multi-scale warping.

Table 3. Mean EPE achieved by various network models on the Flying Chairs test set.

While segmentation accuracy is itself of course important, we also point out that there
are instances inwhich it is important to recover an exact deformation field. In these cases,
using a segmentation loss leads to inaccuracies when there are too few segmentation
classes to guide thedeformation estimation. We show that using the architecture we have
described, we are able to recover an excellent prediction of a true underlying deformation
field. Uses cases include distortion estimation and removal in MRI, such as those caused
by inhomogeneities in the main magnetic field (B0) and image distortions induced by
nonlinearities in the gradient coils used to encode spatial location.

5.1 Future Work

In thisworkshoppaper,we have addressed only one type of invariance, namely invariance
to intensity (or illumination) change across images. In the sequel, we plan to add contrast
and distortion invariance to the network by training it on synthetic scans of various
contrasts as done in [52] and applying the synthetic approach to distortions as well.
Also, we plan to run a more comprehensive set of experiments on 3D MR images,
showing the benefits of our approach in many clinical applications.
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Abstract. Hybrid methods that combine learning-based features with
conventional optimisation have become popular for medical image reg-
istration. The ConvexAdam algorithm that ranked first in the compre-
hensive Learn2Reg registration challenges completely decouples semantic
and/or hand-crafted feature extraction from the estimation of the trans-
formation due to the difficulty of differentiating the discrete optimisation
step. In this work, we propose a simple extension that enables backpropa-
gation through discrete optimisation and learns to fuse the semantic and
hand-crafted features in a supervised setting. We demonstrate state-of-
the-art performance on abdominal CT registration.

Keywords: Large deformation registration · Convex optimisation ·
End-to-end learning

1 Introduction and Related Work

While end-to-end learning of fully-convolutional networks is the method of choice
for semantic segmentation, image registration continues to benefit from integrat-
ing conventional optimisation steps, e.g. pairwise instance optimisation [7], a dis-
cretised search of displacements [1] or iterative recurrent updates [9]. Discrete
optimisation has been shown to yield excellent registration quality for numerous
tasks [2,5,7] but does rely on non-differentiable steps which would prevent its
use in end-to-end learning. We aim for a method that offers the possibility to
use discrete optimisation in an end-to-end learning setting. Therefore, we intro-
duce a differentiable convex discrete optimisation approach that is able to align
images with large deformations. This differentiable optimisation is used to learn
the fusion of semantic and hand-crafted image features.

2 Method

Figure 1 gives an overview of our method: First, hand-crafted and semantic fea-
tures are extracted from the input images, concatenated and passed to a small
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
A. Hering et al. (Eds.): WBIR 2022, LNCS 13386, pp. 119–123, 2022.
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network comprising layers for feature fusion. The fixed and moving features out-
put from this network are then used for our differentiable discretised convex
optimisation method to align images with large deformations.

Fig. 1. Overview of our method: Hand-crafted and semantic features are concatenated
and fused with feature fusing network layers. The fused features are used for our differ-
entiable optimisation method to compute displacements. For backpropagation, warped
moving and fixed labels are passed to a MSE loss function to update the feature fusing
network’s weights whereas the feature extraction part of the framework remains frozen.

2.1 Differentiable Convex-Discrete Optimisation

For pairwise deformable image registration, a deformation field u is sought that
minimises the cost function E(IF , IM ,u) to align a fixed image IF and a moving
image IM . In [3], a non-differentiable convex-discrete method has been proposed
to find a deformation field u by solving a combined cost function

E(v,u) = DSV (v) +
1
2θ

(v − u)2 + α|∇u|2 (1)

that ensures similarity and smoothness optimisation. In this function, v is an
auxiliary second deformation field used to compute the displacement space vol-
ume DSV . The regularisation parameter α controls the smoothness of the defor-
mation field and the parameter θ models the coupling between similarity and
regularisation penalty and is decreased during iterative solving of the equation.
The optimal selection of v with respect to the similarity term can be performed
globally optimal using local cost aggregation [3].

In this work, we introduce a differentiable discretised convex optimisation by
replacing argmin operators with their corresponding softmin counterparts and
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make suitable adjustments to hyper-parameters that reduce memory require-
ments for end-to-end learning. Coupled-convex discrete optimisation [3] approx-
imates more complex MRF-solutions by the following steps:

(0) initialisation of the current displacement field to zeros
(1) computation of a correlation volume based on sum of squared differences

of feature tensors (the volume comprises 6 dimensions, 3 spatial dimension
and 3 displacement dimensions)

(2a) a regularising coupling term that adds 3D parabolas in displacement dimen-
sions that are rooted at the current displacement solution

(2b) the argmin operator (across all possible displacements) that defines a new
regularised displacement field

(2c) a spatial smoothing step (e.g. a box-filter)

The correlation volume (step (1)) directly depends on the feature maps obtained
from fixed and moving scans. By defining a large enough capture range and
correspondingly a discrete mesh grid of relative displacements the method can
robustly find a near global optimum without multiple warping steps or cas-
caded architectures. Steps (2a)–(2c) are iteratively repeated with a continuously
increasing weight for the coupling term that helps to ensure convergence of the
optimisation. Step (2b), which takes the argmin is not differentiable and will
be replaced with a softmin operator along the displacement dimension followed
by a point-wise multiplication with the relative displacements of the predefined
discrete mesh grid and subsequent reduction.

2.2 Learning of Input Feature Fusion

Previous work [3,7] has shown that hand-crafted MIND features [4] or automatic
nnU-Net segmentations [6] can be used as input for a coupled convex optimisa-
tion method for image registration. In this work, we combine hand-crafted and
semantic features by fusing them with help of trainable feature fusing network
layers comprising two 1×1×1-convolutions followed by instance normalisations
and ReLU activations. The first convolution increases the number of feature
channels to 32 and a third 1 × 1 × 1-convolution reduces the number of feature
channels to 15. The resulting feature maps are then used to solve the differ-
entiable convex-discrete optimisation problem described in Sect. 2.1 in order to
compute the displacement fields that are then used to warp the moving label
maps. One-hot representations of warped and fixed label maps weighted inversely
proportional to the square root of the class frequency are passed to a MSE loss
function that is used to train the feature fusing network’s parameters whereas
the feature extraction part of the framework stays frozen.

3 Experiments and Results

For our experiments we use the Learn2Reg-2020 challenge’s (task 3) dataset con-
taining 30 abdominal inter-patient CT scans with 13 manually labeled abdominal
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Table 1. Left: Quantitative results: Accuracy is measured by the Dice similarity of
segmentations and the 95% Hausdorff distance for segmentations. Plausibility of the
deformations is measured by the standard deviation of the logarithmic Jacobian deter-
minant. Right: example visualisation of fixed image and warped moving labels.

Dice [%] HD [mm] SDlogJ

initial 25.14 40.21 −
MIND features 37.79 37.22 0.050

nnU-Net features 50.56 24.71 0.021

concatenated features 49.71 28.33 0.050

fused features 56.37 24.13 0.049

organs and a resolution of 192 × 160 × 256 [5,10]. The scans have been linearly
pre-registered and split into 20 training cases and 10 test cases. For evaluation
we consider all possible pairwise combinations of the test cases. From the image
data, we extract MIND features (leading to 12 feature channels) and compute
one-hot encoded label features by applying a nnU-Net trained on the 20 train-
ing cases (leading to 14 feature channels). We downsample the features to a
resolution of 48 × 40 × 64, concatenate them and pass the 26-channel input to
our feature fusing network. The network’s 15-channel output is then used for
displacement computation with the differentiable convex optimisation method.
Therefore, we use a displacement range that covers ∼ 32 mm within the scanned
abdominal region and scale the softmin operation’s output (step (2b)) by half of
the downsampled feature dimensions. The feature fusing network is trained for
50 epochs using Adam and a learning rate of 0.005.

For evaluation, we upsample the obtained displacement fields to the original
image resolution. We compare our fused features with the direct use of MIND
features, nnU-Net label features, and concatenation of MIND and nnU-Net fea-
tures. The results given in Table 1 show that the fusion of MIND and nnU-Net
features clearly outperforms the other investigated feature variants with an aver-
age Dice score of 56.37% compared to 50.56% when using only nnU-Net features.
As using nnU-Net features yields to a deformation field that is optimised to warp
the foreground structures, the SDlogJ value is lower than when MIND features
are involved. We evaluated the potential problem of label bias with an experi-
ment on additional structures (lumbar and thoracic vertebrae1 [8]) unseen for
the nnU-Net segmentation training and our fusion learning. While using only
MIND features yields the highest accuracy we see great potential for the pro-
posed feature fusion that only reduced the Dice score of the spine by 5% while
the nnU-Net-based registration results in a drop of 42%. Hence the influence of
label bias is substantially reduced.

1 https://github.com/MIRACLE-Center/CTSpine1K.

https://github.com/MIRACLE-Center/CTSpine1K
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4 Discussion and Conclusion

This work introduced a differentiable version of coupled convex discrete opti-
misation for image registration with large deformation. It has opened up the
possibility of end-to-end feature learning and has well-performed for our feature
fusing network. We show that the fusion of semantic label features and hand-
crafted features based on image self-similarities leads to an improved registration
performance compared to either using only semantic or only hand-crafted fea-
tures or the simple concatenation of both.
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Abstract. We present an end-to-end unsupervised deformable regis-
tration approach for high-resolution histopathology images with differ-
ent stains. Our method comprises two sequential registration networks,
where the local affine network can handle small deformations, and the
non-rigid network is able to align texture details further. Both networks
adopt the multi-magnification structure to improve registration accuracy.
We train the proposed networks separately and evaluate them on the
dataset provided by the University Hospital Frankfurt, which contains
41 multi-stained histopathology whole-slide images. By comparing with
methods using the single-magnification structure, we confirm that the
proposed multi-view architecture can significantly improve the perfor-
mance of the local affine registration algorithm. Moreover, the proposed
method achieves high registration accuracy of contents at the cell level
and is potentially applicable to other medical image alignment tasks.

Keywords: Histopathological image · Affine transformation ·
Non-rigid registration · Unsupervised learning · Multi-magnification
network

1 Introduction

Histopathological whole slide images, i.e., digital tissue slides produced by scan-
ning conventional glass slides under high-resolution microscopy, are vital for
modern histopathology analysis [15]. Standard whole slide images employ the
pyramid structure to support different resolutions, making it easy for patholo-
gists to observe by zooming. Each layer of the pyramid corresponds to a resolu-
tion level, with the bottom being the highest resolution information. In general,
histopathologists utilise various staining techniques based on chemical features of
the tissue, e.g. Hematoxylin-Eosin (H&E), periodic-acid Schiff (PAS) or elastic-
van Gieson (EvG). In addition, antibody-mediated visualization of specific pro-
teins, termed immunohistochemistry, is widely used in modern histopathology.
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As tissue specimens are prepared by approx. 3 µm-thin cuts each specimen rep-
resents an unique sample and slides obtained from directly adjacent tissue differ
slightly in their morphology. Even when the same tissue slide is used for multiple
staining, e.g. by bleaching and re-staining, shifts and/or deformations inevitably
occur. These digital multi-stained histopathology images that are not aligned
accurately pose obstacles to the diagnosis or further processing, thus need to be
registered first.

Image registration is the process of matching two images geometrically so
that corresponding coordinate points in both images correspond to the same
physical region of the scene being imaged [21]. Biomedical image registration
constitutes one of the key research areas for medical analysis that has been
extensively studied. Traditional registration methods search for spatial transfor-
mation that brings the defined similarity metric to be optimum by an iterative
optimization algorithm [1]. Nevertheless, the superiority of accuracy and robust-
ness of classical approaches come at the cost of time, which becomes the main
bottleneck in archiving desirable performance for practical applications. With
the revival of deep learning, attempts have been made to develop learning-based
approaches to implement faster registration, which can be grouped into three
main categories [5,6]: (i) deep iterative registration, which follows the frame-
work of traditional methods but instead adopts similarity metrics learned by
deep neural networks [16,17], (ii) supervised transformation prediction, utilizing
the known ground truth transformations to define the cost function [9,18], (iii)
Unsupervised transformation prediction, where a spatial transformation network
is applied to calculate the error of the given metric(s) with an appropriate reg-
ularization term [2,19]. The first class of methods inherits the time-consuming
drawback of conventional approaches due to the iterative process, whereas the
supervised training requires a large amount of data with annotations. In con-
trast, unsupervised transformation approaches produce the supervisory signals
required for training directly by data and can achieve real-time registration dur-
ing prediction. Therefore, we focused on the unsupervised methods in this work.

An obstacle to applying learning-based methodologies to histopathology
images concerns their ultra-high resolution. Some studies have resampled images
down to an acceptable memory limit before deformation estimation [3,15]. How-
ever, such detailed information as the cell morphological structure is almost
impossible to observe on low-resolution images, becoming a key hamper in
improving alignment accuracy. An alternative solution is to perform registra-
tion on smaller patches [8,12]. The shortcoming of this approach is the irre-
versible loss of neighboring information when splitting the images, resulting in
the narrow field-of-view. In this work, we propose two deep multi-magnification
network architectures for patch-based affine and non-rigid registration. The pro-
posed local affine algorithm can effectively deal with imperceptible collective
shifts of cell nuclei in the low-resolution pattern, and non-rigid registration is
able to align further the cell components that are slightly altered in the morpho-
logical structure. We train the presented networks unsupervised and yield higher
registration accuracy than the methods using only ordinary single-magnification



126 O. Cetin et al.

networks. The result reaches precise alignment at the cellular level under the
maximum resolution of histopathology WSIs, which significantly contributes to
the manual/automatic pathological diagnosis on the differently stained tissue
sections.

Fig. 1. Overview of the proposed algorithm: Both networks take as input concatenated
patches Is, It for Mh (high) magnification, and concatenated patches Is

′, It′ for Ml

(low) magnification. An example in the upper right corner illustrates the construction
process of a patch set, where the cropping rate (CR) and sampling factor (SR) used
to build patches for each magnification level are given. The red boxes denote the
corresponding regions at different magnifications. (Color figure online)

2 Methods

Let IS , IT : Ω → R represent the whole slide source and target images, defined
in the spatial domain Ω ⊂ R

d, where d denotes (d = 2 in this study) spatial
dimensionality of the given data. Similarly, Is, It: ω → R with ω ⊂ Ω represent
the patch-wise source and target images, extracted from IS and IT . Assuming
that the image pairs to be registered are pre-aligned well, we aim to find two
deformation fields φA, φN : Ω → Ω to deform the source image such that:

IS(φN ◦ φA(x)) ≈ IT ,∀x ∈ Ω. (1)

Here “◦” represents the composition of deformations and I(φ) indicates I
deformed by φ. The deformations φA, φN are defined as a patch-wise affine defor-
mation and a pixel-wise non-rigid deformation, respectively. They are obtained
by aggregating the local deformations φp

a, φp
n : ω → ω of image patches (Is, It)

extracted from (IS , IT ), where p indicates the index of the patch on the whole
slide image. Two convolutional neural networks fa and fn are used to realize the
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affine registration φa = fa(Is, It) and non-rigid registration φn = fn(Is(φa), It),
respectively.

An affine registration network is leveraged to learn the affine transformation
φa := Tx, where T ∈ R

d×m with m = d + 1. Next, the affinely registered images
are fed into the non-rigid registration network to learn the displacement field
u(x) with φn := x + u(x), which represents the displacements for ∀x ∈ ω in the
vertical and horizontal directions.

Fig. 2. Architecture of the local affine and non-rigid registration networks: ConvBlock
includes two sets, each consisting of a 3×3 convolution layer with group normalization
(GN), activated by PReLU. Trans Block comprises a 2 × 2 transposed convolution
layer with a stride of 2 followed by GN and PReLU activation. The green and red
arrows indicate maximum pooling and average pooling, respectively. The center crop-
ping operations are denoted by brown arrows with the cropping rates written in brown.
Other blocks are described in the text. (Color figure online)

The input of both networks is a set of image patches with different mag-
nifications, providing multiple field-of-views to the networks. Figure 1 offers an
overview of the proposed registration algorithm for the case of two magnifica-
tion levels. The strategy adopted for extracting multi-magnification patches in
this work is described as follows: In a multi-magnification set, all other patches
are obtained by center-cropping the base image with different cropping rates.
Then, the patches are downsampled with the corresponding sampling factors to
uniform the patch size. The downsampled base image is the one with the lowest
magnification level in the set. Registration networks take the patch set as input
and predict the local affine transform matrix/displacement field corresponding
to the patch with the highest magnification level, as details described in the next
section. According to Eq. 1, the final deformation for the given images IS and
IT is obtained by composing the folded φA and φN .

2.1 Network Architectures

The proposed networks are inspired from [7], which contains multiple magnifi-
cation layers that obtain more information from different field-of-views. Consid-
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ering that the architectures of both networks are quite similar, they are shown
in one figure for brevity, as visualized in Fig. 2. The concatenation of the high-
magnification patches Is and It is fed into the target magnification layer based on
the U-Net [13], to extract the higher magnification feature maps. During recon-
struction, these feature maps are concatenated with the corresponding lower
magnification feature maps extracted from the lower-magnification patches Is

′

and It
′ in another magnification layer. To limit the usage of feature maps from

cropped boundary areas in a wide field-of-view, the lower magnification feature
maps are center-cropped with a given cropping rate followed by up-sampling
utilizing transpose convolution to match the size.

In the local affine network, FinalBlock has the same structure as ConvBlock
but a stride of 2, followed by an adaptive average pooling layer. The recon-
structed feature maps are transformed into six numeric parameters through a
fully-connected layer and then rearranged into the resulting affine transform
matrix T in the regression layer. Whereas, in the non-rigid network, the recon-
structed feature maps are compressed utilizing Final Block, a stack of a 3 × 3
and a 1 × 1 convolution layer, into two-channel displacement field u(x).

2.2 Loss Function

Assume that φ : ω → ω is the local deformation field estimated by networks
with image patches Is and It as input, the loss function can be described as

L (Is, It, φ) = LS (Is(φ), It) + λLR (φ) , (2)

where the first term LS measures the similarity between the warped source and
the target patches, and LR is a regularization term considered only in the non-
rigid network. Parameter λ controls the trade-off between these two terms as a
hyperparameter in the training process.

We choose the normalized cross-correlation (NCC) [10] as the similarity met-
ric LS . Let I1, I2 be two images then this similarity can be computed as

NCC(I1, I2) =
1

N − 1

∑

x∈ω

(I1(x) − Ī1)(I2(x) − Ī2)
σI1σI2

, (3)

where N indicates the number of non-zero pixels, Ī and σI represent the mean
and standard deviation of the intensities in image I, respectively. The nega-
tive normalized cross-correlation (NCC) is used in training to minimize the loss
function, while a higher NCC value corresponds to a higher similarity between
images.

Under the intuition that a desirable deformation field should not vary too
much between nearby points, the curvature regularization [4] is used to constrain
the geometric smoothness of the displacement field φ predicted by the non-rigid
network, i.e.,

LR(φ) =
∑

x∈ω

‖ ∇φ(x) ‖2 . (4)
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3 Experiments

The University Hospital Frankfurt (UKF) provided the images used in this study
to evaluate the proposed algorithm, with clinical data removed and completely
anonymized. The UKF dataset comprises two parts: The first part offers 36
histopathological WSIs, where every two images are from the same tissue section,
respectively stained with H&E and IHC-CD8. The second part consists of 5
WSIs obtained from two staining experiments in which multiple staining was
performed on the tissue slides from one tissue in different orders. All WSIs are
provided as .mrxs files with a unified specification. Each of them contains images
at nine resolutions with a downsampling factor of 2, where the full resolution
exceeds 180k×90k pixels in size. We generated 18 and 5 image pairs respectively
from two parts of the UKF dataset for training and evaluation. The experiment
details are presented next.

3.1 Experimental Settings

Data Preprocessing. We removed large background areas in the raw data
by a boundary detection algorithm and then converted them into single-channel
grayscale images. The rigid alignment method derived from [20] was adopted to
handle the large misalignment of the image pairs.

Technical Details. The proposed algorithm was implemented by modifying
and extending the DeepHistReg framework [20]. Unsupervised methods were
trained on the resolution-level 4 images whose size varies from 3k to 7k pixels
in one dimension. The images are split into overlapping patches, followed by
extracting 224 × 224 patches of different magnification levels as the input to
the networks. We trained both presented networks with a batch size of 4 using
Nvidia Tesla P100 (PCIe). The Adam optimizer with an initial learning rate of
1e−3 and a decay rate of 0.95 was adopted to update the network parameters.
The constraint coefficient λ for the non-rigid network training was chosen to be
60.

Baseline Methods. We built two single-magnification networks for local affine
and non-rigid registration as the baseline models for comparison. The architec-
ture of both networks inherited the target magnification layer of the correspond-
ing multi-amplification network with some adaptations. The training settings
were the same as the proposed methods.

3.2 Evaluation Metrics

We quantified the registration accuracy by several similarity metrics since no
ground truth such as landmarks or segmentation maps are provided for the
UKF dataset. Except for the metric NCC used as the objective function during
network training, the quality of the deformation fields was also evaluated by the
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Mean-Squared-Error (MSE) [11] and the normalized Mutual-Information (NMI)
[14], which are respectively defined as

MSE(I1, I2) =
1
N

∑

x∈ω

[I1(x) − I2(x)]2 , (5)

NMI(I1, I2) =
2 · H(I1, I2)

H(I1) + H(I2)
, (6)

where H indicates Shannon’s entropy and H(I1, I2) represents the dependence
of variables (images) I1 and I2.

Table 1. Comparison among methods with single/multi-magnification registration net-
works, containing the average inference time and performance quantified by the similar-
ity metrics NCC, MSE, and NMI (arrows indicate the trend of the increased similarity):
The methods are named according to the adopted network architectures, where S/M
stands for networks with the single/multi-magnification structure, and A/N denotes
the local affine transformation and non-rigid deformation. For example, MASN refers
to combining a multi-magnification local affine network and a single-magnification non-
rigid network. Besides, an iterative approach is applied based on the presented method,
with the number of iterations denoted in parentheses.

Metric Initial SASN SAMN MASN MAMN MASN(3)

NCC ↑ 0.6828 0.7123 0.7060 0.7461 0.7443 0.7728

MSE ↓ 0.0403 0.0376 0.0382 0.0336 0.0338 0.0305

NMI ↑ 0.1670 0.1781 0.1756 0.1952 0.1954 0.2038

Time (sec) – 25.48 28.96 28.95 32.31 45.29

Fig. 3. Local subtractions of a high-resolution image pair registered by different meth-
ods: The non-overlapping regions appear as fluorescent green due to the nature of
stains. For visibility, the contrast/brightness of images has been increased by 50%.
(Color figure online)
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4 Results

Table 1 summarizes the overall performance of our proposed algorithm in com-
parison to approaches containing one or more baseline models. All of them take
images pre-aligned by rigid alignment as input.

As shown in Table 1, the proposed multi-magnification structures outper-
formed the ordinary single-magnification architecture for the local affine algo-
rithm with remarkable benefits, whereas yielding almost no improvement in the
performance of the non-rigid network. The increase in runtime due to the multi-
magnification structure is not significant compared to the base runtime (SASN).
According to the proposed algorithm, the difference in time will decrease expo-
nentially for smaller image pairs. By iterating the prediction on the previous
result by the same network, we obtained registration results with significantly
higher accuracy.

We upsampled the predicted deformation fields for generating the regis-
tered images at a higher resolution. By performing local subtraction between
the deformed source and target images, we evaluated the registration perfor-
mance of different methods at the cellular level, as illustrated in Fig. 3. It can
be observed that the local affine network improved by the multi-magnification
structure is crucial for the enhancement of the overall performance. The cell
nuclei can overlap completely in the best cases.

5 Discussion and Conclusion

In modern histopathology multiple staining techniques are used to detect specific
structures within biological tissues. Each technique highlights different charac-
teristics of the tissue and proper analysis needs to address the spatial distribution
of these characteristics. In this context, we developed two novel deep networks
with the multi-magnification structure for patch-based image registration, which
can learn peripheral information outside the patches as auxiliary information to
improve network performance. The presented method is of great importance for
biomedical image registration since studies for them can often be performed only
on smaller patches due to the large image size. Moreover, the network architec-
tures can be easily expanded with more magnification levels. Nevertheless, this
expansion makes little sense since too many field-of-views may instead negatively
affect the network performance, especially for cases with no apparent global mis-
alignment.

Our experiments compared the impact of single- and multi-magnification net-
works on the overall alignment performance by different network combinations.
The results revealed that the multi-magnification structure could significantly
improve the performance of the patch-based affine registration network. How-
ever, it yielded little success on the local non-rigid network. This might mainly
attribute to the transformation nature of these two registration methods. The
lack of neighboring information can aggravate the estimation error of deforma-
tion for the whole image patch region by the local affine approach, while this
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error occurs only within the edge region of the image patches in the non-rigid
method due to the dense prediction. Therefore, the enhancement of the non-rigid
method by the multi-magnification structure was much less evident than that
of the local affine approach. Besides, we introduced an iterative approach on
the method with the best performance, which further improved the registration
accuracy, with an acceptable growth of inference time. The proposed method
has the potential to be applicable for other medical image registration tasks.
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Abstract. In this paper, we propose an approach for realtime optical
flow estimation in ultrasound sequences of vein and arteries based on
knowledge distillation. Knowledge distillation is a technique to train a
faster, smaller model by learning from cues of larger models. Mobile
devices with limited resources could be key in providing effective point-
of-care healthcare and motivate the search of more lightweight solutions
in the deep learning based image analysis. For ultrasound video analysis,
motion correspondences of image contents (anatomies) have to be com-
puted for temporal context and for real time application, fast solutions
are required. We use a PWC-Net’s [1] optical flow estimation output to
create soft targets to train a PDD-Net [2] as lightweight optical flow esti-
mator. We analyse the students’ performance on the challenging task of
fast segmentation propagation of vein and arteries in ultrasound images.
Experiments show that even though we did not fine-tune the teachers
on this task, a model trained with soft targets outperformed a model
trained directly with labels and without a teacher.

Keywords: Knowledge distillation · Realtime video inference ·
Ultrasound images

1 Introduction

The analysis of objects in a sequence of images is a task that plenty of research
has been done for, recently mostly in the deep learning field [3]. To achieve a
coherent and accurate result over the different time points, it is important that
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A. Hering et al. (Eds.): WBIR 2022, LNCS 13386, pp. 134–143, 2022.
https://doi.org/10.1007/978-3-031-11203-4_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-11203-4_15&domain=pdf
http://orcid.org/0000-0002-3587-5590
http://orcid.org/0000-0002-2223-9253
http://orcid.org/0000-0002-9475-3593
http://orcid.org/0000-0002-7489-1972
https://doi.org/10.1007/978-3-031-11203-4_15


Real-time Optical Flow Estimation 135

the analysis of the current image considers the past. One way to represent this
temporal context is in the form of estimated optical flow. However, the classical
methodology for its’ calculation is an iterative approach [4] too slow for realtime
inference. Most recent image registration approaches based on deep learning
(e.g. [5]) are computationally too expensive to be executed on mobile devices in
the required time. Realtime estimation of optical flow of ultrasound sequences
would be advantageous in many practical point-of-care ultrasound (POCUS)
applications that are based on intelligent guidance through image analysis. The
aim of this work is to train a network, that learns from larger, pre-trained flow
estimation networks and is able to accurately propagate relevant information
(e.g. segmentations of important anatomies) in ultrasound. Ultrasound images
often exhibit ambiguous structure depiction and a network, that employs only
2D convolution without temporal context, is not able to perfectly interpret the
image with satisfying accuracy. So instead, utilising the motion of the images
can leverage temporal context without requiring access to the whole tempo-
ral sequence. A CNN can be trained to estimate the temporal context e.g. by
learning to propagate anatomical labels correctly between two images (which is
usually coined weakly-supervised registration [6]). Clinically, this is relevant e.g.
for the diagnosis of deep vein thrombosis (DVT), for which vessels in the leg
need to be labelled.

2 Related Work

2.1 Dynamic Ultrasound Analysis

The use of automated image analysis for ultrasound is constantly increasing both
in research and practical clinical translations [7]. The recent MICCAI challenge
CLUST [8] has studied the quality of image registration algorithms for tracking
ultrasound but without realtime constraints. A Siamese network for respiratory
motion estimation on ultrasound images has been proposed by Liu and colleagues
[9], which is capable of tracking landmarks through a video sequence.

A system for compression-based DVT examination in ultrasound (US) images
was proposed by Tanno and colleagues [10]. The system, named AutoDVT, uses
a dual-task network to help make predictions about the patient’s VTE status.
One of the tasks consists of classifying the compression status of a registered
vein as either closed or open. The network itself uses stacked consecutive frames
as input to create temporal consistency. The different task networks share the
majority of convolutional layers and only separate the two tasks in the last
convolutional layer, thus each task regulates the other during training.

To achieve higher temporal consistency and capture a more holistic view of
dynamic sequences, optical flow estimation between frames can be leveraged. To
ensure fast inference time, it is of importance that the optical flow prediction
takes as little time as possible, while still generating accurate estimations.
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2.2 Optical Flow Estimation

In recent research in deep learning and optical flow estimation numerous capa-
ble network solutions have been proposed, including Flownet [11], its evolution
Flownet2 [12], and PWC-Net [1]. Flownet uses CNN feature extractors on two
images, correlates these features over a discretised displacement search window
(originally 21 × 21 pixels with a stride of 4), and further processes these corre-
lations to predict a flow field. Flownet2 extends the original Flownet approach
by employing multiple different and fine-tuned versions of this architecture.

PWC-Net, which was proposed by Sun et al. [1], on the other hand, uses
pyramidal images with a combination of a cost-volume layer and a warping
layer to estimate the optical flow of the input images.

In the medical domain LapIRN [13] and PDD-Net [2] are two capable net-
works for estimating large deformations. PDD-Net utilizes deformable convo-
lution layers for feature extraction, which are then correlated. The correlation
layer is followed by a min convolution and mean-field inference to predict dense
displacement probabilities in volumes.

Some of these networks are larger, with up to 162 million parameters and up
to 0.6 s of inference time on an NVIDIA graphics card [11,12]. However, these
models are very accurate, which makes them valuable teachers in a student-
teacher setting. Other models, such as the PDD-Net, with less parameter counts
use little space and computation.

2.3 Knowledge Distillation

Student-teacher learning, also known as knowledge distillation (KD), was pro-
posed by Li et al. [14]. The method uses one (or more) large and accurately
trained neural network(s), also called teacher, and tries to teach the output
distribution to a smaller network, also called student, by minimizing the KL
divergence between the teacher’s output and the students’ prediction.

Yuan et al. proposed that not only accurate teachers can be used in a knowl-
edge distillation setting. In [15] they found that also insufficiently trained teach-
ers can increase the performance of the students, as they provide a representative
distribution of the classes in the classification task. Thus, the teachers not only
provide accurate information about the output but also provide regularized soft
targets.

In [16] Kim et al. compared the KL divergence as a loss function, which is
widely used in knowledge distillation, to a mean squared error loss and found,
that the mean squared error loss is superior to the KL divergence, especially,
when using a small tau, as the label noise is mitigated.

2.4 Contributions

We utilize the aforementioned knowledge distillation process [14] to train a small
and lightweight optical flow estimator network (PDD-Net) for ultrasound motion
estimation and vessel segmentation propagation in ultrasound images. We also
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compare this method to a label loss trained network to evaluate the usage of
the distilled knowledge and find an increase in Dice score, as well as a decrease
in Hausdorff distance (HD). As segmented medical reference data is scarce, this
approach could potentially help increase performances for ultrasound image pro-
cessing.

We aim at a short inference time of the optical flow to either create an
additional input for further image analysis networks or to use the optical flow
itself for segmentation propagation on mobile devices, such as tablets or phones.
This constrains size and throughput of the network, as computational power
on mobile devices differs greatly from stationary setups. Therefore, we use a
lightweight version of the aforementioned PDD-Net as student.

Fig. 1. Overview of the PDD-Network architecture for image registration, which com-
prises deformable convolutions with batch normalisation and ReLU (red), a correlation
layer (blue) and differentiable mean-field inference as regularisation (purple and green).
(Color figure online)

We use the PDD-Net [2], which achieved competitive results in the Learn2Reg
challenge [17], and was made available1 in a 2D version (Fig. 1). In this version
of the model, an average pooled (yellow) input image is processed by three
convolutional layers each followed by batch normalisation and ReLU (red). After
the first convolution, we adapt the 2D implementation by applying an Obelisk
layer [18], which is then followed by two more convolutional layers. The Obelisk
layer is a form of deformable convolution, which uses learnable weights and a
gridsampling operator, to increase the receptive field of the next convolutional
layer [18].
1 https://www.kaggle.com/mattiaspaul/learn2reg-tutorial.

https://www.kaggle.com/mattiaspaul/learn2reg-tutorial
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For a fixed and a moving image, the extracted features are correlated, akin
to the correlation used in Flownet-C [11] and then further processed with min
convolutions and mean-field inference [19] (gray box).

The whole model yields an inference time of around 2.7 ms on an Nvidia
RTX 2060 Ti GPU. When looking at the model (Fig. 1), we can see two feature
extractors, which share weights. By processing one fixed frame at time t and
keeping this frame as a fixed frame, we only need to process the moving frame
at point t + x of the video through the CNN. By reducing the convolutional
operations needed during video processing, the network’s inference time can be
reduced to 1.7 ms. The same optimization can be applied when using different
fixed images. In that case the extracted feature map of the moving frame (at
time t) can be re-purposed as feature map of fixed frame (at time t + x), when
a new moving frame is presented.

Fig. 2. Illustration of our concept for knowledge distillation for DL-based optical flow
estimation. The teacher (PWC-Net) was not trained on ultrasound sequences but can
provide a soft target for our student (PDD-Net) based on only a single reference frame
segmentation.

The PDD-Net is trained on a combination of soft and hard targets. The
hard target loss is calculated as the MSE between the one-hot encoded refer-
ence segmentation (“fixed reference” in Fig. 2), and the networks’ prediction.
The prediction is generated by using the predicted flow field to warp the refer-
ence segmentation from the moving frame towards the fixed frame. This warped
segmentation is then compared to the reference segmentation of the fixed frame.

We use the established optical flow estimator PWC-Net [1] as a teacher to
provide soft targets during training. This is done as shown in Fig. 2. To generate
the soft targets, the PWC-Net’s optical flow prediction is used to warp the ref-
erence segmentation of the moving frame towards the fixed frame. We calculate
the MSE loss between the one-hot encoded warped moving reference segmenta-
tions of teacher and student networks. The soft and hard target loss are then
summed up, where the soft target loss is scaled by 0.5.

Experimental Setup: We train two networks with different methods on the
same data. One network is trained solely on hard labels (labeled PDD), as
described above. The other network is trained with additional soft target influ-
ence (labeled PDDKD). The dataset used for training and evaluation was pro-
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Fig. 3. Exemplary image pair used in the fine tuning data set. Reference segmentations
are added for better visualization where the artery is shown in blue and the vein is
marked in red. (Color figure online)

vided by ThinkSono GmbH2. It contains video sequences of DVT examinations
that were annotated by experts. An overlay of these reference segmentations
can be seen in Fig. 3. We use 250 video IDs to create two datasets with which
we capture two distinct properties. The first dataset is created as a training
dataset and contains 1743 image pairs with a fixed frame distance of 6 frames
that were randomly sampled. Thus, capturing smaller and larger displacements
while also providing heterogenous image quality. The second dataset is created
as a fine-tuning dataset. This dataset is created to provide task specific data. For
every ID, we select one random frame in the first fifth of the video, or before the
onset of the vein compression (whatever came first). We then sample the coming
frames with a frame distance of 4 and create various image pairs with the same
fixed frame and different moving frames, resulting in 3285 image pairs. In this
dataset larger displacements and vein compressions are captured. The evalua-
tion task is to propagate a single reference segmentation of veins and arteries
through a video of unseen IDs of about 10 s of a DVT examination.

We proceed to train the PDD-Net adaptation on the training data set with
additional soft targets from the PWC-Net (Fig. 2) over 100 epochs with a learn-
ing rate of 0.002 and an Adam optimizer. We then trained the distilled network
on the fine-tuning data set for 200 epochs with a learning rate of 0.00025. For
comparison, we also train one version of the PDD-Net adaptation without addi-
tional soft targets in the same manner.

2 https://thinksono.com/.

https://thinksono.com/
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3 Results and Discussion

We evaluate both networks on 23 unseen videos containing approximately 1600
Frames overall. For each video, we selected one random frame in the first fifth
of the video, which we refer to as ft, for frame at time point t. Each following
frame ft+x is used as moving frame input. The estimated optic flow between ft
and ft+x is used to warp the reference segmentation from t to t + x, where it is
compared to reference segmentation at time pint t + x.

This procedure allows us to apply the mentioned runtime optimization
towards video processing. By passing the fixed frame once, keeping it in memory
for correlation, solely the moving frames need to be passed through the CNN for
feature extraction. The reduced inference time per image is about as fast as a
reference segmentation network, nnU-Net, which takes 1.6 ms on the same GPU
(Nvidia RTX 280Ti).

As mentioned by Reinke [20] there are common limitations when applying
only one metric to measure the performance of segmentation masks. Therefore,
we evaluate the two networks on Dice score and Hausdorff distance. The dice
score is used as a measurement of overlap between the reference and predicted
segmentation. It ranges from 0 to 1, where 1 is the best score, which we have
denoted by ↑. The HD is used as a measurement of furthest distance between
reference and predicted segmentation. We show the absolute values, where lower
is better, as denoted by ↓. The mean results over all IDs can be seen in Table 1.

Table 1. Mean Dice ↑ over the test IDs and Mean HD ↓ over the IDs. Comparison
between label loss and KD trained PDD-Nets

Score Registration Segmentation

PDD PDDKD nnU-Net

vein Dice % 46.9 ± 4.13 47.92 ± 4.15 45.93 ± 6.47

artery Dice % 44.48 ± 6.08 46.67 ± 6.28 66.80 ± 6.91

overall Dice % 45.69 ± 5.0 47.3 ± 5.09 56.36 ± 7.77

vein HD 25.28 ± 166.82 24.16 ± 159.5 23.71 ± 366.06

artery HD 28.3 ± 205.19 27.7 ± 205.54 26.88 ± 640.51

overall HD 26.79 ± 183.79 25.93 ± 181.26 25.33 ± 508.84

We found the distilled network to perform slightly better compared to the
label loss trained network over both metrics. When looking at the dice score
between the two networks, we found a 2% increase in accuracy over artery seg-
mentation and a 1% increase in vein segmentation. When looking at the HD,
we found a similar pattern. The KD trained network outperforms the label loss
trained network slightly. We argue that this slight increase is due to the different
conceptual representation learned by the distilled network, which would be in
line with current research [14,16,21]. The PWC-Net scored at 40.56 ± 3.74 in
overall dice and 26.51 ± 160.42 in overall HD on the evaluation videos.
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When compared to a 2D segmentation network (nnU-Net [22] Table 1), which
was trained on the same image IDs, as the optical flow estimator, we find that
the distilled network is performing slightly worse in HD, and worse in Dice score.
This result is somewhat expected, since the motion during longer sequences can
have significant deformations (compression of veins) and substantial drift. The
frame-by-frame segmentation is in principle translation invariant and was trained
with a large number of ground truth segmentation annotations. However, when
visually looking at estimated segmentations (and quantitatively the variance in
HD between the optical flow method and the nnU-Net), we can see that the
segmentation network has limited temporal consistency. This suggests that the
2D nnU-Net creates less smooth segmentations over a video, compared to the
optical flow method. In the future, we therefore plan to experiment with the
optical flow as additional input for a segmentation network. Using a deformation
field between two frames, instead of a stacked tensor of all frames, can reduce the
computational effort needed for processing, while at the same time containing
almost as much information as stacked consecutive frames.

Especially during compression of the vein, this additional information can
be leveraged. Figure 4 shows the estimated deformation field between the fixed
and the moving frame. The compression is clearly visible as and marked with a
black bounding box.

Fig. 4. Visualised deformation field between fixed and moving frame. Segmentation
was overlayed for better visibility. The bounding box shows where the compression of
the vein (pink) is located and in which direction the vein is compressed. (Color figure
online)

4 Conclusion

In this paper, we presented experiments on possible benefits of cross-domain
knowledge distillation (from computer vision to medical imaging) for training an
optical flow estimator. By using additional teacher-generated soft targets during
training, we were able to achieve a small increase in Dice score and a small
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decrease in Hausdorff distance. This shows that cross-domain KD can have a
beneficial effect applied in the training of an image registration network.

We were able to adjust our approach to video inference, such that it is capable
of running in realtime, with 1.7 ms per frame pair or more than 500 frames per
second. Estimating our approach to use approximately 0.14 GFlops per image,
we can calculate an upper limit of roughly 230 frames per second on modern
mobile GPUs (Qualcomm Adreno 660).

Performance of segmentation networks still exceeded segmentation via this
optical flow based registration of the labels. But we suggest an increase in the
segmentation networks’ accuracy is possible by combining optical flow informa-
tion with image features, to add temporal context to the segmentation formation.
This was already suggested in previous research in medical video segmentation
[23], where improved temporal coherence is reported when optical flow is incor-
porated. Therefore, we will further investigate the influence of optical flow on
vessel segmentation in ultrasound videos.

The results are part of a masters thesis and the code is made available via a
git repository3.
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Abstract. Certain MRI acquisitions, such as Sodium imaging, produce
data with very low signal-to-noise ratio (SNR). One approach to improve
SNR is to acquire several images, each of which takes may take more than
a minute, and then average these measurements. A consequence of such a
lengthy acquisition procedure is subject motion between each image. This
work investigates a solution for retrospective motion correction in this sce-
nario, where the high level of Rician noise renders standard registration
tools less effective. We employ a simple generative model for the data based
on tissue segmentation maps, and provide a differentiable approximation
of the Rician log-likelihood to fit the model to the observations. We find
that this approach substantially outperforms a Gaussian log-likelihood
baseline on synthetic data that has been corrupted by Rician noise of vary-
ing degrees. We also provide results of our approach on real Sodium MRI
data, and demonstrate that we can reduce the effects of substantial motion
compared to a general purpose registration tool.

Keywords: Motion correction · Rician distribution · Low SNR

1 Introduction

Subject motion is a common issue in long MRI acquisition protocols; in situations
where several images have been acquired, motion can be retrospectively corrected
using image registration. For brain MRI images with reasonable signal-to-noise-
ratio (SNR), general purpose linear image registration tools, e.g. [2,3,8,10,13],
have been shown to be highly effective. However, in low SNR MRI data, such as
acquired with Sodium MRI, traditional cost functions may become less effective.
One cause is the noise properties of the analysed data, which consists of the
magnitude of the complex signal components. The noise in such data is described
using a Rician distribution [6]. When the SNR of the acquired complex signal is
high, the resulting noise is approximately Gaussian. Conversely, when the SNR

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
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Fig. 1. Illustration of the generative model, which predicts noise free images, ŷ, param-
eterised by: T1 estimated tissue segmentation maps, G, multiplied by estimated tissue
intensities, x. These are transformed by a translation, t and rotation θ. The error
between the observations, y and predictions is described using a Rician likelihood,
which is used to drive the parameter estimation.

is low the Rician distribution is asymmetric and dissimilar from a Gaussian. This
distinction is particularly significant for registration approaches considering cost
functions derived from a Gaussian, e.g. sum-of-squared differences.

This paper introduces a linear motion correction model using a simple gener-
ative model of the data. This is inspired by the seminal “Unified Segmentation”
paper [1]. A diagram of our approach is given in Fig. 1. Our model produces
noise-free predictions, which are rigidly aligned to each of the observed images.
The novel contribution of this work lies in our approximation of the Rician log-
likelihood that enables gradient estimates through automatic differentiation [14].
This is in contrast to previous work using Rician likelihoods for motion correc-
tion [16], which required a gradient-free optimisation of the transformations.

We demonstrate how our approach can be used to remove substantial motion
from Sodium MRI data. Sodium is an emerging imaging modality, with several
potential biomedical applications [11,19]. However, it has poor SNR due to the
relatively low concentration and magnetic susceptibility of Sodium, as shown
in Fig. 1. Our results illustrate the effectiveness of this approach in removing
substantial motion from high noise situations in both real and synthetic datasets.

2 Background: The Rice Distribution

The noise in magnitude MR images is known to follow a Rice distribution [6]:

p(y|ŷ, σ) = Rice(y; ŷ, σ) =
y
σ2

exp
(−(y2 + ŷ2)

2σ2

)
I0

(
yŷ
σ2

)
(1)
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where I0 is a modified Bessel function of the first kind with order zero (described
in Sect. 3.2). Unlike the Gaussian, this distribution: is not symmetric with respect
to its first parameter, ŷ; does not fulfill any of the algebraic conjugacy properties
that enable derivation of closed-form parmeter updates; it also does not provide
an obvious cost function for directly comparing two images, as it requires a
parameterisation in terms of the clean signal, ŷ. Generative models can be used
to provide such a parameterisation [1].

3 Method

We consider a generative model for the image data based on 5 probabilistic tissue
segmentation maps, G, derived from a T1 image acquired in the same space. We
denote G as a matrix of size N ×5, where N corresponds to the number of voxels.
The intensity of any voxel can be predicted by matrix multiplication with x, a
vector containing the intensity for each tissue class. We consider a geometric
transformation associated with each observed image:

ŷi = P(T(Gx, ti,θi)) (2)

where T provides a rigid transformation of Gx, according to translation t and
rotation parameters given by θ. We also include a convolution, P, which corre-
sponds to the point-spread function of the acquisition sequence; this is estimated
a-priori from the sequence reconstruction method [18]. The predictions ŷi can
now be fit to the observed data yi using an appropriate likelihood function.

3.1 Priors

In this problem, we are considering the registration of noisy data. Accordingly,
the model requires the specification of prior knowledge to enable robust infer-
ence. We choose a physiologically based Gaussian prior over the concentration
of Sodium, measured in mM, for different tissue types:

p(x) = N ([40, 30, 140, 50, 50], [4, 4, 6, 10, 10]2) (3)

where the means are from [11] and the standard deviations are empirically
selected.

The translations have a Normal prior, with a standard deviation specified
in mm. The rotations, which are described through an axis-angle representation
(in Radians), also employ a Normal prior distribution:

p(ti) = N (0, 1.252)
p(θi) = N (0, 0.0252)
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3.2 A Stable Approximation of the Rician Log-Likelihood

Most of the Rician likelihood (Eq. 1) is amenable to efficient calculation in a
differentiable manner. However, I0, corresponds to a modified Bessel function of
the first kind with order zero [20], which is an infinite series:

I0(z) =
∞∑
k=0

( 14z2)k

(k!)2
(4)

The result can be approximated as a sum of the first Nk terms. However,
this necessitates a differentiable form for the factorial in the denominator. By
noting both that k! = Γ(k + 1), where Γ is the Gamma function, and that we
only require the log probability, we can write an approximation for log I0(z) as:

log I0(z) ≈ log-sum-exp(k(log(0.25) + 2 ∗ log(z)) − 2 ln Γ(k + 1)) (5)

where ln Γ refers to the log Gamma function. k is a vector containing values from
0 to Nk, which is summed over. log-sum-exp(z) is a numerically stable and con-
vex function [5] for calculating the logarithm of the sum of exponentiated terms,
log-sum-exp(z) = log(

∑
i exp(zi)). This implementation is empirically numeri-

cally stable, although inefficient in terms of memory as we require multiplying
each voxel by Nk values. We found that Nk = 50 provided sufficient precision.

3.3 Inference

We perform maximum-a-posteriori (MAP) inference on the model parameters
Θ = {x, t,θ, σ}, with the following cost function:

L = −
N∑
i

[log p(yi|x, ti,θi, σ) + log p(ti) + log p(θi)] + log p(x) (6)

Updates alternated between two groups of parameters, those that are shared
for all images Θ1 = {x, σ} and those that vary per image Θ2 = {t,θ}. The
updates for Θ1 were calculated using batches of 5 images at a time, and Θ2 were
updated per image. To account for the batching in updating Θ1, we perform two
update steps on these parameters for every step for Θ2. The Adam [9] optimiser
was used to optimise the model parameters, with a fixed learning rate of 2e−2

for Θ1 and 1e−3 for Θ2 with β1 = 0.0 and β2 = 0.9. We stopped the inference
after 300 rounds of iterations, at which point the model parameters appeared to
have converged. This took approximately 3.5 min for 16 images, or 4.5 min for
32 images on an NVIDIA Quadro RTX 6000 with 24 GB of RAM.

4 Experiments

4.1 Synthetic Data

We generate synthetic data by drawing samples from our generative model with
random tissue parameters, drawn from Eq. 3, with additional random voxelwise
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variability with standard deviations [4, 4, 6, 10, 10] mM. These synthetic images
were then transformed to simulate random motion, with translations sampled
from N (0, 5 mm2) and angles from N (0, 0.12). Each of these images was then
corrupted with Rician noise at various levels. We then tried to correct for the
simulated motion using our model with either a Gaussian or Rician likelihood.

Fig. 2. Synthetic data experiments where the ground truth translation (mean euclidean
distance) and rotation error (mean Frobenius norm of the difference of log matrices)
are given in the above plots for varying Rician noise level. The dashed line indicates the
average initial error. As can be seen, the error when using a Gaussian likelihood rises
very quickly, whereas the Rician likelihood is less affected by noise. In this example,
σ = 40 is roughly equivalent to the Sodium MRI data.

Figure 2 illustrates that using the correct likelihood model has a substantial
impact on registration performance, particularly in high noise scenarios.

4.2 Real Sodium MRI

23Na MR images were acquired using a dual-tuned, 2-channel (one channel for
sodium and one for proton) birdcage 23Na 1H coil developed by RAPID Biomed-
ical GmbH on a 3T Siemens Prisma scanner. Sodium images were acquired using
the FLORET spiral sequence [15] with parameters TR = 120 ms, TE = 0.2 ms,
FOV = 256 × 256 × 256 mm, flip angle = 80◦, 3 hubs at 22◦, 200 interleaves,
pulse duration= 0.5ms and dwell time = 0.01 ms. Each acquisition took 1 min
and 10 s, and was repeated either 16 or 32 times. The k-space data were trans-
ferred offline and image reconstruction was performed in Matlab using 3D re-
gridding [15] with density compensation [22]. The data was reconstructed with
an isotropic resolution of 4 mm3 and an image size of 64×64×64. Examples slices
are shown in Fig. 1. A T1-weighted image (2 mm3 isotropic) was also acquired
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using the same coil prior to the Sodium data. This was used for preparing tissue
segmentation maps using SPM12.

To enable quantification, a set of 4 Sodium phantoms with known concen-
trations (30, 50, 70, 120 mM) were attached to the head. We use these to map
the tissue specific priors, defined in Eq. 3, to the correct intensity range in each
image. This mapping is inferred through linear regression of the median signal
for each of these phantoms from the true concentrations.

Fig. 3. Bar chart illustrating the mean and std. dev. voxelwise σ, estimated using
scipy.stats.Rice, over the motion corrected images for 4 subjects either sleeping (s) or
awake (a). These numbers are normalised by the estimated σ in the background.

Using this acquisition protocol, we collected data for 4 subjects either when
they are asleep (32 Sodium images) or awake (16 images). The data acquired
when sleeping is much more likely to contain motion artefacts due to both the
length of the scan and unintentional movements during sleep. Accordingly, we
use a more permissive transformation prior (with double the standard deviation
for rotation and translations) for these examples.

We experiment with motion correcting the sodium magnitude images using
either our proposed approach or “mcflirt” [8], using a cost function of normalized
correlation and co-registering to the average image. Nearest neighbour interpo-
lation was used as the final step for both approaches for comparable results
without introducing additional smoothness or distortion of noise characteristics.

Validation of the proposed model is complicated by the low SNR exhibited
in the motion corrected and averaged images, see Fig. 4 for some examples.
Desirable properties of aligned images include: similar values at each voxel over
images, and sharp boundaries between regions in the average image. We can
measure the first of these by fitting a Rice distribution to each voxel, see Fig. 3.
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Fig. 4. Example average images calculated by averaging 32 Sodium MRI acquisition.
Norm σ refers to the mean voxelwise Rice σ, normalised by an estimate of σ in the
image background. In this example, where a lot of motion was detected, our approach
leads to a visibly sharper average image.

Fig. 5. Boxplot illustrating the absolute gradient of the average image in voxels on the
boundary of CSF. Larger values indicate the presence of stronger edges.

We observe that for sleeping acquisitions that are corrupted with visible motion,
particularly subject 3 and 4, our approach reduces the mean voxelwise noise
compared to other methods. However, in some awake acquisitions, the use of
either motion correction approach increases σ; we hypothesise this may be due
to interpolation artefacts when correcting sub-voxel motion.

Considering the sharpness of the average image, we can visually observe
sharper looking average images in examples with large motion, particularly in
subject 3 shown in Fig. 4, where we estimated a mean translation of 7.75 mm
(6.49 mm std. dev.) and rotation norm of 0.145 (0.12 std. dev.). To quantify
the image sharpness, we examine the distribution of absolute gradient values in
voxels that lie on the boundary between CSF and anything else, which should
have high contrast. We observe that our motion correction induces stronger edges
in most of the acquisitions of sleeping participants.
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5 Discussion

The presented approach uses a very simple generative model for the image data,
which prevents it overfitting to the high level of noise in the data. However, it also
prevents it from making use of strong distinctive features such as the eyes, which
contain a high level of Sodium, or the phantoms that are attached to the head.
Future work will consider using more complex statistical models and techniques,
such as variational inference [7], to build a voxelwise generative model. Amortised
inference strategies could also be investigated to improve efficiency [4].

In our experimentation, we observed that in some cases where low motion
was observed, our algorithm overestimated the level of movement. We found that
this was removed by introducing variable transformation permissiveness based
on our prior beliefs on the level of motion. Future work will consider methods
for inferring these parameters, and using auto-regressive priors on motion [21].

This work has not investigated preprocessing the data using denoising meth-
ods, e.g. [12]; although such approaches may produce cleaner representations for
aligning the data, they also manipulate the underlying image statistics being
modelled, which may lead to biased results. We also have not compared against
the use of robust cost functions [17], although these are generally more suited
to heavy tailed rather than asymmetric noise distributions as we have here.

We have published our code on GitHub1. The data are not currently available
for distribution as the initial analysis of a wider dataset is ongoing.

6 Conclusions

This paper has introduced an algorithm for data modelling and motion correction
of low SNR MRI data using a differentiable approximation of the Rician log-
likelihood. Our synthetic experiments illustrated the importance of choosing the
right cost function for generative models for motion correction, as the Gaussian
likelihood performs very poorly where the errors take a different form. On real
Sodium MRI data, our results provide support for the use of our method in
resolving substantial motion artefacts and creating sharper average images.

Acknowledgments. We acknowledge funding from the University of Sussex used in
the data acquisition. We thank Guillaume Madelin for providing the Sodium MRI
sequence.

References

1. Ashburner, J., Friston, K.J.: Unified segmentation. Neuroimage 26(3), 839–851
(2005)

2. Ashburner, J., Neelin, P., Collins, D., Evans, A., Friston, K.: Incorporating prior
knowledge into image registration. Neuroimage 6(4), 344–352 (1997)

1 https://github.com/ivorsimpson/sodium-mri-inference.

https://github.com/ivorsimpson/sodium-mri-inference


Motion Correction Using an Approximate Rician Log-Likelihood 155

3. Avants, B.B., Tustison, N., Song, G., et al.: Advanced normalization tools (ants).
Insight j 2(365), 1–35 (2009)

4. Balakrishnan, G., Zhao, A., Sabuncu, M.R., Guttag, J., Dalca, A.V.: VoxelMorph:
a learning framework for deformable medical image registration. IEEE Trans. Med.
Imaging 38(8), 1788–1800 (2019)

5. Boyd, S., Boyd, S.P., Vandenberghe, L.: Convex Optimization. Cambridge Univer-
sity Press, Cambridge (2004)

6. Gudbjartsson, H., Patz, S.: The Rician distribution of noisy MRI data. Magn.
Reson. Med. 34(6), 910–914 (1995)

7. Hoffman, M.D., Blei, D.M., Wang, C., Paisley, J.: Stochastic variational infer-
ence. J. Mach. Learn. Res. 14(40), 1303–1347 (2013). https://jmlr.org/papers/
v14/hoffman13a.bib

8. Jenkinson, M., Bannister, P., Brady, M., Smith, S.: Improved optimization for
the robust and accurate linear registration and motion correction of brain images.
Neuroimage 17(2), 825–841 (2002)

9. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint
arXiv:1412.6980 (2014)

10. Klein, S., Staring, M., Murphy, K., Viergever, M.A., Pluim, J.P.: Elastix: a toolbox
for intensity-based medical image registration. IEEE Trans. Med. Imaging 29(1),
196–205 (2009)

11. Madelin, G., Regatte, R.R.: Biomedical applications of sodium MRI in vivo. J.
Magn. Reson. Imaging 38(3), 511–529 (2013)

12. Manjón, J.V., Carbonell-Caballero, J., Lull, J.J., Garćıa-Mart́ı, G., Mart́ı-Bonmat́ı,
L., Robles, M.: MRI denoising using non-local means. Med. Image Anal. 12(4),
514–523 (2008)

13. Ourselin, S., Roche, A., Subsol, G., Pennec, X., Ayache, N.: Reconstructing a
3D structure from serial histological sections. Image Vis. Comput. 19(1–2), 25–31
(2001)

14. Paszke, A., et al.: Automatic differentiation in PyTorch (2017)
15. Pipe, J.G., Zwart, N.R., Aboussouan, E.A., Robison, R.K., Devaraj, A., John-

son, K.O.: A new design and rationale for 3D orthogonally oversampled k-space
trajectories. Magn. Reson. Med. 66(5), 1303–1311 (2011)

16. Ramos-Llordén, G., Arnold, J., Van Steenkiste, G., Van Audekerke, J., Verhoye,
M., Sijbers, J.: Simultaneous motion correction and t1 estimation in quantitative
t1 mapping: an ml restoration approach. In: 2015 IEEE International Conference
on Image Processing (ICIP), pp. 3160–3164. IEEE (2015)

17. Reuter, M., Rosas, H.D., Fischl, B.: Highly accurate inverse consistent registration:
a robust approach. Neuroimage 53(4), 1181–1196 (2010)

18. Riemer, F., Solanky, B.S., Stehning, C., Clemence, M., Wheeler-Kingshott, C.A.,
Golay, X.: Sodium (23Na) ultra-short echo time imaging in the human brain using
a 3D-cones trajectory. Magn. Reson. Mater. Phys., Biol. Med. 27(1), 35–46 (2014)

19. Rose, A.M., Valdes, R., Jr.: Understanding the sodium pump and its relevance to
disease. Clin. Chem. 40(9), 1674–1685 (1994)

20. Wolfram Mathworld: Modified Bessel function of the first kind. https://mathworld.
wolfram.com/ModifiedBesselFunctionoftheFirstKind.html

21. Woolrich, M.W., Jenkinson, M., Brady, J.M., Smith, S.M.: Fully Bayesian spatio-
temporal modeling of fMRI data. IEEE Trans. Med. Imaging 23(2), 213–231 (2004)

22. Zwart, N.R., Johnson, K.O., Pipe, J.G.: Efficient sample density estimation by
combining gridding and an optimized kernel. Magn. Reson. Med. 67(3), 701–710
(2012)

https://jmlr.org/papers/v14/hoffman13a.bib
https://jmlr.org/papers/v14/hoffman13a.bib
http://arxiv.org/abs/1412.6980
https://mathworld.wolfram.com/ModifiedBesselFunctionoftheFirstKind.html
https://mathworld.wolfram.com/ModifiedBesselFunctionoftheFirstKind.html


Cross-Sim-NGF: FFT-Based Global Rigid
Multimodal Alignment of Image Volumes

Using Normalized Gradient Fields
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Abstract. Multimodal image alignment involves finding spatial corre-
spondences between volumes varying in appearance and structure. Auto-
mated alignment methods are often based on local optimization that can
be highly sensitive to initialization. We propose a novel efficient algo-
rithm for computing similarity of normalized gradient fields (NGF) in
the frequency domain, which we globally optimize to achieve rigid mul-
timodal 3D image alignment. We validate the method experimentally
on a dataset comprised of 20 brain volumes acquired in four modalities
(T1w, Flair, CT, [18F] FDG PET), synthetically displaced with known
transformations. The proposed method exhibits excellent performance
on all six possible modality combinations and outperforms the four con-
sidered reference methods by a large margin. An important advantage
of the method is its speed; global rigid alignment of 3.4 Mvoxel volumes
requires approximately 40 s of computation, and the proposed algorithm
outperforms a direct algorithm for the same task by more than three
orders of magnitude. Open-source code is provided.

Keywords: Image registration · Global · Exhaustive search · NGF ·
FFT · Matching · GPU implementation

1 Introduction

Multimodal image alignment (also known as registration) involves finding cor-
respondences between images with varying degrees of difference of appearance
and structure [18], often applied with the goal of combining the complementary
information of each modality via image fusion. Alignment of large displacements
is particularly challenging since correspondences to be inferred are far apart and
presence of multiple local optima becomes increasingly problematic as the search
space grows, thereby often requiring global contextual and spatial information.

A large number of methods exist for multimodal alignment [14], including
local optimization methods based on mutual information (MI) [8,17] or nor-
malized gradient fields (NGF) [3,13], and representation extraction techniques
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(a) Illustration of the global image volume alignment method.
(b) The modalities in-
cluded in this study.

Fig. 1. Main steps of one level of the multi-level rigid alignment method (a), and
examples of the modalities considered in the evaluation (b) (images from [9]). (a) Two
image volumes of modalities A (here [18F] FDG PET), and B (T1 weighted MR), are
used as input. For a set of 3D rotations θ, the similarity measure sANGF between the
NGF of A and the NGF of B (rotated), (here shown as RGB images where each color
channel represents one component of the 3D vector field n1(·; A), n2(·; A), n3(·; A)) is
computed for all 3D displacements. The rigid alignment (θ̂, χ̂) is found by locating the
maximum sANGF.

based on local self-similarities [4] or Deep Feature Learning [5,12]. Most of the
(intensity-based) methods are based on some form of local optimization, which
usually require a good initial guess to work well. However, several global align-
ment methods do exist, including [1,6] as well as a recently proposed method
based on the cross-mutual information function (CMIF) [10].

We propose a new global alignment method based on NGF that is fast and
exhibits excellent performance on a rigid multimodal 3D medical image align-
ment task. Our evaluation on 6 pairs of modality combinations shows that it
outperforms well known methods which rely on local optimization of MI [8,17]
and NGF [3] as well as the recently proposed approach based on global opti-
mization of CMIF [10]. Figure 1 illustrates the general idea of the method.

A fast PyTorch-based implementation of the method is shared as open-source
at http://github.com/MIDA-group/cross sim ngf.

2 Background

The (regularized) normalized gradient field [3], for image A at point x, is

n(x;A) =
∇A(x)√

‖∇A(x)‖22 + ε2
, (1)

where ε is a small constant to reduce the impact of gradients with very small mag-
nitude and avoid division by zero. In this work we use ε = 10−5 for A(x) ∈ [0, 1],
selected empirically; higher values yielded more failed alignments and lower val-
ues mostly made the measure more noisy.

https://github.com/MIDA-group/cross_sim_ngf
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The main assumption of NGF-based alignment is that parts of images
(acquired by different modalities) are in correspondence when the directions
of their intensity changes are parallel or anti-parallel. A local similarity of NGF
(SNGF) based on the squared dot-product of the elements of the NGF is defined
as

sNGF(x;A,B) = 〈n(x;A),n(x;B)〉2. (2)

Orientation correlation (OC) and squared orientation correlation (SOC) offer
an efficient way of computing SNGF of 2D images for all discrete displacements
[1]. In 2D, the vectors n(·; ·) are represented as complex numbers. A fast algo-
rithm utilizing log-polar Fourier transform for OC-based alignment w.r.t.rotation
and scaling is proposed in [16]. A computationally efficient extension to 3D [2]
required a modification of the similarity measure; the authors proposed to,
instead of (2), use its unsquared version:

sUS-NGF(x;A,B) = 〈n(x;A),n(x;B)〉. (3)

By observing three separable components of the (unsquared) dot-product in (3),
the authors [2] formulated an algorithm for efficiently computing the measure for
all discrete displacements using cross-correlation in the frequency domain. None
of the existing work, however, describes a method for computing similarities of
NGF using the squared measure (2) efficiently in the frequency domain for 3D
volumes, a gap which we aim to fill with this work.

The ability to use the squared measure rather than the unsquared measure
is beneficial for multimodal image alignment [1]. Equation (3), similarly to (the
unsquared) OC [1], exhibits useful properties such as invariance to changes of
contrast and absolute intensity levels, which are suitable for monomodal reg-
istration tasks. However, multimodal scenarios are often characterized by the
appearance of parts of a sample that are dark in one modality and bright in
another; in such cases, aligned samples actually minimize sUS-NGF.

3 Method

Here we define a similarity measure between NGF based on (2), a cross-similarity
(c.f.cross-correlation) formulation of the measure, and propose an algorithm for
computing it efficiently in the frequency domain for all 3D discrete displacements.

In [3], the point-wise contributions of sNGF (2) are aggregated by summation.
A downside of this choice is that it imposes a strong bias towards full overlap
of the images which can be especially problematic for global optimization. We
instead formulate a scaled similarity measure that is applied to selected regions
of the images A : XA→R and B : XB→R, defined by indicator functions (masks)
MA : XA→{0, 1} and MB : XB→{0, 1}, ignoring the parts of the finite rectangular
domains where either MA or MB are zero-valued. The average similarity of NGF
is

sANGF(A,B;MA,MB) =
1∑

x MA(x)MB(x)

∑
x

MA(x)MB(x)sNGF(x;A,B) .

(4)
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Based on sANGF, we define the Cross Similarity of NGF

CSNGF(χ;A, B, MA, MB) =
1

N(χ)

∑

x

MA(x)MB(x + χ)sNGF(x;A(x), B(x + χ)), (5)

where χ∈S is a discrete translation from the set S representing all the considered
discrete translations and N(χ) is the number of overlapping voxels (where MA

and MB intersect) as a function of χ. N(χ) can be computed as the cross-
correlation between the mask images N(χ) = (MA ⋆ MB)(χ). An analogous
approach is taken in [10] to compute CMIF. Masks are essential for computation
of CSNGF, for any choice of S which results in a partial overlap of the images.
Figure 1 illustrates CSNGF as a part of a rigid 3D alignment method.

A direct method for computing CSNGF for all χ∈S involves looping over each
χ, and compute and aggregate sNGF for all overlapping voxels. If |S| = O(|XA|),
then the run-time complexity of the direct method is O(|XA||XB |) which for
equisized images A and B gives a quadratic run-time complexity in the size of
the images, which is not feasible for volumes of realistic sizes.

We propose a more efficient algorithm for computing CSNGF for all χ ∈S in
3D. By reformulating (2), and expanding the squared dot-product,

sNGF(x;A, B) =

3∑

i=1

(
ni(x;A)2ni(x;B)2 + 2

3∑

j=i+1

ni(x;A)nj(x;A)ni(x;B)nj(x;B)
)
, (6)

we express it as 6 separable parts comprising 3 squared components (i∈{1, 2, 3}),
as well as products of 3 pairs of components ((i, j) ∈ {(1, 2), (1, 3), (2, 3)}), of
the NGF vector fields (see Fig. 1a), which can be computed independently for
all χ using cross-correlation. Let nM

i denote a modified NGF scaled by the
associated mask, nM

i (x ;A) = MA(x)ni(x;A). The required cross-correlations
((nM

i (· ;A)2) ⋆ (nM
i (· ;B)2)) and ((nM

i (· ;A)nM
j (· ;A)) ⋆ (nM

i (· ;B)nM
j (· ;B)))

are efficiently computed in the frequency domain; (nM
i (· ;A)2 ⋆ nM

i (· ;B)2) =
F −1

(
F (nM

i (· ;A)2) ⊙ F (nM
i (· ;B)2)

)
, where F (·) denotes the Fourier transform,

z denotes complex conjugation and ⊙ denotes element-wise multiplication. For
efficiency, the 6 separable parts are aggregated in the Fourier domain. Comput-
ing CSNGF involves 14 real-valued FFTs (6 per image plus 1 mask per image)
and 2 inverse FFTs. Generalization to nD is straightforward.

3.1 Method for Global 3D Rigid Alignment

The fast algorithm for computing CSNGF for all χ ∈ S provides direct means of
global optimization of sANGF w.r.t.axis-aligned shifts. To reach global optimiza-
tion w.r.t.rigid transformations, we adopt a hybrid approach where the space
of 3D rotations θ = (θx, θy, θz) (represented as Euler angles) is explored via a
multi-stage combination of Gaussian pyramids, random search, and global opti-
mization of sANGF. One stage of this coarse-to-fine method is illustrated in Fig. 1.
This multi-stage approach facilitates global search at the lowest considered res-
olution, followed by more local search to refine the alignment.
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Initially, a Gaussian resolution pyramid with m levels is constructed through
the application of Gaussian blur and downsampling. For each level k ∈ {1 . . . m},
a random search is performed in a coarse-to-fine sequence, by sampling angles θ
either (a) as random rotations from the set of all possible rotations, for the first
level (k = 1), or (b) as rotations close to one of the pk−1 best solutions of the
previous level, for levels k∈{2, . . . , m}. An angle “close to” is realized by perturb-
ing the previous solution by a change in rotation around axes (x, y, z), sampled
from U(−uk−1, uk−1) for each axis. For each θ, the corresponding transformation
Tθ is applied to the floating image Bθ = B ○ Tθ using trilinear interpolation
and its mask MBθ

= MB ○ Tθ using nearest neighbor interpolation. n(· ;Bθ ) is
computed, followed by computation of arg maxχCSNGF(χ;A,Bθ ,MA,MBθ

) for
all χ ∈ S, where S is the set of displacements satisfying a user-selected amount
of minimum overlap γ. A suitable zero padding scheme is used to enable partial
overlaps (following [10]). For k > 1, the pk−1 best solutions of the previous level
are also evaluated unmodified to not risk discarding good solutions. For k = m,
the best rotation and displacement are taken as the final rigid transformation.

The method is parameterized by blur-levels σ = (σ1, . . . , σm), downsampling
factors d = (d1, . . . dm), largest allowed steps u = (u1, . . . um−1), number of rota-
tions a = (a1, . . . am), and number of kept best solutions p = (p1, . . . , pm−1). For
all related experiments, d = (4, 2, 2, 1), a = (5000, 3000, 300, 0), u = (10, 3, 0), and
p = (20, 3, 1). We use γ = 0.5 everywhere in this study.

4 Performance Analysis

The empirical evaluation of the proposed method is based on the CERMEP-
IDB-MRXFDG dataset [9], available upon request from the authors. The dataset
consists of images of brains of 33 subjects acquired by 4 different modalities: T1
weighted MR, Flair MRI, Computed Tomography (CT), [18F] FDG PET, all
mapped to the standard MNI space (see Fig. 1b), thus providing ground-truth
for image alignment method evaluation, and a possibility to consider 6 different
combinations of modalities, enabling evaluation of the generality of the methods.

4.1 Similarity Landscape of the Average SNGF

First, we perform an empirical analysis of how (4) is affected by spatial transfor-
mations of the observed images. The aim is to provide evidence of the relevance
of global optimization for multimodal image alignment. We consider two images
acquired with the modalities FLAIR and PET and study the similarity land-
scape as the PET volume is rotated around a single axis of rotation; the result is
shown in Fig. 2. We observe that the similarity landscape exhibits characteristics
that impede local methods without a good initial guess for all parameters.

4.2 Multimodal Brain Image Volume Alignment

We compare the proposed method with two global and two local alignment
methods on the task of recovering rigid transformations of brain image volumes.
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(a) (b)

Fig. 2. Similarity landscape of sANGF for a pair of FLAIR and PET images of a brain
(blur: σ = 5), w.r.t.the rotation angle θy. Two scenarios are presented: (a) with no
additional transformation, i.e., all transformation parameters other than θy have their
correct values, and (b) when the FLAIR image has been rotated by 5○ around a random
axis (other than y) and translated by 20 vx in a randomly direction. The vertical dashed
lines mark the sought angle. We observe that, (a) even without displacement, the
convergence region of the sought angle has a limited size, with local maxima near
the global maximum, and that (b) displacements along multiple dimensions make the
search using local approaches further challenging; here the sought angle (dashed line)
is between local optima.

For each of the twelve (ordered) pairs of modalities (six unordered modality
combinations) included in the CERMEP-IDB-MRXFDG dataset, and for each
of the first 20 subjects (the last 13 used for parameter tuning), we randomly
(uniformly) sample a 3D rotation θ, and an axis-aligned shift χi ∈ [−30 vx,+30 vx]
for each axis i. These transformations are applied, using inverse mapping and
bicubic interpolation, to the first image volume of each pair. The transformed
image is taken as reference image and the untransformed image as floating image
in the alignment task. Finally, a block of size 151 × 151 × 151 vx (c.f.original size
207 × 243 × 226) at the center of the volume is extracted, retaining most of
the content of interest, while omitting most of the background and avoiding
padding introduced by inverse mapping outside the image domain. This setup
enables evaluation of the accuracy of the proposed method w.r.t.alignment of
multimodal 3D images by recovering these known transformations. Example
slices of pairs from the selected modality combination are shown in Fig. 3.

With the aim to evaluate the benefit of the proposed algorithm, based on
the original similarity of NGF (2), compared to the one proposed in [2], we let
USNGF refer to an alignment method similar to CSNGF, but with sNGF in
(5) replaced by sUS-NGF. We evaluate both USNGF and “USNGF-”, where the
latter denotes USNGF but with an intensity-inverted floating image, to observe
the sensitivity of USNGF to the sign of the gradients [1]. We also include the
recently proposed CMIF-based global alignment method [10], which has exhib-
ited excellent performance and outperformed several recent Deep Learning meth-
ods (including [12]) on multiple biomedical datasets. The selected global opti-
mization methods are implemented in Python/PyTorch [11] with CUDA/GPU-
acceleration.
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(a) Ref1: PET (b) Ref2: T1 (c) Ref3: Flair (d) Ref4: CT

(e) Flo1: T1 (f) Flo2: Flair (g) Flo3: CT (h) Flo4: PET

(i) GT1: T1 (j) GT2: Flair (k) GT3: CT (l) GT4: PET

Fig. 3. Sample slices of 3D image pairs from the evaluation dataset generated from the
CERMEP-IDB-MRXFDG dataset [9]. (a-d) the reference (transformed) images and
(e-h) the floating images. Image (e) is to be registered to (a); (f) to (b), (g) to (c) and
(h) to (d). The bottom row shows the ground-truth (GT) of each floating (Flo) image
aligned to the corresponding reference (Ref) image.

We also compare with local optimization-based methods using MI and NGF
as objective functions, relying on open-source implementations Elastix [8] and
AIRLab [15] respectively.

We use the mean Euclidean distance between the corresponding corner points
of the extracted block before and after the performed (recovered) alignment as
a displacement measure, denoted dE . We consider an alignment successful if
dE < 5 vx, which is approximately 2% of the length of the diagonal of the blocks.

For CMIF we use k = 16 (for the k-means clustering), and
σ = (3.0, 1.5, 1.0, 0.0). For NGF, USNGF (and USNGF-), we use σ =

(5.0, 3.0, 2.0, 1.5). For local optimization MI (LO-MI) [8,17], we use 6 pyramid
levels, the Adaptive Stochastic Gradient Descent optimizer [7], 4096 maximum
iterations for each level. For local optimization NGF (LO-NGF) [3], we use 5
pyramid levels, ADAM optimizer, iteration counts according to the schedule
(4096, 4096, 1024, 100, 50), with downsampling factors (16, 8, 4, 2, 1) and Gaus-
sian smoothing parameters (15.0, 9.0, 5.0, 3.0, 1.0), with learning-rate 0.01.
Trilinear interpolation is used.
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Results. The results of the evaluation of the 6 considered methods on the mul-
timodal brain image dataset are presented in Table 1. The proposed method
provides overall excellent performance, and is the best choice for all observed
modality combinations. Most of the competitors show generally poor perfor-
mance, completely failing on one or more modality combinations. Near-successes
are also of interest, since those solutions may be refined with a local optimization
method; therefore, we plot the distribution up to the threshold dE <20 as Fig. 4.

Table 1. Image alignment performance presented in terms of success-rate, where the
threshold of success is set to 5 vx. The modality names are abbreviated in the headings
(T: T1, F: Flair, C: CT, P: [18F] FDG PET).

Method Modalities

T/F T/C T/P F/C F/P C/P

LO-MI 0.05 0.025 0.075 0.025 0.1 0.075

LO-NGF 0.025 0.00 0.00 0.00 0.00 0.00

CMIF 0.675 0.30 0.325 0.80 0.85 0.525

USNGF 0.225 0.00 0.00 0.00 0.925 0.10

USNGF- 0.00 0.275 0.00 0.00 0.00 0.00

CSNGF 1.00 0.95 0.925 0.90 0.925 0.95

Fig. 4. Success-rate of each considered method as a function of the acceptable displace-
ment error t (fraction of the 240 alignments where dE < t); the results for all modality
combinations are aggregated. Up and to the left is better.

4.3 Time Analysis

We compare the run-times of the global rigid registration methods, as well as the
run-times of the novel Cross-Sim-NGF algorithm with a direct (not FFT-based)
approach. The reported results are obtained on a Nvidia GeForce RTX 3090.

Both the FFT-based algorithm and the direct method are implemented in
Python/PyTorch using GPU-acceleration; the direct method consists of a loop
over all axis-aligned shifts χ ∈ S, and computation of the squared dot-products.
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The average run-times of the methods CMIF, USNGF, and CSNGF are 569 s,
33 s, and 41 s, respectively. Comparison of the run-times of the FFT-based algo-
rithm and the direct method, as a function of image size, is presented in Table 2.
We observe that for size 128, the here proposed algorithm is approximately 6275
times (more than three orders of magnitude) faster.

Table 2. Run-time (s) comparison of FFT-based CSNGF and a direct algorithm for
computing CSNGF, for all χ ∈ S where the overlap is 50% or higher, on cube image
volumes of increasing size (expressed as side-length).

Method Size

8 16 32 64 128

Direct algorithm 0.129 0.557 3.537 27.07 502.4

FFT-based alg. 0.002 0.002 0.002 0.008 0.088

5 Conclusion

We propose a novel NGF-based method for global rigid 3D multimodal align-
ment, which extends a well-performing method for 2D image alignment, outper-
forming a previous extension that relies on an unsquared version of the simi-
larity measure. We confirm both its great performance and its high efficiency.
Through the comparison with CMIF-based alignment [10], the method is indi-
rectly compared with several approaches based on deep learning while leaving a
more comprehensive comparative study as future work. The method does not use
any training (data), which is a large advantage for (bio)medical applications [5].
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Abstract. Registering mouse brain microscopy images to a reference
atlas is crucial to determine the locations of anatomical structures in the
brain, which is an essential step for understanding the function of brain
circuits. Most existing registration pipelines assume the identity of the
reference plate – to which the image slice is to be registered – is known
beforehand. This might not always be the case due to three main chal-
lenges in microscopy image data: missing image regions (partial data),
different cutting angles compared to the atlas plates and a large number
of high-resolution images to be identified. Manual identification of refer-
ence plates as an initial step requires highly experienced personnel and
can be biased, tedious and resource intensive. On the other hand, regis-
tering images to all atlas plates can be slow, limiting the application of
automated registration methods when dealing with high-resolution image
data. This work proposes to perform the image identification by learning
a low-dimensional space that captures the similarity between microscopy
images and the reference atlas plates. We employ Convolutional Neural
Networks (CNNs), in the Siamese network configuration, to first obtain
low-dimensional embeddings of microscopy image data and atlas plates.
These embeddings are contrasted with positive and negative examples
in order to learn a semantically meaningful space that can be used for
identifying corresponding 2D atlas plates. At inference, atlas plates that
are closest to the microscopy image data in the learned embedding space
are presented as candidates for registration. Our method achieved TOP-
3 and TOP-5 accuracy of 83.3% and 100%, respectively, compared to
the SimpleElastix-based baseline which obtained 25% in both the Top-
3 and Top-5 accuracy (Source code is available at https://github.com/
Justinas256/2d-mouse-brain-identification).
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1 Introduction

Determining the location of anatomical structures in a mouse brain is an essential
step for analyzing and understanding the architecture and function of brain
circuits, and of the overall whole-brain activity [4]. Structures of interest can be
located using standardized anatomical reference atlases, usually taking a two-
step approach:

1. Identification: The input brain slice has to be identified, i.e., the corre-
sponding 2D atlas plate has to be found.
2. Registration: The identified slice is registered to the corresponding atlas
plate. Anatomical structures are determined based on the registered anno-
tated plate.

Fig. 1. a) Two typical high-resolution microscopy images showing the cross-sectional
view of a mouse spinal cord in pseudo-color. The size of the input images in this work
varied between 17408× 10240 and 25600× 20480 pixels. Notice the artefacts due to low
contrast, tiling and missing regions, which make them challenging to process. b) Input
images after gray scale conversion c) Pre-processed images with histogram equalization

In most cases, the acquired microscopy images of brain slices often suffer
from artefacts due to missing tissue regions, irregular staining, titling errors, air
bubbles and tissue wrinkles [15], as shown in Fig. 1. This is further aggravated
due to additional variations in the images depending on the experimental proce-
dures, instrumentation noise, etc. This makes it difficult to identify and register
mouse brain images. For these reasons, practitioners usually resort to manually
comparing image slices to 2D atlas plates which can be very time-consuming.

Compared to the registration of mouse brain images, the first part of identifi-
cation has received far less attention from the brain imaging community. At the
outset, wrong identification of brain slices could lead to incorrect determination
of anatomical structures regardless of how well the image registration itself is
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Fig. 2. Due to the difference in cutting angles compared to the atlas plates, no single
ground truth plate can be registered to the input images. In this illustration, we point
this out where the expert user usually would register different, usually consecutive,
plates to different regions of the image.

performed. Therefore, precise determination of anatomical structures requires
accurate identification of brain slices as a precursor.

The correspondence between brain slices and atlas plates could be found
by reconstructing a 3D volume from the brain slices and then registering them
to the 3D reference atlas [12]. However, it is not always possible to construct
an accurate brain volume, e.g. when brain slices are cut at different angles or
when only few brain slices are available or partial brain images are used. The
difference in slice cutting angles between the atlas plates and the acquired images
is a common challenge affecting the usefulness of atlas-based registration. In
Fig. 2 we illustrate an instance where different regions of the same image could
correspond to different atlas plates due to a mismatch between the cutting angle
of the acquired image from a brain slice and the atlas plates. This way, the
central region of an image corresponds to an atlas plate (Plate N) while the
upper part of the image belongs to the previous plate and the bottom part to
the next atlas plate. Another approach could be based on content-based image
retrieval where images are queried based on some underlying image or sub-image
feature descriptions [11,13].

In this study, we investigate the problem of identifying the atlas plates corre-
sponding to mouse brain slices, when the image data are partial and/or acquired
at different cutting angles. The brain slices are identified by finding the corre-
sponding 2D coronal plates in the Allen Mouse Brain Atlas [9]. The proposed
approach has similarities to some of the ideas explored within the domain of
content-based image retrieval [1,13]. The brain slice identification is achieved
by using convolutional neural networks (CNNs), used in the Siamese Network
configuration [2,8], to obtain low-dimensional representations of the image data.
These low-dimensional embeddings are contrasted with positive and negative
pairs to learn a semantically meaningful space where the correspondence between
brain slices and atlas plates can be determined. The image identification method
is compared to SimpleElastix, which is based on the widely used tool Elastix [10],
in terms of accuracy and speed.
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2 Methods

Siamese Networks: In this work, CNNs are used to identify brain slices by
matching them to their corresponding atlas plates. The network architecture
is comprised of identical CNNs in the Siamese Network configuration [8], as
shown in Fig. 3. The CNN, Sθ(·), takes an image I (of height H and width
W) as input and outputs a low-dimensional feature vector (embedding), h, i.e.,
Sθ(·) : I ∈ R

H×W �→ h ∈ R
L, where L is the size of the embedding space and θ

are the learnable network parameters. In the pairwise setting, two sister neural
networks with shared parameters are used (Fig. 3-b).

The embeddings for brain slices, treated as the fixed image, are obtained as
hF = Sθ(IF ) ∈ R

L. The embeddings for the atlas plates, treated as the moving
image, are obtained in a similar manner, hM = Sθ(IM ) ∈ R

L. After obtaining the
embeddings of the fixed and moving images, their similarity is determined based
on the Euclidean distance between these embeddings, d(hM , hF ). The reference
atlas plate with the lowest distance is then predicted to be the corresponding
atlas plate for a given brain slice.

Fig. 3. a) Network architecture of the model used comprising of a ResNet-backbone
and a multi-layered perceptron, Sθ(·), used to obtain low-dimensional embeddings of
the brain slices and atlas plates. b) Computing the similarity between brain slices and
atlas plates with CNNs based on the low-dimensional representations corresponding to
the moving and fixed images obtained from the identical CNNs, in a Siamese network
layout, which are further used to compute their pairwise similarity, d(·).

Metric Learning: The distance between the embeddings of more similar images
should be smaller than that between dissimilar images for the low-dimensional
embedding space to be meaningful. This is achieved in this work using weakly
supervised metric learning [3]. The Siamese networks for brain slice identification
are trained to learn the representation of images such that corresponding brain
slices and atlas plates would be closer to each other in the embedding space. We
compare the embedding space learned based on training the networks with two
different loss functions:
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1. Contrastive loss [5], given as:

L =

⎧
⎪⎨

⎪⎩

1
2
d(hF , hM )2, if positive pair

1
2

max(0,m − d(hF , hM ))2, if negative pair
(1)

where the positive pair is comprised of the microscopy image, IF , and the
corresponding ground truth atlas plate, IM , and the negative pair can consist
of any non-ground truth atlas plate. The parameter m ∈ R+ is the margin
used to control the contribution from negative pairs.

2. Triplet loss [14], given as:

L = max(d(hA, hP ) − d(hA, hN ) + m, 0) (2)

where hA, hP , hN are the embeddings of anchor- (IA), positive- (IP ) and
negative- (IN ) images, respectively. Note that in case of triplet loss, a third
sister network with shared weights is included to obtain feature embeddings.

Two different types of triplets (IA, IP , IN ) are sampled to calculate the triplet
loss. These triplets are defined based on the distance between the embeddings
hA, hP , hN of anchor IA, positive IP and negative IN images:

i) Semi-hard triplets: the distance between hA and hP is smaller than the dis-
tance between hA and hN , however, the loss is still positive.

ii) Hard triplets: the distance between hA and hN is smaller than the distance
between hA and hP .

When the models are either trained with contrastive- or triplet- losses, the
training process enforces structure to the embedding space so that the embed-
dings of similar images are pulled closer, whereas embeddings of dissimilar images
are pushed away from each other. At inference, new microscopy images are ideally
closer to their corresponding atlas plates in the embedding space. An overview of
CNNs in Siamese network configuration for atlas plate prediction with moving
and fixed images is shown in Fig. 3.

3 Data and Experiments

3.1 Data

Microscopy Data: Eighty-four high-resolution microscopy images of mouse
brain slices were acquired using a 10x objective in a Zeiss LSM 900 con-
focal microscope from four animals. The size of the images varied between
17408 × 10240 px and 25600 × 20480 px. Most of the images were partial as
they were not capturing the entire brain slice. For instance, the cortex or the
cerebellar cortex were captured partially or, in some images, were not captured at
all as seen in first column of Fig. 4. The images of brain slices were preprocessed,
cropped and equalized using Contrast Limited Adaptive Histogram Equalization
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(CLAHE) to reduce some artefacts, as shown in Fig. 1. The dataset was split into
four sets: training (50 images), validation-1 (12 images), validation-2 (10 images)
and test (12 images).

Ground Truth: The Allen Mouse Brain Atlas [9] was used as the reference
atlas. It consisted of 132 Nissl-stained coronal plates spaced at 100 µm, seen in
the second column of Fig. 4. The ground truth in these experiments were the
atlas plate numbers which were provided by a neuroscientist with expertise in
manual registration of these images. For a given brain slice, there could be several
matching plates due to the difference in cutting angles, as shown in Fig. 2. How-
ever, the domain expert marked a single plate to be the ground truth depending
on whichever plate best described specific regions of interest. This is to say, in
most applications involving these data there are no hard ground truths as each
slice could correspond to several consecutive atlas plates due to the difference in
cutting angles.

Data Augmentation: To capture variations in the microscopy data beyond the
limited training set extensive data augmentation (affine transformation, cropping
and padding, pepper noise) was applied to the training dataset. Data augmenta-
tion was performed on all the 50 training set brain slices and also the 132 atlas
plates. In order to reduce computations, the high resolution images were resized
to square inputs of size 10242, 5122 or 2242 depending on the experiment.

3.2 Experiments

Experiments: The performance of our CNN-based slice identification method
was compared with a baseline SimpleElastix-based algorithm that identifies brain
slices based on mutual information (MI). The baseline method affinely registers
each brain slice with every atlas plate and picks the atlas plate with the highest

Table 1. Mean Absolute Error (MAE) on the validation-2 dataset for identifying brain
slices with our method. The lowest MAE is achieved by the network with ResNet50v2
base, trained with semi-hard triplet loss and using 10242 images. B is the training
batch size.

Loss B ResNet50v2 ResNet101v2

2242 4482 10242 2242 4482 10242

Triplet (semi-hard) 32 2.5 2.2 2.8 1.9 3.1 3.1

16 2.0 3.7 1.8 2.6 2.1 2.7

Triplet (hard) 32 2.4 3.0 3.0 2.8 3.7 2.7

16 3.1 2.8 2.6 2.0 2.7 2.8

Contrastive 32 3.6 2.1 3.4 4.2 2.5 5.6
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MI. In total, 100 random hyperparameters from the SimpleElastix affine param-
eter map were tested. The results of the best performing baseline model (with
7 resolutions using recursive image pyramid and random sample region, 2800
iterations in each resolution level and disabled automatic parameter estimation)
are used for comparison.

Metrics: The methods were evaluated based on three metrics: Mean Absolute
Error (MAE), TOP-N accuracy and inference time. MAE measured the accuracy
of predictions. For each brain slice all 132 atlas plates were ranked (starting from
zero) based on the similarity score (the Euclidean distance or MI, depending on
the method). Then MAE was computed as MAE = (

∑N
i=0 yi)/N , where N is

the number of brain slices, yi is the position of ranked ground truth atlas plate
for a given brain slice i. With 132 atlas plates used, MAE can have values in the
range [0, 131]. If all brain slices are identified correctly, MAE is equal to 0. To
account for the inherent ambiguity in ground truth we report Top-3, Top-5 and
Top-10 accuracy.

Hyperparameters: Fig. 3-a) shows the architecture of the Siamese Networks
with the embedding space feature dimension L = 64. The base of network con-
sists of a CNN-backbone implemented as ResNet network [6] pre-trained on the
ImageNet dataset. The CNN backbone is followed by a multi-layered percep-
tron that outputs the embedding. While training the networks, all layers of the
ResNets were frozen except the last ones starting with the prefix conv5. The
networks were trained on the training dataset for a maximum of 10 k iterations
using the Adam optimizer [7] with an initial learning rate of 10−4. The experi-
ments were performed on Nvidia GeForce RTX 3090 GPU, i7-10700F CPU and
32 GB memory. The training was stopped if MAE on the validation-1 dataset
was not decreasing for more than 2 k iterations.

Results: The converged models based on validation-1 set were evaluated on
the validation-2 dataset, and the MAE performance for two ResNet backbones
(ResNet50, ResNet101), the various loss functions, input- and batch- sizes are
reported in Table 1. The best performing configuration is the ResNet50 back-
bone network trained with batch size (B) of 16 using input size 10242 with the
semi-hard triplet loss with MAE=1.8. This best performing model was further
evaluated on the test dataset and compared with the SimpleElastix-based app-
roach, reported in Table 2. We notice that the MAE on test set for our method is
1.42 compared to 60.4 for the baseline. Our method obtained Top-3 accuracy of
obtaining 83.3% compared to 25% for the baseline. A similar trend is observed
for Top-5 and Top-10 accuracy, where our method achieves 100% accuracy. The
total inference time on the test set for the two methods are also reported in
Table 2 where we observe that the baseline method takes orders of magnitude
more time than the trained CNN model.

Finally, the Top-5 predicted atlas plates on a subset of the test dataset are
reported in Table 3. In all the cases, the ground truth plate is within the Top-5
predictions highlighted in bold. Examples of the predicted atlas plates by our
method that have the highest similarity are visualized in Fig. 4.
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Table 2. Performance of our CNN-based method compared to the SimpleElastix-based
approach on the test dataset for identifying brain slices reported as Top-N accuracy. Our
method trained with semi-hard triplet loss outperforms SimpleElastix-based approach
by a large margin in all the evaluated metrics. Inference time measures the time taken
to identify all 12 brain slices from the test dataset.

MAE TOP-1 TOP-3 TOP-5 TOP-10 Infer. time

SimpleElastix 60.4 16.7% 25% 25% 25% 12h 25m

Siamese Networks 1.42 25% 83.3% 100% 100% 7.2 s

Table 3. Identifying brain slices from the subset of the test dataset: the labels of ground
truth and Top-5 predicted atlas plates by our CNN-based method. Even though some
predictions are incorrect, all of them are close to the ground truth labels. Labels define
the position of atlas plates in the reference atlas.

Ground truth Top-5 predictions

91 92, 91, 93, 90, 94

130 129, 128, 130, 131, 127

86 87, 88, 86, 85, 89

63 62, 61, 60, 63, 59

108 109, 110, 111, 112, 108

4 Discussions and Conclusions

Our CNN-based method in the Siamese network configuration used to identify
brain slices have shown impressive results, i.e. in finding corresponding coronal
2D atlas plates. Our method performed well even when most images were missing
image regions, and some images belonging to different classes (plate numbers)
looked very similar to each other, thus making the identification task even more
complex. Training with contrastive- and triplet- losses solve this issue by using
margin, i.e., dissimilar images are not pushed away if the distance between them
is larger than the margin.

The identification accuracy (MAE) had no clear correlation with the batch
size (16 and 32), the image resolution (224 × 224, 448 × 448, 1024 × 1024) and
the type of the base for the Siamese network (ResNet50v2 and ResNet101v2), as
seen in Table 1. However, using images with lower resolution and networks with
fewer parameters could further improve the inference time. We did not observe
the performance of our method to be highly influenced by the choice of loss
functions. The models trained with triplet loss rather than contrastive loss, on
average, achieved higher accuracy, however, the difference is not significant.

Evaluating the performance of the method using ambiguous ground truth
data due to variations in cutting angle was another challenge. This was overcome
by evaluating the methods using Top-N accuracy instead of only predicting the
most similar atlas plate. We observe that our method achieved TOP-5 accuracy
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Fig. 4. Examples of the predicted (most similar) atlas plates by our method. Note
that in all cases the ground truth plates are predicted within the Top-5 candidates in
Table 3. Columns: (1) brain slices from the test dataset; (2) ground truth atlas plates;
(3) predicted atlas plates. The number in parentheses shows the label of the atlas
plate, i.e. the position of the atlas plate in the reference atlas.

of 100% meaning that the actual corresponding atlas plate always falls in the
top 5 predicted atlas plates, as seen in Table 2. Further, the variations within
the Top-5 predictions for all five cases reported in Table 3 could be plausible, as
most of the predictions are neighbouring atlas plates of the ground truth. We also
report the Top-1 accuracy and notice a drop in performance for both methods
due to the inherent ambiguity in the ground truth. The inherent ambiguity of
the ground truth makes our method more useful as practitioners can explore
several likely candidate atlas plates to register to.

In conclusion, we proposed to use CNNs in Siamese Network configuration
trained with contrastive- and triplet- losses as a method for identifying corre-
spondence between complete and partial mice brain slices. Challenges such as
partial/missing data and variations in cutting angles were overcome by learn-
ing a semantically meaningful embedding space. Our method has shown large
performance improvements in both accuracy and inference times compared to
the SimpleElastix-based baseline. With this work, we have we demonstrated the
usefulness of this approach with a 2D reference atlas. We hypothesize that the
same method can also be applied to a 3D reference atlas for further improved
precision in the slice identification task.
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5 Discussions and Conclusions

The Siamese networks used to identify brain slices has shown impressive results,
i.e. in finding corresponding coronal 2D atlas plates. It achieved TOP-5 accuracy
of 100% meaning that the actual corresponding atlas plate always falls in the
top 5 predicted atlas plates. The identification accuracy (MAE) had no clear
correlation with the batch size (16 and 32), the image resolution (224×224, 448×
448, 1024×1024) and the type of the base for the Siamese network (ResNet50v2
and ResNet101v2). However, using images with lower resolution and networks
with fewer parameters could improve the inference time. We did not observe that
the performance of the Siamese network would be highly influenced by the loss
function, namely contrastive and triplet losses. The models trained with triplet
loss rather than contrastive loss, on average, achieved higher accuracy, however,
the difference is not significant.

The Siamese networks produced impressive results even though some images
of different classes looked very similar to each other, thus making the identifi-
cation task even more complex. The distance between such images should be
lower than the distance between two completely dissimilar images. Maximizing
the distance between all images of different classes would make it difficult for
networks to learn representations of these classes. Contrastive and triplet losses
solve this issue by using margin, i.e., dissimilar images are not pushed away if
the distance between them is larger than the margin.

In this study, we proposed Siamese Networks as a method for identifying
complete and partial mouse brain slices, i.e. finding the corresponding 2D atlas
plates. The networks have shown a high precision and significantly improved
inference time compared to the baseline. While we demonstrated this with a 2D
reference atlas, the same method can also be applied to a 3D reference atlas for
even higher identification precision.

6 Conclusions

In this study, we proposed Siamese Networks as a method for identifying com-
plete and partial mouse brain slices, i.e. finding the corresponding 2D atlas
plates. The networks have shown a high precision and significantly improved
inference time compared to the baseline. While we demonstrated this with a 2D
reference atlas, the same method can also be applied to a 3D reference atlas for
even higher identification precision.
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Abstract. Many deep learning image registration tasks, such as volume-
to-volume registration, frame-to-volume registration, and frame-to-
volume reconstruction, rely on six transformation parameters or quater-
nions to supervise the learning-based methods. However, these param-
eters can be very abstract for neural networks to comprehend. During
the optimization process, ill-considered representations of rotation may
even trap the objective function at local minima. This paper aims to
expose these issues and propose the Transformed Grid Distance loss as
a solution. The proposed method not only solves the problem of rota-
tion representation but unites the gap between translation and rotation.
We test our methods both with synthetic and clinically relevant medi-
cal image datasets. We demonstrate superior performance in comparison
with conventional losses while requiring no alteration to the network
input, output, or network structure at all.

1 Introduction

Existing deep learning-based image registration methods have explored many
types of supervision. Unsupervised methods such as [1,4,11] relies on image
intensity-based similarity metrics to supervise the network. These methods, how-
ever, are limited to single-modality registration tasks, or multi-modal images
with very similar content and texture. Weakly supervised registration [2,7] incor-
porated weak labels such as organ segmentation to guide the training process.

In contrast, supervised methods require the ground truth annotations of reg-
istration for training [3,5]. For deformable image registration, providing such
annotations can be unrealistically difficult. However, for tasks in which no sig-
nificant differences were found between rigid and deformable registrations [10],
using rigid registration reduces the annotation cost significantly. For example, in
image-fusion guided prostate cancer biopsies, the manual registration between
the MR and ultrasound images has been a routine for the clinical procedure.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
A. Hering et al. (Eds.): WBIR 2022, LNCS 13386, pp. 177–181, 2022.
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Fig. 1. Illustration of the transformed grid distance (TGD) loss.

Requesting these manual registration labels for training come at no additional
cost to the clinicians. In other scenarios where deformable registration is pre-
ferred, a rigid transformation is also often required to pre-align the images before
any deformable registration can be performed. For the above reasons, supervised
deep learning based rigid image registration has been intensively studied, and
will be the focus of this work.

Labels and loss function are critical components of supervised image regis-
tration. Since 3D rigid transformation is commonly represented by six transfor-
mation parameters, including three rotation angles and a 3D translation vector,
a straightforward option is to use the distance between the ground truth and
estimated transformation parameters as the loss to train the image registration
network. However, numerous works [6,8,12] pointed out that the Euler angle
representation is problematic for loss computation. In some cases, quaternion
angles are used instead. In this paper, we argue that neither of them is the
optimal choice for being used directly in a loss function. Instead, these abstract
mathematical expressions should be first converted into more physically intuitive
values. We propose a new loss – the Transformed Grid Distance (TGD) loss for
network training.

2 Transformed Grid Distance

In supervised rigid registration, transformation parameters are often used as
the label for network supervision. Compact transformation parameters, either in
Euler or quaternion representation, can be difficult for neural networks to learn
through conventional loss functions (e.g. L1 and MSE loss).

Instead of directly supervising the transformation parameters themselves, we
apply the estimated transformation on the moving image grid, and supervise the
distance between the transformed points and their corresponding points in the
ground truth grid as illustrated in Fig. 1. Let G ∈ R

m×n×l denote a 3D moving
image grid. TGD loss is computed as

LTGD = ‖Tθ(G) − Tgt(G)‖2 , (1)
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Fig. 2. We generated the rotations in this figure by randomly selecting 27 unit vectors
and ranging the rotation amplitude from 0 to 360 ◦C. The Target Registration Error
serves as the evaluation metric, as in many registration tasks.

where T denotes a 3D transformation matrix converted from θ. The key differ-
ence here is to convert the abstract representation θ into a dense and intuitive
representation, which guides the network optimization process through circum-
venting any non-linear transformation conversions that the network would oth-
erwise have to figure out.

The proposed TGD loss elegantly unifies both rotation and transformation
into point-wise distance, which results in a smooth loss landscape that guides
the network learning process. Had more meaningful points been acquired (i.e.
anatomical landmarks), the loss can be simply adapted into Target Registration
Error (TRE) by replacing the grid with those clinically relevant points. One
major weakness of the Euler angles is that they must be applied in a fixed order,
which is not reflected at all with L1 or MSE loss. During training, each line from
Fig. 2 can be regarded as a training sample. The loss curves for either L1 or MSE
loss on Euler angles vary wildly from sample to sample, while the proposed TGD
loss stays consistent with the Target Registration Error (TRE).

The quaternion system seems to be a better solution than the Euler angles.
However, due to the fact that the quaternion expression is divided into two
intertwined parts, it is hard to guarantee that the direction of optimization is at
all correct. For example, slight error in the rotation axis would result in a large
TRE regardless of the rotation angle.

3 Experiments

In this section, we present both a synthetic and a clinically relevant experiment.
Our dataset consists of 528 manually labeled cases of MR-transrectal ultrasound
(TRUS) volume pair for training, 66 cases for validation, and 68 cases for testing.

In the first experiment, we use an MR volume as the fixed image, and its
own perturbed result as the moving image. We have also included the result of
TRE-TGD loss, which is another version of the proposed method that replaces
the regular grid points in TGD loss with the target prostate surface points. The
quaternion loss, on the other hand, failed to converge in this experiment where
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Table 1. Performance of different loss functions in MR-MR registration.

Method Mean TRE (mm) Percentiles [25th, 50th, 75th, 95th]

Initial 12.66± 7.30 [6.39, 12.83, 18.79, 23.88]

Quaternion loss 12.95± 7.36 [6.64, 12.93, 19.00, 24.67]

MSE Euler angle loss 2.68± 2.31 [1.19, 2.04, 3.43, 6.82]

L1 Euler angle loss 2.80± 2.68 [1.04, 2.09, 3.72, 7.48]

TGD loss 1.51± 1.45 [0.62, 1.15, 1.93, 3.85]

TRE-TGD loss 1.50± 1.53 [0.65, 1.14, 1.87, 3.83]

Table 2. Performance of different loss functions in MR-TRUS registration.

Method Mean TRE (mm) Percentiles [25th, 50th, 75th, 90th]

Initial 9.93± 5.87 [4.89, 9.82, 14.89, 19.10]

MSE Euler angle loss 5.57± 2.86 [3.47, 5.06, 7.07, 10.98]

SRE-TGD loss 4.40± 2.49 [2.57, 3.97, 5.77, 8.88]

large rotation errors are concerned. Results in Table 1 show that simply through
‘rephrasing’ the transformation parameters into physical distance between grid
points, the network was guided to converge at a lower minimum.

The second experiment treats the TRUS volume as the moving image, and
the corresponding MR volume as the fixed image. This is a use case, where an
accurate alignment between the transrectal ultrasound (TRUS) and MR volume
greatly benefits the ultrasound-guided prostate cancer biopsy [9]. For each pair
of MR and TRUS volume, we are provided with the manual label for rigid regis-
tration from TRUS to MR, as well as the prostate surface points in MR. Similar
to the TRE-TGD loss in the first experiment, the SRE-TRD loss also calculates
the distance between corresponding points, thereby a subset to the proposed
TGD loss. Table 2 compares the result of multi-modal registration between the
conventional MSE loss and SRE-TGD loss. With the same network architecture
and other settings, the proposed loss function results in a significant (p < 0.001
under paired t-test) improvement over the conventional MSE loss.

4 Discussions and Conclusion

In this paper, we revealed the limitation of directly using abstract transformation
parameters for loss computation in supervised training of image registration
networks. With such insight, we introduced a simple yet effective tool to boost
the performance of supervised rigid volume registration. Although the analysis
and experiments are mainly conducted in a rigid setting, this idea can be easily
adapted for a non-rigid affine registration task.
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Abstract. Deformable lung CT registration plays an important role in
image-guided navigation systems, especially in the situation with organ
motion. Recent progress has been made in image registration by uti-
lizing neural networks for end-to-end inference of a deformation field.
However, there are still difficulties to learn the irregular and large defor-
mation caused by organ motion. In this paper, we propose a patient-
specific lung CT image registration method. We first decompose the large
deformation between the source image and the target image into several
continuous intermediate fields. Then we compose these fields to form a
spatio-temporal motion field and refine it through an attention layer by
aggregating information along motion trajectories. The proposed method
can utilize the temporal information in a respiratory circle and can gen-
erate intermediate images which are helpful in image-guided systems
for tumor tracking. Extensive experiments were performed on a public
dataset, showing the validity of the proposed methods.

Keywords: Image registration · Lung CT · Organ movement ·
Deformation field decomposition · Attention layer

1 Introduction

Image-guided navigation systems have greatly enhanced the therapeutic effi-
ciency of complicated interventions [1]. However, in such systems, organ motions
caused by respiration is a major challenge of accurate lesion targeting. In cur-
rent practice, this challenge is often handled by asking the patients to hold their
breath and scanning repeated CTs. This will either cause distress to patients or
increase the radiation exposure. To the end, registration is a promising technique
to correct the position offset of the targeting organ or tumor.

Recently, deep networks have been applied to address deformable registration
problems and achieved remarkable success [3,6–10]. However, it is still difficult
to accurately estimate the large deformation due to respiration (tumors and
sensitive structures in the thorax can move more than 20 mm [12]). In this paper,
we propose a lung CT registration method that utilizes temporal information
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
A. Hering et al. (Eds.): WBIR 2022, LNCS 13386, pp. 185–189, 2022.
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Fig. 1. The illustrative pipeline of our method.

during respiration. During training, the images at extreme phases , as well as
the intermediate images, are employed as training data. Once the network is
trained, it can infer a deformation field without the intermediate images.

2 Methodology

Let IS and IT ∈ R
H×W×C be the source and target lung CT images, respectively.

Our aim is to figure out the deformation filed Φ ∈ R
H×W×C×3 that stores the

coordinate offset between IS and IT . We employ a deep network f that takes IS
and IT as the input to predict Φ by solving the below problem:

argmin
f∈F

�(IT , IS ◦ Φf ) + λR(Φf ), (1)

where F denotes the function space of f and Φf stands for Φ with f given
the input (IS , IT ). IS ◦ Φf represents IS warped by Φf , and � is the loss func-
tion to measure the discrepancy between IT and IS ◦ Φf . R(Φf ) stands for the
regularization term with the hyperparameter λ to balance its importance.

This training paradigm can work well when the deformation of lungs is
small [4], but fail for a large and irregular deformation, in which pixels are dra-
matically deformed, diminishing the accuracy of the registration. Our method
aims to solve this issue by decomposing the deformation field into several ones
with small deformations and gradually refining them through an attention layer.
An overview of the proposed method is shown in Fig. 1.

Decomposition. We first decompose the deformation field Φ. This field
describes the directions and the distances for all voxels moving from IS to IT .
Considering the progressive movement of the lung, the deformation field can be
decomposed by incremental steps to obtain intermediate deformation fields ui.
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We assume that each voxel deforms along a straight line [11]. Thus the decom-
position can be achieved by linear interpolation: ui = Φ/n, where n denotes the
phases in a respiratory circle.

Refinement. Above mentioned linear interpolation of the deformation field
relies on the assumption that the displacement of each voxel is homogeneous.
However, in practice, the deformation may be irregular. So we refine these
small deformation fields by firstly concatenating them to form a spatio-temporal
motion field U , which contains spatial and temporal information during respira-
tion. Then we input the motion field U to a self-attention layer, and output the
refined field V . At last, V is decomposed again to obtain refined intermediate
fields vi, with which IS are warped to generate intermediate images In that are
used to calculate loss with ground truth intermediate images Tn. Finally, our
decomposition method aims to train the deep network f for deformable regis-
tration by solving the following problem:

argmin
f∈F

n∑

t=1

�t(Tt, IS ◦ (tΦf/n)) + λR(Φf ). (2)

3 Experiments

Experimental Setup: Our method was evaluated on a public dataset [5], which
has ten thoracic 4D CTs obtained at ten different respiratory phases in a respira-
tory cycle. In each 4D CT, 300 anatomical landmarks were manually annotated
at two extreme phases. We evaluate our method with target registration error
(TRE), which is formulated as the average Euclidean distance between the fixed
landmarks and the warped moving landmarks. We implemented our method
with Pytorch on an NVIDIA RTX 3090 GPU.

Experimental Results: We compare our method with five competitive meth-
ods: BL [2] (CVPR 2018), IL [6] (MedIA 2019), VM [3] (TMI 2019), MAC [7]
(MedIA 2021), and CM [8] (MedIA 2021), denoting the baseline and existing
methods that use iterative learning strategy, lung masks as the supervision,
landmarks as the supervision, and the cycle consistency, respectively. For a fair
comparison, we employed the same backbone network (3D UNet) and the same
learning setting.

The results via cross-validation are reported in Table 1. We can see that our
method achieved the best performance of the average TRE (denoted as Ave. in
the table). It improves the performance over the second-best method (VM) with
8.0%. This demonstrates the validity of our method. We also can see that our
method works consistently well in the best and worst cases (denoted as Best and
Worst). Moreover, the performance of our method is less diverse than others as
we have the lowest Std. (1.06). These evidences suggest that our algorithm is
more reliable and effective. We also checked the statistical significance of the
performance improvement by paired t-test. We can see that, expect VM (whose
p-value is 0.053), other p-values are less than 0.05, which implies that our method
significantly improves the registration performance.
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Table 1. The TRE (mm) results of our algorithm and compared methods.

BL IL VM MAC CM Ours

Ave. 3.53 3.85 3.38 3.53 3.56 3.11

Std. 1.38 1.25 1.17 1.25 1.56 1.06

Best 1.97 2.19 2.19 2.19 1.97 1.75

Worst 6.02 5.93 5.79 6.27 6.77 4.8

p-value 0.015 0.001 0.053 0.022 0.045 —

4 Conclusion

In this paper, we have investigated a simple and effective method to learn the
large deformation field in lung CT image registration, which is helpful in image-
guided navigation systems. This method decomposes the large deformation field
into small fields, and then composes these small fields and refines them by atten-
tion layer. The experimental results show that our method works better than
existing methods.
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Hong Kong Research Grants Council under General Research Fund (no. 15205919).

References

1. Anzidei, M., et al.: Preliminary clinical experience with a dedicated interventional
robotic system for CT-guided biopsies of lung lesions: a comparison with the con-
ventional manual technique. Eur. Radiol. 25(5), 1310–1316 (2015)

2. Balakrishnan, G., Zhao, A., Sabuncu, M.R., Guttag, J., Dalca, A.V.: An unsuper-
vised learning model for deformable medical image registration. In: Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition, pp. 9252–9260
(2018)

3. Balakrishnan, G., Zhao, A., Sabuncu, M.R., Guttag, J., Dalca, A.V.: VoxelMorph:
a learning framework for deformable medical image registration. IEEE Trans. Med.
Imaging 38(8), 1788–1800 (2019)
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Abstract. Medical image registration is a fundamental task for a wide
range of clinical procedures. Automatic systems have been developed for
image registration, where the majority of solutions are supervised tech-
niques. However, those techniques rely on a large and well-representative
corpus of ground truth, which is a strong assumption in the medical
domain. To address this challenge, we propose a novel unified unsuper-
vised framework for image registration and segmentation. The highlight
of our framework is that patch-based representation is key for perfor-
mance gain. We first propose a patch-based contrastive strategy that
enforces locality conditions and richer feature representation. Secondly,
we propose a patch stitching strategy to eliminate artifacts. We demon-
strate, through our experiments, that our technique outperforms current
state-of-the-art unsupervised techniques.

1 Introduction

Image registration seeks to find a mapping that aligns an unaligned image to a
reference one. The estimated spatial mapping aims to best align the anatomi-
cal structure of interest. Majority of existing works have been investigated from
the classic perspective. Whilst promising performance has been reported, those
techniques build upon costly optimisation schemes, which limits their efficiency
when using a large volume of data. This limitation has encouraged the fast
development of deep learning techniques for medical image registration. A set
of techniques have been reported based on supervised learning. However, the
need for a well-representative and high-quality ground truth is a strong assump-
tion and hard to obtain in the medical domain. Another set of techniques have
been devoted to explore unsupervised techniques e.g. [1–4,7,8]. Existing tech-
niques have proposed several network mechanisms and explicit regularisers, to
accommodate a certain level, with the lack of prior knowledge. However, the
performance is still limited due to the lack of high-quality prior knowledge.

Our work is motivated by the aforementioned limitation. We argue that bet-
ter quality prior can be estimated from patches rather than the full image. Med-
ical images have complex anatomical structures, which impose a challenge when
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
A. Hering et al. (Eds.): WBIR 2022, LNCS 13386, pp. 190–193, 2022.
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estimating an image-to-image mapping. Therefore, our modeling hypothesis is
that patch embeddings are more meaningful representation for performance gain.
In this work, we introduce a novel unified framework for unsupervised image reg-
istration and segmentation, which we call PC-SwinMorph (Patch Contrastive
Strategy with Shifted-window multi-head self-attention based on VoxelMorph).
We underline two major highlights of our framework. Firstly, we introduce a
patchwise contrastive registration strategy for richer feature representation. Sec-
ondly, we propose a patch stitching strategy to address the splitting effect caused
by the image patch-based partition. We evaluate our framework using the bench-
mark dataset LPBA40. We demonstrate through our experimental result that
our two patch-based strategies lead to better performance than the state-of-the-
art techniques for unsupervised registration and segmentation.

2 Proposed Framework

In this section, we describe the overall workflow of our proposed framework.

Encoder

Decoder

P at ch-based
St rat egy I

Wrap

Wrap

P at ch-based
St rat egy I

P at ch-based
St rat egy II

P at ch-based
St rat egy II

T raining P rocess (Regist rat ion)

Moving Image

F ixed Image

Deformat ion F ield
(Moving -> F ixed)

Deformat ion F ield
(F ixed -> Moving)

Regist rat ion
Out put s

Wrap

F ixed Mask Segment at ion
Out put

T est ing P rocess (Segment at ion)

Encoder

Fig. 1. Workflow of our proposed framework.

Overview Workflow. In
Fig. 1, our PC-SwinMorph
first take the moving and
fixed images as inputs. We
then generate non-overlap pat-
ches from the two input
images, and perform patch-
level contrastive learning to
refine the features (Patch-
based Strategy I from Fig. 1).
Then the contrasted features
are fed into two weight-shared
CNN encoders. Followed by
a decoder, the features are
recursively concatenated and
enlarged with skip connec-
tions to reconstruct two sets of deformation field patches. We then use a 3D
W-MSA and a 3D SW-MSA module [6] to refine and stitch the deformation
field patches to obtain the full deformation field (Patch-based Strategy II from
Fig. 1). Finally, we wrap the moving image → fixed image, and the fixed image
→ moving image. After the training registration process, we also adopt the full
deformation field to transfer the segmentation mask for fixed masks to obtain
the segmentation mask of the moving image. We underline that no masks are
used in the training registration process, and they are only used in the testing
segmentation stage. Hence, our framework is a unified unsupervised registration
and segmentation network.
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3 Experimental Results

In this section, we detail the experimental setup and experimental results to
validate our proposed unified unsupervised registration and segmentation frame-
work.

Experimental Setup. We evaluate our framework on the publicly available
LONI Probabilistic Brain Atlas (LPBA40) dataset1 using Dice evaluation met-
rics. For the implementation details regarding the network architecture, data
pre-processing, and training and testing schemes, we refer to the reader to [5].
Our code will be publicly available upon the acceptance of this work.

Frontal Parietal Occipital Temporal Cingulate Putamen Hippo
0.4

0.6

0.8

1.0

Frontal Parietal Occipital Temporal Cingulate Putamen Hippo
0.4

0.6

0.8

1.0

Fig. 2. Boxplots in terms of Dice, per anatomical region, for registration (top) and
segmentation (bottom) tasks. The comparison displays our Method (PC-SwinMorph)
against SOTA techniques.

Comparison to the State-of-the-Art Techniques. We compared our tech-
nique with recent unsupervised brain segmentation methods, including Voxel-
Morph [1], DeepTag [8], SYMNet [7], CycleMorph [2]. For a fair comparison,
all models use the same backbone, VoxelMorph, which has been fine-tuned to
achieve optimal performance. In Fig. 2, the boxplots summarise performance-
wise, in terms of the Dice coefficient, the compared SOTA methods, and our
PC-SwinMorph. In a closer look at the boxplots, we observe that our method

1 https://loni.usc.edu/research/atlases.

https://loni.usc.edu/research/atlases
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outperforms all other SOTA methods by a large margin on all seven majority
anatomical regions for both registration and segmentation tasks. Particularly,
for both registration and segmentation tasks, our results report an improvement
of 5.9% compared to VoxelMorph on the average Dice results, and 3.9–4.3%
against the other compared SOTA techniques on the average Dice score.

4 Conclusion

We introduced a novel unified unsupervised framework for image registration and
segmentation. We showed that patches are crucial for obtaining richer features
and preserving anatomical details. Our intuition behind the performance gain of
our technique, is that patches can capture not only global but also local spatial
structures (more meaningful embeddings). We demonstrated, that at this point
in time, our technique reported SOTA performance for both tasks.
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Abstract. The Variational Principle (VP) forms diffeomorphisms (non-
folding grids) with prescribed Jacobian determinant (JD) and curl under
an optimal control set-up, which satisfies the properties of a Lie group.
To take advantage of that, it is meaningful to regularize the resulting
deformations of the image registration problem into the solution pool of
VP. In this research note, (1) we provide an optimal control formulation
of the image registration problem under a similar optimal control set-
up as is VP; (2) numerical examples demonstrate the confirmation of
diffeomorphic solutions as expected.

Keywords: Diffeomorphic image registration · Computational
diffeomorphism · Jacobian determinant · Curl · Green’s identities

1 Our Approach to Image Registration

This work connects the resulting registration deformations to the solution pool
of VP in [1], which achieves a recent progression in describing non-folding grids
in a diffeomorphism group. Hence, to restrict the image registration method
built in [3] satisfying the constraint of VP, it is reformulated and proposed as
follows: let Immm be a movingmovingmoving image is to be registered to a fixedfixedfixed image Ifff on the
fixed and bounded domain (ωωω =< x, y, z >∈)Ω ⊂ R

3, the energy function Loss
is minimized over the form φφφ = ididid + uuu on Ω with uuu = 000 on ∂Ω,

Loss(φφφ) =
1
2

∫
Ω

[Immm(φφφ) − Ifff ]2dωωω subjects to Δφφφ = FFF (f,ggg) in Ω, (1)

where the scalar-valued f and the vector-valued ggg are the control functions in
the sense of VP that mimic the prescribed JD and curl, respectively.
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1.1 Gradient with Respect to Control FFF

The variational gradient of (1) with respect to δΔφφφ = δΔuuu = δFFF is derived. For
all δFFF vanishing on ∂Ω and by Green’s identities with fixed boundary condition,

δLoss(φφφ) = δ(
1
2

∫
Ω

[Immm(φφφ) − Ifff ]2dωωω) =
∫

Ω

[(Immm(φφφ) − Ifff )∇Immm(φφφ) · δφφφ]dωωω

=
∫

Ω

[Δbbb · δφφφ]dωωω =
∫

Ω

[bbb · δΔφφφ]dωωω =
∫

Ω

[bbb · δFFF ]dωωω ⇒ ∂Loss

∂FFF
= bbb,

(2)

where Δbbb = (Immm(φφφ)− Ifff )∇Immm(φφφ), so, a gradient-based algorithm can be formed.

1.2 Hessian Matrix with Respect to Control Function FFF

In case of a Newton optimizing scheme is applicable, from (2), one can derive
the Hessian matrix HHH of (1) with respect to FFF as follows,

δ2Loss(φφφ) := δ(δLoss(φφφ)) = δ(

∫
Ω

[(Immm(φφφ) − Ifff )∇Immm(φφφ) · δφφφ]dωωω) =

∫
Ω

[δφφφ�KKKδφφφ]dωωω,

where Δ2HHH = KKK = ∇Immm(φφφ)[∇Immm(φφφ)]� + (Immm(φφφ) − Ifff )∇2Immm(φφφ),

and ∇2Immm(φφφ) =

⎛
⎝Immm(φφφ)xx Immm(φφφ)xy Immm(φφφ)xz

Immm(φφφ)yx Immm(φφφ)yy Immm(φφφ)yz
Immm(φφφ)zx Immm(φφφ)zy Immm(φφφ)zz

⎞
⎠ ,

so, δ2Loss(φφφ) =
∫

Ω

[δφφφ�Δ2HHHδφφφ]dωωω =
∫

Ω

[δΔφφφ�HHHδΔφφφ]dωωω ⇒ ∂2Loss

(∂FFF )2
= HHH. (3)

A necessary condition that ensures a Newton scheme works is to show such
Hessian HHH must be of Semi-Positive Definite matrix. This is left for future study.

1.3 Partial Gradients with Respect to Control Functions f̂ and ggg

To ensure (1) producing diffeomorphic solutions that is controlled by Jmin ∈
(0, 1), instead of optimizing along FFF by (2), it can be set that f := Jmin + f̂2 in
(1). Since it is known δΔuuu = δFFF = δ(∇f − ∇ × ggg), then, it carries to,

δLoss(φφφ) =
∫

Ω

[bbb · δΔφφφ]dωωω =
∫

Ω

[bbb · δFFF ]dωωω =
∫

Ω

[bbb · δ(∇f − ∇ × ggg)]dωωω

=
∫

Ω

[bbb · (∇δ(Jmin + f̂2)]dωωω +
∫

Ω

[−bbb · ∇ × δggg]dωωω

=
∫

Ω

[bbb · (2f̂∇δf̂)]dωωω+
∫

Ω

[−bbb ·∇×δggg]dωωω =
∫

Ω

[−2f̂∇·bbbδf̂ ]dωωω+
∫

Ω

[−∇×bbb ·δggg]dωωω

⇒ ∂Loss

∂f̂
= −2f̂∇ · bbb and

∂Loss

∂ggg
= −∇ × bbb. (4)
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2 Numerical Examples

In our algorithms, Jmin = 0.5 is artificially set. It is desirable to design a mech-
anism that yields optimal values of Jmin. The gradient-based algorithms can
be structured with (1) the coarse-to-fine multiresolution technique, which fits
better in large deformation problems over binary images, as it did in [2]; and (2)
the function composition regriding technique, which divides the problem dif-
ficulty and prevent non-diffeomorphic solutions on medical image registrations.
These observations are demonstrated by the next example.

2.1 A Large Deformation Test and a MRI Registration Test

The J-to-V part of this example is done with multiresolution and the Brain
Morph part is done with regriding. In Fig. 1(c, j), φφφ is the diffeomorphic solution
found by the proposed method; Fig. 1(d, k), Immm(φφφ) is the registered image that
is close to Ifff , Fig. 1(b, i). Next, φφφ−1

vp is the inverse of φφφ that constructed by VP.
In Fig. 1(f,m), φφφ is composed by φφφ−1, in Red grid, and superposed on Black grid
ididid but the Black grid barely shows. This shows the composition TTT = φφφ−1

vp ◦ φφφ is
very close to ididid. Therefore, φφφ−1

vp can be treated as the inverse to φφφ and they are
of the same diffeomorphism group which VP focuses (Fig. 1).

Table 1. Evaluation of the proposed image registration

e.g. Ω ratio = Loss(φφφ)/Loss(ididid) min(det∇φφφ) JSC DICE

J-to-V [1, 128]2 0.0034 0.2191 0.9337 0.9657

Brain Morph [1, 128]2 0.0605 0.2540 0.9849 0.9924

(a) Im (b) If (c) φ (d) Im(φ) (e) φ−1
vp (f) T vs id (g) If (φ−1

vp )

(h) Im (i) If (j) φ (k) Im(φ) (l) φ−1
vp (m) T vs id (n) If (φ−1

vp )

Fig. 1. Resulting registration deformations and their inverses by VP

The question is whether φφφ−1
vp is also a valid inverse registration deformation that

moves Ifff back to Immm. The answer is YES, at least in our tested examples. Ifff (φφφ−1
vp )
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is indeed close to Immm. That means φφφ−1
vp can be treated as a valid registration

deformation from Ifff to Immm, as it is confirmed by the Table 2 records.

Table 2. Evaluation of φφφ−1
vp by VP in the sense of Image Registration

e.g. ratio (of Loss from Ifff (φφφ−1
vp ) to Immm) min(det∇φφφ−1

vp ) JSC DICE

J-to-V 0.0029 0.1520 0.9195 0.9581

Brain morph 0.0657 0.3212 0.9832 0.9915

3 Discussion

This note provides the analytic description with simple demonstration of the
proposed method. A full paper with extensive experiments will be available soon.
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Abstract. Quantitative Magnetic Resonance Imaging (qMRI) is backed
by extensive validation in research literature but has seen limited use in
clinical practice because of long acquisition times, lack of standardization
and no statistical models for analysis. Our research focuses on develop-
ing a novel quasi-intermodal 2D slice to 3D volumetric pipeline for an
emerging qMR technology that aims to bridge the gap between research
and practice. The two-part method first initializes the registration using
a 3D reconstruction technique then refines it using a 3D to 2D projec-
tion technique. Intermediate results promise feasibility and efficacy of
our proposed method.

1 Introduction

Biochemical changes often precede observable changes in morphologyand insight
into these earlier asymptomatic deviations can help inform clinical strategy. Mag-
netic Resonance Imaging (MRI) has been traditionally used to acquire visual
insight into the anatomy, morphology and physiology of living organisms. Quan-
titative MRI (qMRI) can capture and express the biochemical composition of
the imaged structures as quantitative, calibrated physical units [8]. Despite a his-
torically large body of research evidence providing validation for qMRI [3,17], it
has seen limited integration into routine clinical practice due to obstacles such as
infeasible acquisition time, insufficient standardization and a lack of statistical
models for computational analysis [7].

One particularly promising approach for clinical integration of qMR enables
rapid high-resolution and simultaneous mapping of multiple parameters in six 2D
sections oriented around a central axis of rotation [10]. This method drastically
cuts down acquisition time and has been proven to be highly reproducible [4]
but it lacks normative models to perform comparative, population-based and
longitudinal analysis. This is partly owing to the novelty of the data but also

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
A. Hering et al. (Eds.): WBIR 2022, LNCS 13386, pp. 198–205, 2022.
https://doi.org/10.1007/978-3-031-11203-4_23

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-11203-4_23&domain=pdf
https://doi.org/10.1007/978-3-031-11203-4_23


2D/3D Quasi-Intramodal Registration of qMRI 199

because spatial normalization necessitates an effective 2D slice to 3D volume
registration technique which continues to be an open problem today [5,12].

At first glance, this seems like a straightforward intermodal problem because
the acquisition principle for both images is the same. However, the differences
in protocol and parameters result in widely differing intensity distributions. The
3D qualitative volume comprises weighted intensity values while the 2D quan-
titative slices record raw un-weighted measurements. This difference categorizes
this as a quasi-intra-modal registration problem [12] and adds another facet to
its complexity. Thus the novelty of our proposed technology is rooted in both
the originality of our data and in the research question that it aims to address.

1.1 Clinical Motivation

Symptomatic hip osteoarthritis (OA) is a degenerative joint disease that severely
hinders functional mobility and impacts quality of life. It is one of the most
common joint disorders in the United States [18] and the leading indication for
primary total hip replacement surgeries [9]. The development of effective pre-
ventative and treatment measures necessitates the study of its causative factors.

1.2 Clinical Data

Each volunteer was scanned to collect a 3D qualitative scan of the hip and six 2D
quantitative data scans acquired via incremental 30◦ rotations around a central
axis passing through the femur bone as shown in Fig. 1. The specifics of the
target 3D volume itself are less relevant since 3D/3D volume registration has
several well-established and effective solutions that can be used to transform a
template to a scan and vice versa [2]. For this reason, the 3D qualitative scan
serves as our fixed volume. To start the process, a ‘localizer’ plane is maneuvered
over the opening of the acetabulum by the MRI technician. The axis of rotation
passes through this plane meaning that all acquired 2D scans are normal to this

Fig. 1. Radial scans orientation(from left to right): i) superimposed over hip socket,
ii) superimposed over a 2D MRI scan, iii) visualized in 3D space
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plane. The images in Fig. 1i) and ii) are parallel to this localizer. The mechanics
of the acquisition technology [11] mean that only the center and normal vector of
the localizer are accessible in the resulting DICOM images of all six qMR scans.
The scans are expected roughly correlate to the diagram in Fig. 1i) but there is
no guarantee with respect to the order or the directions of the final images. For
comparison, a sequence of real scans from a volunteer can be compared to the
expected orientations in the Appendix Fig. 4 and Fig. 5 respectively.

2 Method

Given the complexity of the anatomy imaged in these scans, we rely on ini-
tial segmentations of the femur and acetabulum to initialize our registrations.
Different tissues express themselves differently in the modalities but the bony
structures are consistently identifiable across all scans. We use a combination
of random forests trained on samples from three different modalities of the 2D
scans and a neural network pre-trained on a much larger dataset of shoulder
joints to segment out the 2D and 3D bones respectively. Our proposed registra-
tion method can be broken down into two main steps. The first part includes
recreating a visual hull [16] of the femur bone from the 2D slices that can then be
registered to the 3D volume to estimate a reasonable initialization. The second
step requires fine-tuning this registration through an iterative process of manip-
ulation the 3D volume to ‘emulate’ the 2D slices, comparing these emulations to
the real scans using a feature-based intermodal similarity metric such as mutual
information [15] and updating the locations accordingly.

2.1 2D to 3D Reconstruction Using SFS

Shape-From-Silhouette (SFS) is a 3D reconstruction technique that uses images
of 2D silhouettes to produce an output termed the visual or convex hull [16].
Traditional SFS problems are posed as a 3D object surrounded by cameras
that capture 2D images of the object’s silhouettes from their various point of
views [6]. A simple model showing the moving parts of SFS can be seen in
Appendix Fig. 3. In our case, the MR acquisition system can be reframed as
an orthographic projection extending a polyhedral prism instead of a visual
cone and with the bone segmentations as cross-sections. The six intersecting
slices can be re-imagined as having been produced from similarly positioned
external cameras surrounding the hip such that the 3D volume lies within the
intersection of the visual prisms associated with the silhouette of the hip bones.
This adaptation is illustrated in Fig. 2 and can be compared to the original SFS
in Appendix Fig. 3.
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Fig. 2. SFS reconstruction adapted to qMRI acquisition framework

Our exact reconstruction algorithm is still under construction, but we expect
to share its details along with preliminary results in the next iteration of our
publication. Additionally, this technique is based on the assumption that the
relative locations of the 2D slices with respect to each other is accurate and
known. This, as confirmed by Figs. 4 and 5, is not true for our case. To address
this, we preprocessed our slices by comparing them to the expected orientations
and manually aligned them into their appropriate positions. This process is also
expected to be automated in the near future.

2.2 3D to 2D Projection Using Binary Search

Once the location of the 2D slices has been initialized, a set of 2D scans are ’emu-
lated’ via projection of the 3D volume onto the planes where the slices intersect.
A second set of emulated scans are acquired after rotating these planes clock-
wise and anti-clockwise by an angle of 15◦. The reason for this choice of angle
is to explore the space of possibilities using a binary search in logarithmic time
instead of an exhaustive linear search. All the actual 2D slices are then com-
pared to these emulated slices and cumulatively vote to move the search space
to one of the two sub-regions then repeat the process using 7◦ rotations and so
on. Results from the binary search based optimization technique are pending the
finalization of the initialization procedure, but results of the emulated scans from
the 3D volumes can be seen in Appendix Figs. 6 and 7 respectively, visualized
using 3DSlicer [1,13,14]

3 Discussion

Quantitative MRI technology allows earlier insight into asymptomatic morpho-
logical abnormalities that may improve the likelihood of positive prognoses.
Despite extensive validation in research literature, qMRI has not translated into
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routine clinical practice for reasons including long acquisition times, lack of stan-
dardization and an absence of statistical models for analysis. Our research aims
to enable a particularly promising new qMRI technology that has reduced acqui-
sition times to a clinically feasible range and proven to be highly reproducible
over time and scanners. Our contribution aims to enable registration of these
2D qMR slices to a normative 3D volumetric space to allow performing com-
parative and longitudinal analysis in larger scale or longer studies. We propose
an initialization method using the 2D slices to create a 3D reconstruction and a
followup optimization technique that emulates the qMRI acquisition process by
capturing 2D slices from the 3D volume. While the method is currently under
development, we have included intermediate results from its various sub-methods
that show a lot of promise for the efficacy of our final 2D/3D multi-dimensional
quasi-intermodal registration process.

Appendix

Fig. 3. Typical SFS reconstruction procedure as illustrated in [6] (a) Camera captures
a silhouette (b) The silhouette defines a visual cone. (c) The intersection of two visual
cones contains an object. (d) A visual hull of an object is the intersection of many
visual cones
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Fig. 4. Actual appearance of the six 2D qMR scans acquired from a volunteer

Fig. 5. Expected appearance of the six 2D qMR scans
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Fig. 6. The image on the far right depicts the localizer plane and so it is unchanging
in both sets of emulations. The images on the center and left are captured using two
planes orthogonal to the localizer plane and to each other. The initial locations of
these planes was chosen arbitrarily but kept constant in both this and Fig. 7. This set
produced via rotation by 90◦ clockwise

Fig. 7. The image on the far right depicts the localizer plane and so it is unchanging
in both sets of emulations. The images on the center and left are captured using two
planes orthogonal to the localizer plane and to each other. The initial locations of
these planes was chosen arbitrarily but kept constant in both this and Fig. 6. This set
produced via rotation by 45◦ counter-clockwise

References

1. Fedorov, A., et al.: 3D Slicer as an image computing platform for the Quantitative
Imaging Network. Magn. Reson. Imaging 30(9), 1323–1341 (2012). https://www.
slicer.org/

2. Avants, B.B., Tustison, N.J., Stauffer, M., Song, G., Wu, B., Gee, J.C.: The insight
toolkit image registration framework. Front. Neuroinf. 8, 44 (2014)

3. Bashir, A., Gray, M.L., Burstein, D.: Gd-dtpa2- as a measure of cartilage degra-
dation. Magn. Reson. Med. 36, 665–673 (1996)

https://www.slicer.org/
https://www.slicer.org/


2D/3D Quasi-Intramodal Registration of qMRI 205

4. Cloos, M.A., Assländer, J., Abbas, B., Fishbaugh, J., Babb, J.S., Gerig, G., Lat-
tanzi, R.: Rapid radial t1 and t2 mapping of the hip articular cartilage with mag-
netic resonance fingerprinting. J. Magn. Reson. Imaging 50(3), 810–815 (2019)

5. Ferrante, E., Paragios, N.: Slice-to-volume medical image registration: a survey.
Med. Image Anal. 39, 101–123 (2017)

6. Imiya, A., Sato, K.: Shape from silhouettes in discrete space. In: Gagalowicz, A.,
Philips, W. (eds.) CAIP 2005. LNCS, vol. 3691, pp. 296–303. Springer, Heidelberg
(2005). https://doi.org/10.1007/11556121 37

7. Jazrawi, L.M., Alaia, M.J., Chang, G., Fitzgerald, E.F., Recht, M.P.: Advances in
magnetic resonance imaging of articular cartilage. J. Am. Acad. Orthopaedic Surg.
19, 420–429 (2011)

8. Jazrawi, L.M., Bansal, A.: Biochemical-based MRI in diagnosis of early osteoarthri-
tis. Imaging Med. 4(1), 01 (2012)

9. Katz, J.N., et al.: Association between hospital and surgeon procedure volume and
outcomes of total hip replacement in the united states medicare population. JBJS
83(11), 1622–1629 (2001)

10. Lattanzi, R., et al.: Detection of cartilage damage in femoroacetabular impinge-
ment with standardized dgemric at 3 t. Osteoarthritis Cartilage 22(3), 447–456
(2014)

11. Ma, D., et al.: Magnetic resonance fingerprinting. Nature 495(7440), 187 (2013)
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Abstract. Deep learning (DL) techniques have the potential of allowing
fast deformable registration tasks. Studies around registration often focus
on adult populations, while there is a need for pediatric research where
less data and studies are being produced. In this work, we investigate
the potential of unsupervised DL-based registration in the context of
longitudinal intra-subject registration on 434 pairs of publicly available
Calgary Preschool dataset of children aged 2–7 years. This deformable
registration task was implemented using the DeepReg toolkit. It was
tested in terms of input spatial image resolution (1.5 vs 2.0 mm isotropic)
and three pre-alignement strategies: without (NR), with rigid (RR) and
with rigid-affine (RAR) initializations. The evaluation compares regions
of overlap between warped and original tissue segmentations using the
Dice score. As expected, RAR with an input spatial resolution of 1.5 mm
shows the best performances. Indeed, RAR has an average Dice score of
of 0.937± 0.034 for white matter (WM) and 0.959± 0.020 for gray matter
(GM) as well as showing small median percentages of negative Jacobian
determinant (JD) values. Hence, this shows promising performances in
the pediatric context including potential neurodevelopmental studies.

Keywords: Learning-based image registration · Pediatric · MRI

1 Introduction

Registration consists of bringing a pair of images into spatial correspondence.
There are hardly any registration methods dedicated to the pediatric brain,
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mainly because of the difficulties arising from major changes that occur during
neurodevelopment [5]. Conventional deformable registration involves estimating
a deformation field through an iterative optimization problem. This process is
time consuming, but provides accurate results. Convolutional neural networks
(CNN) can allow faster registrations by applying a learning-based approach [4].
Hence, applying DL methods to pediatric brain scans could improve registration
and future diagnostics for medical applications. Ultimately, it would be relevant
to validate the potential use of DL-based frameworks for pediatric populations.

The general objective of this study is to validate a DL framework which allows
fast intra-subject deformable registrations after training on pediatric MRI scans.
To do so, different initial conditions are considered by fragmenting the non-rigid
transformation into its simpler parts. Pre-network rigid registration, RigidReg
(RR) and rigid-affine registration, RigidAffineReg (RAR) are performed on each
intra-subject pair using ANTs [1] in order to determine their respective impact
on the network’s performance. Also, a third method called NoReg (NR) is investi-
gated where no pre-alignment task is done. These three methods are then trained
using a U-Net like CNN architecture implemented via the DeepReg toolkit [3].
The robustness of these DL techniques is assessed by using different input reso-
lutions (1.5 vs 2.0 mm isotropic) for the same network architectures.

2 Methodology

Preprocessing Pipeline. Each image was corrected for bias field inhomogene-
ity using N4 algorithm. Both rigid and rigid-affine pre-alignments were performed
with ANTs registration framework. The Mattes similarity metric was used.

Unsupervised Deformable Registration Framework. The U-Net archi-
tecture used to generate the deformation field consists of a 3-layer encoder and
decoder with 8, 16 and 32 channels each. As for the loss function, it is composed
of a local normalized cross-correlation similarity measure and an L2-norm gra-
dient regularization factor to ensure realistic physical deformation fields. Local
normalized cross-correlation is chosen for its robustness to local variations of
intensities. The ADAM optimizer is used with a learning rate set to 1.0e-4.
Finally, the network was trained on a GeForce RTX 2080 Ti GPU.

3 Experiments

Data. 434 pairs of moving/fixed 3D images were extracted from the longitu-
dinal Calgary Preschool dataset [6] containing 247 T1-weighted images from
64 children aged 2–7 years old. The average time interval between consecu-
tive scans is of 1.15± 0.68 years. The original images have a native resolu-
tion of 0.4492× 0.4492× 0.9 mm3. The resized images of 1.5 mm as well as
2.0 mm isotropic resolution have respectively a matrix size of 153× 153× 125
and 114× 114× 94.
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Evaluation. To acquire white matter (WM), gray matter (GM) and cere-
brospinal fluid (CSF) segmentations for evaluation purposes, each image was
non-linearly registered to the MNI pediatric template for children 4.5–8.5 years
old [2]. This also allowed obtaining skull-stripped images via the available mask
in the template space. Unsupervised networks are then evaluated using the Dice
score as a performance metric. In addition, the generated deformation fields are
evaluated using the percentage of negative JD values indicating unwanted local
foldings. To compare the impact from the three initialization methods or input
resolutions, one-sided Wilcoxon signed-rank tests were performed.

Fig. 1. Dice scores results for different input resolutions obtained for each method
compared to their pre-network Dice scores represented as boxplots. The Dice scores
are calculated for all subjects and WM, GM and CSF regions using the test set.

Table 1. Average Dice scores per resolution calculated over all segmented regions
and subjects using the test set for the three studied methods. Median percentages of
negative JD values are given because of highly right-skewed distributed data. ANTs
pre-registration tasks are performed on the native resolution of 0.4492× 0.4492× 0.9
mm3 and using the available CPU implementation.

Methods 1.5 mm isotropic 2.0 mm isotropic Native resolution

Dice score % of JD<0 Train
time/epoch

Test time/pair Dice score % of JD<0 Train
time/epoch

Test time/pair ANTs pre-reg
time/pair

NR 0.764 ± 0.105 1.11e–1 189.3 s 4.88 s 0.770 ± 0.088 1.33e–1 74.8 s 1.87 s 0 s

RR 0.929 ± 0.045 1.86e–4 137.7 s 3.55 s 0.916 ± 0.051 0 78.1 s 1.88 s 168.6 s

RAR 0.924 ± 0.047 0 177.5 s 4.13 s 0.922 ± 0.047 0 75.8 s 1.86 s 365.8 s

4 Results

A 85/15 % split was respectively done for train and test sets. Then, a three-
fold cross-validation technique is employed to train and evaluate each method
containing 123 pairs per fold. In total, 65 pairs are used for test purposes. Above,
presented results for the two evaluated resolutions in Table 1 and Fig. 1 come
from this unseen test set. Figure 2 shows the differences of obtained predicted
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Fig. 2. Resulting images for a specific pair (age interval of 3.37 years) for the three
pre-alignment strategies using an input spatial image resolution of 1.5 mm isotropic.

fixed images for all the three considered initialization methods. Also, two one-
sided Wilcoxon tests were conducted comparing, first, the median Dice scores
differences between RR and RAR (RAR-RR) for both resolutions as well as
between 2.0 and 1.5 (1.5–2.0) for all initialization methods. The first test allowed
rejecting the null hypothesis only for WM and GM (p<1.06e–10) showing higher
median Dice scores for RAR compared to RR for both resolutions. The second
test shows that 1.5 mm isotropic resolution, at the cost of longer train and test
times, yields slightly, but statistically significant better performances than 2.0 for
RR and RAR methods for all segmented regions (p<1.51e–4). This improvement
is not significant for GM and CSF regions for the NR method.

5 Discussion and Conclusion

In this study, we demonstrated that DL-based deformable registration succeeds
to improve registration accuracy regardless of the initialization method and for
both tested resolutions (see Fig. 1). RAR demonstrated higher Dice scores com-
pared to RR for WM (0.937± 0.034 vs 0.930± 0.046) and GM (0.959± 0.020 vs
0.955± 0.025). Differing results for CSF may be due to its thin surface and errors
arising from the skull-stripping process. Both RR and RAR reached high regis-
tration quality, while NR shows lower registration performance due to its inca-
pacity to extract both global and local transformations simultaneously, shown in
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Fig. 2. However, NR remains relevant as no prior registration is needed. Future
work will evaluate the capacity of a neural network to decompose the global
and local transformations. Considering all studied combinations of pre-alignment
strategies and input resolutions, RAR provides better Dice scores with 1.5 mm
isotropic resolution images, which could help to perceive neurodevelopmental
changes from a large age range of pediatric data.
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Abstract. In Connectomics, researchers are creating the brain’s wiring
diagram at nanometer resolution. As part of this processing workflow, 2D
electron microscopy (EM) images must be aligned to 3D volumes. How-
ever, existing alignment methods are computationally expensive and can
take a long time. We hypothesize that adding biological features improve
and accelerate the alignment procedure. Since especially mitochondria
can be detected accurately and fast, we propose a new alignment method,
MITO, that uses these structures as landmark points. With MITO, we
can decrease the alignment time by 27%, and our experiments indicate a
throughput of 33 Megapixels/s, which is faster than the acquisition speed
of current microscopes. We can align an image volume of 1268×1524×160
voxels in less than 12 s. We compare our method to the following feature
generators: ORB, BRISK, FAST, and FREAK.

Keywords: Image alignment · Registration · Feature matching

1 Introduction

Connectomics studies the functional and structural connections of a brain to
understand the correlation between the physiology of the brain and its behav-
ior. This correlation will help better treatment solutions, design new drugs for
mental pathologies, construct custom neural prostheses, etc. Therefore, a regis-
tration process is required to map every synaptic connection to build a computer-
generated brain wiring diagram. When needed, the image registration process is
necessary to map the similarities between images acquired at different times or
across other subjects by various sensors. Moreover, image registration is a crucial
processing step in various other bio-medical image applications. In this study, we
used diamond-knife-sliced electron microscopy (EM) images that provide high
resolution such that individual synaptic connections between neurons are visible.
We hypothesize to align these images by adding biological features can improve
state-of-the-art registration methods. We have used a feature extraction model
that follows four steps: feature detection, feature extraction, feature matching,
and estimating the transformation matrix. Using the biological features, we get
faster real-time alignment performance.
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2 Methods

We used unaligned two-dimensional EM images with nanometer resolution, and
the corresponding mitochondria mask data as labeled data. The original dataset
is called Lucchi++ and was the result of the study ‘Fast Mitochondria Detection
for Connectomics [1].’ This dataset included two stacks: image and mask of
160 tiles, each having 768 × 1024 px. We created the unaligned dataset from
the original by rotating each image tile and its corresponding mask tile at an
arbitrary angle between (−π,+π) and added a pad size of 250 px on all the sides
to prevent information loss at the time of rotation. The new unaligned dataset
has two stacks: image and mask, with 160 tiles and dimensions 1268 × 1524 px.

Fig. 1. Mapping of input images with and without adding the biological
features. The unaligned input EM images (left) were mapped in real-time with and
without adding the biological features (mask data). We generated a stack of aligned
images (right) as output in both the cases to draw comparisons.

We performed an automatic registration on the unaligned EM images using
a custom-build interactive program that runs the feature extraction model and
calculates alignment score, execution time, and throughput for the entire dataset.
This model used existing computer vision algorithms such as FAST [6], ORB [2],
BRISK [3] to learn the features or patterns from the input dataset. We propose a
new feature detector mechanism called MITO that detects the keypoints in EM
images using mitochondria from mask images as a region of interest (ROI). In
this feature detection step, we introduced mask images as additional biological
features to improve the alignment performance. In the feature description step,
the model uses ORB, BRISK, and FREAK [4] algorithms to create descriptors
that are unique and could be referred to as a keypoint’s numerical fingerprint. In
the next step, we used feature matching algorithms such as BF [8] and FLANN [9]
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matcher to map (xi, yi) of the source image to (x
′
i, y

′
i) of the target image. Finally,

with the help of the homography matrix, the model transforms the source image
and outputs the aligned image. We generated two stacks of registered images
with and without the help of mitochondria masks for comparisons (see Fig. 1).

3 Results

We perform experiments on the unaligned Lucchi++ dataset to measure timing
and alignment accuracy. When we combine biological features using the MITO
method with the BF and FLANN matchers, we observe a maximum execution
time of 9.49 (±0.37) seconds for the whole stack. When comparing the accuracy,
we measure a dice score of over 0.89 for both BF and FLANN, indicating qual-
ity alignment. The average throughput with MITO is at least 33 Megapixels/s
which is faster than the acquisition speed of modern electron microscopes (11
Megapixels/s). Our findings indicate that MITO can be used to align connec-
tomics image data in real-time during image acquisition. Table 1 shows the full
evaluation.

Table 1. Alignment Results on Lucchi++. We compare the BF and FLANN
matchers with a variety of feature descriptors. When using the MITO detector, we
measure the throughput of at least 33 Megapixels/s, indicating real-time performance.

Matcher Detector + Descriptor Mask Dice score Execution time (sec.) Stack throughput (MP/s)

BF BRISK ✓ 0.9354 47.0052(±1.5173) 6.7879(±0.2170)

0.8569 19.3020(±0.2625) 16.5210(±0.2256)

ORB ✓ 0.7529 19.4427(±1.8462) 16.4941(±1.4953)

0.8226 20.4218(±0.5493) 15.6208(±0.4259)

FAST + BRISK ✓ 0.9184 2419.9270(±99.9857) 0.1319(±0.0053)

0.8762 28.4635(±1.2776) 11.2167(±0.4908)

ORB + BRISK ✓ 0.6291 16.3020(±1.4923) 19.6693(±1.8124)

0.7935 16.9687(±1.6858) 18.9180(±1.9290)

FAST + FREAK ✓ 0.9405 2391.9479(±137.7484) 0.1335(±0.0074)

0.9140 25.1302(±0.5) 12.6912(±0.2498)

ORB + FREAK ✓ 0.8320 16.6458(±1.8088) 19.2979(±1.9733)

0.7637 16.8072(±0.1365) 18.9718(±0.1545)

MITO(ours) + BRISK ✓ 0.9142 7.7708(±0.0888) 41.035(±0.4713)

MITO(ours) + FREAK ✓ 0.8963 8.3697(±0.0888) 38.0983(±0.4027)

FLANN BRISK ✓ 0.9344 40.1145(±0.9393) 7.9514(±0.1887)

0.8338 19(±2.4111) 16.9513(±2.0058)

ORB ✓ 0.8069 19.3802(±1.2145) 16.4941(±0.9979)

0.8280 20.6875(±1.1149) 15.4417(±0.8082)

FAST + BRISK ✓ 0.9338 3082.2343(±130.2627) 0.1035(±0.0043)

0.8784 29.6041(±0.2350) 10.7709(±0.0856)

ORB + BRISK ✓ 0.6297 16.9322(±1.7772) 18.9655(±1.9261)

0.7648 15.2031(±1.1735) 21.0579(±1.6571)

FAST + FREAK ✓ 0.9450 2628.3229(±32.5343) 0.1213(±0.0015)

0.9091 31.4166(±4.7502) 10.2940(±1.4380)

ORB + FREAK ✓ 0.8285 16.2812(±0.0563) 19.5841(±0.0676)

0.7402 17.2083(±1.2107) 18.5882(±1.2665)

MITO(ours) + BRISK ✓ 0.9062 9.2239(±0.7265) 34.7050(±2.6154)

MITO(ours) + FREAK ✓ 0.8928 9.4843(±0.3694) 33.6528(±1.3213)
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4 Conclusion

Fast registration is crucial to creating 3D volumetric connectomics datasets from
unaligned EM images. This process can be computationally expensive. Based on
our studies, adding biological features to register these images results in faster
alignment. Specifically, we include mitochondria masks as part of our MITO
feature detector. With MITO, the overall dice score is higher than 0.80, and
the throughput is faster than 11 Megapixels/s. These measurements indicate
the possibility of real-time alignment during the image acquisition with modern
electron microscopes.
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Abstract. Image registration is a fundamental task in medical image
analysis. Many deep learning based methods use multi-label image seg-
mentations during training to reach the performance of conventional
algorithms. But the creation of detailed annotations is very time-
consuming and expert knowledge is essential. To avoid this, we propose
a weakly supervised learning scheme for deformable image registration
that uses bounding boxes during training. By calculating the loss func-
tion based on these bounding box labels, we are able to perform an image
registration with large deformations without using densely labeled anno-
tations. The performance of the registration of inter-patient 3D Abdom-
inal CT images can be enhanced by approximately 10% only with lit-
tle annotation effort in comparison to unsupervised learning methods.
Taken into account this annotation effort, the performance also exceeds
the performance of the label supervised training.

Keywords: Deformable image registration · Weak supervision ·
Bounding box supervision

1 Introduction

Medical image registration is the process of the alignment of the anatomical
structures of two or more images in order to be able to do follow up studies,
image-guidance or to plan a treatment. Deep learning methods have become
increasingly important. They have demonstrated low computation times and
are promising to enable real time registration approaches. For the case of brain
image registration [1], which only require small deformation, already satisfac-
tory results could be achieved. The registration of images of highly deformable
body regions, such as the abdominal region or thorax are, due to the respiration
or digestion, more complex and still often solved with conventional algorithms
[2,3]. Deep learning methods have started to address the challenge of handling
large deformations (for example in the Learn2Reg Challenge, cf. learn2reg.grand-
challenge.org) [4,5]. Mok et al. [6] use Laplacian pyramids to solve the registra-
tion in a coarse-to-fine scheme inspired by classical algorithms. They show that
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
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label supervision substantially increases the registration accuracy, which is also
shown by Siebert et al. [7]. In image segmentation, weak label supervision has
already gained interest. Rajchl et al. [8], for example, use an extension of the
GrabCut algorithm and learn segmentation from bounding box annotations.
In this paper, our aim is to close the gap between supervised and unsuper-
vised registration methods and propose a weakly supervised learning scheme for
deformable image registration including large deformations and introduce a loss
function based on 3D bounding boxes to decrease the effort of the labeling pro-
cess. We use inter-patient 3D Abdominal CT images and are able to increase the
overlap of organs by approximately 10% in comparison to unsupervised image
registration methods. If the time of the labeling process is taken into account,
the performance of supervised algorithms can also be exceeded.

2 Methods

Fig. 1. Architecture of proposed method: Image features are extracted for IF and IM
separately in two decoders (shared weights). The concatenated features are passed
through a U-Net-like architecture and are finally used to estimate a displacement Φ
to warp IM . The loss consists of three parts: MIND features, regularization and the
proposed bounding box supervision. The resolution in relation to the input resolution
of the different steps are displayed in the layers.

The network consists of two parts: an image feature extraction part and a dis-
placement estimation part. An overview of the architecture is shown in Fig. 1.
The image feature extraction part extracts the low level features of the input
images in two streams (with shared weights for monomodal registration). The
displacement estimation part uses the concatenated low level features and esti-
mates the displacement field. The 32 concatenated feature maps of IF and IM are
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used as input to extract 32 joint feature maps with a U-Net-like network with
three encoder and four decoder blocks. Three additional sequences are added
to estimate the displacement field. The final displacement field is generated by
reducing the 32 feature maps to the three displacement dimensions with a 1 × 1
× 1 convolution and transformed to normalized sampling voxel locations (value
range from −1 to 1) with the tanh activation function to match the PyTorch
grid definition. The deformation has the same size as the input images.

To train the network, weak label supervision is used. Instead of using detailed
labels for the calculation of the loss function, bounding boxes are used. The
advantage of this method is that a significant reduction in time can be achieved
and the variance between raters is also lower. A combination of three loss func-
tions is used: the modality independent neighbourhood descriptor (MIND) with
self-similar context (SSC) [10], a diffusion regularization and the mean squared
error for the bounding boxes. The bounding box loss is multiplied by a factor of
two.

To generate the final registration result including large deformations, we
apply the network twice. The first input images are IF and IM . Then, IM is
warped with the first displacement field. The resulting warped moving image is
used as second input.

3 Experiments

To train and evaluate our method, we use the publicly available Learn2Reg
challenge dataset (Task3, 2020). This dataset contains 30 abdominal CT scans
with thirteen manually labeled abdominal organs [4,5]. For training and testing,
we use the split and validation pairs as in the official challenge. The data is
already preprocessed to same voxel sizes and spatial dimensions. We downsample
the images for the experiments to a size of 144 × 112 × 144 due to GPU memory
requirements. For all labels, tight bounding boxes as well as a bounding box
with a random error of ±5% are generated. The network is trained using Adam
optimizer with a learning rate of 0.001 for 7500 iterations.

We train our network three times: unsupervised (not using the label loss),
with the proposed bounding box loss, and with the voxelwise manually labeled
organ segmentations. To establish comparability between training with label
and weak label loss, we perform additional runs of supervised training with
less training data. In this way, we simulate manual generation of labels or
bounding boxes that takes the same amount of time. In total, we have five
experiments: unsupervised, tight-weakly-supervised, weakly-supervised, super-
vised and supervised 50%. Tight-weakly refers to perfect bounding boxes, weakly
refers to bounding boxes with an additional error of ±5% and supervised 50%
refers to the experiment with less labeled data.

4 Results

In Table 1 the average Dice scores for all organs are listed for the different
trainings. In comparison to the initial overlap of the organs, the overlap can
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Table 1. Dice scores [%] for spleen , right kidney , left kidney , gall bladder ,
esophagus , liver , stomach , aorta , inferior vena cava , portal and splenic vein

, pancreas , left adrenal gland , and right adrenal gland .

avg ± std
initial 42 34 35 2 23 62 24 33 36 5 15 8 9 25 ± 13
unsupervised 67 57 61 5 33 81 35 54 50 15 21 18 14 39 ± 14
tight-weakly-
supervised 70 67 69 7 33 86 41 53 56 20 27 25 17 44 ± 13
weakly-supervised 67 64 64 6 32 83 40 54 56 18 28 24 16 43 ± 13
supervised 81 73 78 8 43 86 50 67 61 17 25 21 16 48 ± 11
supervised- 50% 67 55 59 6 38 81 39 51 42 10 18 23 9 38 ± 13

be increased by approximately 14%. For the tight bounding box training, the
overlap can be increased by approximately 19% and 18% for the bounding box
training with random error. The label supervised trained network increased the
overlap by approximately 22%. The standard deviation of the Jacobian determi-
nant as well as the proportion of negative values are comparable for all trainings.
It can be shown that a higher Dice score can be obtained for larger organs or for
organs that initially already have a high overlap. The largest organ, the liver,
for example, has the highest initial Dice overlap of 62%, and also the highest
Dice overlap after registration for all variants (in a range of 81–85%). Organs
with a small initial overlap, e.g. left adrenal gland (initial overlap 8%), also have
a relatively low overlap after registration for all methods (in a range of 18–
25%). For these organs, however, the Dice of weakly-supervised is higher than
for supervised (e.g. left adrenal gland: 25% for weakly-supervised and 21% for
supervised).

5 Discussion and Conclusion

We presented a deep-learning-based method for deformable image registration
with weak bounding box supervision. We compared our method with an unsuper-
vised and a label supervised training. The resulting registration of our method
shows an improvement of about 5% for the Dice overlap in comparison to the
unsupervised training. To simulate a realistic annotation of bounding boxes, we
added an inter-observer-error of 5% per bounding box side, and showed that the
quality of the result does not change significantly (approximately 1%) compared
to tight bounding boxes. Organs with small initial overlap show the highest Dice
score after the registration with the weak bounding box supervised network.

If the time for the labeling process was taken into account, so that less labels
are available than bounding boxes, the accuracy of the label supervised training
is less than for our bounding box supervision. Hence, for the purpose of medical
image registration the proposed weak supervision strategy (labeling more images
with lower effort) is beneficial.
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