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1 Introduction 

Positive individuals typically exhibit bilateral diffuse patchy opacities with some 
bibasilar sparing on chest X-ray images, which can assist in the diagnosis of the 
condition. Irritation of the lungs, and lymph adenopathy are saliant features on 
computed tomography (CT) scans of COVID-19 patients. Lungs involvement shows 
a patterned dissemination of opacities (interlobular septal thickening layered on 
ground-glass opacities) [7]. The prime goal of evaluating the density of these pat-
terns is to provide a truthful diagnosis, regulate the sternness of the ailment, and offer 
prognosis advice. Artificial intelligence (AI) performance for detecting infections 
and associated radiological characteristics from medical imaging, such as chest 
X-rays and CT scans, has proven to be beneficial in making truthful diagnoses [8, 9]. 
Machine learning and deep learning may be used to solve COVID-19 identification 
and segmentation difficulties in a number of different ways. Medical imaging 
analysis aided by AI offers great potential as a primary diagnostic tool for 
COVID-19 detection [10, 11]. The first step in the diagnosis is to identify deep 
features that may be used to detect COVID-19 radiological patterns on chest X-ray 
and CT scans. Machine learning-based prediction techniques have the potential to be 
used in prognostic analyses. As a result, several studies have employed algorithms 
such as Support Vector Machine (SVM) and Random Forests to provide critical

The World Health Organization (WHO) recently designated coronavirus disease 
2019 (COVID-19) as an infectious pandemic.1 Since the beginning of the epidemic, 
there have been over 243 million confirmed infections and over 4.9 million fatal-
ities. Because of the rapid spread of the disease, most health institutions and hos-
pitals are unprepared to deal with the influx of cases. With a 2–14 day incubation 
period, the severe acute respiratory syndrome coronavirus 2 (SARS-CoV2) is said 
to spread by tiny droplets and perhaps aerosols [1, 2]. COVID-19 positive persons 
may have symptoms such as fever, dry cough, bodily aches, shortness of breath, 
lack of taste and smell, sore throat, and diarrhea [3]. With such readily misconstrued 
symptoms and the danger of negative repercussions from a misdiagnosis, effective 
viral infection detection is one of the top objectives of medical organizations. 
Artificial Intelligence (AI) diagnostic models might relieve the burden on healthcare 
staff, allowing them to devote more time to patient care and vaccine research. It is 
vital to recognize the presence of infection early in order to provide treatment and 
save lives. According to a survey, symptoms may begin with a simple cold and 
progress to life-threatening pneumonia [4, 5]. The most prevalent form of diag-
nostic test is reverse transcription-polymerase chain reaction (RT-PCR) evaluation 
for the detection of viruses via pharyngeal swabs or blood samples. With an 
accuracy range of 81–96%, RT-PCR can deliver results in as little as a few hours up 
to two days. These tests, on the other hand, are unable to assess the degree of 
contamination, and their accuracy is contingent on the strength of the viral strain. 
Differentiating between coronavirus infections and other infections is a vital step 
toward appropriate diagnosis [6]. 

1 https://www.who.int/emergencies/diseases/novel-coronavirus-2019/situation-reports.

https://www.who.int/emergencies/diseases/novel-coronavirus-2019/situation-reports


insight into coronavirus infection prediction and diagnosis [12, 4]. By automating 
the COVID-19 diagnostic selection procedure, these automation technologies help 
ease the burden on healthcare workers. Early identification of infection can save time 
by allowing treatment to begin, while the disease is still mild, reducing the chance of 
consequences. The consequences of a misdiagnosis pose a major risk to the patient 
and can even be fatal. Automated systems face a number of challenges because of the 
enormous amount and velocity of data. Data cleaning and processing becomes a 
huge difficulty with such a large intake of cases, especially when high-resolution 
images are required. A consistent nursing and remote detection method for people 
will help in the wild trailing of suspected COVID-19 cases. Furthermore, the usage 
of such systems would generate a vast amount of data, presenting various oppor-
tunities for big data analytics tools to improve healthcare service quality [13, 14]. 
The Six V’s [15] are a set of essential qualities of big data, which include value, 
volume, velocity, variety, veracity, and variability. The inventive definition of big 
data essential qualities, however, only considers three Vs: volume, velocity, and 
variety [16]. Big data analytics technologies are considered critical for gaining the 
knowledge needed to make judgments and take preventive steps [17]. As the large 
amount of available data on COVID-19 comes from various sources, it will be 
crucial to review the protagonists of big data analysis in governing COVID-19, as 
well as a promoter insight of the main contests and main uses of COVID-19 data 
prevention, as well as a number of correlated current frameworks with the goal of 
COVID-19 breakdown [18]. COVID-19 has been proven to benefit from big data in 
the battle against infectious illnesses. To combat the COVID-19 pandemic, big data 
may hold many intriguing possibilities. When big data is integrated with AI ana-
lytics, it helps researchers better understand the COVID-19 outbreak, viral structure, 
illness treatment, and vaccine manufacturing [19–21]. For instance, complex sim-
ulation models based on coronavirus data streams may be created using big data and 
powerful AI-based techniques to anticipate epidemics. This would allow health 
agencies to follow the coronavirus’s progress and better plan preventative actions 
[31]. Because of their data aggregation capabilities, which allow them to use huge 
volumes of data for early detection, big data models can also assist in predicting the 
COVID-19 epidemic in the future. Furthermore, big data analytics as a diversity of 
medical sources, such as infected patients, can support the implementation of 
large-scale COVID-19 research and the creation of high-reliability treatment tech-
niques [22–24].
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2 COVID-19 Therapy and Health Informatics: Promises 
and Challenges 

The worldwide health care community continues to grow to the defiance of the 
coronavirus complaint 2019 (COVID-19) epidemic, from combat zone caregivers 
to information processing experts. Clinical informatics is dependent on the relin-
quishment of specialized backing, which is critical for optimizing COVID-19



epidemic clinical operations. The requirement to produce a “new normal” for safe 
and operative care for all cases urged major advancements in data use, including the 
use of big data for exploration because traditional time-long studies were no longer 
an option, prophetic logical functionality retooled to assist prognosticate 
COVID-19, supersonic deployment of test attempts and trials of new drugs, 
development and implementation of innovative telemedicine care models, and the 
exponential expansion of the information technology system [25]. Loosening laws, 
encouraging cooperative practice between health systems and their merchandisers, 
and a worldwide need for answers created the ideal early slush for invention to sow 
at snappy rates. By keeping up with diurnal non-supervisory changes to offering 
day-to-day help to a tired bedside clinician, informaticists play a crucial part in a 
successful epidemic response strategy. Informatics are about fostering invention 
and advancing health care in the information age. As the new coronavirus spread 
throughout China and the world, informatics passed a DNA transformation to help 
frontline icons and discover a way to annihilate the contagion [26]. The Marvel 
X-MenTM conception, in which fictional characters’ transformation into icons is 
backed by hyper-accelerated inheritable mutation, is a good starting point for 
allowing the tremendous hops in informatics necessary to respond to COVID-19. 
Like numerous grand narratives, the speeding up of growth creates opponents as 
well as protagonists. The villains began as well-known data-related issues, such as a 
lack of an initial dataset for nursing evaluation and interventions or a lack of 
ICD-10 canons to register a new hazard complaint, but the pandemic quickly 
transformed them into major hurdles to finding answers [27, 28]. Informatics is 
much more than flow charts in an electronic health record (EHR). Experts in health 
informatics who work within a medical system handle a variety of data-related 
procedures in order to assist doctors in patient care. Architecting, locating the right 
seller, carrying backing, assuring nonsupervisory compliance, and establishing a 
structure similar to servers or interfaces can take months or times [29, 30]. 
A benchmark for classifying IT informatics solutions of the numerous activities 
elaborated in public health planning, replies, and retrieval was established based on 
this abstract model (Fig. 2). Indeed, seemingly basic procedures such as confirming 
that the EHR supports a new business strategy can take hundreds of hours to 
develop, test, educate, implement, and track compliance or effectiveness [31]. On 
the clinical side, IT infrastructure must be expanded to enable an increase in tele-
health usage. To help preserve physician resources during a surge, all emergency 
departments were given the option of telehealth consultations for qualified patients 
who presented during the surge. The registration/check-in process now includes 
questions about travel and symptom screening (Fig. 1). All paperwork had to be 
completed in all patients treated for acute and elective treatment across the hospital 
and screened using the EHR by front desk personnel. 
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In care settings, interviews generated a predictive alert with clinical decision 
support to provide a suitable track for following clinical treatment, including any 
testing or isolation orders required, and front-line employees followed a uniform 
screening “script” using EHR templates as needed [26, 32].
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Fig. 1 Tools for managing a pandemic 

Fig. 2 Framework involved in preparing for, reacting to, and recovering from severe public health 
risks 

At the time of ordering, clinical decision support in the form of screening 
criteria, specimen collection instructions, the requirement of defending equipment, 
and test result turnaround time estimates for simple assessment were supplied. The 
COVID-19 orders asked the ordering practitioner to answer a series of questions on 
the patient’s compliance with the testing requirements. 

Our build structure allowed for fast adjustments to maintain the system in line 
with operational expectations because screening criteria and lab handling processes 
often changed after the first deployment. Our occupational health department used



COVID-19 ordering practices similar to avert infections. When it comes to IT 
resources, there are always conflicting priorities. A crisis, such as an emerging 
disease danger, is necessary to bring all stakeholders together to work toward a 
common objective. Each category includes a variety of informatics and technology 
solutions that can be used at different stages of a major health problem [33]. 
Furthermore, each sector is influenced by a certain stakeholder group. It should be 
noted that the project’s finance and implementation may include a large number of 
parties. Each category has a wide range of informatics and technology solutions that 
can be applied at various stages of a serious health issue [34, 35]. 
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Clinicians in various system institutions may manage in different areas where 
caretakers are required, either due to universal access security requirements; they 
may only travel inside their own hospital or to another hospital system [36]. Per-
sonnel from surgical and procedural sectors, as well as affiliated surgery centers and 
clinics, were given access as part of an all-hands-on-deck plan to successfully 
staffing in a significant surge situation. This information is now available to res-
piratory therapists, pharmacists, physical therapists, and others who interact directly 
with patients [37]. Non-bedside clinicians, such as nurse auditors, administrative 
function clinicians, and IT clinicians, are also provided access. From a compliance 
viewpoint, lowered constraints are required for this type of access to be possible. 
Reports on access availability monitoring have been utilized to assist in preventing 
misuse [38]. Big data is being utilized in the EHR to train predictive analytic 
(PA) algorithms to alleviate the cognitive burden on overworked doctors. The team 
created a sepsis/infection risk PA tool to detect inpatients with COVID-19 symp-
toms after an initial emerging disease screening on arrival. When a patient is at 
danger for COVID, the EHR alerts clinicians, allowing the patient to be evacuated, 
evaluated, and treated as needed while also ensuring the safety of the crew [39]. To 
stay current with CDC standards, the emerging disease screen (EDS) is updated on 
a regular basis. Many aspects of clinical decision support (CDS) are powered by 
EDS, which allows busy physicians when a patient tests positive for COVID or 
other developmental illnesses [40]. On the clinical side, IT infrastructure must be 
expanded to enable an increase in telehealth usage. To help preserve physician 
resources during a surge, all emergency departments were given the option of 
telehealth consultations for qualified patients who presented during the surge. On 
the clinical side, IT infrastructure must be expanded to enable an increase in tele-
health usage. To help preserve physician resources during a surge in demand, all 
emergency departments were offered the option of performing telehealth consul-
tations for approved patients [41, 42]. 

3 COVID-19 Infrastructures and Technological Solutions 

The epidemic has generated a rush of interest in initiatives that would utilize 
cutting-edge technology to mitigate COVID-19’s influence on our lives. To combat 
the coronavirus pandemic, a number of technological advances and applications



have been developed. Technology development, design, and use were all affected 
by the epidemic. It is critical to have a better understanding of the role that 
information systems and technology researchers may play in combating this global 
crisis [43]. The rapid adoption of telemedicine in response to the coronavirus threat 
reminds us that digital technologies may help with pandemic management and 
reduce risks both during and after the pandemic [44]. Many IT workers are helping 
to battle the outbreak in a variety of ways, including developing anti-virus software, 
tracking and forecasting the disease’s growth, and protecting hospitals from 
cyberattacks [45]. The pandemic has consequences for manipulating information 
systems and implementation based on IT technology infrastructure. Researchers 
and practitioners in the fields of information systems and technology may assist 
with the analysis of COVID-19 pandemic data, such as the rate of interest in a 
prospective new promoter axis [44, 46]. 
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Adapting, coping, and halting the information crisis were characterized as 
reforming organizations by improving crisis-driven agility and minimizing 
crisis-revealed fragility [47]. COVID-19’s significant challenges should be assessed 
from the perspective of information systems and technology, with implications for 
further research and recommendations on COVID-19’s influence on information 
management. It is impossible to overestimate the role of information systems and 
technology in civilization [48]. The pandemic of COVID-19 has emphasized the 
urgent need to shift the public health system from reactive to proactive, as well as to 
develop technology that provides restructured data for proactive decision-making. 
COVID-19 is unique among chronic illnesses in that it is extremely infectious, may 
be transmitted from person to person, and has a high mortality rate. Furthermore, 
since COVID-19 is a novel illness, scientific knowledge of the virus that causes it, 
as well as medical treatments and government and organization responses, are still 
in the early stages of development. COVID-19’s impact on individuals and society 
is growing unanticipated. Because of the present pandemic situation and its rami-
fications, combating the COVID-19 pandemic necessitates extensive coordination 
of various factors [49–51]. 

To combat this problem, new technological solutions, such as mobile tracing 
COVID-19 and chatbots, have recently been exploited. These technologies may 
assist individuals, businesses, and society in dealing with the repercussions of the 
coronavirus pandemic. New technologies can aid in the detection of 
community-wide coronavirus propagation, monitoring of infected people’s health, 
and treatment of COVID-19 patients [52, 53]. Machine learning, image recognition, 
and deep learning algorithms are examples of AI-based technologies that may be 
used to enable faster drug discovery and development of new therapies, as well as 
for early detection and diagnosis of infection [54]. A few businesses have also 
adopted AI systems created for other purposes to help with social distance 
enforcement and contract tracking [55]. During the COVID-19 outbreak, emer-
gency 3D-printing of therapeutic items was proposed as a feasible method to 
alleviate shortages. In the field of crisis management, medical manufacturing and IT 
equipment within hospitals have been explored. Experts in health and additive 
manufacturing technology are anticipating this shift, but legislative reforms will be



required. A 3D-printed medical case study item developed during the COVID-19 
epidemic offers the design and manufacture of a suture guide for heart surgery [56]. 
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In the field of health, big data (or massive data) corresponds to all 
socio-demographic and health data available from different sources that collect data 
for various reasons. The use of these data has many advantages for COVID-19: 
identification of disease risk factors, aid in diagnosis, choice and monitoring of the 
effectiveness of treatments, pharmacovigilance, and epidemiology. Nevertheless, 
this raises many technical challenges and human beings and poses many ethical 
questions [57]. These standards have made it easier for hospitals and healthcare 
organizations to gather all of the data acquired for Covid-19 into biomedical data 
warehouses, which researchers can query through online interfaces. Many research 
groups now use integrated systems to link databases and aggregate data from 
cohorts. 

As the number of mobile applications is constantly growing, it is advisable to 
integrate them into the e-health quality process, that is, to test them internally 
using the practices and tools made available to experts. The coronavirus pandemic 
has shaken for the medical industry, which has proven extremely resilient, that of 
mobile applications. With the massive use of telecommuting, the installation of 
professional applications for monitoring and trapping covid-19 has increased 
considerably, assuming you have been diagnosed with a COVID-19-related ill-
ness. In this case, health officials may be able to use the technology to track down 
any mobile application in the case of a suspected case [58]. The current 
COVID-19 epidemic has shattered provincial, radical, intellectual, spiritual, social, 
and educational barriers worldwide. An Internet of Things (IoT) equipped 
healthcare system is useful for effective monitoring of COVID-19 patients because 
it uses a linked network. This technology contributes to increasing patient satis-
faction and decreasing readmission rates to hospitals. The use of the Internet of 
Things has a favorable impact on the healthcare expenses and treatment outcomes 
of infected patients. As a result, the goal of this research is to investigate, eval-
uate, and highlight the diverse applications of the well-known IoT idea, as well as 
to create a road map for dealing with them [59, 60]. Blockchain technology has 
been employed in the fight against COVID-19 to overcome the problems and trust 
concerns that arise with safeguarding privacy and fulfilling public health goals, 
such as tracking infected persons. Blockchain based on distributed ledgers is a 
type of digital ledger that records online medical encrypted transactions that use a 
consensus technique to operate. To support the fight against the coronavirus 
epidemic, a solution based on mHealth, blockchain technology, and AI was 
created [61, 62]. The technologies listed in Table 1 require data, people, and 
systems to be integrated and classified based on their primary focus and initial 
design intent for practical use. Data-centric technologies such as machine 
learning/deep learning, big data analytics, IoT, and blockchain are being utilized 
to combat COVID-19.



(continued)
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Table 1 Notes of COVID-19 technological solutions 

Technologies COVID-19 solutions 
examples 

Sample Tools—frameworks 

Machine 
learning/deep 
learning 

An explainable AI 
COVID-19 evaluation 
and lesion 
characterization from CT 
images using an 
automated method [63] 

166 CT scans http://perceivelab.com/ 
covid-ai 

For stock price 
movement prediction, 
COVID-19 used a hybrid 
and parallel deep 
information fusion 
methodology [64] 

Twitter data with 
extended horizon market 
data 

COVID19-HPSMP 
framework 

COVID-19 classification 
and lesion localization 
from chest CT using a 
weakly-supervised 
framework [65] 

3D CT volumes for 
COVID-19 

https://github.com/ 
sydney0zq/covid-19-
detection 

Big data Deep features and SVM 
to classify images [66] 

2138 images Deep visual words 
(BoDVW) 

Researchers and 
decision-makers are 
paying more attention to 
technological 
advancements and big 
data analytics approaches 
for evaluating large 
quantities and types of 
data [67] 

COVID statistics: https:// 
covid.ourworldindata. 
org/data/owid-covid-
data.xlsx, Google. 2020. 
Mobility data. https:// 
www.google.com/ 
covid19/mobility 

Big data analytics 
techniques 

COVID-19 is being 
tracked utilizing big data 
and big technologies via 
a digital Pandora’s box 
[68] 

The NHS is collaborating 
with a various of big tech 
companies, including 
Google, Amazon, and 
data-processing firm 
Palantir, to create a 
common data platform to 
aid with COVID-19 
monitoring 

Pandora’s box 

IOT Testing and tracking of 
IoT-COVID-19 can assist 
to limit the virus’s 
transmission, which is 
critical in the fight 
against the pandemic 
[69] 

5000 subjects IoT-enabled HVAC 
systems, sensor data 
integration for 
context-awareness

http://perceivelab.com/covid-ai
http://perceivelab.com/covid-ai
https://github.com/sydney0zq/covid-19-detection
https://github.com/sydney0zq/covid-19-detection
https://github.com/sydney0zq/covid-19-detection
https://covid.ourworldindata.org/data/owid-covid-data.xlsx
https://covid.ourworldindata.org/data/owid-covid-data.xlsx
https://covid.ourworldindata.org/data/owid-covid-data.xlsx
https://covid.ourworldindata.org/data/owid-covid-data.xlsx
https://www.google.com/covid19/mobility
https://www.google.com/covid19/mobility
https://www.google.com/covid19/mobility
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Technologies COVID-19 solutions 
examples 

Sample Tools—frameworks 

The AIoT was used in 
the COVID-19 pandemic 
prevention and control 
[70] 

Data collected from GPS 
location 

AI + IoT (AIoT), 5G 

CIoTVID: COVID-19: 
towards an open 
IoT-platform for 
infectious pandemic 
diseases [71] 

The NGSI protocol was 
established by the open 
mobile alliance 
(OMA) to deal with 
context information. 
The FIWARE IoT agent, 
which supports MQTT 
and lightweight M2M 
protocols, will next 
process the data. 
FIWARE is an 
open-source platform for 
controlling internet of 
things (IoT) systems. 
In FIWARE, the 
OMA NGSI interface is a 
RESTful API that can be 
accessed over HTTP 
(https://knowage. 
readthedocs.io/en/6.1.1/ 
user/NGSI/README/ 
index.html) 

CIoTVID platform 

Blockchain COVID-19 blockchain 
uses in health care [72] 

A total of 85,375 articles 
were reviewed, with 415 
full-length papers (37 of 
which were connected to 
COVID-19 and 378 
which were not) 

Ethereum and 
hyperledger platform 

Process claims and issue 
buyouts; develop a 
“digital identity” for 
healthy persons [73] 

COVID-19 related health 
data 

“Immunity certificates” 
or “immunity licenses” 

Robotic 
applications 

Robot-assisted surgery 
for gynecological cancer 
was employed during the 
COVID-19 outbreak [74] 

Healthcare providers Disposable surgical hat, 
medical protective mask 
(FFP3) with 
goggles/visor, work 
uniform, disposable 
latex gloves) 

Using four robotic arms 
to perform Senhance® 

robotic surgery at 
COVID-19 may reduce 
the risk of coronavirus 
infection among medical 
staff [75] 

To date, our hospital has 
done 100 different types 
of gynaecological 
surgeries, 10 of which 
were performed utilizing 
four robotic arms 

Senhance® robotic 
platform “https://www. 
senhance.com”

https://knowage.readthedocs.io/en/6.1.1/user/NGSI/README/index.html
https://knowage.readthedocs.io/en/6.1.1/user/NGSI/README/index.html
https://knowage.readthedocs.io/en/6.1.1/user/NGSI/README/index.html
https://knowage.readthedocs.io/en/6.1.1/user/NGSI/README/index.html
https://www.senhance.com
https://www.senhance.com
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Technologies COVID-19 solutions 
examples 

Sample Tools—frameworks 

3D printing The effect of 3D printing 
on patient education, 
diagnosis, and treatment 
in medicine [76] 

Copper3D NanoHack 
mask model, Lowell 
Makes mask design, and 
open-source 
non-adjustable venturi 
valve design, early 
reusable Prusa research 
3D 

Materialise 
“https://www. 
materialise.com/en” 

COVID-19-related 
supply shortages can be 
addressed using 3D 
printing technology [77] 

N95 respirators masks 
with CAD format, 
Ventilator valves, 

COVID-19 Specimen 
Collection Kit 

As part of a pandemic 
printing initiative, a new 
3D-printed swab for 
detecting SARS-CoV-2 
has been produced [78] 

The study experiment 
included nasal swabs 
manufactured in 3D, 50 
hospital staff who 
attended a COVID-19 
clinic processing, and 2 
patients with 
laboratory-confirmed 
COVID-19 

3DMEDiTech 
“https://www. 
3dmeditech.com” 

Mobile 
application 

Smartphone applications 
for corona virus disease 
2019 (COVID-19) and a 
quality assessment using 
the mobile application 
rating scale (MARS) [79] 

18 apps were created to 
share up-to-date 
COVID-19 information, 
and 8 were used for 
contact tracing 

PRISMA—mobile app 

Examine and rank the 
contents and features of 
the COVID-19 mobile 
applications [80] 

223 COVID-19-related 
mobile apps, 28 in the 
play store 

Both the android play 
store and the iOS app 
store include mHealth 
applications 

COVID-19, mobile 
health, and significant 
mental illness are all 
issues that need to be 
addressed [81] 

With serious mental 
illnesses (SMI) patients 

Mobile mental health 

4 The Post-COVID-19 Era and e-Health 

The use of the Internet for healthcare delivery is referred to as electronic health 
(e-Health), sometimes known as cybermedicine. Telemedicine, telesurgery, telere-
habilitation, teledentistry, and ePrescribing are only a few options available [82]. 
Certain developments in healthcare delivery worldwide have been hastened by the 
epidemic. As many governments across the world struggle to curb the outbreak,

https://www.materialise.com/en
https://www.materialise.com/en
https://www.3dmeditech.com
https://www.3dmeditech.com


eHealth has become increasingly important. While eHealth services are not new, 
their acceptance by many healthcare organizations throughout the world has been 
examined, and regulations controlling their use have been devised to speed up their 
deployment. eHealth has become a requirement to maximize resources, partly due 
to the logistical and financial demands of the COVID-19 epidemic [83]. 
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The rate of adoption varies because of the variances in pre-existing infrastructure 
between countries. Ironically, while eHealth is a critical resource for delivering 
healthcare to places with limited access to healthcare services, the same areas 
frequently lack access to the requirements for eHealth. Electricity and Internet 
access are not commonly available in low- and middle-income nations. Further-
more, the current economic situation makes it more difficult to utilize workaround 
solutions to these issues, exacerbating the problem of access [84]. Even when 
sufficient motivation exists, eHealth is not only a distant priority, but also a costly 
luxury in many countries, which ironically contributes to healthcare disparity. 

Beyond infrastructure and financing, the discussion of eHealth encompasses a 
wide range of issues. Data privacy is still a major concern and a barrier to adoption 
in many wealthy countries. Despite being partly helpful during the epidemic, public 
anxieties persist that eHealth solutions will establish a permanent governmental 
monitoring system. As a result, government mandates may have a negative impact 
on the public adoption and usage of accessible eHealth technologies [85]. Thus, 
citizens must be involved in policymaking. They must be informed of the shifting 
scene as stakeholders in continuing innovation. Individual freedoms and common 
goods must be carefully balanced. This delicate balancing act is critical for gov-
ernment preparedness for the next pandemic, which will undoubtedly occur. 

Another significant challenge confronting eHealth is end-user digital literacy. 
While continual technical improvements make the implementation of digital solu-
tions simpler, they may also increase the difference between those who are digitally 
savvy and those who are not, producing even more inequality [86]. The degree to 
which digital technologies are used limits the utilitarian gains that drive eHealth 
solutions. Digital solutions should be made as simple to use as feasible while 
retaining a high level of cybersecurity and data protection. Communication portals, 
in particular, should not be difficult to set up and should make use of existing 
consumer technologies, such as PCs and mobile phones. 

Despite the hurdles, eHealth will continue to flourish in the post-COVID age. 
Although each nation and location has a unique set of issues, worldwide legislation 
and actions have mostly favored eHealth. As previously stated, the pandemic has 
accelerated the global trend toward the adoption of a plethora of digital health 
solutions that fall under the eHealth banner. In the post-pandemic world, many of 
these are still applicable [87]. Such technology solutions would undoubtedly be 
beneficial in integrating disparate healthcare systems and perhaps lowering 
ever-increasing healthcare expenses.
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5 Medical Digital Transformation by the COVID-19 
Pandemic 

The COVID-19 pandemic served as a stimulus for the digital transformation of the 
healthcare industry. Opportunities to provide healthcare appeared in the middle of the 
pandemic’s social, economic, and regulatory uncertainties. Virtual outpatient visits 
have increased by 50–175 times in the United States, according to healthcare pro-
fessionals. Telehealth use surged 38 times since the beginning of the outbreak. 
According to McKinsey and Company, virtual care might account for up to $250 
billion in US healthcare spending. According to their findings, Telehealth is currently 
used by 46% of patients to replace canceled in-person appointments, up from 11% in 
2019. A similar upward trend was observed among healthcare providers, with 57% 
seeing telehealth in a more positive light than before the pandemic and 64% indi-
cating that they are more comfortable using virtual solutions for healthcare delivery. 

Virtual urgent care, virtual office visits, close virtual workplace visits, home 
health services, and tech-enabled medical supervision were highlighted as the major 
paths that might have the most effect. It is predicted that by using these channels to 
move to virtual delivery, 20% of all emergency department visits may be avoided, 
24% of office visits could be virtualized, and another 9% could be managed 
remotely. Furthermore, virtual home health services with technology-enabled 
medicine administration might account for 2% of all outpatient volumes, and virtual 
home health attendant services could account for 35% of normal home health 
attendant services. However, to fully achieve the promise of delivering healthcare 
electronically, two key components must be prioritized: providing the correct 
treatment in the right location and providing a positive patient experience. 

The shift to reimbursement based on outcomes as opposed to volume of service 
necessitates that patient must be cared for in the most appropriate setting. This 
means that patient populations must be segregated based on their clinical condition 
and based on their need for specialties with remote interactions that might be scaled 
up using home-based diagnostics and equipment. In addition, virtual healthcare 
delivery requires the development of provider competencies and the creation of 
incentives. Health systems must construct a sturdy infrastructure. Telehealth tech-
nology needs to be integrated with electronic health records, clinical protocols for 
appropriate telehealth visits must be defined, and hospital and physician practice 
processes must be revamped to support virtual care. Finally, measurable clinical 
outcomes must be tracked to quantify the value of virtual care [88, 89]. 

The pandemic response has forced many consumer service providers to digitize 
their services and offerings [88]. Limiting the spread of the virus was the aim, and 
convenience was the by-product. As such, patient experience, just as customer 
experience, is paramount for virtual healthcare delivery. Patient expectations of ease 
of use and equal effectiveness must be honored. Many healthcare systems have 
implemented “digital front-door services”. Digital front doors have arisen as a 
patient engagement buzzword in recent years. In its most basic definition, it refers 
to the digital means of scheduling appointments, finding and interacting with



healthcare providers, renewing medications, paying bills, and navigating the 
healthcare system among other services. Many healthcare systems have adopted 
these digital front-door services, but they remain crude. Therefore, these services 
will continue to improve [89]. 
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6 Artificial Intelligence (AI) and Supply IT Infrastructure 
During COVID-19 

With a few exceptions, most of the AI literature on COVID-19 detection is in the 
deep learning field. I have examined machine learning methods. Fully automated 
deep learning algorithms learn feature extraction directly from image data. In 
medical image processing, CNNs for deep feature representation and classification 
have demonstrated great performance, and they perform extremely well in the 
COVID-19 detection challenge. The ability of clinicians to diagnose patients is 
greatly aided by their knowledge of essential traits and patterns gained from data. 

Deep neural networks are a type of learning system that layers several neuronal 
nodes on top of the other. They are gradient-based learners, meaning that their 
parameters vary in response to the model’s classification/segmentation mistake. 
This involves employing stratified-class sampling to build up the model training, 
modifying the calculation of the learning rate over epochs, and performing a 
hyper-parameter has made significant progress in healthcare automation by pro-
viding for a variety of design alternatives that may be adjusted for significant 
features. Because of the computational capabilities of graphics processing units 
(GPUs) and distributed computing models, the proposed deep learning architectures 
can be taught and evaluated in clinical routine. Several studies have investigated a 
variety of CNN approaches, ML classifiers on deep features, capsule networks, 
CNN, and other methods for COVID-19 detection. This section examines a number 
of cutting-edge AI-based COVID-19 detection techniques. Table 2 summarizes the 
various classification and segmentation methods. 

6.1 Classification for COVID-19 

Various COVID-19 categorization research methods have been thoroughly exam-
ined. For the COVID-19 identification task, these investigations used two primary 
imaging modalities (chest X-ray/CT). The key takeaways from these books have 
been extensively examined. Chest X-ray images are considered the most reachable 
modality for diagnosing COVID-19 in the AI literature. The following are the 
several types of X-ray detection techniques: Transfer learning techniques [110– 
112], customized deep architectures [113–115], capsule networks and sequential 
CNN [116, 117], semi-supervised GAN techniques [118, 119], deep feature 
extraction and image processing techniques [120, 121], and CAD methodologies
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and optimization algorithms [122, 123]. As shown in Fig. 3, transfer learning 
models apply prior experience-based knowledge to the dataset by altering or adding 
specialized layers to match the dataset.
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Fig. 3 Transfer learning process 

In the CNN-sponsored COVID-19 study, this topic attracted a lot of attention. 
This field includes VGG networks, Residual networks, Inception, Xception CNNs, 
and a combination of architectures. Because of its ability to avoid the vanishing 
gradient problem, residual learning was a popular design paradigm in most CNN 
projects. To help in the diagnosis of COVID-19 chest X-rays, a multi-channel 
pre-trained ResNet architecture was presented [124]. Following that, three 
ResNet-based models were retrained one by one to categorize X-rays. A various 
method that includes pre-processing, augmentation, and crucial steps to implement 
transfer learning model was used to compare several networks [125]. The first stage 
used different ResNet topologies to recover viral pneumonia features from other 
pneumonia, whereas the second stage used different ResNet topologies to gain 
COVID from other viral pneumonia. A concatenation-based arrangement of transfer 
learning models was another sort of combination [126]. 

Deep features were extracted using the combined ResNet50V2 and Xception 
models to improve the classification based on feature vectors. The pretrained 
ResNet50 and InceptionV3 transfer learning architectures were employed with 
logistic regression to detect COVID-19 in a similar study [127]. 

Since COVID-19 has been related to airspace opacities in X-rays, the 
Resnet-based CNN is being used to train the task of identifying airspace opacities in 
chest X-rays [128]. The performance of multiple transfer learning CNNs has been 
compared in several different studies. For example, Minaee et al. used a 
custom-constructed dataset to report findings for four alternative architectures: 
ResNet18, ResNet50, SqueezeNet, and DenseNet-121 [89]. The performance of 
inception and Xception networks has been compared in several studies. Xception,



ResNet50, MobileNet, and Inception V3 were used to create a “recommendation 
network” that included four pre-trained architectures [129]. Pre-trained 
deep-learning models for recognizing COVID-19 or normal X-ray images (Dense-
Net121, ResNet50, VGG16, and VGG19) have also been reported. ResNet, VGG16, 
Xception, and Inception networks, as well as modified ResNet, VGG16, Xception, 
and Inception networks, were adapted for COVID-19 classification. The Xception 
net architecture was used to construct transfer learning models to correctly identify 
COVID-19 from chest X-rays. A multimodal classification model with enriched 
input data was published and tested on eight different transfer learning architectures. 
Transfer knowledge from previous designs, such as the DarkNet model, which 
started with fewer layers and filters and subsequently increased them depending on 
trial results [130]. Unlike current CNN architectures, customized CNN architectures 
are expressly created for classification applications [131]. The class decomposition 
technique is used for invention-scan irregularities in its class borders. A composite of 
three binary decision trees, each trained using a CNN model, was characterized 
using an external classifier [132]. Low-level features were extracted using a bespoke 
deep CNN model, which was then categorized using an Xception network [133]. For 
the classification of COVID-19 X-rays, the feature engineering technique was uti-
lized to choose relief features from deep features from a pre-trained AlexNet CNN. 
Many CNN architectures have convolutional and pooling layers stacked in a linear 
pattern [134]. A network was designed with a 14-layer convolutional network, and 
spatial pyramid pooling was created for the multi-scale classification architecture 
[135]. Das et al. used an approach to minimize over-fitting and model complexity, 
and a truncated architecture was created utilizing the transfer learning technique 
[136]. The simplified InceptionV3-based architecture was pre-trained on the Ima-
geNet database using an adjustable learning rate technique. Bridge et al. proposed a 
generalized extreme value distribution-based activation function that may be utilized 
with the Inception model to improve pre-trained InceptionV3 models. On unbal-
anced datasets, this resulted in a better classification performance than models using 
typical activation methods [136]. The GreyWolf Optimizer (GWO) method was 
used to optimize the architecture of the CNN feature extraction and classification 
components [137]. Many studies have backed up the effectiveness of the capsule 
network. Afshar et al. developed the COVID-CAPS model, which was pre-trained 
using an external X-ray dataset, to investigate the performance of various capsule net 
topologies [138]. A capsule network-based model with five distinct convolutional 
layers was constructed to provide richer feature maps to better understand its con-
tribution [139]. COVID Diagnosis-Net was built using Deep Bayes-SqueezeNet 
[120] to include the benefits of data enhancement and network optimization For a 
chest X-ray dataset, the network was developed using the SqueezeNet architecture, 
which was pre-trained and conducted Bayesian optimization as well as offline 
augmentation. A CycleGAN to enhance the sample count was developed using 
convolutional backbones as a feature extractor [121]. To forecast COVID-19, 
CT-based algorithms have used a range of feature extraction and assembly methods. 
Only a few studies have used the transfer learning technique for CT picture classi-
fication, in contrast to chest X-ray literature. Pathak et al. COVID-19 positive and
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negative CT images were detected using deep transfer learning on ResNet32 with 
appropriate layers [140]. A number of studies on CT-based COVID-19 detection 
have been based on feature extraction. Yan et al., For example, based on the 
multi-scale spatial pyramid, constructed a CNN with a decomposition architecture 
(MSSP) [141], which was able to learn multi-scale feature representations without 
the need for massive amounts of training data With the Enhanced kNN algorithm, 
Shaban et al. suggested a hybrid feature selection strategy [142], When paired with a 
classifier, it’s a powerful combination. New heuristics were added to a standard kNN 
classifier, and the strategy included wrapper and filter feature selection strategies. 
Han et al. used a deep 3D multi-instance learning model to extract features at the 
instance level. To create patient-level classification, attention-based pooling of such 
instance labels is applied [143]. New heuristics were added to a standard kNN 
classifier, and the strategy included wrapper and filter feature selection strategies. 
Han et al. employed a deep 3d multi-instance learning model to extract features at the 
instance level. To produce patient-level classification, attention-based pooling of 
such instance labels is applied [124]. Similarly, Li et al. used a modified Rubik’s 
cube Pro model as the backbone of the classification network to extract 3D attributes 
using a self-supervised technique. Wang et al. changed the network topology and 
learning mechanism for cosine annealing in their previously proposed pre-trained 
COVID-Net architecture [99]. They also showed how to deal with data hetero-
geneity and improve model performance using a collaborative learning technique. 
Ztürk et al. used a 2-stage classification model using an SVM classifier in a similar 
investigation [144]. The data were lightly augmented and subjected to numerous 
feature extraction methods before being over-sampled using the SMOTE technique. 
A Q-deformed entropy-based texture feature and deep CNN features to train a 
Bi-LSTM classifier for COVID-19 identification from CT slices was employed 
[145]. The combined feature collection was refined using a statistical ANOVA. 
Solutions provide settings for parameter adjustment based on classic CNNs. 
According, Pathak et al. [95] An LSTM network-based deep bidirectional classifi-
cation model was proposed. A mixed density network is used in the bi-directional 
LSTM network, using a memetic adaptive differential evolution technique, and the 
hyperparameters were fine-tuned. COVID-19 traits were discovered from X-ray 
images using an unsupervised clustering-based technique. They used a 
self-organizing feature map to cluster infection incidences by analyzing each com-
ponent of the image separately [96]. To develop a comparison of these networks, we 
used a deep CNN architecture for COVID-19 classification that used multi-objective 
differential evolution. It is a form of genetic algorithm that uses many rounds of 
mutation, crossover, and selection to improve the search for hyperparameters [146]. 
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6.2 Segmentation for COVID-19 

Singh et al. proposed a deep CNN architecture for COVID-19 classification that 
used multi-objective differential evolution to build a network comparison. It is a 
type of genetic algorithm that optimizes the search for hyperparameters through a



series of mutation, crossover, and selection phases. Automatic COVID-19 diagnosis 
approaches employing deep learning on CT images have garnered considerable 
interest as a way to speed up the examination process. However, the number and 
type of COVID-19 diagnosis datasets that may be utilized for training are limited, 
and the number of initial COVID-19 samples is substantially smaller than the 
average, resulting in a class imbalance problem. Because some classes have a lot of 
data and others have a lot of data, segmentation algorithms have a hard time 
learning discriminative boundaries. As a result, building robust deep neural net-
works with skewed data is a difficult yet critical challenge in the diagnosis of 
COVID-19. 
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The issue of AI efforts for COVID-19 identification using X-ray modalities has 
addressed the problem of segmentation. In X-ray, only a few studies on segmenting 
COVID-19-affected areas have been conducted. This is because, unlike CT, X-ray 
characteristics for COVID-19 localization and quantification are not commonly 
used in clinical settings. COVID-19 CT symptoms have been extensively resear-
ched, and their characteristics are typically used to identify COVID-19-affected 
areas. X-rays, on the other hand, are an excellent tool for diagnosing any type of 
pneumonia, prompting some studies to use them to divide COVID-19 infections 
into subgroups. The majority of algorithms are used for optimization. Abdel-Basset 
et al. developed a meta-heuristic approach that combines the slime mold technique 
(SMA) with the whale optimization algorithm to enhance Kapur’s entropy [147]. 
The model uses thresholding approaches to extract the regions of interest in the 
X-ray image. Ground-glass or consolidative pulmonary opacities can be observed in 
the excised areas of the image. COVID-19 can manifest itself in several ways, 
including X-ray findings. On chest X-rays, the performance of the integrated SMA 
was compared to the performance of five algorithms: WOA, FireFly algorithm FFA, 
HHA, Lshade algorithm, and salp swarm. Abdel-Basset et al. proposed a hybrid 
detection model for X-ray image segmentation based on an improved marine 
predator algorithm (IMPA) and a ranking-based diversity reduction (RDR) ap-
proach [100]. The test of reverse transcription polymerase chain reaction (RT-PCR) 
[148] is used to detect viral RNA in sputum or a nasopharyngeal swab is currently 
the gold standard for detecting COVID-19. The RT-PCR test falls short of its main 
purpose of swiftly detecting and isolating positive patients due to the time it takes to 
receive results, the restricted availability of the material in hospitals, and its rela-
tively poor sensitivity. Medical imaging, such as chest radiography or computed 
tomography (CT) scanners, may be utilized as a rapid screening alternative [149]. 

6.3 COVID-19 Risk Assessment and Prognosis 

Early treatment and selection of the course of follow-up treatment are aided by 
COVID-19 risk analysis. Some studies have examined methods for predicting the 
severity of a viral infection in order to aid clinical prognosis. The assessment of the 
regression task for lung involvement and opacity in COVID-19 was modeled with



DenseNet applied to chest X-ray scans [150]. For feature extraction, fully connected 
layers were exhibited for the target predictions. Li et al. developed a convolutional 
Siamese network algorithm that learns from chest X-rays to assess COVID-19 
pulmonary disease severity [151]. 
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DenseNet121 was trained on a CheXpert dataset with weak labels as a Siamese 
network. To test the influence of COVID-19 on pulmonary risk, CNN learning was 
switched to a smaller COVID-19 training dataset that included a random forest 
classifier based on patient health data and symptoms [136]. A multivariable logistic 
regression-based risk prediction model [152] considering the input (sex, age, 
symptoms, blood test results, and CXR findings) of the patient were all taken into 
account for medical decision making. A deep learning-based survival model that 
can predict the risk of COVID-19 patients acquiring critical illness based on clinical 
parameters at the time of admission was described [153]. For survival modeling, the 
researchers developed a three-layer feed-forward neural network, which was then 
integrated with a deep learning survival Cox model, which was used to split patients 
into high- and low-risk groups, using CT-segmented lung lesion sites and clinical 
data as input. CT segmentation was used to identify consolidation (CL), 
ground-glass opacity (GGO), pulmonary effusion, and pleural effusion. Research 
into severity assessment and criticality prediction is the next stage in the automation 
of COVID-19 therapeutic regimens [154]. 

7 Big Data Management and IT Infrastructure During 
COVID-19 

Health big data offer great prospects for innovation and progress in the sector. The 
COVID-19 crisis highlighted the value of this data and its usefulness for analysis, 
information, and awareness. 

Patients who might benefit from preventative treatment or lifestyle modifications 
can be identified using big data analysis techniques; the most valuable patient 
nursing programs can be determined by collecting and analyzing medical procedure 
data; and the most valuable patient nursing programs can be determined by ana-
lyzing and drug treating patients’ health status can be determined by analyzing and 
drug treating patients’ health status. Technological advances have increased the 
volume of health data that are available exponentially. However, the sources and 
types of data remain heterogeneous and compartmentalized, making their use by 
health actors more complex [155, 156]. As shown in Fig. 4, the implementation of 
these first application cases makes it possible to deal with data collection, trans-
formation, standardization, architecture, and storage issues as they arise [157]. 

The fast spread of the epidemic, along with its ever-changing patterns and 
symptoms, makes it increasingly impossible to manage. In addition, the epidemic 
has wreaked havoc on health systems and medical resource availability in a number 
of countries throughout the world, resulting in a high fatality rate.
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Fig. 4 Big data analytics 

Individuals will be checked on a regular basis, and a remote detection device will 
help track suspected COVID-19 instances more quickly. Furthermore, the utiliza-
tion of such systems will create a vast volume of data, opening up a variety of 
opportunities for big data analytics [158] to raise the level of healthcare service 
quality open-source software, such as the Apache project’s big data components, is 
widely accessible [159]. Cloud computing and distributed environments are con-
sidered crucial for building efficient medical data applications. The Six V’s [15] are 
a set of key qualities of big data, which include value, volume, velocity, variety, 
veracity, and variability [16]. Big data analysis methodologies are more likely to be 
employed to enhance the sector’s services and performance because of the features 
of big data that apply to data obtained from the healthcare business. Because of its 
capacity to foresee epidemics using large-scale data analytics, big data is crucial for 
combatting COVID19. During local or global disease outbreaks, big data analytics 
is progressively becoming a vital component for modeling viral propagation, 
infection control, and emergency response evaluations. The topic of data quality for 
covid-19 patients is also a major challenge. With millions of data created every day, 
problems of duplicates, updates, and availability of data are frequent. Guaranteeing 
the reliability of data in its operation involves the setting up of data management 
projects (governance, roles, mapping, repositories, processes, etc.). It is essential to 
establish rules, roles, and iterative processes for data management to ensure its 
integrity in a sustainable manner [20]. The establishment of a patient data ware-
house for covid-19 can occur in the context of collecting, processing, and sharing 
massive volumes of data. A big data application can lead to privacy issues or even 
storage costs [160]. The volume and heterogeneity of health data sources and 
formats raise real complexities in terms of data integration, processing, and anal-
ysis. Current hospital information systems are generally made up of application 
silos that do not allow data to be sufficiently standardized and cross-referenced 
[161].
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Prior to the COVID-19 pandemic, infectious disease case data reports were 
extensively dependent on early sickness detection and monitoring, as well as 
improving medical institutions, information processes, and storing and gathering a 
large amount of medical service data. The hospital information system (HIS) is a 
hospital information management system [162] including: (1) laboratory informa-
tion system (LIS) [163], (2) Radiation Safety Information Management System 
(RASIMS), (3) Picture Archive and Communication System (Pacs), and Radiology 
Information System (RIS) [164] are considered the main servers implemented in 
hospital environments for data storage and management. In medical and health 
departments, data on patient coordinates, historical medical records, illnesses, test 
results, orders, operation records, and nursing records are all recorded in the 
electronic medical record system (EMRS) [31, 165]. Following the outbreak, the 
use of big data technologies to prevent and manage COVID-19 has become a 
critical step in medical decision-making. To manage epidemic monitoring and 
analysis, viral source tracking, epidemic prevention and treatment, and resource 
allocation, digital technologies such as big data, AI, and cloud computing are being 
used. 

Utilizing big data technologies, the activity patterns of verified people and close 
connections were evaluated, and an epidemic spread model was developed using 
the positioning system. There is no doubt about the predictive competence that data 
offers us, but this advantage is perhaps all the more decisive in the medical field. 
Indeed, business intelligence in healthcare aims to help physicians make 
data-driven decisions in seconds and improve the treatment of covid 19 patients. 

This is particularly useful in patients with a complex medical history and mul-
tiple comorbidities [166]. Healthcare systems that contain features and capabilities 
for analyzing massive volumes of data are known as big data analytics platforms. It 
allows medical decision-makers to sift through huge amounts of big data for pre-
viously undiscovered connections, market trends, and pertinent data. Table 3 out-
line the most common big data analytics systems and data storage management 
platforms. 

It will feasible to simplify the actions of managing covid-19 patients using big 
data solutions in the healthcare industry. Time-constrained medical institutions may 
maximize staffing while anticipating diagnostic demands by using the correct 
human resource analytics, therefore expediting the treatment of patients afflicted by 
covid19. To combat the danger of covid-19, big data and healthcare are essential. 
This may also aid in the prevention of degeneration. Healthcare facilities can give 
correct preventative care and eventually account for hospital admissions by 
examining information such as kind of medicine, symptoms, and frequency of 
medical visits, among other things. This degree of risk assessment will not only 
result in lower inpatient expenditure, but it will also guarantee that space and 
resources are accessible to individuals who need them.
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Table 3 Summary of big data tools 

Tools Features Availability 

Apache 
Hadoop [167] 

Hadoop distributed file system (HDFS) 
distributed parallel processing of enormous 
amounts of data, including MapReduce YARN 
data storage and distributed processing (“yet 
another resource negotiator”) 

https://hadoop.apache.org 

IBM [168] IBM big SQL, apache spark, text analytics, and 
data visualization are just a few of the big data 
tools available 

https://www.ibm.com/ 
analytics/hadoop/big-data-
analytics 

Amazon [169] Data storage, data analysis systems data 
analytics is a term that refers to the study of 
apache spark, hive, presto, and other big data 
applications can be easily performed and 
scaled. scalable and easy to use apache spark, 
hive, presto, and other big data workloads 

https://aws.amazon.com/ 
emr/?c=a&sec=srv 

Microsoft azure 
[170] 

Using a cloud-based big data platform, you 
may design, assess, build, and manage 
applications. It offers the following goods and 
services: software as a service (SaaS) (SAAS). 
PaaS (platform as a service) is a term for 
infrastructure that is offered as a service 

https://azure.microsoft.com/ 
en-us/industries/healthcare/ 

Knime [171] KNIME Server is corporate software that 
enables data scientists to collaborate, automate, 
manage, and deploy analytical applications and 
services. Non-experts may use the KNIME 
WebPortal or REST APIs to access data 
science 

https://www.knime.com 

Datameer [172] Tools for data administration and modeling that 
are easy to use. Datameer spectrum is a 
non-programmable ETL++ tool and platform 

https://www.datameer.com/ 
healthcare/ 

Apache 
Cassandra [173] 

Database management system with several 
servers and a distributed database 

https://cassandra.apache. 
org/_/index.html 

Chukwa [174] Hadoop distributed file system (HDFS) https://chukwa.apache.org 

Rapiminer [171] Regulatory compliance needs a thorough grasp 
of difficult data issues 

https://rapidminer.com/ 
industry/healthcare/ 

BigML [175] BigML encrypts all connections using HTTPS, 
ensuring the safety of user data and 
discussions. The BigML team does not have 
access to any data in the system unless the user 
grants explicit permission 

https://bigml.com 

COVID-QF 
[176] 

Over COVID-19, a big data-based framework 
for complex query execution 

https://github.com/ 
cqframework/covid-19 

Apache spark 
[177] 

Using apache spark, a multi-dimensional big 
data storing system for generated COVID-19 
large-scale data 

https://spark.apache.org

https://hadoop.apache.org
https://www.ibm.com/analytics/hadoop/big-data-analytics
https://www.ibm.com/analytics/hadoop/big-data-analytics
https://www.ibm.com/analytics/hadoop/big-data-analytics
https://aws.amazon.com/emr/?c=a&sec=srv
https://aws.amazon.com/emr/?c=a&sec=srv
https://azure.microsoft.com/en-us/industries/healthcare/
https://azure.microsoft.com/en-us/industries/healthcare/
https://www.knime.com
https://www.datameer.com/healthcare/
https://www.datameer.com/healthcare/
https://cassandra.apache.org/_/index.html
https://cassandra.apache.org/_/index.html
https://chukwa.apache.org
https://rapidminer.com/industry/healthcare/
https://rapidminer.com/industry/healthcare/
https://bigml.com
https://github.com/cqframework/covid-19
https://github.com/cqframework/covid-19
https://spark.apache.org
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8 Conclusion 

The COVID-19 outbreak has sparked great concern around the world. In a silver 
lining, the uproar may act as a motivation for artificial intelligence research and 
development to assist medical personnel in combatting the epidemic. While the 
advantages are clear, artificial intelligence models will never be able to completely 
replace doctors and radiologists. Nonetheless, in recent years, computer-assisted 
techniques for medical image processing have made significant progress, boosting 
medical research and practical applications. Recent research using deep learning 
and machine learning architectures has demonstrated the reliability of image-based 
COVID-19 diagnosis. The goal of this research is to examine how far these designs 
have progressed in terms of categorization and segmentation of COVID-19 
symptoms using the modalities that have been used. The COVID-19 outbreak has 
sparked great concern around the world. In a silver lining, the uproar may act as a 
motivation for artificial intelligence research and development to assist medical 
personnel in combatting the epidemic. While the advantages are clear, artificial 
intelligence models will never be able to completely replace doctors and radiolo-
gists. Nonetheless, in recent years, computer-assisted techniques for medical image 
processing have made significant progress, boosting medical research and practical 
applications. The reliability of image-based COVID-19 diagnosis has been estab-
lished in recent research employing deep learning and machine learning architec-
tures. This study aims to examine the current accomplishments and progress of 
these architectures in the classification and segmentation of COVID-19 infection 
manifestations using the modalities utilized. Despite these advances, significant 
barriers remain, preventing future growth. Because of the urgency of this epidemic, 
humanity is counting scientific ingenuity to find a cure. Breakthroughs may happen 
quicker if medical practitioners and radiologists are engaged in the conceptual-
ization and building of a framework for artificial intelligence models. While deep 
learning and machine learning have shown promise in the medical field, they also 
have great promise in other image-based classification and segmentation problems. 

The massive amount of time and resources necessary, as well as hefty imple-
mentation costs, are now impeding this potential. Insufficient and uneven data are 
another difficulty for classification and segmentation algorithms, which leads to 
overfitting and erroneous predictions. Further advancements and innovations aimed 
at overcoming these limitations may significantly contribute to advances in 
biomedical image processing. 

Controlling an epidemic requires a complete understanding of its features and 
behavior, which may be discovered through the collection and analysis of relevant 
big data. Big data analytics are critical for obtaining the data needed to make 
judgments and take precautionary steps. The huge volumes of data currently 
available pose technical challenges for their storage and operational capacities. 
Increasingly complex computer and statistical programs and algorithms are 
required.
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