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1 Introduction 

The utility of “big data” and artificial intelligence (AI) in healthcare is growing. As 
efforts to translate theoretical results into clinical practice have become more suc-
cessful, there will be an exponential growth in the development of AI applications. 
Cardiac imaging is ripe for the use of artificial intelligence, as it is a frontline tool 
for diagnosis, generates large amounts of granular data, and can be used alone or 
with other clinical data for personalized disease management. Moreover, the mul-
tiple steps involved in cardiac imaging, such as image acquisition, image opti-
mization, measurements, interpretation, and reporting, provide immense 
opportunities for improvement in any part of the chain (Fig. 1). AI has the potential 
to positively affect clinical outcomes, reduce variability, and increase accessibility 
to broader populations. In this chapter, we review the basic terminology of AI, 
explore some current AI applications in cardiac imaging, and discuss future chal-
lenges and opportunities in the field. 

AI is defined as a computer system that can complete tasks that typically require 
human intelligence (e.g., visual recognition, speech processing, and decision-
making) by using data as input [1]. Vast amounts of health data exist within the 
medical record and diagnostic testing to serve as input for algorithms designed to 
aid in diagnosis or management [2]. In the past, there were significant limitations in 
processing complex health data, but recent advances in collating, labeling, and 
machine learning techniques have helped popularize AI in healthcare [2]. Lastly, 
technological developments and increased user access to AI technologies have 
contributed to improved incorporation into clinical workflows. Thus, three impor-
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Fig. 1 Process of cardiac imaging chain (in echocardiography) and target areas for arti cial

tant aspects to successfully implement AI applications in cardiac imaging are input 
data (source, amount, and variety), algorithm design, and validation and imple-
mentation strategy (testing, bias, and deployment).
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2 Data Management 

The Gartner Report defined successful use of “Big Data” using the concept of the 
“3Vs”: volume, variety, and velocity [3]. More recently, the addition of fourth and 
fifth “Vs” has been suggested—veracity and value. Volume refers to the need for 
large amounts of data, while variety refers to the type and source of data [3]. 
Velocity is the ability to generate and process datasets, while veracity focuses on 
the reliability and quality of said datasets [3, 4]. Value is less about the data and 
more about whether the endpoint results in actionable insights that have down-
stream impact [5]. Healthcare data can be obtained from electronic health records, 
patient-generated data (e.g., wearable devices, social media), laboratory results, 
imaging and diagnostic testing, genomic data, and outcomes, to name a few [6]. 
There has been growing interest in formally organizing the enormous volume of 
data, in the form of biobanks or public datasets in order to derive meaningful results 
[7, 8]. The benefits of applying AI to big data include the ability to rapidly digest 
large amounts of data and identify novel patterns that would otherwise be missed; 
humans would not be able to process the same amount or variety of data. 

Big data has traditionally been touted as a necessity for successful implemen-
tation of AI in healthcare, but recent paradigm shifts suggest that smaller datasets 
can be effective as well. One way to use a smaller dataset effectively is to extract 
granular pieces of data. This is particularly beneficial in cardiac imaging, where 
each data point could focus at the pixel level (color, shapes, brightness, motion,



borders) or report level (phrases and descriptive terms) [9]. These derived data 
points are referred to as “features.” The features distilled from the dataset directly 
impact the success of an AI algorithm; the features and associated labelling should 
be accurate, diverse, and of high quality. Inaccurate features and the classification 
of input data adversely affect the ability of the algorithm to understand relevant 
real-world data. 
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3 Algorithm Design 

Machine learning (ML) is a subset of AI that is characterized by the ability of an 
algorithm to improve task performance by “learning” from new data by identifying 
patterns without specific programming. Machine learning is categorized into two 
types: supervised and unsupervised. A supervised learning strategy trains the 
computational model to identify patterns by associating predetermined outcomes 
with input data [10]. In addition, Supervised models can be honed by selecting and 
weighting certain features over others to arrive at the desired outcome. Regression 
analysis, support vector machines, and random forests are all supervised learning 
methods [11, 12]. Neural networks are a more complex form of supervised learning, 
often referred to as deep learning, and are meant to recreate human thought pro-
cesses. Convolutional neural networks (CNNs) are multi-layered neural networks 
that use prior experiences to improve on outcomes [9, 13]. Unsupervised learning 
models are comparatively free-form; the model is left to discover patterns in the 
data that may have never been identified before [14]. In this strategy, data is 
“clustered” into various categories based on similarities that the model has iden-
tified, and additional statistical evaluation is required to identify the actual similar 
characteristic or feature. Hierarchical, k-means, and model-based clustering are 
examples of cluster analysis types. A combination of supervised and unsupervised 
learning strategies was used. In this approach, an unsupervised model provides 
novel features that can be plugged into a supervised model to be weighted and used 
to predict an outcome [15]. 

4 Validation and Implementation 

The successful validation and deployment of a machine learning model requires 
sufficient “training” and “testing” of data. To train the model, a subset of the total 
data is utilized for “training.” The model uses this subset of data to identify patterns 
and determine the features that are more or less important in predicting the deter-
mined outcome. “Testing” data is a separate subset (or new data) to assess the 
model’s ability to accurately predict the correct outcome despite never having seen 
the test data. This process is referred to as validation (Fig. 2). The ability of the 
model to handle variations in new data determines its generalizability and success



in clinical practice. When a model is trained on insufficient data, there is a risk of 
“overfitting,” where the model can only work on data that is extremely close to the 
original dataset. This has the additional risk of introducing bias to a model if the 
data have certain homogenous characteristics that do not reflect real-world distri-
bution. As AI technologies have been developed for imaging in clinical practice, 
their implementation depends on the ability to define important features in the 
imaging data, applying the correct type of machine learning, and designing 
deployable applications. 
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Fig. 2 Machine learning process of training, validation, and testing 

5 Implementation in Cardiac Imaging 

AI has been steadily gaining traction in all forms of cardiac imaging, including 
echocardiography, magnetic resonance imaging (MRI), computed tomography 
(CT), and nuclear medicine. Unlike the early focus of AI on radiology applications 
with static image datasets, cardiac imaging poses additional challenges owing to the 
video-based or non-static format of the data. Moreover, there are multiple areas for 
potential improvement, including operator skill impacting image quality, variability 
in measurements, and differences in interpretation. The introduction of novel AI 
technologies that can tackle some of these challenges, while also decreasing costs 
and improving efficiency, could have a profound impact on patient care and out-
comes. Machine learning applications in cardiac imaging are therefore primarily 
focused on the following four categories: image acquisition and quality, automated 
measurements, diagnostic support, and outcome prediction [9, 16, 17]. In this 
section, we review some of the current technologies that have been developed for 
various cardiac imaging modalities.
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5.1 Echocardiography 

Echocardiography is the most common imaging modality in cardiology and remains 
a frontline diagnostic and management tool. However, it is heavily dependent on 
operator skill for image acquisition, quality, and measurements, leading to con-
siderable concerns about intra- and inter-observer variability in data collection and 
clinical interpretation [18, 19]. AI technologies are continually being developed to 
reduce variability and improve interpretation [20–26]. 

Narang et al. [27] used a deep-learning-based algorithm to aid novices in 
acquiring echocardiographic images. In this study, healthcare providers with no 
prior ultrasound experience performed ultrasound with or without deep learning 
guidance. With the deep learning algorithm, providers were able to obtain 10 
standard transthoracic echocardiographic views that provided some diagnostic 
assessment for ventricular size and function [27]. EchoNet, a deep learning model, 
by Ghorbani et al. used CNNs to accurately identify cardiac structures and evaluate 
left ventricular function [28]. Zhang et al. trained CNNs on 14,035 echocardio-
grams to automatically identify 23 imaging planes, segment the images, measure 
cardiac structure and function, and detect disease [29]. This study demonstrated 
forward progress in the area of automated measurements by using the model to 
calculate left ventricular volumes, mass, and ejection fraction. The automated 
measurements for ejection fraction and longitudinal strain deviated from manual 
measurements by approximately 6 and 1.6% [29]. Currently, 3D echocardiography 
is generally considered to have better accuracy than 2D evaluation, but is limited in 
clinical practice due to a high standard of operator expertise [30]. However, Narang 
et al. used a machine learning-based algorithm to automate the measurement of 
dynamic left ventricular and left atrial volumes that showed it was both accurate 
compared to manual 3D measurements and MRI, as well as efficient by shortening 
the time required to analyze the datasets [22]. Knackstedt et al. [20] and Salte et al. 
[31] have already shown the successful clinical workflow implementation of full 
automated assessment of global longitudinal strain. 

Studies have also begun to focus on the use of machine learning models to aid in 
diagnostic support and interpretation. Zhang et al. used the aforementioned dataset 
of >14,000 echocardiograms to effectively detect hypertrophic cardiomyopathy, 
pulmonary hypertension, and cardiac amyloidosis using two echocardiographic 
planes, with a C statistic (area under the receiving operating characteristic curve) of 
greater than 0.85 for all three diseases [29]. A few studies have evaluated the ability 
to accurately assess the severity of valve dysfunction; Moghadddasi et al. [32] and 
Playford et al. [33] used machine learning models to grade mitral and aortic valve 
dysfunction, respectively. Moghaddasi et al. developed a model that had greater 
than 99% overall sensitivity and specificity in predicting whether a mitral valve was 
normal and graded the severity of regurgitation [32]. The algorithm designed by 
Playford et al. used data from the entire echocardiogram, as opposed to only the left 
ventricular outflow tract, to more accurately predict severe aortic stenosis [33]. 

Deep learning models are also utilized in fetal echocardiography and pediatric 
echocardiography. Arnaout et al. [34] used 107,832 fetal echocardiogram images to



create a CNN to automatically identify standard fetal cardiac planes, automate 
segmentation to allow for biometric measurements, and differentiate between nor-
mal hearts and those with congenital heart disease. Le et al. [35] similarly studied a 
machine learning model using random forests to detect congenital heart disease 
using retrospective data. Others have studied how to automate image acquisition in 
fetal echocardiography, as well as interpreting Doppler signals [36–38] utilizing big 
data and artificial intelligence in pediatric echocardiography is relatively new, with 
a few studies in the abstract phase applying deep learning models to automate view 
identification, [39] and assessment of ejection fraction [40]. 
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5.2 Cardiac Magnetic Resonance Imaging 

Cardiac magnetic resonance imaging (CMR) has made significant strides in the 
application of deep learning to clinical practice. The use of AI in CMR has led to 
improvements in some areas that had previously been significant barriers to the 
widespread use of CMR. The extensive time required for image acquisition and 
post-processing, artifacts affecting image quality related to cardiac motion, and 
patient factors have been the focus of various studies aimed at streamlining the 
CMR imaging chain. 

Leiner et al. and Frick et al. have both published on the automation of image 
acquisition planes, image optimization, and artifact detection [41, 42]. More recent 
work by Kustner et al. used deep learning methods to allow for reconstruction of 
low resolution CMR data to clinically comparable image quality as high resolution 
images in less than 1 min [43]. Similarly, Steeden et al. [44] used CNNs to recreate 
high resolution images from a low-resolution three-dimensional dataset in patients 
with congenital heart disease. Tissue characterization in CMR imaging often 
requires gadolinium contrast. However, Zhang et al. developed a CNN model to 
optimize existing imaging sequences, resulting in images with superior quality and 
comparable tissue burden quantification without the use of gadolinium [45]. 

Segmentation of image contours has historically been a manual task; however, 
this process is time-consuming and suffers from significant intra- and inter-observer 
variability. Multiple efforts have been successful at automatically segmenting right 
and left ventricles [46–50]. Owing to the relative scarcity of CMR data in patients, 
Winther et al. [50] used four separate sources to train a vendor-neutral CNN, which 
is an enormous advantage that allows for broader implementation. Bidhendi et al. 
[51] similarly demonstrated the success of a CNN in pediatric patients with con-
genital heart disease, which performed better than the baseline platform. 

Radiomics, a relatively new area of study in cardiac imaging, is a method to 
extract features from large amounts of medical imaging data that can identify 
previously unseen patterns and characteristics. Texture analysis (TA) uses 
machine-learning strategies to evaluate subtle variations in image intensities at the 
pixel level. Multiple studies have already demonstrated the use of machine learning 
to accurately identify clinically relevant variations in imaging texture that are not 
obvious to the naked eye [52–54]. Mancio et al. [54] employed TA to quantify



tissue changes within the myocardium of patients with hypertrophic cardiomy-
opathy to help risk-stratify patients with a lower probability of having scar tissue. 
Neisius et al. [52] discovered features using TA that could identify differences 
between CMRs in patients with hypertension and hypertrophic cardiomyopathy, 
which is a common challenge in typical clinical practice. 
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CMR studies have also shown promise for predictive modelling and decision 
support. Bello et al. used CNN modeling to segment labeled CMR images to 
develop 3D models that identified features to predict survival in patients with 
pulmonary hypertension [55]. Diller et al. used a U-net algorithm to evaluate CMR 
video clips to automatically trace endocardial borders in two views to directly 
predict prognosis in patients with tetralogy of Fallot [56]. Kotu et al. used a 
combination of multiple machine learning algorithms to stratify patients into high 
and low risk of arrhythmia after myocardial infarction [57]. 

5.3 CT 

Cardiac computed tomography (CCT) is an important imaging modality in cardi-
ology owing to its efficiency and image quality, particularly for small structures 
within the heart. However, radiation dose is a constant area of concern. Machine 
learning algorithms utilizing CCT have focused on improving image quality while 
reducing contrast. Santini et al. used a supervised learning model to “transform” 
non-contrast CCT scans into an image quality comparable to contrast CCT scans 
[55]. Geng et al. [58] also focused on improving image quality by using an 
unsupervised method to reduce “noise” in non-contrast CCTs. 

Automated measurements and segmentation have also been evaluated for CCT. 
Zreik et al. evaluated 55 patients as part of a training set to perform automatic 
segmentation of the left ventricle, which resulted in high sensitivity and specificit 
[59] coronary artery disease (CAD) is a primary disease state that utilizes CCT as a 
diagnostic tool. Given that CAD is a leading cause of mortality globally, [60] early 
diagnosis by CCT has shown benefits to aid in treatment and prevention [61] and 
can avoid unnecessary invasive testing [62, 63]. Coronary artery calcium (CAC) is 
used as a predictive score for adverse cardiac events [61] and multiple studies have 
tackled the ability to automatically estimate the value. Using a CNN architecture to 
generate a CAC score, Wolterink et al. [64] achieved able to reach 72%. In light of 
the focus on contrast reduction, Lessmann et al. [65] used non-contrast CT scans 
and the aforementioned model by Wolterink et al. to detect calcium and identify 
false positives by using paired CNNs. There was a high detection rate of CAC, but 
the model was less successful in identifying calcium in the mitral and aortic valves 
[65]. However, the potential to utilize non-contrast CTs to predict CACS is very 
promising. 

Diagnostic interpretation is another important focus of the application of AI to 
CCT. Van Hamersvelt et al. [66] evaluated the use of texture analysis (TA) of the 
myocardium to automatically identify significant coronary artery stenosis in favor 
of a typical approach in which a model is trained to identify features determined by



a human expert. Using a combination of methods, including supervised and 
unsupervised techniques, a deep learning model showed an improved prediction of 
coronary stenosis [66]. 
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Finally, CCT is one of the few cardiac imaging modalities that has used a broad 
registry to predict adverse cardiovascular events. Both Motwani et al. [67] and Van 
Rosendael [68] utilized the CONFIRM (Coronary CT Angiography EvaluatioN For 
Clinical Outcomes: An inteRnational Multicenter) registry [69, 70] to apply arti-
ficial intelligence to estimate the survival and prognosis of patients with cardio-
vascular disease. The Framingham risk score is widely accepted as a method for the 
risk stratification of patients; it uses a combination of patient demographics, lab-
oratory values, and CAC. Motwani et al. [67] incorporated CCT data and clinical 
markers to train an AI-based algorithm that performed better than the Framingham 
score. Motwani et al. trained their model by ranking the importance of expert-
determined features and placing more weight on some findings than on others. Van 
Rosendael employed a similar strategy with imaging as the only input, and found 
comparable success [68]. 

6 Nuclear Medicine 

Nuclear medicine in cardiac imaging typically encompasses myocardial perfusion 
imaging (MPI) by SPECT (single-photon emission computed tomography (SPECT) 
and positron emission tomography (PET). SPECT is more commonly used in 
clinical practice, although PET requires less radiation. SPECT is unique to other 
imaging modalities because many of the measurements are already automated, 
including quantitative perfusion assessment, ventricular volumes, myocardial mass, 
ejection fraction, myocardial thickening, and dyssynchrony. In fact, there is already 
a large registry, REFINE SPECT, with >20,000 patients from multiple centers 
collecting imaging and clinical data to serve as a dataset for AI applications [71]. 
Therefore, AI applications for SPECT are geared towards automating diagnosis, 
prognostication, and management [72]. 

Betancur et al. [73] used the REFINE SPECT registry to train and develop a 
deep learning algorithm to detect coronary artery stenosis in <1 s The model was 
trained on catherization-based coronary angiography to identify coronary artery 
stenosis and then given the automated SPECT images as an input and performed 
better than the conventional method (AUC 0.8 vs. 0.78) [73] Nakajima et al. [74] 
used a supervised learning model based on expert labels from a multi-center dataset 
to design a neural network that performed better than human experts (AUC 0.97). 
Multiple studies have combined imaging variables and clinical factors to serve as 
inputs for machine learning models and have yielded better diagnostic accuracy 
than visual assessment alone [75, 76]. Haro Alonso et al. [77] compared a support 
vector machine (SVM) to traditional regression models to accurately predict cardiac 
death in patients. The study used SPECT data to train the model and found that the 
SVM performed better than the regression model (AUC 83 vs. 0.77).
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7 Challenges and Pitfalls 

The deployment of machine learning models in the real world remains one of the 
biggest challenges facing the incorporation of AI into clinical practice. Initial 
concerns about the inexplicability, or “black box” nature, of results from AI-derived 
data has plagued the adoption of AI in the healthcare field despite ongoing focus on 
designing models that are more transparent [78]. “Explainable AI” could include 
neural networks with built-in layers to assess decision-making and quality, allowing 
users to gain insight into the features that the model has selected [79]. Another 
approach asks the model to provide confidence intervals for its own predictions, 
allowing the user to provide clearer feedback focused on predictions that have wide 
intervals [80]. 

Another major challenge is the lack of infrastructure in most healthcare insti-
tutions, impacting the initiation of projects, inconsistent data labeling, difficulty 
navigating privacy laws and data sharing, and lack of technical support. This often 
limits research to single-center studies, often with retrospective data. While the 
model may perform well, it is unlikely to generalize widely and effectively impact 
clinical practice effectively [81] large datasets are necessary to adequately train 
deep learning models. This is especially difficult to overcome in patients with rare 
diseases or relatively small patient populations (congenital heart disease). In 
addition, the risk of utilizing narrow patient groups has been shown to result in a 
significant bias that could have a negative impact on the healthcare system; [82] it  is  
of paramount importance to have adequately diverse datasets. Given the heavy 
involvement of vendors in cardiac imaging, it can also be challenging to incorporate 
vendor-neutral models, although there have been a few [83]. In the same vein, it is 
difficult to prove the benefit of AI-based care without extensive testing with human 
experts. Lastly, most clinicians do not have the opportunity to learn or experiment 
with AI concepts or how they can be incorporated into clinical practice. This can 
adversely affect the uptake of new technologies and the progress of stymie. 

8 Future Directions 

Despite the challenges mentioned in the previous section, the advances that have 
already been made in the areas of cardiac imaging and AI are impressive. For each 
imaging modality, studies have demonstrated improved image acquisition, quality, 
diagnostic accuracy, measurement automation, and outcome prediction. The results 
are promising and have the potential for far-reaching impacts on improving 
workflows and patient care. Future endeavors should focus on multicenter collab-
oration to create broadly representative datasets to encourage generalizable and 
reproducible results. Additional efforts should be placed on the effective deploy-
ment of algorithms and a way to compare algorithms that attempt to solve the same 
diagnostic question. As AI applications become more pervasive in healthcare, the



combination of imaging data and radiomics and the other “-omics” (genomics, 
proteomics, and metabolomics) will strengthen the ability of machine learning 
predictions to provide individualized care to patients. 
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