
Chapter 2 
A Survival Analysis Guide in Oncology 

Smaranda Belciug 

Abstract Survival analysis has a crucial role in oncology. These statistical methods 
are ubiquitous in oncology, helping physicians determine the death risk, the best 
course of treatment, and even help in discovering new therapies. The aim of this 
chapter it to provide a guide on some survival analysis statistical methods as well as 
practical examples on how to apply them in oncology. We begin with some theory 
regarding survival analysis in general, followed by Kaplan–Meier survival curves, 
logrank test and hazard ration to determine the best course of treatment. The chapter 
ends with the Cox regression. This chapter is a step-by-step guide in performing 
survival analysis and in interpreting the obtained results. 

Keywords Survival analysis · Kaplan–Meier curve · Logrank test · Hazard ratio ·
Cox regression 

2.1 Introduction 

Cancer remains the main health challenge we are facing nowadays. Seems like every 
day you find out that another person you know has been diagnosed with cancer. After 
the shock wave, you feel sad for that person, and guilty because you are somehow 
happy that this did not happen to you or your loved ones. Even if heart diseases 
still remain the first cause of death worldwide, the death rate caused by them is 
rapidly falling. Why is that? Because we found out what causes heart diseases: high 
blood pressure, high weight, high glucose levels, smoking, drinking, etc. Knowing 
the cause, we have the means to prevent them. Unfortunately, this is not the case for 
cancer. We still do not know what causes cancer. 

Sadly enough, nowadays most people Google first the symptoms, before speaking 
to a physician. No matter what we are Googling, cancer will appear on the result 
page. So, we are alarmed, and while waiting for the doctor’s appointment we start 
Googling for that type of cancer. The most searched questions are: what is the 5-year
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survival rate? What is the overall survival? If there is need for surgery, what is the 
morbidity? What about the mortality rate? So, the number one outcome of interest 
is survival—overall, disease-free, recurrent, surgery survival. 

The Global cancer prevalence rose from 0.54 to 0.64% since 1990. For instance 
for prostate cancer the rates rose from 67.8% to 98.6%, due to better AI prediction, 
[1]. Even if the cancer rates are rising, the death rates are falling. This can only mean 
one thing: early diagnosis and/or better novel treatments, hence people have better 
and longer survival rates. The 5-year survival rates for all cancers have increased 
from 50.3% to 67% [2–4]. Table 2.1 and Fig. 2.1 present how the 5-year survival 
rates for different types of cancers have changed from 1970–1977 to 2007–2013 in 
the USA.

WHO’s global target (25 × 25) is a 25% reduction in deaths from cancer in people 
aged 30–69 years by 2025 [5]. Cancer survival research is crucial for developing 
cancer control strategies [6], control measures [7], so that the effectiveness and costs 
of them to be assessed [8, 9]. 

Survival analysis concerns the time until a certain event takes place: i.e. the time 
that passes from the start of chemotherapy until the tumor stops shrinking (the patient 
stops responding to treatment), the time elapsed from when a cancer surgery is over

Table 2.1 5-year cancer 
survival rates in the USA 
comparison 

Cancer type 1990–1997 (%) 2007–2013 (%) 

All-cancers 50.3 67 

Prostate 67.8 98.6 

Thyroid 92.1 98.2 

Melanoma 81.9 91.7 

Breast (female) 74.8 89.7 

Uterus 82.3 86.9 

Bladder 72.3 77.3 

Kidney 50.1 74.1 

Non-hodgkin lymphoma 46.5 71 

Cervix uteri 67.1 69.1 

Mouth/throat 52.5 64.5 

Colon 49.8 64.1 

Leukemia 34.3 60.65 

Myeloma 24.6 49.6 

Ovary 36 46.5 

Stomach 15.2 30.6 

Brain 22.4 30.5 

Esophagus 5 18.8 

Lung 12.2 18.1 

Liver 3.4 17.6 

Pancreas 2.5 8.2
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Fig. 2.1 5-year cancer survival rates comparison

until the patients gets out of the ICU (Intensive Care Unit), or the time that passed 
from the moment the patient started radiotherapy, till she/he passed away.

In this chapter, we are going to present statistical models that are used in survival 
analysis, along with examples and explanations regarding the obtained results. 

2.2 Survival Analysis 

Survival analysis deals with survival times. In order for you to start such an anal-
ysis you need two variables: a numeric metric of time (i.e. number of days, weeks, 
or months), and a categorical variable that identifies the event (i.e. irresponsive to 
treatment, death). The merged variables give us a lot of information about whether 
a subject has entered or left the study, and if and when the subject has met a certain 
criterion or not. 

Unfortunately, in practice things are never that simple, and we might find ourselves 
in two situations: 

• The start time cannot be specified. For example, we cannot establish exactly when 
was the exact onset of the disease. Some cancers progress at a faster pace than 
others, being more aggressive, but there is no precise method to determine the 
debut of cancer. 

• The end time is difficult to be determined. If the end time is given by the time of 
death, then there is no problem in establishing it, but if a person decides to leave 
the study, or she/he survives more than the time that was set to be recorded (i.e. 
5-year survival rate), things change. This is the case of the censored survival time.
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In Fig. 2.2 we present an example of how we can record the survival times. The 
figure is converted into a table, Table 2.2. 

The dotted line from Fig. 2.2 gives us information about the study: the patients 
were recruited the first 5 months of the study. The timeline from month 5 till month 9 
represents the follow-up part of the study. The black square signifies that the patient 
has died, whereas the grey circle means that the patient did not die. To be more 
specific: patient 1 was recruited at the beginning of the study and stayed in the study 
till month 3, time of which she/he died. The second patient enrolled in the study from 
month 0, and did not have any event (i.e. died) during the whole observation period, 
so she/he represents a censored data. Patient 3 also started from the beginning of the 
study, but died five months later. The fourth patient enrolled on month 1 and stayed

Fig. 2.2 Survival time recordings 

Table 2.2 Tabulated survival time recordings 

Patient Start time Time of death/censored Death/censored Survival time 

1 0 3 D 3 

2 0 9 C 9* 

3 0 5 D 5 

4 1 9 C 9* 

5 1 8 D 7 

6 3 5 C 2* 

7 4 5 D 1 

8 5 8 C 3* 

9 5 9 C 4* 
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Fig. 2.3 Survival analysis 
tree structure diagram 

until the end of it. The fifth patient enrolled on month 1, and had an event (i.e. death) 
on month 8. The sixth patient enrolled on month 3, but left the study on month 5. 
Patient 7 joined the study on month 4 and passed away on month 6. Both patients 
8 and 9 joined on month 5, the first leaving the study on month 8 (censored data), 
while the latter on month 9 (censored). 

You can see in Table 2.2 that the censored data are marked with (*). 
In general, we use survival analysis in oncology to review the outcomes of clin-

ical trials, cohort studies, etc. For instance, if we have a cohort of 30 patients who 
have been diagnosed with lung cancer between 2017 and 2019, they have started 
chemotherapy and/or immunotherapy and were observed until the end of 2021, we 
wish to review their survival time. So far, we have seen that survival analysis contains 
a starting period, in which the patients are enrolled, followed by the observation 
period or follow-up, when the patients are observed. Besides these two stages, there 
exists another one named the final period. In this stage the collected data is analyzed, 
and conclusions are drawn. 

Let us presume that from the 30 lung cancer patients, 6 of them left the study 
during the observation period. The 6 patients will be excluded from the statistical 
analysis process. From the remaining 24 patients, 14 survived and 10 passed away. 
This observation is depicted in a tree structure diagram, as the one presented in 
Fig. 2.3. 

A more thorough tree diagram will include even the patients that left the study. 
See Fig. 2.4. 

We can compute the death rate or the death risk using the following formula: 

deathrate = 
numberof deaths 

numberof subjects 
. 

In our example the death rate is 0.41, that is 41%. 
The death probability is computed as: 

Deathprobabili t y = D 

N − 0.5 × L

Fig. 2.4 Survival analysis 
tree diagram 2 
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where N is the cohort size, D is the number of deaths, and L is the number of patients 
that left the study during the observation period. The death probability in our case is 
0.37, that is 37%. 

Having computed the death risk, we can compute the survival probability as 1— 
death probability for that interval. By plotting the cumulative survival probability, 
we obtain the survival curve. The curve starts at 1 meaning that all patients are alive 
and approaches 0 as patients start to die. In the following sections we shall discuss 
more about survival curves, starting with the Kaplan–Meier survival curves. 

2.3 Kaplan–Meier Survival Curve 

Kaplan–Meier curves were invented in 1958 by Edward L. Kaplan and Paul Meier, 
and they can be used if the data is incomplete [10]. They represent the standard for 
reporting the survival rate of patients, being used in over 70% of the oncology papers 
[11]. 

Kaplan–Meier curves use three types of data regarding the patient: the date the 
patient entered the study, the last date of observation (i.e. the last time the patient was 
seen alive), and whether the last observation was due to the death of the patient, or 
because the patient left the study. We can use Kaplan–Meier curves to determine the 
survival probability of a patient given certain conditions. For example, by recording 
the survival times of patients that undergo chemotherapy, we can compute the prob-
ability of a new patient to survive a certain period of time if she/he undergoes the 
same protocol. 

We denote the survival time with a random variable X. Pn is the probability of a 
patient to survive the nth day after the last chemotherapy session, conditioned by the 
fact that she/he survived all the other n−1 days before that. Pn is the total probability 
of surviving all the n days, and we compute it as follows: 

Pn = P1 · P2 · . . .  · Pn 
We compute the intermediate survival probabilities using: 

pk = pk−1 × 
rk − fk 

rk 
, 

where pk is the probability of surviving k units of time, rk is the number of patients 
with a death risk at the k moment, that survived k units of time, and fk the number 
of deaths reported at the k moment. If no patient has died the survival rate is 100%. 
We compute the standard error of the probability of surviving using: 

SE  pk = pk ·
/

(1 − pk) 
rk 

.
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If we presume that pk is governed by the Normal distribution, than we can compute 
the 95% interval as follows:

(
pk − 1.96 × SE  pk , pk + 1.96 × SE  pk

)
The standard error does not always give accurate approximations if there are 

extreme values in the data sample. If this is the case, the Greenwood formula is 
preferred: 

SE  pk = pk · 
⎡⎟⎟√ kΣ

j=1 

f j 
r j ·

(
r j − f j

) . 

Let us presume that we have a sample data that contains 16 patients that have been 
diagnosed with stage IV lung cancer. All the patients have undergone chemotherapy 
treatment with a certain type of drug, drug A. The patients are monitored 14 months. 
We start the survival analysis from day 0 (Table 2.3). 

Using the survival probability formula, we compute the survival probability at a 
given time. Table 2.4 presents these calculations.

The corresponding Kaplan–Meier curve is plotted in Fig. 2.5.
Kaplan–Meier survival curves have a drawback: if we wish to compare two or 

multiple sample data, we can obtain only a comparison at a certain moment in time, 
not a global one. To resolve this issue, we can use the logrank test, or hazard ratio.

Table 2.3 Life table for lung 
cancer patients that 
underwent chemotherapy 
with drug A 

No. of subjects Survival time (months) Event/Censored 

1 2 1 

2 3 1 

3 5 1 

4 5 1 

5 5 1 

6 5 0 

7 7 1 

8 7 1 

9 7 1 

10 9 0 

11 10 0 

12 10 0 

13 11 1 

14 11 1 

15 12 1 

16 12 1 
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Table 2.4 Survival probabilities, standard error and confidence interval 

Time Events Survival rate pk SE Confidence interval 

0 0 1 0 0 (1, 1) 

2 1 0.9375 0.9375 0.0605 (0.6323, 0.991) 

3 1 0.875 0.9333 0.0826 (0.586, 0.9672) 

5 3 0.6875 0.7857 0.1159 (0.4046, 0.8563) 

7 3 0.4812 0.7 0.1285 (0.2241, 0.6993) 

9 0 0.4812 1 0.1285 (0.2241,0.6993) 

10 0 0.4812 1 0.1285 (0.2241, 0.6993) 

11 2 0.2406 0.5 0.1364 (0.04473, 0.5204) 

12 2 0 0 0 (0, 0)

Fig. 2.5 Kaplan–Meier survival curve

2.4 The Logrank Test 

The logrank test is a non-parametric test that uses the null hypothesis H0: “there is 
no difference between the two groups”. We perform this test by dividing the time 
scale according to observed events (i.e. deaths), while ignoring the censored data. 
For each interval we compute the observed number of deaths and the expected one, 
summing them up. 

If we have two groups of patients, each group receives a certain chemotherapy 
drug. We will divide the survival time in time periods. Each period ends with one or 
multiple deaths. For each death unit, and each patient group, we compute the number 
of patients that are at death risk. Let us denote with r1 the number of patients with 
death risk for sample group 1, and with r2 the number of patients with death risk for 
sample group 2. Next, we compute the number of observed deaths for each group, 
f1 and f2. With this information we proceed on building the following table, Table 
2.5.

The expected number of deaths for each group is computed using the following 
formula:
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Table 2.5 Death and survival 
data regarding the two sample 
groups of patients 

Group 1 Group 2 

Deaths f1 f2 

Survivals r1 − f1 r2 − f2 
Total r1 r2

ei = 
ri · f 
r 

, i = 1, 2. 

Next, we must sum up the observed values, Oi , as well as the expected values, 
Ei : 

Oi =
Σ
j 

f j i  , i = 1, 2, 

Ei =
Σ
j 

e ji  , i = 1, 2. 

The logrank statistics is computed as follows: 

X2 = 
(O1 − E1)

2 

E1 
+ 

(O2 − E2)
2 

E2 
. 

For multiple groups we will use: 

T = 
nΣ
j=1 

mΣ
i=1

(
Oi j  − Ei j

)2 
Ei j  

. 

To verify whether we accept or reject the null hypothesis, we will use the 
O1 + O2 = E1 + E2 as control equality. The statistic value is compared with a 
χ 2 distribution with (n − 1)(m − 1) degrees of freedom. n represents the number of 
groups, whereas m represents the number of time intervals [12, 13]. 

Let us exemplify how the logrank test works. Let us presume that we are 
conducting a clinical trial, with two types of immunotherapy drugs, A and B. For  
14 months we have monitored the two groups of patients diagnosed with IV grade 
lung cancer. The first group contains the 16 patients from the Kaplan–Meier section, 
whereas the second group contains 12 patients. Table 2.6 presents the data regarding 
the two sample groups.

Using the survival probability formula, we compute the survival probability at a 
given time. Table 2.7 presents these calculations.

The corresponding Kaplan–Meier curve is plotted in Fig. 2.6.
For a better comparison we shall plot both curves in the same plot. Figure 2.7 

present this plot.
Using the logrank equations we can build the following table, Table 2.8:
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Table 2.6 Life table for lung cancer patients that underwent chemotherapy with drug B 

No. of subjects Survival time (months) Event/Censored 

1 14 1 

2 14 0 

3 5 1 

4 5 0 

5 10 1 

6 10 1 

7 10 0 

8 11 0 

9 11 0 

10 14 0 

11 14 0 

12 14 0

Table 2.7 Survival probabilities, standard error and confidence interval 

Time Events Survival rate pk SE Confidence interval 

0 0 1 0 0 (1,1) 

5 1 0.9167 0.9167 0.0605 (0.6323, 0.991) 

10 2 0.7333 0.8 0.0826 (0.586, 0.9672) 

11 0 0.7333 1 0.1159 (0.4046, 0.8563) 

14 1 0.5867 0.8 0.1285 (0.2241, 0.6993)

Fig. 2.6 Kaplan–Meier survival curve second group
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Fig. 2.7 Kaplan–Meier curves for both sample patients

Table 2.8 Goodness of fit 
table 

Group Observed frequency Expected frequencies 

Group 1 12 6.829 

Group 2 4 9.170 

Fig. 2.8 Goodness of fit 
histogram 

The Goodness of Fit histogram is presented in Fig. 2.8. 
The test statistic χ 2 equals 6.829, while the p-level equals 0.0089. This means 

that we will reject the null hypothesis, implying that there are significant differences 
between the survival rates of the patients that use drug A, versus drug B. 

2.5 The Hazard Ratio 

Besides the information regarding the difference between two groups of observations, 
we might be interested in seeing how truly different the two groups are. In this matter, 
we cannot use the logrank test, but we can apply the hazard ratio. Technically, we 
will measure the relative survival between the two groups by comparing the observed 
and expected numbers [14–19]. The hazard ratio is computed using the following 
formula:
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R = 
O1

/
E1 

O2
/
E2 

. 

Returning to our example, we obtain the following results (Fig. 2.9; Table 2.9). 
The obtained results show that the estimated relative risk of dying when under-

going imunotherapy with drug A is 3.1839 of the estimated relative risk of dying 
when undergoing chemotherapy with drug B. More specifically, if the hazard ratio 
equals 1, it means that there is no difference in survival rates / event rate over time 
between the two sample groups. If the hazard ratio is greater than 1, just like in 
our example, then the risk of having an event is greater in the group that uses drug 
A versus the group that uses drug B. Please note that the hazard ratio indicates an 
increase of hazard when using drug A, which is an increase in the rate of the event, 
not the chances of it happening.

Fig. 2.9 Hazard ratio—Time to event curves 

Table 2.9 Hazard ratio 
results 

Hazard 95% Confidence interval χ 2 p-value 

3.1839 (1.194, 8.487) 4.494 0.034 
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2.5.1 Cox Regression Model 

The chapter ends with the Cox’s proportional hazard regression model or Cox regres-
sion, which creates a survival function that gives us a certain event’s probability (i.e. 
death, irresponsive to treatment) to happen at a particular time t. Having previously 
observed and recorded data, we can build the model, and afterwards use it to make 
predictions on new patients. Cox regression can analyze multiple factors. Some may 
think that instead of using the Cox regression, we might be able to use the multilinear 
regression. This is not possible due to the following: 

• in general, samples that contain survival times have exponential or Weibull distri-
butions, and multiple linear regression cannot be applied unless the sample data 
is governed by the Gaussian distribution. 

• Survival times contain censored data. 

When using the Cox proportional hazard regression method, we need to compute 
the survival function and the hazard function. We compute the survival function as 
it follows: 

S(t) = {T > t}, 

where t is the time, and T is the time remaining till the patient’s death. Hence, we 
can write the lifetime distribution as: 

F(t) = 1 − S(t). 

We compute the number of deaths per time unit as: f (t) = d 
dt  F(t). The  hazard 

function is: 

λ(t) = P{t < T < t + dt} = 
f (t)dt  

S(t) 
= −  

S′(t)dt  
S(t) 

. 

Practically, by computing the hazard function we find the patient’s death risk 
within the timeframe dt, when previously given T time left to live. The Cox regression 
model presumes that variables within the hazard function are independent and have 
a constant effect over the time of the survival, and each of them can be a predictor 
or covariance: 

h(t; Z1, Z2, . . . ,  Zk) = h0(t) · exp(b1 Z1 + b2 Z2 +  · · ·  +  bk Zk). 

The function can be afterwards transformed into: 

ln

⎡
h(t; Z1, Z2, . . . ,  Zk) 

h0(t)

⏋
= b1 Z1 + b2 Z2 +  · · ·  +  bk Zk .
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The h0(t) is the underlying hazard function and represents the hazard when all 
the variables equal 0. Two assumptions must be fulfilled [20–22]: 

• The hazard and the independent variables have a log-linear relationship; 
• The hypothesis of proportionality: the relationship between the underlying hazard 

function and log-linear function of covariates exists. 

Let us see how the Cox regression works on another fictional example. Our 
sample data contains 17 patients diagnosed with lung cancer. The dataset contains 
four attributes, four predictor variables (time, age, number of affected lymph nodes, 
number of months that have passed since the surgery), and the categorical variable 
(survival). The data is presented in Table 2.10. 

First, we were interested in plotting the Kaplan–Meier curve to see the survival 
after the oncological lung surgery. Figure 2.10 show the curve together with 95% 
confidence interval.

Next, we built two cohorts of patients. The first had no cancerous lymph node 
detected, the other had more than one. We have plotted the survival curve for both 
groups using Kaplan–Meier (Fig. 2.11).

We have applied the Cox regression model having as event the Survival attribute, 
and as duration the Time attribute. The obtained results are in Table 2.11. The  
summary statistic table indicates the significance of the covariates in predicting the 
Survival risk. The large confidence interval indicates that the sample data is small.

Table 2.10 Fictional lung cancer patient dataset 

# Patient Time Age No lymph nodes Months from surgery Survival 

0 12 57 1 6 1 

1 18 65 3 7 1 

2 24 63 0 12 1 

3 24 56 2 16 1 

4 11 62 4 10 0 

5 26 75 0 23 1 

6 16 48 0 11 1 

7 19 51 0 9 1 

8 5 66 1 5 0 

9 6 63 2 4 1 

10 4 68 4 2 0 

11 15 66 5 10 0 

12 20 65 0 18 1 

13 28 59 1 25 1 

14 12 70 1 11 0 

15 12 72 2 10 1 

16 28 65 0 26 1 
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Fig. 2.10 Kaplan–Meier 
curve and 95% confidence 
interval for survival after 
oncological lung surgery

Fig. 2.11 Kaplan–Meier 
curve and 95% confidence 
interval for two lung patient 
cohorts

The p-level shows us that the number of months that have passed since the oncolog-
ical surgery is significant, while the others are not. The hazard ratio for this attribute 
is 0.71 showing a strong relationship between the number of months that have passed 
since the surgery and decreased risk of death. Notice that the hazard ration for Age 
is 1.01, which suggests only a 1% increase for the higher age group. Technically:

• Hazard ratio = 1: no effect 
• Hazard ratio < 1: reduction in the hazard 
• Hazard ratio > 1: increase in hazard. 

Let us see now which attributes affect the most from the following plot (Fig. 2.12):
From Fig. 2.12, we can clearly see that the number of months that have passed 

since the surgery is indeed significant, while the others are not. As a final note, we 
have plotted the survival probabilities for different persons in our dataset. From the 
graph (Fig. 2.13), we can see that patient 13 has the highest chances of survival, 
whereas patient 8 has the lowest.
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Table 2.11 Results of Cox 
hazard regression 

Age Number of 
lymph nodes 

Months from 
surgery 

Coef. 0.01 −0.05 −0.34 

Exp(coef.) 1.01 0.95 0.71 

SE(coef.) 0.06 0.30 0.12 

Coef. lower 
95% 

−0.10 −0.63 −0.58 

Coef. upper 
95% 

0.13 0.53 −0.10 

Exp. (coef.) 
lower 95% 

0.91 0.53 0.56 

Exp. (coef.) 
upper 95% 

1.13 1.71 0.90 

Z 0.26 −0.16 −2.82 

p-level 0.80 0.87 <0.005 

−log2(p) 0.33 0.20 7.70

Fig. 2.12 Significant 
attributes

Fig. 2.13 Survival 
probabilities for patients: 0, 
4, 8, and 13



2 A Survival Analysis Guide in Oncology 45

2.6 Conclusions 

This chapter provides a survival analysis guide with applications in oncology. 
Survival analysis represents an important part of cancer research. It can be applied 
to determine the survival rate of patients, to determine which treatment protocol is 
more efficient, or to establish whether new therapies are indeed better than the old 
ones. Using survival analysis in clinical trials we can move forward in providing the 
best care for cancer patients. 

In this chapter we have discussed the theory behind Kaplan–Meier survival 
curves, logrank test, hazard ration, and Cox regression, as well as practical exam-
ples. We hope that this chapter will provide data scientists and oncologists a better 
understanding of the survival analysis process. 
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