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Abstract This Chapter gives an overview of data processing methods used in
measuring gravity anomalies on a moving base. Data processing and software of
Russian mobile relative gravimeters Chekan and GT-2 are described. Information is
given on optimal and suboptimal filtering and smoothing algorithms for estimation
of gravity anomalies, and the methods used to identify the models needed for the
algorithm design. The method of designing suboptimal smoothing algorithms with
a constant delay is considered as applied to marine gravity measurements. Fusion of
airborne gravimetric data and the global EGF models by multiscale representation
of an anomalous gravity field using wavelet expansion on the sphere is addressed.
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Introduction

This chapter gives a comprehensive overview of data processing methods used in
measuring gravity anomalies (GA) on a moving base. The chapter contains five
sections.

Sections 2.1 and 2.2 describe the features of data processing and software of
Russian mobile relative gravimeters of the Chekan series (Sect. 2.1) and GT-2
series (Sect. 2.2) that are widely used for taking high-precision measurements of the
Earth’s gravitational field from marine vessels and aircraft, including measurements
in remote areas of the Arctic and the Antarctic.

Each section provides a description of the technology for acquisition, onboard
quality control, postprocessing, and subsequent geophysical interpretation of marine
and airborne gravity survey data. Algorithms and mathematical software used for
acquisition and postprocessing of gravimetric data obtained using gravimeters of
these series are discussed.

Section 2.3 focuses on the design of optimal and suboptimal filtering and
smoothing algorithms for estimation of gravity anomalies, and the methods used
to identify the models needed for the algorithm design.

The optimal filtering and smoothing problem is considered in general formwithin
the Bayesian approach; an example is given to illustrate the design of optimal algo-
rithms as applied to GA estimation. Within this approach, the potential estimation
accuracy can be calculated with the specified models of the anomalies and the errors
of the measuring instruments, which allows objective estimation of the efficiency of
various suboptimal algorithms. Further, the practical stationary algorithms based on
the Butterworth filter and the two-stage estimation procedure are discussed, and their
efficiency is analyzed. The importance of structural and parametric identification of
the models is emphasized, which provides the required information on the models
when implementing optimal algorithms. An identification algorithm is proposed,
which is based on nonlinear filtering methods and actually makes the GA estimation
process and the algorithms adaptive. The results of real data processing using the
proposed algorithm are given in Conclusions.

Section 2.4 describes the method of designing suboptimal smoothing algorithms
with a constant delay applied to the problem of marine gravity measurements.

A theoretical justification of the proposed method is given, and a methodical
example is used to compare the proposed suboptimal algorithmwith optimal filtering
and smoothing algorithms. The section describes the smoothing algorithm formarine
gravity surveys which is designed using the method under consideration and imple-
mented in the GT-2M gravimeter software. The results of survey data processing
using the proposed algorithm are presented.

Section 2.5 discusses the problem of combining airborne gravimetric data and the
data from the global models of the Earth’s gravitational field. The problem is solved
by applying multiscale representation of an anomalous gravity field in the area of an
airborne gravimetric survey using wavelet expansion on the sphere. The algorithm
for data integration obtained by this method is described and the results of its work
are discussed.
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2.1 Chekan-Series Gravimeter Data Acquisition
and Processing Software

High-precision gravity surveying from moving vehicles remains the most common
and promising method for studying the Earth’s gravitational field. The develop-
ment of gravimetric equipment involves intense research based on high technology
and profound knowledge base. An important aspect on which the final quality of
geophysical data depends is functionality and efficiency of mathematical software.

A distinctive feature of marine and airborne gravity surveys is that the data is
processed in successive steps that include data acquisition, onboard quality control,
postprocessing, and subsequent geophysical interpretation of measurement results.
Inadequacy of software at any of these steps can result in a significant deterioration
in the quality of the survey results or even complete loss of the material, which is
unacceptable for hard-to-reach areas of the Earth.

Choosing an adequate mathematical model that takes into account the design
features of the gravimeter used and its calibration parameters, the possibility of
applying various corrections and changing the coefficients and structure of the digital
filter is of vital importance in postprocessing of gravity data.

Section 2.1 considers algorithms and mathematical software used in the acquisi-
tion and postprocessing of the gravimetric data obtained using the Chekan gravime-
ters described in detail in Sect. 1.2. All processing steps are described, including
calibration and diagnostics of the system equipment that are carried out before the
survey starts, real-time data acquisition, processing of the marine and airborne gravi-
metric profiles and final postprocessing of the survey results (Krasnov and Sokolov
2015). The structure of the software for various stages and types of gravity surveys
is shown in Table 2.1.

2.1.1 Calibration and Diagnostics of the Gravimeter
Equipment

Periodic calibration of the sensing element is a mandatory procedure for any type
of gravimeter. In addition, during marine and especially airborne gravity surveys, it
is necessary to calibrate sensing elements of the gyro stabilization system. In order
to automate the setup procedures for the gravity sensor (GS), gyro platform (GP),
and UMT unit at the manufacturer’s plant and provide for their field diagnostics, a
special software was developed that comprises 3 programs: TestGrav, TestGyro, and
TestUMT.

The GS is adjusted with the TestGrav program, which provides for the following
basic operations:

• adjustment of the optoelectronic converter, including its alignment, setup of the
intensity and shape of autocollimation images (Fig. 2.1);
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Table 2.1 Structure of the
software for Chekan
gravimeters

Type of operations Marine gravity
survey

Airborne gravity
survey

Preparatory work GS setup: TestGrav
GP setup: TestGyro
Thermal stabilization system setup:
TestUMT
GS calibration: Calibr

Survey execution Data acquisition:
SeaGrav

Data acquisition:
AirGrav

Field data control:
Chekan_PP

Field data control:
Grav_PP_A

GS diagnostics: TestGrav
GP diagnostics: TestGyro
Thermal stabilization system diagnostics:
TestUMT

Postprocessing Profile processing:
Chekan_PP

Profile processing:
Grav_PP_A

Processing of survey results, assessment
of measurement accuracy: Chekan_PP

Fig. 2.1 Screen of the TestGrav program during the setup of intensity and shape of autocollimation
images
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Fig. 2.2 Screen of the TestGyro program during calibration of gyroscopes

• adjustment of the GS digital thermal stabilization system;
• determination of the gravimeter elastic system (GES) response time;
• in-depth diagnostics of the GS hardware.

The TestGyro program is intended to solve similar problems of GP setup; it has
the following main functions:

• automatic adjustment of the gearless servo drive in all modes of the GP operation;
• calibration of zero drifts and scale factors of floated one-degree-of-freedom

gyroscopes (Fig. 2.2);
• calibration of zero drifts and scale factors of horizontal accelerometers;
• calibration of zero drift and the scale factor of azimuthal FOG;
• in-depth diagnostics of all the GP hardware.

The results of the GP primary setup are stored in the ROMs of microcontrollers
and can be refined during operation.

GS calibration is traditionally done by tilting, wherein the known gravity decre-
ments are set by changing the position of the GS measuring axis relative to the
local vertical (Zheleznyak and Elinson 1982). Setting and determining tilting angles
should bemade using high-precision tilt-rotary benches. A special technology for GS
calibration was developed and implemented in Chekan-AM and Shelf-E, in which
the gyro platform is used to set and determine the gravimeter tilting angles. This tech-
nology eliminates the need for high-precision and expensive bench test equipment;
and GS calibration can be done in the field (Sokolov et al. 2015).
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A special programCalibr was developed to calibrate theGS using a gyro platform.
The program provides both for automatic tilting of the GS at specified angles and
certain intervals and processing of measurement results (Dudevich et al. 2014).

During the entire measurement cycle, the current readings of the gravimeter and
GP tilting angles are recorded in a file (Fig. 2.3). The measurement for each tilting
angle of the platform lasts 30 min. The entire calibration period does not exceed 9 h.

The results of data processing are available as a program operation protocol
including the values of the following parameters:

• quadratic coefficienta and linear coefficientsb1,b2 of the calibration characteristic
of each quartz gravimeter system;

• specified decrements of gravity acceleration Δaeti and the results of measuring
Δgi for each GP tilting angle;

• deviations δgi of the Δgi measurement results from the specified values of Δaeti;
• the fiducial error of the gravimeter calibration characteristic which is taken as the

ratio of the absolute maximum of the obtained values of δgi to the upper limit of
the gravimeter measurement range;

• the margin for the gravimeter measurement range.

Theprotocol generated by the program is a requisite document sufficient to prepare
verification certificates for Chekan-AM and Shelf-E gravimeters as measuring
instruments.

Fig. 2.3 Screen of the Calibr program
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2.1.2 Real-Time Algorithms and Software

The main purpose of the real-time software is synchronous recording of the original
gravimetric and navigation data at a frequency of 10Hz in the course ofmeasurements
on survey lines. Taking into account the fundamental differences in marine and
airborne gravity surveys, real-time data acquisition software comprises two different
programs, SeaGrav and AirGrav, both of which provide for the following operations
(Demyanenkov et al. 2014; Dudevich et al. 2007):

• GS, GP, and UMT data acquisition;
• reception of navigation information from GNSS equipment and synchronization

of the gravimeter data;
• recording of raw data on the hard disk at a frequency of 10 Hz;
• linearization of the GS scale in accordance with formula (1.2.7);
• introduction of the gravimeter drift correction in accordance with formula (1.2.9);
• calculation and filtering of the gravity increment with respect to the initial gravity

reference station (GRS) (this data is used for display and can also be used for
onboard quality control);

• graphic display of the recorded parameters and recording of output data on the
hard disk at a frequency of 1 Hz.

Additionally, theAirGravprogramprovides for the correctionof the carriermotion
effect on the gravimeter gyro platform with the use of GNSS data and the generation
of current heading values, the algorithm block diagrams of which are presented,
respectively, in Figs. 1.15 and 1.16 of Chap. 1.

The SeaGrav and AirGrav programs are designed to work under the Windows
operating systems. The exchange of informationwith theGS,GP, andUMT is carried
out using the RS-232 serial interface. Any modern laptop with standard USB/COM
interface adapters can be used to operate the gravimeter.

Signals received from the gravimeter equipment are displayed on the screen in
graphic and digital form (Fig. 2.4). The interface of SeaGrav and AirGrav provides
wide capabilities for zoomcontrol and the choice of colors for the charts. The software
is adapted for two languages: Russian and English.

An essential feature of real-time programs is the availability of built-in diagnostics
for the basic systems of the gravimeter, which provides for an integral test of the
gravimeter operation and reliability of its readings. These diagnostic capabilities
greatly simplify the operator’s work, especially in airborne gravimetric surveys.

The output data of the real-time gravity data acquisition software is text files, the
main content of which is presented in Table 2.2, as well as protocols of the software.

Symbol “*” in the table indicates a unique file name generated automatically.
The main output files of data acquisition software are G*.RAW files, in which the
readings of the gravity sensor m1, m2 and time t are recorded with a frequency of
10 Hz. In the G*.RAW files generated by the SeaGrav program, additional signals
are recorded that can be used to calculate dynamic corrections, such as the readings
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Fig. 2.4 Screen of the real-time data acquisition software in the reference observation mode

Table 2.2 Text files

File type SeaGrav AirGrav

G*.RAW t, m1, m2, Wψ,Wθ, Uψ, Uθ, ψ, θ, T t, m1, m2

G*.NAV t, ϕ, λ t, ϕ, λ, H

G*.DAT
R*.DAT

t, Δg

T*.DAT – t,Wψ,Wθ, Uψ, Uθ, Ωz, ωψ, ωθ, K, TOG,
VN , VE , ΔVN , ΔVE , ψ, θ,W corψ,W corθ,
Ωcosϕ, T

of the horizontal accelerometers of the gyro platformWψ,W θ, the floated gyro pick-
offsUψ,Uθ, pitch angles ψ and roll angles θ, temperature T (GS temperature for the
Shelf-E gravimeter or the temperature inside the GP for the Chekan-AMgravimeter).

For the same purpose, the AirGrav program generates a separate T*.DAT output
file which, in addition to the signals listed, contains the FOG readingsΩz, the control
signals of the gyroscope torquers ψ, ωθ and also some calculated corrections and
derivatives of the GNSS signals received: heading K, track over ground TOG, north
and east speed components VN, VE , speed mismatch ΔVN, ΔVE , corrections for
the horizontal components of Coriolis acceleration W corψ, W corθ, and the Earth rate
horizontal component Ωcosϕ.

Both programs record G*.NAV navigation data files containing the values of lati-
tude ϕ and longitude λ received from GNSS. The values of heightH are additionally
recorded in the AirGrav program files. It should be noted that the AirGrav G*.NAV
program files are used only for real-time control of survey data; however, satellite
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information refined during office processing is used for postprocessing of gravimetric
data.

The SeaGrav and AirGrav programs work in two modes: reference observations
and gravimetric surveys. Themode of reference observations is necessary to calculate
the reference gr0 of the gravimeter at the GRS; the time of reference observations
T 0, and the drift rate of gravimeter C based on current measurements in accordance
with the formulas obtained using the least squares method:

gr0 =
Σn

i=1 gri
n

, (2.1.1)

T0 =
Σn

i=1 ti
n

, (2.1.2)

C =
Σn

i=1 gri ·Σn
i=1 ti − n ·Σn

i=1 gri · ti
(Σn

i=1 ti
)2 − n ·Σn

i=1 t
2
i

, (2.1.3)

where gri are the current measurements of the gravimeter calculated in accordance
with (1.2.7), t is the measurement time, and n is the number of measurements.

In the gravimetric survey mode, the current values of the gravity increment are
calculated relative to the reference at the GRS, taking into account the gravimeter
drift according to formula:

δg = gr − gr0 − C · (t − T0). (2.1.4)

Gravity increments smoothed by the low-pass filter (LPF) described below are
stored in the G*.DAT or R*.DAT files, depending on the mode of operation. When
conducting a marine survey, G*.DAT files can be used for quality control of gravity
data. R*.DATfiles are used to calculate the gravimeter readings at the GRS and refine
the gravimeter drift.

2.1.3 Marine Gravity Measurement Processing

Figure 2.5 shows a block diagram of marine gravimetric line data processing. As
described above, the data for the postprocessing of the line are formed from the
following files: G*.RAW for gravimetric data, and G*.NAV for navigation data.

Processing of the line data begins with the conversion of the GS readings into
acceleration units using the coefficients of the gravimeter calibration characteristic
in accordance with formula (1.2.7). The current values of the gravity increment are
calculated and the gravimeter drift correction is accounted for in accordance with
formula (2.1.4).
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Fig. 2.5 Block diagram of marine gravity line data processing

To calculate the values of gravity and its anomalies on a line, it is necessary
to combine gravimetric and navigation data and calculate at least two corrections,
namely, the Eotvos correction and the normal gravity correction.

For marine gravimetric surveys, the Eotvos correction, which eliminates the
effect of the Coriolis and centripetal accelerations, is calculated using the following
simplified formula:

ΔgE = 7.502 cos2 ϕ · dλ/dt + 0.0041 · V 2, (2.1.5)

where V is the vessel speed, kn; dλ/dt is the longitude rate, arcmin/h; ϕ is the
latitude, rad.

Figure 2.6 gives an example how the Eotvos correction changes the systematic
component of the gravimeter signal and compensates for the accelerations caused by
minor changes in the heading and speed of the carrier on the survey line.

Normal gravity correction γ is usually calculated by the Helmert formula.
The value of gravity at a marine gravimetric station is calculated using the

following formula:

g = g0 + δg + ΔgE , (2.1.6)

where g0 is the value of gravity at theGRS relative towhich the surveywas conducted.
The GA value in free air Δg is defined as the difference of gravity at the marine

station and the normal value of gravity:
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Fig. 2.6 Introducing the Eotvos correction ΔgE to gravity readings

Δg = g − γ. (2.1.7)

If depth data is available, the gravity anomaly is calculated in the Bouguer reduc-
tion taking into account the gravity of the layer between the gravity station and the
sea level in accordance with the following formula (Torge 1989):

ΔgB = g − γ + gB, (2.1.8)

where gB = 0.0419 · H · (σ1 − σ2) is the Bouguer correction, H is the sea depth, m;
σ1 is the density of seabed rocks; σ2 = 1.03 g/cm3 is the density of sea water.

The effect of vertical accelerations is eliminated from the measurement results
using a low-pass filter, to which the value of the gravity increment is input after taking
into account all the corrections. For marine surveys, the use of a low-pass filter is
fully justified since the power spectral densities (PSDs) of the useful signal and the
disturbing acceleration are separated in the frequency domain. For processing the
data from Chekan gravimeters, it is recommended to use a combined digital filter
which consists of the 1st order aperiodic filter with the time constant Ta and the 4th
order Butterworth filter with the time constant Tb.

The data processing using the combined digital filter is conducted in two stages.
During the first stage, the readings of the gravimeter are passed through the filter in
the forward time mode. After that, the time is inverted, and the gravimeter readings
are processed by the same filter in reversed time. As mentioned in Sect. 2.3, the
data processing technology in the forward and reversed time modes agrees with the
solution of the smoothing problem and allows, among other things, eliminating the
phase distortions of signals introduced by the filtering procedure.
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Figure 2.7 shows the amplitude-frequency characteristics of the low-pass filter
described for various values of the time constants Ta and Tb. The advantage of data
processing by survey lines is that it is possible to vary these parameters for various
sea states in order to ensure maximum spatial resolution. Table 2.3 presents the
recommended values of Ta and Tb, the cutoff frequency f c of the LPF and their
corresponding spatial resolution L/2 at a speed of 5 kn for various sea states obtained
empirically so that the root-mean-square deviation (RMSD) of the residual error for
the vertical acceleration is less than 0.1 mGal.

Additional corrections ΔgWz and ΔgWx may be introduced in the readings of
Chekan gravimeters in order to improve the final accuracy of marine gravimetric
surveys, as shown in Fig. 2.5. This is especially relevant for marine surveys with
significant sea waves or even in stormy weather (Zheleznyak et al. 2010). As
described in Chap. 1, under vertical accelerations above 50 Gal, the readings of

Fig. 2.7 Amplitude-frequency response of the filter

Table 2.3 Filter parameters

Sea state Filter parameters Spatial resolution L/2, m

Wave height, m Parameter, points T a, s Tb, s f c, Hz

0–0.25 0–1 15 10 0.0069 190

0.25–0.75 2 24 16 0.0043 300

0.75–1.25 3 36 24 0.0029 440

1.25–2.0 4 54 36 0.0019 680

2.0–3.5 5 64 42 0.0016 800

3.5–6.0 6 72 48 0.0015 860
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Chekan-AM gravimeters may include a systematic error δWz caused by the nonlam-
inar nature of the fluid damping of GES pendulums. The value of the error δWz is
quadratic in nature; it largely depends on the degree of the GES damping and is
substantially lower in the Shelf-E gravimeter. Nevertheless, it is possible to intro-
duce the ΔgWz correction into gravimeter readings in accordance with the algorithm
shown in Fig. 2.8.

The values of specific force Wz acting on the pendulums are determined from
formula (2.1.4) and are input into the scheme for calculation of ΔgWz correction. In
order to eliminate the gravitational component from the values of specific force, the
scheme includes negative feedback on the current gravity increments δg generated
by a filter of the 3rd order with the time constant T = 60 s. As it is, ΔgWz correction
is determined using the following formula:

ΔgWz = kWz · W̃ 2
z , (2.1.9)

where kWz is a coefficient determined empirically during the gravimeter testing on a
vertical displacement test bench. The ΔgWz correction is calculated in real time.

An example of improving the measurement accuracy in stormy weather owing
to the ΔgWz correction is shown in Fig. 2.9. It is clear that not only the systematic
component but also the high-frequency component of the δWz error are compensated
for, whichmakes it possible to increase the spatial resolutionL/2 of themeasurements
by using an LPF with a higher cutoff frequency f c. In addition, in the case of a
significant change in sea state on the line, the error δWz cannot be taken into account
by the tiemethods of the survey but, as can be seen fromFig. 2.9, can be compensated
for by introducing the correction ΔgWz.

Another correction shown in Fig. 2.10 is introduced to compensate for the effect of
the joint action of horizontal accelerations and residualGP tilting, which is referred to

Fig. 2.8 Calculation of the vertical acceleration correction ΔgWz
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Fig. 2.9 Introduction of the correction for vertical accelerations on a marine line

as theHarrison effect. TheHarrison effect correction can be represented as (Panteleev
1983):

ΔgWx = WXα + WYβ, (2.1.10)

where WX , WY are the longitudinal and transverse horizontal accelerations, respec-
tively; α, β are the gyro vertical tilting angles about the respective stabilization
axes.

Fig. 2.10 Introduction of the Harrison correction
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The tilting angles of the gyro vertical due to the errors of the gearless gyro servo
drive do not exceed 15 arcsec, that is, they do not affect the gravimeter accuracy.
Therefore, while calculating the Harrison correction, it is necessary to take into
account only the errors of the gyroscope accelerometric correction system, which
was discussed in Sect. 1.2. Angles α, β are calculated by multiplying the horizontal
accelerations obtained from the recordings of accelerometer signals by the transfer
function of the gyro vertical which, according to the block diagram presented in
Fig. 1.15, takes the form:

Hα
w(p) =

1
R F(p)

p2 + g
R F(p)

, (2.1.11)

where F(p) is the transfer function of the filter (1.2.10), and R is the average radius
of the Earth.

Figure 2.11 shows the introduction of the Harrison correction on a gravimetric
survey line at high sea. The Harrison correction is mainly systematic, and its value
for Chekan gravimeters does not usually exceed 1–1.5 mGal.

All the above procedures for processing of gravimetric survey lines are imple-
mented in the Chekan_PP program, which is designed for comprehensive office
processing of marine gravimetric survey data (Zamakhov et al. 2013). The

Fig. 2.11 Screen of the Chekan_PP program during the processing of a marine survey line
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Chekan_PP program is designed to work under the Windows operating systems
and can be used both for office processing of survey data and onboard data quality
control. The program interface is quite convenient and clear; all intermediate and
final results are presented to the operator in digital and graphical forms.

Logical data control in the *.DAT, *.RAW, *.NAV source files and elimination of
minor data gaps are also automatically performed during survey line processing. In
the case of low-quality gravimetric data on the survey line, the latter can be divided
into several parts. At the user’s request, a filtering procedure can also be carried
out, which is implemented not only by selecting the values of Ta and Tb but also
by sequential repeated use of the LPF. In addition, the cutoff frequency f c and the
spatial resolution L/2 on the survey line are calculated automatically. The results of
survey line processing are saved in text files of the *.XYZ type and the calculation
and filtering parameters are recorded in the program operation protocols.

2.1.4 Airborne Gravity Measurement Processing

Measurements of gravity onboard aircraft are taken against the background of carrier-
induced vertical accelerations which not only exceed the “useful” signal by several
orders of magnitude but they also overlap in the frequency domain. Figure 2.12
shows a block diagram of processing of an airborne gravimetric survey line. Vertical
accelerations in gravimeter readings are partially compensated for during postpro-
cessing using altitude information from GNSS data. However, due to the significant
background noise, the final detection of the “useful” signal is also performed using
filtering and smoothing (Krasnov and Sokolov 2013).

For the processing of airborne gravimetric survey lines, gravimeter readings are
converted into acceleration units (just like it was with marine gravimetric survey
lines); GAs are calculated, and corrections are introduced for the gravimeter drift,
the normal value of gravity, and the Eotvos effect.

Since the response time of a heavily damped Chekan gravimeter ranges from 40 to
100 s, it is necessary to determine the real value of specific force during the processing
of airborne gravimetric measurements. To do this, the smoothed gravimeter signal
is passed through a digital recovery filter, in which the aperiodic element of the first
order is used as a model of fluid damping, and the transfer function of the recovery
filter has the form of formula (1.2.8).

The vertical acceleration of the carrier has the predominant effect on the GS
in airborne surveys. It is taken into account based on the results of flight altitude
measured by GNSS equipment operating in the differential mode. In the absence of
base stations, ephemerides corrections are used to refine the navigation data.

The offset of the GNSS receiver antenna relative to the GS location is calculated
in accordance with the following formula:

H = HGNSS − (RX sinψ + RY sin θ + RZ (cosψ − 1) + RZ (cos θ − 1)),
(2.1.12)
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Fig. 2.12 Block diagram of airborne gravimetric survey line data processing

where HGNSS is the altitude value measured at the GNSS receiver antenna location;
H is the altitude value at the GS location; RX , RY , RZ are the offsets of the GNSS
receiver antenna relative to the GS measured by the operator in three planes; ψ, θ

are the angles of pitch and roll according to the readings of the gravimeter GP angle
sensors.

The Eotvos correction in the processing of airborne gravimetric measurements is
calculated using the formula that takes into account the nonspherical nature of the
Earth and flight altitude variations:

ΔgE = 15VEcosϕ +
(
V 2
N

R

(

1 + H

R
− 0.5e2

(
2 − 3sin2ϕ

)
)

+ V 2
E

R

(

1 + H

R
− 0.5e2sin2ϕ

))

· 105, (2.1.13)

where ϕ is the latitude; VN, VE are the north and east components of the linear speed;
R, e are the parameters of theWGS84 common reference ellipsoid. Formula (2.1.13)
shall be used in processing of extended survey lines when the nonspherical nature of
the Earth cannot be neglected.

Another requisite operation is the reduction of measurement results to the surface
of the reference ellipsoid, which is carried out in accordance with the formula that
takes into account the normal vertical gradient of gravity:

Δg = Δgh + 0.3086H, (2.1.14)
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Fig. 2.13 Amplitude-frequency response of the filter at a cut-off frequency of 0.006 Hz

where Δgh is the GA at altitude H; Δg is the GA reduced to the surface of the
ellipsoid.

Even in the case that all the known corrections are thoroughly taken into account,
the gravimeter signal remains noisy. Filtering and smoothing are applied in order
to identify the useful component. The software of Chekan gravimeters offers a
two-stage procedure, which, at the first stage, uses a finite impulse response filter
with a trapezoidal Tukey weight function in the time domain (Krasnov and Sokolov
2013). This filter has a finite impulse response, resulting in a constant shift of all the
harmonics of the input signal, which is easy to take into account during processing.
The amplitude-frequency response of the filter is shown in Fig. 2.13.

The result of processing is a signal, the noise level of which is a few mGal. Next,
at the second stage, a smoothing operation is performed, wherein a fast Fourier
transform is used to transform the signal into the frequency domain; high-frequency
harmonics of the signal are truncated, after which a reverse transition into the time
domain is performed. When choosing the required number of harmonics in the final
signal, this procedure does not deteriorate the spatial resolution, nor does it cause
negative edge effects, provided that the duration of the realization is not decreasing
(Fig. 2.14).

In the conditions of airborne gravimetric surveys, of extreme importance is not
only postprocessing of the survey line but also onboard quality control of measure-
ments to identify unreliable data. The Grav_PP_A program, operating under the
Windows operating system, was developed to solve these two problems.

The purpose of onboard quality control is to detect survey lines or some parts
of lines with poor data quality and identify the causes of quality deterioration. The
primary analysis of the initial gravimetric and navigation information is aimed at
detecting equipment failures. In addition, the program provides for comparison of the
measured gravity profile with independent sources of gravimetric data; for example,
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Fig. 2.14 An example of gravimetric measurement smoothing

the results of previous surveys made in this area, the global models of the Earth’s
gravitational field, and gravity databases, such as the Arctic gravimetric project,
ArcGP (Forsberg and Kenyon 2004).

Grav_PP_A program also provides for estimation of the functioning criteria of
all gravimeter systems, as well as the conditions for measurements (Fig. 2.15). The
presence of such criteria allows effective identification of possible causes of data
quality deterioration. The following parameters are analyzed for this purpose:

• gravity sensor: the difference between the readings of quartz systems;
• gyro stabilization system: stabilization errors and heading error;
• satellite receiver: no failures in data reception;

Fig. 2.15 Screen of the Grav_PP_A program with data control
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• flight conditions: stable altitude, vertical and horizontal accelerations, the
constancy of pitch and roll angles, and constancy of the ground speed.

Similarly to the Chekan_PP program, the results of the airborne gravity line
processing are stored in *.XYZ text files used for the subsequent office processing
of the survey results.

2.1.5 Postprocessing of Gravimetric Survey Data

The final processing of the results of both marine and airborne gravimetric surveys
carried out by Chekan gravimeters is performed with the use of the previously
mentioned Chekan_PP program. The results of measurements on lines are loaded
into the survey database. The program automatically calculates the statistical param-
eters of the survey, including the lengths of survey lines, the number of cross points,
survey RMS errors and RMS deviations.

The survey RMS error is calculated using the formula:

σRMS =
/

σ2
CP + σ2

interp. (2.1.15)

The RMS error of a single GA determination at cross points σCP is calculated
using the formula:

σCP =
/

Σd2

2n
, (2.1.16)

where d is the difference in measuring gravity anomaly at cross points; n is the
number of cross points.

An essential feature is that the survey RMS error also takes into account the
interpolation error σinterp in the measurement results between the survey lines:

σinterp =
/
ΣN

i=1 [Δgκ − (gc1 + gc2)/2]
2
i

N
, (2.1.17)

where Δgk is the value of the gravity anomaly on the tie line at point K located
midway between the survey lines; gc1 and gc2 are the values of the gravity anomaly
on the adjacent survey lines, between which point K is located, at the points of
intersection with the tie lines; N is the number of points K in the survey.

The RMSD of the survey error does not take into account systematic difference
in the measurement results at cross points; it has the following form:



2 Data Processing Methods for Onboard Gravity Anomaly Measurements 83

Fig. 2.16 Screen of the Chekan_PP program during processing of survey results

σRMSD =
/

Σ(d − r)2

2(n − 1)
, (2.1.18)

where r =
Σ

d
n .

Since marine geophysical surveys are often conducted without final reference
measurements, but initial reference measurements are not long enough to obtain a
reliable estimate of the gravimeter drift C, a significant feature is the calculation and
introduction of the correction ΔC using the difference between GA measurements
at the cross points of the lines (Fig. 2.16).

In the case of multiple reference observations at the same airport, they can also
be compiled into an appropriate database to refine the gravimeter drift using all the
data obtained.

Another important procedure is tying of survey results, in which averages of
discrepancies at cross points are calculated and added into each survey line.

The values of all corrections introduced during data processing are stored along
with processing parameters in the program protocols generated automatically.

The results of the survey processing can be exported for further processing in
the text format XYZ suitable for loading into most of the modern geophysical data
processing packages.
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2.1.6 Conclusion

Features of data acquisition and processing using gravimeters of the Chekan series
have been described.

The design, structure, and functionality of the software used at each stage of
acquisition, processing, and analysis of marine and airborne gravimetric data are
presented.

Some examples are given to illustrate the improvement of measurement accuracy
owing to the introduction of dynamic corrections.

2.2 Data Processing in GT-2 Airborne Gravimeters

In 2000, the Laboratory of Control and Navigation of Lomonosov Moscow State
University started developing software for data postprocessing in the first-generation
GT-1A airborne gravimeters designed by the Gravimetric Technologies (Russia) (the
second-generation gravimeters are known as the GT-2 series). At the same time,
preparations began for the first test of the prototype MAG-1 (the first commercial
name of the GT-1A airborne gravimeter) aboard an AN-30 aircraft. The tests were
carried out in 2001 (Berzhitsky et al. 2002). Earlier, the Laboratory created software
for two other Russian airborne gravimeters (Bolotin et al. 2002):

• the airborne gravimeter Graviton-M developed by VNIIGeofizika, Moscow Insti-
tute of Electromechanics and Automation (MIEA), and Bauman Moscow State
Technical University. The first flight tests (3 flights) of this systemwere conducted
aboard an MI-8 helicopter in December 1995 and January 1996. In July and
August 1999, for the first time in Russia, a full-scale areal surveying was carried
out aboard an AN-26 aircraft not far from Kaluga. Later on, this system was used
by GNPP Aerogeophysica;

• the airborne gravimetric system developed by MIEA. The project, which started
in 1996, was financed by the World GeoScience Corporation (Australia). Three
series of flight tests were conducted: (1) 3 flights in December 1997; (2) 2 flights
in May 1998 aboard an AN-26 aircraft flying near Vologda; (3) a flight in July
1999 aboard an L-410 aircraft, Brno, the Czech Republic.

The flight tests of these gravimeters were attended by experts from The Schmidt
Institute of Physics of the Earth of the Russian Academy of Sciences.

Thus, by the time the Laboratory of Control and Navigation started joint work
with the Gravimetric Technologies, the Laboratory had already gained considerable
experience in processing airborne gravimetric data from Graviton-M and the MIEA
system so that it was easy to formulate the objectives of postprocessing and the design
philosophy of the software.
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The first stage of postprocessing software is quality control (QC) of experimental
data. It is very important for a survey operator to be able to quickly answer the
question about the quality of the recorded experimental data:

(1) measurements of the gravimeter sensing element (GSE);
(2) data of the GNSS receivers on the aircraft and at base stations;
(3) data of the INS responsible for the GSE vertical orientation;
(4) data from the recording and information-flow-synchronization systems of the

gravimetric system.

The main document for the development of the express diagnostic software was
The Information Exchange Protocol in the Airborne Gravimetric System which was
developed jointly by the Gravimetric Technologies and the Laboratory of Control
and Navigation of Moscow State University. The exchange protocol describes the
formats of raw data files as well as the formats of output files. The latter contain all
relevant information for quality control.

In general, the software for GT-2 airborne gravimeters consists of the two main
parts: the GTNAV and GTGRAV modules. The first part includes algorithms for
developing satellite navigation parameters and integration of INS and GNSS data;
the second part presents the solution to the airborne gravimetry problem based on
GSE measurements and navigation data prepared by the GTNAV module.

In addition, for the purposes of quality control, the GTNAV module provides for
the analysis of the following parameters:

• correct synchronization of information flows from the INS and GNSS. INS data
are recorded with a frequency of about 3 Hz, the GNSS data are recorded at 1, 2,
5, 10, and 20 Hz sampling rates. Synchronization of flows is carried out using the
1PPS (pulse per second) mechanism, recording of the INS and GNSS time scales
and their relative biases;

• data integrity (gaps);
• occurrence of events indicative of the gravimeter malfunctioning. For example,

such events as ‘GSE not normal’, ‘abnormal ARS drift’, etc. The list of possible
events is described in the data exchange protocol;

• correctness of the base station coordinates, its immobility;
• the level of misalignment error estimates of the instrument (gyro platform), levels

of DTG and FOG drift estimates.

It is very important that quality control software should be easy to use because
operators conducting surveys may be well trained in gravimetry, less competent in
satellite navigation, and totally incompetent in inertial navigation. All they need is
to enter raw data filenames––INS, GNSS (aircraft and/or base station(s))––as initial
information for the GTNAV module, and then run the program. The program can
work separately with INS and GNSS data or with their various combinations. Many
years of experience in using this software by various companies, both Russian and
international, have shown its effectiveness for the purposes of quality control.

GTGRAV program is responsible for processing of the GSE measurements,
GTNAV output data, as well as GA determination. Like GTNAV, this program (to
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be more exact, its auxiliary module GTQC) performs additional preliminary verifi-
cation of GSE measurements integrity and synchronizes information flows. Unlike
GTNAV, GTGRAV has an advanced graphical interface. The need for an interface
is associated with the “creative” nature of the GA determination problem, where
customizable processing parameters are often found by the trial-and-error method.

2.2.1 Airborne Gravimetry Software

Let us briefly describe the airborne gravimetry problem from the point of view of
theoreticalmechanics (amore detailed description can be found inSect. 1.1) andwrite
down the main gravimetric equation in the form convenient for further consideration.
In Sects. 2.2.3, 2.2.4, this equation is specified for the case of the GT-2A gravimeter
with a leveled platform.

The problemof gravimetry is the inverse problemofmechanics: to determine force
frommotion. It should be recalled that force, as a vector quantity, is characterized by
magnitude and direction. However, in classical, “scalar” gravimetry, the direction of
GA action is not usually specified. This is partly due to the fact that the difference
between the magnitude of the gravity vector and the value of its vertical component
was, until recently, an order ofmagnitude lower than the availablemeasurement accu-
racy. At present, vector gravimetry methods are actively developing (see Sect. 5.2) so
that they make it possible to determine three components of the gravity disturbance
vector, and thereby, eliminate the above uncertainty.

It should also be noted that, from the mathematical point of view, the problem
of GA determination belongs to the class of ill-posed problems since it is solved by
differentiation (Tikhonov and Arsenin 1979).

The main equations of airborne scalar gravimetry are Newton’s equations that
describe the vertical motion of a material point of a unit mass in the field of the
Earth’s gravitational force under the action of an external force that is accessible for
measurement (Torge 1989; Bolotin et al. 1999):

ḧ = V̇3 = ΔgE − γ0 − δγ + f3 + Δg, ΔgE =
(
V 2
E

RE
+ V 2

N

RN
+ 2ΩVE cosϕ

)

.

(2.2.1)

The equation uses the following notation: h is the flight altitude above the refer-
ence ellipsoid (Torge 1989); V3 is the vertical velocity; VE , VN are the Eastern and
Northern components of the relative velocity of the carrier; RE , RN are the radii of
curvature of the longitudinal and latitudinal cross-sections; Ω is the modulus of the
angular rate of the Earth rotation; ϕ is the geographical latitude; γ0 is the magnitude
of the normal gravity on the reference ellipsoid; δγ is the correction of the normal
gravity value for the flight altitude above the reference ellipsoid; f3 is the projection
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of the specific force on the geographic vertical; Δg is the GA to be found. The term
ΔgE is due to the motion of the aircraft; it is called the Eotvos correction.

The goal of the airborne scalar gravimetry problem is to determine (estimate)
the values of GA Δg based on model (2.2.1) from the other measured or calculated
terms.

The equipment used for information support of the airborne gravimetry problem
is directly determined from the main gravimetric Eq. (2.2.1), from which it follows
that any airborne gravimetric system with a leveled platform should include:

• a GSE to measure the value of f3 as a specific force acting on its sensitive mass;
• a navigation system to provide high-accuracy information about the altitude h,

coordinates, and the vector of the linear velocity of the vehicle on which the
gravimetric system is installed. Currently, such a system is a Global Satellite
Navigation System operating in differential carrier phase mode;

• a navigation system providing the vertical orientation of the GSE sensitive axis.
An example is a gimbaled INS which, using a gyrostabilized platform, physi-
cally simulates the geodetic reference frame, with the GSE sensitive axis rigidly
attached to its vertical axis.

The basis for the solution of gravimetric Eq. (2.2.1) with respect to Δg is GSE
measurement f '

3, measurements of the INS horizontal accelerometers f '
1, f

'
2, and alti-

tude measurements h' from the GNSS. In the linear approximation, the measurement
equations can be written as follows:

h' = h + Δhgps, (2.2.2)

f '
3(t − τ3) = fz3 + κ3 fz3 + Δ f 03 + Δ f s3 + κ2 fz1 − κ1 fz2,

fz3 = f3 + α2 fz1 − α1 fz2, (2.2.3)

f '
1(t) = fz1 + Δ f s1 , f '

2(t) = fz2 + Δ f s2 . (2.2.4)

The equations use the following notation: fz3 is the projection of the specific force
of the proof mass on the instrument axis; κ3 is the error of the GSE scale factor, Δ f 03
is the GSE bias;Δ f s3 is the noise component of the measurement error; κ1, κ2 are the
angular errors of the installation of the GSE sensitive axis to the platform; fz1, fz2
are the horizontal (in the platform axes) components of the specific force; α1, α2

are the misalignment errors of the instrument vertical; t is the absolute time; τ3 is
the time constant of the GSE clock skew, ΔhGNSS is the error in the GNSS altitude
determination.

Parameters Δ f 0z3, κ1, κ2, κ3, α1, α2, τ3 are unknown and should be determined
(estimated) during the solution of the airborne gravimetry problem. It should be noted
that coefficients κ1, κ2, κ3 are normally determined during laboratory and prestart
calibrations and are used to adjust GSE readings. However, the experience of data
processing has shown that it is advisable to determine and control these coefficients
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during postprocessing from airborne measurements. Parameter τ3 is used to refine
data synchronization.

The sources of information for determining coordinates and velocities are GNSS
positional and velocity solutions obtained by processing the raw GNSS measure-
ments: code pseudo-ranges, Doppler pseudo-range rates, and carrier phase measure-
ments. The source of information for determining α1, α2 is solution of the INS/GNSS
integration problem. This is what defines the scope of tasks for the postprocessing
software.

2.2.2 Software for GNSS Solutions

The software for GNSS solutions implemented in the GTNAV module provides for
different options of calculations depending on the following circumstances:

• the data used can be received from several (one, two, three) GNSS base stations.
The software must be able to maintain solutions for different combinations of
base stations;

• GNSS receivers may have different data sampling rates; for example, 1, 2, 5, 10,
20 Hz. The software must be able to maintain solutions at a common frequency;

• the carrier phase receivers used can be of multi-frequency type (at present, dual-
frequency); accordingly, solutions should be provided both for the L1 frequency
and for combinations of carrier phases free of ionospheric delays;

• the software must be able to maintain solutions when data are provided by single-
and/or dual-frequency receivers;

• velocity solutions should be obtained not only by processing Doppler measure-
ments but also based on carrier phases.

These features are implemented in the GTNAV software.
All of the above requires the solutions of numerous auxiliary problems such as

the ephemeris problem to determine the coordinates and vector velocity of naviga-
tion satellites, estimation of the integer ambiguities of carrier phases, detection and
elimination of satellite measurement failures. In reference (Vavilova et al. 2009), the
authors show basic models of the problems of raw GNSS data processing for the
standard (autonomous) mode of operation of GNSS receivers, on the basis of which
the satellite navigation software was developed.

Described below in general terms is only one problem of velocity determination
using raw carrier phases; its solution usually provides the highest accuracy.

The model of carrier phases Zφ looks as follows:

Zφ = ρ/λ + fφ(Δτ − ΔT ) + N + δφion + δφtrop + δφs, (2.2.5)

where ρ is the range between the vehicle and the satellite; fφ is the frequency of the
radio signal; λ is the wavelength of a frequency;N is an unknown number, an integer
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ambiguity of the carrier phase measurement; δφion , δφtrop are the ionospheric and
tropospheric delays, respectively; δφs is a random component of the carrier phase
error.

The single∇Zφi ,ΔZφi and double∇ΔZφi differences of carrier phase are defined
by the following formulas:

∇Zφi = Zφi − Zφz ,ΔZφi = Zb
φi

− ZM
φi

,∇ΔZφi = (Zb
φi

− ZM
φi

)− (Zb
φz

− ZM
φz

)
,

(2.2.6)

where Zb
φi

is the carrier phase measurement of the base station; ZM
φi

is the similar
measurement of the aircraft receiver, hereinafter referred as to rover; indices i, z
correspond to the measurements obtained from the satellites with the corresponding
numbers; z is usually used for the number of the zenith satellite. Taking into account
(2.2.6), measurement (2.2.5) takes the form:

∇ΔZφi = ∇Δρi/λ + ∇ΔNi + ∇Δφioni + ∇Δφtropi + ∇Δφs
i ,

where

∇Δρi = (ρbi − ρM
i

)− (ρbz − ρM
z

);
∇ΔNi = (Nb

i − NM
i

)− (Nb
z − NM

z

);
∇Δφ(∗∗∗)i = (δφb

(∗∗∗)i
− δφM

(∗∗∗)i

)− (δφb
(∗∗∗)z

− δφM
(∗∗∗)z

)
. (2.2.7)

The useful signal in measurement (2.2.7) is the value ∇Δρi/λ. The residual
errors in (2.2.7) are double differences ∇Δφioni , ∇Δφtropi , ∇Δφs

i of the iono-
spheric, tropospheric, and random measurement errors (marked as (***) in the last
Eq. (2.2.7)).

The main property of measurement (2.2.7) is the absence of instrumental errors
of the receiver and satellites and the errors of their clocks in the model, as well as
the decrease in the level of residual errors ∇Δφioni , ∇Δφtropi of the ionosphere and
troposphere; note that the smaller are the distances between the bases and rover and
the differences in their altitudes, the smaller is the level of the above residual errors.

The value ∇ΔNi is the integer ambiguity of the double differences of carrier
phases, which is not fundamentally compensated in this method of phase measure-
ment formation.

Consider the numerical derivative

∇ΔZ∗
Vρi

(
t j
) = λ

∇ΔZφi

(
t j+1

)− ∇ΔZφi

(
t j−1

)

t j+1 − t j−1
(2.2.8)

of the differential carrier phases ∇ΔZφi

(
t j
)
. The result of (2.2.8) is the estimate of

the double differences ∇ΔVρi =
(
Vρbi

− VρM
i

)
− (Vρbz

− VρM
z

)
of the radial velocities
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of the receivers relative to the satellites at time tj:

∇ΔZ∗
Vρi

(
t j
) ∼= ∇Δρi

(
t j+1

)− ∇Δρi
(
t j−1

)

t j+1 − t j−1

∼= ∇ΔVρi .

On the other hand, the satellite radial velocity Vρbi
relative to the base station

(which is stationary) for each i-th satellite can be calculated according to Vavilova
et al. (2009):

Vρbi
=
(
Rsati

η − Rb
η

)T

ρbi
V sati

η ,

where Rsati
η =

[
Rsati

η1 Rsati
η2 Rsati

η3

]T
is the vector of the Cartesian coordinates of the

i-th satellite; Rb
η is the vector of the Cartesian coordinates of the base station; V

sati
η is

the vector of the relative velocity of the i-th navigation satellite. Symbol ηmeans that
the corresponding vectors are defined in the geocentric coordinate system associated
with the Earth (Greenwich, rotating), also referred to as ECEF (Earth Centered Earth
Fixed). The radial speed of the satellite relative to the vehicle is defined by a similar
formula which takes into account both the vector of the vehicle coordinates RM

η and
the vector of its own velocity V M

η :

VρM
i

= V (1)
ρM
i

+ V (2)
ρM
i

; V (1)
ρM
i

=
(
Rsati

η − RM
η

)T

ρM
i

V sati
η ; V (2)

ρM
i

=
(
Rsati

η − RM
η

)T

ρM
i

V M
η .

The component V (1)
ρM
i

is explicitly calculated from the known information on the
coordinates and vector velocities of navigation satellites, the vehicle coordinates.
The component V (2)

ρM
i

contains information on the vehicle’s vector velocity V M
η . Let

us form measurement equations in linear approximation:

∇ΔZVρi
= ∇ΔZ∗

Vρi

(
t j
)−

[(
Vρbi

− V (1)
ρM
i

)
−
(
Vρbz

− V (1)
ρM
z

)]
. (2.2.9)

Thus,

∇ΔZVρi
= −

(
V (2)

ρM
i

− V (2)
ρM
z

)
+ ∇ΔVioni + ∇ΔVtropi + ∇ΔV s

i = hT(i)V
M
η + ∇Δrρ̇i .

(2.2.10)

The following notation is used here:

hT
(i) =

(
Rsati

η − RM
η

ρM
i

− Rsatz
η − RM

η

ρM
z

)T

,∇Δrρ̇i = ∇ΔVioni + ∇ΔVtropi + ∇ΔV s
i ,
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where ∇Δrρ̇i is the residual error of the triple differences of carrier phases. As a
result, using the vector form of the equations, we can write:

∇ΔZVρ
=

⎡

⎢
⎢
⎢
⎢
⎣

∇ΔzVρ1

∇ΔzVρ2

...

∇ΔzVρN−1

⎤

⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎣

hT
(1)

hT
(2)
...

hT
(N−1)

⎤

⎥
⎥
⎥
⎥
⎦
V M

η +

⎡

⎢
⎢
⎢
⎣

∇Δrρ̇1
∇Δrρ̇2

...

∇Δrρ̇N−1

⎤

⎥
⎥
⎥
⎦

= H(η)V
M
η + ∇Δrρ̇

(2.2.11)

The solution to (2.2.11) by the least-squares method (with postulation of the
corresponding hypotheses about error ∇Δrρ̇i ) is as follows:

Ṽ M
η = (HT

(η)Σ
−1H(η)

)−1
HT

(η)Σ
−1∇ΔZVρ

. (2.2.12)

Here, Σ is the covariance matrix of errors ∇Δrρ̇i . The elevation angles of naviga-
tion satellites are usually used for parameterization of matrix Σ (2.2.12) (Vavilova
et al. 2009).

We need to make the following comments.

(1) The described algorithm assumes that the velocities V sati
η of the navigation

satellites are known. In this case, GNSS users need to supplement the stan-
dard algorithm used to determine coordinates of navigation satellites with an
algorithm to calculate their relative velocities.

(2) When forming differential combinations of carrier phases, it is necessary to
solve the problem of mutual synchronization of measurements since they are
obtained from two receivers operating in their own time scales.

(3) The central part of the algorithm is numerical differentiation of the double
differences of phase measurements. Correct implementation of this procedure
assumes the absence of cycle slips in carrier phases (changes in the values of
uncertainties {∇ΔNi }) in the differentiation interval. Therefore, the algorithms
of detection and compensation for possible faults in carrier phases is a requisite
element of the problem. TheDoppler velocity solution is useful additional infor-
mation in this case. In addition, the problem (2.2.12) can also be solved with
the use of L1-optimization since it allows eliminating “bad” satellites (Mudrov
and Kushko 1971; Akimov et al. 2012).

(4) In the case of double-frequency receivers, in differentiation, it is possible to use
combinations of carrier phases free from the ionospheric error.

For the quality control of satellite navigation solutions, the GTNAV software
generates a number of parameters that allow the operator to decide on the normal
or problematic functioning of GNSS receivers. Such parameters include data gaps,
the number of visible satellites, PDOP values, baseline lengths, solution accura-
cies, statistical characteristics of solutions based on the analysis of residuals of raw
measurements, etc.



92 A. Krasnov et al.

The software was adjusted in terms of GNSS solutions based on the processing
of a great amount of experimental data obtained during commercial gravimetric
surveys in various regions of the Earth, using GNSS equipment produced by various
manufacturers and with various characteristics, under various conditions of piloting
the carrier of the gravimetric system, etc.

The software supports the following formats of rawdata files: Javad’s *.jps format,
Ashtech’s format (e-, b-files), which were used in the first version of the software,
the format using the Waypoint GrafNav software (epp, gpb-files). Satellite data
processing can be carried out both for a single file (aircraft receiver or base station)
and for data from several receivers.

The source data for the software are the names of data files containing raw GNSS
measurement records and ephemeris information, calculation time limits and the
minimum set of control parameters such as coordinates of the base stations used,
satellite mask angle, satellite number with a corresponding time interval which is
forced out of processing.

In other words, the software is maximally focused both on the operator of the
gravimetric survey, who conducts quality control of satellite data, and on obtaining
satellite navigation solutions specific to the airborne gravimetry problem.

Below is the list of options of the GTNAV software.

1. Differential mode (different combinations of base stations):

• determination of coordinates using carrier phase measurements;
• determination of coordinates using code measurements;
• determination of velocity using Doppler measurements;
• determination of velocity using phase measurements;
• determination of acceleration using carrier phase measurements.

2. Standard (autonomous) mode:

• determination of coordinates using carrier phase measurements;
• determination of coordinates using code measurements;
• determination of velocity using Doppler measurements;
• determination of velocity using carrier phase measurements;
• determination of acceleration using carrier phase measurements.

2.2.3 Software for INS/GNSS Integration

First of all, it should be noted once again that the GTNAV module provides for
the following functions: data integrity check, check for synchronization of inertial
data recording with GNSS data, check for warning messages about any failure or
malfunction of gravimeter sensors.
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The GTNAV module also provides INS/GNSS integration solutions, which are
used for quality control and solution of the GA estimation problem. The magni-
tudes of vertical misalignment errors, azimuth (heading) error, and constant compo-
nents of the gyro drifts are important for quality control. Thus, if the magnitudes of
the misalignment errors are within ±4 arcmin, the GT-2A leveling system operates
normally. Otherwise, it may be indicative of the DTG and/or FOG malfunctioning.

For the GA estimation problem, the estimates of misalignment errors are input
parameters (see (2.2.3)). Estimation of misalignment errors in the GT-1A, GT-2A
airborne gravimeters was a nontrivial problem to solve. The key points of the above
problem are given below:

• the GT-2A uses GNSS-derived position and velocity to damp Schuler oscillations
in real time. Therefore, it was necessary to record real-time damping signals for
postprocessing, which is reflected in the data exchange protocol;

• the damping algorithm is based on a simplified channel-by-channel model of the
INS error equations;

• INS dead-reckoning algorithms use the model of the so-called compass heading,
based on the GNSS-derived velocity;

• themodel of the dead-reckoning algorithm uses relative and absolute angular rates
of the geodetic reference frame, which caused certain difficulties in the integration
problem given below.

Let us describe this problem. The mechanization equations of the two-component
INS with the leveled platform (Golovan and Parusnikov 2012) of GT-series airborne
gravimeters are as follows (Bolotin and Golovan 2013):

v̇'
1 = Ω2RE sinϕGNSS cosϕGNSS sin A' + f '

1 − a3ZV1 − ν̃
(1)
3 ,

v̇'
2 = Ω2RE sinϕGNSS cosϕGNSS cos A' + f '

2 − a3ZV2 − ν̃
(2)
3 ,

V̇ '
1 = Ω sin ϕGNSSV GNSS

a2 + f '
1 − a0ZV1 ,

V̇ '
2 = −Ω sin ϕGNSSV GNSS

a1 + f '
2 − a0ZV2 ,

˙̃ν(1)
3 = a2ZV1 ,

˙̃ν(2)
3 = a2ZV2 ,

ω'
1 = − v'

2

RE
− VGNSS

N

RE

(

1 − RN

RE

)

cos A' + a1
ZV2

RE
,

ω'
2 = − v'

1

RE
− VGNSS

N

RE

(

1 − RN

RE

)

sin A' − a1
ZV1

RE
. (2.2.13)

Equations (2.2.13) use the following notation: v'
1, v'

2, V
'
1, V

'
2 are the horizontal

components of the absolute and relative velocities of the vehicle motion; ω'
1, ω'

2
are the gyro platform leveling signals; Ω is the Earth angular rate; RE is the radius
of curvature of prime vertical, a, e2 are the semi-major axis and the square of the
first eccentricity of the Earth’s model ellipsoid; hGNSS , ϕGNSS , VGNSS

E , VGNSS
N are

the altitude, geographic latitude, eastern and northern components of velocity; the
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superscript ‘GNSS’ hereinafter means that the values of such quantities are taken
from the navigation satellite system during calculations; A' is the azimuth angle
defined as:

A' = arctg

(

−v'
2 − VGNSS

2

v'
1 − VGNSS

1

)

;

VGNSS
1 = VGNSS

E cos A' + VGNSS
N sin A', VGNSS

2 = −VGNSS
E sin A' +

VGNSS
N cos A' are the transformed components of the relative velocity f '

1, f
'
2 are the

readings of the horizontal accelerometers; ZV1 = V '
1 − VGNSS

1 , ZV2 = V '
2 − VGNSS

2
are velocity aiding measurements; a1, a2, a3, a4 are the gain (damping) coeffi-
cients calculated as a function of parameter Tgg (this refers to the characteristic time
of the transition process).

The corresponding equations of the INS errors are the following:

δv̇1 = −ϑ3v
GNSS
2 − α2

(
g + Ω2RE cos

2 ϕGNSS
)+ Δ f1

−
(

δv1 sin A' + δv2 cos A' − ΔVGNSS
N

vGNSS
E

)

Ω2RE sinϕGNSS cosϕGNSS cos A'

− a3ZV1 − ν̃
(1)
3 ,

δv̇2 = ϑ3v
GNSS
1 + α1

(
g + Ω2RE cos

2 ϕGNSS
)+ Δ f2

+
(

δv1 sin A' + δv2 cos A' − ΔVGNSS
N

vGNSS
E

)

Ω2RE sinϕGNSS cosϕGNSS sin A'

− a3ZV2 − ν̃
(2)
3 ,

α̇1 = −δv1

RE
+ ϑ1 − ΔVGNSS

N

RE

(

1 − RN

RE

)

cos A'

−
(

δv1 sin A' + δv2 cos A' − ΔVGNSS
N

vGNSS
E

)
VGNSS
N

RE

(

1 − RN

RE

)

sin A' + a1
ZV2

RE
,

α̇2 = δv2

RE
+ ϑ2 + ΔVGNSS

N

RE

(

1 − RN

RE

)

sin A'

−
(

δv1 sin A' + δv2 cos A' − ΔVGNSS
N

vGNSS
E

)
VGNSS
N

RE

(

1 − RN

RE

)

cos A' − a1
ZV1

RE
,

δV̇1 = −ϑ3V
GNSS
2 − α2g + Δ f1 + ΔVGNSS

2 Ω sin ϕGNSS

+
(

δv1 sin A' + δv2 cos A' − ΔVGNSS
N

vGNSS
E

)

Ω sinϕGNSSV GNSS
1 − a0ZV1 ,

δV̇2 = ϑ3V
GNSS
1 + α1g + Δ f2 − ΔVGNSS

2 Ω sin ϕGNSS

+
(

δv1 sin A' + δv2 cos A' − ΔVGNSS
N

vGNSS
E

)

Ω sinϕGNSSV GNSS
2 − a0ZV2 .
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Here,

vGNSS
1 = (VGNSS

E + ΩRE cosϕGNSS
)
cos A' + VGNSS

N sin A',

vGNSS
2 = −(VGNSS

E + ΩRE cosϕGNSS
)
sin A' + VGNSS

N cos A',

ΔVGNSS
1 = ΔVGNSS

E cos A' + ΔVGNSS
E sin A',

ΔVGNSS
2 = −ΔVGNSS

E sin A' + ΔVGNSS
E cos A',

δv1, δv2, δV1, δV2 are the dynamic errors in the determination of the absolute
and relative velocities; α1, α2 are the misalignment angular errors of the instrument

vertical; Δ f1, Δ f2 are the accelerometer errors; ϑ = [ϑ1, ϑ2, ϑ3

]T
is the vector of

the gyro platform drift, each component of which is described by theWiener process;
g is the gravity assumed to be 9.81 m/s2.

The aiding measurement model takes the form:

ZVE = V '
1 cos A

' − V '
2 sin A'V '

E − VGNSS
E = V1 cos A

' − δV2 sin A'

− δA · VGNSS
N − ΔVGNSS

E ,

ZVN = V '
1 sin A' + V '

2 cos A
' − VGNSS

N = δV1 sin A' + δV2 cos A
'

+ δA · VGNSS
E − ΔVGNSS

N ,

ZvE = v'
1 cos A

' − v'
2 sin A' − (VGNSS

E + ΩRE cosϕGNSS
)

= δva1 cos A
' − δva2 sin A' − δA · VGNSS

N − ΔVGNSS
E ,

δA = −δv1 sin A' + δv2 cos A' − ΔVGNSS
N

vGNSS
E

. (2.2.14)

Here, ΔVGNSS
E , ΔVGNSS

N are the errors of GNSS velocity solutions.
Thus, the behavior of INS errors is described by a general model of the form

ẋ = Ax + Bu + w, where the state vector x includes the inertial system errors and
the errors of the inertial sensors; w is a zero-mean white noise; u is the vector of
known control signals.

Further, to solve the estimation problem, i.e., to estimate the state vector x using
measurements ZVE , ZVN , ZvE , smoothing algorithms are used in the postprocessing
mode (see Vavilova et al. (2009) and Sect. 2.3).

The GTNAV software provides the algorithms to solve the described problem.
Note that calculations can be carried out using both differential GNSS solutions and
GNSS solutions in autonomous mode. The latter is especially important for quality
control because in this case it is possible to solve the integration problem without
data from base stations, i.e., immediately after the aircraft has landed.

No additional external settings of the integration algorithm are required, which
makes the operator’s work easier.

The INS/GNSS software makes the work of the gravimetric survey operator
simpler from the viewpoint of quality control.
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2.2.4 Software for the Solution of the Basic Gravimetry
Equation

Based on the results of the GTNAV software operation, the so-called V-files,
containing GNSS positional and velocity solutions, and I-files, containing the
description of the gyro platform misalignment angles, are generated. Along with
the S-files and G-files generated by the GT-2A gravimeter, these data are used during
the final processing in the GTQC20 and GTGRAV modules to form a GA estimate
on the trajectory recorded in the G3-file.

The GTQC20 module is responsible for monitoring the data quality in the binary
files generated by the GT-2A gravimeter. It checks the synchronization of data with
the GNSS clock pulse and gaps in processing cycles, makes a conclusion about
the data quality and, if possible, restores the omissions and records the refined and
synchronized data into text files. The GTGRAV module generates the GA estimate.

Let us briefly discuss the mathematical part of processing. Consider a “model”
basic gravimetric equation that differs from (2.2.1) in the absence of GAs and the
substitution of measurements instead of the true values of variables (Bolotin et al.
2002):

ḧ' = V̇ '
3,

V̇ '
3 = Δ f '

E − γ'
0 − δγ' + f '

3.

Subtracting this equation from (2.2.1), denoting Δh = h − h', ΔW = V3 − V '
3 −

τ3 f '
3, q f = Δ f s3 and taking into account the measurement Eqs. (2.2.2)–(2.2.4), we

obtain the equations for the vertical channel errors:

Δḣ = ΔW + τ3 f
'
3,

ΔẆ = κ3 f
'
3 + q f + (κ2 + α2) f

'
1 − (κ1 + α1) f

'
2 + Δg. (2.2.15)

The zero drift of the GSE is not taken into account here since it is compensated
for during the reference measurements.

Depending on the situation, GNSS measurements can be used in carrier phase
(standard or differential) or Doppler modes (Wei et al. 1991; Stepanov et al. 2002).
The GNSS altitude increment serves as positional measurements when using GNSS
carrier phase measurements (Bolotin et al. 2002):

Δh∗ =
t∫   

t0

VGNSS
3 dt − h', Δh∗ = Δh + qs

h + qi
h . (2.2.16)

Here, qs
h is the random error of the altitude increment caused by the noise of the

GNSS and GSE raw data, and qi
h is an intermittent error caused by the cycle slip in

the carrier phases.
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When using GNSS Doppler measurements, we have (Bolotin et al. 2002):

ΔV ∗
3 = VGNSS

3 − W '
3, ΔV ∗

3 = ΔW3 + qs
v . (2.2.17)

Here, qs
v is a random error of the altitude increment caused by the noises of the

GNSS and GSE raw data.
Equation (2.2.15) are supplementedwith the calibration parameters vs timemodel

(Bolotin and Golovan 2013):

τ̇3 = qτ, κ̇3 = qκ3, κ̇1 = qκ1, κ̇2 = qκ2, (2.2.18)

By combining (2.2.15)–(2.2.18) and introducing the vector
qp= (qτ, qκ3, qκ1, qκ2) of parameters drifts, we obtain the model of the vertical
channel in the matrix form:

ẋg = Agxg + B f q f + Bpqp + BΔgΔg,

z = Cgxg + qs
h + qi

h . (2.2.19)

A GA stochastic model is used for solution of (2.2.19) (Bolotin and Popelensky
2007). The GA is assumed to be a stationary (time-invariant) random process with
a given PSD SΔg(ω) represented as an output of a finite-dimensional shaping filter
with white noise at the input (in the GTGRAV software, the parameters of the first-
or second-order model are selected by the user):

ẋa = Aaxa + Baqa,

Δg = Caxa . (2.2.20)

Equations (2.2.19), (2.2.20) are used to determine GA on the trajectory with the
use of the smoothing filter. Here, it is worth pointing out the following features.

• The filter takes into account the nonstationary (time-varying) nature of the noise;
in particular, possible cycle slips qi

h , changes in the number of visible satellites and
GSE saturation caused by abnormal vertical accelerations. Both phenomena are
simulated by increasing the corresponding noise-variance matrices, which leads
to a reduction in the weight of the corresponding measurement when the estimate
is calculated. The filtermay have several iterations, where noise variances increase
with greater values of the residuals. It should be noted that this heuristic technique
makes the filter nonlinear.

• The filter automatically takes into account the turns between the survey lines
by increasing the value of noise covariance matrices on the turns. This makes it
possible to significantly reduce the duration of transient processes at the ends of
survey lines.

• The filter provides estimates of the gravimeter calibration parameters, which are
used for additional control of data quality.
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Fig. 2.17 Block diagram of data flows in the GTGRAV software modules

• The filter allows for the state vector expansion in order to take into account
additional correlations caused by angular motions of the aircraft.

• The GA is usually determined in two stages. At the first stage, the model includes
the maximum number of external factors to verify data quality. At the second
stage, the factors whose values do not reach the reliability threshold are removed
from the model.

• The software developed allows survey data to be processed in the drape flight
mode. This mode requires very high accuracy of the GSE scale factor κ3 estima-
tion, which makes it necessary to carry out the so-called calibration maneuver.
After that, κ3 is determined using the algorithms described above.

• Adaptive modification of the filtering algorithm is possible, wherein GA is
described by a nonstationary Markov process (Bolotin and Doroshin 2011).

A block diagram of the GTGRAV software data flows is shown in Fig. 2.17.
A general block diagram of the data flows in the GT-2A gravimeter and

postprocessing software modules is shown in Fig. 2.18.

2.2.5 Conclusion

The features and methods of GT-2 data postprocessing have been discussed. The
stages of integrated data postprocessing provided by data acquisition system, GNSS
receivers on the aircraft and those at the base stations, inertial navigation system, and
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Fig. 2.18 General block diagram of the GT-2A gravimeter and postprocessing software data flows

the GSE have been considered. They include processing of GNSS raw data, estima-
tion of the gyro platform misalignment errors, and solution of the basic gravimetric
equation. The data flows in the postprocessing software have been described.

2.3 Optimal and Adaptive Filtering and Smoothing
Methods for Onboard Gravity Anomaly Measurements

The previous sections of this Chapter describe the processing algorithms used in
the Chekan and GT series gravimeters. When developing the algorithms, a question
often arises if the accuracy of gravimetric surveys can be enhanced by improving
the processing algorithms. This question is, generally speaking, still open. In our
opinion, it can be answered by applying the Bayesian approach. It offers great advan-
tages by helping not only to formalize the problem of designing the estimation algo-
rithms, including optimal ones, but also to obtain their accuracy characteristics in the
form of calculated (conditional) and unconditional covariance matrices. The ability
to obtain an unconditional covariance matrix of optimal estimation errors, in turn,
makes it possible to calculate the potential accuracy with the given models and thus
to objectively estimate the performance of various suboptimal algorithms. However,
a significant disadvantage of the Bayesian approach is the necessity for the stochastic
description (modeling) of the sensor errors and estimated values. This need for the
knowledge of consistent (adequate)models hinders the application of optimal estima-
tion methods. Nevertheless, the progress in computer technology and identification
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methods used to build the required models provides a new potential for improving
the processing methods applied to onboard gravity anomaly measurements.

The present section is devoted to the synthesis of optimal Bayesian algorithms
and identification methods, which provide the required models.

2.3.1 General Formulation and Solution of Optimal Filtering
and Smoothing Problems

First, let us formulate the problem of optimal Bayesian estimation of gravity anomaly
onboard a vehicle, assuming that the models of errors of the measuring instru-
ments and of GA to be estimated are known. For this purpose, let us first formulate
the filtering and smoothing problems in the general form and briefly describe the
algorithms used to solve them (Meditch 1969; Stepanov 2017b).

Suppose an n-dimensional Markov process is given,

ẋ(t) = F(t)x(t) + G(t)w(t), x(t0) = x0 (2.3.1)

and m-dimensional measurements are taken

y(t) = H(t)x(t) + v(t), (2.3.2)

where F(t), G(t), H(t) are the generally known time-dependent n×n, n× p,m×n
matrices; x0 is the zero-mean vector of initial conditions with covariance matrix P0;
w(t), v(t) are p- and m-dimensional vectors of zero-mean white noises with a given
PSD, which are noncorrelated with each other and have the initial conditions x0, i.e.:

E
{
x0w

T (t)
} = 0; E{w(t)vT (t)

} = 0; E{x0vT (t)
} = 0; (2.3.3)

E
{
w(t)wT (τ)

} = Q(t)δ(t − τ), Q(t) ≥ 0; (2.3.4)

E
{
v(t)vT (τ)

} = R(t)δ(t − τ), R(t) > 0. (2.3.5)

The filtering problem is formulated as follows. Using the measurements (2.3.2)
Y (t) = {y(τ) : τ ∈ [0, t]} accumulated over the interval [0, t], it is needed to obtain
the linearmean-square optimal estimate x̂(t) of vector x(t) at time t, whichminimizes
the criterion

r B(t) = E
{(
x(t) − x̂(t)

)T (
x(t) − x̂(t)

)}
. (2.3.6)
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It is well known that the estimate x̂(t) and its error covariance matrix P(t) are
determined using the following formulas for the Kalman-Bucy filter (Kalman and
Bucy 1961; Meditch 1969):

˙̂x(t) = F(t)x̂(t) + K (t)
(
y(t) − H(t)x̂(t)

); (2.3.7)

K (t) = P(t)H(t)T R−1(t); (2.3.8)

Ṗ(t) = P(t)F(t)T + F(t)P(t) − P(t)H(t)T R−1(t)H(t)P(t)

+ G(t)Q(t)GT (t). (2.3.9)

In practice, the estimate is calculated using the discrete form of the filter (Kalman
1960; Meditch 1969):

x̂i = x̂i/ i−1 + Ki
(
yi − Hi x̂i/ i−1

); (2.3.10)

x̂i/ i−1 = ϕi x̂i−1, Pi/ i−1 = ϕi Pi−1ϕ
T
i + Γi QiΓ

T
i ; (2.3.11)

Ki = Pi H
T
i R−1

i , Pi =
(
P−1
i/ i−1 + HT

i R−1
i Hi

)−1; (2.3.12)

where ϕi = ϕ(ti ; ti − Δt) is the transition matrix of the system (2.3.1) between
times ti − Δt and ti (Δt is the sample interval); Γi and Qi are the matrices chosen
so as to satisfy the formula

Γi QiΓ
T
i ≈ G(ti )Q(ti )G

T (ti )Δt,

corresponding to the condition of stochastic equivalence of the continuous process
x(t) and the discrete sequence xi (Stepanov 2017b), the matrix Ri = R(ti )/Δt , and
Hi = H(ti ). Note that here Eq. (2.3.11) generate the optimal prediction x̂i/ i−1 and
the corresponding covariance matrix Pi/ i−1 at time ti .

The smoothing problem is formulated as follows. Using the measurements (2.3.2)
Y (t1) = {y(τ) : τ ∈ [t0, t1]} accumulated over the interval [t0, t1] at time t , it is
required to obtain a linear mean-square optimal estimate x̂ s(t) of the vector x(t) at
time t < t1, which minimizes the criterion

r B(t) = E
{(
x(t) − x̂ s(t)

)T (
x(t) − x̂ s(t)

)}
.

There are three types of smoothing problems: fixed-interval smoothing, constant
delay smoothing, and fixed-point smoothing (Meditch 1969; Stepanov 2017b).
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Focus on a possible algorithm for solving the problem over a fixed interval, which
is used in this study. This algorithm is based on preliminary solution of the filtering
problem over the entire time interval [t0, t1], resulting in the generation of estimates
and their covariance matrices. Further the filtering estimates are denoted by x̂ f (t),
P f (t) and smoothing estimates, by x̂ s(t), Ps(t). Assume that P f (t) is nonsingular
and the inverse matrix

(
P f (t)

)−1
exists. In this case, the smoothing solution in the

form of the optimal estimate x̂ s(t) and the corresponding covariance matrix Ps(t)
can be defined by the following equations (Meditch 1969):

˙̂xs(t) = F(t)x̂ s(t) + Ks(t)
(
x̂ s(t) − x̂ f (t)

); (2.3.13)

Ks(t) = G(t)Q(t)G(t)T
(
P f (t)

)−1; (2.3.14)

Ṗs(t) = [F(t) + Ks(t)
]
Ps(t) + Ps(t)

[
F(t) + Ks(t)

]T − G(t)Q(t)GT(t).
(2.3.15)

These equations determine the solution of a continuous optimal smoothing
problem over a fixed interval. It is clear that for time t = t1, the formulation and,
hence, the solution of the smoothing problem coincide with the formulation and
solution of the filtering problem. It should be noted that the residual x̂ s(t) − x̂ f (t)
in (2.3.13) has dimension n coinciding with the dimension of the state vector.

The algorithm (2.3.13)–(2.3.15) in the discrete form is referred to as the Rauch-
Tung-Striebel (RTS) smoothing algorithm (Rauch et al. 1965) or simply as the
optimal smoothing filter (OSF). At the first step, similarly to filtering problem, the
conventional Kalman filter (KF) (2.3.10)–(2.3.12) is used to obtain the optimal esti-
mates x̂ f

i and P f
i . At the second step, a modified filter is used with account for the

obtained values, where the filtering estimate is used instead of the predicted estimate,
and the residual is the difference between the estimate smoothed at the previous step
and the predicted estimate (Simon 2006; Stepanov 2017a):

x̂ si = x f
i + Ks

i

(
x̂ si+1 − x̂ f

i+1/ i

)
,

Ks
i = P f

i ϕT
i

(
P f
i+1/ i

)−1
,

Ps
i = P f

i + Ks
i

(
Ps
i+1 − P f

i+1/ i

)(
Ks

i

)T
. (2.3.16)

It is important that the filter (2.3.16) runs in inverse time, since the smoothed
estimate at time ti depends on the similar estimate at time ti + Δt. It also follows
from the Eq. (2.3.16) that it is not needed to calculate the smoothing error covariance
matrix Ps to obtain the estimate. However, it can be used as a characteristic of
estimation accuracy. The analysis of the above equations also shows that to obtain a
smoothed estimate, it is necessary to save the estimates, the predicted estimates, and



2 Data Processing Methods for Onboard Gravity Anomaly Measurements 103

their error covariance matrices obtained during filtering. Obviously, this increases
the requirements for the computer memory when solving the smoothing problem.

2.3.2 Optimal Filtering and Smoothing Algorithms
for Onboard Gravity Anomaly Measurements

Let us specify the above problem formulations as applied to the gravity anomaly
measurements. As a rule, by the filtering stage the most corrections such as the
normal gravity correction, Eotvos correction, altitude correction, etc., have already
been introduced in gravimeter measurements. Thus, the gravimeter measurements
gGR(t) can be represented as follows:

gGR(t) = Δg(t) + ao(t) + wGR(t), (2.3.17)

where Δg(t) is the GA in free air; ao(t) is the vertical acceleration of the vehicle;
wGR(t) are the total random measurement errors of the gravimeter. Based on the
measurements (2.3.17), to apply the optimal filtering and smoothing algorithms it
is needed to determine the shaping filter of the form (2.3.1) for GA Δg(t) and the
vertical accelerations ao(t).

The gravity anomaly can be described with the Jordan model, the Schwarz model
(Jordan 1972) and other models, along with their approximations as the integrals
of white noise (Bolotin et al. 2002). Here, let us consider the Jordan model corre-
sponding to the stationary third-order Markov process with the correlation function
(Jordan 1972):

KΔg(ρ) = σ2
Δg

(

1 + αρ − (αρ)2

2

)

e−αρ, (2.3.18)

where σ2
Δg is the GA variance; α is the inverse correlation interval; ρ is the length

of a rectilinear trajectory. To transform (2.3.18) to the time domain, use the formula
ρ = V t , where V is the vehicle speed. Note that the process with the correlation
function (2.3.18) is differentiable and the variance of its derivative can be defined as
follows:

σ2
∂Δg/∂ρ = − d2

dρ2
KΔg(ρ)

|
|
|
|
ρ=0

= 2α2σ2
Δg.

It should also be noted that σ∂Δg/∂ ρ characterizes the spatial variability of GA.
Further, for simplicity, wewill call this quantity the gradient of the gravitational field.
PSD of the function (2.3.18) is defined as follows:
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SΔg(ω) = 2α3 · σ2
Δg · 5 · ω2 + α2

(
ω2 + α2

)3 , (2.3.19)

where ω is the analogue of the circular frequency for the process depending on the
length of the straight section. The PSD can be represented as

SΔg(ω) = 2α3 · σ2
Δg ·

(
α + √

5 jω
)(

α − √
5 jω

)

(α + jω)3(α − jω)3
, (2.3.20)

so it is easy to show that Δg(t) samples corresponding to this PSD can be generated
using the components of the third-order Markov process (Stepanov 2017b):

⎧
⎨

⎩

ḃ1 = −βb1 + b2;
ḃ2 = −βb2 + b3;
ḃ3 = −βb3 + wGA,

(2.3.21)

where β = Vα; V is the vehicle speed; wGA is the generating white noise with the
PSD qw = 10β3σ2

Δg . In this case, GA Δg is defined as

Δg = −βϑb1 + b2, where ϑ =
√
5 − 1√
5

. (2.3.22)

The vehicle vertical acceleration ao(t) can also be generally described as a random
process. Clearly, its frequency properties significantly depend on the vehicle type.

In marine gravimetry, the frequency properties of the processes Δg(t) and ao(t)
greatly differ, so the acceptable accuracy ofΔg(t) estimation can be achievedwithout
using additional data on vertical accelerations ao(t). In practice, stationary filtering
and smoothing algorithms described in Sect. 2.3.3 are often applied to such problems.

In airborne gravimetry, due to the high speed of the vehicle, the PSDs of Δg(t)
and ao(t) substantially overlap in the frequency domain. Therefore, vertical displace-
ments ho(t) should be applied to achieve the required accuracy of Δg(t) estimation.
As follows from theprevious sections, these data canbeobtainedusinghigh-precision
GNSS measurements of altitude hs(t) in the differential phase mode. By presenting
them as

hs(t) = ho(t) + vs(t), (2.3.23)

where ho(t) is the vehicle altitude; vs(t) are GNSS measurement errors, formulate
the problem of GA optimal estimation as the problem of estimating the state vector
x = [ho, Vo, ao, b1, b2, b3,]T specified by the following equations:
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⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

ḣo = Vo;
V̇o = ao;
ḃ1 = −βb1 + b2;
ḃ2 = −βb2 + b3;
ḃ3 = −βb3 + wGA;

(2.3.24)

by measurements (2.3.17), (2.3.23). However, such a formulation requires the
description of vehicle accelerations ao using a shaping filter in the state space.
A common way to avoid this in practice is to proceed to the formulation not
requiring the introduction of the model of vehicle vertical accelerations (Nesenyuk
and Khodorkovsky 2010). By double integration of the gravimeter readings (2.3.17),
we obtain

⎧
ḣGR = VGR;
V̇GR = Δg + ao + wGR,

(2.3.25)

where hGR = ho + ΔhGR , VGR = Vo + ΔVGR are the increments of altitude and
speed obtained by integrating the gravimeter readings. Considering (2.3.24), (2.3.25)
and the fact that Δg = −βϑb1 + b2, we obtain the following formulas:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

ΔḣGR = ΔVGR;
ΔV̇GR = − β ϑb1 + b2 + wGR;
ḃ1 = −βb1 + b2;
ḃ2 = −βb2 + b3;
ḃ3 = −βb3 + wGA.

(2.3.26)

Forming the differential measurements as

y = hGR(t) − hs(t) = ΔhGR(t) + vs(t), (2.3.27)

the problem of GA optimal estimation by GNSS and gravimeter data can be formu-
lated as the problem of estimating the state vector x = [ΔhGR,ΔVGR, b1, b2, b3]T

described by Eq. (2.3.26) using measurements (2.3.27). Obviously, the above formu-
lation of the problem is invariant to vertical accelerations due to the use of differ-
ential measurements (2.3.27). This technique is often applied to process redundant
measurements, especially in navigation applications (Groves 2013; Stepanov 2016).
However, it should be noted that the above formulation is not invariant to GA: its
description is required and in this case specified using the Jordan model (2.3.21),
(2.3.22). For more information on invariant and non-invariant algorithms, see Brown
and Hwang (1977), Dmitriev and Stepanov (2000), Stepanov (2016).

For example, let us specify the problem formulation by introducing the random
error models of gravimeter readings wGR(t) and measurements vs(t). Following



106 A. Krasnov et al.

(Stepanov et al. 2002), describe them for simplicity bywhite-noise random processes
with the known PSD RGR and QSNS , respectively. In this case, the problem is a linear
estimation problem, and its solution is reduced to the optimal KF or the smoothing
filter described in the previous subsection, and the corresponding models (2.3.1),
(2.3.2) with the following matrices included in them:

F =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

0 1 0 0 0
0 0 −βϑ 1 0
0 0 −β 1 0
0 0 0 −β 0
0 0 0 0 −β

⎤

⎥
⎥
⎥
⎥
⎥
⎦

,G =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

0 0√
RGR 0
0 0
0 0
0 qw

⎤

⎥
⎥
⎥
⎥
⎥
⎦

, H = [1 0 0 0 0
]
.

To implement the algorithms, the initial covariance matrix P0 is required, which,
as can be easily seen, has a block-diagonal form due to the structure of the system
(2.3.26).

2.3.3 Stationary Estimation Algorithms and Their
Performance Analysis

As follows from the previous sections, stationary filtering and smoothing algorithms,
which, unlike the optimal algorithms, minimize the error variance only in the steady
state, are applied to simplify the processing algorithms in GA estimation (Stepanov
2017b).

One of the methods to construct such filters is based on using the filtering and
smoothing solution in the state space for a steady state. Discuss this method in more
detail as applied to fixed-interval smoothing assuming that the matrices in (2.3.1),
(2.3.2) do not depend on time. It is thought that there exists a steady-state solution
for the filtering problem. To simplify the formula, let us put here that the PSD of
the generating noise is an identity matrix. Present the solution of the steady-state
smoothing problem by the algorithm (2.3.13)–(2.3.15) discussed in Sect. 2.3.2 using
the transfer functions (TF). To do this, first obtain the filtering estimate using a
conventional steady-state KF

˙̂x f
∞(t) = (F − K f

∞H
)
x̂ f

∞(t) + K f
∞y(t), (2.3.28)

where

K f
∞ = P f

∞HT R−1, (2.3.29)

and then find the smoothed estimate by processing x̂ f (t) with the filter
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˙̂xs∞(t) = Fx̂s∞(t) + Ks
∞
(
x̂ s∞(t) − x̂ f

∞(t)
)

(2.3.30)

with

Ks
∞ = Q

(
P f

∞
)−1

, (2.3.31)

where

Q = GGT . (2.3.32)

The matrix P f
∞ included in these formulas corresponds to the solution of the

covariance equation (2.3.9) for the steady state. The solution is sought for the steady
state, so the TF matrix can be found for the optimal KF:

W f
x (p) = (pE − F + K f

∞H
)−1

K f
∞. (2.3.33)

Considering that x̂ f
∞(p) = W f

x (p)y(p), we get the following to estimate
smoothing:

x̂ s∞(p) =
(
−pE + F + Q

(
P f

∞
)−1
)−1

Q
(
P f

∞
)−1

x̂ f
f (p)

=
(
−pE + F + Q

(
P f

∞
)−1
)−1

Q
(
P f

∞
)−1

W f
x (p)y(p),

where W f
x (p) is given by (2.3.33).

It follows that the TF matrix for a smoothing filter, providing the estimation of all
state vector components, is defined as

Ws
x (p) =

(
−pE + F + Q

(
P f

∞
)−1
)−1

Q
(
P f

∞
)−1

W f
x (p). (2.3.34)

A number of methods have been developed to find the required filter TF W f
x (p),

including approximate ones, such as the method of PSD local approximation
(Loparev et al. 2012; Stepanov et al. 2014). It constructs the PSDs of the useful
signal and noise and searches for their intersection point, where the PSDs are equal.
To obtain this intersection point, the PSDs in its vicinity are approximated by linear
functions. The found frequency is taken to be the cutoff frequency of the filter, and
the TF order is determined by the steepness of the linear approximation slope. It
follows from the above that with this method, the parameters of the TF significantly
depend only on the properties of the PSDs in the vicinity of the found point. Thus,
simpler models can be applied to describe the error and the value to be estimated:
for example, the GA model can be specified as the second or third integral of white
noise instead of the Jordan model. The studies (Stepanov et al. 2002; Koshaev and
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Stepanov 2010) show that with the GA model specified as the second integral of
white noise, for the models described in 2.3.2 the TF of the stationary smoothing
filter can be representedwith a certain degree of approximation using the fourth-order
Butterworth filter TF:

wB4(p) = μ4

p4 + γp3μ + γ2

2 p2μ2 + γpμ3 + μ4
, (2.3.35)

where μ =
(
q ¨̃g/Rh

)
1/8 is the filter cutoff frequency; q ¨̃g = σ2

∂ g̃/∂ρ
3V 3/ρ; V is the

vehicle speed; Rh is the standard deviation of altitude error; ρ is the trajectory length;

and γ =
/

2
(
2 + √

2
)
is a dimensionless coefficient.

In the design of smoothing algorithms, various techniques are also applied to
reduce their computational complexity. For example, it is known (Stepanov 2017b)
that in a particular estimationof a scalar processwith a fractional-rational PSDagainst
the white noise background, the TF in the smoothing problem for themeasured scalar
component z = Hx can be represented as follows:

Ws
z (p) = W∗(−p)W∗(p) = |W∗(p)|2, (2.3.36)

where the functionW∗(p) is defined asW∗(p) = rGT (P f
∞)−1W f

x (p) with r = √
R.

This implies that if the measured and estimated components coincide, a compu-
tationally inexpensive algorithm can be employed to obtain the optimal smoothing
estimate. It includes the following steps (Stepanov 2017b):

• generation of the estimate vector x̂ f (t) using the KF, which generally estimates
the n-dimensional state vector by the scalar measurement y(t) = z(t) + v(t) =
Hx(t) + v(t);

• generation and saving of the scalar sample ˆ̃z(t) = T x̂ f (t) using the row matrix

T = rGT
(
P f

∞
)−1

, where r = √
R;

• generation of the n-dimensional estimate vector x̂ s(t) by processing the scalar
ˆ̃z(t) in the inverse time in the same Kalman-type filter.

The idea of this modified smoothing algorithm is that it requires saving only the
scalar estimates obtained in the filtering mode.

When using this algorithm, as applied to the considered example with the models
described in Sect. 2.3.2 and the GA model specified as the second integral of white
noise, it can be shown that processing is reduced to differentiating the measurements
and applying the Butterworth filters in the forward and inverse time:
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W c
h (p) = wB4(p)wB4(−p)

⎛

⎜
⎜
⎜
⎜
⎝

1

p

p2

p3

⎞

⎟
⎟
⎟
⎟
⎠

. (2.3.37)

The study (Stepanov et al. 2002) shows that despite the simplified specification
of the anomaly model in the local approximation method, the resulting algorithm
is close to the optimal in the steady-state mode for the models described above,
including the Jordan model for GA.

Another modification of a suboptimal smoothing algorithm is discussed in
Sect. 2.4.

In practice, finite impulse response (FIR)filters are also applied to process airborne
gravimetry data. For example, in the two-stage procedure of processing the Chekan
gravimeter data described in Sect. 2.1.3, the first stage uses a FIR filter with a trape-
zoidal Tukey weight function. The use of such a filter with a fixed window width
decreases the estimation interval by half the windowwidth on both ends of the trajec-
tory; besides, sometimes the filter fails to achieve the acceptable estimation accuracy.
Therefore, a second stage is provided, where the received signal is transferred to the
frequency domain, where high-frequency harmonics are reduced by Fourier trans-
formation. This procedure smoothes the resulting estimate but does not reduce the
spatial resolution of the survey. The transfer back to the time domain is performed
at the final stage. A diagram of this procedure is shown in Fig. 2.19.

The processing algorithm is tuned by selecting the width of Tukey window and
the number of harmonics in Fourier transformation. It should be noted that, due to
the heuristic nature of this algorithm, there exists no formalized tuning sequence for
it. In practice, its parameters are selected so that the resulting estimate is typical of
GA. Spectral analysis of the resulting estimate can additionally be used. The estimate
is verified by comparison with the known rough map of the gravitational field with
the marked characteristic points (GA minima and maxima). The performance of
the estimation algorithm is assessed based on the coincidence of the anomalies at
these points. Thus, when processing real data using such a procedure, the accuracy

Fig. 2.19 Two-stage processing procedure
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of GA estimation largely depends on the experience of the engineer processing the
measurements.

As noted in Introduction of this chapter, the Bayesian approach offers the advan-
tage of calculating the potential accuracy of the specifiedmodels. This creates a good
basis for objective estimation of the efficiency of various simplified algorithms in
simulation studies. The results of such a study for the models described in 2.3.2 are
presented in Figs. 2.20, 2.21 and 2.22 showing the actual RMS errors (RMSE) for
the optimal smoothing algorithm, the stationary Butterworth filter (2.3.35), and the
two-stage estimation procedure.

Stationary suboptimal algorithms do not generate the estimation accuracy charac-
teristic during the operation, so the corresponding RMSEs are obtained by statistical
testing as described, for example, in Stepanov (2017b). It is also important to note
that the true GA was generated in accordance with the Jordan model in all cases.

The simulation results generally confirm that stationary suboptimal algorithms in
steady-state mode are close to the optimal algorithm, but suffer from large errors (up
to hundreds of mGal) at the boundaries of the intervals. In this case, the transient
process recalculated to the trajectory length lasts for up to 25 km.

The transient process of a two-stage procedure generally features somewhat
smallerRMSEanda longer time to reach the steady state comparedwith the stationary
algorithm. However, due to the nature of the Fourier transformation, it is accompa-
nied by significant fluctuations up to 50 km long. To prevent this effect, the authors
of the algorithm proposed to increase the observation interval by extrapolating the
measurements outside the trajectory with high-frequency harmonics (Krasnov and
Sokolov 2013).

The advantages of stationary algorithms include low computational complexity
and easy implementation. Such algorithms, in some cases, require no explicit models
for GA anomalies and the errors of the measuring instruments. However, they suffer

Fig. 2.20 GA estimation RMSE
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Fig. 2.21 Steady RMSE of GA estimation

Fig. 2.22 Transient process for GA estimation RMSE
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Fig. 2.23 GA estimation RMSE in filtering and smoothingmodes (left); the obtained GA estimates
(right)

from the pronounced boundary effects at the trajectory ends and are able neither to
assess the estimation accuracy during the transient process nor to account for the
varying motion parameters of the aircraft.

It should also be emphasized that the smoothing mode provides a much better
GA estimation accuracy as compared to the filtering mode. Figure 2.23 shows GA
estimates and their RMSEs in various modes during the processing of airborne
gravimetric data.

It can be seen that the estimate obtained in the filtering mode has a non-typical
high-frequency component, as well as the phase shift. The use of smoothing proce-
dures eliminates these negative effects. As noted in Sect. 2.3.1, the RMSE of filtering
and smoothing coincide at the end of the interval, thus, the minimum filtering RMSE
corresponds to the maximum smoothing RMSE. In general, the use of all measure-
ments in the smoothing process increases the accuracy 2–3 times in the steady state.
It should be noted that the FIR filter described in the analysis of the two-stage estima-
tion procedure, strictly speaking, also solves the smoothing problem, since it obtains
an estimate for the middle of the window, i.e., uses the measurements obtained both
before and after the estimation.

2.3.4 Model and Parametric Identification of Gravity
Anomaly and Measurement Errors Using Onboard
Gravity Measurements

As follows from the previous material, the design of optimal estimation algorithms
requires stochastic models of the GA and errors of the measuring instruments. Note
that attempts to process real data using optimal filtering and smoothing algorithms
for the model (2.3.26), (2.3.27) have failed (Sokolov et al. 2016). It should also be
said that the parameters of the GA model (2.3.21), (2.3.22) may vary depending on
the survey area: the field gradient may be within 0.5–3 mGal/km in a flat terrain
and reach 10 mGal/km and more in a mountainous terrain. Simulation has shown
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(Stepanov et al. 2015; Motorin and Nosov 2019) that inaccurate setting of this value
can critically reduce the GA estimation RMSE. If the used models differ from the
actual ones, the calculated accuracy characteristic in the form of diagonal elements
of the covariance matrix does not match the actual estimation accuracy (Stepanov
and Koshaev 2011). All this proves the importance of structural and parametric
identification of models used in GAmeasurements. Next, let us discuss the algorithm
proposed for identification.

Note that the model used to design the optimal algorithm within the Bayesian
approach can generally be represented as a shaping filter:

xki = ϕk
i

(
θk
)
xki−1 + Γk

i

(
θk
)
wk

i ,

θki = θki−1 = θk, (2.3.38)

yi = Hk
i

(
θk
)
xki + ψk

i

(
θk
)
vk
i , (2.3.39)

where xki is the state vector; ϕk
i

(
θk
)
, Γk

i

(
θk
)
, Hk

i

(
θk
)
, ψk

i

(
θk
)
are the shaping

filter matrices characterizing the error model, whose elements generally nonlinearly
depend on the parameter vector θk ;wk

i and vk
i are the pk- andmk-dimensional white-

noise Gaussian sequences with identity covariance matrices; k is the number of a
candidate model used to describe the errors. The structure of the model described
by the number k and dimensions of the vectors θk and xki (different for different k)
included in Eqs. (2.3.38), (2.3.39) may be unknown.

Considering the above equations and introducing the hypotheses for the model
number k, the problem of structural and parametric identification can be formu-
lated (Dmitriev and Stepanov 2004; Motorin and Stepanov 2015; Toropov et al.
2016; Stepanov and Motorin 2019). It consists in determining the number of the
hypothesis k, which best fits the vector of all measurements obtained by the time i

Yi = [
y1 ... yi

]T
, and obtaining the estimates of the parameter vector θk and the

state vector xki corresponding to this hypothesis.
Let us interpret the set of suggested hypotheses as a random variable H, which

takes the values hk , where k = 1 . . . K , K is the total number of hypotheses. The
probability density function (PDF) of H can be represented as follows (Dmitriev and
Stepanov 2004):

fH(H) =
KΣ   

k=1

Pr(H = hk)δ(H − hk), (2.3.40)

where Pr(H = hk) is the probability that the hypothesis for the model H = hk is
true, and

ΣK
k=1 Pr(H = hk) = 1. The value of hk is selected such that to maximize

the conditional probability Pr(H = hk/Yi ) or, which is the same, to maximize the a
posteriori (conditional) PDF fH(H/Yi ):
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h∗
k = argmax

hk
fH(H/Yi ). (2.3.41)

With a fixed value of the hypothesis, the estimates of the vectors θk and xki are
found as the Bayesian optimal estimates, i.e.:

θ̂ki (Yi ) =
∫   

θk fθk
(
θk/Yi ,H = hk

)
dθk, x̂ ki (Yi ) =

∫   

xki fxki
(
xki /Yi ,H = hk

)
dxki ,

(2.3.42)

where fθk
(
θk/Yi ,H = hk

)
and fxki

(
xki /Yi ,H = hk

)
are a posteriori PDFs of vectors

θk and xki , respectively, with a fixed hypothesis about the error model H = hk . Thus,
the problem of identifying the model (2.3.28), (2.3.39) and estimating its parameters
is reduced to finding the PDF fH(H/Yi ), fθk

(
θk/Yi ,H = hk

)
, fxki

(
xki /Yi ,H = hk

)

and calculating the integrals (2.3.42). These integrals are normally calculated using
numerical methods based on various techniques for approximating a posteriori
density. In the general case, the dimension of these integrals is determined by the
dimension of the vectors θk and xki .

Using the Bayesian formulas, we get:

Pr(H = hk/Yi ) = f (yi/Yi−1,H = hk) fH(H = hk/Yi−1)
ΣK

k=1 f (yi/Yi−1,H = hk) fH(H = hk/Yi−1)
, (2.3.43)

where f (yi/Yi−1,H = hk) is the measurement likelihood function at step i for a
fixed hypothesis; it can be represented as follows:

f (yi/Yi−1,H = hk) =
∫   

fyi
(
yi/Yi−1,H = hk, θ

k
)
fθk
(
θk/Yi−1,H = hk

)
dθk .

(2.3.44)

In this formula, fyi
(
yi/Yi−1,H = hk, θk

)
is the measurement likelihood function

at the step i for thefixedhypothesis and theparameter vector θk , fθk
(
θk/Yi−1,H = hk

)

is a posteriori PDF at the step i – 1. For the PDF of the state vector xki , the following
is also true:

fxki
(
xki /Yi ,H = hk

) =
∫   

fxki
(
xki /Yi ,H = hk, θ

k
)
fθk
(
θk/Yi ,H = hk

)
dθk .

(2.3.45)

The peculiar feature of the problem is that the model (2.3.38), (2.3.39) describes
the problem of linear Gaussian filtering for fixed values of the hypothesis and
the parameter vector θk . Let θk j , j = 1 . . . Mk be the grid of the vectors θk

for the fixed hypothesis hk . Under these conditions, the likelihood functions
fyi
(
yi/Yi−1,H = hk, θk = θk j

)
and a posteriori PDF fxki

(
xki /Yi ,H = hk, θk = θk j

)
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are Gaussian, i.e.:

fyi
(
yi/Yi−1, H = hk, θ

k = θk j
) = N

(
yi ; Hkj

i x̂ k ji/ i−1,Λ
k j
i

)
,

fxki
(
xki /Yi , H = hk, θ

k = θk j
) = N

(
xki ; x̂ k ji , Pkj

i

)
, (2.3.46)

where Λ
k j
i = Hkj

i Pk j
i/ i−1(H

kj
i )T + ψ

k j
i (ψ

k j
i )T ; and x̂ k ji , Pkj

i and x̂ k ji/ i−1, P
kj
i/ i−1 are

the optimal estimate with the covariance matrix and the optimal prediction for the
step i, respectively, which can be obtained using the KF bank. Thus, to calcu-
late the integrals (2.3.42), approximation should be introduced only for the PDF
fθk
(
θk/Yi−1,H = hk

)
, and the dimension of the integrals will be determined only by

the dimension of the vector θk . The technique reducing the dimension of the integrals
to be found numerically is referred to as the partitioning method (Lainiotis 1976;
Stepanov 1998; Beloglazov and Kazarin 1998), the method of analytical integration
over a part of variables, or Rao-Blackwellization procedure (Doucet et al. 2001).

In order to calculate the estimates, approximate the PDF for vector θk as follows:

fθk
(
θk/Yi ,H = hk

) =
MkΣ   

j=1

μ
k j
i δ
(
θk − θk j

)
, fθk

(
θk/H = hk

)

=
MkΣ   

j=1

μ
k j
0 δ
(
θk − θk j

)
, (2.3.47)

According to Bayesian theorem, with this approximation, the recursive formula
is valid for the coefficients μ

k j
i :

μ
k j
i = μ

k j
i−1 · fyi

(
yi/Yi−1,H = hk, θk = θk j

)

ΣL
j=1 μ

k j
i−1 fyi

(
yi/Yi−1,H = hk, θk = θk j

) . (2.3.48)

Thus, the sought integrals (2.3.42) for the estimates of the parameter vector and the
state vector, as well as the probability (2.3.43) can be calculated using the following
formula:

θ̂ki (Yi ) ≈
MkΣ   

j=1

μ
k j
i θk j , x̂ ki (Yi ) ≈

MkΣ   

j=1

μ
k j
i x̂ k ji , (2.3.49)

Pr(H = hk/Yi )

≈
[ΣMk

j=1 μ
k j
i−1N

(
yi ; Hkj

i x̂ k ji/ i−1;Λ
k j
i

)]
Pr(H = hk/Yi−1)

ΣK
k=1

[[ΣMk
j=1 μ

k j
i−1N

(
yi ; Hkj

i x̂ k ji/ i−1;Λ
k j
i

)]
Pr(H = hk/Yi−1)

] . (2.3.50)
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An important advantage of the considered approach is that the accuracy char-
acteristic can be obtained in the form of covariance matrices for the estimates
(2.3.49):

Pθk
i (Yi ) ≈

MkΣ   

j=1

μ
k j
i θk j

(
θk j
)T − θ̂ki

(
θ̂ki

)T
,

Pxk
i (Yi ) ≈

MkΣ   

j=1

[

μ
k j
i

(

x̂ k ji

(
x̂ k ji

)T + Pkj
i

)]

− x̂ ki
(
x̂ ki
)T

. (2.3.51)

Since the parameter vector θk does not change with time, its estimate obtained
in the filtering mode over the entire set of measurements will coincide with the
estimate in the smoothing mode. Considering this and the linearity of the filtering
problem (2.3.28), (2.3.29) with the known models and the fixed parameter vector,
the smoothed estimate of the state vector x and, as a result, the smoothed GA can be
obtained using the above optimal linear smoothing algorithms tuned for the identified
model. It can be easily seen that the use of the described approach actually makes
the estimation process and the filtering and smoothing algorithms adaptive.

2.3.5 The Results of Using Adaptive Filtering and Smoothing
Algorithms in Airborne Gravity Anomaly
Measurements

Let us illustrate the application of the above algorithms to processing the experimental
airborne geophysical survey data. They were obtained onboard an L-410 aircraft on
March 6, 2015, near the town of Stupino about 150 km south of Moscow, Russia.
The Chekan-AM mobile gravimeter manufactured by Concern CSRI Elektropribor
(Peshekhonov et al. 2015) was installed onboard an aircraft. A NovAtel SE-D-RT2-
G-J-Z dual-frequencyGLONASS/GPSonboard receiverwith an IMUand aGPS-702
GG antenna was applied to obtain the velocity and coordinates. A NovAtel DL-V3-
L1L2-G receiver with a GPS-702GGL antenna was installed at the reference point to
enable the differential correction mode. The maximum distance between the vehicle
and the base station during the flight was about 150 km. During the flight, a return
survey line about 170 km long was completed with general headings of 170° and
350°. The gravimeter and GNSS receiver data were recorded and processed in the
offline mode.

To identify the errors of the measuring instruments and to refine the parameter
σ2

∂Δg/∂ρ in theGAmodel, the general model (2.3.26), (2.3.27) was supplementedwith
the error component z described by the first-order Markov process with unknown
standard deviation σm and the correlation interval τm = 1/αm . Two hypotheses were
suggested: the first for an additional error in differential measurements, which can
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be caused, for example, by inaccurate synchronization of the GNSS receiver and the
gravimeter; the second for an additional error component directly in the gravimeter
measurements. The shaping filters and measurement equations for the models of
these hypotheses can be written as follows:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ΔḣGR = ΔVGR;
ΔV̇GR = − β ϑb1 + b2 + wGR;
ḃ1 = −βb1 + b2;
ḃ2 = −βb2 + b3;
ḃ3 = −βb3 + wGA;
ż = −amz + σm

√  
2αmwm;

k = 1,

y = ΔhGR + z + vs . (2.3.52)

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ΔḣGR = ΔVGR;
ΔV̇GR = − β ϑb1 + b2 + z + wGR;
ḃ1 = −βb1 + b2;
ḃ2 = −βb2 + b3;
ḃ3 = −βb3 + wGA;
ż = −amz + σm

√  
2αmwm;

k = 2,

y = ΔhGR + vs . (2.3.53)

Thus, the problem of structural identification of the error model (2.3.52), (2.3.53)
with the vector of unknown parameters

θ = [ τm σm σ∂Δg/∂ρ

]T

and the estimated vector x(t) = [
ΔhGR ΔVGR b1 b2 b3 z

]T
was solved. The GA

estimate was generated using the ratio (2.3.22).
Application of the adaptive algorithmwith themodels introduced above to process

the data of the experimental airborne geophysical survey has shown that the hypoth-
esis (2.3.52) for the model with additional error in differential measurements proved
to be most likely. The diagrams illustrating the dependence of parameter estimates
on time are shown in Fig. 2.24. The estimates of the components of the parameter
vector θ on the forward and inverse survey lines converge to approximately the same
values.

Figure 2.25 presents the smoothing estimates for GA obtained using the adaptive
algorithm and the two-stage estimation procedure described in 2.3.3. The discrep-
ancy between the GA estimates obtained on mutually inverse trajectories using
the proposed algorithm complies with the desired accuracy characteristics (RMSE)
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Fig. 2.24 Estimates of model parameters on the forward and inverse survey lines

calculated using the diagonal elements of the covariance matrix obtained by the
algorithm (Fig. 2.26).

Thus, it can be stated that the proposed adaptive algorithm provides the expected
GA estimation accuracy. Its undoubted advantages include its rigorous approach to
the estimation problem, higher accuracy in the transient mode and, most importantly,
the ability to obtain consistent characteristics of the estimation accuracy.
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Fig. 2.25 GA estimates obtained using the adaptive algorithm and the two-stage procedure

Fig. 2.26 Difference betweenGA estimates on the forward and inverse survey lines for the adaptive
algorithm and the two-stage procedure
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The described algorithm was also tested on data obtained in the area of the Arctic
Ocean. Ten intersecting survey lines shown in Fig. 2.27 were processed.

The estimates of the parameters determining the properties of the additional error
z for various survey lines are shown in Fig. 2.28: the correlation interval of the
additional error during data processing was 1.5–2.5 min and the standard deviation
was 6–12 cm.

Fig. 2.27 Location of survey lines in the area of the Arctic Ocean

Fig. 2.28 Estimation of the correlation interval and the additional error standard deviation for
10 survey lines
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Fig. 2.29 Examples of GA estimates for two survey lines

Fig. 2.30 Difference of GA estimates at survey line intersection points (left); the calculated RMSE
of GA estimates in the smoothing mode on various survey lines (right)

Examples of GA estimates for two survey lines are shown in Fig. 2.29. Figure 2.30
presents the RMSE of the obtained estimates and the difference of estimates at the
line intersection points. As can be seen, the difference is 1–4 mGal at these points.
This suggests that the RMSE of GA estimation is at the level of 1–2 mGal, which
agrees with the calculations.

The results confirm the efficiency of the proposed algorithms for GA estimation.
Their main advantages include (a) the ability to identify both the GA model and
the error model, which reduces the survey time, since there is no need for empirical
tuning of filter parameters and manual processing of each survey line; (b) the ability
to estimate the accuracy during the calculation; and (c) the reduction of the transient
estimation process.

2.3.6 Conclusion

An optimal estimation problem in general form has been formulated within the
Bayesian approach, and an example of designing optimal nonstationary filtering
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and smoothing algorithms for GA estimation has been considered. The features of
designing stationary filtering and smoothing algorithms have been analyzed.

It is noted that a significant advantage of the Bayesian approach lies in its ability
to calculate the potential estimation accuracy for the given models of anomalies
and the errors of the measuring instruments. This allows objective estimation of
the efficiency of various suboptimal algorithms. The applied stationary algorithms
based on the Butterworth filter and the two-stage estimation procedure have been
compared, and their performance has been analyzed.

The section emphasizes the importance of the model structural and parametric
identification, providing the requireddata on themodels for implementing the optimal
algorithms, and describes the proposed identification algorithm based on nonlinear
filteringmethods and actuallymaking the estimationprocess and algorithms adaptive.
The results of real data processing using the proposed algorithm in gravity anomaly
estimation are provided, which confirm the algorithm efficiency.

2.4 Suboptimal Smoothing in Marine Gravimetric Surveys
Using GT-2M Gravimeters

It was stated earlier that in airborne gravimetry, the PSDs of perturbing accelera-
tions and the GA to be measured overlap because of high carrier speeds (Hein 1995;
Koshaev and Stepanov 2010). In this regard, in order to extract gravity anomalies
from the GSE readings, one needs precise external information about the flight alti-
tude usually provided by theGNSSoperating in the differential phasemode (Koshaev
and Stepanov 2010; Bolotin et al. 2002). In marine gravimetry, due to low speeds
of vessels, the PSDs of perturbing accelerations lie in a higher frequency range than
those of the anomaly components being measured. Therefore, the problem of iden-
tifying GAs in GSE readings can be solved, at least in the case of surface vessels,
using filtering without precise external information (Panteleev 1983; Krasnov et al.
2014). However, given the fact that the level of noise is five to six orders of magni-
tude higher than the level of the useful signal, rather stringent requirements may be
imposed on the gravimetric filter in terms of its effectiveness when used in real time.

In postprocessing, it is possible to use optimal smoothing algorithms on a fixed
interval. As noted in Sect. 2.3, they provide higher estimation accuracy compared
with the KF but such algorithms are much more difficult to implement, one of the
reasons being the necessity to store a significant amount of data. In this regard, the
development of suboptimal smoothing algorithms is relevant.

Design of such algorithms with regard to marine vessels is what this section is
devoted to.
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2.4.1 Constant-Delay Optimal and Suboptimal Smoothers
for Continuous-Time Systems

The search for an algorithm that combines the simplicity of the KF and the quality of
the optimal smoothing on a fixed interval is of interest both for the problem of marine
gravimetry and other applications. Constant-delay smoothing may be a compromise
solution in this case, which, however, imposes an additional restriction: the algorithm
should have a filter structure with an infinite impulse response of the same order as
the original system.

The proposed algorithm of suboptimal smoothing is designed in relation to the
problem (2.3.1), (2.3.2) under the assumption that the system noise is neglected at
the smoothing stage, i.e., Q = 0. In this case, it is easy to show that the algorithm for
generating a suboptimal smoothed estimate is reduced to the ‘inversed’ extrapolation
of the last current optimal estimate of the KF using the transient state matrix, i.e.,
x̂s(t |t1) = ϕ(t, t1)x̂(t1|t1), whereϕ(t, t1) is the transient matrix of the system. Thus,
the suboptimal smoothing algorithm is simpler than the optimal algorithm and does
not require repeated filtering of the estimates obtained at the first stage.

In this case, the equations for the suboptimal smoothing error covariance matrix
Ps can be written as follows (Meditch 1969):

Ṗs(t |t1) = FPs(t |t1) + Ps(t |t1)FT + ϕ(t, t1)ϕF−K H (t1, t)GQGT

+ GQGTϕT
F−K H (t1, t)ϕ

T (t, t1) − GQGT , (2.4.1)

where ϕF−K H (t1, t) is the linear system state transient matrix ẋ = (F − K H)x .
Equation (2.4.1) is solved in the inverse timewith the boundary condition Ps(t1|t1) =
P(t∞), where P(t∞) is the steady-state value of the KF error covariance matrix. The
algorithm for finding the suboptimal smoothing estimate with a constant delay τ is
determined by solving the following differential equation (Meditch 1969):

d

dt
x̂s(t |t + τ) = Fx̂s(t |t + τ) + L(t)

[
y(t + τ) − Hϕ(t, t + τ)x̂s(t |t + τ)

]
,

(2.4.2)

where L(t) = ϕ(t, t + τ)−1 K (t) is the feedback coefficient of the smoothing filter,
and K (t) = P(t + τ|t + τ)HT R−1 is the KF feedback ratio.

Obviously, the variance of the optimal smoothed estimate with a constant delay
is a non-increasing function of interval τ. Due to the methodic error caused by the
neglect of the generating noise of the system, the suboptimal smoothed estimate
has an error variance greater than the optimal smoothing error variance and does
not necessarily decrease with time. Thus, the effective use of suboptimal smoothing
is only possible on a limited interval due to the increase in the above-mentioned
methodic error with the increase in the interval length.
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In order to discuss the effectiveness of the proposed suboptimal smoothing filter
and to estimate the interval on which suboptimal smoothing is appropriate to imple-
ment, consider the followingmethodic example.Assume that it is required to estimate
the state of a scalar system with a scalar measurement:

ẋ(t) = w(t),

y(t) = x(t) + v(t), (2.4.3)

where w(t) and v(t) are stationary uncorrelated white noises with intensities Q and
R, respectively.

Assume that for some t0 > 0, the KF, generating a current estimate of the system
state (2.4.3), is in a steady state, and it is required to obtain a smoothed state estimate
on a fixed interval [t0, t1]. To compare the accuracy of the optimal and suboptimal
smoothing algorithms, let us solve the problem in the optimal and suboptimal problem
statements. For (2.4.3), it is easy to obtain analytical solutions of the covariance
equations for theKF, the optimal and suboptimal smoothing filters on a fixed interval.
For this case, F = 0, H = 1, ϕ(t1, t) = 1. The steady-state values of the
variance of the optimal filtering error and the KF gain coefficient are determined by
the following formulas: P(t∞) = √

QR, K = √
Q/R (Meditch 1969; Stepanov

2017b). The formula for the error variance of the optimal smoothing filter on a fixed
interval takes the form:

Ṗ(t |t1) = −2

/
Q

R
P(t |t1) + Q.

By integrating the last equation in the inverse time with the initial condition
P(t1|t1) = P(t∞) = √

QR and considering that τ = t1 − t , we get:

P(t |t + τ) =
√
RQ

2

(
1 + e−2 τ

T0

)
, (2.4.4)

where T0 = 1/K = √
R/Q is the KF time constant. It can be seen that for τ → ∞,

the variance P(t |t + τ) tends to the fixed value P(τ∞) = √
RQ/2.

Now, consider the suboptimal smoothing problem. Since in the case under consid-
eration ϕ(t, t1) = 1, the equation of the suboptimal smoothing filter becomes the
following relation: x̂s(t |t1) = x̂(t1|t1). Thus, for this example, suboptimal smoothing
is reduced to a shift back on the time scale of the current KF estimate. In accordance
with (2.4.1), we obtain the equation that determines the suboptimal smoothing error
variance:

Ṗs(t |t1) = −2e−KτQ + Q,
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which should be solved in the inverse time with the boundary condition at the right
end of the interval Ps(t1|t1) = √

QR. After solving the equation, we obtain:

Ps(t |t + τ) = 2
√  
RQe− τ

T0 + Q · τ −√  RQ. (2.4.5)

In order to find the parameter τ of the suboptimal smoother, for which the
minimum of the estimate error variance is feasible, we differentiate (2.4.5) with
respect to τ and equate the derivative to zero:

dPs(t |t + τ)

dτ
= −2Qe− τ

T + Q = 0.

Hence, the optimal value of the suboptimal smoothing interval length is deter-
mined by the formula τ∗ = T0 ln 2 ∼= 0.7 T0. Substituting the value τ∗ and T0 into
(2.4.5), we derive P∗

s = 0.7
√
RQ > 0.5

√
RQ = P(τ∞).

The RMSD values of filtering errors, for the optimal and suboptimal smoothers,
depending on the length of the smoothing interval, are presented in Fig. 2.31.

Analyzing the curves, it is pertinent to note that the ratio of the RMSDs of the
optimal and suboptimal smoothers for τ ≤ 0.7 T does not exceed the value of
σs/σ < 1.05, and the ratio of the minimum RMSD of the suboptimal smoothing to
theminimum attainable error of the optimal smoothing is σ∗

s /σ
∗ < 1.18.We can state

that, in the example under consideration, the accuracy of the suboptimal smoothing
algorithm on an optimally selected delay interval is only 5% lower than that of the
optimal smoothing with a constant delay and 18% lower than the potential accuracy
of the optimal smoothing on a fixed interval. Thus, it appears that the proposed
method for the synthesis of suboptimal smoothing algorithms may be successfully
applied in practice.

Fig. 2.31 RMSD versus delay time
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2.4.2 Suboptimal Gravimetric Filter

Let us solve the problem of suboptimal filter design for the problem of marine
gravimetry. Consider a gravimeter with a non-damped (non-inertial) GSE with a
vertical sensitive axis, installed on a gyro-stabilized platform. Denote the GSE
measurement (vertical specific force) as gGR . Now, subtract the normal gravity value
g0 from the GSE readings, take into account the Eotvos correction ΔgE and the
altitude correction g0Z Zho, where ϕ is the latitude, V is the relative velocity vector,
g0Z Z is the normal value of the gravity gradient, hs is the external altitude information
delivered by, for example, the GNSS. Let us integrate the result twice and compare
it with the external altitude information (Fig. 2.32).

The mechanization equations corresponding to the structure shown in Fig. 2.32
are written as follows:

ḣGR = VGR,

V̇GR = gGR + ΔgE − g0 − g0Z Zho,

y = hs − hGR . (2.4.6)

Note that these equations are similar to (2.3.25), (2.3.27).
Earlier in Sect. 2.3, it was noted that when designing a stationary filter without

significant loss in accuracy, the Jordan model can be approximated by models in
the form of integrals of white noise. Other fractionally rational PSDs of the gravity
anomaly, for example, the Schwartz model, are also well approximated by this model
(Bolotin et al. 2002). Therefore, we will describe the gravity anomaly using the
model in the form of the third integral of white noise wGA. Considering errors vs in
the altitude measurements hs = h0 +vs as white noise and neglecting the generating
noise in theGAmodel,wewillwrite the equations of the system state in the deviations
Δh = h0 − hGR , ΔV = V0 − VGR similar to (2.3.26) in the following form:

Δḣ = ΔV, ḃ1 = b2,

ΔV̇ = Δg, ḃ2 = wGA,

Fig. 2.32 Schematic of GSE data preprocessing
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Δġ = b1, y = Δh + vs, (2.4.7)

where wGA and vs are white noises with intensities Q and R, respectively,
and Δg, b1, b2 describe the GA model. By introducing the state vector x =
[Δh ΔV Δg b1 b2]T , it is also possible to reduce (2.4.7) to the matrix form.

The KF equations for (2.4.7) become:

Δ
˙̂h = ΔV̂ + k1

(
y − Δĥ

)
,

Δ
˙̂V = Δĝ + k2

(
y − Δĥ

)
,

Δ ˙̂g = b̂1 + k3
(
y − Δĥ

)
,

˙̂b1 = b̂2 + k4
(
y − Δĥ

)
,

˙̂b2 = k5
(
y − Δĥ

)
. (2.4.8)

The values of the KF gain vector k1 . . . k5 can be obtained through the analytical
solution of the Riccati equation and are given by the following formulas:

k1 = μ(Q/R)1/10, k2 = (μ + 2)(Q/R)2/10

k3 = (μ + 2)(Q/R)3/10, k4 = (μ + 2)(Q/R)4/10,

k5 = (Q/R)5/10, μ = 1 + √
5 ∼= 3.24.

Introduce parameter T = (R/Q)1/10, characterizing the filter time constant. Thus,

k1 = μ

T
≈ 3.24

T
, k2 = μ + 2

T 2
≈ 5.24

T 2
, k3 = μ + 2

T 3
≈ 5.24

T 3
,

k4 = μ

T 4
≈ 3.24

T 4
, k5 = 1

T 5
. (2.4.9)

Write the equations of the suboptimal smoothing filter with the delay τ for the
system under consideration:

Δ
˙̂hs = ΔV̂s + l1(y − Δĥ),

˙̂b1s = b̂2s + l4(y − Δĥ),

Δ
˙̂Vs = Δĝs + l2(y − Δĥ),

˙̂b2s = l5(y − Δĥ),

Δ ˙̂gs = b̂1s + l3(y − Δĥ), Δĥ = Δĥs − τΔV̂s − τ2

2
Δĝs − τ3

6
b̂1s − τ4

24
b̂2s .

(2.4.10)

Here, we use the following notation:
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l1 = k1 − τk2 + τ2

2
k3 − τ3

6
k4 + τ4

24
k5,

l2 = k2 − τk3 + τ2

2
k4 − τ3

6
k5,

l3 = k3 − τk4 + τ2

2
k5,

l4 = k4 − τk5,

l5 = k5. (2.4.11)

The estimate of the suboptimal smoothing filter with the constant delay τ is
associated with the KF estimate by the backward-in-time extrapolation formula
x̂c = ϕ(t − τ, t)−1 · x̂ or, which is the same, x̂ = ϕ(t − τ, t)x̂c. Write down the
latter equation in the scalar form:

Δĥ = Δĥs + τΔV̂s + τ2

2
Δĝs + τ3

6
b̂1s + τ4

24
b̂2s,

ΔV̂ = ΔV̂s + τΔĝs + τ2

2
b̂1s + τ3

6
b̂2s,

Δĝ = Δĝs + τb̂1s + τ2

2
b̂2s,

b̂1 = b̂1s + τb̂2s,

b̂2 = b̂2s . (2.4.12)

Taking into account the formulas for Δĥ from (2.4.7), as well as the fact that
ĥ = hGR − Δĥ, Eq. (2.4.10) can be written as follows:

Δ
˙̂hs = ΔV̂s + l1

(
ĥ − ho

)
,

Δ
˙̂Vs = Δĝs + l2

(
ĥ − ho

)
,

Δ ˙̂gs = b̂1s + l3
(
ĥ − ho

)
,

˙̂b1s = b̂2s + l4
(
ĥ − ho

)
,

˙̂b2s = l5
(
ĥ − ho

)
. (2.4.13)

By multiplying the fifth equation in (2.4.13) by τ4/24, the fourth one by τ3/6,
the third one by τ2/2, the second one by τ, and adding it to the first one, and also
by multiplying the fifth equation by τ3/6, the fourth one by τ2/2, the third one by τ,
and adding it to the second one, taking into account (2.4.11), we obtain:

Δ
˙̂h = ΔV̂s + k1

(
ĥ − ho

)
,
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Δ
˙̂V = Δĝs + τb̂1s + τ2

2
b̂2s + k2

(
ĥ − ho

)
,

Δ ˙̂gs = b̂1s + (k3 − τk4 + τk5)
(
ĥ − ho

)
,

˙̂b1s = b̂2s + (k4 + τk5)
(
ĥ − ho

)
,

˙̂b2s = k5
(
ĥ − ho

)
. (2.4.14)

By subtracting the first two equations of (2.4.14) from the first two equations of
(2.4.6) and taking into account that ĥGR = hGR −Δĥ, V̂GR = VGR −ΔV̂ , we finally
derive the vertical channel equations:

˙̂hGR = V̂GR − k1
(
ĥ − ho

)
,

˙̂VGR = gGR − g◦
zzh

∗ − g0 + ΔgE − Δĝs − τb̂1s − τ2

2
b̂2s − k2

(
ĥ − ho

)
,

Δ ˙̂gs = b̂1s + l3
(
ĥ − ho

)
,

˙̂b1s = b̂2s + l4
(
ĥ − ho

)
,

˙̂b2s = k5
(
ĥ − ho

)
. (2.4.15)

These are the equations of the suboptimal gravimetric smoothing filter (SGSF)
which generates an optimal filtering estimate for the current time of the flight alti-
tude hGR , the vertical velocity VGR and the suboptimal smoothed estimate with the
constant delay τ of the gravity anomaly Δĝs . It is easy to show that the current KF
estimate can be calculated using the formula:

Δĝ = Δĝs + τb̂1s + τ2

2
b̂2s . (2.4.16)

The SGSF block diagram for the vertical channel is shown in Fig. 2.33.
To complete the design of the filter, it is necessary to choose the time delay τ. The

studies conducted by numerical solution of the covariance equation for the estimate
of the form (2.4.10) of the suboptimal fifth-order smoothing gravimetric filter show
that the optimal time of the constant delay is very close to τ∗ = k4/k5. Taking into
account (2.4.9), τ∗ = μT ≈ 3.24 T . As follows from (2.4.11), the coefficients l3, l4
in (2.4.15) become equal to zero.

Of great importance for practice is the filter resolution in time––the averaging
time Ta . In space, it usually corresponds to half-wavelength Ls passed through the
filter. These parameters are related as Ls = TaV/2, where V is the horizontal speed
of the vessel. For the given optimal delay time τ∗, we have:

T = τ∗

1 + √
5
, Ta = 2πT ≈ 1.94 τ∗, Ls ≈ 0.97 τ∗V .
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Fig. 2.33 SGSF block diagram for the vertical channel

2.4.3 Frequency Properties of the Suboptimal Gravimetric
Filter

In the frequency domain, the amplitude response of the SGSF anomaly estimate
Δĝs(&) can be written as follows:

|Δĝs(ω)| =
√  

|v(ω)|2 · ω4 + |Δg(ω)|2
/

1
4 (μT − τ)4ω4 + 1
√
1 + T 10ω10

, (2.4.17)

where v(&) is the Fourier transform of the error in the external altitude informa-
tion, Δg(&) is the Fourier transform of GA as a function of time, & is the angular
frequency. When the delay time is zero, the output amplitude coincides with the KF
output amplitude defined by the following formula:

|Δĝs(ω)| =
√  

|v(ω)|2 · ω4 + |Δg(ω)|2
/

1
4 (μT )4ω4 + 1
√
1 + T 10ω10

. (2.4.18)

With the optimal delay τ∗ = μT ≈ 3.24 T , the amplitude of the SGSF output is
equal to the amplitude of the 5th order Butterworth filter output with the same inputs:
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Fig. 2.34 Amplitude-frequency characteristics (AFC) of the GA estimate for KF, OSF, and SGSF.
The filter averaging time is 100 s

|Δĝs(ω)| =
√  

|v(ω)|2 · ω4 + |Δg(ω)|2 1√
1 + T 10ω10

. (2.4.19)

The main difference between the Butterworth filter and the SGSF is the behavior
of the phase characteristics.

The output amplitude of the optimal smoothing filter (OSF) is defined by the
formula:

|Δĝs(ω)| =
√  

|v(ω)|2 · ω4 + |Δg(ω)|2 1

1 + T 10ω10
. (2.4.20)

The relevant plots of the amplitude-frequency and phase-frequency characteristics
of the anomaly estimates for different algorithms (2.4.18)–(2.4.20) are shown in
Figs. 2.34 and 2.35. The delay interval for smoothing algorithms was 100 s.

2.4.4 Results of the Experimental Data Processing

The GT-2M gravimeter has three parallel vertical channels operating in accordance
with the algorithm described above with different operator-defined time constants.
These channels generate three suboptimal smoothedGAestimates in real time,which
allow the operator, in the process of the anomaly map generation, to choose the
number of the vertical channel output, depending on the sea state. Typically, the
averaging time Ta varies from 300 to 800 s in order to provide the error RMSD
within 0.2–0.3 mGal with the best filter resolution.
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Fig. 2.35 Phase-frequency characteristics (PFC) of the GA estimate for KF, OSF, SGSF, and
Butterworth filter

Figures 2.36 and 2.37 show GA estimation plots obtained using the GTGRAV
software for processing the GT-2A gravimeter data and the GA estimation error as a
function of time for OSF and SGSF for various averaging times. Figure 2.36 shows
anomaly estimation plots; Fig. 2.37 shows anomaly estimation errors. The red curve
in Fig. 2.36 corresponds to the averaging time of 800 s, which is taken to be a true
anomaly during the analysis since there are no independent data to compare with
sufficient resolution. Noisier plots correspond to an averaging time of 300 s. The
smoothing error RMSD is estimated as 0.28 mGal for SGSF and 0.24 mGal for OSF.
Note that the sea was rather rough (the blue dots in both figures indicate the moments
of time when the vertical acceleration exceeded 0.5 g). This somewhat reduced the
accuracy of the estimation. An important fact is that the OSF calculation took about a
minute in the GTGRAV software, and the SGSF calculation took less than a second.

2.4.5 Conclusion

The design of a constant-delay suboptimal smoothing filter has been described. Its
feature is the neglect of the generating noise in the shaping filter equations for the
state vector being estimated. For a linear stochastic system, the estimation equa-
tions and the covariance equation are given for the suboptimal smoothing filter in
continuous time. A methodic example is used to compare such a filter with the
optimal smoothing filter and the Kalman filter. For this example, it is shown that, as
compared with the optimal smoothing filter, the suboptimal filter does not require
any additional computation and memory. At the same time, it is close to the optimal
filter in accuracy. Using the proposed method, we have synthesized a suboptimal
smoothing gravimetric filter corresponding to the steady state under the assumption



2 Data Processing Methods for Onboard Gravity Anomaly Measurements 133

Fig. 2.36 GA estimation plots for OSF and SGSF at averaging times of 800 and 300 s

Fig. 2.37 GA estimation error plots for OSF and SGSF with an averaging time of 300 s. The
estimate with an averaging of 800 s is used as a reference

that GAs are described as the third integral of white noise and its parameters are
defined. It is noted that such a gravimetric filter is integrated in the GT-2M marine
gravimeter (Bolotin and Yurist 2011), mass-produced by Gravimetric Technologies.
Using data from a real marine gravimetric survey, it is shown that the errors of the
suboptimal smoothing gravimetric filter do not differ significantly from the errors of
the optimal smoothing filter. At the same time, the designed gravimetric filter shows
high accuracy, even at rough seas.
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2.5 Using Spherical Wavelet Expansion to Combine
Airborne Gravimetry Data and Global Gravity Field
Model Data

In airborne gravimetry, the problem of gravity anomaly (GA) determination includes
the stages of along-line anomaly estimation and construction of anomaly maps in the
survey area. The latter often includes GA transformations (downward continuation,
calculation of deflections of the vertical, etc.). Correct transformations require the use
of nonlocal information about the gravity field, therefore, airborne gravimetry data
are usually combined with gravity data provided by a global EGFmodel (EGM2008,
EIGEN-6C2, etc.), given in terms of coefficients of the spherical harmonic expansion
(Kern et al. 2003). The use of such an expansion in the problem under consideration
is often technically difficult since working with a full set of coefficients is required.
Another well-known approach, the collocation method (Kern et al. 2003), is based
on a priori stochastic gravity models, the reliability of which, however, is often
questionable. Relatively new approaches to the local GA determination are based
on expansions of the gravity field using a system (complete system in a Hilbert
space) of spherical radial basis functions that have the spatial localization property
(Schmidt et al. 2007). One of such expansions is based on the use of spherical scaling
and wavelet functions; it can be found in (Freeden and Michel 2004). In addition to
localization in space, in the opinion of the authors of this section, an important feature
of this approach is multiscale representation of gravity data, which is a framework
for combining airborne gravimetry data and gravity data from a global gravitational
field model. The combination is based on selecting a common spherical harmonic
bandwidth in both gravity datasets.

Section 2.5 describes the method developed for GA determination in a local area
of the airborne gravimetric survey based on joint processing of airborne gravity
data and the global EGF model data using the multiscale analysis on the sphere. An
algorithm for combining airborne gravity data and global gravity data was developed
based on the least squares method.

Section 2.5 is organized as follows. First, the multiscale analysis based on
the Abel–Poisson spherical wavelets is briefly described; next, the stages of the
local anomaly determination technique developed by the authors of this section are
described, one of which solves the problem of combining the wavelet coefficients
obtained from airborne gravimetry data and the global EGF model. In the problem,
the errors of the wavelet coefficients are assumed to be random values with the
known statistical characteristics obtained from the airborne and global gravity data.
The problemof gravity data combination (throughwavelet coefficients) is formulated
as a problem of determining a linear nonbiased estimate optimal under the criterion
of the minimum mean square error and is solved by the least squares method (LSM)
in the covariance form. The section concludes with the discussion of the results of
the experimental data processing using the algorithms developed for the GA local
determination.
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2.5.1 Spherical Wavelet Expansion and Multiscale
Representation of the Anomalous Gravity Field

Let us elucidate the basics of the multiscale analysis on the sphere (Freeden and
Michel 2004). The gravity anomaly Δg is assumed to be a function defined in the
outer space of the Bjerhammer sphere and square integrable on this sphere. Further,
the GA is represented as a convolution of the radial derivative of the scaling function
ϕJ (x, ys) and the scaling coefficient (SC) aJ (ys) of a certain resolution level J
(Freeden and Michel 2004; Bolotin and Vyazmin 2015):

Δg(x) =
Σ   

s

ωsaJ (ys)
∂ϕJ (x, ys)

∂|x | , (2.5.1)

where ys are the nodes of an equiangular grid on the Bjerhammer sphere ΩR of
radius R, ωs are the integration weights, x ∈ R3, |x | = (

xT x
)1/2 ≥ R. Due to the

normalization of the scaling functions, SCs have the dimension of the potential. The
resolution level J (where J = 0, 1, 2…) is chosen according to the required spatial
resolution of the GA map. The spherical scaling function of the resolution level J is
defined by the following formula (Freeden and Michel 2004):

ϕJ (x, y) =
∞Σ   

n=0

φJ (n)

(
R

|x |
)n+1 2n + 1

4πR2
Pn
(
ξTη

)
,

where ϕJ (n) is the so-called scaling function symbol, Pn
(
ξTη

)
is the Legendre poly-

nomial of the degree n, ξ = x/|x|, η = y/|y|. The scaling function has the following
properties:

(1) axisymmetry, i.e., it depends only on the spherical distance between x, y with
fixedvalues of |x|, |y|; it decreases as the spherical distance between x, y increases;

(2) harmonic in the outer space of the sphere;
(3) it tends to the Dirac delta function on the sphere as J → ∞ in the norm of the

Hilbert space L2(ΩR) of the functions quadratically integrated on the sphere.

In this work, the Abel–Poisson scaling function with the symbol φJ (n) =
exp
(−2−J n

)
is chosen, which rapidly decreases in the spatial and spherical harmonic

domain and can be represented as an elementary function (Fig. 2.38):

ϕJ (x, y) = 1

4πR

|x |2 − R2b2J
(|x |2 + R2b2J − 2bJ xT y

)3/2 , bJ = exp
(−2−J

)
. (2.5.2)

The expansion in the scaling functions (2.5.1) is performed at the finest resolution
level. To solve the gravity data combination problem, however, it is convenient to
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Fig. 2.38 The Abel–Poisson scaling function ϕJ (x, y) (cross-section) on a sphere with a unit
radius at J = 2, 3, depending on the angle (rad) between x, y (left), and its symbol ϕJ (n) (right)

make an expansion into the components of different resolution levels called the
multiscale representation.

The multiscale representation of the GA includes the spherical wavelet decom-
position and wavelet reconstruction procedures. GA wavelet decomposition is the
calculation of the spherical wavelet coefficients (SWC) at various resolution levels
j ≤ J. The SWC contains information about the anomaly within a certain spherical
harmonic bandwidth and is determined using the following formulas (Freeden and
Michel 2004):

cJ (ys) = aJ (ys) −
Σ   

m

ωmϕJ (ys, ym)aJ (ym), (2.5.3)

c j
(
ys j
) =

Σ   

m

ωmψ j
(
ys j , ym

)
aJ (ym), j = j0, . . . , J − 1, (2.5.4)

where c j
(
ys j
)
is the SWC at the node ysj of the equiangular grid at the resolution

level j, ψ j
(
ys j , ym

)
is the Abel–Poisson spherical wavelet function of the resolution

level j defined by the formula:

ψ j
(
ys j , ym

) = ϕ j+1
(
ys j , ym

)− ϕ j
(
ys j , ym

)
.

The Abel–Poisson wavelet function and its symbol ψj(n) = ϕj+1(n) – ϕj(n) are
shown in Fig. 2.39.

The reconstruction of the anomaly from the calculated SWC is defined by the
formula (Freeden and Michel 2004):

Δg̃(x) =
JΣ   

j= j0

Δg j (x), (2.5.5)
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Fig. 2.39 Abel–Poisson wavelet ψ j (x, y) (cross-section) on a sphere of a unit radius when j = 1,
2, depending on the angle (rad) between x, y (left), and its symbol (right)

where Δg j (x) is the detailing component of the anomaly at the resolution level j
calculated using the convolution formulas (in the discrete form):

Δg j (x) =
Σ   

s

ωs j c j
(
ys j
)∂ψd

j

(
x, ys j

)

∂|x | , j = j0, . . . , J − 1, (2.5.6)

ΔgJ (x) =
Σ   

s

ωscJ (ys)
∂ϕJ (x, ys)

∂|x | . (2.5.7)

Here,Δg̃ is the result of GA reconstruction,ψd
j (x, ys) is the dual wavelet function

defined by the following formula (Freeden and Michel 2004):

ψd
j (x, ys) = ϕ j+1(x, ys) + ϕ j (x, ys).

The result of wavelet reconstruction (2.5.5) coincides with the representation of
the anomaly in the form of (2.5.1) with an accuracy of the error of the quadrature
formulas of the convolutions (2.5.3), (2.5.4).

Note that the Abel–Poisson wavelet functions at various resolution levels are not
orthogonal in the space of functions square integrable on the sphere. Therefore, in the
deterministic case, the detailing components of the anomalies Δgj, Δgm of various
resolution levels j /= m cannot be calculated independently; and in the stochastic
sense, i.e., if there are independent random errors in the SWC, these components are
correlated, and the weighted LSM should be used for estimation. Also noteworthy as
one of the advantages of the technique is that, similarly to (2.5.5), other functionals
of the anomalous field, such as the geoid height, deflections of the vertical, etc., can
be calculated from SWC. For this, instead of the wavelet function in (2.5.6)–(2.5.7),
one should use the result of its convolution with the kernel of the corresponding
transformation.
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2.5.2 Technique of Local Gravity Anomaly Determination
from Airborne Gravimetry Data and Global Gravity
Field Model Data Using Multiscale Representation

Figure 2.40 describes the methodology for the local GA determination from airborne
gravity data and the global EGF model data.

The developed technique includes the following stages:

(1) estimation of the GA SCs using the Abel–Poisson scaling functions at the finest
resolution level J corresponding to the desirable spatial resolution of the GA
map based on the results of airbornemeasurements at survey lines. The recurrent
LSMis used in the information form (the covariance form is not suitable since the
covariance matrices may be ill-conditioned at initial iterations) with the survey
line number as the recursion step; regularization of the information matrix of
the SC estimates is used at the last recursion step due to the ill-conditioning of
the problem;

(2) SWC calculation at various resolution levels j ≤ J based on the SCs estimated
at the first stage;

(3) calculation of the anomaly SWC based on the global model of the Earth’s
gravitational field at various resolution levels j ≤ Jglob, where the Jglob value is
determined by the resolution of the global EGF model;

(4) combination of the SWCs obtained from airborne measurements and the global
model data at common resolution levels;

(5) reconstructionof the anomaly estimate (andother functionals of the gravitational
field) from the SWC combining results.

Let us describe these stages in more detail.
At the first stage of the technique, the input data in the problem being solved

are GAs at survey lines obtained from airborne measurements and smoothed using
the gravimetric filter (Stepanov et al. 2015; Bolotin and Yurist 2011) and recorded at
the discrete moments of time tik , i = 1…Mk , where k, k = 1…K, is the survey line

Fig. 2.40 Data flow diagram of airborne and global gravity data processing
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number,Mk is the number of measurements at the kth survey line. The filter, assumed
here to be stationary for simplicity, is characterized in time by the impulse response
function h f (tik − tmk). The filter support, i.e., the number of moments tmk , for which
h f (tik − tmk) /= 0, is assumed to be finite and equal to 2M + 1. The resolution of the
filter in time is characterized by the cutoff frequency ωcut . The resolution in space
is defined as half-wavelength L = 2π V/ωcut , where V is the speed of the aircraft.
The model of the smoothed airborne GA data Δg'

k(tik) at the kth survey line at the
moment of time tik can be represented as follows:

Δg'
k(tik) =

i+MΣ   

m=i−M

h f (tik − tmk)Δg(x(tmk)) + δgk(tik), (2.5.8)

where Δg is the true free air GA, x(tmk) ∈ R3 are the coordinates of the measure-
ment point at the kth survey line in the geocentric coordinate system, δgk(tik) is the
measurement error. It is assumed that

• the coordinates of the measurement points are known exactly from GNSS data;
• the measurement error δgk(t) is a random process with a zero mean and known

correlation function defined by the measurement errors of the gravimeter sensing
element, the GNSS and the properties of the gravimetric filter;

• measurement errors at different flight lines are uncorrelated.

By replacing Δg in (2.5.8) with representation (2.5.1), we obtain:

Δg'
k(tik) =

i+MΣ   

m=i−M

h f (tik − tmk)
Σ   

s

ωsaJ (ys)
∂ϕJ (x(tmk), ys)

∂|x | + δgk(tik), (2.5.9)

where i = 1, …, Mk , k = 1, …, K. The resolution level J is determined based on
the desired spatial resolution of the map as indicated above. The SC nodes ys in
(2.5.9) are defined on the sphere ΩR , the radius R of which will be chosen equal to
the minimum distance from the center of the Earth to the measurement points at the
survey lines. Due to the fast attenuation property of the scaling function, in (2.5.9),
it is sufficient to take into account only the nodes ys from a certain neighborhood of
point x(tmk). The size of the neighborhood is chosen based on the attenuation rate of
the scaling function and the required accuracy of the map. An example of a set of
SC nodes defined by the survey lines is shown in Fig. 2.41.

Rewrite the model of the smoothed airborne measurements at the kth survey line
(2.5.9) in the vector form:

Δg'
k = Hkak J + δgk, k = 1 . . . K , (2.5.10)
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Fig. 2.41 A set of nodes of
the scaling coefficients
(dots) defined by survey
lines (solid lines) on the
longitude–spherical latitude
plane (km × km)

where Δg'
k = (

Δg'
k(t1k), . . . ,Δg'

k

(
t Mkk

))T
and δgk = (

δgk(t1k), . . . , δgk
(
t Mkk

))T

are Mk × 1 vectors of measurements and their errors, akJ is the Nk × 1 vector of
unknown SCs aJ (ys) in the nodes ys corresponding to the kth survey line.Hk denotes
theMk ×Nk matrix consisting of the sumof the products of thefilter impulse response
function in (2.5.9), the weights ωs and the values of the scaling function derivative
at the nodes ys:

Hk =
⎛

⎜
⎝

w1(t1k) . . . wNk (t1k)
...

. . .
...

w1
(
tMkk

)
. . . wNk

(
tMkk

)

⎞

⎟
⎠

ws(tik) = ωs

i+MΣ   

m=i−M

h f (tik − tmk)ϕJ (x(tmk), ys).

,

Introduce the covariance matrix Rk = E
[
δgkδgTk

]
which is determined from

the assumed known correlation function of the airborne gravimetric measurement
errors. It should be recalled that E

[
δgkδgTm

] = 0, k /= m. Let us solve the problem
of estimating the scaling coefficients akJ based on measurements (2.5.9) using the
generalized least squares method with the following criterion:

KΣ   

k=1

||
||Δg'

k − Hkak J
||
||2
R−1
k



2 Data Processing Methods for Onboard Gravity Anomaly Measurements 141

=
KΣ   

k=1

(
Δg'

k − Hkak J
)T

R−1
k

(
Δg'

k − Hkak J
)→ min

ak J∈RNk
(2.5.11)

Problem (2.5.11) is essentially the problem of the downward continuation of the
gravity field (Freeden and Michel 2004), since the nodes ys of the SCs of interest are
given on the underlying sphereΩR . Thus, the problem belongs to the class of inverse
ill-posed problems (Tikhonov and Arsenin 1979). Solution (2.5.11) is determined
using the recurrent LSM in the information form with the survey line number k as a
recursion step (Kailath et al. 2000):

Qk = Qk−1 + I Tk HT
k R−1

k Hk Ik, k = 1 . . . K , (2.5.12)

bk = bk−1 + I Tk HT
k R−1

k Δg'
k, (2.5.13)

with the initial conditionsQ0 = 0, b0 = 0, whereQk is the information N × N matrix
of the vector aJ ∈ RN consisting of the SCs defined by all the K survey lines; bk
is the information estimate of the vector aJ , Ik is the Nk × N matrix specifying the
projection of the vector aJ onto a subset of the SCs correlated only with the kth
survey line: IkaJ = ak J .

Algorithm (2.5.12)–(2.5.13) is written in the form for a given set ofK survey lines
and, therefore, for the state vector of the known and constant dimension. However,
the form of the algorithm, in which the dimension of the vector of the estimated
SCs automatically increases when a new survey line is added to the processing, is
practically more convenient. The algorithm in this form is as follows:

Q(k) =
(
Q(k−1) 0

0 0

)

+ IT(k)H
T
k R−1

k HkI(k), k = 1, 2 . . . (2.5.14)

b(k) =
(
b(k−1)

0

)

+ IT(k)H
T
k R−1

k Δg'
k, (2.5.15)

with the initial conditionsQ(0) = 0, b(0) = 0. Here,Q(k) is the information N(k) × N(k)

matrix of the SC vector defined by k survey lines; b(k) is the informational estimate
of the SC vector, I (k) is theNk ×N(k) matrix that specifies the projection of the vector
of SCs defined by k survey lines onto a subset of the SCs correlated only with the
kth survey line.

The estimate of theN(K) ×1-SCvector aJ after theK th recursion step is determined
based on the solution of the equation: b(K) = Q(K)aJ . The estimate error covariance
matrix is calculated using the information matrix Q(K). The Q(K) matrix may be ill-
conditioned. Let us define the estimate of the covariance matrix of the SC estimate
errors P̃δaJ as the inverse of the regularized information matrix:
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P̃δaJ = (Q(K ) + μ2I
)−1

, (2.5.16)

where I is the unit N(K) × N(K) matrix, μ is a regularization parameter. The estimate
of the SC vector is

ãJ = P̃δaJ b(K ). (2.5.17)

The selection of the regularization parameter is discussed below.
The second stage of the technique is the wavelet decomposition (Freeden and

Michel 2004) of airborne gravimetry data which includes the calculation of the
wavelet coefficients at various resolution levels j≤ J based on theSCestimates ãJ (ys)
found. The need for this stage is due to the fact that the data of airborne gravimetry and
the global EGF model have different spatial resolutions (in terms of the multiscale
analysis: different maximum resolution levels). Wavelet decomposition makes it
possible to combine SWC estimates of airborne gravimetry data and global EGF
model data at common resolution levels. Note that SWCs can be treated as the
results of bandpass filtering of anomaly data.

Let us denote the SWCs calculated at various resolution levels j = j0…J as c̃ j
(
ys j
)

from the SC estimates ãJ (ys) according to formulas (2.5.3), (2.5.4). Denote the Nj ×
1 vector of the SWCs as c̃ j and represent (2.5.3), (2.5.4) in the vector form c̃ j = Uj ãJ .
Uj is an Nj × Nj matrix composed of products of the integration weights and the
wavelet function values at the nodes of the grid. The covariance matrix for the SWC
vector estimation error obtained from airborne gravimetry data is determined from
the covariance matrix for the SC estimation error by the following formula:

P̃j = Uj P̃δaJU
T
j j = j0 . . . J. (2.5.18)

The third stage of the technique is the wavelet decomposition of the global model
of the gravitational field, namely, the SWC cglobj of anomalies and the covariance

matrices of their errors Pglob
j are calculated at various resolution levels j = j0…Jglob

using formulas (2.5.3), (2.5.4), where the SCs aJglob(ys) are calculated using the
scaling expansion formula:

aJglob(ys) =
Σ   

p

ωpϕJglob
(
ys, yp

)
Δgglob

(
yp
)
, (2.5.19)

and ys, yp are the grid nodes from (2.5.1), Jglob is the maximum resolution level of the
global model determined from the spatial resolution of the global data, Δgglob(yp)
= gglob(yp) − g0(yp) is the GA for which the gravity gglob is calculated from the
spherical harmonic coefficients of the global model, and g0 is calculated using the
normal gravity formula used in the GA estimation on survey lines based on airborne
gravimetric measurements. Note that the maximum resolution level of the global
model is lower than the maximum level of the airborne gravimetry data.
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The covariance matrices Pglob
j are calculated from the covariance matrix of the

global gravity data errors E[δgglobδgglobT] calculated from the estimates of RMS
errors of the spherical harmonics coefficients provided by the developers of the
global model.

The fourth stage of the technique is devoted to the combination of multiscale
representations of airborne gravimetry data and the global EGF model at common
resolution levels and is discussed in detail below.

At the final fifth stage of the technique, the reconstruction of the anomaly esti-
mate (and other functionals of the gravitational field) is performed based on the
combination results.

2.5.3 Multiscale Representation of Gravity Anomaly Based
on Combination of Airborne Gravimetry Data
and Global Gravity Field Model Data

The following is the algorithm for combining airborne gravimetry data and the global
EGFmodel in a multiscale representation in the terms of SWCs based on the specific
statistical assumptions mentioned below.

Consider the resolution level j , j = j0…J. Let us pose the problem of refining
the estimates of the Nj × 1 vectors of SWCs c̃ j and the covariance matrices of their
errors obtained from airborne gravimetric measurements by the global model data.
Let us represent the obtained above estimate of the SWC vector as c̃ j = c j + δc j ,
where c j is the vector of the true SWCs, δc j is a random SWC error vector with

zero mean and the covariance matrix P̃j = E
[
δc jδcTj

]
determined from airborne

gravimetric data using formula (2.5.18).
Assume that cglobj and Pglob

j are theNj ×1SWCvector of the anomaly and theNj ×
Nj matrix of the covariances of their errors calculated from the global model data at
the resolution levels j = j0…Jglob. Since the spatial resolution of airborne gravimetry
data is usually higher than that of global data, the correspondingmaximum resolution
levels of the data satisfy the inequality Jglob ≤ J. Let us represent the SWC vector
of global data in the form cglobj = c j + δcglobj assuming that δcglobj is a random

vector with zero mean and the covariance matrix Pglob
j = E

[
δcglobj (δcglobj )T

]
. Let us

assume the positive definiteness of the matrix P̃j + Pglob
j and the lack of correlation

of the SWC errors of both airborne gravity data and global data at various resolution
levels. Let us specify the problem of refining the estimate c̃ j of the vector c j by
cglobj at the common resolution levels j = j0…Jglob as a problem of the SWC vector

optimal estimation c j in the class of linear estimates of the form F1 j c̃ j + F2 j c
glob
j ,

where F1j, F2j are arbitrary Nj × Nj matrices. As a criterion, let us use the minimum
for all F1j, F2j of the guaranteed value for the second moment of the estimation error:
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sup
c j∈RN j

E

[||
||
||c j − F1 j c̃ j − F2 j c

glob
j

||
||
||
2
]

→ min
F1 j ,F2 j

, j = j0 . . . Jglob. (2.5.20)

The unknown vector c j is assumed to be deterministic. By transforming the
formula for the secondmoment of the estimation error, it is easy to show that (2.5.20)
is reduced to a problem of the form:

tr
(
F1 j P̃j F

T
1 j + F2 j P

glob
j FT

2 j

)
→ min

F1 j+F2 j=I j
, (2.5.21)

where tr is the trace of the matrix, I j is a unit Nj × Nj matrix. Solution (2.5.21) and
the optimal estimate of the vector cj are determined by the LSM algorithm in the
covariance form (Kailath et al. 2000):

c̃+
j =

(
I − F̃2 j

)
c̃ j + F̃2 j c

glob
j ,

P̃+
j =

(
I − F̃2 j

)
P̃j ,

F̃2 j = P̃j

(
P̃j + Pglob

j

)−1
, (2.5.22)

with j = j0…Jglob, where c̃+
j , P̃

+
j denote the result of vector cj estimation and the

estimation error covariance matrix. It should be noted that problem (2.5.20) is actu-
ally the least squares collocation problem but it is posed in the space of wavelet
coefficients and does not require a priori stochastic hypotheses about GA.

2.5.4 Results of the Real Data Processing

The developed local GA determination technique using the combination algorithm
(2.5.22) was applied to the airborne gravimetric data from a survey in the Arctic
(Smoller et al. 2013). The airborne measurements were collected using the GT-1A
gravimeter. Note that at the same time, the Chekan-AM gravimeter was also used
in this onboard survey (Krasnov et al. 2014; Peshekhonov et al. 2015). The spatial
resolution of the gravimetric filter of GT-1A was 5 km. Its output data frequency was
18 Hz. The prefiltered measurement errors roughly correspond to the white noise
model at the frequency of 1 Hz with the RMS of 50 mGal. The geographical latitude
of the survey area varies from 73 to 77°. The average flight altitude is 3700 m.
The Helmert formula for the normal gravity was used in calculations (Golovan and
Parusnikov 2012). Airborne gravimetric measurements were used to estimate the
SC aJ of the gravity anomaly based on algorithm (2.5.14)–(2.5.15) at the maximum
resolution level J = 11 approximately corresponding to the filter resolution (the first
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stage of the developed technique). The airborne data at forty survey lines (north–
south) with the line spacing of 1 km were processed. The scaling coefficients were
estimated at nodes of 1.0 km× 1.4 kmgrid on the spherewith the radiusR= 6358 km.
The radius of the area of the SC computation (2.5.9) was chosen to be 20 km. The
regularization parameter μ of the information matrix Q(K) in (2.5.16) was selected
according to the criterion of the proximity of the anomaly estimate reconstructed at
survey lines from the SC estimates ãJ (2.5.17) using formula (2.5.1) to the original
airborne gravimetric data with the RMS value for the discrepancy not greater than
0.5 mGal.

At the second stage of the technique for SC estimation ãJ , SWC estimates c̃ j and
the covariance matrices of their errors were calculated using formulas (2.5.3)–(2.5.4)
and (2.5.18) at the levels of j = 9, 10, 11. The value of the wavelet reconstruction
RMS error (2.5.5) of the SWC anomaly c̃ j on survey lines is 0.65 mGal.

For combining, the EGM2008 global EGF model was used up to the spher-
ical harmonic degree and order of 1800 (the maximum spherical harmonic degree of
the model is 2190, the nominal spatial resolution at the equator is 9.3 km × 9.3 km).
Based on EGM2008 data, the SWCs cglobj and the covariance matrices of their errors
were calculated at the levels j = 9, 10 (the third stage of the technique). The RMS
error values of the SWCs of the global EGM2008 model and SWCs of airborne
gravimetric data are given in Table 2.4.

The integration of SWCs c̃ j and c
glob
j (the fourth stage) is performed by the LSM

algorithm (2.5.22).
At the final (fifth) stage of the technique, the SWCestimateswere used to calculate

the free air GA estimates at the 1.5 km× 1.5 km grid nodes on the reference ellipsoid
surface in the survey area.

The GA maps (Fig. 2.42) and GA along a survey line are shown in Fig. 2.43.
The GA based on SC estimates obtained from airborne gravimetric data and the GA
resulting from the data combination are oversmoothed in the east–west direction as
the distance between the survey lines is smaller than the spatial resolution of the
gravimetric filter.

The RMS value of the difference between the GAs obtained from the SCs ãJ esti-
mated from airborne gravimetric data and the GAs obtained from data combination
is 5.4 mGal.

Table 2.4 RMS errors of global and airborne SWCs

Resolution level j SWC RMS error, mGal

Global data Airborne data (inside the
survey area)

Airborne data (the entire
survey area)

9 6.3 3.0 30.0

10 13.0 11.0 70.0
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Fig. 2.42 Free air GA at 1.5 km × 1.5 km grid nodes on the surface of the reference ellipsoid in
the survey area (mGal): a is the anomaly based on the SC estimates obtained from airborne gravity
data, at the maximum level J = 11, and survey lines; b is the anomaly based on the combined
SWCs; c is the anomaly based on the EGM2008 model

Fig. 2.43 Free air GAs along the survey line (mGal): solid line: anomaly from the original airborne
gravimetric data; dash-dotted line: anomaly based on the SWCs resulting from data combination
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2.5.5 Conclusion

The multiscale representation method based on spherical wavelet expansion was
applied to the problem of local determination of the anomalous gravity field from
the airborne gravimetric data and gravity data from a global model of the Earth’s
gravitational field. A method for this problem solution was developed and applied
to real airborne data and global gravity data (EGM2008). The LSM-based algorithm
for combining airborne gravimetric and global data was developed and tested. The
gravity anomaly estimate obtained from the data weighted combination is slightly
oversmoothed in the east–west direction, which is due to the fact that the spatial
resolution of the gravimetric filter (north–south direction) is coarser than the data
spatial resolution in the east–west direction defined by the line spacing.

The proposed algorithms make it possible to deal with the inverse ill-posed
problem of local gravity determination on the reference ellipsoid surface from
airborne gravimetric measurements of GAs at the flight altitude. It is shown that
the RMS error of the gravity anomaly reconstruction from the airborne wavelet coef-
ficients did not exceed 0.7 mGal. The proposed algorithms have certain advantages
as compared with the algorithms that are often used to combine different types of
gravity data and based on the collocation method, since the presented algorithms do
not require any statistical hypotheses about GA.
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