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Preface

Knowledge of the Earth’s gravity field (EGF) is essential in a wide range of funda-
mental and applied research areas. They include, for instance, offshore hydro-
carbon exploration, for which marine gravimetric surveys are regularly conducted by
geophysical companies. The quantum leap in INS/GNSS technology has opened the
possibilities for airborne gravimetry along with shipborne surveys. Now the accu-
racy of airborne gravimetry is about 0.5–1 mGal and higher at a spatial resolution
of less than 5–10 km. However, in a variety of problems related to the study of the
Earth’s figure, high-precision navigation, and geodesy, the requirements for accu-
racy, spatial resolution, and efficiency of gravimetric surveys are becoming more
stringent in recent years. This, in turn, generates a need for improved accuracy of
onboard EGF measurements against the background of vertical disturbing accelera-
tions, the magnitude of which is hundreds of thousands times greater than the useful
signal.

Recently, marine and airborne gravimetric surveys in remote Arctic regions have
assumed a new urgency, which is associated with the studies of the continental shelf.
The lack of data on the polar regions also impedes further improvement of the model
for the Earth’s figure.

To solve the problems of high-precision navigation and geodesy, it is necessary to
know the absolute value of the gravity (free-fall) acceleration at the object location.
Therefore, high-precision measurement of the total gravity acceleration onboard
dynamic vehicles is one of the key challenges in modern gravimetry.

Considerable progress has been made in all the above areas since the late 1980s,
but the recent results have not been adequately reported in the literature so far. In
this regard, the publication of this monograph on modern methods and technologies
for measuring the EGF parameters is particularly relevant.

The book is written by a team of well-known researchers in the field of EGF
measurements from prominent Russian organizations, chief designers, and leading
developers of widely applied gravimeters. This book provides the most relevant
descriptions of designs and principles of operation of modern gravimeters, as well
as the data processing methods used. It is neither a training manual nor a methodical
guide. Therefore, the book does not claim to be comprehensive or to cover the
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vi Preface

above topics in full; it is rather a description of the authors’ personal experiences in
the development and research of methods and technologies for measuring the EGF
parameters.

This book is an adapted translation of the Russian book Sovremennye metody i
sredstva izmerenya parametrov gravitatsionnogo polya Zemli published in 2017 by
Concern CSRI Elektropribor, St. Petersburg, Russia.

Compared to the Russian version of the book published in 2017, some changes
have been introduced regarding the composition of the sections, reference list, etc.
Additional international references have been included, and references to Russian
scientific journals have been substituted with the English versions published by
Springer and other international publishers. Information about the contributors,
including their academic degrees and publications, has also been updated.

The book contains six chapters.
Chapter 1 describes modern equipment used for gravity measurements. It gives

an overview of absolute ballistic gravimeters and analyzes the design features of
two types of relative gravimeters manufactured in Russia, mobile Chekan-AM
gravimeters and airborne/marine GT-2 gravimeters, widely used for onboard gravity
measurements.

Chapter 2 analyzes data processing methods for onboard gravity anomaly
measurements, implemented in Chekan-AM and GT-2 gravimeters, and discusses
various approaches to improving the accuracy of onboard gravity field measure-
ments. In particular, consideration is given to the experience of using optimal and
adaptive filtering and smoothing methods, as well as the application of spherical
wavelet expansion to combine airborne gravimetry data and global EGF models.

Chapter 3 provides an overview of the methods to determine and calculate deflec-
tions of the vertical (DOV) on a moving base. They include the gravimetric method
based on gravity anomaly measurements, the astrogeodetic method based on the
comparison of astronomical and geodetic coordinates, and the inertial-geodetic
method based on high-precision inertial system data. The chapter considers the
technologies implementing the DOV determination methods and improving their
effectiveness, such as the automated zenith telescope recently developed by Concern
CSRI Elektropribor. Improved data processing algorithms enhancing the accuracy
of DOV determination methods are also covered.

Chapter 4 focuses on the studies of the gravity field in hard-to-reach areas of the
Earth. It discusses the current knowledge of the Arctic gravity field, analyzes the
experience of using the Chekan-AM gravimeter in remote areas, and considers the
polar versions of GT-2 gravimeters capable of operating in all latitudes.

Chapter 5 presents some advanced methods for studying the Earth’s gravity
field. Airborne vector gravimetry based on strapdown inertial navigation systems is
described. Possible approaches to gravity anomaly determination using this method
are addressed. The state and prospects for the development of instruments for onboard
measurements of the second derivatives of geopotential are discussed. Basic physical
principles of cold-atom gravimeters and the outlook for their further development
are also considered.



Preface vii

Chapter 6 deals with the construction of EGF models and their applications.
Special attention is given to the estimation of their accuracy. These models are espe-
cially important in monitoring the quality of relative measurements (depending on
the proper operation of equipment and the physical factors affecting it, such as zero-
point drift), map-aided navigation, and estimation of the measurements navigation
informativity.

St. Petersburg, Russia V. G. Peshekhonov
O. A. Stepanov



About the Book

The book provides an overview of the main modern methods and technologies
for measuring the Earth’s gravity field parameters. It presents a variety of gravity
measurement instruments, including ground-based, marine, airborne, and space
equipment.

The book addresses data processing methods applied to onboard gravity anomaly
measurements. The optimal filtering and smoothing problem is formulated and
solved in general form. The problem of structural and parametric identification of
the anomaly models and errors of the measuring instruments is formulated. The
proposed identification algorithm is described, based on nonlinear filtering methods
and actually making the estimation process and algorithms adaptive.

Considerable attention is given to the methods for determining the deflections
of the vertical. Their features are covered, and a qualitative comparative analysis is
carried out.

The book covers the studies of theEarth’s gravity field in remote areas.All-latitude
modifications of instruments and software are considered. The results of gravimetric
surveys in hard-to-reach regions are presented.

Promising methods for studying the gravity field, including simultaneous deter-
mination of the gravity anomaly and deflections of the vertical (vector gravimetry),
are described and analyzed. The state of the art in cutting-edge technologies such as
gravity gradiometers and cold-atom gravimeters is considered.

Modern models of the Earth’s gravity field are compared, and their use in various
applied problems such as map-aided navigation is discussed.

The book is written for engineers and researchers in gravimetry-related spheres.
It will be also useful to the specialists in development and application of navigation
systems, including designers of gravimetric instruments and navigation officers.
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Chapter 1 
Instruments for Measuring Gravity 

L. Vitushkin, L. Elinson, A. Krasnov, V. G. Peshekhonov, A. Sokolov, 
Yu. Smoller, and S. Yurist 

Abstract This chapter describes technical instrumentation for gravity measure-
ments. Various types of absolute ballistic gravimeters intended for ground-based 
measurements of the absolute free-fall acceleration are described. The focus is on the 
most recently used laser-interferometric absolute gravimeters. Regular international 
comparisons of absolute gravimeters are considered. Applications of ground-based 
absolute gravimetry using ballistic gravimeters for the national and international 
geodetic projects such as the Global Geodetic Observing System of the International 
Association of Geodesy are described. Development and operation of the Russian 
Chekan and GT-2 series mobile gravimeters are addressed. 

Keywords Absolute ballistic gravimeters · International comparisons of absolute 
gravimeters · Relative gravimeters · Gravimeter Chekan · Gravimeter GT-2A 

Introduction 
This chapter is devoted to the description of the technical instrumentation for gravity 
measurement. It contains three sections.
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Section 1.1 describes the principle of operation, structure, and design features of 
various types of modern absolute ballistic gravimeters (ABG) intended for ground-
based measurements of the absolute values of the free-fall acceleration (FFA). The 
focus is on the most recently used laser-interferometric ABGs, which determine FFA 
based on measurements––conducted with a laser displacement interferometer––of 
the travel path of a macroscopic test body (MTB) and the time intervals during its free 
fall in a gravitational field. The sources of uncertainties in FFA measurements using 
the ABGs are analyzed. The chapter provides an analysis of the modern metro-
logical assurance system for absolute gravimeters. It is pointed out that, in order 
to determine ABG metrological characteristics belonging to national metrological 
institutes, regular international comparisons under the auspices of the International 
Committee of Weights and Measures and regional international comparisons are 
held under the authority of regional metrological organizations. The results of these 
comparisons are briefly described, also given is the information on the international 
database of absolute FFA measurements, developed by the Institute of Geodesy of 
the German Federal Agency for Cartography and Geodesy (BKG). Applications of 
ground-based absolute gravimetry using ABGs for the implementation of national 
and international projects in modern geodesy such as the Global Geodetic Observing 
System of the International Association of Geodesy are described. The section points 
out the current trend of research aimed at determining whether it is possible to carry 
out absolute FFA measurements using ABGs on moving platforms in marine and 
airborne gravimetry. 

Sections 1.2 and 1.3 describe the features of the development and operation of 
the Russian Chekan series (Sect. 1.2) and GT-2 series (Sect. 1.3) mobile gravime-
ters. These systems belong to the class of relative gravimeters, i.e., those designed 
to measure gravity increments. They are widely used for high-precision measure-
ments of the Earth’s gravitational field from sea vessels and aircraft, including 
measurements in hard-to-reach Arctic and Antarctic areas. 

Each section provides brief information on the development history of the instru-
ments, describes design features of gravimeter sensing elements along with their 
block diagrams, and gives a detailed description of the main technical solutions 
implemented when building the latest versions of gravimeters. Mathematical models 
of gravity sensors and inertial sensing elements used are provided. The main struc-
tural features and the sources of uncertainties of stabilization and correction circuits 
for gyrostabilized platforms are analyzed. 

1.1 Absolute Gravimeters 

Absolute measurements of the free-fall acceleration (gravity) are the basis for the 
determination of the Earth’s gravitational field (EGF). In absolute measurements, 
the measurement result is represented by the absolute FFA value, in contrast to relative 
measurements, the result of which is represented by the difference between FFA 
values at the stations where the measurements were taken.
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At the initial stages of the development of instruments for measuring the gravi-
tational field, the number of absolute FFA measurements was insignificant, and the 
uncertainties in measurements were relatively large. 

From 1909 to 1971, all gravitational field measurements were performed in the 
framework of the Potsdam Gravimetric System. At the initial gravimetric site, abso-
lute measurements were taken using reversible pendulums, and their uncertainty was 
3 mGal (1 Gal = 1 cm/s2) (Cook 1965). 

IGSN-1971, the gravimetric system that combines gravitational field measure-
ments throughout the world, was adopted by the General Assembly of the Interna-
tional Union of Geodesy and Geophysics in Moscow in 1971, Russia (Resolution 16). 

IGSN-71 was originally based on 10 absolute measurements at 8 gravimetric sites 
with an FFA measurement uncertainty of 1 mGal. 

In the 1970s, IGSN-1971 was expanded to 471 sites with 24,000 links measured 
using relative gravimeters and with 1200 absolute measurements using pendulum 
gravimeters. The uncertainty in the FFA determination was 0.1 mGal. 

In 1986, G. Boedeker and T. Fritzer proposed a new International Absolute 
Gravity Basestation Network (IAGBN) within which the monitoring of variations 
in the gravitational field was to be carried out, but the intended set of sites was not 
implemented. 

The emergence of transportable absolute ballistic gravimeters in the 1970s resulted 
in a significant increase in the accuracy of absolute FFA measurements, increasing 
their number, and made it possible to build a new global system of absolute gravi-
metric sites with an uncertainty in measuring absolute FFA values not exceeding 
10 μGal. 

It should be noted that the modern international database of absolute measure-
ments AGrav developed and supported jointly by the German Federal Agency 
of Cartography and Geodesy and the International Gravimetric Bureau (BGI) 
(France) presents the results of more than 3300 absolute measurements by 50 abso-
lute gravimeters with 1100 gravimetric sites (http://agrav.bkg.bund.de). 

1.1.1 Types and Designs of Absolute Ballistic Gravimeters 

At present, absolute FFA values can be measured by ABGs, in which laser inter-
ferometers measure the fall path of an MTB with an optical interferometer reflector 
attached to it or with cold atom interferometers for which the test objects are the 
clouds of cold atoms. The term “ballistic” is associated with the type of the free-fall 
path of the test body in a gravimeter. In such gravimeters, the free motion of the test 
body in the gravitational field is used, and the FFA is calculated from the measured 
path and time intervals from the test body ballistic motion equation (Cook 1965). 

ABGs use two types of the test body trajectories: symmetric (a rise-and-fall trajec-
tory such that the test body is thrown up and then falls down) and asymmetric (a free-
fall trajectory such that the test body falls down freely). An example of a gravimeter 
with a symmetric trajectory is the device developed by the Italian National Institute of

http://agrav.bkg.bund.de
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Metrological Research (INRIM) (Germak et al. 2002). However, most of the modern 
ABGs have an asymmetric trajectory (please see Niebauer et al. 1995; Arnautov et al. 
1974; Vitouchkine and Faller 2002; Vitushkin and Orlov 2014). 

Figure 1.1 shows a schematic of a laser-interferometric ABG, which is imple-
mented in various designs of gravimeters with an MTB, where a displacement laser 
interferometer is used to measure the free-fall trajectory. 

At present, the relative uncertainty of the absolute FFA measurements using ABGs 
is about 10–9 (several microgal in absolute units). However, it should be noted that 
such a measurement uncertainty cannot be obtained in a single throw of the proof 
mass but is obtained in comparably long series of throws. 

ABGs with an MTB normally include:

• a vacuum chamber with a ballistic unit, test body, and a vacuum system; 
• a laser interferometer to measure the displacement of the test body in its free 

motion, passive or active vibration isolation system for the reference reflector, 
against which the laser interferometer measures the test body displacement; 

• a frequency-stabilized laser of the laser interferometer; 
• a path and time interval recording system, a reference rubidium frequency 

oscillator for the path and time interval recording system;

Fig. 1.1 A schematic of a 
laser-interferometric ABG 
with a macroscopic test 
body. 1—test body with an 
integrated optical reflector in 
the measuring arm of the 
interferometer; 2—vacuum 
chamber; 3—laser; 
4—reflector placed on a 
vibroprotective (active or 
passive) suspension in the 
reference arm of the 
interferometer; 5—optical 
interference signal 
photoreceiver 
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• a computer with software for processing the measured data and calculating 
the measured FFA value with the introduction of necessary instrumental and 
geophysical corrections; 

• additional equipment that ensures ABG functioning. 

The test body falls in vacuum chambers to eliminate or reduce air (residual gas) 
resistance. 

In ABGs with an MTB, the laser interferometer measures the displacement of the 
test body, and the small time interval measuring system measures time intervals. 

In ABG designs known, the length of the test body trajectory is from 2 to 50 cm, 
the time of the test body fall is approximately from 0.02 to 0.32 s. 

The vacuum chamber contains a ballistic unit carrying out the entire cycle of 
the test body motion, including its free motion along a symmetric or asymmetric 
trajectory and catch of the test body at the end of the trajectory. 

In rise-and-fall ABGs, the test body is thrown by a special catapult (for example, 
see Germak et al. 2002). In almost any design, there is an inevitable effect of mechan-
ical recoil which is the source of undesirable mechanical oscillations of the reference 
reflector of the laser interferometer, with respect to which the intervals of the path 
traveled by the test body are measured. 

In some free-fall ABGs (for example, in all gravimeters manufactured by Micro-
g LaCoste, Inc., USA), in the ballistic unit of the gravimeter, the test body fall is 
accompanied by a simultaneous motion of the carriage on which the test body rests 
before the throw and which, having accelerated enough for the test body separation, 
then moves ahead of the test body during its fall (Niebauer et al. 1994). Such motion 
of the carriage causes parasitic mechanical excitations. 

In the design of the GABL gravimeter of the Institute of Automation and Elec-
trometry of the Siberian Branch of the Russian Academy of Sciences, the test body 
is held in its initial upper position with an electromagnet and brought to a fall by 
switching the electromagnet off (Arnautov et al. 1988); there are no mechanical exci-
tations during the test body fall, but the effect of the residual magnetic field remains 
at the initial segment of the fall path. 

In the design of the ABG-VNIIM-1 gravimeter (Vitushkin and Orlov 2011), the 
test body is held in the initial upper position with a special piezoceramics-based 
clamp, while there are no mechanical excitations or residual magnetic fields during 
the free fall of the test body. 

The time interval between individual throws in some ABGs with MTB can be 
quite small: it does not exceed 0.3 s in an eccentric gravimeter (Vitouchkine and 
Faller 2002). 

The equation for the test body motion that does not take into account the vertical 
gradient of the gravitational field is quite simple: 

L = L0 + V0T + 
gT 2 

2 
, (1.1.1)
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where g is the free-fall acceleration, L is the path interval traveled by the free-falling 
test body during the time T, L0 and V0 are the test body coordinate and speed at the 
initial moment of time T = 0. 

If L0 = 0 and V0 = 0, the following measurement equation can be used: 

g = 
2L 
T 2 

. (1.1.2) 

This expression gives simple estimates of the level of measurement uncertainties 
included in Eq. (1.1.2) path intervals L and time T needed to achieve the relative 
uncertainty 1 × 10–9 when calculating the absolute value of FFA g. It follows  from  
formula (1.1.2) that the relative uncertainty of path interval measurements should 
not exceed 1 × 10–9, and the relative uncertainty in measuring time intervals of the 
test body fall should not exceed 5 × 10–10. 

These values of uncertainties also define the requirements for the laser radiation 
wavelength (frequency) uncertainty and for the uncertainty in detecting interference 
fringes (IF) in the interferometer. 

The inhomogeneity of the Earth’s gravitational field (the presence of the vertical 
gradient Wzz, i.e., the second derivative of the gravitational potential W in the vertical 
coordinate z) complicates the equation of motion for a free-falling test body in a 
gravitational field with a vertical gradient: 

z̈ = gtop  + Wzzz, (1.1.3) 

where gtop is the FFA at z = 0, Wzz is the vertical gradient of the gravitational 
potential W: 

Wzz = 
(∂2W ) 
∂z2 

. 

The approximate solution of Eq. (1.1.3) for  WZZ ≪ 1 is as follows: 

z(t) = z0
(
1 + 

t2 

2

)
+ v0

(
t + 

Wzzt3 

6

)
+ 

gtop  
2

(
t2 + 

Wzzt4 

12

)
, (1.1.4) 

where z0 and v0 are the vertical coordinate and speed of the test body at t = 0. 
In practice, based on Eq. (1.1.4) derived from Eq. (1.1.3), a vertical gradient 

correction is calculated for the solution of Eq. (1.1.1) when calculating the FFA 
value measured with an absolute ballistic gravimeter using the least squares method 
from the “path/time interval” pairs measured during a free fall of the test body. 

The vertical gradient is usually measured using a relative gravimeter installed at 
various heights above the pedestal of the gravimetric site. 

The vertical gradient correction is also used in reducing the measured FFA value 
gtop to a specified height above the pedestal. For a more accurate calculation of such
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a correction, the FFA vertical distribution is measured with a relative gravimeter and 
approximated by a second-order polynomial. 

The reduction of measurement results of various gravimeters with different heights 
inherent in their designs, where gtop is measured, is necessary; in particular, for the 
analysis of their measurement results during the comparison of absolute gravimeters. 

It should be noted that, when measuring the accelerated fall of a test body with 
an interferometer, the frequency of IF counting rapidly changes from almost zero to 
several megahertz during the fall in tenths of a second, which requires high-speed 
recording of such signals with almost linear frequency modulation. 

In ABGs, laser interferometers most commonly use helium–neon frequency-
stabilized lasers at a wavelength of 633 nm (red region of the visible spectrum) 
and, more recently, solid-state lasers at a wavelength of 532 nm (for example, see 
Orlov and Vitushkin 2010). 

Solid-state lasers have the following advantages: 

(a) a shorter wavelength (which improves the measurement resolution, since the 
wavelength sets the displacement measurement scale increment: the smaller the 
increment (scale division), the greater the resolution); 

(b) a higher radiation power (which also increases the resolution when measuring 
displacements due to an increase in the signal-to-noise ratio of the interference 
signal); 

(c) a lower level of frequency noise, i.e., greater frequency stability at short time 
intervals (which is important when measuring an interference signal with a 
rapidly changing frequency). 

For example, when measuring the free-fall path of a test body with a length of 
10 cm (as in the gravimeter described in Vitushkin and Orlov 2014), the path length 
measuring uncertainty should not exceed 0.1 nm to provide a relative uncertainty of 
10–9 when measuring the FFA. 

In ABGs with an MTB, various versions of two-beam laser interferometers are 
commonly used (in particular, see Vitushkin et al. 2012). There is also a known case 
of using a multibeam interferometer in an ABG (Canuteson and Zumberge 1996). 

In two-beam interferometers, the length of one of the arms (referred to as the 
reference arm) is constant; the length of the other measuring arm changes with the 
motion of the reflector attached to the falling test body. The test body motion is 
measured with respect to any element in the optical layout (Vitushkin et al. 2012) 
which represents the origin of a quasi-inertial coordinate system. Such a reference 
reflector is usually suspended using a passive (usually a long-period seismometer) or 
active (Niebauer et al. 1994, 1995) vibration isolation system to reduce undesirable 
vibrations caused by microseismic vibrations of the base. 

Over a relatively short time while the test body is falling (tenths of a second), the 
IF recording system of a laser interferometer records hundreds of thousands of IFs. 
For example, in the ABG-VNIIM-1 gravimeter, about 350 thousand IFs are recorded 
within 0.1 s, each of which corresponds to a test body displacement for half the 
wavelength λ = 532 nm of the laser radiation Nd:YVO4/KTP/I2 of the laser.
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This number of fringes is recorded in groups of scaled fringes (for example, 
1024 IFs each) and, together with the recorded time intervals, they are used to calcu-
late the measured FFA value using the least-squares method (LSM). Thus, hundreds 
of data pairs are used in the calculations with the use of the LSM. 

Along with laser-interferometric ABGs with MTBs containing built-in optical 
reflectors, cold-atom ABGs (Bordé 2002; Peters et al. 2001; Merlet et al. 2009; 
Gillot et al. 2014) using matter wave interferometry (de Broglie wave interferom-
etry) were developed. The latter are discussed in detail in Sect. 5.3. Cold, i.e. slowed 
by laser pulses, cesium or rubidium atoms controlled by laser pulses, when absorbing 
or emitting photons, split or merge while forming equivalents of beam splitters of a 
classical interferometer, where atomic waves are split or recombine. When propa-
gating in the gravitational field in two arms of an atomic interferometer, atomic waves 
in one of the arms of the interferometer gain an additional phase shift proportional 
to the FFA value and the propagation time squared. The interference fringes of such 
an interferometer can be recorded by measuring the relative population of the states 
of two recombined atomic beams using induced laser fluorescence. 

1.1.2 Sources of Uncertainties and Corrections 
in Measurements with Absolute Ballistic Gravimeters 

When calculating the FFA from measured pairs of path and time intervals, instru-
mental and geophysical corrections to the measurement results (common to almost 
all designs of such ABGs) should be introduced in ABGs with an MTB. 

Instrumental corrections currently known and common to all types of ABGs 
include corrections for the following factors: 

• deceleration of the test body by residual gases in the vacuum chamber; 
• interaction of the falling test body with the gravitational field of the ABG itself; 
• interaction of the falling test body with the gradient of the geomagnetic field and 

the magnetic field of the ion pump (if used in the design); 
• effects associated with the finite speed of light; 
• diffraction effects during the propagation of a laser beam in the interferometer. 

Geophysical corrections are made for the Earth’s gravitational tides, the oceanic 
load and the motion of the Earth’s poles. 

The following components are taken into account when calculating the total 
instrumental uncertainty of an ABG: 

• uncertainty of the wavelength (frequency) of laser radiation; 
• uncertainty of the frequency of the reference rubidium oscillator for the path and 

time interval measuring system; 
• uncertainty due to the choice of the initial and final reference interval of the path 

from the array of all measured intervals for calculating the FFA using the LSM 
method;
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• uncertainty due to phase delays in electronics; 
• uncertainty of the reference height, for which the FFA value is measured; 
• uncertainty of the laser beam verticality in the measuring arm of the interferom-

eter; 
• uncertainty due to atmospheric pressure variations when determining the correc-

tion for the deviation from the nominal value of atmospheric pressure at a 
gravimetric site; 

• uncertainties in the calculation of the above instrumental corrections. 

In rise-and-fall ABGs, the influence of such sources of uncertainty as resistance of 
the residual gas is significantly reduced, and this was used in the initial development 
of gravimeters when it was impossible to achieve a sufficient degree of vacuum. 
Later, when ABGs were developed, asymmetric trajectory designs were used, which 
made it possible to avoid the recoil effect when the test body was thrown up with 
special catapults. 

As examples, we note that the extended (i.e., ensuring a given interval of values 
with a probability of 95%) total instrumental uncertainty of the ABG-VNIIM-1 
gravimeter (Vitushkin and Orlov 2014) and the value of uncertainty reported on the 
company website for the FG5 gravimeter manufactured by Micro-g LaCoste, Inc., do 
not exceed 2 μGal. The experimental standard deviation of the measurement result 
depends on the microseismic conditions at the gravimetric site. 

1.1.3 Metrological Assurance of Absolute Gravimeters 

ABGs measure the free-fall acceleration. Acceleration is a derivative physical quan-
tity; and an absolute gravimeter should be basically supplied with units of length 
and time in the respective measurement ranges, which can be done by calibrating the 
interferometer of the gravimeter with respect to the displacement and the frequency 
of the laser and the reference frequency oscillator. 

In practice, a displacement laser interferometer integrated into an ABG is not 
calibrated in terms of length unit, like ordinary industrial displacement laser inter-
ferometers. Designs of gravimeters with laser interferometers that take measurements 
in vacuum are not suitable for direct calibration of these interferometers. 

The interferometer laser is normally calibrated by frequency (wavelength). 
However, a unit of length is realized with a laser interferometer rather than with 
a laser, which is only a source of radiation for the interferometer and generates an 
infinite traveling electromagnetic wave. Without going into details, it is only worth 
mentioning that without additional elements (mirrors, photodetectors, etc.), such a 
wave cannot realize a unit of length in accordance with its definition, i.e. indicate 
two material points in space between which there is a unit of length or a part of it or 
two successive positions of a material point as it moves, similar to what, for example, 
occurs in a gravimeter interferometer that measures the motion of a falling reflector.
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As for the calibration of the time interval measurement system, in practice, only the 
rubidium frequency generator (the reference oscillator for the time interval measure-
ment system) is calibrated by frequency. Such calibration confirms the required level 
of 5 × 10–10 of the rubidium generator relative frequency uncertainty but not in the 
entire frequency range of interest. This calibration is normally done at time inter-
vals of tens of minutes, and the question of the metrological characteristics of the 
measurement system for small (millisecond and microsecond) time intervals for the 
passage of the above reference path intervals remains open. 

Calibration of the laser frequency (wavelength) and the rubidium oscillator 
frequency is necessary but not sufficient to determine the metrological characteristics 
of an ABG. 

Thus, to determine the metrological characteristics of an ABG when measuring 
the FFA, it is required to calibrate or verify ABGs using standards in gravimetry as 
in the case of any other measuring instruments. 

ABGs, as well as gravimetric sites and gravimetric networks can be standards 
in gravimetry. In this case, the FFA values at gravimetric sites and in gravimetric 
networks should be measured in advance. In some cases, the FFA values at gravi-
metric sites and in gravimetric networks vary with time as they experience non-tidal 
changes in the gravitational field. 

ABGs, which are, in fact, the measurement standards of the acceleration unit in 
gravimetry, have the highest metrological characteristics. 

Note that a gravimetric site is referred to as the “gravity standard” and an ABG 
as the “measurement standard in gravimetry” (Vitushkin 2011). 

The ABG with the studied metrological characteristics belonging to a National 
Metrological Institute (NMI) is the officially recognized national primary standard. 
It is these standards that are involved in the international ABG comparisons orga-
nized by the International Committee of Weights and Measures (CIPM) or regional 
metrological organizations (RMO). 

In the Russian Federation, the national primary special standard for the acceler-
ation unit in gravimetry GET190-2011 was created and is used in D. I. Mendeleev 
All-Russian Research Institute for Metrology (Vitushkin, Orlov 2014). 

1.1.4 International Comparisons of Absolute Gravimeters 

The first international comparisons of absolute gravimeters were organized following 
the Recommendation adopted at the XVII General Assembly of the International 
Union of Geodesy and Geophysics in Canberra (December 1979). 

Comparisons of six ABGs built by the International Bureau of Weights and 
Measures (BIPM), as well as in China, Japan, Russia, and the USA, were organized 
by the BIPM and the President of Special Research Group 3.40 of the International 
Association of Geodesy (IAG), associate member of the USSR Academy of Science, 
Yu. D. Boulanger and conducted in Sèvres (France) in 1980–1981.
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Later on, such comparisons were carried out by the BIPM almost every four years. 
A total of 22 absolute gravimeters were used during the 8th International Comparison 
of Absolute Gravimeters (ICAG) in 2009. 

The organization of ICAGs was improving in the course of time; a technical 
protocol describing the order of their organization, admission criteria for instru-
ments to participate in comparisons, the procedure for measuring and processing their 
results, as well as the rules for publishing the results of comparisons were developed 
and refined. Since 2001, ICAGs have been conducted in accordance with the rules for 
the organization of comparisons recommended by the international Mutual Recog-
nition Arrangement (MRA) for calibration certificates and measurement results 
signed by 101 national metrology institutes and organizations responsible for the 
metrological assurance of any kinds of measurement. 

Until 2009, almost all organizations that had ABGs were allowed to participate 
in the ICAG, and the results of measurements with all gravimeters were used in 
calculating the result of comparisons (the average FFA values obtained with all 
gravimeters at gravimetric sites where measurements were taken, the uncertainties 
of those average values, as well as the degree of equivalence of the gravimeters 
used which was measured by their deviations from the average values obtained 
by all gravimeters). 

More than 90% of ABGs used in the world are commercial; all of them are 
produced by one company in the USA. These gravimeters do not have any calibration 
certificates; therefore, the organizations that had them sought to take part in the ICAG, 
as well as in comparisons organized in the underground laboratory in Walferdange 
(Luxembourg) (Jiang et al. 2012) in order to determine metrological characteristics 
of their instruments. 

Due to the increase in the number of ABGs in the world, it will be almost impos-
sible to conduct their simultaneous comparisons in one laboratory in the future; 
therefore, it is necessary to use a conventional practice in metrology: to recognize 
national standards and arrange calibrations of ABGs. It should be noted that such a 
system in the field of absolute gravimetry has not been organized until recently. 

In 2009, ICAGs were organized as key comparisons according to the MRA rules 
(see CIPM MRA-D-05 “Measurement Comparisons in CIPM MRA” at http://www. 
bipm.org/en/cipm-mra/cipm-mra-documents/), according to which only gravimeters 
belonging to the NMI are allowed to be compared. As an exception, comparisons of 
ABGs from other organizations were carried out as pilot studies in parallel with the 
key comparisons in the BIPM. Meanwhile, only the results of 11 NMI gravimeters 
were used when calculating the official results of comparisons. These results were 
published in the official key comparison database on the BIPM website (http://www. 
kcdb.bipm.org). 

The results of pilot studies can be published in scientific journals, but they cannot 
serve as grounds for issuing calibration certificates. All the results of the ICAG 2009 
were published in Jiang et al. (2012). 

The increasing IAG requirements for the reliability of absolute measurements of 
the gravitational field led to the development and adoption of the “Strategy of the 
Consultative Committee for Mass and Related Quantities and IAG in Metrology in

http://www.bipm.org/en/cipm-mra/cipm-mra-documents/
http://www.bipm.org/en/cipm-mra/cipm-mra-documents/
http://www.kcdb.bipm.org
http://www.kcdb.bipm.org
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Absolute Gravimetry” (published in IAG Proceedings of the 2011–2015 (Travaux 
of the IAG 2011–2015)). The purpose of this document is to draw the attention of 
geodetic and geophysical communities to the need to develop a system of metrolog-
ical assurance for absolute gravimeters according to the classical hierarchical proce-
dure with primary standards, calibrations and verifications of ABGs. Various ABG 
calibration procedures are considered: direct comparison with the primary ABG stan-
dard or by measuring the FFA using the gravimeter being calibrated at a gravimetric 
site where the FFA value was previously measured using the ABG standard, and 
comparing the measurements using the gravimeter being calibrated with the result 
obtained with the ABG standard. The highest reliability of this calibration method 
for the previously measured FFA value can be ensured by continuous monitoring of 
the FFA time variations using an additional gravitational field measurement tool— 
a relative superconducting gravimeter (SG) (see an example of using a cryogenic 
gravimeter during ABG comparisons in Francis et al. 2014). Relative SGs allow for 
continuous measurements of variations in the gravitational field with a resolution of 
one hundredth of a microgal over many months and years. SGs are used to measure 
time variations of the FFA. 

1.1.5 Comparisons of Absolute Gravimeters: The Results 

A clear understanding of metrological characteristics of modern ABGs is provided by 
the results of key comparisons organized by the CIPM and key regional comparisons 
organized by RMOs (EURAMET—Europe RMO, NORAMET—North America 
RMO, APMP—Asia–Pacific RMO, etc.). The results of the 2009 key ABG compar-
isons (BIPM) and the 2013 key comparisons (Walferdange), as well as the results of 
the 2013 key European comparisons (Walferdange) will be presented here. 

It should be noted that after ICAG-2009, the BIPM decided to stop the organiza-
tion of comparisons of absolute gravimeters in the bureau itself because the procedure 
for organizing comparisons had been well-elaborated and they could now be orga-
nized by other NMIs. In 2013, the key ABG comparisons organized by CIPM along 
with ABG pilot studies took place in the underground laboratory in Walferdange. 
Comparisons were also held in China in the laboratory of the National Metrology 
Institute in the Changping campus in 2017. 

Figure 1.2 presents the results of key comparisons of CCM.G-K1 ABGs (Jiang 
et al. 2012; Arias et al. 2012). Note that the reports of all key comparisons are 
available online in the key comparison database on the BIPM website.

Figure 1.3 shows the results of the key comparisons of CCM.G-K2 ABGs (Francis 
et al. 2015). Figure 1.4 shows the results of the key European comparisons of ABGs 
conducted under the authority of the regional metrological organization EURAMET 
(Francis et al. 2014).

In all the figures, the uncertainty bars represent the extended total uncertainty of 
each result.
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Fig. 1.2 The results of the key comparisons of CCM.G-K1 absolute gravimeters (2009, BIPM, 
Sèvres, France). The vertical axis shows the deviations from the key comparison reference value 
(in microgals) for the result of each gravimeter; the horizontal axis shows the type and number of 
the gravimeter and the organization to which it belongs

Fig. 1.3 The results of the key comparisons of CCM.G-K2 absolute gravimeters (2013, Walfer-
dange, Luxembourg). The vertical axis shows the deviations from the key comparison reference 
value in microgals for the result of each gravimeter; the horizontal axis shows the type and number 
of the gravimeter and the organization to which it belongs
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Fig. 1.4 The results of the 
regional European 
comparisons of ECAG-2011 
absolute gravimeters (2011, 
Walferdange, Luxembourg). 
The vertical axis shows the 
type and number of the 
gravimeter; the horizontal 
axis shows the degree of 
equivalence of the results of 
each gravimeter in microgals 
with the reference value of 
comparisons. The names of 
the NMI gravimeters used in 
the key comparisons are 
shown in frames. The 
remaining gravimeters were 
used in pilot studies as part 
of the general comparison 
campaign

As can be seen from the figures, the comparisons were carried out mainly for 
FG5 and A10 gravimeters, both manufactured by Micro-g LaCoste, Inc. There were 
only three gravimeters from other organizations: the IMGC gravimeter (Italy), the 
CAG-1 cold atom gravimeter (France), and the T1 gravimeter (China). 

Note that the uncertainty of FFA measurements with the use of a cold-
atom gravimeter is currently slightly greater than the uncertainty of the best 
laser-interferometric ABGs with MTB. The A10 gravimeter is designed for field 
measurements and has a greater uncertainty than the FG5-type gravimeters. 

1.1.6 Practical Applications of Absolute Free-Fall 
Acceleration Measurements 

Currently, at least two hundred transportable ABGs are used in the world. Most of 
them were manufactured by Micro-g LaCoste, Inc. 

ABG allows measuring the FFA in any place with no reference to any sites of 
gravimetric networks. Of course, the accuracy of measurements depends on the level
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of microseismic conditions at the gravimetric site which determines the random 
component of the uncertainty. 

The emergence of a significant number of such ABGs allowed changing the 
measuring strategy of gravimetric networks and their use (for example, see Boedecker 
2002). 

Transportable ABGs made it possible not only to measure the FFA at different 
gravimetric sites when creating gravimetric networks, but also take repeated 
measurements to monitor temporal variations of the gravitational field. 

The combination of an ABG and an SG allows for almost continuous monitoring of 
the gravitational field. Starting in 1997, about 30 gravimetric sites on Earth, including 
the Antarctic Syowa station, conducted monitoring of the gravitational field varia-
tions using an ABG and an SG in the framework of the IAG International Global 
Geodynamic Project. This project has currently been reformed into the permanent 
IAG IGETS service and continues developing. 

Transportable ABGs are used, for example, in hydrogeology for prospecting and 
monitoring of water reserves, as well as in engineering geology. 

Studies are conducted on the possibility of using laser-interferometric ABGs and 
cold-atom ABGs on moving bases in airborne and marine gravimetry (Baumann 
et al. 2012; Sokolov et al. 2017). 

The concept of joint use of absolute and relative gravimeters installed on a gyro-
stabilized platform for marine gravimetry was proposed in the early 2000s. It is not 
necessary to conduct continuous FFA measurement using ABGs. ABGs can be used 
for periodic calibration of relative gravimeters when the vessel stops at a pier or on 
a calm sea. It should be noted that an eccentric-type gravimeter with a short free-
fall path of the test body of about 2 cm allowing for 200 drops per minute can be 
successfully used in airborne and marine gravimetry (Vitouchkine and Faller 2002). 

1.1.7 Conclusions 

Ground-based absolute gravimetry is finding increasing use for national and inter-
national projects in modern geodesy such as the Global Geodetic Observing System 
of the International Association of Geodesy. 

In international comparisons of absolute gravimeters, the uncertainties in 
measuring absolute FFA values may not exceed 1 μGal at gravimetric sites where 
many ABGs are compared and a great number of measurement series are carried out 
(for example, more than 60 12-h series of measurements at 5 gravimetric stations 
of a gravimetric site in comparisons in BIPM in 2009 (Jiang et al. 2012)). The FFA 
values and their uncertainties obtained in such comparisons are most reliable. This 
circumstance, as well as the increasing number of absolute gravimeters, the develop-
ment of their metrological assurance system, and the distribution of comparisons to 
other continents (North America, Asia) provided the basis for creating a new global 
system of absolute gravimetric sites outlined, in particular, in Crossley et al. (2013).
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Key comparisons of gravimeters were carried out in Europe; regional comparisons 
of gravimeters were carried out in North America and China. Gravimetric sites where 
comparisons are made will be used as the basis for a new global system. 

In 2015, the International Association of Geodesy held the 26th General Assembly 
of the International Union of Geodesy and Geophysics in Prague, where they 
adopted Resolution 2 “For the Establishment of a Global Absolute Gravity Reference 
System”, specifying the FFA value measurement uncertainty not higher than 10 μGal 
for the reference sites of the system, i.e., 10 times less than in the IGSN-1971 system. 

The development of absolute gravimetry in the Russian Federation requires 
the development of new ABGs, including field gravimeters and ABGs adapted to 
measurements on moving bases. 

Both types of absolute gravimeters––MTB laser interferometer gravimeters and 
cold-atom gravimeters––will certainly find their applications; besides, they can be 
improved to reduce their overall dimensions, increase their reliability and reduce 
their measurement uncertainty. 

1.2 Chekan-Series Relative Gravimeters 

For more than 50 years, Concern CSRI Elektropribor has been working on creation of 
gravimetric systems for measuring gravity from moving carriers. This work started 
in 1967 with the creation of GAL-M, a gravimeter with a photo-recording system, 
at the Schmidt Institute of Physics of the Earth under supervision of E.I. Popov. At 
the same time, the Cheta gyro platform was developed at CSRI Elektropribor for 
stabilization of this gravimeter on surface ships (Popov 1959). On the basis of these 
developments, the MGF gravimeter was created and adopted for the Navy supply by 
order of the Navigation and Oceanography Department of the Russian Ministry of 
Defense. That was the first Russian gravimetric system intended for marine gravity 
surveys in the open ocean in 1970–1980. 

Cheta-AGG, the first automated marine gravimetric system (chief designer A.D. 
Bereza) with a specialized digital computer, was created by order of the Navy in 1982 
and was produced in series (Zheleznyak and Popov 1982). This system was installed 
on more than ten research vessels. For many years, it was the main means of route and 
areal gravity surveys and was used until the beginning of the twenty-first century both 
on Navy ships and on civilian vessels. Under the World Gravity Survey Program, the 
Cheta-AGG system was used to take a large amount of measurements in the Atlantic, 
Indian, and Pacific Oceans, the Black and Barents Seas (Zheleznyak et al. 1983). 

The development of the Skalkochnik, the third-generation system (chief designer 
L.P. Nesenyuk (Pamyati professora L.P. Nesenyuka 2010)), was aimed at improving 
the performance characteristics through the use of the latest computing aids of the 
day. It was the first to use a personal computer both for data acquisition and office 
processing of marine survey results. In 1994, the system passed the Navy tests and 
was put into operation. Unfortunately, the difficult economic situation in the country 
at the end of the twentieth century did not allow for full-scale production of the
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Fig. 1.5 General view of the second- and third-generation systems 

Skalochnik system. Only a prototype model was made which was upgraded in 2001 
and used by the Navy hydrographic service until 2006 (Nesenyuk and Elinson 1995; 
Bikeeva et al. 2007). A general view of the Cheta-AGG and Skalochnik systems is 
shown in Fig. 1.5. 

The work on the construction of the fourth-generation system began in the late 
1990s, when the Chekan-A prototype system was made in 1998 and its marine tests 
were carried out in 1999 combined with a commercial marine geophysical survey 
conducted by the Norwegian company NOPEC (Sokolov et al. 2000). The success in 
the accomplishment of this work allowed CSRI Elektropribor to fulfill the research 
on design and development of a mobile gravimeter (chief designer L.S.Elinson). As 
a result, the fourth-generation Chekan-AM system was developed in 2001 (Sokolov 
2003). 

Today, the Chekan-AM mobile gravimeter is one of the main instruments used to 
measure gravity from sea vessels and aircraft (Kovrizhnykh and Shagirov 2013; 
Atakov et al. 2010; Lygin 2010; Forsberg et al. 2013; Barthelmes et al. 2013; 
Peshekhonov et al. 2020). More than 50 gravimeters have been manufactured at CSRI 
Elektropribor and delivered to Russian and international organizations. Table 1.1 
shows how the global geophysical equipment market has been developing: from 
marine surveys abroad to airborne gravity surveys in Russia.

The geography of the gravity surveys carried out with the Chekan-AM mobile 
gravimeter shown in Fig. 1.6 covers the waters of all oceans and shelf zones in all 
continents. Chekan-AM has been used in geophysical surveys from the Antarctic to 
the North Pole (Krasnov et al. 2014a).

In 2013, a new system Shelf-E was developed (chief designer A.V. Sokolov) 
on the basis of the Chekan-AM mobile gravimeter (Krasnov et al. 2014b). The 
system has improved accuracy and performance characteristics. Its serial production 
started in 2015, so that these systems are supposed to replace Chekan-AM mobile 
gravimeters in the near future. This chapter is devoted to the description of the 
principle of operation, design features, and technical characteristics of the Chekan-
AM and Shelf-E systems.
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Table 1.1 Development of 
the global geophysical 
equipment market 

Country Years in operation 

Marine gravity surveys 

Norway 1999 up to the present 

Great Britain 2003–2012 

Russia 2005 up to the present 

China 2007 up to the present 

USA 2008 up to the present 

Kazakhstan 2010–2011 

Airborne gravity surveys 

Germany 2007 up to the present 

Norway 2007–2011 

Russia 2007 up to the present

marine surveys airborne surveys 

Fig. 1.6 Geography of the gravity surveys carried out with the Chekan-AM mobile gravimeter

1.2.1 Gravimeter Parts 

The main distinction of the Chekan-AM mobile gravimeter from the systems of 
previous generations is its higher accuracy and performance characteristics along 
with a multifold decrease in its weight and overall dimensions (Blazhnov et al. 
2002). The development of electronic components made it possible to combine the
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Fig. 1.7 Chekan-AM gravimeter 

gravimeter sensing element (GSE), a biaxial gyro platform, and a control device 
based on microcontrollers in a single device. 

The structure of the Chekan-AM mobile gravimeter is shown in Fig. 1.7. The  
basis of the system is a gravity sensor (GS) with a double quartz torsion-type elastic 
system installed in a two-axis gyro platform (GP) designed to keep its sensitive axis 
in the vertical direction on a moving carrier. 

A thermostabilization device (TD) is placed in the upper part of the GP housing 
in order to maintain a constant temperature inside it. The TD is controlled by the 
UMT unit external to it. 

The delivery set of the Chekan-AM gravimeter also includes an industrial-grade 
personal computer with real-time data acquisition and primary processing software 
and programs for diagnosing the parts of the system. The system is powered by 
a voltage of 27 VDC generated by AC/DC converter from an onboard mains of 
220 V/50 Hz via a SMART-UPS uninterruptible power supply. 

Figure 1.8 shows a block diagram of a mobile gravimeter for marine and airborne 
versions of the system. The main difference between these versions is real-time 
software since continuous correction of GP is necessary when taking measurements 
from aircraft. GP correction is carried out with the use of external information on 
the speed and position of the carrier; therefore, when conducting airborne gravity 
surveys, it is necessary to ensure data reception from a GNSS receiver which is not 
included in the system.

Another feature of airborne gravity surveys is the absence of a standard 
220 V/50 Hz mains onboard aircraft. Therefore, for the airborne version of the
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Fig. 1.8 Block diagram of the Chekan-AM gravimeter

system, an additional inverter is required, which is not included in the gravimeter 
instrumentation. 

Navigation data recorded by the GNSS equipment is used for the office processing 
of marine and airborne gravity measurements. For this purpose, the navigation and 
gravimetric data are synchronized on a time scale. 

The structure of the Shelf-E gravimeter is even more simplified: there are no 
secondary power supply and no GP thermal regulation system. It has just a gyro plat-
form with a gravity sensor and a laptop. The system is connected with one cable; data 
can be transmitted via a wireless communication channel based on Wi-Fi technology 
(Peshekhonov et al. 2015). 

1.2.2 Gravimeter Sensing Element 

The gravimeter sensing elements used in the CSRI Elektropribor systems were 
created on the basis of a double quartz elastic system of the gravimeter (GES). 
Its principles of construction and first designs were developed by the Schmidt Insti-
tute of Physics of the Earth of the Russian Academy of Sciences (Zheleznyak and 
Popov 1984). Later on, the GES design and manufacturing technology were improved 
jointly by both enterprises and in parallel with the construction of new gravimetric
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USG-3 USMG-6USMG-5 

Fig. 1.9 Gravimeter elastic systems 

systems. Figure 1.9 shows the GESes installed in the third- and fourth-generation 
systems: USG-3 (Skalnochnik), USMG-5 (Chekan-AM), and USMG-6 (Shelf-E). 

Structurally, the gravimeter elastic system consists of two torsion systems made of 
very-high-purity quartz glass contained in a common housing. The torsion systems 
are turned 180° in a horizontal plane relative to each other. The housing of the 
elastic system is filled with polymethylsiloxane fluid to provide its damping, thermal 
compensation, and pressure isolation. As a material, quartz has a number of advan-
tages: it is manufacturable; under deformation, it follows the Hooke law until it frac-
tures; and it has a positive thermoelastic coefficient, which allows ensuring thermal 
compensation due to the use of simple construction. 

The elastic systems of the Chekan-AM and Shelf-E gravimeters are designed as 
all-welded structures. They have no adjusting elements, owing to which its reliability 
is significantly increased. The advanced technology for fabrication of elastic systems 
provides a high degree of quartz system identity both in sensitivity and in damping. 
Nonidentity of the two systems does not exceed 0.2%, which almost completely 
eliminates the error caused by the cross-coupling effect, which is due to the mutual 
influence of vertical and horizontal accelerations and is less than 0.2 mGal for a 
double system when rolling-induced accelerations are up to 1 m/s2. The elimination 
of the cross-coupling effect is an important advantage of the GES as compared with 
other types of gravimeter torsion sensing elements (Panteleev 1983). 

Throughout these years, it has been possible to make the elastic system completely 
sealed, reduce its overall dimensions by several times, simplify the manufacturing 
technology, and start its manufacturing at CSRI Elektropribor (Sokolov et al. 2021). 

GSE principle of operation is shown in Fig. 1.10. The output value of the elastic 
system is the angle of rotation φ of the pendulum lever which changes by the magni-
tude of the torsional angle Δφ in the presence of gravity increment δg in accordance 
with the following expression:

Δφ = k1 · δg, (1.2.1)
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Fig. 1.10 GSE principle of operation 

where k1 is a coefficient defining sensitivity of the elastic system. 
To measure the angle of rotation of the pendulums, the latter have mirrors welded 

to them. Their planes are parallel to the axes of the pendulums and turned at a small 
angle in the opposite direction. Protective glass with two pairs of optical wedges on 
it is installed in the upper part of the housing. An optoelectronic converter (OEC) 
is located above the GES housing. It includes a light source, an autocollimation 
mark placed in the focal plane of the lens, and two light receivers whose function is 
performed by linear-type charge-coupled devices (CCD) (Bronstein et al. 2000). 

Structurally, the CCDs are separated by a distance corresponding to the angle of 
rotation of the pendulum mirrors in the direction perpendicular to the scanning. The 
light source provided by a pulsed LED with the maximum spectral brightness at a 
wavelength of λ = 626 μm is placed on the optical axis of the lens between the CCD 
arrays. 

Using the OEC, the pendulum angle of rotation is converted into a linear displace-
ment of the luminous mark along the light-sensitive area of the CCD array. The CCD 
arrays are directed along the displacement of the slot autocollimation image, and 
their housings are turned 180° relative to each other. The change in the ΔL posi-
tion of autocollimation images is proportional to the change in the torsional angle 
according to the formula:

ΔL = 2n f Δφ, (1.2.2)
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where n is the refraction index of the damping fluid; f is the focal length of the lens. 
The signals from CCD arrays are processed using a video signal to code converter, 

on which they are directly mounted. The control inputs of both CCDs are connected 
to a single control signal shaper connected via an optical coupler with an external 
sync pulse receiver. The signal shaper is also connected to a control signal frequency 
synthesizer which is connected to a frequency reference oscillator. 

The current position of the autocollimation image is calculated based on the 
energy center using programmable logic devices. Readings m1, m2 representing the 
numerical equivalent of the angle of rotation of the GES pendulum are transmitted 
via a serial interface to a personal computer with a frequency of 10 Hz (Sokolov 
2004). 

To maintain a constant temperature, the GES is installed in a thermostat. The 
temperature inside the thermostat is stabilized by controlling four pairs of thermo-
electric converters mounted on the side walls of the thermostat housing made of an 
aluminum alloy with high thermal conductivity. 

Thermoelectric converters are based on the Peltier effect, and the temperature point 
can be adjusted in the range from +30 to +35 °C. The output power of the thermostat 
control board is 20 W, which makes it possible to stabilize the GES temperature 
when the ambient temperature changes relative to the specified temperature point in 
the range of ±15 °C with an error of 0.01 °C in the steady state. Despite its high 
accuracy, the GSE thermal regulation system of the Chekan-AM gravimeter has two 
disadvantages such as a high temperature of thermostabilization and a considerable 
transient process when the ambient temperature changes. 

The main research on modernization of the gravity sensor for the Shelf-E system 
was aimed at reducing its instrumental error (Krasnov et al. 2014c; Sokolov et al. 
2008). This required the development of a new GES and led to a substantial redesign 
of the gravity sensor (Fig. 1.11). The overall dimensions of the new GES were 
made 1.5 times smaller than those of the Chekan-AM gravimeter. The dimensions 
of the quartz frames, torsional bars, pendulums, and other elements of the quartz 
system were significantly reduced. To extend the range of disturbing accelerations, 
the polymethylsilixane fluid with a viscosity of 65,000 cPs, which is more than 3 times 
higher than that of the fluid in the sensing element of the Chekan-AM gravimeter 
was used to damp the pendulum motion in the new elastic system.

The information about the angular position of the GES pendulums is also obtained 
using the OEC, but the new OEC uses a specialized 5-megapixel black and white 
CMOS camera as a photoreceiver. To reduce the size of the gravity sensor, the focal 
length of the new optoelectronic converter was made half that of the Chekan-AM 
gravimeter. This did not lead to deterioration in the autocollimator resolution because 
the pixel size of the CMOS sensor used is only one-third that of the previously used 
CCD array (Berezin et al. 2004). 

A fundamentally important design feature of the new gravity sensor in comparison 
with all previous versions is that the GES with the OEC are placed in a single 
thermostat. This made it possible to significantly reduce the effect of changes in 
the ambient temperature on the gravimeter readings. Another important advantage 
of the new thermostat is a substantial reduction of the stabilization temperature
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Fig. 1.11 General view of Chekan-AM and Shelf-E gravity sensors

of the sensing element from +35 to +15 °C. As a result, the drift of the Shelf-E 
gravimeter was reduced several times below that of the Chekan-AM gravimeter. 
Also, for the first time, the new elastic system and optoelectronic converter are fixed 
rigidly together without any additional adjustment elements, which made the gravity 
sensor assembly and adjustment much simpler and increased long-term stability of 
the gravimeter sensitive axis. 

1.2.3 Biaxial Gyro Platform of the Gravimeter 

According to its principle of operation, the gyro platform is a biaxial gyrostabilizer 
with accelerometric correction of the gyroscope rotor positions (Chelpanov et al. 
1978). The GP operation is explained by the schematic presented in Fig. 1.12, which 
shows a biaxial gimbal suspension consisting of outer and inner rings. The orientation 
of the axes of the gimbal suspension on a vehicle is set in such a way that rolling 
of the vehicle (θK) is compensated for by the outer ring axis, and its pitching (ψ) 
is compensated for by the inner ring axis. The gravity sensor is installed on the 
inner ring of the GP together with the sensing elements of the stabilization system: 
two floated one-degree-of-freedom gyroscopes, two AK10/4 accelerometers, and an 
azimuth fiber optic gyroscope (FOG).

The sensitive axis of the gravity sensor is kept in the vertical direction using a 
gearless servo drive and an accelerometer correction system of the gyroscopes. The 
gearless servo drive on each axis is made on the basis of MK-BSS single-channel 
microcontrollers that control the position of the outer and inner rings, compensating 
for the mismatch between the gyro pick-off and its housing. 

The accelerometer correction system in the MK-FG microcontrollers is designed 
to bring the gyroscope precession axes to the vertical. The sensors of the correc-
tion system are accelerometers whose sensitive axes are parallel to the axes of the
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Fig. 1.12 Schematic of the gyro platform

gimbal suspension. Owing to this arrangement, each accelerometer corrects the posi-
tion of the gyroscope along one of the stabilization axes. During airborne gravity 
surveys, satellite navigation data are additionally used in the accelerometer correction 
system, which significantly reduces stabilization errors during the aircraft maneuvers 
(Krasnov and Sokolov 2009). 

To ensure the GP start-up and operation on a moving base, it has different operation 
modes: electric caging, rough and precision stabilization. In the electric caging mode, 
the position of the axes of the gimbal rings is matched with the position of the GP 
housing. In this mode, the servo drive is operated by signals from angle sensors 
located along the suspension axes. 

In the rough stabilization mode, the gimbal rings are stabilized in the horizon plane 
by the signals coming directly from the accelerometers. This mode is necessary for 
the gyro spin-up. 

After the gyro spin-up, the GP switches to the precision stabilization mode, in 
which the gyro pick-offs become sensing elements of the servo drive, and the posi-
tions of their rotors are controlled by the accelerometer correction system. The ring 
caging is carried out using a retractable mechanical stopper, and the start and stop 
of the GP using two buttons mounted on the GP housing which also contains LED 
indicators that show the current operation mode of the GP. The weight of the GP 
with a gravity sensor and the thermostabilization device does not exceed 67 kg, and 
the overall dimensions are Ø 430 × 638 mm. The principle of the GP operation 
and its design features do not require any additional adjustment operations during 
commissioning. Owing to these features, the gravimeter can be installed onboard the 
carrier by one operator. 

In the course of the Shelf-E gravimeter design, the GP construction underwent 
significant changes. All its sensing elements, as well as the MK-FG microcontrollers,
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Fig. 1.13 General view of the gyro platform and the gyro unit 

are arranged on a single bracket (Fig. 1.13). The gyro unit is easy to remove and install 
on the GP inner ring. 

The gearless servo drive microcontrollers are put into the GP base. This has 
increased the possible pitch angle of the inner ring by a factor of 1.5 and, thus, 
removed the restriction on the value of the aircraft pitch angle at takeoff. The advanced 
design of the gravity sensor has made it possible to omit the GP thermal regulation 
system, which has reduced the gravimeter total power consumption by three times 
as compared with the Chekan-AM gravimeter. 

An MK-BPR microcontroller is contained in the GP base. It integrates the data 
from the gravity sensor, its thermal regulation system, and the gyro platform into 
a single information flow. The data from the MK-BPR microcontroller can be 
transmitted to the computer either via the RS-232 serial interface or via the Wi-Fi 
channel. 

1.2.4 Mathematical Model of the Gravimeter Sensing 
Element 

The GES principle of operation is explained in the diagram shown in Fig. 1.14. The  
GES torsional bars are pretwisted in such a way that the pendulum is in a position 
close to horizontal. In the case of changes in gravity and under the action of inertial 
accelerations, the pendulum deviates from the horizon and forms the angle Δφ.

The sensitive axis of the elastic system described is a straight line which is perpen-
dicular to the pendulum axis and passes through the center of mass of the sensing 
element. Thus, in the case of changes in gravity and under the action of inertial accel-
erations, the sensitive axis changes its direction, even if the position of the instrument 
housing remains unchanged. This is a fundamental difference between a torsional
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Fig. 1.14 Torsional-type 
elastic system: principle of 
operation

system and a linear one. And, as was shown in Eq. (1.2.1), the increment of the 
torsional angle Δφ corresponds to the increment of gravity δg. In view of the above, 
the differential equation of motion for the torsional-type GES can be represented as 
follows (Zheleznyak and Popov 1984): 

k(TΔφ' + Δφ) =
Δg − Z '' − (g − Z '')(α2 + β2 + Δφ2 + 2βΔφ)/2 + X ''α + Y ''(β + Δφ), 

(1.2.3) 

where X '', Y '', Z '' are inertial accelerations acting on the gravimeter; α, β are GSE 
stabilization errors. 

In the static state, when there is no inertial acceleration and the GSE is in the 
horizon, Eq. (1.2.3) has the following form: 

δg = Δφ(k + g · Δφ/2), (1.2.4) 

where g is the value of gravity. 
From expression (1.2.4), it follows that to convert the angle of rotation of the 

pendulum into readings, it is necessary to use the calibration characteristic which is 
a function of readings rather than a constant coefficient. In accordance with (1.2.4), 
there is a gravity increment from the point where the pendulum is in the horizon in the 
instrument readings. For a torsional-type elastic system during rolling, in addition to 
the errors due to the tilts of the base discussed above, there are additional components 
of measurement errors: 

εδg = gβΔφ̃ + Y ''Δφ̃. (1.2.5) 

The values of β andΔφ̃ are variable functions of the horizontal and vertical accel-
erations, respectively. At a certain ratio of their phases, constant errors may appear 
in the gravimeter readings. This error, which can reach the first tens of milligals, 
is known as the cross-coupling effect. A double elastic system consisting of two 
identical systems turned in a horizontal plane at 180° relative to each other is used
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to reduce it. In this case, the total effect of disturbing accelerations on the double 
elastic system can be written as: 

εδg = gβ
(
Δφ̃1 − Δφ̃2

)
+ Y ''

(
Δφ̃1 − Δφ̃2

)
, (1.2.6) 

where Δφ̃1, Δφ̃2 are the variable components of the change of the torsional angle of 
the 1st and 2nd GES pendulums, respectively. 

As can be seen from expression (1.2.6), for a double elastic system, the error 
decreases to a difference effect and is defined by the identity of the two systems 
included in the double system. For modern systems, their difference in sensitivity 
does not exceed 0.1%, and in terms of response time, 1.5%, which makes it possible 
to almost completely eliminate the cross-coupling effect on the double quartz elastic 
system. 

Taking into account the fact that the GSE output signal is the readings formed 
by two CCD photoreceivers in accordance with expression (1.2.2), the calibration 
characteristic of the GSE to be determined is a quadratic function of the OEC 
readings: 

δg = b(m−m0) + a(m−m0)
2 , (1.2.7) 

where b, a are the linear and quadratic coefficients of the gravimeter calibration 
characteristic, m0 is the reading of the CCD photoreceiver at which the coefficients 
b, a were determined. 

Due to damping fluid, the GSE model contains a first-order aperiodic link which 
has smoothing properties. Amplitude and phase distortions of the signal to be 
measured can be excluded by using a recovery filter of the following structure 
(Blazhnov et al. 1994): 

W ( p) = Tg p + 1, (1.2.8) 

where Tg is the gravimeter response time, p is the Laplace operator. 
Due to the creep of the quartz glass elastic element, the gravimeter readings 

change with time. Therefore, the GSE model also includes the linear element which 
describes the quartz GES drift in accordance with the formula:

ΔgC = C(t−T0), (1.2.9) 

where C is the drift value, t is the current time, T 0 is the time of reference 
measurements. 

The drift value is determined from the results of reference measurements and can 
be refined during the office processing upon completion of the survey.
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1.2.5 Algorithms for Gyro Platform Correction 

Figure 1.15 is a block diagram of one of the two identical channels of gyro plat-
form accelerometric correction (Krasnov 2007). Control is formed by the integrated 
correction circuit that implements a short-period gyro vertical based on accelerom-
eter signals. Besides, external information from the GNSS receiver is additionally 
used in order to eliminate stabilization errors caused by aircraft maneuvering. 

The following symbols are used in Fig. 1.15: FT1, FT 2 are frame transformers; 
K is the heading; R is the average radius of the Earth; Ωcosϕ is the horizontal 
component of the Earth’s angular rate; g is gravity; w is horizontal acceleration; VE 

is the horizontal speed produced by the inertial method; V GN  SS  
E is the horizontal 

speed coming from the GNSS receiver; ΔVE is the speed mismatch; ε is the angular 
rate of the gyroscope drift; α is the stabilization error. 

The dashed line in Fig. 1.15 shows the physical connections determining the 
measuring signals of the GP sensing elements. 

The transfer function of the filter F(p) has the following form: 

F( p) = 
n2 

2 
· 2.6T p  + 1 
0.5T p  + 1 

, n = 
TSch 
T 

, (1.2.10) 

where TSch ≈ 13.4 min is the Schuler time constant, T is the response time of the 
gyro vertical. 

In this scheme, the dynamic stabilization error during a maneuver is eliminated 
by subtracting the speed value received from the GNSS from the signal coming to 
the input of the filter F (p). In addition, control signals equal to the projections of 
the Earth’s angular rate on their sensitive axes are fed to the gyroscope torquers. 
At the same time, the difference between the speed components coming from the

Fig. 1.15 Block diagram of the ‘eastern’ channel of the gyro vertical 
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Fig. 1.16 Block diagram of the heading channel 

GNSS receiver and those produced by the inertial method is formed in the axes of 
the geographic trihedron (FT1), and the control signals to the gyroscope torquers are 
formed in the instrument coordinate system (FT2). Thus, in the gyro vertical channels, 
the coordinates are converted twice based on the current values of the heading. The 
heading value can come from an external source or be generated autonomously 
based on the information from the fiber-optic angular rate sensor installed on the 
gyro platform and the angular rate error in the northern channel of the gyro vertical. 

The analytical generation of heading is based on the gyrocompassing method 
using, in addition, the information from the azimuth FOG (Krasnov 2007). The 
block diagram of the heading channel is shown in Fig. 1.16. 

The following symbols are used in the figure: Tk is the response time of the 
heading channel; ξ is the damping coefficient; ΔVN is the mismatch of the northern 
component of the speed; ωZ is the vertical angular velocity of the carrier according 
to FOG data; HΔV

ΔK is the transfer function of the gyro vertical from the heading error 
to the speed mismatch;ΔK is the correction to the current heading value in the frame 
transformers. 

Before the vehicle begins to move, the initial heading value K0 is calculated and 
the FOG zero drift is specified. The heading is determined according to the formula: 

K = arctan 
ωy 

ωx 
, (1.2.11) 

where ωy, ωx are the signals from the torquers of the floated gyroscope satisfying 
the following relations: 

ωy = Ω cos ϕ sin K , 
ωx = Ω cos ϕ cos K . 

(1.2.12) 

In accordance with the principle of gyrocompassing, the feedback comes from 
the “northern” channel of the gyro vertical. The correction ΔK is formed by two 
signals, the mismatch of the northern speed component and the vertical angular rate 
from the FOG. The response time of the heading channel Tk is chosen at least an
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order of magnitude greater than that of the gyro vertical T so that the gyro vertical 
errors will not participate in the formation of correction ΔK. 

1.2.6 Calibration and Verification of the Chekan-AM 
Gravimeter 

Calibration of the Chekan-AM gravimeter is performed during the manufacturing 
process. It includes the determination of the coefficients of the GSE calibration 
characteristic, its response time, and the value of the initial drift. The following GP 
parameters are also determined during calibration: scale factors and gyroscope drifts 
and accelerometer zero offsets, servo drive coefficients, and non-orthogonality of the 
floated gyroscope axes. 

Since the Chekan-AM gravimeter is a certified measuring instrument, it also 
undergoes primary and periodic calibrations. The error components due to the 
influence of inertial accelerations and temperature are determined during the 
calibration. 

Figure 1.17 shows a GSE calibration characteristic of a Chekan-AM mobile 
gravimeter. As Eq. (1.2.7) shows, it is a quadratic function whose coefficients are 
determined experimentally by the tilting method (Sokolov et al. 2015). The main 
feature of the method is the possibility to determine the coefficients only in the 
direction of decreasing gravity due to the GSE tilt. At the same time, the GSE is 
tilted by an angle of up to 5° with an error of less than 2 arcsec, which allows the 
device to be calibrated in the range of 0–4 Gal with the required accuracy. As can be 
seen from Fig. 1.17, the error due to the nonlinearity of the calibration characteristic 
does not exceed 0.2 mGal. 

The next main parameter determined during the GSE calibration is the drift value. 
Taking into account the fact that the drift of the newly manufactured GES can 
reach from 3 mGal/day (the Chekan-AM gravimeter) to 1 mGal/day (the Shelf-E 
gravimeter), this step of calibration takes at least one month and is performed in

Fig. 1.17 Calibration characteristic and the error of its determination 
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Fig. 1.18 GSE measurements on a fixed base 

parallel with all types of tests. Figure 1.18 shows the curve of the Shelf-E drift two 
years after the GSE manufacture. It is obvious that in addition to a high degree of 
the drift linearity, its value is 0.25 mGal/day, which is almost 5 times lower than the 
initial value and is close to the similar parameters of the GT-2 and L&R gravimeters. 

Removing the linear drift from the gravimeter readings, it is possible to qualita-
tively estimate its instrumental accuracy on a static base. An illustrative example of 
this is also given in Fig. 1.18 which shows that it is possible to observe lunar-solar 
tides whose influence on the change in gravity is less than 0.1 mGal. 

Figure 1.19 shows the results of bench tests of the Chekan-AM and Shelf-E 
gravimeters when they were exposed to vertical accelerations in the range of periods 
from 14 to 100 s. The curves shown for the residual errors of the gravimeter readings 
were obtained after correction for the vertical acceleration, which was calculated 
based on the readings from the vertical displacement test bench, and data processing 
using a low-pass filter with a cutoff frequency of 0.006 Hz. The upper part of the 
figure shows the values of the amplitude and period of the vertical accelerations set 
for all modes of rocking. From the experimental data, it follows that the standard 
deviation of random error component of gravimeters in a wide range of frequencies 
of vertical accelerations does not exceed 0.2 mGal.

However, a systematic error, which may reach 1.5 mGal for the Chekan-AM 
gravimeter, is observed at high frequencies. For the Shelf-E gravimeter, this system-
atic error is three times lower. The reduction of the systematic error in the high-
frequency range of vertical disturbing accelerations is due to a higher level of damping 
of the gravimeter sensing element. Owing to the digital filter used to recover the 
input signal, the increase in the damping level does not affect the final resolution of 
measurement results. 

The effect of the ambient temperature variation on the Shelf-E gravimeter readings 
is  shown in Fig.  1.20. It is obvious that in the operating temperature range between+5 
to +35 °C, a 5° change in temperature results in a transient process with amplitude of 
up to 1 mGal, which lasts about 4 h. Besides, the steady-state systematic component of 
the error is significantly lower for the Shelf-E gravimeter than that for the Chekan-AM
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Fig. 1.19 Gravity measurements under the action of vertical accelerations

Fig. 1.20 Shelf-E gravimeter measurement error under the changes of ambient temperature 

gravimeter. This is very important when conducting airborne gravity measurements, 
where daily external temperature differences may reach tens of degrees. 

1.2.7 Conclusions 

The main technical solutions implemented in the Chekan-AM mobile gravimeter, 
which is the fourth-generation system, have been described. 

The main parts of the gravimeter, its structure, and the differences between the 
marine and airborne versions have been discussed.
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The gravimeter sensing element and the gyro platform have been considered in 
detail, including the principle of operation, design features, mathematical models 
and operation algorithms. 

The features of the Chekan-AM mobile gravimeter calibration have been 
discussed, and the main results of the bench tests are presented. 

The advantages of the new Shelf-E system have been analyzed by comparison 
with the Chekan-AM gravimeter. 

Gravimetric data processing methods and examples of the practical use of Chekan-
AM in hard-to-reach areas of the Earth are given in the subsequent chapters. 

1.3 GT-2 Relative Gravimeters 

Gravimeters of the GT-2 series (GT-2A and GT-2 M are the codes for airborne and 
marine gravimeters, correspondingly) manufactured by NTP Gravimetric Technolo-
gies are widely used in gravity surveys aboard sea vessels and aircraft. More than 
40 gravimeters of this series are used in gravity surveys of Russian and interna-
tional companies on all continents of the Earth, including the Arctic and Antarctic 
regions (Richter et al. 2013; Berzhitsky et al. 2002; Kovrizhnykh et al. 2013a, 
b, 2016; Kovrizhnykh and Shagirov 2013; Smoller et al. 2013; Drobyshev et al. 
2011; Mogilevsky et al. 2015a). Aerogeophysica Geophysical Scientific and Produc-
tion Enterprise (Mogilevsky et al. 2010, 2015b; Kontarovich and Babayants 2011; 
Mogilevsky and Kontarovich 2011; Kontarovich 2015) and the Schmidt Institute of 
Physics of the Earth of the Russian Academy of Sciences (Koneshov et al. 2013; 
Drobyshev et al. 2011) that conduct a great number of airborne gravity surveys 
throughout Russia are the main Russian users of these airborne gravimeters. The 
GT-2 gravimeter was developed by a group of scientists and engineers at Gravi-
metric Technologies. The main designers of the company, who had been engaged 
in research and development at the Dolphin Central Research Institute for more 
than thirty years, specialized in developing inertial gravimetric systems and gyro-
scopic systems for the Russian Navy. Five technical solutions implemented in the 
gravimeter are recognized as inventions and protected by patents of the Russian 
Federation (Berzhitsky et al. 1999, 2000; Ilyin et al. 1993). The software for post-
processing of airborne measurements for GT-2 gravimeters was developed in the 
Laboratory of Control and Navigation of the Lomonosov Moscow State University 
(Koneshov et al. 2013b). The first model of the GT-2 gravimeter was manufactured 
in 2001. It was tested aboard an AN-30 aircraft in Kubinka and in the vicinity of 
the Cherepovets airport. In 2002, the first commercial gravimeter was manufactured. 
With the financial support of Canadian Micro Gravity, it was put to extended tests 
in Australia on a plane, car, and helicopter, the results of which were considered 
positive. In February 2003, a long-term agreement was signed with Canadian Micro 
Gravity on the commercialization and supply of GT-2 gravimeters. Gravimeters of 
this series are manufactured in cooperation with the Ramensky Instrument-Making
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Plant. At the stage of development, the plant carried out substantial work on prepro-
duction engineering and revision of the documentation for the gravimeter central 
device to comply with the series-produced elementary base. 

Gravimeters of this series are continuously improved. The first gravimeters, code-
named GT-1A, had a dynamic measuring range of ±0.5 g. In 2007, gravimeter 
versions with an extended dynamic range of ±1 g were created. They were assigned 
the codes of GT-2A, GT-2 M. The GT-2A, GT-2 M gravimeters allow conducting 
surveys in harsh conditions of strong turbulence and sea waves, which significantly 
increases the performance of survey. Actually, all gravimeters produced earlier were 
upgraded to this version. 

In 2012, another version of the gravimeter with an extended latitude range of 
±89° was created (a gravimeter with standard specifications has a latitude range 
of ±75°). The new gravimeter was equipped with a multi-antenna GNSS receiver. 
This version was assigned the code GT-2AP. It allows conducting surveys in high 
latitudes (Smoller et al. 2013; Drobyshev et al. 2011). In 2015, a version of the 
GT-2AQ gravimeter was created using quasi-coordinates. 

This version has no restrictions on latitudes in its application. It retains its oper-
ability even directly at the points of geographic poles (Smoller et al. 2016). At present, 
three international companies—the University of Texas (USA), the Wagner Insti-
tute (Germany), and the Polar Research Institute of China—are conducting gravity 
surveys in the Antarctic using polar versions of the GT-2A gravimeter. 

GT-2A gravimeters have high measurement accuracy. For the airborne version, it 
is between 0.5 and 0.7 mGal with an averaging time of 100 s, which, at an aircraft 
speed of 200–400 km/h, corresponds to the spatial resolution of half the anomaly 
length of 2.5 km to 5 km; for the marine version, 0.3 mGal with an averaging time 
of 600 s, which at a vessel speed of 5 kn corresponds to a spatial resolution of half 
the anomaly length of 0.75 km. 

The higher averaging time for the marine version of the gravimeter as compared 
with the airborne version is due to the fact that the level of noise in the marine version 
is caused by sea swell and is significantly higher than that in the airborne version, 
which is caused by the GNSS error (for more details, see Sect. 2.4). 

However, despite this, the resolution in the marine version is higher than that in 
the airborne version because of relatively low speeds of vessels. 

1.3.1 Gravimeter Parts 

The structure of the GT-2 gravimeter is shown in Fig. 1.21.
The gravimeter uses real-time information from a GNSS receiver operating in the 

standard mode. 
Schematic of the GT-2 gravimeter is shown in Fig. 1.22.
The gravimeter includes a gyrostabilized platform in a triaxial gimbal suspension 

with an external azimuth axis (the motor of the azimuth axis is not shown). 
The following equipment is installed on the platform:



36 L. Vitushkin et al.

Fig. 1.21 Gravimeter structure: 1—electronics module; 2—central (gyro) module; 3—rotary table; 
4—shock-absorber; 5—power supply device; 6—control and indication device (CID); 7—GNSS 
receiver

• a GVK-18 dynamically tuned gyroscope (DTG) (Matveev et al. 2005) with 
a vertical orientation of the angular momentum, developed by Ramenskoye 
Instrument Design Bureau; the drift instability is 0.01–0.02°/h; 

• two horizontal quartz pendulum-type accelerometers QAx, QAy of the A15 type 
developed by Ramenskoye Instrument Design Bureau with a zero signal instability 
of 5 · 10–4 m/s2; 

• gravity sensing element (GSE); 
• medium-grade FOG (Logozinsky, Solomatin 1996) developed by Fizoptika with 

a vertical sensitive axis, the drift instability of which during the entire period of 
operation without a thermal regulation system is 3°/h. Its short-term (within 5 to 
10 days) drift instability in the gravimeter is 0.6°/h. 

The output signals of accelerometers (Wx , Wy), GSEs (Wz), DTG angle sensors 
(β, γ), and FOGs (ΩZ ) are fed through the analog-to-digital converter (ADC) to the 
central processing unit (CPU) of the micro PC 5066 type. The DTG control signals 
(px , qy) generated in the CPU by the gyro platform position correction system are 
fed through digital-to-analog converters (DAC) to the DTG torquers. 

The control signals Mx , My of the servo drives generated in the CPU are fed 
through a DAC to the torque motors TMx, TMy of the servo drives. 

The azimuthal stabilization motor control signal generated in the CPU according 
to the gyro platform heading information is fed to an azimuth stabilization motor 
(not shown in the figure), which ensures the platform stabilization in the geodetic 
reference frame. 

GSE output signals are formed by an ADC with a range of +/–1 g. 
To measure the angles of pitch, roll, and heading of the vehicle, angle sensors 

ASx, ASy, ASz are installed on the axes of the gimbal suspension and on the vertical 
axis of the rotary table.
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Fig. 1.22 Schematic of the GT-2 gravimeter

To ensure a constant temperature of the sensing elements, the code-to-current 
converter (CCC) for controlling the DTG torquers during fluctuations in the ambient 
temperature, the thermal regulation systems (TRS) include: 

• single-circuit TRS of the CCC; 
• single-circuit TRS of the inertial module with DTGs, FOGs, and accelerometers; 
• dual-circuit GSE TRS.
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The TRS actuating elements are controlled by the CPU using thermal bridge 
signals that are fed to the DAC via analog-to-digital converters. 

1.3.2 Gravimeter Sensing Element 

The sensing element of the GT-2 gravimeter is of the axial type with a magnetoelectric 
feedback. Its block diagram is presented in Fig. 1.23. 

Proof mass (about 37 g) is suspended on flat metal springs with a thickness of 
about 50 μm. The measuring winding placed in a permanent magnet field is wound 
on the proof mass. The GSE includes an optical position sensor consisting of light 
and photo diodes. The sensor measures the proof mass displacement relative to the 
housing, and hence its displacement in the magnetic field of permanent magnets. 
The signal from the photo diode passes through a correction amplifier with a transfer 
function F(s) that provides stable feedback and changes the current in the measuring 
winding. A precision reference resistor R is connected in series with the winding. 
The current in the measuring winding, and hence the voltage across the resistor R, is a  
measure of the specific force projection onto the GSE sensitive axis (Wz). The signal 
proportional to the voltage on the reference resistor, as well as the output signal of 
the position sensor enter the CPU via analog-to-digital converters.

Fig. 1.23 Block diagram of the gravimeter sensing element 
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The feedback, which stabilizes the proof mass position relative to the housing, is 
based on an analog circuit. When there is no vibration, the proof mass is practically 
immobile relative to the GSE housing, and hence, relative to the magnetic field 
generated by the magnetic system. Under vibration, the proof mass moves relative 
to the magnetic field. The averaged data of the GSE have an error proportional to 
the square of the proof mass deviation from zero, which is due to the nonlinearity 
of the magnetic field mainly caused by the error in the geometry of the permanent 
magnets and the displacement of the initial position of the proof mass relative to the 
magnets The proportionality coefficient Kps is determined at the manufacturing plant 
when the gravimeter is calibrated on a vibration table and is used in the mathematical 
software of the gravimeter to compensate for the effect of the proof mass deviation 
on the GSE readings. 

The block diagram of an axial-type GSE has an advantage over a pendulum-type 
GSE: it has no cross-coupling effect error (Dehlinger 1978). However, due to the 
finite longitudinal rigidity of the spring plane, the averaged data of the GSE have an 
error proportional to the square of the horizontal acceleration. The proportionality 
coefficients K wx (y) are determined at the manufacturing plant when the gravimeter 
is calibrated on a horizontal acceleration test bench and are used in the firmware of 
the gravimeter to compensate for the GSE error caused by the square of the horizontal 
accelerations. 

GSE bandwidth is from 0 to 100 Hz. The measuring range is ±1 g. The drift is 
±3 mGal/month. The standard deviation of the noise component in the test bench 
conditions is ±0.1 mGal to 0.2 mGal with an averaging time of 60 s. 

1.3.3 Circuit for Integrated Correction of the Gyro Platform 
Position 

The gravimeter has a Schuler-type circuit for integrated correction of the gyro 
platform position. 

A block diagram of one channel of the correction circuit is shown in Fig. 1.24. 
The dead reckoning equations are integrated in the azimuth-free coordinate system. 
The azimuth-free coordinate system is determined by the XaYaZa frame-of-reference 
(Fig. 1.25) obtained from the local geodetic reference frame ENZ by turning around 
the vertical axis Z and having a zero component of the absolute angular rate with 
respect to the vertical axis Za.

The following symbols are used in the figure: 
ay is a projection of the horizontal specific force of the aircraft on the instrument 

axis Y (see Fig. 1.25); 
Wx ,Wy are readings of the accelerometers X and Y, respectively; 
dw
Δ

x , dw
Δ

y are estimates of biases of the transducer accelerometers (see Fig. 1.27); 
scale-factor errors are not taken into consideration;
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Fig. 1.24 One channel of the circuit for integrated correction of the gyro platform position 

Fig. 1.25 Coordinate 
systems
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C is the angle between the platform coordinate system and the azimuth-free 
coordinate system (see Fig. 1.25); 

g is the absolute value of gravity on the flight path; 
dr
Δ

is an estimate of the angular rate of the FOG drift; 
R is the mean Earth radius; 
ϕ is the geographical latitude of a point; 
λ̇ is the longitude derivative; 
U is the absolute value of the Earth’s angular rate; 
β is the misalignment error of the gyro platform around the X axis; 
A is the heading of the azimuth-free coordinate system (see Fig. 1.25); 
pgba, qgba are the signals applied to the DTG torquers, in projections on the Xa 

and Ya axes of the azimuth-free coordinate system (see Fig. 1.25); 
P is the projection of the absolute angular rate of the gyro platform on the Xp 

axis of reference frame whose azimuthal orientation is determined by the angle of 
the platform heading (see Fig. 1.25); 

dp
Δ

is an estimate of the drift angular rate of the DTG and the transducer around 
the X axis (see Fig. 1.29), errors of the scale factors are not considered; 

Vxa,Vya are projections of the relative velocity of the vehicle on the Xa and Ya 
axes of the azimuth-free coordinate system (see Fig. 1.25); 

a0 − a3 are the coefficients of gyro platform oscillation damping algorithm: 

a0 = 2.613/Tgg; 
a1 = 1 − 3.414/υ2; 
a2 = 

−1 

υ2T 4 gg 
; 

a3 =a0

(
1 − 

1 

υ2T 2 gg

)
; 

(1.3.1) 

υ is the Schuler frequency; 
Tgg is a parameter corresponding to the time constant of the gyro platform position 

correction system. 
The Schuler-type integrated correction circuit of the gyro platform nondisturbed 

by the vehicle motion (Seleznev 1967) was synthesized based on the equations of the 
stationary Kalman filter (KF). The following simplifications were accepted for the 
relevant algorithmic solutions: channel-by-channel models of the INS error equations 
are used; the FOG drift is considered as the integral of white noise; and white noise 
is considered as a statistical approximation of the error in the GNSS-derived velocity 
(Smoller 2002). This led to an easy-to-operate and easy-to-customize one-parameter 
algorithmic structure, the parameters a0, a1, a2, a3 of which—the damping coeffi-
cients (1.3.1)—are a function of one parameter, Tgg. Application of the algorithm for 
damping gyro platform angular oscillations using the GNSS-derived velocity made 
it possible to ensure the value of the misalignment errors in the instrument leveling 
during the flight at a level of 1–2 arcmin. The misalignment errors of the instrument
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leveling are estimated at the stage of integrated postprocessing of airborne gravi-
metric data using the GTNAV software (see Sect. 1.2.2). In the GTNAV software, 
estimation of misalignment errors is carried out with the use of the smoothing KF, 
which is based on sufficiently complete models of INS error equations and models 
of instrumental errors of inertial sensors. Measurements are formed with the use of 
GNSS differential carrier phase solutions. This allowed providing the level of 10– 
15 arcsec for errors in estimating the misalignment errors of the vertical, which is 
confirmed by the experience in processing experimental data. 

In Fig. 1.24, the formulas that use aiding information are shown in italic and 
are framed for clarity. Symbol * indicates trajectory parameters provided by the 
GNSS. The upper formula is a compensation for the gyro platform misalignment 
error due to the centripetal acceleration caused by the Earth’s rotation, the lower one 
is a compensation for the Coriolis acceleration projection on the vertical axis, and 
the right one is the aiding data used to damp gyro platform oscillations. The GNSS 
receiver delivers the values of the aircraft velocity vector components in projections 
on the axes of the geographic coordinate system with the axes oriented according to 
the sides of the world (east, north) and upwards (ENZ). To implement the damping 
algorithm, it is required to have external information about the vehicle velocity on 
the axis of the azimuth-free geographical coordinate system. When calculating the 
velocity projections, it is necessary to know the heading angle. Significant errors in 
external information can result from the heading errors. 

Coordinate Systems. Main Formulas. Figure 1.25 shows the main coordinate 
systems used in the gravimeter software. 

For simplicity, let us assume that the roll and pitch of the aircraft are equal to zero 
and the gyro platform is not disturbed. Figure 1.25 shows the horizontal axes of the 
four coordinate systems. The vertical axes of all the coordinate systems considered 
are directed perpendicular to the plane of the drawing to the observer. 

The following symbols are used in the figure: 
E, N are the axes of the geographic reference frame; 
X, Y are the aircraft body frame axes; 
Xp, Y p  are the gyro platform axes; 
Xa, Ya  are the axes of the azimuth-free coordinate system; 
K is the vehicle heading; 
A is the heading of the azimuth-free coordinate system; 
ASz is the readings of the angle sensor of the gimbal suspension external axis; 
C is the angle between the platform coordinate system and the azimuth-free 

coordinate system calculated by integrating the FOG readings (r): 

C =
{

rdt. (1.3.2) 

The standard-configuration GT-2 gravimeter uses the data from a single-antenna 
GNSS receiver for damping of the gyro platform. The GNSS receiver (both single-
antenna and multi-antenna) initially determines the coordinates and projections of the 
relative velocity vector in the Greenwich coordinate system, then recalculates them
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into the geodetic reference frame ENZ (for more details, see Sect. 4.3). The single-
antenna GNSS receiver provides the geographic coordinates (latitude and longitude), 
the aircraft relative velocity vector projection V* onto the local horizon plane and the 
track angle TA*, which is the angle between the projection of the above-mentioned 
vector onto the horizon plane and the north direction. 

In the standard configuration, heading A of the azimuth-free coordinate system, 
as well as the velocity projections V ∗xa, V ∗ya, necessary for damping of gyro platform 
oscillations (see the formulas given in italics and framed in Fig. 1.24), are calculated 
in the GT-2 gravimeter software based on the following formulas: 

Uxa = pgba − V ∗ 
ya/R; 

Uya = qgba − V ∗ 
xa/R; (1.3.3) 

A = arctg
(
Uxa/Uya

); (1.3.4) 

V ∗ 
N = V ∗cosT A∗ + V ∗sinT A∗; (1.3.5) 

V ∗ 
ya = V ∗ 

N cosA + V ∗ 
E sinA; (1.3.6) 

V ∗ 
xa  = V ∗ 

E cosA − V ∗ 
N sinA. (1.3.7) 

In formulas 1.3.3, Uxa, Uya represent the calculated values of the Earth’s angular 
rate projections onto the corresponding axes in the azimuth-free coordinate system. 
The heading calculated from formulas (1.3.3, 1.3.4) is called a compass heading. As 
is known (Smoller et al. 2015), the error in the calculation of the compass heading 
is expressed by the following formula: 

d A  = dpE + β̇E(
U + λ̇

)
cos ϕ 

, (1.3.8) 

where dpE is the east drift of the DTG; 
β̇E is the dynamic error rate of the gyro horizon around the eastern axis; 
λ̇ is the longitude derivative. 
Analysis of formula (1.3.8) allows for the following conclusions: 

1. As latitudes ϕ become higher, heading error A in the single-antenna configu-
ration of the gravimeter, and hence, relevant induced errors in determining the 
relative velocity components V ∗xa, V ∗ya required for damping increase in (1.3.6, 
1.3.7). When approaching the pole, the value d A  tends to infinity. This makes it 
impossible to use the GT-2A gravimeter at latitudes higher than ± 75°. 

2. Flights in the eastward direction in terms of the heading error, when the value 
λ̇ is positive, are preferable to flights in the westward direction, when the value
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λ̇ is negative. This effect is particularly significant at high latitudes, where the 
value λ̇ becomes commensurate with the angular rate of Earth’s rotation U . 

3. The heading error d A  in the standard single-antenna gravimeter configuration 
depends on the instability of the instrumental errors of the inertial gravimeter 
sensing elements, which cause misalignment errors of the gyro platform and on 
the constant eastern drift of the DTG. The compass heading error does not depend 
on the constant component of the FOG drift. 

An alternative to the compass heading in the GT-2A gravimeter could be the 
inertial heading Ai calculated by the formula: 

Ai =
{

(r − (U + V ∗ 
E /R cos ϕ

∗)dt  + Ai (0). (1.3.9) 

By varying this relation under the assumption that the FOG drift dr is a constant 
and neglecting the GNSS errors, we obtain 

d A  = dr · t. (1.3.10) 

The comparison of the compass heading error (1.3.8) with the inertial one (1.3.10) 
allows for the following conclusion: the inertial heading has no distinguishing 
features at high latitudes, but it cannot be used in the GT-2 gravimeter because of the 
medium-grade FOG. As mentioned in Sect. 1.3.1, its short-term instability is 0.6°/h, 
which in 5 to 10 h flights can lead to an unacceptable inertial heading error of (3–6)°, 
while the GT-2 gravimeter compass heading error does not exceed 0.5–1°. To elim-
inate the features of the compass heading, it was proposed to use a multi-antenna 
GNSS receiver. The main idea of its use is that the multi-antenna GNSS receiver 
generates the value of the carrier heading in addition to navigation information, in 
particular, the relative velocity and the local coordinates. The heading obtained in 
this way has no drawbacks that are inherent in the compass heading obtained in the 
standard configuration of the GT-2A gravimeter. Thus, by using the readings from 
the angle sensors of gravimeter gimbal suspension, it becomes possible to deter-
mine the projections of the carrier relative velocity vector on the gyro platform axes, 
needed to damp oscillations of the gyro platform. This circumstance, as well as the 
use of quasi-coordinates in the software of the gravimeter and GNSS receiver, made 
it possible to create an all-latitude version of the GT-2AQ gravimeter. Creating an 
all-latitude version of the gravimeter is discussed in Sect. 4.3.
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1.3.4 Mathematical Models of the Channels of Inertial 
Sensing Elements 

The term ‘channels’ of the GSE, FOG, and horizontal accelerometer is used to mean 
the mathematical model of these inertial sensing elements with an integrating ADC 
and a sequence of computations in the CPU for the purpose of compensation for 
systematic instrumental errors and digitization of the output signal in the appropriate 
dimension. The concept of the DTG channel is defined below. 

Gyro Platform Channel of the Gravity Sensing Element 

Figure 1.26 on the left shows the adopted mathematical model of a GSE with an 
ADC; on the right, mathematical calculations implemented in the CPU. 

The following symbols are used in Fig. 1.26: 
Wz is the vertical specific force (for simplicity, it is assumed that the QA sensitive 

axis coincides with vertical); 
K wz is the scale factor error of a transducer GSE; 
dwz is the zero signal drift of a transducer GSE; 
K w
Δ

z is an estimate of the error of the scale factor of a transducer GSE; 
dw
Δ

z is an estimate of the zero signal drift of a transducer GSE; 
Te is the anti-alias filter time constant; 
Wzout is the GSE channel output data. 
The GSE signal is read out at a frequency of 300 Hz by an integrating ADC, at the 

output of which the average value of acceleration is in the range of 1/300 s. After the 
scale factor error K w

Δ

z compensation and the zero signal drift dw
Δ

z , the data obtained 
is passed through an anti-aliasing filter (aperiodic link with the time constant Te = 
2 s). Its output is averaged over 16 readings. The values WzoutWzout with a frequency 
of about 18 Hz (more precisely, 300/16 Hz) are recorded in the G file and fed to 
the input of the vertical channel generating gravity anomalies in the GT-2 M marine 
gravimeter. In the GT-2A airborne version, the output data of the vertical channel 
are used when the aircraft is for functional diagnostics at the airdrome. 

It is easy to show that the impact of vibration on a gravimeter with a frequency 
close to the sampling frequency Wzout in the G file (approximately 18 Hz) leads to the 
effect of frequency masking and, consequently, to an undesirable low frequency in 
the output data of the GSE channel, which will be perceived as a false anomaly. The 
task of the anti-aliasing filter operating at 300 Hz frequency is designed to suppress

Fig. 1.26 Mathematical model of the GSE channel 
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the amplitudes of signals with frequencies close to 18 Hz. The use of an aperiodic 
link with the time constant Te = 2 s as an anti-aliasing filter attenuates the amplitudes 
of the harmonics with frequencies close to 18 Hz by more than 200 times, which 
almost completely eliminates the effect of frequency masking. The anti-aliasing filter 
leads to a delay in the output data for a fixed time of 2 s, which is taken into account 
during postprocessing. 

The value of the scale factor error for a transducer GSE is determined only at 
the instrument making plant during the manufacture of the gravimeter by the tilting 
method on a precision tilt meter device with a relative error not exceeding several 
10–4. More than a decade-long experience with operating gravimeters has shown 
that the value K wz remains stable with the specified accuracy throughout the entire 
period of operation. 

Horizontal Accelerometer Channel 

The following symbols are used in Fig. 1.27: 
W is the horizontal specific force of the vehicle (for simplicity, it is assumed that 

the GSE sensitive axis coincides with vertical); 
K w is the scale factor error of a transducer accelerometer; 
dw is the zero signal drift of a transducer accelerometer channel; 
K w
Δ

is the estimate of the scale factor error of a transducer accelerometer; 
dw
Δ

is the estimate of the zero signal drift of a transducer accelerometer; 
WoutWout is the output signal of the accelerometer channel. 
Figure 1.27 on the left shows the adopted mathematical model of a transducer 

accelerometer. The figure on the right shows the mathematical operations used to 
compensate for the factory-defined values K w and dw. Obviously, in the ideal case of 
(K w
Δ

= K w, dw
Δ

= dw), the output signal of the accelerometer channel WoutWout 

will be equal to the input accelerationW . The analog signal of the accelerometer 
with a frequency of 300 Hz is converted into a code by an integrating ADC. Thus, 
the CPU receives a code proportional to the mean value of specific force (specific 
velocity increment) over an interval of 1/300 s. 

Practice has shown that K w remains unchanged during operation with sufficient 
relative accuracy (not worse than 10–3). The values K w

Δ

x , K w
Δ

y are defined by the 
“Calibration” procedure (see Sect. 1.3.6) at the instrument making plant during the 
gravimeter manufacturing process. The values dw

Δ

x , dw
Δ

y are also defined only at 
the instrument making plant during the gravimeter manufacturing as described in 
Sect. 1.3.5. The values K w

Δ

x (y) and dw
Δ

x (y) discussed above are entered into the 
gravimeter database and remain unchanged during the entire period of operation.

FOG Channel 

The following symbols are used in Fig. 1.28: 
r is the vertical angular rate of the gyro platform; 
Kr  is the scale factor error of a transducer FOG; 
dr is the zero signal drift of a transducer FOG channel; 
Kr
Δ

is an estimate of the error of the scale factor of a transducer GSE;
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Fig. 1.27 Mathematical model of the accelerometer channel

dr
Δ

is an estimate of the zero signal drift of a transducer accelerometer; 
rout is the FOG channel output signal. 
Figure 1.28 on the left shows the adopted mathematical model a transducer FOG. 

On the right, the figure shows the mathematical operations to compensate for the 
factory-defined values Kr and dr. It is obvious that in the ideal case (Kr

Δ

= Kr , 
dr
Δ

= dr ) the output value of the FOG channel rout rout will be equal to the input 
angular rate r . The analog signal of the FOG with a frequency of 300 Hz is converted 
into a code by an integrating ADC. Thus, the CPU receives a code proportional to 
the average value on an interval of 1/300 with the vertical angular rate of the gyro 
platform. 

Practice has shown that the Kr  value with sufficient relative accuracy (not worse 
than 10–3) remains unchanged during operation. Therefore, Kr  is determined by 
turning the platform of the gravimeter at a fixed angle using a rotary table and 
comparing the integral of rout rout with its value. The dr value is determined occasion-
ally, once every 10–15 days and after each cold start of the gravimeter during oper-
ation, using the automatic ‘Autocalibration’ procedure integrated in the gravimeter 
software (see Sect. 1.3.6). 

The DTG, which is a free gyroscope, contains two torquers—X and Y—that 
provide precession movement of the gyro platform around horizontal axes. The 
input of the gyroscope is the magnitude of the current supplied by the code-to-
current converter (CCC) to its torquer sensor winding, its output is the precession 
rate of its rotor, and hence the gyro platform, around the corresponding horizontal 
axis. 

The DTG channel will be understood as a mathematical model of the DTG with 
a CCC and a sequence of computations in the CPU to compensate for systematic 
instrumental errors.

Fig. 1.28 Mathematical model of the FOG channel 
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One Channel of a Dynamically Tuned Gyroscope 

The following symbols are used in Fig. 1.29: 
pout pout is the actual angular rate of the gyro platform around the X axis (for 

clarity, one of the identical X channels of the DTG is considered); 
p is the angular rate of the gyro platform around the X axis fed to the input of the 

CCC (calculated by the correction system); 
Kp  is the scale factor error of the DTG and the converter; 
dp  is the angular rate component of the gyroscope drift around the X axis; 
Kp
Δ

is an estimate of the scale factor error of the DTG and the converter; 
dp
Δ

is an estimate of the angular rate of the DTG and transducer around the X axis. 
Figure 1.29 on the right shows a mathematical model of the DTG and the CCC. 

On the left, the figure shows mathematical operations to compensate for the Kp
Δ

and 
dp
Δ

values determined during calibration. Obviously, in the ideal case (Kp
Δ

= Kp, 
dp
Δ

= dp), the actual angular rate of the platform pout pout will have the design value 
of p. 

Practice has shown that the Kp  value remains unchanged during operation with 
sufficient relative accuracy (not worse than 10–3). The values Kp

Δ

and dp
Δ

are defined at 
the instrument making plant in the process of gravimeter manufacturing by turning the 
gravimeter platform placed on a rotary table by four rhumbs relative to the meridian. 
The dp  value is determined occasionally, once every 10–15 days and after each 
cold start of the gravimeter during operation, using the “Autocalibration” procedure 
integrated in the gravimeter software. 

Fig. 1.29 DTG mathematical model and channel
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1.3.5 Analysis of the Gravimeter Main Errors 

Below is the main gravimetric equation which represents the GSE readings taking into 
account the gyro platform misalignment errors, geometry errors, and the instrumental 
errors taking into consideration the specific design features of the GT-2 gravimeter: 

Wz =
(
Δg + g0 + ΔgE + Z̈

)
cos(βZ + α1) cos(γZ + α2) − Wy(βZ + α1)+ 

+ WX (γZ + α2) + K PS  · PS2 + K wx × Wx2 + K wy × Wy2 + υ, 
g0 = ge − Wzz  · h, (1.3.11) 

where 
Wz is the vertical specific force measured by a GSE;
Δg is the gravity anomaly; 
g0 is the normal gravity on the flight lines; 
ge is the normal gravity on the surface of the Earth’s ellipsoid;
ΔgE is the Eötvös correction term; 
Z̈ is the second derivative of the flight altitude; 
βZ is misalignment of the GSE sensitive axis of the gyro platform plane, which 

corresponds to the rotation around the X-axis; 
γZ is misalignment of the GSE sensitive axis of the gyro platform plane, which 

corresponds to the rotation around the Y-axis; 
α1 is the misalignment of the platform caused by its disturbed state, which 

corresponds to the the rotation around the X- axis of the gyro platform; 
α2 is misalignment of the platform caused by its disturbed state, which corresponds 

to the the rotation around the Y-axis of the gyro platform; 
Wx , Wy is the horizontal specific force of the carrier in projections on the X and 

Y axes, respectively measured by horizontal accelerometers; 
KPS is the coefficient of influence of the proof mass displacement relative to GSE 

housing caused by vibration on the GSE error; 
PS is the readings of the GSE proof mass position sensor (see Fig. 1.3.3); 
K wx , K wy are coefficients of influence of the horizontal projections of the 

vehicle acceleration in projections on the X and Y axes of the gyro platform, 
respectively, on the GSE error; 

υ is random noise; 
WZZ  is the vertical gravitational gradient; 
h is the flight altitude. 
The plane of the gyro platform is a conditional concept defined by accelerometer 

signals. Let us assume that the plane of the platform coincides with the plane of the 
local horizon, when the accelerometer signals are equal to zero. Therefore, in the 
case of biases of the horizontal accelerometers, the values of βZ , γZ will change. 

As mentioned in Sect. 1.3.2, the influence coefficients of the proof-mass displace-
ment relative to the GSE housing caused by vibration, and the influence coeffi-
cients of horizontal accelerations KPS, K wx (y) are determined at the manufacturing 
plant. They are entered into the gravimeter database and taken into account in real
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Fig. 1.30 Determination of KPS on a vibration table 

time to form corrections in accordance with the fourth, fifth, and sixth terms of 
formula (1.3.11), which practically eliminates the effect of vibration and horizontal 
accelerations of the vehicle on the gravimeter error. 

Figure 1.30 shows an example of determination of the influence coefficient KPS 

on a vibration table. 
To identify the effect of the GSE proof-mass displacement during gravimeter 

calibration, vibration is set in the range from 5 to 70 Hz with amplitudes (0.2–0.3) g 
that are significantly higher than the vibration amplitudes acting on the gravimeter 
during the flight. The square of the deviation of the proof mass PS2 [m2] is shown  
by the dashed curve, the GSE readings are shown by the dotted curve. From these 
results, coefficient KPS was determined as the ratio of the data of the dotted curve 
to those of the dashed curve. The result after the compensation is represented by the 
solid curve. From the curves presented, it follows that after the compensation, the 
effect of vibration decreased by more than 20 times. 

Requirements for the accuracy of flight altitude determination. For simplicity, 
consider the following example. 

Assume that the aircraft or, more precisely, a GSE proof mass is making vertical 
harmonic motion with an amplitude of A = 1 mm and a period T = 100 s (typical 
averaging time used in postprocessing of the GT-2A gravimeter measurements). The 
angular frequency ω ≈ 0.061/s. Assume that the GNSS receiver does not measure 
this displacement. 

Then, in accordance with the first term of formula 1.3.11, there arises an error in 
the gravity anomaly generation with amplitude dΔg equal to Δg = Z̈max = Aω2 = 
0.4 mGal will appear. It follows that the accuracy of measuring the altitude of the 
GSE location should be approximately 1 mm (average for 100 s). As the experience 
with the operation of the GT-2A gravimeter has shown, this accuracy is achieved due
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Fig. 1.31 The aircraft flight path leading to an error of 0.4 mGal 

to the use of dual-frequency carrier phase GNSS receiver operating in the differential 
mode and with compensation of antenna lever arm effect using the readings from the 
angle sensors of the gravimeter gimbal suspension (Fig. 1.31). 

Requirements for data synchronization accuracy. During the gravity survey, 
the data obtained from the GSE are recorded in the measuring file of the gravimeter. 
The GNSS data file obtained after taking into account the differential correction from 
the base station (hence, after the flight) is used to remove inertial perturbation from 
the GSE data. The data provided by GT-2 instrument should be time-synchronized. 
Let us estimate the requirement for data synchronization accuracy requirement using 
a simple example. 

Assume that the aircraft is performing harmonic motion in the vertical plane 
(“GSE motion” curve in Fig. 1.32) with an amplitude A = 1 m and a period of 100 s 
(angular frequency ω ≈ 0.061/s.). Suppose that the GSE measurements (“GSE 
data” curve in Fig. 1.32) are ideal and the vertical acceleration is ideally determined 
using GNSS data ( “GNSS” curve in Fig. 1.32), but the files have time lag relative 
to each other by dt = 0.01 s. 

Fig. 1.32 Inaccuracy in synchronization between the GNSS and GSE data streams leads to an error 
of 0.2 mGal
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It is easy to show that in this case, there will be an error in the gravity anomaly 
measurement with amplitude dΔg equal to dΔg = Aω3dt  ≈ 0.2 mGal . 

It follows that the synchronization accuracy for the files should be at a level of 
0.01–0.02 s (10– 20 ms). 

In the GT-2A gravimeter, these requirements can be fulfilled owing to the 
following technical solutions: 

1. Almost inertialess GSE with a bandwidth of 100 Hz is used, which corresponds 
to a GSE time constant of approximately 1 ms. Therefore, the GSE constant time 
and its instability during operation may be neglected. 

2. GNSS-derived PPS signal, associated with the beginning of the Greenwich 
second, makes it possible to synchronise GSE measurements to an almost perfect 
accuracy of 0.00003 s (0.03 ms). For this purpose, the lag time of each individual 
GSE measurement from the PPS is recorded in the GSE file. 

Requirements for the accuracy of the GSE-sensitive axis verticalization. 
There are two components of the GSE sensitive axis misalignment from vertical 
(the error in knowing the angle between the GSE sensitive axis and the vertical) 
that cause error in the gravity anomaly estimation. The first one is defined by the 
first term of formula 1.3.11. This error has a cosine (quadratic for small stabilization 
error angles) nature and does not impose any strict requirements on the accuracy of 
keeping the GSE sensitive axis vertical. It is easy to show that in this case, the error 
in keeping the GSE sensitive axis vertical equal to 4.5 arcmin leads to an error in the 
gravity anomaly estimation equal to 1 mGal. Much stricter requirements for the GSE 
sensitive axis vertical alignment are imposed by the effect of horizontal accelerations 
on the GSE sensitive axis, defined by the second and third terms of formula (1.3.11). 
Let us estimate the influence of this error component on the gravimeter error. Assume 
that the aircraft or, more precisely, the place where the GSE proof mass is located 
on it, performs harmonic motion in the horizontal plane with amplitude of 25 m and 
a period of 100 s. Let the error in keeping misalignment errors of GSE sensitive 
axis be 10 arcsec. Then it is easy to show that the amplitude of the gravity anomaly 
generation error due to the projection of the horizontal acceleration onto the GSE 
sensitivity axis will be 0.5 mGal. Therefore, the requirement for the error in keeping 
the GSE sensitive axis vertical in airborne gravimetry is from 10 to 15 arcsec. 

A similar result was also obtained using real data of horizontal accelerations from 
ten survey lines in different flight conditions. For this purpose, horizontal accel-
erations were scaled and passed through a filter with an averaging time of 100 s. 
The following conclusion was made based on the calculation results: the accuracy 
required to maintain (know) the GSE sensitive axis vertical deflection angles for 
airborne gravimetry of the 0.5 mGal level is from 10 arcsec in favorable flight 
conditions to 6 arcsec in adverse flight conditions. 

The error in keeping the GSE sensitive axis vertical depends on two components: 
instability of the angles βZ ,γZ between the GSE sensitive axis and the normal to the 
plane of the platform due to the instability of zero drifts of horizontal accelerometers 
(see the explanations for formula 1.3.1) and errors in determining the gyro platform 
angles α1, α2 during the flight.
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To reduce the influence of the first component of the error, the “Autocalibration” 
procedure was introduced in the software of the GT-2A gravimeter which helps 
occasionally, once every 10–15 days and after each cold start of the gravimeter, 
determine the estimates β̂Z , γ̂Z . Certain values β̂Z , γ̂Z are entered into the database 
of the gravimeter and taken into account in real time to form corrections in accordance 
with the second and third terms of formula 1.3.11. The second component of α1, α2 is 
determined during postprocessing in the GTNAV software (see Sect. 1.2.2). Errors in 
determining the sum of the components βZ + α1, γZ + α2 are additionally estimated 
by the correlation method at the postprocessing stage in the GTRAV software. These 
solutions provide the required accuracy of keeping the GSE sensitive axis vertical. 

Nonorthogonality of the DTG angular momentum with respect to the gyro 
platform plane. Consider a simple example (Fig. 1.33) explaining the disturbance 
of a gyro platform placed in a biaxial gimbal suspension during its azimuthal turn. 

Figure 1.33 represents one axis of a biaxial gyrostabilizer. As mentioned above, 
the plane of the platform is a conventional concept; it is defined by accelerometer 
signals. The top part of the figure shows the gyro platform with its plane in the 
horizontal position, an accelerometer signal, which is conventionally represented as 
a spring ball and has zero readings. If the gravimeter is quickly rotated by 180° 
around its vertical axis, the position of the angular momentum in the inertial space 
will remain unchanged at the first moment of time (it can be assumed that under

Fig. 1.33 The error in the 
alignment of the DTG 
angular momentum 
orthogonally to the platform 
plane 
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the influence of the correction system, the gyroscope precession can be neglected). 
As a result, at the first moment, the platform will deviate from the horizon plane 
by an angle of 2 β, which will be measured by the accelerometer, where β is the 
nonorthogonality angle of the gyroscope angular momentum to the platform plane. 

This effect served as a basis for the method of determining nonorthogonality of the 
DTG angular momentum vector of the platform plane at the manufacturing instru-
ment making plant. After determining the angles β (rotation around the X axis) and 
γ (rotation around the Y axis), the angular momentum vector is vertically aligned by 
adding the constants dw

Δ

x = gβ and dw
Δ

y = −gγ to the signals of the accelerometers 
X and Y, respectively. 

During operation, the DTG angular momentum deviates from the normal to the 
platform plane due to the instability of the accelerometer zero signals (for A15 
accelerometers used in the gravimeter, the instability of zero signals is estimated at a 
level of ±10 arcsec). To ensure that this error does not cause the platform deviation 
from the horizon plane during the vehicle maneuvers, the third external azimuthal axis 
is used to stabilize the gravimeter (platform) position in the geographic coordinate 
system. Thus, the use of the third azimuthal axis completely eliminates the gravimeter 
error caused by the nonorthogonality of the DTG angular momentum of the gyro 
platform plane. 

It is easy to show that the use of the third axis, which allows gyro platform 
stabilization in the geographic reference frame, also eliminates the effect of the 
constant components of the estimation errors of the scale factors and drifts of the 
DTG channels on the angular errors of the gyro platform. 

1.3.6 Main Tasks of the Gravimeter Central Processing Unit 

The central device is designed to generate preliminary (raw) gravimetric data. Its 
CPU executes the following relevant tasks. 

Gravimeter startup. After the gravimeter is switched on, relevant gravimeter 
systems start their operation automatically according to the time diagram. 

Generation of input data. At a frequency of 300 Hz, the data acquisition system 
forms information read out from the DTG angle sensors, GSE, accelerometers QAx, 
QAy, the FOG, and the GSE position sensor. GSE readings are corrected for the 
Harisson effect (according to signals from the DTG angle sensors), nonorthogonality 
of the GSE sensitive axis to the platform plane (according to the QAx, QAy readings), 
and the influence of the squares of horizontal accelerations. 

Control of stabilization servo drives. The task generates the signals applied 
to the torque sensors DMx, DMy of the horizontal axes of the gimbal suspension 
and the azimuth stabilization motor. The task of horizontal stabilization servo drives 
implemented as a discrete Kalman filter operates at a frequency of 300 Hz. The 
input data are signals from QA accelerometers (to provide an intermediate stage for 
gravimeter startup) or from DTG angle sensors read out in the normal operation
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mode. The input data for the control of the azimuth servo drive is the generated value 
of the compass heading of the gyro platform. 

Systems for correcting gyro platform attitude. The task provides a proportional 
correction in the gravimeter startup mode and a Schuler-type integral correction in 
the operating mode. The input data for the task are the signals of the QAx, QAy 
accelerometers, the FOG, and data on the latitude and the vehicle vector velocity 
from the GNSS receiver. 

Calculation of the compass heading of the gyro platform. The task calculates 
the geographical heading of the gyro platform, which is the input for the task of 
control of the gravimeter azimuthal servo system. The task input data are the values 
of the absolute angular rates of the platform obtained in the previous task, as well as 
the data on the GNSS-derived velocity. 

Generation of the vehicle attitude angles. The task generates the heading, the 
angles of roll and pitch of the aircraft based on the data obtained from the previous 
task, as well as the readings of the stabilization angle sensors. The angles of roll and 
pitch are used in postprocessing to recalculate the coordinates of the GNSS antenna 
to the GSE location. 

Gravimetric data generation. The task generates three suboptimal estimates of 
the gravity anomalies with various averaging times in real time (for more details, 
see Sect. 2.4). In addition, in the marine version, the task generates a mean value of 
the vertical specific acceleration per second which, at the customer’s request, can be 
transferred to their data acquisition system. In the airborne version of the gravimeter, 
the generated value of the gravity anomaly is used to control the GSE on a fixed 
platform and to estimate the noise level of the output information of the gravimeter. 

Thermal regulation. The task ensures generation of signals for the triggering 
the thermal regulation system (heaters and fans). The task input is signals from the 
thermal sensors. 

Reception of commands and data output. The task ensures interaction of the 
computing unit of the central device with the computing unit of the control and 
indication device (CID). In the airborne version, during a gravity survey, the task 
ensures the generation of data for two so-called S- and G-files. The S-file contains 
information on the dynamics of the gravimeter gyro horizon; it is recorded on the CID 
hard disk with a frequency of 3 Hz, and serves as input information for the optimal 
filter implemented in the GTNAV software, which evaluates the disturbed state of 
the gravimeter gyro horizon in postprocessing. The G-file contains information with 
a frequency of 18 Hz on the measured values of the vertical and horizontal specific 
forces; it is recorded on the CID hard disk and used in the postprocessing task of 
GTGRAV software to generate gravity anomalies on the aircraft flight trajectory. For 
details, see Sect. 2.2. 

In the marine version, the CID receives data on the three gravity anomaly values 
with various averaging times from the CPU in real time and records them into the G 
file on the hard disk once every 10 s. 

Autocalibration. The task is executed occasionally during the gravimeter opera-
tion. It determines the estimates of the deviation angles β̂Z , γ̂Z of the GSE sensitive 
axis from the normal to the plane of the platform by the method of successive tilts
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of the platform around the X, Y axes at known fixed angles determined by QAs. 
At the same time, estimates of the FOG drift dr

Δ

and the drift components of the 
DTG gyroscope dp

Δ

, dq
Δ

are determined by the method of successive rotation of the 
platform at 0° and 270° rhumbs. After the task is completed, the resulting parameter 
values are entered into the gravimeter database in order to enter corrections in real 
time. The task runs 5.5 h. 

Calibration. Calibration is performed at the instrument making plant during the 
gravimeter manufacturing. It automatically determines the estimates of the deviation 
angles β̂Z , γ̂Z of the GSE sensitive axis from the normal to the plane of the platform 
by the method of successive tilts of the platform around the X, Y axes at known fixed 
angles determined by QAs. At the same time, the thickness of leveling shims for the 
GSE base is calculated to eliminate the specified deviation. The duration of this task 
is 3 h. 

Monitoring of the gravimeter state. The extensive monitoring system allows 
efficient diagnostics and timely detection of faults arising during operation. The task 
forms two generalized criteria of the state (readiness of the gravimeter): 

• the gravimeter is serviceable (yes/no): hardware serviceability; 
• g is reliable (yes/no): the reliability of measurements. 

The gravimeter hardware serviceability criterion is generated as a logical sum 
of twenty fault criteria of elements and systems recorded in a special CID control 
frame. 

The display of the CID monitor shows fault symptoms from the first fault detection 
until the operator issues the Fault Accepted command. If a fault symptom is not 
removed, that means that it is present at the time of issuing the command. Thus, no 
short-term fault goes unnoticed by the operator. 

The criterion of the reliability of measurements is formed as a logical sum of six 
criteria such as the increased turbulence, the lack of information from the GNSS 
for more than 10 min during which the damping of the gyro platform oscillations is 
disabled, and other such criteria. In the CID frame, the operator observes the gener-
alized criteria of the gravimeter state, and only if the gravimeter fault or unreliable 
measurements are detected, he turns to monitoring to find out the reasons. 

Based on the results of the monitoring, a status word is generated which is recorded 
to the output G- and S-files. 

To make fault diagnostics easier, the CPU forms diagnostic data during the oper-
ation of the gravimeter, and the CID records the so-called diagnostic file on its hard 
disk, which allows for remote fault diagnostics. 

Noise level assessment. The task assesses the quality of the gravimeter operation 
on a fixed base. The task input is the output of the task on generation of gravi-
metric information. The task of assessing the noise level simulates the initial and 
final reference measurements with a length of 15 min and a flight with a length of 
3 h. According to the results of the reference measurements, the simulated flight 
measurements are adjusted and the standard deviations of measurement errors are 
calculated. The result is displayed on the CID monitor.
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1.3.7 Conclusions 

The features of the GT-2 gravimeters have been considered both in terms of their 
design and software. Extremely stringent accuracy requirements for subsystems of 
the airborne gravimeter have been formulated; the proposed hardware, firmware, 
and software solutions have made it possible to satisfy the above requirements. The 
accuracy parameters, as well as the operational features including, in particular, the 
presence of a gyro platform which remains undisturbed during vehicle maneuvers, a 
wide dynamic measurement range (±1 g) and a small GSE drift (3 mGal/month) have 
determined a great interest of Russian and international companies in gravimeters of 
this series. 
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Abstract This Chapter gives an overview of data processing methods used in
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of gravity anomalies, and the methods used to identify the models needed for the
algorithm design. The method of designing suboptimal smoothing algorithms with
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Introduction

This chapter gives a comprehensive overview of data processing methods used in
measuring gravity anomalies (GA) on a moving base. The chapter contains five
sections.

Sections 2.1 and 2.2 describe the features of data processing and software of
Russian mobile relative gravimeters of the Chekan series (Sect. 2.1) and GT-2
series (Sect. 2.2) that are widely used for taking high-precision measurements of the
Earth’s gravitational field from marine vessels and aircraft, including measurements
in remote areas of the Arctic and the Antarctic.

Each section provides a description of the technology for acquisition, onboard
quality control, postprocessing, and subsequent geophysical interpretation of marine
and airborne gravity survey data. Algorithms and mathematical software used for
acquisition and postprocessing of gravimetric data obtained using gravimeters of
these series are discussed.

Section 2.3 focuses on the design of optimal and suboptimal filtering and
smoothing algorithms for estimation of gravity anomalies, and the methods used
to identify the models needed for the algorithm design.

The optimal filtering and smoothing problem is considered in general formwithin
the Bayesian approach; an example is given to illustrate the design of optimal algo-
rithms as applied to GA estimation. Within this approach, the potential estimation
accuracy can be calculated with the specified models of the anomalies and the errors
of the measuring instruments, which allows objective estimation of the efficiency of
various suboptimal algorithms. Further, the practical stationary algorithms based on
the Butterworth filter and the two-stage estimation procedure are discussed, and their
efficiency is analyzed. The importance of structural and parametric identification of
the models is emphasized, which provides the required information on the models
when implementing optimal algorithms. An identification algorithm is proposed,
which is based on nonlinear filtering methods and actually makes the GA estimation
process and the algorithms adaptive. The results of real data processing using the
proposed algorithm are given in Conclusions.

Section 2.4 describes the method of designing suboptimal smoothing algorithms
with a constant delay applied to the problem of marine gravity measurements.

A theoretical justification of the proposed method is given, and a methodical
example is used to compare the proposed suboptimal algorithmwith optimal filtering
and smoothing algorithms. The section describes the smoothing algorithm formarine
gravity surveys which is designed using the method under consideration and imple-
mented in the GT-2M gravimeter software. The results of survey data processing
using the proposed algorithm are presented.

Section 2.5 discusses the problem of combining airborne gravimetric data and the
data from the global models of the Earth’s gravitational field. The problem is solved
by applying multiscale representation of an anomalous gravity field in the area of an
airborne gravimetric survey using wavelet expansion on the sphere. The algorithm
for data integration obtained by this method is described and the results of its work
are discussed.
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2.1 Chekan-Series Gravimeter Data Acquisition
and Processing Software

High-precision gravity surveying from moving vehicles remains the most common
and promising method for studying the Earth’s gravitational field. The develop-
ment of gravimetric equipment involves intense research based on high technology
and profound knowledge base. An important aspect on which the final quality of
geophysical data depends is functionality and efficiency of mathematical software.

A distinctive feature of marine and airborne gravity surveys is that the data is
processed in successive steps that include data acquisition, onboard quality control,
postprocessing, and subsequent geophysical interpretation of measurement results.
Inadequacy of software at any of these steps can result in a significant deterioration
in the quality of the survey results or even complete loss of the material, which is
unacceptable for hard-to-reach areas of the Earth.

Choosing an adequate mathematical model that takes into account the design
features of the gravimeter used and its calibration parameters, the possibility of
applying various corrections and changing the coefficients and structure of the digital
filter is of vital importance in postprocessing of gravity data.

Section 2.1 considers algorithms and mathematical software used in the acquisi-
tion and postprocessing of the gravimetric data obtained using the Chekan gravime-
ters described in detail in Sect. 1.2. All processing steps are described, including
calibration and diagnostics of the system equipment that are carried out before the
survey starts, real-time data acquisition, processing of the marine and airborne gravi-
metric profiles and final postprocessing of the survey results (Krasnov and Sokolov
2015). The structure of the software for various stages and types of gravity surveys
is shown in Table 2.1.

2.1.1 Calibration and Diagnostics of the Gravimeter
Equipment

Periodic calibration of the sensing element is a mandatory procedure for any type
of gravimeter. In addition, during marine and especially airborne gravity surveys, it
is necessary to calibrate sensing elements of the gyro stabilization system. In order
to automate the setup procedures for the gravity sensor (GS), gyro platform (GP),
and UMT unit at the manufacturer’s plant and provide for their field diagnostics, a
special software was developed that comprises 3 programs: TestGrav, TestGyro, and
TestUMT.

The GS is adjusted with the TestGrav program, which provides for the following
basic operations:

• adjustment of the optoelectronic converter, including its alignment, setup of the
intensity and shape of autocollimation images (Fig. 2.1);
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Table 2.1 Structure of the
software for Chekan
gravimeters

Type of operations Marine gravity
survey

Airborne gravity
survey

Preparatory work GS setup: TestGrav
GP setup: TestGyro
Thermal stabilization system setup:
TestUMT
GS calibration: Calibr

Survey execution Data acquisition:
SeaGrav

Data acquisition:
AirGrav

Field data control:
Chekan_PP

Field data control:
Grav_PP_A

GS diagnostics: TestGrav
GP diagnostics: TestGyro
Thermal stabilization system diagnostics:
TestUMT

Postprocessing Profile processing:
Chekan_PP

Profile processing:
Grav_PP_A

Processing of survey results, assessment
of measurement accuracy: Chekan_PP

Fig. 2.1 Screen of the TestGrav program during the setup of intensity and shape of autocollimation
images
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Fig. 2.2 Screen of the TestGyro program during calibration of gyroscopes

• adjustment of the GS digital thermal stabilization system;
• determination of the gravimeter elastic system (GES) response time;
• in-depth diagnostics of the GS hardware.

The TestGyro program is intended to solve similar problems of GP setup; it has
the following main functions:

• automatic adjustment of the gearless servo drive in all modes of the GP operation;
• calibration of zero drifts and scale factors of floated one-degree-of-freedom

gyroscopes (Fig. 2.2);
• calibration of zero drifts and scale factors of horizontal accelerometers;
• calibration of zero drift and the scale factor of azimuthal FOG;
• in-depth diagnostics of all the GP hardware.

The results of the GP primary setup are stored in the ROMs of microcontrollers
and can be refined during operation.

GS calibration is traditionally done by tilting, wherein the known gravity decre-
ments are set by changing the position of the GS measuring axis relative to the
local vertical (Zheleznyak and Elinson 1982). Setting and determining tilting angles
should bemade using high-precision tilt-rotary benches. A special technology for GS
calibration was developed and implemented in Chekan-AM and Shelf-E, in which
the gyro platform is used to set and determine the gravimeter tilting angles. This tech-
nology eliminates the need for high-precision and expensive bench test equipment;
and GS calibration can be done in the field (Sokolov et al. 2015).
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A special programCalibr was developed to calibrate theGS using a gyro platform.
The program provides both for automatic tilting of the GS at specified angles and
certain intervals and processing of measurement results (Dudevich et al. 2014).

During the entire measurement cycle, the current readings of the gravimeter and
GP tilting angles are recorded in a file (Fig. 2.3). The measurement for each tilting
angle of the platform lasts 30 min. The entire calibration period does not exceed 9 h.

The results of data processing are available as a program operation protocol
including the values of the following parameters:

• quadratic coefficienta and linear coefficientsb1,b2 of the calibration characteristic
of each quartz gravimeter system;

• specified decrements of gravity acceleration Δaeti and the results of measuring
Δgi for each GP tilting angle;

• deviations δgi of the Δgi measurement results from the specified values of Δaeti;
• the fiducial error of the gravimeter calibration characteristic which is taken as the

ratio of the absolute maximum of the obtained values of δgi to the upper limit of
the gravimeter measurement range;

• the margin for the gravimeter measurement range.

Theprotocol generated by the program is a requisite document sufficient to prepare
verification certificates for Chekan-AM and Shelf-E gravimeters as measuring
instruments.

Fig. 2.3 Screen of the Calibr program
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2.1.2 Real-Time Algorithms and Software

The main purpose of the real-time software is synchronous recording of the original
gravimetric and navigation data at a frequency of 10Hz in the course ofmeasurements
on survey lines. Taking into account the fundamental differences in marine and
airborne gravity surveys, real-time data acquisition software comprises two different
programs, SeaGrav and AirGrav, both of which provide for the following operations
(Demyanenkov et al. 2014; Dudevich et al. 2007):

• GS, GP, and UMT data acquisition;
• reception of navigation information from GNSS equipment and synchronization

of the gravimeter data;
• recording of raw data on the hard disk at a frequency of 10 Hz;
• linearization of the GS scale in accordance with formula (1.2.7);
• introduction of the gravimeter drift correction in accordance with formula (1.2.9);
• calculation and filtering of the gravity increment with respect to the initial gravity

reference station (GRS) (this data is used for display and can also be used for
onboard quality control);

• graphic display of the recorded parameters and recording of output data on the
hard disk at a frequency of 1 Hz.

Additionally, theAirGravprogramprovides for the correctionof the carriermotion
effect on the gravimeter gyro platform with the use of GNSS data and the generation
of current heading values, the algorithm block diagrams of which are presented,
respectively, in Figs. 1.15 and 1.16 of Chap. 1.

The SeaGrav and AirGrav programs are designed to work under the Windows
operating systems. The exchange of informationwith theGS,GP, andUMT is carried
out using the RS-232 serial interface. Any modern laptop with standard USB/COM
interface adapters can be used to operate the gravimeter.

Signals received from the gravimeter equipment are displayed on the screen in
graphic and digital form (Fig. 2.4). The interface of SeaGrav and AirGrav provides
wide capabilities for zoomcontrol and the choice of colors for the charts. The software
is adapted for two languages: Russian and English.

An essential feature of real-time programs is the availability of built-in diagnostics
for the basic systems of the gravimeter, which provides for an integral test of the
gravimeter operation and reliability of its readings. These diagnostic capabilities
greatly simplify the operator’s work, especially in airborne gravimetric surveys.

The output data of the real-time gravity data acquisition software is text files, the
main content of which is presented in Table 2.2, as well as protocols of the software.

Symbol “*” in the table indicates a unique file name generated automatically.
The main output files of data acquisition software are G*.RAW files, in which the
readings of the gravity sensor m1, m2 and time t are recorded with a frequency of
10 Hz. In the G*.RAW files generated by the SeaGrav program, additional signals
are recorded that can be used to calculate dynamic corrections, such as the readings
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Fig. 2.4 Screen of the real-time data acquisition software in the reference observation mode

Table 2.2 Text files

File type SeaGrav AirGrav

G*.RAW t, m1, m2, Wψ,Wθ, Uψ, Uθ, ψ, θ, T t, m1, m2

G*.NAV t, ϕ, λ t, ϕ, λ, H

G*.DAT
R*.DAT

t, Δg

T*.DAT – t,Wψ,Wθ, Uψ, Uθ, Ωz, ωψ, ωθ, K, TOG,
VN , VE , ΔVN , ΔVE , ψ, θ,W corψ,W corθ,
Ωcosϕ, T

of the horizontal accelerometers of the gyro platformWψ,W θ, the floated gyro pick-
offsUψ,Uθ, pitch angles ψ and roll angles θ, temperature T (GS temperature for the
Shelf-E gravimeter or the temperature inside the GP for the Chekan-AMgravimeter).

For the same purpose, the AirGrav program generates a separate T*.DAT output
file which, in addition to the signals listed, contains the FOG readingsΩz, the control
signals of the gyroscope torquers ψ, ωθ and also some calculated corrections and
derivatives of the GNSS signals received: heading K, track over ground TOG, north
and east speed components VN, VE , speed mismatch ΔVN, ΔVE , corrections for
the horizontal components of Coriolis acceleration W corψ, W corθ, and the Earth rate
horizontal component Ωcosϕ.

Both programs record G*.NAV navigation data files containing the values of lati-
tude ϕ and longitude λ received from GNSS. The values of heightH are additionally
recorded in the AirGrav program files. It should be noted that the AirGrav G*.NAV
program files are used only for real-time control of survey data; however, satellite
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information refined during office processing is used for postprocessing of gravimetric
data.

The SeaGrav and AirGrav programs work in two modes: reference observations
and gravimetric surveys. Themode of reference observations is necessary to calculate
the reference gr0 of the gravimeter at the GRS; the time of reference observations
T 0, and the drift rate of gravimeter C based on current measurements in accordance
with the formulas obtained using the least squares method:

gr0 =
Σn

i=1 gri
n

, (2.1.1)

T0 =
Σn

i=1 ti
n

, (2.1.2)

C =
Σn

i=1 gri ·Σn
i=1 ti − n ·Σn

i=1 gri · ti
(Σn

i=1 ti
)2 − n ·Σn

i=1 t
2
i

, (2.1.3)

where gri are the current measurements of the gravimeter calculated in accordance
with (1.2.7), t is the measurement time, and n is the number of measurements.

In the gravimetric survey mode, the current values of the gravity increment are
calculated relative to the reference at the GRS, taking into account the gravimeter
drift according to formula:

δg = gr − gr0 − C · (t − T0). (2.1.4)

Gravity increments smoothed by the low-pass filter (LPF) described below are
stored in the G*.DAT or R*.DAT files, depending on the mode of operation. When
conducting a marine survey, G*.DAT files can be used for quality control of gravity
data. R*.DATfiles are used to calculate the gravimeter readings at the GRS and refine
the gravimeter drift.

2.1.3 Marine Gravity Measurement Processing

Figure 2.5 shows a block diagram of marine gravimetric line data processing. As
described above, the data for the postprocessing of the line are formed from the
following files: G*.RAW for gravimetric data, and G*.NAV for navigation data.

Processing of the line data begins with the conversion of the GS readings into
acceleration units using the coefficients of the gravimeter calibration characteristic
in accordance with formula (1.2.7). The current values of the gravity increment are
calculated and the gravimeter drift correction is accounted for in accordance with
formula (2.1.4).



72 A. Krasnov et al.

Fig. 2.5 Block diagram of marine gravity line data processing

To calculate the values of gravity and its anomalies on a line, it is necessary
to combine gravimetric and navigation data and calculate at least two corrections,
namely, the Eotvos correction and the normal gravity correction.

For marine gravimetric surveys, the Eotvos correction, which eliminates the
effect of the Coriolis and centripetal accelerations, is calculated using the following
simplified formula:

ΔgE = 7.502 cos2 ϕ · dλ/dt + 0.0041 · V 2, (2.1.5)

where V is the vessel speed, kn; dλ/dt is the longitude rate, arcmin/h; ϕ is the
latitude, rad.

Figure 2.6 gives an example how the Eotvos correction changes the systematic
component of the gravimeter signal and compensates for the accelerations caused by
minor changes in the heading and speed of the carrier on the survey line.

Normal gravity correction γ is usually calculated by the Helmert formula.
The value of gravity at a marine gravimetric station is calculated using the

following formula:

g = g0 + δg + ΔgE , (2.1.6)

where g0 is the value of gravity at theGRS relative towhich the surveywas conducted.
The GA value in free air Δg is defined as the difference of gravity at the marine

station and the normal value of gravity:
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Fig. 2.6 Introducing the Eotvos correction ΔgE to gravity readings

Δg = g − γ. (2.1.7)

If depth data is available, the gravity anomaly is calculated in the Bouguer reduc-
tion taking into account the gravity of the layer between the gravity station and the
sea level in accordance with the following formula (Torge 1989):

ΔgB = g − γ + gB, (2.1.8)

where gB = 0.0419 · H · (σ1 − σ2) is the Bouguer correction, H is the sea depth, m;
σ1 is the density of seabed rocks; σ2 = 1.03 g/cm3 is the density of sea water.

The effect of vertical accelerations is eliminated from the measurement results
using a low-pass filter, to which the value of the gravity increment is input after taking
into account all the corrections. For marine surveys, the use of a low-pass filter is
fully justified since the power spectral densities (PSDs) of the useful signal and the
disturbing acceleration are separated in the frequency domain. For processing the
data from Chekan gravimeters, it is recommended to use a combined digital filter
which consists of the 1st order aperiodic filter with the time constant Ta and the 4th
order Butterworth filter with the time constant Tb.

The data processing using the combined digital filter is conducted in two stages.
During the first stage, the readings of the gravimeter are passed through the filter in
the forward time mode. After that, the time is inverted, and the gravimeter readings
are processed by the same filter in reversed time. As mentioned in Sect. 2.3, the
data processing technology in the forward and reversed time modes agrees with the
solution of the smoothing problem and allows, among other things, eliminating the
phase distortions of signals introduced by the filtering procedure.
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Figure 2.7 shows the amplitude-frequency characteristics of the low-pass filter
described for various values of the time constants Ta and Tb. The advantage of data
processing by survey lines is that it is possible to vary these parameters for various
sea states in order to ensure maximum spatial resolution. Table 2.3 presents the
recommended values of Ta and Tb, the cutoff frequency f c of the LPF and their
corresponding spatial resolution L/2 at a speed of 5 kn for various sea states obtained
empirically so that the root-mean-square deviation (RMSD) of the residual error for
the vertical acceleration is less than 0.1 mGal.

Additional corrections ΔgWz and ΔgWx may be introduced in the readings of
Chekan gravimeters in order to improve the final accuracy of marine gravimetric
surveys, as shown in Fig. 2.5. This is especially relevant for marine surveys with
significant sea waves or even in stormy weather (Zheleznyak et al. 2010). As
described in Chap. 1, under vertical accelerations above 50 Gal, the readings of

Fig. 2.7 Amplitude-frequency response of the filter

Table 2.3 Filter parameters

Sea state Filter parameters Spatial resolution L/2, m

Wave height, m Parameter, points T a, s Tb, s f c, Hz

0–0.25 0–1 15 10 0.0069 190

0.25–0.75 2 24 16 0.0043 300

0.75–1.25 3 36 24 0.0029 440

1.25–2.0 4 54 36 0.0019 680

2.0–3.5 5 64 42 0.0016 800

3.5–6.0 6 72 48 0.0015 860
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Chekan-AM gravimeters may include a systematic error δWz caused by the nonlam-
inar nature of the fluid damping of GES pendulums. The value of the error δWz is
quadratic in nature; it largely depends on the degree of the GES damping and is
substantially lower in the Shelf-E gravimeter. Nevertheless, it is possible to intro-
duce the ΔgWz correction into gravimeter readings in accordance with the algorithm
shown in Fig. 2.8.

The values of specific force Wz acting on the pendulums are determined from
formula (2.1.4) and are input into the scheme for calculation of ΔgWz correction. In
order to eliminate the gravitational component from the values of specific force, the
scheme includes negative feedback on the current gravity increments δg generated
by a filter of the 3rd order with the time constant T = 60 s. As it is, ΔgWz correction
is determined using the following formula:

ΔgWz = kWz · W̃ 2
z , (2.1.9)

where kWz is a coefficient determined empirically during the gravimeter testing on a
vertical displacement test bench. The ΔgWz correction is calculated in real time.

An example of improving the measurement accuracy in stormy weather owing
to the ΔgWz correction is shown in Fig. 2.9. It is clear that not only the systematic
component but also the high-frequency component of the δWz error are compensated
for, whichmakes it possible to increase the spatial resolutionL/2 of themeasurements
by using an LPF with a higher cutoff frequency f c. In addition, in the case of a
significant change in sea state on the line, the error δWz cannot be taken into account
by the tiemethods of the survey but, as can be seen fromFig. 2.9, can be compensated
for by introducing the correction ΔgWz.

Another correction shown in Fig. 2.10 is introduced to compensate for the effect of
the joint action of horizontal accelerations and residualGP tilting, which is referred to

Fig. 2.8 Calculation of the vertical acceleration correction ΔgWz
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Fig. 2.9 Introduction of the correction for vertical accelerations on a marine line

as theHarrison effect. TheHarrison effect correction can be represented as (Panteleev
1983):

ΔgWx = WXα + WYβ, (2.1.10)

where WX , WY are the longitudinal and transverse horizontal accelerations, respec-
tively; α, β are the gyro vertical tilting angles about the respective stabilization
axes.

Fig. 2.10 Introduction of the Harrison correction
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The tilting angles of the gyro vertical due to the errors of the gearless gyro servo
drive do not exceed 15 arcsec, that is, they do not affect the gravimeter accuracy.
Therefore, while calculating the Harrison correction, it is necessary to take into
account only the errors of the gyroscope accelerometric correction system, which
was discussed in Sect. 1.2. Angles α, β are calculated by multiplying the horizontal
accelerations obtained from the recordings of accelerometer signals by the transfer
function of the gyro vertical which, according to the block diagram presented in
Fig. 1.15, takes the form:

Hα
w(p) =

1
R F(p)

p2 + g
R F(p)

, (2.1.11)

where F(p) is the transfer function of the filter (1.2.10), and R is the average radius
of the Earth.

Figure 2.11 shows the introduction of the Harrison correction on a gravimetric
survey line at high sea. The Harrison correction is mainly systematic, and its value
for Chekan gravimeters does not usually exceed 1–1.5 mGal.

All the above procedures for processing of gravimetric survey lines are imple-
mented in the Chekan_PP program, which is designed for comprehensive office
processing of marine gravimetric survey data (Zamakhov et al. 2013). The

Fig. 2.11 Screen of the Chekan_PP program during the processing of a marine survey line
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Chekan_PP program is designed to work under the Windows operating systems
and can be used both for office processing of survey data and onboard data quality
control. The program interface is quite convenient and clear; all intermediate and
final results are presented to the operator in digital and graphical forms.

Logical data control in the *.DAT, *.RAW, *.NAV source files and elimination of
minor data gaps are also automatically performed during survey line processing. In
the case of low-quality gravimetric data on the survey line, the latter can be divided
into several parts. At the user’s request, a filtering procedure can also be carried
out, which is implemented not only by selecting the values of Ta and Tb but also
by sequential repeated use of the LPF. In addition, the cutoff frequency f c and the
spatial resolution L/2 on the survey line are calculated automatically. The results of
survey line processing are saved in text files of the *.XYZ type and the calculation
and filtering parameters are recorded in the program operation protocols.

2.1.4 Airborne Gravity Measurement Processing

Measurements of gravity onboard aircraft are taken against the background of carrier-
induced vertical accelerations which not only exceed the “useful” signal by several
orders of magnitude but they also overlap in the frequency domain. Figure 2.12
shows a block diagram of processing of an airborne gravimetric survey line. Vertical
accelerations in gravimeter readings are partially compensated for during postpro-
cessing using altitude information from GNSS data. However, due to the significant
background noise, the final detection of the “useful” signal is also performed using
filtering and smoothing (Krasnov and Sokolov 2013).

For the processing of airborne gravimetric survey lines, gravimeter readings are
converted into acceleration units (just like it was with marine gravimetric survey
lines); GAs are calculated, and corrections are introduced for the gravimeter drift,
the normal value of gravity, and the Eotvos effect.

Since the response time of a heavily damped Chekan gravimeter ranges from 40 to
100 s, it is necessary to determine the real value of specific force during the processing
of airborne gravimetric measurements. To do this, the smoothed gravimeter signal
is passed through a digital recovery filter, in which the aperiodic element of the first
order is used as a model of fluid damping, and the transfer function of the recovery
filter has the form of formula (1.2.8).

The vertical acceleration of the carrier has the predominant effect on the GS
in airborne surveys. It is taken into account based on the results of flight altitude
measured by GNSS equipment operating in the differential mode. In the absence of
base stations, ephemerides corrections are used to refine the navigation data.

The offset of the GNSS receiver antenna relative to the GS location is calculated
in accordance with the following formula:

H = HGNSS − (RX sinψ + RY sin θ + RZ (cosψ − 1) + RZ (cos θ − 1)),
(2.1.12)
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Fig. 2.12 Block diagram of airborne gravimetric survey line data processing

where HGNSS is the altitude value measured at the GNSS receiver antenna location;
H is the altitude value at the GS location; RX , RY , RZ are the offsets of the GNSS
receiver antenna relative to the GS measured by the operator in three planes; ψ, θ

are the angles of pitch and roll according to the readings of the gravimeter GP angle
sensors.

The Eotvos correction in the processing of airborne gravimetric measurements is
calculated using the formula that takes into account the nonspherical nature of the
Earth and flight altitude variations:

ΔgE = 15VEcosϕ +
(
V 2
N

R

(

1 + H

R
− 0.5e2

(
2 − 3sin2ϕ

)
)

+ V 2
E

R

(

1 + H

R
− 0.5e2sin2ϕ

))

· 105, (2.1.13)

where ϕ is the latitude; VN, VE are the north and east components of the linear speed;
R, e are the parameters of theWGS84 common reference ellipsoid. Formula (2.1.13)
shall be used in processing of extended survey lines when the nonspherical nature of
the Earth cannot be neglected.

Another requisite operation is the reduction of measurement results to the surface
of the reference ellipsoid, which is carried out in accordance with the formula that
takes into account the normal vertical gradient of gravity:

Δg = Δgh + 0.3086H, (2.1.14)
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Fig. 2.13 Amplitude-frequency response of the filter at a cut-off frequency of 0.006 Hz

where Δgh is the GA at altitude H; Δg is the GA reduced to the surface of the
ellipsoid.

Even in the case that all the known corrections are thoroughly taken into account,
the gravimeter signal remains noisy. Filtering and smoothing are applied in order
to identify the useful component. The software of Chekan gravimeters offers a
two-stage procedure, which, at the first stage, uses a finite impulse response filter
with a trapezoidal Tukey weight function in the time domain (Krasnov and Sokolov
2013). This filter has a finite impulse response, resulting in a constant shift of all the
harmonics of the input signal, which is easy to take into account during processing.
The amplitude-frequency response of the filter is shown in Fig. 2.13.

The result of processing is a signal, the noise level of which is a few mGal. Next,
at the second stage, a smoothing operation is performed, wherein a fast Fourier
transform is used to transform the signal into the frequency domain; high-frequency
harmonics of the signal are truncated, after which a reverse transition into the time
domain is performed. When choosing the required number of harmonics in the final
signal, this procedure does not deteriorate the spatial resolution, nor does it cause
negative edge effects, provided that the duration of the realization is not decreasing
(Fig. 2.14).

In the conditions of airborne gravimetric surveys, of extreme importance is not
only postprocessing of the survey line but also onboard quality control of measure-
ments to identify unreliable data. The Grav_PP_A program, operating under the
Windows operating system, was developed to solve these two problems.

The purpose of onboard quality control is to detect survey lines or some parts
of lines with poor data quality and identify the causes of quality deterioration. The
primary analysis of the initial gravimetric and navigation information is aimed at
detecting equipment failures. In addition, the program provides for comparison of the
measured gravity profile with independent sources of gravimetric data; for example,
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Fig. 2.14 An example of gravimetric measurement smoothing

the results of previous surveys made in this area, the global models of the Earth’s
gravitational field, and gravity databases, such as the Arctic gravimetric project,
ArcGP (Forsberg and Kenyon 2004).

Grav_PP_A program also provides for estimation of the functioning criteria of
all gravimeter systems, as well as the conditions for measurements (Fig. 2.15). The
presence of such criteria allows effective identification of possible causes of data
quality deterioration. The following parameters are analyzed for this purpose:

• gravity sensor: the difference between the readings of quartz systems;
• gyro stabilization system: stabilization errors and heading error;
• satellite receiver: no failures in data reception;

Fig. 2.15 Screen of the Grav_PP_A program with data control
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• flight conditions: stable altitude, vertical and horizontal accelerations, the
constancy of pitch and roll angles, and constancy of the ground speed.

Similarly to the Chekan_PP program, the results of the airborne gravity line
processing are stored in *.XYZ text files used for the subsequent office processing
of the survey results.

2.1.5 Postprocessing of Gravimetric Survey Data

The final processing of the results of both marine and airborne gravimetric surveys
carried out by Chekan gravimeters is performed with the use of the previously
mentioned Chekan_PP program. The results of measurements on lines are loaded
into the survey database. The program automatically calculates the statistical param-
eters of the survey, including the lengths of survey lines, the number of cross points,
survey RMS errors and RMS deviations.

The survey RMS error is calculated using the formula:

σRMS =
/

σ2
CP + σ2

interp. (2.1.15)

The RMS error of a single GA determination at cross points σCP is calculated
using the formula:

σCP =
/

Σd2

2n
, (2.1.16)

where d is the difference in measuring gravity anomaly at cross points; n is the
number of cross points.

An essential feature is that the survey RMS error also takes into account the
interpolation error σinterp in the measurement results between the survey lines:

σinterp =
/
ΣN

i=1 [Δgκ − (gc1 + gc2)/2]
2
i

N
, (2.1.17)

where Δgk is the value of the gravity anomaly on the tie line at point K located
midway between the survey lines; gc1 and gc2 are the values of the gravity anomaly
on the adjacent survey lines, between which point K is located, at the points of
intersection with the tie lines; N is the number of points K in the survey.

The RMSD of the survey error does not take into account systematic difference
in the measurement results at cross points; it has the following form:
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Fig. 2.16 Screen of the Chekan_PP program during processing of survey results

σRMSD =
/

Σ(d − r)2

2(n − 1)
, (2.1.18)

where r =
Σ

d
n .

Since marine geophysical surveys are often conducted without final reference
measurements, but initial reference measurements are not long enough to obtain a
reliable estimate of the gravimeter drift C, a significant feature is the calculation and
introduction of the correction ΔC using the difference between GA measurements
at the cross points of the lines (Fig. 2.16).

In the case of multiple reference observations at the same airport, they can also
be compiled into an appropriate database to refine the gravimeter drift using all the
data obtained.

Another important procedure is tying of survey results, in which averages of
discrepancies at cross points are calculated and added into each survey line.

The values of all corrections introduced during data processing are stored along
with processing parameters in the program protocols generated automatically.

The results of the survey processing can be exported for further processing in
the text format XYZ suitable for loading into most of the modern geophysical data
processing packages.
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2.1.6 Conclusion

Features of data acquisition and processing using gravimeters of the Chekan series
have been described.

The design, structure, and functionality of the software used at each stage of
acquisition, processing, and analysis of marine and airborne gravimetric data are
presented.

Some examples are given to illustrate the improvement of measurement accuracy
owing to the introduction of dynamic corrections.

2.2 Data Processing in GT-2 Airborne Gravimeters

In 2000, the Laboratory of Control and Navigation of Lomonosov Moscow State
University started developing software for data postprocessing in the first-generation
GT-1A airborne gravimeters designed by the Gravimetric Technologies (Russia) (the
second-generation gravimeters are known as the GT-2 series). At the same time,
preparations began for the first test of the prototype MAG-1 (the first commercial
name of the GT-1A airborne gravimeter) aboard an AN-30 aircraft. The tests were
carried out in 2001 (Berzhitsky et al. 2002). Earlier, the Laboratory created software
for two other Russian airborne gravimeters (Bolotin et al. 2002):

• the airborne gravimeter Graviton-M developed by VNIIGeofizika, Moscow Insti-
tute of Electromechanics and Automation (MIEA), and Bauman Moscow State
Technical University. The first flight tests (3 flights) of this systemwere conducted
aboard an MI-8 helicopter in December 1995 and January 1996. In July and
August 1999, for the first time in Russia, a full-scale areal surveying was carried
out aboard an AN-26 aircraft not far from Kaluga. Later on, this system was used
by GNPP Aerogeophysica;

• the airborne gravimetric system developed by MIEA. The project, which started
in 1996, was financed by the World GeoScience Corporation (Australia). Three
series of flight tests were conducted: (1) 3 flights in December 1997; (2) 2 flights
in May 1998 aboard an AN-26 aircraft flying near Vologda; (3) a flight in July
1999 aboard an L-410 aircraft, Brno, the Czech Republic.

The flight tests of these gravimeters were attended by experts from The Schmidt
Institute of Physics of the Earth of the Russian Academy of Sciences.

Thus, by the time the Laboratory of Control and Navigation started joint work
with the Gravimetric Technologies, the Laboratory had already gained considerable
experience in processing airborne gravimetric data from Graviton-M and the MIEA
system so that it was easy to formulate the objectives of postprocessing and the design
philosophy of the software.
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The first stage of postprocessing software is quality control (QC) of experimental
data. It is very important for a survey operator to be able to quickly answer the
question about the quality of the recorded experimental data:

(1) measurements of the gravimeter sensing element (GSE);
(2) data of the GNSS receivers on the aircraft and at base stations;
(3) data of the INS responsible for the GSE vertical orientation;
(4) data from the recording and information-flow-synchronization systems of the

gravimetric system.

The main document for the development of the express diagnostic software was
The Information Exchange Protocol in the Airborne Gravimetric System which was
developed jointly by the Gravimetric Technologies and the Laboratory of Control
and Navigation of Moscow State University. The exchange protocol describes the
formats of raw data files as well as the formats of output files. The latter contain all
relevant information for quality control.

In general, the software for GT-2 airborne gravimeters consists of the two main
parts: the GTNAV and GTGRAV modules. The first part includes algorithms for
developing satellite navigation parameters and integration of INS and GNSS data;
the second part presents the solution to the airborne gravimetry problem based on
GSE measurements and navigation data prepared by the GTNAV module.

In addition, for the purposes of quality control, the GTNAV module provides for
the analysis of the following parameters:

• correct synchronization of information flows from the INS and GNSS. INS data
are recorded with a frequency of about 3 Hz, the GNSS data are recorded at 1, 2,
5, 10, and 20 Hz sampling rates. Synchronization of flows is carried out using the
1PPS (pulse per second) mechanism, recording of the INS and GNSS time scales
and their relative biases;

• data integrity (gaps);
• occurrence of events indicative of the gravimeter malfunctioning. For example,

such events as ‘GSE not normal’, ‘abnormal ARS drift’, etc. The list of possible
events is described in the data exchange protocol;

• correctness of the base station coordinates, its immobility;
• the level of misalignment error estimates of the instrument (gyro platform), levels

of DTG and FOG drift estimates.

It is very important that quality control software should be easy to use because
operators conducting surveys may be well trained in gravimetry, less competent in
satellite navigation, and totally incompetent in inertial navigation. All they need is
to enter raw data filenames––INS, GNSS (aircraft and/or base station(s))––as initial
information for the GTNAV module, and then run the program. The program can
work separately with INS and GNSS data or with their various combinations. Many
years of experience in using this software by various companies, both Russian and
international, have shown its effectiveness for the purposes of quality control.

GTGRAV program is responsible for processing of the GSE measurements,
GTNAV output data, as well as GA determination. Like GTNAV, this program (to
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be more exact, its auxiliary module GTQC) performs additional preliminary verifi-
cation of GSE measurements integrity and synchronizes information flows. Unlike
GTNAV, GTGRAV has an advanced graphical interface. The need for an interface
is associated with the “creative” nature of the GA determination problem, where
customizable processing parameters are often found by the trial-and-error method.

2.2.1 Airborne Gravimetry Software

Let us briefly describe the airborne gravimetry problem from the point of view of
theoreticalmechanics (amore detailed description can be found inSect. 1.1) andwrite
down the main gravimetric equation in the form convenient for further consideration.
In Sects. 2.2.3, 2.2.4, this equation is specified for the case of the GT-2A gravimeter
with a leveled platform.

The problemof gravimetry is the inverse problemofmechanics: to determine force
frommotion. It should be recalled that force, as a vector quantity, is characterized by
magnitude and direction. However, in classical, “scalar” gravimetry, the direction of
GA action is not usually specified. This is partly due to the fact that the difference
between the magnitude of the gravity vector and the value of its vertical component
was, until recently, an order ofmagnitude lower than the availablemeasurement accu-
racy. At present, vector gravimetry methods are actively developing (see Sect. 5.2) so
that they make it possible to determine three components of the gravity disturbance
vector, and thereby, eliminate the above uncertainty.

It should also be noted that, from the mathematical point of view, the problem
of GA determination belongs to the class of ill-posed problems since it is solved by
differentiation (Tikhonov and Arsenin 1979).

The main equations of airborne scalar gravimetry are Newton’s equations that
describe the vertical motion of a material point of a unit mass in the field of the
Earth’s gravitational force under the action of an external force that is accessible for
measurement (Torge 1989; Bolotin et al. 1999):

ḧ = V̇3 = ΔgE − γ0 − δγ + f3 + Δg, ΔgE =
(
V 2
E

RE
+ V 2

N

RN
+ 2ΩVE cosϕ

)

.

(2.2.1)

The equation uses the following notation: h is the flight altitude above the refer-
ence ellipsoid (Torge 1989); V3 is the vertical velocity; VE , VN are the Eastern and
Northern components of the relative velocity of the carrier; RE , RN are the radii of
curvature of the longitudinal and latitudinal cross-sections; Ω is the modulus of the
angular rate of the Earth rotation; ϕ is the geographical latitude; γ0 is the magnitude
of the normal gravity on the reference ellipsoid; δγ is the correction of the normal
gravity value for the flight altitude above the reference ellipsoid; f3 is the projection
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of the specific force on the geographic vertical; Δg is the GA to be found. The term
ΔgE is due to the motion of the aircraft; it is called the Eotvos correction.

The goal of the airborne scalar gravimetry problem is to determine (estimate)
the values of GA Δg based on model (2.2.1) from the other measured or calculated
terms.

The equipment used for information support of the airborne gravimetry problem
is directly determined from the main gravimetric Eq. (2.2.1), from which it follows
that any airborne gravimetric system with a leveled platform should include:

• a GSE to measure the value of f3 as a specific force acting on its sensitive mass;
• a navigation system to provide high-accuracy information about the altitude h,

coordinates, and the vector of the linear velocity of the vehicle on which the
gravimetric system is installed. Currently, such a system is a Global Satellite
Navigation System operating in differential carrier phase mode;

• a navigation system providing the vertical orientation of the GSE sensitive axis.
An example is a gimbaled INS which, using a gyrostabilized platform, physi-
cally simulates the geodetic reference frame, with the GSE sensitive axis rigidly
attached to its vertical axis.

The basis for the solution of gravimetric Eq. (2.2.1) with respect to Δg is GSE
measurement f '

3, measurements of the INS horizontal accelerometers f '
1, f

'
2, and alti-

tude measurements h' from the GNSS. In the linear approximation, the measurement
equations can be written as follows:

h' = h + Δhgps, (2.2.2)

f '
3(t − τ3) = fz3 + κ3 fz3 + Δ f 03 + Δ f s3 + κ2 fz1 − κ1 fz2,

fz3 = f3 + α2 fz1 − α1 fz2, (2.2.3)

f '
1(t) = fz1 + Δ f s1 , f '

2(t) = fz2 + Δ f s2 . (2.2.4)

The equations use the following notation: fz3 is the projection of the specific force
of the proof mass on the instrument axis; κ3 is the error of the GSE scale factor, Δ f 03
is the GSE bias;Δ f s3 is the noise component of the measurement error; κ1, κ2 are the
angular errors of the installation of the GSE sensitive axis to the platform; fz1, fz2
are the horizontal (in the platform axes) components of the specific force; α1, α2

are the misalignment errors of the instrument vertical; t is the absolute time; τ3 is
the time constant of the GSE clock skew, ΔhGNSS is the error in the GNSS altitude
determination.

Parameters Δ f 0z3, κ1, κ2, κ3, α1, α2, τ3 are unknown and should be determined
(estimated) during the solution of the airborne gravimetry problem. It should be noted
that coefficients κ1, κ2, κ3 are normally determined during laboratory and prestart
calibrations and are used to adjust GSE readings. However, the experience of data
processing has shown that it is advisable to determine and control these coefficients
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during postprocessing from airborne measurements. Parameter τ3 is used to refine
data synchronization.

The sources of information for determining coordinates and velocities are GNSS
positional and velocity solutions obtained by processing the raw GNSS measure-
ments: code pseudo-ranges, Doppler pseudo-range rates, and carrier phase measure-
ments. The source of information for determining α1, α2 is solution of the INS/GNSS
integration problem. This is what defines the scope of tasks for the postprocessing
software.

2.2.2 Software for GNSS Solutions

The software for GNSS solutions implemented in the GTNAV module provides for
different options of calculations depending on the following circumstances:

• the data used can be received from several (one, two, three) GNSS base stations.
The software must be able to maintain solutions for different combinations of
base stations;

• GNSS receivers may have different data sampling rates; for example, 1, 2, 5, 10,
20 Hz. The software must be able to maintain solutions at a common frequency;

• the carrier phase receivers used can be of multi-frequency type (at present, dual-
frequency); accordingly, solutions should be provided both for the L1 frequency
and for combinations of carrier phases free of ionospheric delays;

• the software must be able to maintain solutions when data are provided by single-
and/or dual-frequency receivers;

• velocity solutions should be obtained not only by processing Doppler measure-
ments but also based on carrier phases.

These features are implemented in the GTNAV software.
All of the above requires the solutions of numerous auxiliary problems such as

the ephemeris problem to determine the coordinates and vector velocity of naviga-
tion satellites, estimation of the integer ambiguities of carrier phases, detection and
elimination of satellite measurement failures. In reference (Vavilova et al. 2009), the
authors show basic models of the problems of raw GNSS data processing for the
standard (autonomous) mode of operation of GNSS receivers, on the basis of which
the satellite navigation software was developed.

Described below in general terms is only one problem of velocity determination
using raw carrier phases; its solution usually provides the highest accuracy.

The model of carrier phases Zφ looks as follows:

Zφ = ρ/λ + fφ(Δτ − ΔT ) + N + δφion + δφtrop + δφs, (2.2.5)

where ρ is the range between the vehicle and the satellite; fφ is the frequency of the
radio signal; λ is the wavelength of a frequency;N is an unknown number, an integer
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ambiguity of the carrier phase measurement; δφion , δφtrop are the ionospheric and
tropospheric delays, respectively; δφs is a random component of the carrier phase
error.

The single∇Zφi ,ΔZφi and double∇ΔZφi differences of carrier phase are defined
by the following formulas:

∇Zφi = Zφi − Zφz ,ΔZφi = Zb
φi

− ZM
φi

,∇ΔZφi = (Zb
φi

− ZM
φi

)− (Zb
φz

− ZM
φz

)
,

(2.2.6)

where Zb
φi

is the carrier phase measurement of the base station; ZM
φi

is the similar
measurement of the aircraft receiver, hereinafter referred as to rover; indices i, z
correspond to the measurements obtained from the satellites with the corresponding
numbers; z is usually used for the number of the zenith satellite. Taking into account
(2.2.6), measurement (2.2.5) takes the form:

∇ΔZφi = ∇Δρi/λ + ∇ΔNi + ∇Δφioni + ∇Δφtropi + ∇Δφs
i ,

where

∇Δρi = (ρbi − ρM
i

)− (ρbz − ρM
z

);
∇ΔNi = (Nb

i − NM
i

)− (Nb
z − NM

z

);
∇Δφ(∗∗∗)i = (δφb

(∗∗∗)i
− δφM

(∗∗∗)i

)− (δφb
(∗∗∗)z

− δφM
(∗∗∗)z

)
. (2.2.7)

The useful signal in measurement (2.2.7) is the value ∇Δρi/λ. The residual
errors in (2.2.7) are double differences ∇Δφioni , ∇Δφtropi , ∇Δφs

i of the iono-
spheric, tropospheric, and random measurement errors (marked as (***) in the last
Eq. (2.2.7)).

The main property of measurement (2.2.7) is the absence of instrumental errors
of the receiver and satellites and the errors of their clocks in the model, as well as
the decrease in the level of residual errors ∇Δφioni , ∇Δφtropi of the ionosphere and
troposphere; note that the smaller are the distances between the bases and rover and
the differences in their altitudes, the smaller is the level of the above residual errors.

The value ∇ΔNi is the integer ambiguity of the double differences of carrier
phases, which is not fundamentally compensated in this method of phase measure-
ment formation.

Consider the numerical derivative

∇ΔZ∗
Vρi

(
t j
) = λ

∇ΔZφi

(
t j+1

)− ∇ΔZφi

(
t j−1

)

t j+1 − t j−1
(2.2.8)

of the differential carrier phases ∇ΔZφi

(
t j
)
. The result of (2.2.8) is the estimate of

the double differences ∇ΔVρi =
(
Vρbi

− VρM
i

)
− (Vρbz

− VρM
z

)
of the radial velocities
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of the receivers relative to the satellites at time tj:

∇ΔZ∗
Vρi

(
t j
) ∼= ∇Δρi

(
t j+1

)− ∇Δρi
(
t j−1

)

t j+1 − t j−1

∼= ∇ΔVρi .

On the other hand, the satellite radial velocity Vρbi
relative to the base station

(which is stationary) for each i-th satellite can be calculated according to Vavilova
et al. (2009):

Vρbi
=
(
Rsati

η − Rb
η

)T

ρbi
V sati

η ,

where Rsati
η =

[
Rsati

η1 Rsati
η2 Rsati

η3

]T
is the vector of the Cartesian coordinates of the

i-th satellite; Rb
η is the vector of the Cartesian coordinates of the base station; V

sati
η is

the vector of the relative velocity of the i-th navigation satellite. Symbol ηmeans that
the corresponding vectors are defined in the geocentric coordinate system associated
with the Earth (Greenwich, rotating), also referred to as ECEF (Earth Centered Earth
Fixed). The radial speed of the satellite relative to the vehicle is defined by a similar
formula which takes into account both the vector of the vehicle coordinates RM

η and
the vector of its own velocity V M

η :

VρM
i

= V (1)
ρM
i

+ V (2)
ρM
i

; V (1)
ρM
i

=
(
Rsati

η − RM
η

)T

ρM
i

V sati
η ; V (2)

ρM
i

=
(
Rsati

η − RM
η

)T

ρM
i

V M
η .

The component V (1)
ρM
i

is explicitly calculated from the known information on the
coordinates and vector velocities of navigation satellites, the vehicle coordinates.
The component V (2)

ρM
i

contains information on the vehicle’s vector velocity V M
η . Let

us form measurement equations in linear approximation:

∇ΔZVρi
= ∇ΔZ∗

Vρi

(
t j
)−

[(
Vρbi

− V (1)
ρM
i

)
−
(
Vρbz

− V (1)
ρM
z

)]
. (2.2.9)

Thus,

∇ΔZVρi
= −

(
V (2)

ρM
i

− V (2)
ρM
z

)
+ ∇ΔVioni + ∇ΔVtropi + ∇ΔV s

i = hT(i)V
M
η + ∇Δrρ̇i .

(2.2.10)

The following notation is used here:

hT
(i) =

(
Rsati

η − RM
η

ρM
i

− Rsatz
η − RM

η

ρM
z

)T

,∇Δrρ̇i = ∇ΔVioni + ∇ΔVtropi + ∇ΔV s
i ,
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where ∇Δrρ̇i is the residual error of the triple differences of carrier phases. As a
result, using the vector form of the equations, we can write:

∇ΔZVρ
=

⎡

⎢
⎢
⎢
⎢
⎣

∇ΔzVρ1

∇ΔzVρ2

...

∇ΔzVρN−1

⎤

⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎣

hT
(1)

hT
(2)
...

hT
(N−1)

⎤

⎥
⎥
⎥
⎥
⎦
V M

η +

⎡

⎢
⎢
⎢
⎣

∇Δrρ̇1
∇Δrρ̇2

...

∇Δrρ̇N−1

⎤

⎥
⎥
⎥
⎦

= H(η)V
M
η + ∇Δrρ̇

(2.2.11)

The solution to (2.2.11) by the least-squares method (with postulation of the
corresponding hypotheses about error ∇Δrρ̇i ) is as follows:

Ṽ M
η = (HT

(η)Σ
−1H(η)

)−1
HT

(η)Σ
−1∇ΔZVρ

. (2.2.12)

Here, Σ is the covariance matrix of errors ∇Δrρ̇i . The elevation angles of naviga-
tion satellites are usually used for parameterization of matrix Σ (2.2.12) (Vavilova
et al. 2009).

We need to make the following comments.

(1) The described algorithm assumes that the velocities V sati
η of the navigation

satellites are known. In this case, GNSS users need to supplement the stan-
dard algorithm used to determine coordinates of navigation satellites with an
algorithm to calculate their relative velocities.

(2) When forming differential combinations of carrier phases, it is necessary to
solve the problem of mutual synchronization of measurements since they are
obtained from two receivers operating in their own time scales.

(3) The central part of the algorithm is numerical differentiation of the double
differences of phase measurements. Correct implementation of this procedure
assumes the absence of cycle slips in carrier phases (changes in the values of
uncertainties {∇ΔNi }) in the differentiation interval. Therefore, the algorithms
of detection and compensation for possible faults in carrier phases is a requisite
element of the problem. TheDoppler velocity solution is useful additional infor-
mation in this case. In addition, the problem (2.2.12) can also be solved with
the use of L1-optimization since it allows eliminating “bad” satellites (Mudrov
and Kushko 1971; Akimov et al. 2012).

(4) In the case of double-frequency receivers, in differentiation, it is possible to use
combinations of carrier phases free from the ionospheric error.

For the quality control of satellite navigation solutions, the GTNAV software
generates a number of parameters that allow the operator to decide on the normal
or problematic functioning of GNSS receivers. Such parameters include data gaps,
the number of visible satellites, PDOP values, baseline lengths, solution accura-
cies, statistical characteristics of solutions based on the analysis of residuals of raw
measurements, etc.
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The software was adjusted in terms of GNSS solutions based on the processing
of a great amount of experimental data obtained during commercial gravimetric
surveys in various regions of the Earth, using GNSS equipment produced by various
manufacturers and with various characteristics, under various conditions of piloting
the carrier of the gravimetric system, etc.

The software supports the following formats of rawdata files: Javad’s *.jps format,
Ashtech’s format (e-, b-files), which were used in the first version of the software,
the format using the Waypoint GrafNav software (epp, gpb-files). Satellite data
processing can be carried out both for a single file (aircraft receiver or base station)
and for data from several receivers.

The source data for the software are the names of data files containing raw GNSS
measurement records and ephemeris information, calculation time limits and the
minimum set of control parameters such as coordinates of the base stations used,
satellite mask angle, satellite number with a corresponding time interval which is
forced out of processing.

In other words, the software is maximally focused both on the operator of the
gravimetric survey, who conducts quality control of satellite data, and on obtaining
satellite navigation solutions specific to the airborne gravimetry problem.

Below is the list of options of the GTNAV software.

1. Differential mode (different combinations of base stations):

• determination of coordinates using carrier phase measurements;
• determination of coordinates using code measurements;
• determination of velocity using Doppler measurements;
• determination of velocity using phase measurements;
• determination of acceleration using carrier phase measurements.

2. Standard (autonomous) mode:

• determination of coordinates using carrier phase measurements;
• determination of coordinates using code measurements;
• determination of velocity using Doppler measurements;
• determination of velocity using carrier phase measurements;
• determination of acceleration using carrier phase measurements.

2.2.3 Software for INS/GNSS Integration

First of all, it should be noted once again that the GTNAV module provides for
the following functions: data integrity check, check for synchronization of inertial
data recording with GNSS data, check for warning messages about any failure or
malfunction of gravimeter sensors.
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The GTNAV module also provides INS/GNSS integration solutions, which are
used for quality control and solution of the GA estimation problem. The magni-
tudes of vertical misalignment errors, azimuth (heading) error, and constant compo-
nents of the gyro drifts are important for quality control. Thus, if the magnitudes of
the misalignment errors are within ±4 arcmin, the GT-2A leveling system operates
normally. Otherwise, it may be indicative of the DTG and/or FOG malfunctioning.

For the GA estimation problem, the estimates of misalignment errors are input
parameters (see (2.2.3)). Estimation of misalignment errors in the GT-1A, GT-2A
airborne gravimeters was a nontrivial problem to solve. The key points of the above
problem are given below:

• the GT-2A uses GNSS-derived position and velocity to damp Schuler oscillations
in real time. Therefore, it was necessary to record real-time damping signals for
postprocessing, which is reflected in the data exchange protocol;

• the damping algorithm is based on a simplified channel-by-channel model of the
INS error equations;

• INS dead-reckoning algorithms use the model of the so-called compass heading,
based on the GNSS-derived velocity;

• themodel of the dead-reckoning algorithm uses relative and absolute angular rates
of the geodetic reference frame, which caused certain difficulties in the integration
problem given below.

Let us describe this problem. The mechanization equations of the two-component
INS with the leveled platform (Golovan and Parusnikov 2012) of GT-series airborne
gravimeters are as follows (Bolotin and Golovan 2013):

v̇'
1 = Ω2RE sinϕGNSS cosϕGNSS sin A' + f '

1 − a3ZV1 − ν̃
(1)
3 ,

v̇'
2 = Ω2RE sinϕGNSS cosϕGNSS cos A' + f '

2 − a3ZV2 − ν̃
(2)
3 ,

V̇ '
1 = Ω sin ϕGNSSV GNSS

a2 + f '
1 − a0ZV1 ,

V̇ '
2 = −Ω sin ϕGNSSV GNSS

a1 + f '
2 − a0ZV2 ,

˙̃ν(1)
3 = a2ZV1 ,

˙̃ν(2)
3 = a2ZV2 ,

ω'
1 = − v'

2

RE
− VGNSS

N

RE

(

1 − RN

RE

)

cos A' + a1
ZV2

RE
,

ω'
2 = − v'

1

RE
− VGNSS

N

RE

(

1 − RN

RE

)

sin A' − a1
ZV1

RE
. (2.2.13)

Equations (2.2.13) use the following notation: v'
1, v'

2, V
'
1, V

'
2 are the horizontal

components of the absolute and relative velocities of the vehicle motion; ω'
1, ω'

2
are the gyro platform leveling signals; Ω is the Earth angular rate; RE is the radius
of curvature of prime vertical, a, e2 are the semi-major axis and the square of the
first eccentricity of the Earth’s model ellipsoid; hGNSS , ϕGNSS , VGNSS

E , VGNSS
N are

the altitude, geographic latitude, eastern and northern components of velocity; the
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superscript ‘GNSS’ hereinafter means that the values of such quantities are taken
from the navigation satellite system during calculations; A' is the azimuth angle
defined as:

A' = arctg

(

−v'
2 − VGNSS

2

v'
1 − VGNSS

1

)

;

VGNSS
1 = VGNSS

E cos A' + VGNSS
N sin A', VGNSS

2 = −VGNSS
E sin A' +

VGNSS
N cos A' are the transformed components of the relative velocity f '

1, f
'
2 are the

readings of the horizontal accelerometers; ZV1 = V '
1 − VGNSS

1 , ZV2 = V '
2 − VGNSS

2
are velocity aiding measurements; a1, a2, a3, a4 are the gain (damping) coeffi-
cients calculated as a function of parameter Tgg (this refers to the characteristic time
of the transition process).

The corresponding equations of the INS errors are the following:

δv̇1 = −ϑ3v
GNSS
2 − α2

(
g + Ω2RE cos

2 ϕGNSS
)+ Δ f1

−
(

δv1 sin A' + δv2 cos A' − ΔVGNSS
N

vGNSS
E

)

Ω2RE sinϕGNSS cosϕGNSS cos A'
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(1)
3 ,
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N

vGNSS
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)
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δV̇2 = ϑ3V
GNSS
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2 Ω sin ϕGNSS
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Here,

vGNSS
1 = (VGNSS

E + ΩRE cosϕGNSS
)
cos A' + VGNSS

N sin A',

vGNSS
2 = −(VGNSS

E + ΩRE cosϕGNSS
)
sin A' + VGNSS

N cos A',

ΔVGNSS
1 = ΔVGNSS

E cos A' + ΔVGNSS
E sin A',

ΔVGNSS
2 = −ΔVGNSS

E sin A' + ΔVGNSS
E cos A',

δv1, δv2, δV1, δV2 are the dynamic errors in the determination of the absolute
and relative velocities; α1, α2 are the misalignment angular errors of the instrument

vertical; Δ f1, Δ f2 are the accelerometer errors; ϑ = [ϑ1, ϑ2, ϑ3

]T
is the vector of

the gyro platform drift, each component of which is described by theWiener process;
g is the gravity assumed to be 9.81 m/s2.

The aiding measurement model takes the form:

ZVE = V '
1 cos A

' − V '
2 sin A'V '

E − VGNSS
E = V1 cos A

' − δV2 sin A'

− δA · VGNSS
N − ΔVGNSS

E ,

ZVN = V '
1 sin A' + V '

2 cos A
' − VGNSS

N = δV1 sin A' + δV2 cos A
'

+ δA · VGNSS
E − ΔVGNSS

N ,

ZvE = v'
1 cos A

' − v'
2 sin A' − (VGNSS

E + ΩRE cosϕGNSS
)

= δva1 cos A
' − δva2 sin A' − δA · VGNSS

N − ΔVGNSS
E ,

δA = −δv1 sin A' + δv2 cos A' − ΔVGNSS
N

vGNSS
E

. (2.2.14)

Here, ΔVGNSS
E , ΔVGNSS

N are the errors of GNSS velocity solutions.
Thus, the behavior of INS errors is described by a general model of the form

ẋ = Ax + Bu + w, where the state vector x includes the inertial system errors and
the errors of the inertial sensors; w is a zero-mean white noise; u is the vector of
known control signals.

Further, to solve the estimation problem, i.e., to estimate the state vector x using
measurements ZVE , ZVN , ZvE , smoothing algorithms are used in the postprocessing
mode (see Vavilova et al. (2009) and Sect. 2.3).

The GTNAV software provides the algorithms to solve the described problem.
Note that calculations can be carried out using both differential GNSS solutions and
GNSS solutions in autonomous mode. The latter is especially important for quality
control because in this case it is possible to solve the integration problem without
data from base stations, i.e., immediately after the aircraft has landed.

No additional external settings of the integration algorithm are required, which
makes the operator’s work easier.

The INS/GNSS software makes the work of the gravimetric survey operator
simpler from the viewpoint of quality control.
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2.2.4 Software for the Solution of the Basic Gravimetry
Equation

Based on the results of the GTNAV software operation, the so-called V-files,
containing GNSS positional and velocity solutions, and I-files, containing the
description of the gyro platform misalignment angles, are generated. Along with
the S-files and G-files generated by the GT-2A gravimeter, these data are used during
the final processing in the GTQC20 and GTGRAV modules to form a GA estimate
on the trajectory recorded in the G3-file.

The GTQC20 module is responsible for monitoring the data quality in the binary
files generated by the GT-2A gravimeter. It checks the synchronization of data with
the GNSS clock pulse and gaps in processing cycles, makes a conclusion about
the data quality and, if possible, restores the omissions and records the refined and
synchronized data into text files. The GTGRAV module generates the GA estimate.

Let us briefly discuss the mathematical part of processing. Consider a “model”
basic gravimetric equation that differs from (2.2.1) in the absence of GAs and the
substitution of measurements instead of the true values of variables (Bolotin et al.
2002):

ḧ' = V̇ '
3,

V̇ '
3 = Δ f '

E − γ'
0 − δγ' + f '

3.

Subtracting this equation from (2.2.1), denoting Δh = h − h', ΔW = V3 − V '
3 −

τ3 f '
3, q f = Δ f s3 and taking into account the measurement Eqs. (2.2.2)–(2.2.4), we

obtain the equations for the vertical channel errors:

Δḣ = ΔW + τ3 f
'
3,

ΔẆ = κ3 f
'
3 + q f + (κ2 + α2) f

'
1 − (κ1 + α1) f

'
2 + Δg. (2.2.15)

The zero drift of the GSE is not taken into account here since it is compensated
for during the reference measurements.

Depending on the situation, GNSS measurements can be used in carrier phase
(standard or differential) or Doppler modes (Wei et al. 1991; Stepanov et al. 2002).
The GNSS altitude increment serves as positional measurements when using GNSS
carrier phase measurements (Bolotin et al. 2002):

Δh∗ =
t∫   

t0

VGNSS
3 dt − h', Δh∗ = Δh + qs

h + qi
h . (2.2.16)

Here, qs
h is the random error of the altitude increment caused by the noise of the

GNSS and GSE raw data, and qi
h is an intermittent error caused by the cycle slip in

the carrier phases.
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When using GNSS Doppler measurements, we have (Bolotin et al. 2002):

ΔV ∗
3 = VGNSS

3 − W '
3, ΔV ∗

3 = ΔW3 + qs
v . (2.2.17)

Here, qs
v is a random error of the altitude increment caused by the noises of the

GNSS and GSE raw data.
Equation (2.2.15) are supplementedwith the calibration parameters vs timemodel

(Bolotin and Golovan 2013):

τ̇3 = qτ, κ̇3 = qκ3, κ̇1 = qκ1, κ̇2 = qκ2, (2.2.18)

By combining (2.2.15)–(2.2.18) and introducing the vector
qp= (qτ, qκ3, qκ1, qκ2) of parameters drifts, we obtain the model of the vertical
channel in the matrix form:

ẋg = Agxg + B f q f + Bpqp + BΔgΔg,

z = Cgxg + qs
h + qi

h . (2.2.19)

A GA stochastic model is used for solution of (2.2.19) (Bolotin and Popelensky
2007). The GA is assumed to be a stationary (time-invariant) random process with
a given PSD SΔg(ω) represented as an output of a finite-dimensional shaping filter
with white noise at the input (in the GTGRAV software, the parameters of the first-
or second-order model are selected by the user):

ẋa = Aaxa + Baqa,

Δg = Caxa . (2.2.20)

Equations (2.2.19), (2.2.20) are used to determine GA on the trajectory with the
use of the smoothing filter. Here, it is worth pointing out the following features.

• The filter takes into account the nonstationary (time-varying) nature of the noise;
in particular, possible cycle slips qi

h , changes in the number of visible satellites and
GSE saturation caused by abnormal vertical accelerations. Both phenomena are
simulated by increasing the corresponding noise-variance matrices, which leads
to a reduction in the weight of the corresponding measurement when the estimate
is calculated. The filtermay have several iterations, where noise variances increase
with greater values of the residuals. It should be noted that this heuristic technique
makes the filter nonlinear.

• The filter automatically takes into account the turns between the survey lines
by increasing the value of noise covariance matrices on the turns. This makes it
possible to significantly reduce the duration of transient processes at the ends of
survey lines.

• The filter provides estimates of the gravimeter calibration parameters, which are
used for additional control of data quality.
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Fig. 2.17 Block diagram of data flows in the GTGRAV software modules

• The filter allows for the state vector expansion in order to take into account
additional correlations caused by angular motions of the aircraft.

• The GA is usually determined in two stages. At the first stage, the model includes
the maximum number of external factors to verify data quality. At the second
stage, the factors whose values do not reach the reliability threshold are removed
from the model.

• The software developed allows survey data to be processed in the drape flight
mode. This mode requires very high accuracy of the GSE scale factor κ3 estima-
tion, which makes it necessary to carry out the so-called calibration maneuver.
After that, κ3 is determined using the algorithms described above.

• Adaptive modification of the filtering algorithm is possible, wherein GA is
described by a nonstationary Markov process (Bolotin and Doroshin 2011).

A block diagram of the GTGRAV software data flows is shown in Fig. 2.17.
A general block diagram of the data flows in the GT-2A gravimeter and

postprocessing software modules is shown in Fig. 2.18.

2.2.5 Conclusion

The features and methods of GT-2 data postprocessing have been discussed. The
stages of integrated data postprocessing provided by data acquisition system, GNSS
receivers on the aircraft and those at the base stations, inertial navigation system, and
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Fig. 2.18 General block diagram of the GT-2A gravimeter and postprocessing software data flows

the GSE have been considered. They include processing of GNSS raw data, estima-
tion of the gyro platform misalignment errors, and solution of the basic gravimetric
equation. The data flows in the postprocessing software have been described.

2.3 Optimal and Adaptive Filtering and Smoothing
Methods for Onboard Gravity Anomaly Measurements

The previous sections of this Chapter describe the processing algorithms used in
the Chekan and GT series gravimeters. When developing the algorithms, a question
often arises if the accuracy of gravimetric surveys can be enhanced by improving
the processing algorithms. This question is, generally speaking, still open. In our
opinion, it can be answered by applying the Bayesian approach. It offers great advan-
tages by helping not only to formalize the problem of designing the estimation algo-
rithms, including optimal ones, but also to obtain their accuracy characteristics in the
form of calculated (conditional) and unconditional covariance matrices. The ability
to obtain an unconditional covariance matrix of optimal estimation errors, in turn,
makes it possible to calculate the potential accuracy with the given models and thus
to objectively estimate the performance of various suboptimal algorithms. However,
a significant disadvantage of the Bayesian approach is the necessity for the stochastic
description (modeling) of the sensor errors and estimated values. This need for the
knowledge of consistent (adequate)models hinders the application of optimal estima-
tion methods. Nevertheless, the progress in computer technology and identification
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methods used to build the required models provides a new potential for improving
the processing methods applied to onboard gravity anomaly measurements.

The present section is devoted to the synthesis of optimal Bayesian algorithms
and identification methods, which provide the required models.

2.3.1 General Formulation and Solution of Optimal Filtering
and Smoothing Problems

First, let us formulate the problem of optimal Bayesian estimation of gravity anomaly
onboard a vehicle, assuming that the models of errors of the measuring instru-
ments and of GA to be estimated are known. For this purpose, let us first formulate
the filtering and smoothing problems in the general form and briefly describe the
algorithms used to solve them (Meditch 1969; Stepanov 2017b).

Suppose an n-dimensional Markov process is given,

ẋ(t) = F(t)x(t) + G(t)w(t), x(t0) = x0 (2.3.1)

and m-dimensional measurements are taken

y(t) = H(t)x(t) + v(t), (2.3.2)

where F(t), G(t), H(t) are the generally known time-dependent n×n, n× p,m×n
matrices; x0 is the zero-mean vector of initial conditions with covariance matrix P0;
w(t), v(t) are p- and m-dimensional vectors of zero-mean white noises with a given
PSD, which are noncorrelated with each other and have the initial conditions x0, i.e.:

E
{
x0w

T (t)
} = 0; E{w(t)vT (t)

} = 0; E{x0vT (t)
} = 0; (2.3.3)

E
{
w(t)wT (τ)

} = Q(t)δ(t − τ), Q(t) ≥ 0; (2.3.4)

E
{
v(t)vT (τ)

} = R(t)δ(t − τ), R(t) > 0. (2.3.5)

The filtering problem is formulated as follows. Using the measurements (2.3.2)
Y (t) = {y(τ) : τ ∈ [0, t]} accumulated over the interval [0, t], it is needed to obtain
the linearmean-square optimal estimate x̂(t) of vector x(t) at time t, whichminimizes
the criterion

r B(t) = E
{(
x(t) − x̂(t)

)T (
x(t) − x̂(t)

)}
. (2.3.6)
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It is well known that the estimate x̂(t) and its error covariance matrix P(t) are
determined using the following formulas for the Kalman-Bucy filter (Kalman and
Bucy 1961; Meditch 1969):

˙̂x(t) = F(t)x̂(t) + K (t)
(
y(t) − H(t)x̂(t)

); (2.3.7)

K (t) = P(t)H(t)T R−1(t); (2.3.8)

Ṗ(t) = P(t)F(t)T + F(t)P(t) − P(t)H(t)T R−1(t)H(t)P(t)

+ G(t)Q(t)GT (t). (2.3.9)

In practice, the estimate is calculated using the discrete form of the filter (Kalman
1960; Meditch 1969):

x̂i = x̂i/ i−1 + Ki
(
yi − Hi x̂i/ i−1

); (2.3.10)

x̂i/ i−1 = ϕi x̂i−1, Pi/ i−1 = ϕi Pi−1ϕ
T
i + Γi QiΓ

T
i ; (2.3.11)

Ki = Pi H
T
i R−1

i , Pi =
(
P−1
i/ i−1 + HT

i R−1
i Hi

)−1; (2.3.12)

where ϕi = ϕ(ti ; ti − Δt) is the transition matrix of the system (2.3.1) between
times ti − Δt and ti (Δt is the sample interval); Γi and Qi are the matrices chosen
so as to satisfy the formula

Γi QiΓ
T
i ≈ G(ti )Q(ti )G

T (ti )Δt,

corresponding to the condition of stochastic equivalence of the continuous process
x(t) and the discrete sequence xi (Stepanov 2017b), the matrix Ri = R(ti )/Δt , and
Hi = H(ti ). Note that here Eq. (2.3.11) generate the optimal prediction x̂i/ i−1 and
the corresponding covariance matrix Pi/ i−1 at time ti .

The smoothing problem is formulated as follows. Using the measurements (2.3.2)
Y (t1) = {y(τ) : τ ∈ [t0, t1]} accumulated over the interval [t0, t1] at time t , it is
required to obtain a linear mean-square optimal estimate x̂ s(t) of the vector x(t) at
time t < t1, which minimizes the criterion

r B(t) = E
{(
x(t) − x̂ s(t)

)T (
x(t) − x̂ s(t)

)}
.

There are three types of smoothing problems: fixed-interval smoothing, constant
delay smoothing, and fixed-point smoothing (Meditch 1969; Stepanov 2017b).
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Focus on a possible algorithm for solving the problem over a fixed interval, which
is used in this study. This algorithm is based on preliminary solution of the filtering
problem over the entire time interval [t0, t1], resulting in the generation of estimates
and their covariance matrices. Further the filtering estimates are denoted by x̂ f (t),
P f (t) and smoothing estimates, by x̂ s(t), Ps(t). Assume that P f (t) is nonsingular
and the inverse matrix

(
P f (t)

)−1
exists. In this case, the smoothing solution in the

form of the optimal estimate x̂ s(t) and the corresponding covariance matrix Ps(t)
can be defined by the following equations (Meditch 1969):

˙̂xs(t) = F(t)x̂ s(t) + Ks(t)
(
x̂ s(t) − x̂ f (t)

); (2.3.13)

Ks(t) = G(t)Q(t)G(t)T
(
P f (t)

)−1; (2.3.14)

Ṗs(t) = [F(t) + Ks(t)
]
Ps(t) + Ps(t)

[
F(t) + Ks(t)

]T − G(t)Q(t)GT(t).
(2.3.15)

These equations determine the solution of a continuous optimal smoothing
problem over a fixed interval. It is clear that for time t = t1, the formulation and,
hence, the solution of the smoothing problem coincide with the formulation and
solution of the filtering problem. It should be noted that the residual x̂ s(t) − x̂ f (t)
in (2.3.13) has dimension n coinciding with the dimension of the state vector.

The algorithm (2.3.13)–(2.3.15) in the discrete form is referred to as the Rauch-
Tung-Striebel (RTS) smoothing algorithm (Rauch et al. 1965) or simply as the
optimal smoothing filter (OSF). At the first step, similarly to filtering problem, the
conventional Kalman filter (KF) (2.3.10)–(2.3.12) is used to obtain the optimal esti-
mates x̂ f

i and P f
i . At the second step, a modified filter is used with account for the

obtained values, where the filtering estimate is used instead of the predicted estimate,
and the residual is the difference between the estimate smoothed at the previous step
and the predicted estimate (Simon 2006; Stepanov 2017a):

x̂ si = x f
i + Ks

i

(
x̂ si+1 − x̂ f

i+1/ i

)
,

Ks
i = P f

i ϕT
i

(
P f
i+1/ i

)−1
,

Ps
i = P f

i + Ks
i

(
Ps
i+1 − P f

i+1/ i

)(
Ks

i

)T
. (2.3.16)

It is important that the filter (2.3.16) runs in inverse time, since the smoothed
estimate at time ti depends on the similar estimate at time ti + Δt. It also follows
from the Eq. (2.3.16) that it is not needed to calculate the smoothing error covariance
matrix Ps to obtain the estimate. However, it can be used as a characteristic of
estimation accuracy. The analysis of the above equations also shows that to obtain a
smoothed estimate, it is necessary to save the estimates, the predicted estimates, and
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their error covariance matrices obtained during filtering. Obviously, this increases
the requirements for the computer memory when solving the smoothing problem.

2.3.2 Optimal Filtering and Smoothing Algorithms
for Onboard Gravity Anomaly Measurements

Let us specify the above problem formulations as applied to the gravity anomaly
measurements. As a rule, by the filtering stage the most corrections such as the
normal gravity correction, Eotvos correction, altitude correction, etc., have already
been introduced in gravimeter measurements. Thus, the gravimeter measurements
gGR(t) can be represented as follows:

gGR(t) = Δg(t) + ao(t) + wGR(t), (2.3.17)

where Δg(t) is the GA in free air; ao(t) is the vertical acceleration of the vehicle;
wGR(t) are the total random measurement errors of the gravimeter. Based on the
measurements (2.3.17), to apply the optimal filtering and smoothing algorithms it
is needed to determine the shaping filter of the form (2.3.1) for GA Δg(t) and the
vertical accelerations ao(t).

The gravity anomaly can be described with the Jordan model, the Schwarz model
(Jordan 1972) and other models, along with their approximations as the integrals
of white noise (Bolotin et al. 2002). Here, let us consider the Jordan model corre-
sponding to the stationary third-order Markov process with the correlation function
(Jordan 1972):

KΔg(ρ) = σ2
Δg

(

1 + αρ − (αρ)2

2

)

e−αρ, (2.3.18)

where σ2
Δg is the GA variance; α is the inverse correlation interval; ρ is the length

of a rectilinear trajectory. To transform (2.3.18) to the time domain, use the formula
ρ = V t , where V is the vehicle speed. Note that the process with the correlation
function (2.3.18) is differentiable and the variance of its derivative can be defined as
follows:

σ2
∂Δg/∂ρ = − d2

dρ2
KΔg(ρ)

|
|
|
|
ρ=0

= 2α2σ2
Δg.

It should also be noted that σ∂Δg/∂ ρ characterizes the spatial variability of GA.
Further, for simplicity, wewill call this quantity the gradient of the gravitational field.
PSD of the function (2.3.18) is defined as follows:
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SΔg(ω) = 2α3 · σ2
Δg · 5 · ω2 + α2

(
ω2 + α2

)3 , (2.3.19)

where ω is the analogue of the circular frequency for the process depending on the
length of the straight section. The PSD can be represented as

SΔg(ω) = 2α3 · σ2
Δg ·

(
α + √

5 jω
)(

α − √
5 jω

)

(α + jω)3(α − jω)3
, (2.3.20)

so it is easy to show that Δg(t) samples corresponding to this PSD can be generated
using the components of the third-order Markov process (Stepanov 2017b):

⎧
⎨

⎩

ḃ1 = −βb1 + b2;
ḃ2 = −βb2 + b3;
ḃ3 = −βb3 + wGA,

(2.3.21)

where β = Vα; V is the vehicle speed; wGA is the generating white noise with the
PSD qw = 10β3σ2

Δg . In this case, GA Δg is defined as

Δg = −βϑb1 + b2, where ϑ =
√
5 − 1√
5

. (2.3.22)

The vehicle vertical acceleration ao(t) can also be generally described as a random
process. Clearly, its frequency properties significantly depend on the vehicle type.

In marine gravimetry, the frequency properties of the processes Δg(t) and ao(t)
greatly differ, so the acceptable accuracy ofΔg(t) estimation can be achievedwithout
using additional data on vertical accelerations ao(t). In practice, stationary filtering
and smoothing algorithms described in Sect. 2.3.3 are often applied to such problems.

In airborne gravimetry, due to the high speed of the vehicle, the PSDs of Δg(t)
and ao(t) substantially overlap in the frequency domain. Therefore, vertical displace-
ments ho(t) should be applied to achieve the required accuracy of Δg(t) estimation.
As follows from theprevious sections, these data canbeobtainedusinghigh-precision
GNSS measurements of altitude hs(t) in the differential phase mode. By presenting
them as

hs(t) = ho(t) + vs(t), (2.3.23)

where ho(t) is the vehicle altitude; vs(t) are GNSS measurement errors, formulate
the problem of GA optimal estimation as the problem of estimating the state vector
x = [ho, Vo, ao, b1, b2, b3,]T specified by the following equations:



2 Data Processing Methods for Onboard Gravity Anomaly Measurements 105

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

ḣo = Vo;
V̇o = ao;
ḃ1 = −βb1 + b2;
ḃ2 = −βb2 + b3;
ḃ3 = −βb3 + wGA;

(2.3.24)

by measurements (2.3.17), (2.3.23). However, such a formulation requires the
description of vehicle accelerations ao using a shaping filter in the state space.
A common way to avoid this in practice is to proceed to the formulation not
requiring the introduction of the model of vehicle vertical accelerations (Nesenyuk
and Khodorkovsky 2010). By double integration of the gravimeter readings (2.3.17),
we obtain

⎧
ḣGR = VGR;
V̇GR = Δg + ao + wGR,

(2.3.25)

where hGR = ho + ΔhGR , VGR = Vo + ΔVGR are the increments of altitude and
speed obtained by integrating the gravimeter readings. Considering (2.3.24), (2.3.25)
and the fact that Δg = −βϑb1 + b2, we obtain the following formulas:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

ΔḣGR = ΔVGR;
ΔV̇GR = − β ϑb1 + b2 + wGR;
ḃ1 = −βb1 + b2;
ḃ2 = −βb2 + b3;
ḃ3 = −βb3 + wGA.

(2.3.26)

Forming the differential measurements as

y = hGR(t) − hs(t) = ΔhGR(t) + vs(t), (2.3.27)

the problem of GA optimal estimation by GNSS and gravimeter data can be formu-
lated as the problem of estimating the state vector x = [ΔhGR,ΔVGR, b1, b2, b3]T

described by Eq. (2.3.26) using measurements (2.3.27). Obviously, the above formu-
lation of the problem is invariant to vertical accelerations due to the use of differ-
ential measurements (2.3.27). This technique is often applied to process redundant
measurements, especially in navigation applications (Groves 2013; Stepanov 2016).
However, it should be noted that the above formulation is not invariant to GA: its
description is required and in this case specified using the Jordan model (2.3.21),
(2.3.22). For more information on invariant and non-invariant algorithms, see Brown
and Hwang (1977), Dmitriev and Stepanov (2000), Stepanov (2016).

For example, let us specify the problem formulation by introducing the random
error models of gravimeter readings wGR(t) and measurements vs(t). Following
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(Stepanov et al. 2002), describe them for simplicity bywhite-noise random processes
with the known PSD RGR and QSNS , respectively. In this case, the problem is a linear
estimation problem, and its solution is reduced to the optimal KF or the smoothing
filter described in the previous subsection, and the corresponding models (2.3.1),
(2.3.2) with the following matrices included in them:

F =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

0 1 0 0 0
0 0 −βϑ 1 0
0 0 −β 1 0
0 0 0 −β 0
0 0 0 0 −β

⎤

⎥
⎥
⎥
⎥
⎥
⎦

,G =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

0 0√
RGR 0
0 0
0 0
0 qw

⎤

⎥
⎥
⎥
⎥
⎥
⎦

, H = [1 0 0 0 0
]
.

To implement the algorithms, the initial covariance matrix P0 is required, which,
as can be easily seen, has a block-diagonal form due to the structure of the system
(2.3.26).

2.3.3 Stationary Estimation Algorithms and Their
Performance Analysis

As follows from the previous sections, stationary filtering and smoothing algorithms,
which, unlike the optimal algorithms, minimize the error variance only in the steady
state, are applied to simplify the processing algorithms in GA estimation (Stepanov
2017b).

One of the methods to construct such filters is based on using the filtering and
smoothing solution in the state space for a steady state. Discuss this method in more
detail as applied to fixed-interval smoothing assuming that the matrices in (2.3.1),
(2.3.2) do not depend on time. It is thought that there exists a steady-state solution
for the filtering problem. To simplify the formula, let us put here that the PSD of
the generating noise is an identity matrix. Present the solution of the steady-state
smoothing problem by the algorithm (2.3.13)–(2.3.15) discussed in Sect. 2.3.2 using
the transfer functions (TF). To do this, first obtain the filtering estimate using a
conventional steady-state KF

˙̂x f
∞(t) = (F − K f

∞H
)
x̂ f

∞(t) + K f
∞y(t), (2.3.28)

where

K f
∞ = P f

∞HT R−1, (2.3.29)

and then find the smoothed estimate by processing x̂ f (t) with the filter
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˙̂xs∞(t) = Fx̂s∞(t) + Ks
∞
(
x̂ s∞(t) − x̂ f

∞(t)
)

(2.3.30)

with

Ks
∞ = Q

(
P f

∞
)−1

, (2.3.31)

where

Q = GGT . (2.3.32)

The matrix P f
∞ included in these formulas corresponds to the solution of the

covariance equation (2.3.9) for the steady state. The solution is sought for the steady
state, so the TF matrix can be found for the optimal KF:

W f
x (p) = (pE − F + K f

∞H
)−1

K f
∞. (2.3.33)

Considering that x̂ f
∞(p) = W f

x (p)y(p), we get the following to estimate
smoothing:

x̂ s∞(p) =
(
−pE + F + Q

(
P f

∞
)−1
)−1

Q
(
P f

∞
)−1

x̂ f
f (p)

=
(
−pE + F + Q

(
P f

∞
)−1
)−1

Q
(
P f

∞
)−1

W f
x (p)y(p),

where W f
x (p) is given by (2.3.33).

It follows that the TF matrix for a smoothing filter, providing the estimation of all
state vector components, is defined as

Ws
x (p) =

(
−pE + F + Q

(
P f

∞
)−1
)−1

Q
(
P f

∞
)−1

W f
x (p). (2.3.34)

A number of methods have been developed to find the required filter TF W f
x (p),

including approximate ones, such as the method of PSD local approximation
(Loparev et al. 2012; Stepanov et al. 2014). It constructs the PSDs of the useful
signal and noise and searches for their intersection point, where the PSDs are equal.
To obtain this intersection point, the PSDs in its vicinity are approximated by linear
functions. The found frequency is taken to be the cutoff frequency of the filter, and
the TF order is determined by the steepness of the linear approximation slope. It
follows from the above that with this method, the parameters of the TF significantly
depend only on the properties of the PSDs in the vicinity of the found point. Thus,
simpler models can be applied to describe the error and the value to be estimated:
for example, the GA model can be specified as the second or third integral of white
noise instead of the Jordan model. The studies (Stepanov et al. 2002; Koshaev and
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Stepanov 2010) show that with the GA model specified as the second integral of
white noise, for the models described in 2.3.2 the TF of the stationary smoothing
filter can be representedwith a certain degree of approximation using the fourth-order
Butterworth filter TF:

wB4(p) = μ4

p4 + γp3μ + γ2

2 p2μ2 + γpμ3 + μ4
, (2.3.35)

where μ =
(
q ¨̃g/Rh

)
1/8 is the filter cutoff frequency; q ¨̃g = σ2

∂ g̃/∂ρ
3V 3/ρ; V is the

vehicle speed; Rh is the standard deviation of altitude error; ρ is the trajectory length;

and γ =
/

2
(
2 + √

2
)
is a dimensionless coefficient.

In the design of smoothing algorithms, various techniques are also applied to
reduce their computational complexity. For example, it is known (Stepanov 2017b)
that in a particular estimationof a scalar processwith a fractional-rational PSDagainst
the white noise background, the TF in the smoothing problem for themeasured scalar
component z = Hx can be represented as follows:

Ws
z (p) = W∗(−p)W∗(p) = |W∗(p)|2, (2.3.36)

where the functionW∗(p) is defined asW∗(p) = rGT (P f
∞)−1W f

x (p) with r = √
R.

This implies that if the measured and estimated components coincide, a compu-
tationally inexpensive algorithm can be employed to obtain the optimal smoothing
estimate. It includes the following steps (Stepanov 2017b):

• generation of the estimate vector x̂ f (t) using the KF, which generally estimates
the n-dimensional state vector by the scalar measurement y(t) = z(t) + v(t) =
Hx(t) + v(t);

• generation and saving of the scalar sample ˆ̃z(t) = T x̂ f (t) using the row matrix

T = rGT
(
P f

∞
)−1

, where r = √
R;

• generation of the n-dimensional estimate vector x̂ s(t) by processing the scalar
ˆ̃z(t) in the inverse time in the same Kalman-type filter.

The idea of this modified smoothing algorithm is that it requires saving only the
scalar estimates obtained in the filtering mode.

When using this algorithm, as applied to the considered example with the models
described in Sect. 2.3.2 and the GA model specified as the second integral of white
noise, it can be shown that processing is reduced to differentiating the measurements
and applying the Butterworth filters in the forward and inverse time:
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W c
h (p) = wB4(p)wB4(−p)

⎛

⎜
⎜
⎜
⎜
⎝

1

p

p2

p3

⎞

⎟
⎟
⎟
⎟
⎠

. (2.3.37)

The study (Stepanov et al. 2002) shows that despite the simplified specification
of the anomaly model in the local approximation method, the resulting algorithm
is close to the optimal in the steady-state mode for the models described above,
including the Jordan model for GA.

Another modification of a suboptimal smoothing algorithm is discussed in
Sect. 2.4.

In practice, finite impulse response (FIR)filters are also applied to process airborne
gravimetry data. For example, in the two-stage procedure of processing the Chekan
gravimeter data described in Sect. 2.1.3, the first stage uses a FIR filter with a trape-
zoidal Tukey weight function. The use of such a filter with a fixed window width
decreases the estimation interval by half the windowwidth on both ends of the trajec-
tory; besides, sometimes the filter fails to achieve the acceptable estimation accuracy.
Therefore, a second stage is provided, where the received signal is transferred to the
frequency domain, where high-frequency harmonics are reduced by Fourier trans-
formation. This procedure smoothes the resulting estimate but does not reduce the
spatial resolution of the survey. The transfer back to the time domain is performed
at the final stage. A diagram of this procedure is shown in Fig. 2.19.

The processing algorithm is tuned by selecting the width of Tukey window and
the number of harmonics in Fourier transformation. It should be noted that, due to
the heuristic nature of this algorithm, there exists no formalized tuning sequence for
it. In practice, its parameters are selected so that the resulting estimate is typical of
GA. Spectral analysis of the resulting estimate can additionally be used. The estimate
is verified by comparison with the known rough map of the gravitational field with
the marked characteristic points (GA minima and maxima). The performance of
the estimation algorithm is assessed based on the coincidence of the anomalies at
these points. Thus, when processing real data using such a procedure, the accuracy

Fig. 2.19 Two-stage processing procedure
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of GA estimation largely depends on the experience of the engineer processing the
measurements.

As noted in Introduction of this chapter, the Bayesian approach offers the advan-
tage of calculating the potential accuracy of the specifiedmodels. This creates a good
basis for objective estimation of the efficiency of various simplified algorithms in
simulation studies. The results of such a study for the models described in 2.3.2 are
presented in Figs. 2.20, 2.21 and 2.22 showing the actual RMS errors (RMSE) for
the optimal smoothing algorithm, the stationary Butterworth filter (2.3.35), and the
two-stage estimation procedure.

Stationary suboptimal algorithms do not generate the estimation accuracy charac-
teristic during the operation, so the corresponding RMSEs are obtained by statistical
testing as described, for example, in Stepanov (2017b). It is also important to note
that the true GA was generated in accordance with the Jordan model in all cases.

The simulation results generally confirm that stationary suboptimal algorithms in
steady-state mode are close to the optimal algorithm, but suffer from large errors (up
to hundreds of mGal) at the boundaries of the intervals. In this case, the transient
process recalculated to the trajectory length lasts for up to 25 km.

The transient process of a two-stage procedure generally features somewhat
smallerRMSEanda longer time to reach the steady state comparedwith the stationary
algorithm. However, due to the nature of the Fourier transformation, it is accompa-
nied by significant fluctuations up to 50 km long. To prevent this effect, the authors
of the algorithm proposed to increase the observation interval by extrapolating the
measurements outside the trajectory with high-frequency harmonics (Krasnov and
Sokolov 2013).

The advantages of stationary algorithms include low computational complexity
and easy implementation. Such algorithms, in some cases, require no explicit models
for GA anomalies and the errors of the measuring instruments. However, they suffer

Fig. 2.20 GA estimation RMSE
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Fig. 2.21 Steady RMSE of GA estimation

Fig. 2.22 Transient process for GA estimation RMSE
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Fig. 2.23 GA estimation RMSE in filtering and smoothingmodes (left); the obtained GA estimates
(right)

from the pronounced boundary effects at the trajectory ends and are able neither to
assess the estimation accuracy during the transient process nor to account for the
varying motion parameters of the aircraft.

It should also be emphasized that the smoothing mode provides a much better
GA estimation accuracy as compared to the filtering mode. Figure 2.23 shows GA
estimates and their RMSEs in various modes during the processing of airborne
gravimetric data.

It can be seen that the estimate obtained in the filtering mode has a non-typical
high-frequency component, as well as the phase shift. The use of smoothing proce-
dures eliminates these negative effects. As noted in Sect. 2.3.1, the RMSE of filtering
and smoothing coincide at the end of the interval, thus, the minimum filtering RMSE
corresponds to the maximum smoothing RMSE. In general, the use of all measure-
ments in the smoothing process increases the accuracy 2–3 times in the steady state.
It should be noted that the FIR filter described in the analysis of the two-stage estima-
tion procedure, strictly speaking, also solves the smoothing problem, since it obtains
an estimate for the middle of the window, i.e., uses the measurements obtained both
before and after the estimation.

2.3.4 Model and Parametric Identification of Gravity
Anomaly and Measurement Errors Using Onboard
Gravity Measurements

As follows from the previous material, the design of optimal estimation algorithms
requires stochastic models of the GA and errors of the measuring instruments. Note
that attempts to process real data using optimal filtering and smoothing algorithms
for the model (2.3.26), (2.3.27) have failed (Sokolov et al. 2016). It should also be
said that the parameters of the GA model (2.3.21), (2.3.22) may vary depending on
the survey area: the field gradient may be within 0.5–3 mGal/km in a flat terrain
and reach 10 mGal/km and more in a mountainous terrain. Simulation has shown
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(Stepanov et al. 2015; Motorin and Nosov 2019) that inaccurate setting of this value
can critically reduce the GA estimation RMSE. If the used models differ from the
actual ones, the calculated accuracy characteristic in the form of diagonal elements
of the covariance matrix does not match the actual estimation accuracy (Stepanov
and Koshaev 2011). All this proves the importance of structural and parametric
identification of models used in GAmeasurements. Next, let us discuss the algorithm
proposed for identification.

Note that the model used to design the optimal algorithm within the Bayesian
approach can generally be represented as a shaping filter:

xki = ϕk
i

(
θk
)
xki−1 + Γk

i

(
θk
)
wk

i ,

θki = θki−1 = θk, (2.3.38)

yi = Hk
i

(
θk
)
xki + ψk

i

(
θk
)
vk
i , (2.3.39)

where xki is the state vector; ϕk
i

(
θk
)
, Γk

i

(
θk
)
, Hk

i

(
θk
)
, ψk

i

(
θk
)
are the shaping

filter matrices characterizing the error model, whose elements generally nonlinearly
depend on the parameter vector θk ;wk

i and vk
i are the pk- andmk-dimensional white-

noise Gaussian sequences with identity covariance matrices; k is the number of a
candidate model used to describe the errors. The structure of the model described
by the number k and dimensions of the vectors θk and xki (different for different k)
included in Eqs. (2.3.38), (2.3.39) may be unknown.

Considering the above equations and introducing the hypotheses for the model
number k, the problem of structural and parametric identification can be formu-
lated (Dmitriev and Stepanov 2004; Motorin and Stepanov 2015; Toropov et al.
2016; Stepanov and Motorin 2019). It consists in determining the number of the
hypothesis k, which best fits the vector of all measurements obtained by the time i

Yi = [
y1 ... yi

]T
, and obtaining the estimates of the parameter vector θk and the

state vector xki corresponding to this hypothesis.
Let us interpret the set of suggested hypotheses as a random variable H, which

takes the values hk , where k = 1 . . . K , K is the total number of hypotheses. The
probability density function (PDF) of H can be represented as follows (Dmitriev and
Stepanov 2004):

fH(H) =
KΣ   

k=1

Pr(H = hk)δ(H − hk), (2.3.40)

where Pr(H = hk) is the probability that the hypothesis for the model H = hk is
true, and

ΣK
k=1 Pr(H = hk) = 1. The value of hk is selected such that to maximize

the conditional probability Pr(H = hk/Yi ) or, which is the same, to maximize the a
posteriori (conditional) PDF fH(H/Yi ):
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h∗
k = argmax

hk
fH(H/Yi ). (2.3.41)

With a fixed value of the hypothesis, the estimates of the vectors θk and xki are
found as the Bayesian optimal estimates, i.e.:

θ̂ki (Yi ) =
∫   

θk fθk
(
θk/Yi ,H = hk

)
dθk, x̂ ki (Yi ) =

∫   

xki fxki
(
xki /Yi ,H = hk

)
dxki ,

(2.3.42)

where fθk
(
θk/Yi ,H = hk

)
and fxki

(
xki /Yi ,H = hk

)
are a posteriori PDFs of vectors

θk and xki , respectively, with a fixed hypothesis about the error model H = hk . Thus,
the problem of identifying the model (2.3.28), (2.3.39) and estimating its parameters
is reduced to finding the PDF fH(H/Yi ), fθk

(
θk/Yi ,H = hk

)
, fxki

(
xki /Yi ,H = hk

)

and calculating the integrals (2.3.42). These integrals are normally calculated using
numerical methods based on various techniques for approximating a posteriori
density. In the general case, the dimension of these integrals is determined by the
dimension of the vectors θk and xki .

Using the Bayesian formulas, we get:

Pr(H = hk/Yi ) = f (yi/Yi−1,H = hk) fH(H = hk/Yi−1)
ΣK

k=1 f (yi/Yi−1,H = hk) fH(H = hk/Yi−1)
, (2.3.43)

where f (yi/Yi−1,H = hk) is the measurement likelihood function at step i for a
fixed hypothesis; it can be represented as follows:

f (yi/Yi−1,H = hk) =
∫   

fyi
(
yi/Yi−1,H = hk, θ

k
)
fθk
(
θk/Yi−1,H = hk

)
dθk .

(2.3.44)

In this formula, fyi
(
yi/Yi−1,H = hk, θk

)
is the measurement likelihood function

at the step i for thefixedhypothesis and theparameter vector θk , fθk
(
θk/Yi−1,H = hk

)

is a posteriori PDF at the step i – 1. For the PDF of the state vector xki , the following
is also true:

fxki
(
xki /Yi ,H = hk

) =
∫   

fxki
(
xki /Yi ,H = hk, θ

k
)
fθk
(
θk/Yi ,H = hk

)
dθk .

(2.3.45)

The peculiar feature of the problem is that the model (2.3.38), (2.3.39) describes
the problem of linear Gaussian filtering for fixed values of the hypothesis and
the parameter vector θk . Let θk j , j = 1 . . . Mk be the grid of the vectors θk

for the fixed hypothesis hk . Under these conditions, the likelihood functions
fyi
(
yi/Yi−1,H = hk, θk = θk j

)
and a posteriori PDF fxki

(
xki /Yi ,H = hk, θk = θk j

)
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are Gaussian, i.e.:

fyi
(
yi/Yi−1, H = hk, θ

k = θk j
) = N

(
yi ; Hkj

i x̂ k ji/ i−1,Λ
k j
i

)
,

fxki
(
xki /Yi , H = hk, θ

k = θk j
) = N

(
xki ; x̂ k ji , Pkj

i

)
, (2.3.46)

where Λ
k j
i = Hkj

i Pk j
i/ i−1(H

kj
i )T + ψ

k j
i (ψ

k j
i )T ; and x̂ k ji , Pkj

i and x̂ k ji/ i−1, P
kj
i/ i−1 are

the optimal estimate with the covariance matrix and the optimal prediction for the
step i, respectively, which can be obtained using the KF bank. Thus, to calcu-
late the integrals (2.3.42), approximation should be introduced only for the PDF
fθk
(
θk/Yi−1,H = hk

)
, and the dimension of the integrals will be determined only by

the dimension of the vector θk . The technique reducing the dimension of the integrals
to be found numerically is referred to as the partitioning method (Lainiotis 1976;
Stepanov 1998; Beloglazov and Kazarin 1998), the method of analytical integration
over a part of variables, or Rao-Blackwellization procedure (Doucet et al. 2001).

In order to calculate the estimates, approximate the PDF for vector θk as follows:

fθk
(
θk/Yi ,H = hk

) =
MkΣ   

j=1

μ
k j
i δ
(
θk − θk j

)
, fθk

(
θk/H = hk

)

=
MkΣ   

j=1

μ
k j
0 δ
(
θk − θk j

)
, (2.3.47)

According to Bayesian theorem, with this approximation, the recursive formula
is valid for the coefficients μ

k j
i :

μ
k j
i = μ

k j
i−1 · fyi

(
yi/Yi−1,H = hk, θk = θk j

)

ΣL
j=1 μ

k j
i−1 fyi

(
yi/Yi−1,H = hk, θk = θk j

) . (2.3.48)

Thus, the sought integrals (2.3.42) for the estimates of the parameter vector and the
state vector, as well as the probability (2.3.43) can be calculated using the following
formula:

θ̂ki (Yi ) ≈
MkΣ   

j=1

μ
k j
i θk j , x̂ ki (Yi ) ≈

MkΣ   

j=1

μ
k j
i x̂ k ji , (2.3.49)

Pr(H = hk/Yi )

≈
[ΣMk

j=1 μ
k j
i−1N

(
yi ; Hkj

i x̂ k ji/ i−1;Λ
k j
i

)]
Pr(H = hk/Yi−1)

ΣK
k=1

[[ΣMk
j=1 μ

k j
i−1N

(
yi ; Hkj

i x̂ k ji/ i−1;Λ
k j
i

)]
Pr(H = hk/Yi−1)

] . (2.3.50)
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An important advantage of the considered approach is that the accuracy char-
acteristic can be obtained in the form of covariance matrices for the estimates
(2.3.49):

Pθk
i (Yi ) ≈

MkΣ   

j=1

μ
k j
i θk j

(
θk j
)T − θ̂ki

(
θ̂ki

)T
,

Pxk
i (Yi ) ≈

MkΣ   

j=1

[

μ
k j
i

(

x̂ k ji

(
x̂ k ji

)T + Pkj
i

)]

− x̂ ki
(
x̂ ki
)T

. (2.3.51)

Since the parameter vector θk does not change with time, its estimate obtained
in the filtering mode over the entire set of measurements will coincide with the
estimate in the smoothing mode. Considering this and the linearity of the filtering
problem (2.3.28), (2.3.29) with the known models and the fixed parameter vector,
the smoothed estimate of the state vector x and, as a result, the smoothed GA can be
obtained using the above optimal linear smoothing algorithms tuned for the identified
model. It can be easily seen that the use of the described approach actually makes
the estimation process and the filtering and smoothing algorithms adaptive.

2.3.5 The Results of Using Adaptive Filtering and Smoothing
Algorithms in Airborne Gravity Anomaly
Measurements

Let us illustrate the application of the above algorithms to processing the experimental
airborne geophysical survey data. They were obtained onboard an L-410 aircraft on
March 6, 2015, near the town of Stupino about 150 km south of Moscow, Russia.
The Chekan-AM mobile gravimeter manufactured by Concern CSRI Elektropribor
(Peshekhonov et al. 2015) was installed onboard an aircraft. A NovAtel SE-D-RT2-
G-J-Z dual-frequencyGLONASS/GPSonboard receiverwith an IMUand aGPS-702
GG antenna was applied to obtain the velocity and coordinates. A NovAtel DL-V3-
L1L2-G receiver with a GPS-702GGL antenna was installed at the reference point to
enable the differential correction mode. The maximum distance between the vehicle
and the base station during the flight was about 150 km. During the flight, a return
survey line about 170 km long was completed with general headings of 170° and
350°. The gravimeter and GNSS receiver data were recorded and processed in the
offline mode.

To identify the errors of the measuring instruments and to refine the parameter
σ2

∂Δg/∂ρ in theGAmodel, the general model (2.3.26), (2.3.27) was supplementedwith
the error component z described by the first-order Markov process with unknown
standard deviation σm and the correlation interval τm = 1/αm . Two hypotheses were
suggested: the first for an additional error in differential measurements, which can
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be caused, for example, by inaccurate synchronization of the GNSS receiver and the
gravimeter; the second for an additional error component directly in the gravimeter
measurements. The shaping filters and measurement equations for the models of
these hypotheses can be written as follows:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ΔḣGR = ΔVGR;
ΔV̇GR = − β ϑb1 + b2 + wGR;
ḃ1 = −βb1 + b2;
ḃ2 = −βb2 + b3;
ḃ3 = −βb3 + wGA;
ż = −amz + σm

√  
2αmwm;

k = 1,

y = ΔhGR + z + vs . (2.3.52)

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ΔḣGR = ΔVGR;
ΔV̇GR = − β ϑb1 + b2 + z + wGR;
ḃ1 = −βb1 + b2;
ḃ2 = −βb2 + b3;
ḃ3 = −βb3 + wGA;
ż = −amz + σm

√  
2αmwm;

k = 2,

y = ΔhGR + vs . (2.3.53)

Thus, the problem of structural identification of the error model (2.3.52), (2.3.53)
with the vector of unknown parameters

θ = [ τm σm σ∂Δg/∂ρ

]T

and the estimated vector x(t) = [
ΔhGR ΔVGR b1 b2 b3 z

]T
was solved. The GA

estimate was generated using the ratio (2.3.22).
Application of the adaptive algorithmwith themodels introduced above to process

the data of the experimental airborne geophysical survey has shown that the hypoth-
esis (2.3.52) for the model with additional error in differential measurements proved
to be most likely. The diagrams illustrating the dependence of parameter estimates
on time are shown in Fig. 2.24. The estimates of the components of the parameter
vector θ on the forward and inverse survey lines converge to approximately the same
values.

Figure 2.25 presents the smoothing estimates for GA obtained using the adaptive
algorithm and the two-stage estimation procedure described in 2.3.3. The discrep-
ancy between the GA estimates obtained on mutually inverse trajectories using
the proposed algorithm complies with the desired accuracy characteristics (RMSE)
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Fig. 2.24 Estimates of model parameters on the forward and inverse survey lines

calculated using the diagonal elements of the covariance matrix obtained by the
algorithm (Fig. 2.26).

Thus, it can be stated that the proposed adaptive algorithm provides the expected
GA estimation accuracy. Its undoubted advantages include its rigorous approach to
the estimation problem, higher accuracy in the transient mode and, most importantly,
the ability to obtain consistent characteristics of the estimation accuracy.
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Fig. 2.25 GA estimates obtained using the adaptive algorithm and the two-stage procedure

Fig. 2.26 Difference betweenGA estimates on the forward and inverse survey lines for the adaptive
algorithm and the two-stage procedure
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The described algorithm was also tested on data obtained in the area of the Arctic
Ocean. Ten intersecting survey lines shown in Fig. 2.27 were processed.

The estimates of the parameters determining the properties of the additional error
z for various survey lines are shown in Fig. 2.28: the correlation interval of the
additional error during data processing was 1.5–2.5 min and the standard deviation
was 6–12 cm.

Fig. 2.27 Location of survey lines in the area of the Arctic Ocean

Fig. 2.28 Estimation of the correlation interval and the additional error standard deviation for
10 survey lines
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Fig. 2.29 Examples of GA estimates for two survey lines

Fig. 2.30 Difference of GA estimates at survey line intersection points (left); the calculated RMSE
of GA estimates in the smoothing mode on various survey lines (right)

Examples of GA estimates for two survey lines are shown in Fig. 2.29. Figure 2.30
presents the RMSE of the obtained estimates and the difference of estimates at the
line intersection points. As can be seen, the difference is 1–4 mGal at these points.
This suggests that the RMSE of GA estimation is at the level of 1–2 mGal, which
agrees with the calculations.

The results confirm the efficiency of the proposed algorithms for GA estimation.
Their main advantages include (a) the ability to identify both the GA model and
the error model, which reduces the survey time, since there is no need for empirical
tuning of filter parameters and manual processing of each survey line; (b) the ability
to estimate the accuracy during the calculation; and (c) the reduction of the transient
estimation process.

2.3.6 Conclusion

An optimal estimation problem in general form has been formulated within the
Bayesian approach, and an example of designing optimal nonstationary filtering
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and smoothing algorithms for GA estimation has been considered. The features of
designing stationary filtering and smoothing algorithms have been analyzed.

It is noted that a significant advantage of the Bayesian approach lies in its ability
to calculate the potential estimation accuracy for the given models of anomalies
and the errors of the measuring instruments. This allows objective estimation of
the efficiency of various suboptimal algorithms. The applied stationary algorithms
based on the Butterworth filter and the two-stage estimation procedure have been
compared, and their performance has been analyzed.

The section emphasizes the importance of the model structural and parametric
identification, providing the requireddata on themodels for implementing the optimal
algorithms, and describes the proposed identification algorithm based on nonlinear
filteringmethods and actuallymaking the estimationprocess and algorithms adaptive.
The results of real data processing using the proposed algorithm in gravity anomaly
estimation are provided, which confirm the algorithm efficiency.

2.4 Suboptimal Smoothing in Marine Gravimetric Surveys
Using GT-2M Gravimeters

It was stated earlier that in airborne gravimetry, the PSDs of perturbing accelera-
tions and the GA to be measured overlap because of high carrier speeds (Hein 1995;
Koshaev and Stepanov 2010). In this regard, in order to extract gravity anomalies
from the GSE readings, one needs precise external information about the flight alti-
tude usually provided by theGNSSoperating in the differential phasemode (Koshaev
and Stepanov 2010; Bolotin et al. 2002). In marine gravimetry, due to low speeds
of vessels, the PSDs of perturbing accelerations lie in a higher frequency range than
those of the anomaly components being measured. Therefore, the problem of iden-
tifying GAs in GSE readings can be solved, at least in the case of surface vessels,
using filtering without precise external information (Panteleev 1983; Krasnov et al.
2014). However, given the fact that the level of noise is five to six orders of magni-
tude higher than the level of the useful signal, rather stringent requirements may be
imposed on the gravimetric filter in terms of its effectiveness when used in real time.

In postprocessing, it is possible to use optimal smoothing algorithms on a fixed
interval. As noted in Sect. 2.3, they provide higher estimation accuracy compared
with the KF but such algorithms are much more difficult to implement, one of the
reasons being the necessity to store a significant amount of data. In this regard, the
development of suboptimal smoothing algorithms is relevant.

Design of such algorithms with regard to marine vessels is what this section is
devoted to.
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2.4.1 Constant-Delay Optimal and Suboptimal Smoothers
for Continuous-Time Systems

The search for an algorithm that combines the simplicity of the KF and the quality of
the optimal smoothing on a fixed interval is of interest both for the problem of marine
gravimetry and other applications. Constant-delay smoothing may be a compromise
solution in this case, which, however, imposes an additional restriction: the algorithm
should have a filter structure with an infinite impulse response of the same order as
the original system.

The proposed algorithm of suboptimal smoothing is designed in relation to the
problem (2.3.1), (2.3.2) under the assumption that the system noise is neglected at
the smoothing stage, i.e., Q = 0. In this case, it is easy to show that the algorithm for
generating a suboptimal smoothed estimate is reduced to the ‘inversed’ extrapolation
of the last current optimal estimate of the KF using the transient state matrix, i.e.,
x̂s(t |t1) = ϕ(t, t1)x̂(t1|t1), whereϕ(t, t1) is the transient matrix of the system. Thus,
the suboptimal smoothing algorithm is simpler than the optimal algorithm and does
not require repeated filtering of the estimates obtained at the first stage.

In this case, the equations for the suboptimal smoothing error covariance matrix
Ps can be written as follows (Meditch 1969):

Ṗs(t |t1) = FPs(t |t1) + Ps(t |t1)FT + ϕ(t, t1)ϕF−K H (t1, t)GQGT

+ GQGTϕT
F−K H (t1, t)ϕ

T (t, t1) − GQGT , (2.4.1)

where ϕF−K H (t1, t) is the linear system state transient matrix ẋ = (F − K H)x .
Equation (2.4.1) is solved in the inverse timewith the boundary condition Ps(t1|t1) =
P(t∞), where P(t∞) is the steady-state value of the KF error covariance matrix. The
algorithm for finding the suboptimal smoothing estimate with a constant delay τ is
determined by solving the following differential equation (Meditch 1969):

d

dt
x̂s(t |t + τ) = Fx̂s(t |t + τ) + L(t)

[
y(t + τ) − Hϕ(t, t + τ)x̂s(t |t + τ)

]
,

(2.4.2)

where L(t) = ϕ(t, t + τ)−1 K (t) is the feedback coefficient of the smoothing filter,
and K (t) = P(t + τ|t + τ)HT R−1 is the KF feedback ratio.

Obviously, the variance of the optimal smoothed estimate with a constant delay
is a non-increasing function of interval τ. Due to the methodic error caused by the
neglect of the generating noise of the system, the suboptimal smoothed estimate
has an error variance greater than the optimal smoothing error variance and does
not necessarily decrease with time. Thus, the effective use of suboptimal smoothing
is only possible on a limited interval due to the increase in the above-mentioned
methodic error with the increase in the interval length.
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In order to discuss the effectiveness of the proposed suboptimal smoothing filter
and to estimate the interval on which suboptimal smoothing is appropriate to imple-
ment, consider the followingmethodic example.Assume that it is required to estimate
the state of a scalar system with a scalar measurement:

ẋ(t) = w(t),

y(t) = x(t) + v(t), (2.4.3)

where w(t) and v(t) are stationary uncorrelated white noises with intensities Q and
R, respectively.

Assume that for some t0 > 0, the KF, generating a current estimate of the system
state (2.4.3), is in a steady state, and it is required to obtain a smoothed state estimate
on a fixed interval [t0, t1]. To compare the accuracy of the optimal and suboptimal
smoothing algorithms, let us solve the problem in the optimal and suboptimal problem
statements. For (2.4.3), it is easy to obtain analytical solutions of the covariance
equations for theKF, the optimal and suboptimal smoothing filters on a fixed interval.
For this case, F = 0, H = 1, ϕ(t1, t) = 1. The steady-state values of the
variance of the optimal filtering error and the KF gain coefficient are determined by
the following formulas: P(t∞) = √

QR, K = √
Q/R (Meditch 1969; Stepanov

2017b). The formula for the error variance of the optimal smoothing filter on a fixed
interval takes the form:

Ṗ(t |t1) = −2

/
Q

R
P(t |t1) + Q.

By integrating the last equation in the inverse time with the initial condition
P(t1|t1) = P(t∞) = √

QR and considering that τ = t1 − t , we get:

P(t |t + τ) =
√
RQ

2

(
1 + e−2 τ

T0

)
, (2.4.4)

where T0 = 1/K = √
R/Q is the KF time constant. It can be seen that for τ → ∞,

the variance P(t |t + τ) tends to the fixed value P(τ∞) = √
RQ/2.

Now, consider the suboptimal smoothing problem. Since in the case under consid-
eration ϕ(t, t1) = 1, the equation of the suboptimal smoothing filter becomes the
following relation: x̂s(t |t1) = x̂(t1|t1). Thus, for this example, suboptimal smoothing
is reduced to a shift back on the time scale of the current KF estimate. In accordance
with (2.4.1), we obtain the equation that determines the suboptimal smoothing error
variance:

Ṗs(t |t1) = −2e−KτQ + Q,
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which should be solved in the inverse time with the boundary condition at the right
end of the interval Ps(t1|t1) = √

QR. After solving the equation, we obtain:

Ps(t |t + τ) = 2
√  
RQe− τ

T0 + Q · τ −√  RQ. (2.4.5)

In order to find the parameter τ of the suboptimal smoother, for which the
minimum of the estimate error variance is feasible, we differentiate (2.4.5) with
respect to τ and equate the derivative to zero:

dPs(t |t + τ)

dτ
= −2Qe− τ

T + Q = 0.

Hence, the optimal value of the suboptimal smoothing interval length is deter-
mined by the formula τ∗ = T0 ln 2 ∼= 0.7 T0. Substituting the value τ∗ and T0 into
(2.4.5), we derive P∗

s = 0.7
√
RQ > 0.5

√
RQ = P(τ∞).

The RMSD values of filtering errors, for the optimal and suboptimal smoothers,
depending on the length of the smoothing interval, are presented in Fig. 2.31.

Analyzing the curves, it is pertinent to note that the ratio of the RMSDs of the
optimal and suboptimal smoothers for τ ≤ 0.7 T does not exceed the value of
σs/σ < 1.05, and the ratio of the minimum RMSD of the suboptimal smoothing to
theminimum attainable error of the optimal smoothing is σ∗

s /σ
∗ < 1.18.We can state

that, in the example under consideration, the accuracy of the suboptimal smoothing
algorithm on an optimally selected delay interval is only 5% lower than that of the
optimal smoothing with a constant delay and 18% lower than the potential accuracy
of the optimal smoothing on a fixed interval. Thus, it appears that the proposed
method for the synthesis of suboptimal smoothing algorithms may be successfully
applied in practice.

Fig. 2.31 RMSD versus delay time
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2.4.2 Suboptimal Gravimetric Filter

Let us solve the problem of suboptimal filter design for the problem of marine
gravimetry. Consider a gravimeter with a non-damped (non-inertial) GSE with a
vertical sensitive axis, installed on a gyro-stabilized platform. Denote the GSE
measurement (vertical specific force) as gGR . Now, subtract the normal gravity value
g0 from the GSE readings, take into account the Eotvos correction ΔgE and the
altitude correction g0Z Zho, where ϕ is the latitude, V is the relative velocity vector,
g0Z Z is the normal value of the gravity gradient, hs is the external altitude information
delivered by, for example, the GNSS. Let us integrate the result twice and compare
it with the external altitude information (Fig. 2.32).

The mechanization equations corresponding to the structure shown in Fig. 2.32
are written as follows:

ḣGR = VGR,

V̇GR = gGR + ΔgE − g0 − g0Z Zho,

y = hs − hGR . (2.4.6)

Note that these equations are similar to (2.3.25), (2.3.27).
Earlier in Sect. 2.3, it was noted that when designing a stationary filter without

significant loss in accuracy, the Jordan model can be approximated by models in
the form of integrals of white noise. Other fractionally rational PSDs of the gravity
anomaly, for example, the Schwartz model, are also well approximated by this model
(Bolotin et al. 2002). Therefore, we will describe the gravity anomaly using the
model in the form of the third integral of white noise wGA. Considering errors vs in
the altitude measurements hs = h0 +vs as white noise and neglecting the generating
noise in theGAmodel,wewillwrite the equations of the system state in the deviations
Δh = h0 − hGR , ΔV = V0 − VGR similar to (2.3.26) in the following form:

Δḣ = ΔV, ḃ1 = b2,

ΔV̇ = Δg, ḃ2 = wGA,

Fig. 2.32 Schematic of GSE data preprocessing



2 Data Processing Methods for Onboard Gravity Anomaly Measurements 127

Δġ = b1, y = Δh + vs, (2.4.7)

where wGA and vs are white noises with intensities Q and R, respectively,
and Δg, b1, b2 describe the GA model. By introducing the state vector x =
[Δh ΔV Δg b1 b2]T , it is also possible to reduce (2.4.7) to the matrix form.

The KF equations for (2.4.7) become:

Δ
˙̂h = ΔV̂ + k1

(
y − Δĥ

)
,

Δ
˙̂V = Δĝ + k2

(
y − Δĥ

)
,

Δ ˙̂g = b̂1 + k3
(
y − Δĥ

)
,

˙̂b1 = b̂2 + k4
(
y − Δĥ

)
,

˙̂b2 = k5
(
y − Δĥ

)
. (2.4.8)

The values of the KF gain vector k1 . . . k5 can be obtained through the analytical
solution of the Riccati equation and are given by the following formulas:

k1 = μ(Q/R)1/10, k2 = (μ + 2)(Q/R)2/10

k3 = (μ + 2)(Q/R)3/10, k4 = (μ + 2)(Q/R)4/10,

k5 = (Q/R)5/10, μ = 1 + √
5 ∼= 3.24.

Introduce parameter T = (R/Q)1/10, characterizing the filter time constant. Thus,

k1 = μ

T
≈ 3.24

T
, k2 = μ + 2

T 2
≈ 5.24

T 2
, k3 = μ + 2

T 3
≈ 5.24

T 3
,

k4 = μ

T 4
≈ 3.24

T 4
, k5 = 1

T 5
. (2.4.9)

Write the equations of the suboptimal smoothing filter with the delay τ for the
system under consideration:

Δ
˙̂hs = ΔV̂s + l1(y − Δĥ),

˙̂b1s = b̂2s + l4(y − Δĥ),

Δ
˙̂Vs = Δĝs + l2(y − Δĥ),

˙̂b2s = l5(y − Δĥ),

Δ ˙̂gs = b̂1s + l3(y − Δĥ), Δĥ = Δĥs − τΔV̂s − τ2

2
Δĝs − τ3

6
b̂1s − τ4

24
b̂2s .

(2.4.10)

Here, we use the following notation:
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l1 = k1 − τk2 + τ2

2
k3 − τ3

6
k4 + τ4

24
k5,

l2 = k2 − τk3 + τ2

2
k4 − τ3

6
k5,

l3 = k3 − τk4 + τ2

2
k5,

l4 = k4 − τk5,

l5 = k5. (2.4.11)

The estimate of the suboptimal smoothing filter with the constant delay τ is
associated with the KF estimate by the backward-in-time extrapolation formula
x̂c = ϕ(t − τ, t)−1 · x̂ or, which is the same, x̂ = ϕ(t − τ, t)x̂c. Write down the
latter equation in the scalar form:

Δĥ = Δĥs + τΔV̂s + τ2

2
Δĝs + τ3

6
b̂1s + τ4

24
b̂2s,

ΔV̂ = ΔV̂s + τΔĝs + τ2

2
b̂1s + τ3

6
b̂2s,

Δĝ = Δĝs + τb̂1s + τ2

2
b̂2s,

b̂1 = b̂1s + τb̂2s,

b̂2 = b̂2s . (2.4.12)

Taking into account the formulas for Δĥ from (2.4.7), as well as the fact that
ĥ = hGR − Δĥ, Eq. (2.4.10) can be written as follows:

Δ
˙̂hs = ΔV̂s + l1

(
ĥ − ho

)
,

Δ
˙̂Vs = Δĝs + l2

(
ĥ − ho

)
,

Δ ˙̂gs = b̂1s + l3
(
ĥ − ho

)
,

˙̂b1s = b̂2s + l4
(
ĥ − ho

)
,

˙̂b2s = l5
(
ĥ − ho

)
. (2.4.13)

By multiplying the fifth equation in (2.4.13) by τ4/24, the fourth one by τ3/6,
the third one by τ2/2, the second one by τ, and adding it to the first one, and also
by multiplying the fifth equation by τ3/6, the fourth one by τ2/2, the third one by τ,
and adding it to the second one, taking into account (2.4.11), we obtain:

Δ
˙̂h = ΔV̂s + k1

(
ĥ − ho

)
,
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Δ
˙̂V = Δĝs + τb̂1s + τ2

2
b̂2s + k2

(
ĥ − ho

)
,

Δ ˙̂gs = b̂1s + (k3 − τk4 + τk5)
(
ĥ − ho

)
,

˙̂b1s = b̂2s + (k4 + τk5)
(
ĥ − ho

)
,

˙̂b2s = k5
(
ĥ − ho

)
. (2.4.14)

By subtracting the first two equations of (2.4.14) from the first two equations of
(2.4.6) and taking into account that ĥGR = hGR −Δĥ, V̂GR = VGR −ΔV̂ , we finally
derive the vertical channel equations:

˙̂hGR = V̂GR − k1
(
ĥ − ho

)
,

˙̂VGR = gGR − g◦
zzh

∗ − g0 + ΔgE − Δĝs − τb̂1s − τ2

2
b̂2s − k2

(
ĥ − ho

)
,

Δ ˙̂gs = b̂1s + l3
(
ĥ − ho

)
,

˙̂b1s = b̂2s + l4
(
ĥ − ho

)
,

˙̂b2s = k5
(
ĥ − ho

)
. (2.4.15)

These are the equations of the suboptimal gravimetric smoothing filter (SGSF)
which generates an optimal filtering estimate for the current time of the flight alti-
tude hGR , the vertical velocity VGR and the suboptimal smoothed estimate with the
constant delay τ of the gravity anomaly Δĝs . It is easy to show that the current KF
estimate can be calculated using the formula:

Δĝ = Δĝs + τb̂1s + τ2

2
b̂2s . (2.4.16)

The SGSF block diagram for the vertical channel is shown in Fig. 2.33.
To complete the design of the filter, it is necessary to choose the time delay τ. The

studies conducted by numerical solution of the covariance equation for the estimate
of the form (2.4.10) of the suboptimal fifth-order smoothing gravimetric filter show
that the optimal time of the constant delay is very close to τ∗ = k4/k5. Taking into
account (2.4.9), τ∗ = μT ≈ 3.24 T . As follows from (2.4.11), the coefficients l3, l4
in (2.4.15) become equal to zero.

Of great importance for practice is the filter resolution in time––the averaging
time Ta . In space, it usually corresponds to half-wavelength Ls passed through the
filter. These parameters are related as Ls = TaV/2, where V is the horizontal speed
of the vessel. For the given optimal delay time τ∗, we have:

T = τ∗

1 + √
5
, Ta = 2πT ≈ 1.94 τ∗, Ls ≈ 0.97 τ∗V .
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Fig. 2.33 SGSF block diagram for the vertical channel

2.4.3 Frequency Properties of the Suboptimal Gravimetric
Filter

In the frequency domain, the amplitude response of the SGSF anomaly estimate
Δĝs(&) can be written as follows:

|Δĝs(ω)| =
√  

|v(ω)|2 · ω4 + |Δg(ω)|2
/

1
4 (μT − τ)4ω4 + 1
√
1 + T 10ω10

, (2.4.17)

where v(&) is the Fourier transform of the error in the external altitude informa-
tion, Δg(&) is the Fourier transform of GA as a function of time, & is the angular
frequency. When the delay time is zero, the output amplitude coincides with the KF
output amplitude defined by the following formula:

|Δĝs(ω)| =
√  

|v(ω)|2 · ω4 + |Δg(ω)|2
/

1
4 (μT )4ω4 + 1
√
1 + T 10ω10

. (2.4.18)

With the optimal delay τ∗ = μT ≈ 3.24 T , the amplitude of the SGSF output is
equal to the amplitude of the 5th order Butterworth filter output with the same inputs:
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Fig. 2.34 Amplitude-frequency characteristics (AFC) of the GA estimate for KF, OSF, and SGSF.
The filter averaging time is 100 s

|Δĝs(ω)| =
√  

|v(ω)|2 · ω4 + |Δg(ω)|2 1√
1 + T 10ω10

. (2.4.19)

The main difference between the Butterworth filter and the SGSF is the behavior
of the phase characteristics.

The output amplitude of the optimal smoothing filter (OSF) is defined by the
formula:

|Δĝs(ω)| =
√  

|v(ω)|2 · ω4 + |Δg(ω)|2 1

1 + T 10ω10
. (2.4.20)

The relevant plots of the amplitude-frequency and phase-frequency characteristics
of the anomaly estimates for different algorithms (2.4.18)–(2.4.20) are shown in
Figs. 2.34 and 2.35. The delay interval for smoothing algorithms was 100 s.

2.4.4 Results of the Experimental Data Processing

The GT-2M gravimeter has three parallel vertical channels operating in accordance
with the algorithm described above with different operator-defined time constants.
These channels generate three suboptimal smoothedGAestimates in real time,which
allow the operator, in the process of the anomaly map generation, to choose the
number of the vertical channel output, depending on the sea state. Typically, the
averaging time Ta varies from 300 to 800 s in order to provide the error RMSD
within 0.2–0.3 mGal with the best filter resolution.



132 A. Krasnov et al.

Fig. 2.35 Phase-frequency characteristics (PFC) of the GA estimate for KF, OSF, SGSF, and
Butterworth filter

Figures 2.36 and 2.37 show GA estimation plots obtained using the GTGRAV
software for processing the GT-2A gravimeter data and the GA estimation error as a
function of time for OSF and SGSF for various averaging times. Figure 2.36 shows
anomaly estimation plots; Fig. 2.37 shows anomaly estimation errors. The red curve
in Fig. 2.36 corresponds to the averaging time of 800 s, which is taken to be a true
anomaly during the analysis since there are no independent data to compare with
sufficient resolution. Noisier plots correspond to an averaging time of 300 s. The
smoothing error RMSD is estimated as 0.28 mGal for SGSF and 0.24 mGal for OSF.
Note that the sea was rather rough (the blue dots in both figures indicate the moments
of time when the vertical acceleration exceeded 0.5 g). This somewhat reduced the
accuracy of the estimation. An important fact is that the OSF calculation took about a
minute in the GTGRAV software, and the SGSF calculation took less than a second.

2.4.5 Conclusion

The design of a constant-delay suboptimal smoothing filter has been described. Its
feature is the neglect of the generating noise in the shaping filter equations for the
state vector being estimated. For a linear stochastic system, the estimation equa-
tions and the covariance equation are given for the suboptimal smoothing filter in
continuous time. A methodic example is used to compare such a filter with the
optimal smoothing filter and the Kalman filter. For this example, it is shown that, as
compared with the optimal smoothing filter, the suboptimal filter does not require
any additional computation and memory. At the same time, it is close to the optimal
filter in accuracy. Using the proposed method, we have synthesized a suboptimal
smoothing gravimetric filter corresponding to the steady state under the assumption
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Fig. 2.36 GA estimation plots for OSF and SGSF at averaging times of 800 and 300 s

Fig. 2.37 GA estimation error plots for OSF and SGSF with an averaging time of 300 s. The
estimate with an averaging of 800 s is used as a reference

that GAs are described as the third integral of white noise and its parameters are
defined. It is noted that such a gravimetric filter is integrated in the GT-2M marine
gravimeter (Bolotin and Yurist 2011), mass-produced by Gravimetric Technologies.
Using data from a real marine gravimetric survey, it is shown that the errors of the
suboptimal smoothing gravimetric filter do not differ significantly from the errors of
the optimal smoothing filter. At the same time, the designed gravimetric filter shows
high accuracy, even at rough seas.
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2.5 Using Spherical Wavelet Expansion to Combine
Airborne Gravimetry Data and Global Gravity Field
Model Data

In airborne gravimetry, the problem of gravity anomaly (GA) determination includes
the stages of along-line anomaly estimation and construction of anomaly maps in the
survey area. The latter often includes GA transformations (downward continuation,
calculation of deflections of the vertical, etc.). Correct transformations require the use
of nonlocal information about the gravity field, therefore, airborne gravimetry data
are usually combined with gravity data provided by a global EGFmodel (EGM2008,
EIGEN-6C2, etc.), given in terms of coefficients of the spherical harmonic expansion
(Kern et al. 2003). The use of such an expansion in the problem under consideration
is often technically difficult since working with a full set of coefficients is required.
Another well-known approach, the collocation method (Kern et al. 2003), is based
on a priori stochastic gravity models, the reliability of which, however, is often
questionable. Relatively new approaches to the local GA determination are based
on expansions of the gravity field using a system (complete system in a Hilbert
space) of spherical radial basis functions that have the spatial localization property
(Schmidt et al. 2007). One of such expansions is based on the use of spherical scaling
and wavelet functions; it can be found in (Freeden and Michel 2004). In addition to
localization in space, in the opinion of the authors of this section, an important feature
of this approach is multiscale representation of gravity data, which is a framework
for combining airborne gravimetry data and gravity data from a global gravitational
field model. The combination is based on selecting a common spherical harmonic
bandwidth in both gravity datasets.

Section 2.5 describes the method developed for GA determination in a local area
of the airborne gravimetric survey based on joint processing of airborne gravity
data and the global EGF model data using the multiscale analysis on the sphere. An
algorithm for combining airborne gravity data and global gravity data was developed
based on the least squares method.

Section 2.5 is organized as follows. First, the multiscale analysis based on
the Abel–Poisson spherical wavelets is briefly described; next, the stages of the
local anomaly determination technique developed by the authors of this section are
described, one of which solves the problem of combining the wavelet coefficients
obtained from airborne gravimetry data and the global EGF model. In the problem,
the errors of the wavelet coefficients are assumed to be random values with the
known statistical characteristics obtained from the airborne and global gravity data.
The problemof gravity data combination (throughwavelet coefficients) is formulated
as a problem of determining a linear nonbiased estimate optimal under the criterion
of the minimum mean square error and is solved by the least squares method (LSM)
in the covariance form. The section concludes with the discussion of the results of
the experimental data processing using the algorithms developed for the GA local
determination.
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2.5.1 Spherical Wavelet Expansion and Multiscale
Representation of the Anomalous Gravity Field

Let us elucidate the basics of the multiscale analysis on the sphere (Freeden and
Michel 2004). The gravity anomaly Δg is assumed to be a function defined in the
outer space of the Bjerhammer sphere and square integrable on this sphere. Further,
the GA is represented as a convolution of the radial derivative of the scaling function
ϕJ (x, ys) and the scaling coefficient (SC) aJ (ys) of a certain resolution level J
(Freeden and Michel 2004; Bolotin and Vyazmin 2015):

Δg(x) =
Σ   

s

ωsaJ (ys)
∂ϕJ (x, ys)

∂|x | , (2.5.1)

where ys are the nodes of an equiangular grid on the Bjerhammer sphere ΩR of
radius R, ωs are the integration weights, x ∈ R3, |x | = (

xT x
)1/2 ≥ R. Due to the

normalization of the scaling functions, SCs have the dimension of the potential. The
resolution level J (where J = 0, 1, 2…) is chosen according to the required spatial
resolution of the GA map. The spherical scaling function of the resolution level J is
defined by the following formula (Freeden and Michel 2004):

ϕJ (x, y) =
∞Σ   

n=0

φJ (n)

(
R

|x |
)n+1 2n + 1

4πR2
Pn
(
ξTη

)
,

where ϕJ (n) is the so-called scaling function symbol, Pn
(
ξTη

)
is the Legendre poly-

nomial of the degree n, ξ = x/|x|, η = y/|y|. The scaling function has the following
properties:

(1) axisymmetry, i.e., it depends only on the spherical distance between x, y with
fixedvalues of |x|, |y|; it decreases as the spherical distance between x, y increases;

(2) harmonic in the outer space of the sphere;
(3) it tends to the Dirac delta function on the sphere as J → ∞ in the norm of the

Hilbert space L2(ΩR) of the functions quadratically integrated on the sphere.

In this work, the Abel–Poisson scaling function with the symbol φJ (n) =
exp
(−2−J n

)
is chosen, which rapidly decreases in the spatial and spherical harmonic

domain and can be represented as an elementary function (Fig. 2.38):

ϕJ (x, y) = 1

4πR

|x |2 − R2b2J
(|x |2 + R2b2J − 2bJ xT y

)3/2 , bJ = exp
(−2−J

)
. (2.5.2)

The expansion in the scaling functions (2.5.1) is performed at the finest resolution
level. To solve the gravity data combination problem, however, it is convenient to
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Fig. 2.38 The Abel–Poisson scaling function ϕJ (x, y) (cross-section) on a sphere with a unit
radius at J = 2, 3, depending on the angle (rad) between x, y (left), and its symbol ϕJ (n) (right)

make an expansion into the components of different resolution levels called the
multiscale representation.

The multiscale representation of the GA includes the spherical wavelet decom-
position and wavelet reconstruction procedures. GA wavelet decomposition is the
calculation of the spherical wavelet coefficients (SWC) at various resolution levels
j ≤ J. The SWC contains information about the anomaly within a certain spherical
harmonic bandwidth and is determined using the following formulas (Freeden and
Michel 2004):

cJ (ys) = aJ (ys) −
Σ   

m

ωmϕJ (ys, ym)aJ (ym), (2.5.3)

c j
(
ys j
) =

Σ   

m

ωmψ j
(
ys j , ym

)
aJ (ym), j = j0, . . . , J − 1, (2.5.4)

where c j
(
ys j
)
is the SWC at the node ysj of the equiangular grid at the resolution

level j, ψ j
(
ys j , ym

)
is the Abel–Poisson spherical wavelet function of the resolution

level j defined by the formula:

ψ j
(
ys j , ym

) = ϕ j+1
(
ys j , ym

)− ϕ j
(
ys j , ym

)
.

The Abel–Poisson wavelet function and its symbol ψj(n) = ϕj+1(n) – ϕj(n) are
shown in Fig. 2.39.

The reconstruction of the anomaly from the calculated SWC is defined by the
formula (Freeden and Michel 2004):

Δg̃(x) =
JΣ   

j= j0

Δg j (x), (2.5.5)
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Fig. 2.39 Abel–Poisson wavelet ψ j (x, y) (cross-section) on a sphere of a unit radius when j = 1,
2, depending on the angle (rad) between x, y (left), and its symbol (right)

where Δg j (x) is the detailing component of the anomaly at the resolution level j
calculated using the convolution formulas (in the discrete form):

Δg j (x) =
Σ   

s

ωs j c j
(
ys j
)∂ψd

j

(
x, ys j

)

∂|x | , j = j0, . . . , J − 1, (2.5.6)

ΔgJ (x) =
Σ   

s

ωscJ (ys)
∂ϕJ (x, ys)

∂|x | . (2.5.7)

Here,Δg̃ is the result of GA reconstruction,ψd
j (x, ys) is the dual wavelet function

defined by the following formula (Freeden and Michel 2004):

ψd
j (x, ys) = ϕ j+1(x, ys) + ϕ j (x, ys).

The result of wavelet reconstruction (2.5.5) coincides with the representation of
the anomaly in the form of (2.5.1) with an accuracy of the error of the quadrature
formulas of the convolutions (2.5.3), (2.5.4).

Note that the Abel–Poisson wavelet functions at various resolution levels are not
orthogonal in the space of functions square integrable on the sphere. Therefore, in the
deterministic case, the detailing components of the anomalies Δgj, Δgm of various
resolution levels j /= m cannot be calculated independently; and in the stochastic
sense, i.e., if there are independent random errors in the SWC, these components are
correlated, and the weighted LSM should be used for estimation. Also noteworthy as
one of the advantages of the technique is that, similarly to (2.5.5), other functionals
of the anomalous field, such as the geoid height, deflections of the vertical, etc., can
be calculated from SWC. For this, instead of the wavelet function in (2.5.6)–(2.5.7),
one should use the result of its convolution with the kernel of the corresponding
transformation.
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2.5.2 Technique of Local Gravity Anomaly Determination
from Airborne Gravimetry Data and Global Gravity
Field Model Data Using Multiscale Representation

Figure 2.40 describes the methodology for the local GA determination from airborne
gravity data and the global EGF model data.

The developed technique includes the following stages:

(1) estimation of the GA SCs using the Abel–Poisson scaling functions at the finest
resolution level J corresponding to the desirable spatial resolution of the GA
map based on the results of airbornemeasurements at survey lines. The recurrent
LSMis used in the information form (the covariance form is not suitable since the
covariance matrices may be ill-conditioned at initial iterations) with the survey
line number as the recursion step; regularization of the information matrix of
the SC estimates is used at the last recursion step due to the ill-conditioning of
the problem;

(2) SWC calculation at various resolution levels j ≤ J based on the SCs estimated
at the first stage;

(3) calculation of the anomaly SWC based on the global model of the Earth’s
gravitational field at various resolution levels j ≤ Jglob, where the Jglob value is
determined by the resolution of the global EGF model;

(4) combination of the SWCs obtained from airborne measurements and the global
model data at common resolution levels;

(5) reconstructionof the anomaly estimate (andother functionals of the gravitational
field) from the SWC combining results.

Let us describe these stages in more detail.
At the first stage of the technique, the input data in the problem being solved

are GAs at survey lines obtained from airborne measurements and smoothed using
the gravimetric filter (Stepanov et al. 2015; Bolotin and Yurist 2011) and recorded at
the discrete moments of time tik , i = 1…Mk , where k, k = 1…K, is the survey line

Fig. 2.40 Data flow diagram of airborne and global gravity data processing
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number,Mk is the number of measurements at the kth survey line. The filter, assumed
here to be stationary for simplicity, is characterized in time by the impulse response
function h f (tik − tmk). The filter support, i.e., the number of moments tmk , for which
h f (tik − tmk) /= 0, is assumed to be finite and equal to 2M + 1. The resolution of the
filter in time is characterized by the cutoff frequency ωcut . The resolution in space
is defined as half-wavelength L = 2π V/ωcut , where V is the speed of the aircraft.
The model of the smoothed airborne GA data Δg'

k(tik) at the kth survey line at the
moment of time tik can be represented as follows:

Δg'
k(tik) =

i+MΣ   

m=i−M

h f (tik − tmk)Δg(x(tmk)) + δgk(tik), (2.5.8)

where Δg is the true free air GA, x(tmk) ∈ R3 are the coordinates of the measure-
ment point at the kth survey line in the geocentric coordinate system, δgk(tik) is the
measurement error. It is assumed that

• the coordinates of the measurement points are known exactly from GNSS data;
• the measurement error δgk(t) is a random process with a zero mean and known

correlation function defined by the measurement errors of the gravimeter sensing
element, the GNSS and the properties of the gravimetric filter;

• measurement errors at different flight lines are uncorrelated.

By replacing Δg in (2.5.8) with representation (2.5.1), we obtain:

Δg'
k(tik) =

i+MΣ   

m=i−M

h f (tik − tmk)
Σ   

s

ωsaJ (ys)
∂ϕJ (x(tmk), ys)

∂|x | + δgk(tik), (2.5.9)

where i = 1, …, Mk , k = 1, …, K. The resolution level J is determined based on
the desired spatial resolution of the map as indicated above. The SC nodes ys in
(2.5.9) are defined on the sphere ΩR , the radius R of which will be chosen equal to
the minimum distance from the center of the Earth to the measurement points at the
survey lines. Due to the fast attenuation property of the scaling function, in (2.5.9),
it is sufficient to take into account only the nodes ys from a certain neighborhood of
point x(tmk). The size of the neighborhood is chosen based on the attenuation rate of
the scaling function and the required accuracy of the map. An example of a set of
SC nodes defined by the survey lines is shown in Fig. 2.41.

Rewrite the model of the smoothed airborne measurements at the kth survey line
(2.5.9) in the vector form:

Δg'
k = Hkak J + δgk, k = 1 . . . K , (2.5.10)
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Fig. 2.41 A set of nodes of
the scaling coefficients
(dots) defined by survey
lines (solid lines) on the
longitude–spherical latitude
plane (km × km)

where Δg'
k = (

Δg'
k(t1k), . . . ,Δg'

k

(
t Mkk

))T
and δgk = (

δgk(t1k), . . . , δgk
(
t Mkk

))T

are Mk × 1 vectors of measurements and their errors, akJ is the Nk × 1 vector of
unknown SCs aJ (ys) in the nodes ys corresponding to the kth survey line.Hk denotes
theMk ×Nk matrix consisting of the sumof the products of thefilter impulse response
function in (2.5.9), the weights ωs and the values of the scaling function derivative
at the nodes ys:

Hk =
⎛

⎜
⎝

w1(t1k) . . . wNk (t1k)
...

. . .
...

w1
(
tMkk

)
. . . wNk

(
tMkk

)

⎞

⎟
⎠

ws(tik) = ωs

i+MΣ   

m=i−M

h f (tik − tmk)ϕJ (x(tmk), ys).

,

Introduce the covariance matrix Rk = E
[
δgkδgTk

]
which is determined from

the assumed known correlation function of the airborne gravimetric measurement
errors. It should be recalled that E

[
δgkδgTm

] = 0, k /= m. Let us solve the problem
of estimating the scaling coefficients akJ based on measurements (2.5.9) using the
generalized least squares method with the following criterion:

KΣ   

k=1

||
||Δg'

k − Hkak J
||
||2
R−1
k
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=
KΣ   

k=1

(
Δg'

k − Hkak J
)T

R−1
k

(
Δg'

k − Hkak J
)→ min

ak J∈RNk
(2.5.11)

Problem (2.5.11) is essentially the problem of the downward continuation of the
gravity field (Freeden and Michel 2004), since the nodes ys of the SCs of interest are
given on the underlying sphereΩR . Thus, the problem belongs to the class of inverse
ill-posed problems (Tikhonov and Arsenin 1979). Solution (2.5.11) is determined
using the recurrent LSM in the information form with the survey line number k as a
recursion step (Kailath et al. 2000):

Qk = Qk−1 + I Tk HT
k R−1

k Hk Ik, k = 1 . . . K , (2.5.12)

bk = bk−1 + I Tk HT
k R−1

k Δg'
k, (2.5.13)

with the initial conditionsQ0 = 0, b0 = 0, whereQk is the information N × N matrix
of the vector aJ ∈ RN consisting of the SCs defined by all the K survey lines; bk
is the information estimate of the vector aJ , Ik is the Nk × N matrix specifying the
projection of the vector aJ onto a subset of the SCs correlated only with the kth
survey line: IkaJ = ak J .

Algorithm (2.5.12)–(2.5.13) is written in the form for a given set ofK survey lines
and, therefore, for the state vector of the known and constant dimension. However,
the form of the algorithm, in which the dimension of the vector of the estimated
SCs automatically increases when a new survey line is added to the processing, is
practically more convenient. The algorithm in this form is as follows:

Q(k) =
(
Q(k−1) 0

0 0

)

+ IT(k)H
T
k R−1

k HkI(k), k = 1, 2 . . . (2.5.14)

b(k) =
(
b(k−1)

0

)

+ IT(k)H
T
k R−1

k Δg'
k, (2.5.15)

with the initial conditionsQ(0) = 0, b(0) = 0. Here,Q(k) is the information N(k) × N(k)

matrix of the SC vector defined by k survey lines; b(k) is the informational estimate
of the SC vector, I (k) is theNk ×N(k) matrix that specifies the projection of the vector
of SCs defined by k survey lines onto a subset of the SCs correlated only with the
kth survey line.

The estimate of theN(K) ×1-SCvector aJ after theK th recursion step is determined
based on the solution of the equation: b(K) = Q(K)aJ . The estimate error covariance
matrix is calculated using the information matrix Q(K). The Q(K) matrix may be ill-
conditioned. Let us define the estimate of the covariance matrix of the SC estimate
errors P̃δaJ as the inverse of the regularized information matrix:
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P̃δaJ = (Q(K ) + μ2I
)−1

, (2.5.16)

where I is the unit N(K) × N(K) matrix, μ is a regularization parameter. The estimate
of the SC vector is

ãJ = P̃δaJ b(K ). (2.5.17)

The selection of the regularization parameter is discussed below.
The second stage of the technique is the wavelet decomposition (Freeden and

Michel 2004) of airborne gravimetry data which includes the calculation of the
wavelet coefficients at various resolution levels j≤ J based on theSCestimates ãJ (ys)
found. The need for this stage is due to the fact that the data of airborne gravimetry and
the global EGF model have different spatial resolutions (in terms of the multiscale
analysis: different maximum resolution levels). Wavelet decomposition makes it
possible to combine SWC estimates of airborne gravimetry data and global EGF
model data at common resolution levels. Note that SWCs can be treated as the
results of bandpass filtering of anomaly data.

Let us denote the SWCs calculated at various resolution levels j = j0…J as c̃ j
(
ys j
)

from the SC estimates ãJ (ys) according to formulas (2.5.3), (2.5.4). Denote the Nj ×
1 vector of the SWCs as c̃ j and represent (2.5.3), (2.5.4) in the vector form c̃ j = Uj ãJ .
Uj is an Nj × Nj matrix composed of products of the integration weights and the
wavelet function values at the nodes of the grid. The covariance matrix for the SWC
vector estimation error obtained from airborne gravimetry data is determined from
the covariance matrix for the SC estimation error by the following formula:

P̃j = Uj P̃δaJU
T
j j = j0 . . . J. (2.5.18)

The third stage of the technique is the wavelet decomposition of the global model
of the gravitational field, namely, the SWC cglobj of anomalies and the covariance

matrices of their errors Pglob
j are calculated at various resolution levels j = j0…Jglob

using formulas (2.5.3), (2.5.4), where the SCs aJglob(ys) are calculated using the
scaling expansion formula:

aJglob(ys) =
Σ   

p

ωpϕJglob
(
ys, yp

)
Δgglob

(
yp
)
, (2.5.19)

and ys, yp are the grid nodes from (2.5.1), Jglob is the maximum resolution level of the
global model determined from the spatial resolution of the global data, Δgglob(yp)
= gglob(yp) − g0(yp) is the GA for which the gravity gglob is calculated from the
spherical harmonic coefficients of the global model, and g0 is calculated using the
normal gravity formula used in the GA estimation on survey lines based on airborne
gravimetric measurements. Note that the maximum resolution level of the global
model is lower than the maximum level of the airborne gravimetry data.
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The covariance matrices Pglob
j are calculated from the covariance matrix of the

global gravity data errors E[δgglobδgglobT] calculated from the estimates of RMS
errors of the spherical harmonics coefficients provided by the developers of the
global model.

The fourth stage of the technique is devoted to the combination of multiscale
representations of airborne gravimetry data and the global EGF model at common
resolution levels and is discussed in detail below.

At the final fifth stage of the technique, the reconstruction of the anomaly esti-
mate (and other functionals of the gravitational field) is performed based on the
combination results.

2.5.3 Multiscale Representation of Gravity Anomaly Based
on Combination of Airborne Gravimetry Data
and Global Gravity Field Model Data

The following is the algorithm for combining airborne gravimetry data and the global
EGFmodel in a multiscale representation in the terms of SWCs based on the specific
statistical assumptions mentioned below.

Consider the resolution level j , j = j0…J. Let us pose the problem of refining
the estimates of the Nj × 1 vectors of SWCs c̃ j and the covariance matrices of their
errors obtained from airborne gravimetric measurements by the global model data.
Let us represent the obtained above estimate of the SWC vector as c̃ j = c j + δc j ,
where c j is the vector of the true SWCs, δc j is a random SWC error vector with

zero mean and the covariance matrix P̃j = E
[
δc jδcTj

]
determined from airborne

gravimetric data using formula (2.5.18).
Assume that cglobj and Pglob

j are theNj ×1SWCvector of the anomaly and theNj ×
Nj matrix of the covariances of their errors calculated from the global model data at
the resolution levels j = j0…Jglob. Since the spatial resolution of airborne gravimetry
data is usually higher than that of global data, the correspondingmaximum resolution
levels of the data satisfy the inequality Jglob ≤ J. Let us represent the SWC vector
of global data in the form cglobj = c j + δcglobj assuming that δcglobj is a random

vector with zero mean and the covariance matrix Pglob
j = E

[
δcglobj (δcglobj )T

]
. Let us

assume the positive definiteness of the matrix P̃j + Pglob
j and the lack of correlation

of the SWC errors of both airborne gravity data and global data at various resolution
levels. Let us specify the problem of refining the estimate c̃ j of the vector c j by
cglobj at the common resolution levels j = j0…Jglob as a problem of the SWC vector

optimal estimation c j in the class of linear estimates of the form F1 j c̃ j + F2 j c
glob
j ,

where F1j, F2j are arbitrary Nj × Nj matrices. As a criterion, let us use the minimum
for all F1j, F2j of the guaranteed value for the second moment of the estimation error:
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sup
c j∈RN j

E

[||
||
||c j − F1 j c̃ j − F2 j c

glob
j

||
||
||
2
]

→ min
F1 j ,F2 j

, j = j0 . . . Jglob. (2.5.20)

The unknown vector c j is assumed to be deterministic. By transforming the
formula for the secondmoment of the estimation error, it is easy to show that (2.5.20)
is reduced to a problem of the form:

tr
(
F1 j P̃j F

T
1 j + F2 j P

glob
j FT

2 j

)
→ min

F1 j+F2 j=I j
, (2.5.21)

where tr is the trace of the matrix, I j is a unit Nj × Nj matrix. Solution (2.5.21) and
the optimal estimate of the vector cj are determined by the LSM algorithm in the
covariance form (Kailath et al. 2000):

c̃+
j =

(
I − F̃2 j

)
c̃ j + F̃2 j c

glob
j ,

P̃+
j =

(
I − F̃2 j

)
P̃j ,

F̃2 j = P̃j

(
P̃j + Pglob

j

)−1
, (2.5.22)

with j = j0…Jglob, where c̃+
j , P̃

+
j denote the result of vector cj estimation and the

estimation error covariance matrix. It should be noted that problem (2.5.20) is actu-
ally the least squares collocation problem but it is posed in the space of wavelet
coefficients and does not require a priori stochastic hypotheses about GA.

2.5.4 Results of the Real Data Processing

The developed local GA determination technique using the combination algorithm
(2.5.22) was applied to the airborne gravimetric data from a survey in the Arctic
(Smoller et al. 2013). The airborne measurements were collected using the GT-1A
gravimeter. Note that at the same time, the Chekan-AM gravimeter was also used
in this onboard survey (Krasnov et al. 2014; Peshekhonov et al. 2015). The spatial
resolution of the gravimetric filter of GT-1A was 5 km. Its output data frequency was
18 Hz. The prefiltered measurement errors roughly correspond to the white noise
model at the frequency of 1 Hz with the RMS of 50 mGal. The geographical latitude
of the survey area varies from 73 to 77°. The average flight altitude is 3700 m.
The Helmert formula for the normal gravity was used in calculations (Golovan and
Parusnikov 2012). Airborne gravimetric measurements were used to estimate the
SC aJ of the gravity anomaly based on algorithm (2.5.14)–(2.5.15) at the maximum
resolution level J = 11 approximately corresponding to the filter resolution (the first
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stage of the developed technique). The airborne data at forty survey lines (north–
south) with the line spacing of 1 km were processed. The scaling coefficients were
estimated at nodes of 1.0 km× 1.4 kmgrid on the spherewith the radiusR= 6358 km.
The radius of the area of the SC computation (2.5.9) was chosen to be 20 km. The
regularization parameter μ of the information matrix Q(K) in (2.5.16) was selected
according to the criterion of the proximity of the anomaly estimate reconstructed at
survey lines from the SC estimates ãJ (2.5.17) using formula (2.5.1) to the original
airborne gravimetric data with the RMS value for the discrepancy not greater than
0.5 mGal.

At the second stage of the technique for SC estimation ãJ , SWC estimates c̃ j and
the covariance matrices of their errors were calculated using formulas (2.5.3)–(2.5.4)
and (2.5.18) at the levels of j = 9, 10, 11. The value of the wavelet reconstruction
RMS error (2.5.5) of the SWC anomaly c̃ j on survey lines is 0.65 mGal.

For combining, the EGM2008 global EGF model was used up to the spher-
ical harmonic degree and order of 1800 (the maximum spherical harmonic degree of
the model is 2190, the nominal spatial resolution at the equator is 9.3 km × 9.3 km).
Based on EGM2008 data, the SWCs cglobj and the covariance matrices of their errors
were calculated at the levels j = 9, 10 (the third stage of the technique). The RMS
error values of the SWCs of the global EGM2008 model and SWCs of airborne
gravimetric data are given in Table 2.4.

The integration of SWCs c̃ j and c
glob
j (the fourth stage) is performed by the LSM

algorithm (2.5.22).
At the final (fifth) stage of the technique, the SWCestimateswere used to calculate

the free air GA estimates at the 1.5 km× 1.5 km grid nodes on the reference ellipsoid
surface in the survey area.

The GA maps (Fig. 2.42) and GA along a survey line are shown in Fig. 2.43.
The GA based on SC estimates obtained from airborne gravimetric data and the GA
resulting from the data combination are oversmoothed in the east–west direction as
the distance between the survey lines is smaller than the spatial resolution of the
gravimetric filter.

The RMS value of the difference between the GAs obtained from the SCs ãJ esti-
mated from airborne gravimetric data and the GAs obtained from data combination
is 5.4 mGal.

Table 2.4 RMS errors of global and airborne SWCs

Resolution level j SWC RMS error, mGal

Global data Airborne data (inside the
survey area)

Airborne data (the entire
survey area)

9 6.3 3.0 30.0

10 13.0 11.0 70.0
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Fig. 2.42 Free air GA at 1.5 km × 1.5 km grid nodes on the surface of the reference ellipsoid in
the survey area (mGal): a is the anomaly based on the SC estimates obtained from airborne gravity
data, at the maximum level J = 11, and survey lines; b is the anomaly based on the combined
SWCs; c is the anomaly based on the EGM2008 model

Fig. 2.43 Free air GAs along the survey line (mGal): solid line: anomaly from the original airborne
gravimetric data; dash-dotted line: anomaly based on the SWCs resulting from data combination
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2.5.5 Conclusion

The multiscale representation method based on spherical wavelet expansion was
applied to the problem of local determination of the anomalous gravity field from
the airborne gravimetric data and gravity data from a global model of the Earth’s
gravitational field. A method for this problem solution was developed and applied
to real airborne data and global gravity data (EGM2008). The LSM-based algorithm
for combining airborne gravimetric and global data was developed and tested. The
gravity anomaly estimate obtained from the data weighted combination is slightly
oversmoothed in the east–west direction, which is due to the fact that the spatial
resolution of the gravimetric filter (north–south direction) is coarser than the data
spatial resolution in the east–west direction defined by the line spacing.

The proposed algorithms make it possible to deal with the inverse ill-posed
problem of local gravity determination on the reference ellipsoid surface from
airborne gravimetric measurements of GAs at the flight altitude. It is shown that
the RMS error of the gravity anomaly reconstruction from the airborne wavelet coef-
ficients did not exceed 0.7 mGal. The proposed algorithms have certain advantages
as compared with the algorithms that are often used to combine different types of
gravity data and based on the collocation method, since the presented algorithms do
not require any statistical hypotheses about GA.
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Abstract This Chapter is devoted to determination of deflections of the vertical 
(DOV). A general overview of DOV determination methods on a moving base is 
provided. The methods addressed include the gravimetric method, astrogeodetic 
method, and inertial-geodetic method. Also considered are gravity gradiometry, 
satellite or aircraft altimetry, satellite-to-satellite tracking and other satellite missions 
using the Earth’s gravity models, as well as combinations of these methods. The auto-
mated zenith telescope developed by Concern CSRI Elektropribor, which determines 
DOV components by field observations of the near-zenith part of the stellar sky, is 
described. Findings from field studies are presented proving the efficiency of the 
proposed technical solutions. The integrated system comprising a precision inertial 
measurement unit and a GNSS compass developed by Concern CSRI Elektropribor 
is presented. 
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This chapter is devoted to the methods for determining and calculating deflections 
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Section 3.1 presents a general overview of the methods used to determine deflec-
tions of the vertical (DOV) on a moving base. Special attention is given to the 
gravimetric method, which is based on gravity anomaly measurements, the astro-
geodetic method, involving comparison of astronomical and geodetic coordinates, 
and its version, the inertial-geodetic method. Also considered are gravity gradiom-
etry, based on measuring the second derivatives of gravity potential, satellite or 
aircraft altimetry, based on trajectory altitude measurements, satellite-to-satellite 
tracking and other satellite missions using the Earth’s gravity models, as well as 
combinations of these methods (for example, astrogravimetric method). The classi-
fication criteria for DOV determination methods are proposed, and their comparative 
qualitative analysis is carried out. 

Section 3.2 is devoted to the determination of DOV components by the astro-
geodetic method. The focus here is on the description of an automated zenith tele-
scope developed by Concern CSRI Elektropribor, intended for real-time determina-
tion of DOV components by field observations of the near-zenith part of the stellar 
sky. The principle of operation, basic parameters of the components, algorithms for 
processing the observation results and accuracy characteristics of the zenith tele-
scope are discussed. The results of field studies are presented proving the efficiency 
of the proposed technical solutions and processing algorithms, and the suitability of 
the automated zenith telescope for high-precision DOV determination. 

And finally, Sect. 3.3 describes the inertial-geodetic method for DOV determina-
tion. The general idea and features of the method are discussed, with special attention 
given to the potential for its implementation in high latitudes. The proposed solu-
tion is creation of a specialized integrated system comprising a precision inertial 
measurement unit and a GNSS compass, which is a two-antenna receiving system 
with a 6 m long antenna baseline. Algorithms for the problem solution are described. 
The accuracy of the integrated system is estimated based on the simulation and the 
results of sea trials of the GNSS compass developed by Concern CSRI Elektropribor. 

3.1 DOV Determination on a Moving Base 

Both high-precision navigation and geodetic surveying require the knowledge of 
the Earth’s gravity field (EGF) parameters. These parameters traditionally include 
quasi-geoid height ζ, gravity anomaly Δg (GA), and DOV. Deflections of the vertical 
provide more detailed information on the Earth’s figure and nonuniform mass distri-
bution under its surface, help to solve reduction problems of higher geodesy and 
improve the positioning accuracy achieved by high-precision marine navigation 
instruments. 

Due to the complicated nature of the Earth’s surface and its internal structure, the 
direction of the actual gravity vector (vertical) does not coincide with the direction of 
the normal gravity vector at the points of the Earth’s physical surface. This difference 
is referred to as the deflection of the vertical, or plumb line deflection. A distinction is 
made between astrogeodetic and gravimetric DOVs (Ogorodova 2006). Deflections
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of the vertical are usually specified by a set of two deflection angles in the meridian 
plane ξ and the plane of prime vertical η, respectively (Shimbirev 1975). 

DOV values close to the Earth’s surface are within several angular seconds and 
may come up to one angular minute. For high-precision navigation, it is required 
to measure the DOV components with errors not exceeding 0.5–1 arcsec. This is 
feasible on a fixed base, but causes significant technical difficulties onboard moving 
vehicles (Peshekhonov et al. 1989; Anuchin 1992). 

Currently, a wide variety of methods aided with specialized hardware have been 
developed to determine DOV. To study and comparatively estimate these methods, 
their specific use on a moving base should be taken into account. Then it should 
be remembered that all DOV measurements are taken by indirect methods, and the 
values are calculated in real time or during postprocessing. It is very important to 
provide stable operating conditions for the measuring equipment and to apply various 
error reduction methods, both hardware and software. 

For the analysis and combination and optimization synthesis of various algorithms 
while developing the software and well-founded schemes and engineering solutions, 
diverse DOV determination methods should be represented in the form of classifi-
cation diagrams based on the selected criteria. Consideration of possible designs of 
measurement systems with account for various combinations of classification criteria 
allows covering a wide range of design and technical solutions, as well as stimulating 
the development of new options using new combinations of components. 

This Section gives a comparative analysis of various methods for DOV determi-
nation on a moving base taking into account the selected classification criteria. 

3.1.1 Basic Methods for DOV Determination 

In higher geodesy, the methods for studying the Earth’s figure and gravitational field 
are traditionally classified into geometric and physical (gravimetric) ones, which are 
subdivided in accordance with the characteristics of the measured quantities (Shim-
birev 1975; Torge 2001; Ogorodova 2006). In geometric methods, primary measure-
ments are measurements of lengths and angles, whereas in gravimetric methods, they 
are gravity measurements. DOV determination methods can also be divided into 
physical and geometric methods. However, when determining DOV on a moving 
base (satellites, airplanes, ships, etc.), other features should be taken into account 
such as the vehicle’s dynamic performance, information processing algorithms used, 
etc. 

The main available methods to determine DOV include 

• gravimetric method based on gravity anomaly measurements; 
• astrogeodetic method based on the comparison of astronomical and geodetic 

coordinates; 
• inertial-geodetic method based on the use of output signals of a precision inertial 

navigation system (INS) and GNSS;
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• gravity gradiometry method based on the measurement of second derivatives of 
the geopotential; 

• satellite or aircraft altimetry method based on measuring the altitude of the 
trajectory of a moving vehicle; 

• method using EGF global models based on satellite-to-satellite tracking, as well 
as combinations of these methods (e.g., astrogravimetric method). In addition to 
the above listed, the collocation method may also be mentioned based on the use 
of known correlations between various EGF components. 

The gravimetric method based on the acquisition and processing of data arrays 
on gravity anomalies is one of the main methods for determining DOV at sea. A 
gravimetric survey was first carried out by F. A. Vening-Meinesz in 1923 onboard a 
submarine. This method is traditionally practiced in the Russian Federation for trajec-
tory or aerial surveys (Bolshakov 1997; Drobyshev et al. 2006; Nepoklonov 2010; 
Koneshov et al. 2015, 2016b). It is based on the numerical solution of the Laplace 
equation for the disturbing gravity potential in explicit form and requires postpro-
cessing of large arrays of primary measurement data. DOV values are obtained by 
applying Vening-Meinesz’ formulas (3.1.1) given in Table 3.1 to the gravimetric 
survey data. The initial data for DOV calculation are the measured gravity anomaly 
values Δg with their corresponding geodetic coordinates B, L. Airborne gravimetry 
is more efficient as compared to marine measurements, although the observed wave-
length of the measured gravity anomalies is somewhat longer and the dependencies 
are more smoothed.

The astrogeodetic method is based on measuring astronomical and geodetic 
coordinates at given points along a path or over an area (Peshekhonov et al. 1995; 
Kudrys 2009; Hirt et al. 2010; Tsodokova et al. 2014). The angles generated by the 
systems measuring the astronomical coordinates are continuously compared with the 
readings of geodetic instruments: formula (3.1.2) in Table 3.1. As for the accurate 
measurement of geodetic coordinates on a moving base, there is virtually no alterna-
tive to the GNSS. Astronomical coordinates can be measured by precision systems 
such as an astronavigation system, or a zenith telescope. These systems implement 
the astronomic positioning method. 

This method has some limitations, for example, when applied at sea, the required 
accuracy can only be provided at very low speeds (the vessel drift cannot exceed 2 km 
over the measurement time of about 20 min); another requirement is that near-zenith 
stars be continuously observed, hence, the sky should be only slightly cloudy and the 
system should be highly sensitive to faint stars (Vasiliev et al. 1991a). To ensure the 
desired DOV accuracy, the spatial angular stabilization of the astronomical system 
is required. Therefore, the best results can be obtained on an inherently non-mobile 
platform (such as drifting ice) (Troitskii 1994). This ensures the high accuracy of 
angular measurements and determination of the geodetic zenith with minimal error. 

The advantage of the astronavigation system and zenith telescope is that the errors 
in modeling the inertial frame are limited and practically do not depend on the 
duration of continuous operation. Their key strong point consists in the ability to 
determine the full DOV values.
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Table 3.1 Analytical dependencies of DOV parameters on measured parameters for various 
methods 

Analytical expressions Measured 
parameters 

Gravimetric method (Ogorodova 2006) 

ξ = −  
1 

2π 

{ π 

0 

{ 2π 

0 
ΔgQ(ψ) cos Adψd A, 

η = −  
1 

2π 

{ π 

0 

{ 2π 

0 
ΔgQ(ψ) sin Adψd A  

(3.1.1) Δg, B, L 

Astrogeodetic method (Ogorodova 2006) 

ξ = ϕ − B, 
η = (λ − L) cos φ 

(3.1.2) B, L, ϕ, λ 

Gravity gradiometry (Anuchin 1992) 

ξ = ξ0 − 1/γ(Txx  Δx + Txy  Δy + Txz  Δz), 
η = η0 − 1/γ(Txy  Δx + Tyy Δy + Tyz Δz) 

(3.1.3) Txx , Tyy, 
Txy, Txz , 
Tyz, 
Δx, Δy, Δz 

Altimetry (Shimbirev 1975) 

ξ = −(1/R)(∂ζ/∂ B), 
η = −(1/R cos B)(∂ζ/∂ L) 

(3.1.4) ζ, B, L 

Global EGF models (Satellite missions) (Koneshov et al. 2012) 

ξ = −  
f M⊕ 
γr2 

N∑ 

n=2 

( a 
r 

)n n∑ 

m=0 

d Pnm (sin ϕ) 
dϕ 

(Cnm cos mλ + Snm sin mλ), 

η = − f M⊕ 
γr2 cos ϕ 

N∑ 

n=2 

( a 
r 

)n n∑ 

m=0 

m Pnm (sin ϕ)(Snm cos mλ − Cnm sin mλ) 

(3.1.5) ϕ, λ, r 

where ξ, η are DOV components in the meridian plane and the prime vertical plane; B, L are 
geodetic latitude and longitude; ζ is the quasi-geoid height; ϕ, λ are astronomical latitude and 
longitude; Tij are components of tensor of geopotential second derivatives (i, j = x, y, z); Δx, Δy, 
Δz are increments of the vehicle coordinates; Q(ψ) is the Vening-Meinesz function; ψ is the 
spherical distance from the studied point to the current point; A is the geodetic azimuth of the 
current point; Δg = (g − γ) is the gravity anomaly measured with a gravimeter; g, γ are the real 
and normal gravitational accelerations at the reference point; R is the average radius of the Earth; 
a is the semi-major axis of the common Earth ellipsoid; ϕ, λ, r are the spherical geocentric 
coordinates (latitude, longitude, radius vector) of the point; f M⊕ is the product of the 

gravitational constant by the Earth mass; Pnm are the normalized Legendre functions; Cnm , Snm 
are the normalized expansion coefficients
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The inertial-geodetic method utilizes a precision INS and rests on the depen-
dence of errors in its output navigation parameters on the anomalies. This method is 
described in detail in (Schultz and Winokur 1969; Nesenyuk et al. 1980; Dmitriev 
1997; Li and  Jekeli  2008; Timochkin 2013), and in Sect. 3.3. Analysis and consid-
eration of the INS error, actually a methodical one, makes it principally possible to 
directly determine DOV increments with respect to the reference value at a reference 
point by filtering or smoothing using the differences in the INS and GNSS measure-
ments. It is important that the INS should be a precision one so that in constructing the 
inertial vertical, the methodical errors caused by the disagreement between the actual 
EGF and its calculated model used in INS algorithms prevail over instrumental errors 
of inertial sensors—gyroscopes and accelerometers (Emel’yantsev et al. 2015). In 
contrast to the astronavigation system, the inertial coordinate system in the INS is 
based on the readings of gyroscopes and accelerometers, and the errors in the iner-
tial frame simulation are determined by the gyro drift. It should be noted that due 
to the accumulation of the INS longitude error, the full DOV value in the prime 
vertical plane cannot be determined during the correction even with perfectly known 
longitude, i.e., this component is not completely observable (Emel’yantsev et al. 
2015). 

On the other hand, the advantage of INS as compared to astronavigation system 
is its independence from weather conditions and time of day. In principle, the 
inertial-geodetic method can be considered as a type of astrogeodetic method where 
the astronomical coordinates are generated using a precision INS (Dmitriev 1991; 
Emel’yantsev et al. 2015). It should be emphasized that, unlike the conventional astro-
geodetic method, in the inertial-geodetic method the INS generates both astronomical 
coordinates and their derivatives. 

DOV determination by gravity gradiometry uses a device measuring all the 
components of the tensor of the geopotential second derivatives, the so-called full 
tensor gradiometer (FTG). This method involves the implementation of an algorithm 
where the readings of gyroscopes, accelerometers, and FTGs are integrated in real 
time to determine the vehicle position and gravity vector increments along the motion 
path with account for the base angular position (Peshekhonov et al. 1989; Evstifeev 
2017). To provide for accurate operation of such a system during DOV determination, 
it is critically important to ensure accurate angular stabilization of the FTG in the 
Earth-fixed coordinate system and to know the initial conditions of the integration, 
which are specified by other methods and means. To measure DOV accurate to about 1 
arcsec, the permissible FTG error should be 1 Eo, and the error in FTG spacial angular 
stabilization should be max 1 arcsec without using analytical methods to calculate 
the stabilizer errors (Staroseltsev 1995; Semenov 2012). The material relating to 
gravity gradiometers is presented in more detail in Sect. 5.2. 

Altimetry method of DOV determination is based on the application of quasi-
geoid height models. The accuracy of the method depends on the accuracy of deter-
mining the coordinates of the vehicle (satellite or airplane) and the accuracy of 
measuring the altitude above the Earth’s surface and the sea level. DOV values are 
determined using the G. Moritz formulas—formulas (3.1.4) in Table 3.1 (Moritz 
1980). The observed wavelength of anomalies determined by the altimetry method
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is within the range between 30 and 300 km (LaCoste et al. 1982; Watts et al. 1984; 
Medvedev et al. 2010). 

The use of global EGF models based on the results of satellite missions has 
provided an enormous amount of data about the EGF. The data received from the 
CHAMP, GRACE, and GOCE satellite missions were used to derive global models of 
the EGF anomalies that actually can be used to calculate and display the distribution 
of DOV components all over the Earth’s surface (Jekeli 1999; Hirt  2010; Koneshov 
et al. 2012; Karpik et al. 2015). It would take several tens or even hundreds of years 
to solve this global problem by gravimetric or other methods. In this sense, methods 
based on satellite data are beyond competition. The CHAMP and GRACE missions 
use satellite-to-satellite tracking. In the CHAMP mission, in the high-low satellite 
mode the low-orbit satellites are tracked from high-orbit satellites, thus allowing the 
gravity vector to be measured as the first derivative of the geopotential. In this case, 
DOV parameters can be determined by the gravimetric method. 

The satellite-to-satellite tracking in low-low mode was implemented in the 
GRACE project employing two twin satellites separated by 220 km at the orbit 
altitude of about 500 km. The distance between satellites is determined with very 
high accuracy (about 10 μm) using a precise K-band microwave ranging system 
(Albertella et al. 2002; Kima and Tapley 2002). Each of the satellites within the 
system is also tracked from high-orbit satellites. In this system, differences between 
gravitational accelerations are calculated on a long base as if it were a giant 
gradiometer measuring some components of the tensor of the geopotential second 
derivatives. The data obtained for determining DOV smoothed parameters are more 
informative than in the previous case. 

In GOCE mission, an FTG was installed in a satellite. It was designed as a 
set of three pairs of orthogonal high-precision accelerometers with three sensitive 
axes spaced 50 cm apart. This resulted in significant progress in determining the 
distribution of the EGF anomaly parameters (Albertella et al. 2002). 

Using global EGF models based on satellite data to determine the DOV variability 
in a local area (with a short resolvable wavelength) is limited because of rather 
high speeds and altitudes of satellites above the Earth’s surface. Lower orbits are 
impracticable for satellites due to atmospheric drag. 

Global EGF models constructed by the mission data can be found in Sect. 6.1. 
Table 3.1 gives the analytical equations used to calculate DOV by the results of 

direct measurements of other physical quantities using the above methods. 
Potential accuracies of DOV determination methods are determined based on the 

measured parameters and performance of modern equipment. 

3.1.2 Features of DOV Determination on a Moving Base 

Specific features of DOV determination on a moving base are as follows:
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• the need to measure small physical forces and accelerations against the back-
ground of large noise, mostly formed by the forces of inertia; 

• impossibility, in most cases, to stop a vehicle to make corrections; 
• high accuracy requirements for measuring the system orientation angles or 

compensation for angle variation; 
• high speeds of the vehicle relative to the Earth’s surface and large distance 

between the measuring equipment and the Earth (in case of airborne or satellite 
measurements); 

• the need to strictly follow the programmed linear paths during motion to reduce 
disturbing effects on the instrumentation during turns; 

• the need to occasionally update measurements and introduce corrections at 
preformed zero (reference) points to obtain the corrected DOV values. 

The observed DOV variability along the path can be conventionally defined by 
the wavelengths of anomalies. That is, the shorter the wavelength of the anomaly 
measureable by a certain method, the more accurately the DOV variability is deter-
mined. For example, at a high altitude above the Earth’s surface and at a high speed, 
the instrumentation smoothes short waves while neglecting minor DOV variations. In 
accordance with the available information, Fig. 3.1 clearly compares the capabilities 
of various methods to determine the DOV depending on the wavelength of the grav-
itational field anomalies and the achievable measurement error (Peshekhonov et al. 
1989; Anuchin 1992; Li et al.  2001; Albertella et al. 2002; Seeber 2003; Volgyesi 
2005; Tse and Baki Iz 2006; Hirt and Seeber 2008; Ceylan  2009; Featherstone and 
Lichti 2009; Kudrys 2009; Hirt  2010; Jekeli 2011, 2012; Smith et al. 2013; Guo et al. 
2014; Rezo et al. 2014; Šprlák and Novák 2014; Koneshov et al. 2014, 2016a). In 
DOV determination, the minimum observable wavelength and measurement error 
are different depending on the kind of vehicle. 

Fig. 3.1 Capabilities of different DOV determination methods
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The advance in modern technology has opened up new possibilities that make 
researchers reconsider the application and feasibility of various methods for DOV 
determination. 

It was shown that DOV can be measured onboard accurate to 1 arcmin if the errors 
of the applied gravity gradiometers, accelerometers, and gyroscopes do not exceed 
1 Eo,  2  · 10–5 ms−2 (2 μg), 5 · 10–4°/h, respectively (Peshekhonov et al. 1989). As for 
the inertial-geodetic method, the positioning error of geodetic measurements should 
not exceed 5–10 m. It was noted that such accuracies were unattainable in 1989 
(Peshekhonov et al. 1989). 

The new results obtained in modern engineering include the following: 

1. GPS and GLONASS positioning accuracy (using open channels) is 1–2 m; it is 
expected to be improved to a few tens of centimeters (Revnivykh 2012; Mikhailov 
2014). 

2. High-precision gyroscopes such as electrostatic gyroscopes and systems based 
on them have been developed. It has become feasible to design strapdown INS 
on fiber-optic gyroscopes with drifts of about 1 nm per month (2 · 10−5°/h) 
(Peshekhonov 2003, 2011; Paturel et al. 2014). 

3. Prototypes of gravity gradiometers, operating and keeping high accuracy on a 
moving base, have been developed. The studies starting from the 1970–1980s 
resulted in the creation of devices that have successfully passed the tests aboard 
satellites, planes, and vessels (Gerber 1978; Murphy 2004; Mumaw  2004; Rich-
eson 2008; DiFrancesco et al. 2009; Soroka 2010; Rummel et al.  2011; McBarnet 
2013). Currently available are Lockheed Martin, Bell Geospace, and ARKeX 
FTGs, with errors of about 1–5 Eo, used aboard aircraft and vessels mainly for 
mineral exploration (DiFrancesco et al. 2009). Studies were conducted to design 
cryogenic gravity gradiometers with drifts of about 0.02–1 Eo (DiFrancesco 
2007; Richeson 2008; Soroka 2010; Carraz et al.  2014). The FTG used in the 
GOCE space mission was configured as a set of three pairs of orthogonal high-
precision electrostatic accelerometers with noise levels of about 0.003 Eo/

√
Hz 

in the measurement range of 0.005–0.1 Hz (Rummel et al. 2011). The current 
state of development of gravity gradiometers is described in Sect. 5.2. 

4. Mechanical PIGA-type accelerometers with a drift stability of 0.1–1 μg have  
been developed, and accelerometers based on cold atom interferometry with a 
resolution of 10–5 μg are emerging (Yole Development Report 2012). 

5. New generation gravity sensors have been created, including those on cold atoms, 
for mobile gravimeters. Their sensitivity thresholds are about a few hundredths 
of fractions of mGal. The accuracies of modern gravity sensors are comparable 
with those of ground-based devices, which allows their unrestricted application 
in marine and airborne gravimetric surveys to improve both the accuracy and 
spatial resolution of surveys (Krasnov et al. 2014; Peshekhonov et al. 2015; 
Forsberg et al. 2015; Menoret et al. 2016; Zahzam et al. 2016). The principal 
feasibility of using absolute gravimeters on a moving base has been validated
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(Peshekhonov et al. 2016; Vitushkin 2015). More details on the state of develop-
ment of gravimetric instruments, including absolute gravimeters, can be found 
in Chap. 1. 

6. CHAMP, GRACE, and GOCE satellite missions have been implemented 
(Sugaipova 2015) and global models of the Earth’s gravitational field have been 
refined based on the mission data. This made it possible to generate geopotential 
models with the maximum number of spherical harmonics and to obtain digital 
models of average DOV values for standard geographical 5 × 5 arcmin trape-
zoids. DOV errors using EGM2008 model (up to degree 2190) are on average 
about 1–2 arcsec, which can be compared with DOV accuracy by the astro-
geodetic method (Rummel et al. 2002; Nepoklonov 2009; Pavlis 2010; Koneshov 
et al. 2013). Global EGF models based on the data obtained in satellite missions 
can be found in Sect. 6.1. 

Thus, the modern instrument engineering creates a potential to determine DOV 
parameters on a moving base with sufficiently high accuracy. 

3.1.3 Classification Criteria of DOV Determination Methods 

The methods to determine the parameters of EGF anomalies at sea using INS were 
classified based on individual criteria by Anuchin (1992): the methods are divided 
into direct, integral, indirect, and combined. In accordance with the terminology 
accepted in Russian metrology (RMG 29-2013), direct methods directly determine 
the required physical quantities, and in indirect methods the results of direct measure-
ments of the quantities functionally related to the sought quantity are mathematically 
transformed to determine it. 

The analysis of the existing methods shows that it is impossible to directly measure 
DOV as angles between the normal to the ellipsoid and the vertical direction (deter-
mination of astrogeodetic DOV) or angles between the directions of the vectors of 
the real and normal gravity fields (determination of gravimetric DOV). 

All DOV measurements are performed by indirect methods with subsequent calcu-
lation of the sought values. Even the idea of the geometric method measuring DOV 
as an angular misalignment between the two coordinate systems (Maslov 1983) 
requires the separate construction of the geodetic and astronomic verticals using 
different instruments; therefore, it cannot be considered a direct method. 

Analysis of the available methods for determining DOV on a moving base as a 
set of techniques helps to define the following important classification criteria that 
seriously affect the structure and composition of a measurement system and are used 
by the authors as the basic criteria for classification schemes: 

1. Real-time or a posteriori DOV determination procedures. 
2. Methods to improve the DOV determination accuracy. 
3. Conditions of the practical application of DOV determination methods.
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The first of the main classification criteria is the DOV determination procedure. 
Based on the measurement processing method, such procedures can be reasonably 
divided into those providing real-time calculations directly during the vehicle motion 
and those allowing only posteriori calculation of the sought DOV parameters using 
the postprocessing of full data arrays (Fig. 3.2). 

Strictly speaking, the algorithms used to determine DOV in real time can also be 
used a posteriori. However, since the real-time operation is one of the most important 
factors in determining DOV, this criterion is represented as a separate subdivision in 
this classification. 

Figure 3.2 shows the collocation procedure not described above (Moritz 1980; 
Volfson 1997). This method has not found wide use, however, it is included in the 
classification criteria to provide a comprehensive overview of available procedures. 
The collocation method uses covariance relations between different components of 
the measured and estimated processes (Moritz 1980). It determines DOV components 
based on primary data from type 1 or type 2 gravitational variometers without direct 
measurements of the vertical gradient, which considerably simplifies the hardware 
implementation of such a measurement system (Volfson 1997; Bouman 2012). 

Another significant classification criterion concerns the methods to improve the 
DOV determination accuracy (Fig. 3.3). These methods are grouped as instrumental, 
algorithmic, and combined methods. Instrumental methods employ the systems 
protecting the equipment against various external effects (forces and moments of 
inertia in translational motion, vibrations and angular oscillations of the platform, 
electromagnetic fields, and temperature) or decreasing these effects. For example, 
the thermal stabilization system protects equipment from variations of the ambient

Fig. 3.2 Classification of 
DOV determination methods 
based on measurement 
processing procedure 
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Fig. 3.3 Classification of 
DOV determination methods 
based on accuracy improving 
methods 

temperature and maintains the preset operating temperature. The spatial shock-
absorbing system reduces the effect of vibration acceleration. It is necessary to 
have an angular stabilization system that allows keeping the angular position of 
the measuring device in a specified coordinate system with small errors. ARKeX 
demonstrates an FTG on shock absorbers with a thermal insulation protector on its 
website (ARKeX 2013). 

Algorithmic methods refer to the methods of data processing. The principles of 
signal processing influence the selection of procedures for processing data arrays 
and the possibility of obtaining results in real time or a posteriori. The filters and 
algorithms used are chosen empirically, or their structures and characteristics are 
determined by applying various optimization procedures. If at least plausible descrip-
tions of the properties of useful signals and noise as random processes are available, 
optimization for steady-state (stationary) modes is carried out in real time based on 
spectral densities by Wiener method (Chelpanov et al. 1978; Dmitriev 1991; Loparev 
and Yashnikova 2012; Stepanov 2012) (using local approximation procedures); and 
for non-stationary modes, including the initial stages (with account for deterministic 
components), by Kalman method (Dmitriev 1991; Loparev et al. 2012a, b; Loparev 
and Yashnikova 2012; Stepanov 2012; Stepanov et al. 2014; Sokolov et al. 2016). 

The combined methods utilize various measuring devices and algorithmic 
methods to obtain more comprehensive information on DOV components in different 
wavelength ranges. In Zheleznyak and Koneshov (2007), it was noted that marine and 
airborne surveys are required to determine DOV in the short-wavelength ranges, and 
satellite altimetry data are needed for long-wavelength measurements. For marine 
measurements, the best results in determining DOV over the entire wavelength range 
are provided by an integrated system including INS, GNSS, astronavigation system, 
and a velocity sensor (Anuchin 1992). 

When considering general classification criteria of DOV determination methods, 
the conditions for their implementation should be taken into account (Fig. 3.4). One 
of the key criteria is the type of platform on which measurements are taken. They 
are grouped as follows:
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Fig. 3.4 Classification of 
DOV determination methods 
based on implementation 
conditions 

• slow-moving platforms (e.g., drifting ice) characterized by low speeds and very 
low accelerations; 

• ground-based vehicles, which can be stopped at certain points for observation and 
data correction (a conventionally mobile platform); 

• marine vehicles characterized by large linear and angular accelerations; or a 
submarine with much smaller accelerations; 

• aircraft (airplanes, helicopters, dirigibles) best suited for inaccessible moun-
tainous areas. They have high linear speeds and accelerations due to atmospheric 
turbulence; 

• space vehicles with low accelerations and lack of gravity, but very distant from 
the Earth’s surface. 

An interrelated classification criterion partly determined by the type of the vehicle 
covers a variety of typical levels of external factors directly affecting the DOV 
measuring equipment after all protection measures have been taken. These factors 
include inertial forces (vibration, impacts, overloading due to turning cycles) not 
compensated by the shock absorption system, the temperature, the altitude above the 
Earth’s surface (the readings should be reduced), and the environment (air, water, 
vacuum). All these factors require consideration and special analysis before starting 
the design of instrumentation. 

The last criterion determines the type of the geometric set of points of the measure-
ment area where DOV values are determined. This is essential for selecting a DOV 
determination method. For example, astronomic methods are most effective for 
measurements at a point (or isolated points); inertial methods using INS should 
preferably be used for trajectory measurements during the vehicle motion (if a model 
is used to specify DOV variability along the motion path); gravimetric methods are 
applied in aerial measurements to achieve the desired DOV accuracy.
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3.1.4 Qualitative Comparative Analysis of the Methods 

A method for determining DOV on a moving base is selected based on the problem 
statement, requirements for the measured parameters, and availability of high-
precision equipment. The requirements for the measured parameters usually include 
the achievable DOV accuracy, resolvable wavelength, and the ability to determine 
relative or absolute values. 

For long-wavelength measurements, there exist global DOV maps based on 
the data obtained in the space missions mentioned above. For wavelengths over 
10 km, mainly global models obtained by satellite missions or airborne gradiometry 
can be used. Short-wavelength real-time measurements should be taken by gravity 
gradiometry or astrogeodetic methods. 

Implementation of a particular method depends on the performance of the instru-
mentation. DOV determination systems should be designed with account for the 
technological potential and feasibility of creating or using systems to improve the 
accuracy. 

Zenith telescope or astronavigation system on a moving platform is able to deter-
mine DOV absolute values, but this requires the development of a precision gyro-
scopic stabilization system, which is a nontrivial problem taking into considera-
tion the dimensions of the zenith telescope. Besides, such a system would require a 
comfortable environment for its operation: small motion angles and scattered clouds. 

Using the inertial-geodetic method to determine relative DOV values requires an 
INS with high-accuracy gyroscopes. To set the initial conditions of INS operation, it is 
required to determine exact astronomical coordinates, for example, using astronom-
ical measuring instruments. In addition, to determine DOV by the inertial-geodetic 
method with the use of Kalman filtering, it is necessary to specify a preliminary 
statistical mathematical model of the gravity field along the motion path (Anuchin 
1992; Staroseltsev and Yashnikova 2016). 

Despite all of its advantages, gravity gradiometry requires unique instrumentation 
such as FTG. It should be noted that it took about 30–40 years to design FTGs able 
to operate on a moving base. Only a small number of companies owning or having 
rights to use this technology can apply this method. To be able to use an FTG on a 
moving base, it is necessary to ensure high-precision gyro stabilization and apply all 
possible, both hardware and algorithmic, means of improving the accuracy. 

3.1.5 Conclusion 

Various methods to determine DOV on a moving base have been considered, and 
the potential for their hardware implementation has been estimated. It is shown that 
the comparative analysis of these methods requires that their specific application 
on a moving base be taken into account. Then it should be remembered that all 
DOV measurements are taken by indirect methods, and DOV values are calculated
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in real time or during postprocessing. It is very important to provide stable operating 
conditions for the measuring equipment and to apply various error reduction methods, 
both hardware and software. 

A structured system of classification criteria of DOV determination methods is 
proposed. The following three main classification criteria are selected: procedures for 
real-time or a posteriori DOV determination; methods for improving DOV accuracy, 
including instrumental, algorithmic, and combined ones; conditions for the practical 
application of DOV determination methods. A comparative qualitative analysis of 
the methods and fundamental solutions that implement various requirements for the 
instruments being developed has been carried out. 

3.2 DOV Determination with the Use 
of an Automated Zenith Telescope 

As mentioned in Sect. 3.1, DOV components can be determined with high precision 
by various methods. However, the methods based on the use of gravimetric or satellite 
data make it possible to determine DOV components with a specified error only if 
a significant amount of work was done previously and there is a detailed survey of 
the area of interest. In poorly studied areas, as well as in the case of more stringent 
requirements for the accuracy of determining DOV components, the astro-geodetic 
method based on a comparison of the astronomical and geodetic coordinates can 
be used (Table 3.1). Modern satellite equipment allows geodetic coordinates to be 
determined with accuracy of a few centimeters. Thus, DOV determination accuracy 
is limited by the error in determining astronomical coordinates, the reduction of 
which is an urgent task. 

This section considers the basic principles of determining astronomical coordi-
nates and DOV components by observing stars, as well as the instruments used to 
solve this problem in Russian and international geodetic astronomy. The emphasis is 
placed on the automated zenith telescope (AZT), the main parameters of its compo-
nents and the algorithms for processing the observation results; also discussed is 
estimation of the AZT accuracy characteristics. 

3.2.1 General Principles of Determining Astronomical 
Coordinates in Geodetic Astronomy 

Astronomical latitude ϕ and the local sidereal time s at observation time T at some 
point on the Earth’s surface can be determined if the zenith position on the celestial 
sphere is determined for this time and this point. Indeed, declination of the zenith 
is numerically equal to the observer’s latitude δZ = ϕ, and its right ascension to the 
local sidereal time αZ = s (Fig. 3.5).
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Fig. 3.5 Determination of 
the zenith position on the 
celestial sphere. Pn is the 
celestial north pole; Ps is the 
celestial south pole; U is the 
vernal equinox; N is the 
north point; S is the south 
point; Z is the zenith 
(PnZS is the celestial 
meridian); t is the horary 
angle; α is the right 
ascension; δ is the 
declination; A is the azimuth; 
z is the zenith distance 

At any given moment of time T, the position of the zenith on the celestial sphere 
Z (αZ, δZ) can be defined by 

• zenith distances of at least two stars with known equatorial coordinates (α1, δ1) 
and (α2, δ2); 

• the intersection of at least two verticals passing through these stars, i.e., azimuths 
of stars A1 and A2. 

Thus, depending on the measurands, the methods for determining astronomical 
coordinates are divided into two main groups: zenithal and azimuthal. 

In the zenithal methods, the time and latitude of the instrument position are deter-
mined from the measured zenith distances of stars or the differences in the zenith 
distances of stars, or from observations of groups of stars at the same zenith distance. 

Azimuthal methods of astronomical determinations make it possible to determine 
the time and latitude based on the azimuths of two stars or using the measured 
differences in azimuths of stars or from observations of groups of stars in the same 
vertical (Uralov 1980). 

As is known, the longitude of a point relative to the initial meridian is numer-
ically equal to the difference between the local times of the same kind (Kulikov 
1969) determined simultaneously (or with reference to the same moment) both at 
the observation point and at the point located at the first meridian, i.e., 

λ = s − S = m−UT1, 

where 

s is the local sidereal time; 

S is the Greenwich sidereal time;
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m is the local mean solar time; 

UT1 is the mean Greenwich meridian universal time (Brumberg et al. 2004). 
Thus, the problem of determining the longitude of a point consists in 

• determining the local time s or m at a time T based on the measurements of the 
zenith distances of the stars or their azimuths; 

• determining the time of the first meridian S or UT1 at the same moment of time 
T, for example, using the transmission of exact time signals over a radio link. 

In geodetic astronomy, the horizontal coordinates of stars (A, z) are considered 
measurable, the equatorial coordinates of stars (α, δ) are considered known, and 
the geographical coordinates of point (ϕ, λ) are considered determinable. The rela-
tions between the determinable, known, and measurable parameters are obtained 
through the solution of the parallactic triangle (Kulikov 1969). The formulas for the 
relations of parameters used in the zenithal and azimuthal methods of astronomical 
determinations take the following form, respectively: 

cos z = sin ϕ sin δ + cos ϕ cos δ cos t; (3.2.1) 

ctg A = sin ϕ ctg t − tg δ cos ϕ/ sin t. (3.2.2) 

In (3.2.1) and (3.2.2), t is the horary angle (t = s − α). 
From the above description of methods for determining astronomical coordinates, 

it is possible to formulate the following problems to be solved using astronomical 
equipment: 

• measurement of zenith distances of stars and horizontal directions to stars; 
• recording of moments of these measurements in a given time measurement system; 
• recording of moments of the passage of stars through specified ertical circles or 

almucantar (a small circle of the celestial sphere whose plane is parallel to the 
plane of the horizon (Kulikov 1969)). 

In Russia, astronomical field observations are conducted with the use of measuring 
systems that are capable of providing solutions to the above problems. Such systems 
consist of the following interrelated parts: 

• an astronomical tube used as a sighting device. It turns around two mutually 
perpendicular axes; the vertical axis is set in the direction of the plumb line using 
levels; 

• divided circles connected with the axes of rotation, vertical and horizontal, with 
readout devices; 

• devices for pointing at a star, allowing for simultaneous measurement of small 
angular distances within the field of view and recording the moments of obser-
vations of stars—eyepiece micrometers (conventional, contact, photoelectric 
ones);
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• astronomical clock that serves as a scale for measuring time when recording the 
moments of star observations; 

• chronographs—devices for recording observation results; 
• radio receiving equipment connected to the clock and the chronograph used to 

receive the time signals transmitted by time service radio stations. 

The first three parts of the system are combined in one unit—the astronomical 
instrument, which has a communication channel with the clock and the recording 
devices. 

The following astronomical instruments have been used in Russia for high-
precision astronomical determinations of latitude and longitude: AU 2/10 (USSR, 
since the 1930s), Wild T-4 (Wild, Switzerland, since the 1940s, Fig. 3.6), DKM3-
A (Kern-Aarau, Switzerland), AU01 (Russia, TsNIIGAiK, since the mid-1980s) 
(Rukovodstvo 1984). 

When conducting high-precision astronomical determinations of coordinates 
using astronomical instruments (with visual recording of objects), it is necessary to 
take into account the influence of various components of the instrumental error: colli-
mation error, tilting of the horizontal axis, lateral flexure of the telescope tube, errors 
in the pivot shapes, etc. (Uralov 1980; Rukovodstvo 1984). With this aim in view, the 
instrument is thoroughly examined before observations. For the above reasons, the 
requirements for the observers’ qualifications are higher, and the duration of obser-
vations significantly increases (as a rule, to ensure high precision in determining 
astronomical coordinates, observations are conducted for three months). 

In addition, the fact that the readings of the chronometer or the clock may be 
perceived by ear at the moments of star sighting, explains the observer’s significant 
personal error, as well as a great random error of observations. To reduce the influence

Fig. 3.6 Wild T-4 
astronomical instrument 
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of these factors, as well as to improve performance, semi-automatic and automatic 
methods are used for star observation using special devices, primarily photodetector 
devices (e.g., CCD and CMOS image sensors) as radiation detectors. CCD- and 
CMOS image sensors make it possible to ensure observation of faint objects, as well 
as a digital representation of the observation material, which allows the results to 
be processed using a computer directly in the observation process, which improves 
both the performance and accuracy of determinations. Reference of observations to 
the precise time scale can also be carried out automatically using GNSS receivers. 

Thus, the use of automated devices significantly improves the accuracy and 
efficiency of determining astronomical coordinates and, as a consequence, DOV 
components. 

Work on the creation of such automated devices has been carried out over the past 
three decades. In the 1990s, a prototype of an automated prismatic astrolabe was 
created at Concern CSRI Elektropribor (Vasiliev et al. 1991b). 

Digital zenith telescopes were created in a number of European universities 
(Hannover, Zurich) to quickly determine DOV components. They allow obtaining 
values with an accuracy of 0.2–0.3 arcsec and higher within less than an hour of 
observation (Hirt and Bürki 2002; Hirt et al. 2010). Work on creating such devices 
is also under way in Austria (Gerstbach and Pichler 2003), Turkey (Halicioglu et al. 
2012), China (Tian et al. 2014). 

In 2017 Concern CSRI Elektropribor completed the development of the prototype 
of an AZT designed for quick determination (about an hour) of DOV components 
from observations of the circumzenithal area of the stellar sky in the field of view. 
This Section describes the principle of operation of this device, the main parameters 
of its component parts, and the algorithms for processing observation results. 

3.2.2 Description of the AZT and Its Principle of Operation 

The AZT is an optoelectronic system, the sight axis of which is directed to the 
zenith. The objective connected to the camera and inclination sensors is mounted on 
a platform that can turn around a vertical axis (Fig. 3.7). A precise leveling mechanism 
is provided for horizontal leveling.

The AZT consists of an optoelectronic device, control device, and a power supply 
system containing a power supply device, battery packs, and chargers. 

A general view of the AZT is presented in Fig. 3.8.
The optoelectronic device is intended 

• to form images of stars in the field of view of the objective and record them in the 
plane of the digital camera photodetector; 

• to determine the geodetic coordinates (latitude and longitude) of the observation 
point; 

• to form the UTC scale based on the GNSS data; 
• to determine the astronomical coordinates of the observation point.
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Fig. 3.7 AZT functional diagram

Fig. 3.8 General view of the  
AZT: 1—optoelectronic 
device; 2—control device; 
3—power supply device; 
4—battery pack; 5—charger; 
6—tripod; 7—package

The optoelectronic device includes 

• a catadioptric objective with the pupil diameter of 200 mm, the angular field of 
view 1.1 × 1.5°, and the relative aperture ratio of 1:6; 

• a digital camera built on the basis of a thermally stabilized 20-megapixel CMOS 
image sensor (the size of the image sensor’s sensitive area is 36.8 × 24.6 mm 
(5120 × 3840 pixels)); 

• GNSS receiver; 
• guidance module; 
• leveling system; 
• inclination sensors. 

The control device contains computational units of functional parts combined by 
exchange channels into a uniform information and control system. It is intended. 

• to control AZT components (guidance drives, leveling drives, inclination sensors);
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• to organize information exchange between the AZT components; 
• to process observation data; 
• to present the observation data on the display and record them to storage media. 

The power supply device and battery packs provide the equipment with a stabilized 
voltage of autonomous power supply for 6 h. 

During operation, the AZT is installed at a required point, whereupon its compo-
nent parts are assembled. The AZT is controlled by the operator through the control 
device. The activation command initiates the preparation mode—leveling of the 
optoelectronic device platform. Next, the mode of DOV component determination 
is switched on, after which (within an hour) the values of astronomical and geodetic 
coordinates, as well as DOV components are displayed on the control device. 

As shown in Sect. 3.1, the DOV components are determined using the following 
relations: 

ξ = ϕ − B; 
η = (λ − L) cos ϕ, (3.2.3) 

where 

ξ is the DOV projection on the meridian plane; 

η is the DOV projection on the prime vertical plane; 

B, L are the geodetic coordinates of the location (latitude and longitude); 

ϕ, λ are the astronomical coordinates of the location. 
The astronomical coordinates are determined by measuring the direction to stars 

with known equatorial coordinates (the right ascension α, the declination δ) using  
the equivalence of astronomical coordinates (ϕ, λ) of the observation point (AZT 
location) and equatorial coordinates of stars located directly in the zenith (Fig. 3.9). 
This equivalence is due to the validity of the following relations: 

ϕ = δ; 
λ = α − θ, 

(3.2.4)

where θ is the Greenwich apparent sidereal time (the horary angle of the vernal 
equinox relative to the Greenwich meridian, Fig. 3.9) (Abakumov 1996; Avanesov 
et al. 2013; Brumberg et al. 2004). 

It should be emphasized that the probability of finding stars directly at the zenith 
point is extremely small; therefore, the purpose of observation is to record a sequence 
of frames with star images in the circumzenithal area (within the field of view) using 
a photodetector; to measure the coordinates of the energy centers of all stars in each 
frame, identify them, and determine the equatorial coordinates of the zenith point. 
Concurrently with the frames recording, also fixed is the time needed to calculate θ.
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Fig. 3.9 Equivalence of 
astronomical and equatorial 
coordinates

3.2.3 Algorithm for Determining DOV Components Using 
the AZT and Error Analysis 

A block diagram of the algorithm for determining DOV components is shown in 
Fig. 3.10.

After obtaining an image of the stellar sky, it is necessary to select areas containing 
images of objects, which is done with the help of a binary mask (Fig. 3.11a). To 
form it, the image is first filtered in order to eliminate the influence of background 
heterogeneity. In AZTs, this procedure is done with the use of a median filter (Andreev 
2005). Then, related areas are identified using threshold filtering (Fig. 3.11a).

Objects are identified along the borders of the binary mask areas in the original 
image (Fig. 3.11b). The identified objects represent groups of photodetector elements, 
whose output signal values are used to determine the coordinates of the star image 
energy centers. 

For highly accurate determination of astronomical coordinates, it is necessary 
to measure the star image position in the photodetector plane with an accuracy of 
hundredths of the decomposition element (pixel) of the photodetector, i.e., with 
subpixel resolution. This problem can be solved by different processing methods: 
for example, the weighted average method, the least squares method, the extreme 
correlation method, etc. (Berezin et al. 2004; Gonzalez et al. 2004; Mantsvetov et al. 
2006; Yakushenkov and Solomatin 1986; Gaivoronsky et al. 2013). However, the 
weighted average method was chosen for the AZT being developed as the easiest 
one to implement. 

Further, in order to reduce the time and amount of calculations needed to identify 
stars, it is necessary to determine the working area in the star catalogue based on the 
geodetic coordinates of the observation point and the image recording time.
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Fig. 3.10 Block diagram of the algorithm for determining DOV components

Fig. 3.11 Binary mask (a) and the identified objects (b)

Since the Earth rotates and the celestial sphere is stationary, it is necessary to 
know the Earth orientation relative to the celestial sphere for each moment of image 
recording, for which purpose Greenwich apparent sidereal time θ is used. The latter 
corresponds to the angle between the Greenwich meridian and the vernal equinox 
(see Fig. 3.9). The moment of frame recording is tied to the time recorded by a
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GNSS receiver. Next, GNSS time is converted to the Greenwich apparent sidereal 
time (Brumberg et al. 2004; Kovalevsky  2004). 

Equatorial coordinates of stars are determined from the star catalogue in the iden-
tified workspace. The AZT prototype makes use of a catalogue specially developed 
by the Institute of Applied Astronomy of the Russian Academy of Sciences. This 
catalogue contains information about stars whose equatorial coordinates are known 
with high accuracy. But it is also possible to use such catalogues as Hipparcos, Tycho, 
UCAC4 (Tsvetkov 2005a, b). 

Star catalogues give the data for a certain epoch of observation (as a rule, it is 
J2000) and represent mean equatorial coordinates. To convert to the current values 
of the equatorial coordinates of objects, a reduction is made taking into account the 
proper motions of the stars, precession and nutation parameters, annual aberration, 
etc. (Brumberg et al. 2004; Astronomicheskii Ezhegodnik 2008). Next, an array is 
formed containing the equatorial coordinates of the stars (currently in the field of 
view) reduced to the observation epoch. 

Thus, the initial data for the star identification algorithm are coordinates x*, y* of 
the energy centers of the object images in the photodetector plane and the equatorial 
coordinates of the stars currently in the field of view reduced to the observation 
epoch. To solve the identification problem, it is necessary to compare the objects in 
two areas (those in the image and from the catalogue). In AZT, this problem is solved 
using the method based on the combination of two algorithms: the algorithms for 
similar triangles and interstellar angular distances (Gaivoronsky et al. 2015). 

Finally, an array is formed in which the coordinates of the stars in the image 
are compared with the equatorial coordinates of the stars from the catalogue. The 
next step in the algorithm for determining astronomical coordinates is transformation 
of the rectangular coordinates of the star image energy centers into the equatorial 
coordinates. First, spherical coordinates of stars are transformed to the so-called 
standard coordinates (Blazhko 1979). This transformation is performed by a conical 
projection from the center of the celestial sphere to the point with coordinates (α0, 
δ0). This point corresponds to the intersection of the AZT sight axis with the celestial 
sphere (Fig. 3.12a).

In the tangent plane, axes ζ and μ are tangent to the parallel and the celestial 
meridian, respectively. Axis ζ is directed towards the increase of the right ascensions 
and axis μ, to the north. This local system is called a standard coordinate system 
(Kovalevsky 2004). The transformation of equatorial coordinates of stars into stan-
dard coordinates is called the central projection; it is performed using the following 
expressions (Blazhko 1979): 

ζ∗ = ctgδ∗ sin(α∗ − α0) 
sin δ0 + ctgδ∗ cos δ0 cos(α∗ − α0)

; μ∗ = 
cos δ0 − ctgδ∗ sin δ0 cos(α∗ − α0) 
sin δ0 + ctgδ∗ cos δ0 cos(α∗ − α0) 

, 

where 

α*, δ* are the equatorial coordinates of the star;
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a) b) 

Fig. 3.12 Transformation of star coordinates: a is the transformation of equatorial coordinates of 
stars into standard coordinates; b is the transformation of rectangular coordinates determined in the 
photodetector plane into standard coordinates

α0, δ0 are the equatorial coordinates of the point corresponding to the intersection of 
the telescope sight axis with the celestial sphere (Fig. 3.12a): 

α0 = L + θ; δ0 = B. 

Standard coordinates, in turn, are connected by the polynomial transformation 
with the coordinates of the star image energy centers determined in the photodetector 
plane. If there are no image distortions, a linear (affine) transformation is used, which 
is written as follows: 

ζ∗ = A0 + A1x
∗ + A2 y

∗, 
μ∗ = B0 + B1x

∗ + B2 y
∗, (3.2.5) 

where 

x*, y* are the coordinates of the star image energy center; 

A0, B0 are the origin of the coordinate system x, y in the coordinate system ζ, μ 
(Fig. 3.12b). 

Under the condition that the x-, y-axes are orthogonal, the transformation 
parameters are described as follows (Kiselev 1989): 

A0 = −Mx · x0 · cos γ + My · y0 sin γ; 
A1 = Mx · cos γ; 
A2 = −My · sin γ; 
B0 = −Mx · x0 · sin γ − My · y0 cos γ;
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B1 = Mx · sin γ; 
B2 = My · cos γ, 

where 

x0, y0 are the coordinate origin ζ, μ in the coordinate system x, y (Fig. 3.12b); 

γ is the angle between the axes +x and +ζ (Blazhko 1979); 

Mx, My are image scales on the x-axis and y-axis, respectively: 

Mx = 
mζ 

mx 
; My = 

mμ 

my 
. 

The transformation parameters A0, A1, A2, B0, B1, B2 are determined for each 
image from measurements, representing a set of formulas (3.2.5) for all identified 
stars. This problem is solved by the least-squares method or the generalized least-
squares method (Stepanov 2010; Motorin and Tsodokova 2016). 

To compensate for the tilt of the objective’s sight axis relative to the axis of rotation 
of the optoelectronic device and eliminate the influence of the offset of the inclination 
sensors, observations are made in two diametrically opposite positions (I and II), 
with the instrument turning by 180°. 

Figure 3.13 shows a block diagram of the algorithm for determining the astronom-
ical coordinates of the point corresponding to the intersection of the axis of rotation 
of the optoelectronic device with the celestial sphere. To determine the astronom-
ical coordinates (ϕZ , λZ ), it is necessary to transform rectangular coordinates in the 
photodetector plane into standard coordinates using expressions (3.2.5) and the trans-
formation parameters A0, A1, A2, B0, B1, B2 obtained at the previous stage. After that, 
it is necessary to determine the equatorial coordinates using the following formulas 
(Blazhko 1979): 

α = α0 + arctg 
(

ζ 
cos δ0 − μ sin δ0 

) 
; δ = arctg 

(
(μ + tgδ0) cos(α − α0) 

1 − μtgδ0 

) 
.

Further, the astronomical coordinates are determined, with regard to the Green-
wich apparent sidereal time, in accordance with (3.2.4). 

The final astronomical coordinates of the point corresponding to the intersection of 
the axis of rotation of the optoelectronic device with the celestial sphere are obtained 
by averaging the astronomical coordinates determined in two diametrically opposite 
positions: 

ϕZ = 
ϕI + ϕI I  

2
;λZ = 

λI + λI I  

2 
. 

After obtaining astronomical coordinates based on the observation data in two 
positions, it is necessary to make a correction for the tilt relative to the horizon
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Fig. 3.13 Block diagram of 
the algorithm for 
determining the astronomical 
coordinates of the point 
corresponding to the 
intersection of the axis of 
rotation of the optoelectronic 
device with the celestial 
sphere

according to the inclination sensors: 

Δϕn = nϕ; Δλn = nλ sec ϕZ . 

Here, 

nϕ = n1 cos( Aph) − n2 sin( Aph), 
nλ = n1 sin(Aph) + n2 cos( Aph), 

where n1, n2 are data of the 1st and 2nd inclination sensors, respectively, calculated 
according to the expressions: 

n1 = 
n1I − n1I I  

2
; n2 = 

n2I − n2I I  
2 

, 

where n1I , n1II are the data of the 1st sensor in the I and II positions, respectively; 
n2I , n2II are the data of the 2nd sensor in the I and II positions, respectively; Aph is 
the azimuth of the photodetector row (Fig. 3.14): 

Aph = 
3π 
2 

− γ.
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Fig. 3.14 The azimuth 
of the photodetector row 
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In addition, it is necessary to compensate for the offset of the instantaneous pole 
relative to the mean pole: 

Δϕp = −xp cos L + yp sin L; 
Δλp = −(xp sin L + yp cos L) · tgB, 

where (xp, yp) is the offset of the instantaneous pole relative to the mean pole 
(Brumberg et al. 2004) (xp, yp = const). 

Thus, the values of astronomical coordinates are calculated using the formulas: 

ϕ = ϕZ + Δϕn + Δϕp; λ = λZ + Δλn + Δλp. 

Further, DOV components are determined using expressions (3.2.3), taking into 
account the geodetic coordinates obtained with GNSS equipment. 

The error in determining DOV components with AZT depends on the accuracy 
of determining the geodetic and astronomical coordinates. The error in determining 
geodetic coordinates is determined by the characteristics of the GNSS receiver and 
is at a level of 2–3 m (≤0.1arcsec). The error of astronomical coordinates, in turn, 
depends on 

• error in the image fix to the time scale; 
• error in determining the equatorial coordinates of stars; 
• error due to an inaccurate choice of the point corresponding to the intersection of 

the sight axis of the celestial sphere; 
• error in determining the coordinates of the star image energy centers in the 

photodetector plane; 
• error in the rotation of the optoelectronic device around the vertical axis; 
• error of inclination sensors; 
• error in determining the offset of the instantaneous pole relative to the mean pole.
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The error in determining the coordinates of the star image energy centers in the 
photodetector plane and the error of the inclination sensors have the greatest influence 
on the accuracy of determining DOV components. According to preliminary esti-
mates obtained by computer simulation, the error in determining DOV components 
using AZT does not exceed 0.3 arcsec. 

3.2.4 Field Studies of the AZT Prototype 

The AZT prototype was created to test and checkout the developed data processing 
algorithms (Fig. 3.15).

The AZT prototype contained the following equipment: 

• a Meade LX-90-ACF (USA) catadioptric objective with a 2000 mm focal length 
and 200 mm entrance pupil diameter; 

• a CMOS 20-megapixel camera JAI SP-20000-PMCL (JAI Ltd. Japan) built on a 
CMOS image sensor; the size of the sensitive area of the image sensor is 32.77 
× 24.58 mm (5120 × 3840 pixels); the pixel size is 6.4 × 6.4 μm. The camera 
allows synchronization of the image by an external pulse with accuracy of 25 μs; 

• JAVAD ALPHA GPS/GLONASS receiver (to generate a second marker fixed to 
the UTC scale and determine geodetic coordinates); 

• Wyler Zerotronic Type 3 inclination sensors with the angle measurement range of 
±0.5°. 

The AZT prototype provided for a series of stellar sky images in two diametrically 
opposite positions. Observations were carried out at one point on different dates. 
Processing of the observation data was carried out using the developed algorithms. 

The following results were obtained after processing the data of all observation 
series: the values of the DOV components determined in the field studies are close 
to the real values; the RMSD between the series does not exceed 1 arcsec, which 
is an acceptable result for the prototype, given the unequal effect of temperature 
fields on different structural elements, as well as changes in illumination because the 
observations were conducted in urban conditions.

Fig. 3.15 The AZT 
prototype: 1—objective; 
2—digital camera; 
3—inclination sensors 
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3.2.5 Conclusion 

A description is given of the AZT developed at Concern CSRI Elektropribor, JSC. 
The telescope is intended to determine DOV components in real time from field 
observations of the ircumzenithal area of the stellar sky. 

The AZT principle of operation, the main parameters of its component parts, as 
well as the algorithms for processing the observation data have been discussed, and 
the telescope accuracy characteristics are given. 

The results of the AZT prototype field studies clearly show the effectiveness of 
the proposed technical solutions and algorithms for processing observation data, as 
well as the feasibility of using the AZT under consideration to determine DOV with 
high accuracy. 

3.3 Inertial Geodetic Method for DOV Determination 

As mentioned in Sect. 3.1, the idea of the inertial geodetic method is based on using 
data from a precision INS and a GNSS receiver (Nash and Jordan 1978; Anuchin et al. 
1982; Peshekhonov et al. 1989; Dmitriev 1997; Salychev et al. 1999; Nassar, 2003; 
Li and Jekeli, 2008). At the same time, unlike the classical astrogeodetic method, the 
INS used in the implementation of the inertial geodetic method produces not only 
astronomical coordinates but also their derivatives. This makes it possible to solve 
the DOV estimation problem using differential measurements, based on external 
information on the components of the linear speed vector and the acceleration of 
the vehicle in the local navigation frame. Section 3.3 is devoted to the features of 
the inertial geodetic method. In this case, it is assumed that a strapdown inertial 
measurement unit (SIMU) acts as an INS. 

3.3.1 Inertial Geodetic Method Using Positional and Velocity 
Measurements 

When DOV is determined using the inertial geodetic method, in general, the following 
velocity and positional differential measurements can be used (taking into account the 
features of the satellite navigation equipment in determining navigation parameters, 
including synchronization of velocity measurements) (Emel’yantsev and Stepanov 
2016): 

zVj (tk+1) = 
⎡∇ Sj_I N  S(tk+1) − ∇  Sj_GN  SS(tk+1)

⎤
/T z, (  j = E, N , H), 

zϕ(tk+1) = ϕI N  S(tk+1) − ϕGN  SS(tk+1), 
zλ(tk+1) = λI N  S(tk+1) − λGN  SS(tk+1),
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zh(tk+1) = hI N  S(tk+1) − hGN  SS(tk+1), 

where 

∇Sj_GN  SS(tk+1) are the increments of the Cartesian coordinates of a vehicle in 
projections onto the geographic axes measured in a GNSS receiver with a discrete-
ness of T z  = tk+1 − tk (for most modern GNSS receivers, interval Tz is in the 
range between 0.1 and 1 s); 

∇Sj_I N  S(tk+1) = 
{ tk+1 

tk 
V j_pr (τ)dτ are the increments of Cartesian coordinates on 

the interval T z  calculated according to the INS data on the vehicle speed. 

Taking into account the data synchronization of the INS and the GNSS receiver, 
we can write: 

zVj (tk+1) = ΔVj (tk+1) + νVj (tk+1), (3.3.1) 

where 

ΔVj is the error of the linear-speed vector components produced by the INS; 

νVj (tk+1) = −⎡
ΔVj (tk+1) − ΔVj (tk + T z/2)

⎤ − δ∇Sj_GN  SS(tk+1)/T z  is the 
reduced noise. Here, δ∇ Sj_GN  SS(tk+1)/T z  is the error of the linear-speed vector 
components. While deducing the above expression, the following should be borne 
in mind. In the GNSS receiver, the speed is generated as an integral of the phase in 
the Doppler channel over the time interval Tz. Thus, in practice, it can be assumed 
that the obtained speed corresponds to its average value on the interval Tz. To ensure 
synchronization during the formation of differential measurements, the components 
of the INS speed are generated in a similar way. To form measurements, it is impor-
tant to go to the current time for determining the speed by the INS and its error 
while taking into account the difference in speed errors related to the middle of the 
interval Tz and the time it is finished and attributing this difference to the measure-
ment noise. It should also be noted that, since the difference in the errors of the INS 
speed components generated by INS within the interval Tz is small, the fact that the 
measurements correlate with their errors can be neglected. 

For positional measurements, the following is true: 

zϕ(tk+1) = Δϕ − δϕGN  SS, 

zλ(tk+1) = Δλ − 1 

cos ϕ 
δWGN  SS, 

zh(tk+1) = Δh − δhGN  SS, (3.3.2)
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where Δϕ, δϕGN  SS , Δλ, δWGN  SS  = δλGN  SS  cos ϕ, Δh, δhGN  SS  are the errors of 
the INS and GNSS (in the differential mode), correspondingly, with respect to the 
observer’s coordinates. 

Assume that speed measurements (3.3.1) are used to effectively damp the natural 
(Schuler and diurnal) variations of SIMU errors. Then, according to the analytical 
solutions given in Emel’yantsev and Stepanov (2016), in the conditions of a quasi-
stationary vehicle (i.e., at stops, when it is not required to get information about the 
change in the DOV), at some i-th point of the route for smoothed time values of 
positional measurements (3.3.2), we will have the following: 

z̃ϕi = −  
1 

Ω 
(−ΔωbH  cos ϕi + ΔωbN sin ϕi ) + 

ΔabN 

g 
− ξi − δ ̃ϕGN  SS, (3.3.3) 

z̃λi cos ϕi = −α̃∗(tk) cos ϕi + (ΔωbH  sin ϕi + ΔωbN cos ϕi ) cos ϕi · Δt 

− 
1 

Ω 
ΔωbE  sin ϕi + 

ΔabE 
g 

+ ηi − δ W̃GN  SS, (3.3.4) 

where α̃∗(tk) is the smoothed value of the SIMU error in longitude accumulated due to 
the gyroscope drifts; Δt = t − tk , where tk is the moment of the last SIMU correction 
in longitude; Δωbj  , Δabj  ( j = E, N , H ) are low-frequency components of the 
gyroscope drifts and accelerometer errors in projections onto the geographical axes 
due to instability of their zeros with respect to the values during the calibration time; Ω 
is the angular velocity of the diurnal rotation of the Earth; g is the value of the normal 
gravity acceleration at the equator; ξi , ηi are the values of DOV components at the 
observer’s meridian and in the prime vertical plane, respectively; δ ̃ϕGN  SS, δ W̃GN  SS  

is the level of the smoothed noise of the GNSS receiver. 
Note that in the case of the SIMU longitudinal correction generated by the GNSS, 

the expression for error α̃∗(tk), according to Emel’yantsev and Stepanov (2016), can 
be written as: 

−α̃∗(tk) cos ϕ = 
1 

Ω 
ΔωbE  (tk) sin ϕi − 

ΔabE (tk) 
g

− η(tk). (3.3.5) 

It is also pertinent to note that due to the presence of the term α̃∗(tk), i.e., accu-
mulation of the INS error in longitude, it is impossible to determine the total value 
of the DOV component η in the prime vertical plane during the correction, even if 
the longitude is known exactly. That is, with the specified scope of measurements, 
the DOV component η cannot be observed fully. For a quasi-stationary vehicle, the 
frequency of longitudinal corrections does not affect the accuracy of DOV estima-
tion. A similar situation takes place during motion, since the errors in (3.3.5) are  
not separated. They can be separated due to maneuvering, which is undesirable for 
DOV estimation because this dramatically complicates the description of the DOV 
model and causes difficulties in estimation (separation of DOV spectra and drifts of 
gyroscopes and accelerometers, which will be discussed later).
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Substituting (3.3.5) into Eq. (3.3.4), we derive: 

z̃λi cos ϕi = (ΔωbH  sin ϕi + ΔωbN cos ϕi ) cos ϕi · Δt 

− 
1 

Ω 
Δ ̃ωbE  sin ϕi + 

Δ ̃abE 
g 

+ ∇ηi − δ W̃GN  SS, (3.3.6) 

where ∇ηi = ηi − η(tk) is the increment of the DOV component η with respect to 
the SIMU update point; Δ ̃ωbE , ΔãbE  are the variations of the corresponding errors 
over the interval Δt = t − tk . 

According to (3.3.3), (3.3.6), the DOV estimates at the i-th route point are 
calculated as follows: 

ξ̂i = −z̃ϕi , 
∇η̂i = z̃λi cos ϕi , (3.3.7) 

and the errors of their determination are described by the following expressions: 

δξ̃gi = 
1 

Ω 
(−ΔωbH  cos ϕi + ΔωbN sin ϕi ) − 

ΔabN 

g 
+ δ ̃ϕGN  SS, 

δ∇η̃i = (ΔωbH  sin ϕi + ΔωbN cos ϕi ) cos ϕi Δt − 
1 

Ω 
Δ ̃ωbE  sin ϕi 

+ 
Δ ̃abE 
g 

− δ W̃GN  SS. (3.3.8) 

Assume that bias instabilities of the SIMU’s gyroscopes and accelerometers are 
at a level of Δ ̃ω ≤ 3 · 10−5°/h, Δa ≤ 10−5 m/s2. The level of smoothed values 
δ ̃ϕGN  SS , δ W̃GN  SS  of the GNSS receiver noise does not exceed 3 m. Then in middle 
latitudes, approximately, we have ξ̃i ≤ 0.6 arcsec, ∇η̃i ≤ 0.7 arcsec. Note that the time 
between SIMU longitudinal corrections should not exceed 3 h, which characterizes 
the allowable interval between the reference points for η. 

It should be noted that to improve the accuracy of DOV determination, it is advis-
able to carry out initial measurements both on forward and reverse courses. In this 
case, SIMU gyroscope drifts and accelerometer errors will be autocompensated in 
the axes of the local navigation frame with the North, East and Earth ellipsoid orthog-
onal axes with the origin at the point of the navigation solution (Groves 2013), which 
results in a sharp decrease in the accumulated error in coordinates and, accordingly, 
increase in the accuracy of DOV determination. Assuming that their variation has a 
low-frequency character, their effect, as well as the effect of misalignment between 
the sensitive axes of the gyro and accelerometer, can be critically mitigated. 

When the problem of DOV estimation is solved by the inertial geodetic method 
while the vehicle is moving, it is required to take into account the DOV variation along 
the motion path using, in particular, the corresponding statistical models, for example, 
those given in Nash and Jordan (1978). However, it should be taken into consideration
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that the accuracy of DOV determination can be improved only if there is a significant 
difference between the spectra of gyro drifts and accelerometer errors and the DOV 
spectrum in the process of the vehicle motion. In addition, the inconsistency of the 
calculated DOV models used in the filtering problem with their real changes in the 
survey area may result in additional errors in their estimation. 

As follows from the above reasoning, when DOV are determined by the inertial 
geodetic method using data even from a precise INS, it is necessary to have reference 
points of exact DOV values, which is a significant disadvantage of this method. 

3.3.2 Using ZUPT Technology 

Another variant of the method under consideration is based on the use of differential 
velocity and acceleration measurements only. For land vehicles, it is implemented 
using so-called ZUPT corrections (zero velocity update). In marine and airborne 
gravimetry, this method can also make use of GNSS data (Dmitriev 1997; Mangold 
1995; Salychev et al. 1999; Nassar 2003; Li and Jekeli 2008). 

It was mentioned above that the use of differential position measurements provides 
observability of only the DOV full meridional component. It should be emphasized 
that in this case, when using ZUPT velocity measurements, it is only possible to 
measure the increments of both DOV components along the motion path, which 
follows from the specific features of the formation of differential measurements as 
increments of the value to be analyzed at a given time interval (see (3.3.13), (3.3.15)). 

The initial information for DOV estimation during ZUPT corrections (INS) is a 
measurement, for example, for component ξ: 

zξ = Δ ˜̇VN , 

which represents the output signal of the corresponding “horizontal” accelerometer 
smoothed over time T̃ of a stop (here, ΔVN is the INS error in the north component 
of the linear speed vector). For SIMU, this is the projection of the data from the triad 
of accelerometers on the axis N . According to Dmitriev (1997), this measurement 
for the (i − 1)-th stop can be represented as follows: 

zξ(i−1) = gβ̃(i−1) + ΔabN (i−1) − gξ(i−1), (3.3.9) 

where β̃(i−1) is the (i−1)-th stopping time-averaged error of the vertical construction, 
determined mainly by its Schuler oscillations; ΔabN (i−1) is the zero drift of the 
“horizontal” accelerometer taking into account the assumption that the accelerometer 
noises are effectively smoothed over interval T̃ . 

The variability of error β(t) in the i-th interval of motion is described by two equa-
tions for the northern channel of the vertical analogue (Anuchin and Emel’yantsev
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2003). Reduce them to the form (Dmitriev 1997), given that the interval of motion 
between stops is T <<2π/ν: 

β̈ + ν2 β = Δ ̃ωm2 − 
1 

R 
(ΔabN − V̇E ΔK + V̇N ΔMa) + ν2 ξ, (3.3.10) 

where, according to Emel’yantsev and Stepanov (2016), Δ ̃ωm2 = −Ωτ∗(t0)+Δωbm2 

is the equivalent drift of the gyro unit around the eastern axis (here, Ω is the angular 
velocity of the Earth diurnal rotation; τ∗ is the SIMU error in the construction of the 
celestial axis in a plane orthogonal to the plane of the observer’s meridian); ν is the 
Schuler frequency; ΔMa is the accuracy of the accelerometer scale factor; ΔK is 
the INS heading error. 

At the stop, provided that ΔVN (t0) = 0, from (3.3.9) it follows: 

β(t0) = β̃(i−1) = −  
1 

g 
ΔabN (i−1) + ξ(i−1), β̇(t0) = Δ ̃ωm2i . (3.3.11) 

Following (Dmitriev 1997), assume that the INS operation time includes intervals 
of motion with a length T and stops with a length T̃ . The vehicle acceleration on 
each interval [0, T ] can be described by the following model: 

V̇ (t) = V δ(t) − V δ(T − t), (3.3.12) 

where δ(t) is a delta function. This model defines a uniform motion on the interval 
[0, T ] with an instantaneous stop and the speed acceleration to a value equal to V. 

The solution to Eq. (3.3.10) for  t = T of the beginning of the i-th stop, taking 
into account (3.3.12), and for t0 = 0, ν << 1, has the form: 

β(T ) = β̃(i−1) + Δ ̃ωm2i T − 
1 

R 
(−ΔK · SE + ΔMa SN ) 

− ν2 
T{ 

0 

⎡ 
1 

g 
ΔabN (τ) − ξ(τ) 

⎤ 
(T − τ)dτ, (3.3.13) 

where SE , SN are the lengths of the path traveled by the vehicle on the i-th section 
of the motion path in geographic axes; ΔabN (τ), ξ(τ) refer to time ΔabN and spatial 
ξ variability on the intervals T and S. 

Based on the solutions given in (Dmitriev 1997; Emel’yantsev and Stepanov 
2016), it can be shown that, when using a medium accuracy-grade SIMU (Δ ̃ω ≤ 
5 · 10−3°/h, Δa ≤ 3 · 10−5 m/s2, ΔMa ≤ 10−5) and the lengths of intervals between 
vehicle stops T = 2…5 min, formula (3.4.13), with regard to smoothing during 
formation of measurements (3.3.9), can be presented in the following form:
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β̃i = β̃(i−1) + Δ ̃ωm2i T + Δi , (3.3.14) 

where error Δi does not exceed 0.1 arcsec (Markley and Crassidis 2014). 
By analogy with (3.3.9), taking into account (3.3.14), measurement zξ for the i-th 

stop is represented as follows: 

zξi = g β̃i + ΔabNi  − gξi 
= −g∇ξi + ΔabNi  − ΔabN (i−1) + gΔ ̃ωm2i T + gΔi , (3.3.15) 

where ∇ξi = ξi − ξ(i−1). 
Then, the following formula is used to obtain the estimate of increment ξ: 

δξ̂i = −zξi /g; (3.3.16) 

at the same time, the error in estimating increment ξ is defined as follows: 

δ∇ξ̃i = −  
( 

ΔabNi  − ΔabN (i−1) 

g
+ Δ ̃ωm2i T + Δi 

) 
. (3.3.17) 

For the error in determining increment ξ relative to the reference point, we have: 

δ∇ξ̃i = 
i∑ 

j=1 

δ∇ξ̃ j = −  

⎡ 

⎣ΔabN (ti ) − ΔabN (t0) 
g

+ 
i∑ 

j=1 

Δ ̃ωm2 j T + 
i∑ 

j=1 

Δ j 

⎤ 

⎦. 

(3.3.18) 

The analysis of (3.3.18) shows that the accuracy of determining DOV increments 
relative to the reference point with the use of the ZUPT INS correction is affected only 
by the instability of accelerometer biases, while the error of their initial calibration 
does not play a significant role. At the same time, calibration errors of the gyro drifts 
and their time instability are fully reflected in the errors of DOV estimation. 

The effect of the gyroscope drift can be reduced by processing a sequence of 
measurements of the type (3.3.15) generated at stops with the aim to filter relatively 
high-frequency signals ∇ξi ,∇ηi against the background of slowly varying sequences 
Δ ̃ωi T . For this purpose, it is necessary to develop appropriate statistical models of 
DOV and gyro drifts. This makes it possible to obtain (Dmitriev 1997) DOV determi-
nation errors of about σξ̃(η̃) ≤ 1 arcsec using the data from the INS of the considered 
accuracy grade over the interval T∑ = 1 h. Obviously, a significant increase in the 
accuracy of DOV determination σξ̃( ̃η) << 1 arcsec can be achieved if the DOV values 
are known exactly not only at the starting point but also at the end t = T∑ point of 
the route.
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3.3.3 DOV Determination in High Latitudes 

Consider a possible variation of the inertial geodetic method which can be used to 
determine the full DOV while maintaining the accuracy of DOV determination in 
high latitudes. For this purpose, it is proposed to additionally include a specially 
designed precision GNSS compass with an antenna baseline from 6 to 10 m into 
the integrated system and replace the differential measurement of longitude with the 
corresponding heading measurement: 

zK (tk+1) = KI N  S(tk+1) − KGN  SS(tk+1) = ΔK − δKGN  SS, (3.3.19) 

where δKGN  SS  are the errors of the multi-antenna GNSS receiver that are determined 
mostly by phase measurement noise provided that the reference frames of the SIMU 
and GNSS antenna module of the receiving equipment are matched in azimuth. Note 
that the error level of δKGN  SS  does not practically depend on the latitude of the 
vehicle location. 

Assume that in this case as well, velocity measurements (3.3.5) are used to damp 
the natural variations of SIMU errors. Then, according to the solutions given in 
(Emel’yantsev and Stepanov 2016), in the conditions of a quasi-stationary vehicle 
at an i-th route point, the heading measurements (3.3.19) smoothed on the final time 
interval can be represented as follows: 

z̃K i  cos ϕi = −  
1 

Ω 
ΔωbE  + sin ϕi 

ΔabE 
g 

+ sin ϕi · ηi − δ K̃GN  SS  cos ϕi . (3.3.20) 

From Eqs. (3.3.3) and (3.3.20), it follows that ξ̂i = −z̃ϕi , η̂i = z̃K i  ctgϕi , where 
for the DOV estimation errors, we have: 

δξ̃i = 
1 

Ω 
(−ΔωbH  cos ϕi + ΔωbN sin ϕi ) − 

ΔabN 

g 
+ δ ̃ϕGN  SS, 

δη̃i = − 1 

Ω sin ϕi 
ΔωbE  + 

ΔabE 
g

− δ K̃GN  SSctgϕi . (3.3.21) 

From the solutions obtained, it follows that the proposed method makes it 
possible to estimate the total values of DOV components, so that there is no need 
in making reference points at sea, and also the fact that the effect of errors δKGN  SS  

in heading measurements on the accuracy of DOV determination is significantly 
reduced because the level of these errors does not depend on the latitude. 

With the accepted values of SIMU and GNSS receiver errors in position coor-
dinates, as well as the level of the smoothed noise of the precision GNSS compass 
(which includes the errors in matching the reference frames of the SIMU and GNSS 
antenna module) of the order of δ K̃GN  SS  = 5 arcsec at a latitude of 80°, we have 
ξ̃i ≤ 0.6 arcsec, η̃i ≤ 1.06 arcsec.
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3.3.4 Simulation Results 

To study the errors of the integrated system in solving the problem under consider-
ation, a simulation model of the SIMU operation was used with discrete recursive 
algorithms similar to the model given in (Emel’yantsev and Stepanov 2016). 

To form the virtual units of SIMU gyros and accelerometers, the following 
values of the parameters of their error models projected on the axes xb ybzb of the 
measurement unit were used. 

Gyro errors: 

• ΔMgx , ΔMgy, ΔMgz—instability of scale factors—random values with RMSE 
of 10−5%; 

• Δωxb, Δωyb, Δωzb—systematic error components of the gyroscopes charac-
terizing gyro bias stability from run to run—random values with an RMSE of 
3 · 10−5°/h; 

• Δωxb, Δωyb, Δωzb—gyro random error components characterizing in-run bias 
stability—the first-order Markov processes σ1g = 10−5°/h, μg = 1/20 h–1; 

• the gyro fluctuation error components—discrete white noise with an RMSE of 
σ2g = 10−3°/h at a frequency of 100 Hz. 

Errors of linear accelerometers: 

• ΔMax , ΔMay, ΔMaz—instability of scale factors—random values with an 
RMSE of 10−4%; 

• Δaxb, Δayb, Δazb—bias stability from run to run—random values with an RMSE 
of 10−5 m/s2; 

• Δaxb, Δayb, Δazb—in-run bias stability—first-order Markov processes σ1a = 
3 · 10−6 m/s2, μa = 1/1 h−1; 

• fluctuation error components—discrete white noise at the operating frequency 
with an RMSE of σ2a = 10−4 m/s2 at a frequency of 100 Hz. 

DOV components were represented by Markov processes similar to those in (Nash 
and Jordan 1978), with σξ = ση = 5 arcsec, d = 20 nm. 

The GNSS errors: 

• velocity errors —discrete white noise σVGN  SS  = 0.01 m/s at 10 Hz; 
• position errors—discrete white noise σSGN  SS  = 3 m at 10 Hz; 
• heading errors—deviation δK GN  SS  = 5 arcsec and discrete white noise σδKGN  SS  

= 3 arcmin at 10 Hz.  

As is known, the majority of currently available GNSS compasses have an accu-
racy of about 0.2°·1/L (1σ), where 1/L is the ratio of the 1-m antenna baseline to the 
length L of the antenna baseline. This level of errors is primarily due to the noise of 
phase measurements generated in the GNSS receiver [Novatel]. 

To set the level of errors of the specialized GNSS compass with an antenna baseline 
of about 6 m shown in Fig. 3.16, the results of the sea trials of the Vega GNSS 
compass (developed at the CSRI Elektropribor) with an about 19 m-long antenna



3 Methods for Determination and Calculation … 189

baseline were used (Emel’yantsev et al. 2011). From this research, it follows that 
the heading fluctuation errors of the stable course were about 3 arcmin (1σ). The 
angular offset in the heading error is due to the misalignment in the reference frames 
of the GNSS compass and FOG-based IMU-120 (IXblue, France) used as a reference 
SIMU. 

In the simulation, it is assumed that the reference frames of the precision SIMU 
and the GNSS compass antenna module are matched with an accuracy of 5 arcsec 
before going to sea at a point with known DOV components, and that in the process 
of DOV determination, the position of antenna phase centers is periodically updated, 
for example, using the procedure described in (Blazhnov et al. 2014). 

The following differential measurements are used: 

zVj (tk+1) = [∇  Sj_I N  S(tk+1) − ∇  Sj_GN  SS(tk+1)]/T z, (  j = E, N , H ), 
zϕ(tk+1) = ϕI N  S(tk+1) − ϕGN  SS(tk+1), 
zλ(tk+1) = λI N  S(tk+1) − λGN  SS(tk+1), 
zh(tk+1) = hI N  S(tk+1) − hGN  SS(tk+1), 
zK (tk+1) = KI N  S(tk+1) − KGN  SS(tk+1). (3.3.22) 

These measurements were processed using the Kalman filter with feedback at 
each measurement epoch.

Fig. 3.16 Heading error (arcmin) of Vega GNSS compass as compared with IMU-120 
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The following approximations were used to describe the error model of the 
integrated system: 

• gyro Δωi and accelerometer Δai (i = xb, yb, zb) run-to-run and in-run bias 
stability were approximated by the relevant Wiener processes; 

• the DOV components ξi , ηi at the i-th point of the path were described by random 
values with known variances. 

Under the assumptions made, the state vector of the simulation model of the 
system is represented as follows: 

xT =⎡ 
α β γ  ΔVE ΔVN ΔVH Δϕ Δλ Δh Δωxb  Δωyb 

Δωzb Δaxb  Δayb Δazb ξ η  
⎤
, 

and the dynamics matrix F = 
⎡ 
fi, j 

⎤
, 
(
i, j = 1, 17

) 
is similar to the models given in 

(Emel’yantsev and Stepanov 2016), taking into account the assumptions made. 
The measurement matrix Hk+1 corresponds to Eq. (3.3.22), whose non-zero 

elements are the following: 

H1,4 = 1; H2,5 = 1; H3,6 = 1; H4,7 = 1; H5,9 = 1; H6,1 = 1. (3.3.23) 

The simulation was carried out with the following initial data: 

• characteristics of the Earth and gravitational field: 

R = 6371000 (m) is the mean radius of the Earth; 

Ω = 7.2921151467 · 10−5 (rad/s); Sgr (t0) = 0; 

μg = 3.98603 · 1014 (m3/s2) is the gravitational constant of the Earth; 

ε = 2.634 · 1025(m5/s2) and χ = 6.773 · 1036(m7/s2) are the coefficients of the 
gravity potential decomposition; 

• ϕ = 80°; Vo = 0 m/s; K = 0° or K = 180°, pitching angles are small. 

The simulation results are presented in Fig. 3.17:
From the above data, it follows that averaged errors in DOV determination at the 

i-th point of the path obtained on the forward and reverse courses are ≤0.1 arcsec 
for ξ̃i and ≤0.75 arcsec for η̃i . 

In conclusion, it should be noted that a precision multi-antenna satellite orienta-
tion system with two antenna baselines, the one that determines the vehicle’s pitching 
angles, may be an alternative to a GNSS compass. In this case, differential measure-
ments formed on the basis of pitching angles can be used instead of heading measure-
ments. This will completely eliminate the need to use positional measurements (3.3.2) 
and significantly reduce the accuracy requirements for the SIMU gyroscopes. The 
proposed version of the method also allows determining the full DOV values in 
different regions of the World Ocean with no limitations on the observer’s latitude.
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Fig. 3.17 Errors (arcsec) in DOV estimates at K = 0° (a) and  at  K = 180° (b)

3.4 Conclusion 

Features of the inertial geodetic method for DOV determination have been consid-
ered. 

It is noted that the use of only velocity and positional differential measurements 
cannot provide full observability of DOV components since it allows determining 
only one—the full value—of the DOV component, in the plane of the observer’s 
meridian. As for ZUPT technology, it does not allow determination of full DOV 
components. 

A modified inertial geodetic method, proposed and considered in this section, 
makes it possible to determine full DOV components in all latitudes, including high 
latitudes. The modified method is implemented through the use of a precision INS 
and a specialized GNSS compass with an antenna baseline of about 6 m. 

It is shown that in order to achieve an acceptable accuracy in DOV determination, 
it is necessary to ensure the accuracy of determining the heading angle of about 6 
arcsec. It should be noted that the error in determining the heading angle also includes 
the error in matching the reference frames of the INS and the antenna module of the 
GNSS compass. Such matching must be carried out with an error of no more than 
6 arcsec every time before the vessel leaves the port at a point with known DOV value, 
and also periodically in the process of DOV determination to precisely determine 
the position of the phase centers of the GNSS compass receiving antennas. 
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Arctic. Findings from modern airborne gravimetric surveys in the Arctic carried out 
by Russian and international companies are analyzed. Marine and airborne gravi-
metric surveys using the Chekan gravimeters in hard-to-reach areas of the Earth, 
such as the Geographic North Pole, the Greenland shelf, coastal seas of the Antarctic, 
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Introduction 

This Chapter is devoted to the study of the gravity field in remote areas of the Earth. 
It includes three sections. 

Section 4.1 provides a historical overview of gravimetric surveys in the Arctic. 
Measurements conducted on drifting ice, onboard submarines and icebreakers are 
described. The results of modern airborne gravimetric surveys in the Arctic carried 
out by Russian and international companies are analyzed. 

Section 4.2 presents the results of marine and airborne gravimetric surveys 
using the Chekan-series gravimeters in hard-to-reach areas of the Earth, such as 
the Geographic North Pole, the Greenland shelf, coastal seas of the Antarctic, and 
the Himalayas. The methodological features of surveys using Chekan gravimeters, 
estimation of the accuracy and resolution of measurements are discussed. 

Section 4.3 is devoted to the versions of the GT-2A gravimeter designed to conduct 
airborne gravimetric measurements in polar regions of the Earth. The experience in 
using multi-antenna GNSS receivers in these areas is analyzed, and the method 
of transition to quasi-geodetic coordinates used in the solution of this problem is 
described. The test results for the GT-2AQ gravimeter with a four-antenna GNSS 
receiver installed on a pickup truck are presented. 

4.1 State of Knowledge of the Gravity Field in the Arctic 

The data on the Earth’s gravity anomalies in the Arctic were very fragmented and 
obtained using various methods by different authors and in various years (using 
diverse instruments with different errors). Moreover, the coordinate provision of 
these studies in the Arctic imposed its specifics and introduced errors. For these 
reasons, the errors of the GA models are present most of all in the polar cap of the 
Arctic. Due to the ice cover and remoteness from the bases, the detailed gravimetric 
area surveys in high latitudes can only be conducted onboard an aircraft. 

4.1.1 Brief Historical Overview of Russian Gravimetric 
Surveys in the Arctic 

To discuss the current state of knowledge of the Arctic gravity field and the potential 
for further research, a few words should be said about the historical sequence of 
gravimetric surveys in the Arctic and the significance of their results. 

Measurements on drifting ice. In the mid-1950s, the USSR Ministry of Defense 
approached the Main Department of Geodesy and Cartography (GUGK) and the 
Academy of Sciences with a proposal to perform the gravimetric area survey of 
the Soviet sector of the Arctic Ocean. Extremely short performance time—only 
two years—was imposed. Because of the Arctic meteorological conditions, the
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survey could be conducted only in spring (from March to May), when the polar 
night had already ended, but the ice was still strong enough to land heavy aircraft. 
This kind of work had never been carried out in the global practice of gravimetric 
surveys. GUGK refused to perform the studies for some reason, and it was decided to 
employ the Geophysical Institute of the USSR Academy of Sciences and the Military 
Topographic Service of the Soviet Army. 

In a short time the methodology was developed, the required gravimetric instru-
mentation and auxiliary equipment for gravity measurements on drifting ice were 
prepared. By the Order of the Council of Ministers of the USSR No. 645 dated 
February 3, 1955, and the Resolution of the Council of Ministers of the USSR 
No. 383–232 dated March 3, 1955, it was “proposed to arrange a High-latitude 
airborne expedition of 1955 to conduct gravimetric and magnetic observations on 
drifting ice in the area north of Spitsbergen, Franz Josef Land, and Severnaya Zemlya, 
including the strip above the underwater Lomonosov Ridge and the area of the North 
Pole.” This expedition was named the High-Latitude Airborne Expedition Sever-7. 

The geophysical party had to conduct the area gravimetric survey with a density 
of 1 observation point per 10,000 km2. The plan included the gravity determination 
at 105 points more or less uniformly distributed in the western part of the Central 
Arctic, including the North Pole. Gravimetric measurements were taken with the 
SN-3 pendulum gravimeters, and the geodetic referencing of gravity stations was 
performed with the OT-02 theodolite. 

The expedition Sever-7 worked from March 20 to June 10, 1955, and, despite 
the harsh conditions of the Arctic, the geophysical party successfully completed the 
planned works. A total of 117 gravimetric stations were determined in the western 
sector of the Polar Basin. The accuracy of gravity survey was about 1.2 mGal. The 
station coordinates were obtained with RMS errors (RMSE) of 0.1 arcmin by planets 
and stars and 0.6 arcmin by the Sun. 

By the Order of the Council of Ministers of the USSR No. 6410 dated September 
1, 1955, the surveys were continued in the eastern sector of the Soviet Arctic. One 
hundred and sixty-four main gravity stations and a number of additional gravity 
stations were determined within 45 days, from April 4 to May 18, 1956, during the 
next Sever-8 expedition. The error of gravity survey was of the same order as in 
1955. That is how the first gravimetric 1:1,000,000 map of the Soviet sector of the 
Arctic Ocean was obtained. 

Underwater surveys of the Arctic. Regular underwater surveys in the World 
Ocean started in 1955 following the Resolution of the USSR Council of Ministers 
on the studies of the gravity field, the figure and structure of the Earth, for which 
purpose the Navy regularly provided combatant submarines. In the same year, the 
Sternberg Astronomical Institute (SAI MSU) organized an expedition to measure 
gravity in the Barents, Kara, and Pechora Seas (Stroyev et al. 2007). Thirty-eight 
stations were determined accurate to ±6–8 mGal. The next year, the survey profile ran 
in the Bering Sea with going out to the Chukchi Sea. The survey was conducted with 
the same gravimeters SZ-1 and SZ-2, and the GAK land gravimeter to reference the 
berthing measurements to the stations of the USSR reference gravimetric network. 
To estimate the effect of rolling, the measurements were taken at 30–120 m depths,
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during the submarine motion and grounding. Despite the stormy weather, the Faye 
anomalies were calculated accurate to ±4 and ±6.2 mGal for pendulum instruments 
and gravimeters, respectively. The study of the dependence of the Brown correction 
for the effect of disturbing acceleration on depth showed that the depth of 60 m is 
sufficient for observations in stormy weather, whereas it can be half as large in good 
weather (Stroyev et al. 2007). 

In 1957, the expedition jointly organized by the SAI MSU, the Central Research 
Institute of Geodesy, Airborne Survey and Cartography (TsNIIGAiK) with the partic-
ipation of VNIIGeofizika conducted research in the Barents, Norwegian, Greenland 
Seas, and in the Atlantic Ocean. The route passed from Murmansk to the equator 
bypassing Iceland, making a 2.5-month independent transit. Pendulum instruments 
and auxiliary long-period pendulums developed by TsNIIGAiK were used during 
the expedition. Most of measurements were carried out at a depth of 100 m; specific 
features of measurements at depths from 30 to 120 m were investigated. To more 
accurately determine the submarine geographic coordinates, the behaviour of the 
main currents was studied, which helped to analyze their influence on the determina-
tion of the Eotvos correction (Stroyev et al. 2007). During the survey, the submarine 
passed all the climatic zones, took measurements at 119 stations with a gravity error 
of ±4–5 mGal and estimated 24 stations obtained by Vening Meinesz, Girdler, and 
TsNIIGAiK. 

Underwater marine surveys were conducted by both Russian and international 
scientists in almost all latitudes of the World Ocean. International companies have 
gained positive experience in underwater research, the results of which are partially 
open for the scientific community. Among these initiatives, the SCICEX project 
(Science Ice Expedition) (Pyle et al. 1997) is worth mentioning. 

Gravimetric measurements using icebreakers. Considering the potential of 
marine shipborne gravimetry, effective survey methods were developed to be applied 
onboard above-water carriers, such as icebreakers. As noted in (Litinsky 1972), 
gravimetric surveys onboard icebreakers can be quite widely applied, since a great 
number of mid-latitude seas freeze in winter along with polar water areas. Surveys 
onboard icebreakers can provide measurements with almost any resolution and can be 
supported by high-precision positioning using radio navigation and satellite systems. 
The first gravity measurements in the Arctic using the pendulums were carried out as 
early as in 1893–1896 by Nansen’s expedition during the Fram’s drift from the 
New Siberian Islands to the Svalbard Archipelago. The obtained measurements 
suffered from rather high systematic errors due to the structural imperfection of the 
measuring instruments. In 1937–1940 the Russian marine surveys were conducted 
onboard the icebreakers Georgy Sedov and Sadko drifting in the high Arctic latitudes, 
using three-pendulum instruments designed by Vening Meinesz (Zhonglovich 1950). 
The measurements were performed with errors comparable to those of submarine 
gravimetric observations. 

With the development of marine survey practice, the first measurements onboard 
ice class ships were conducted by the First Soviet Antarctic Expedition (1955) and 
the High-Latitude Greenland Expedition (1956) onboard the diesel-electric vessel 
Ob (Gaynanov 1961; Chesnokova and Grushinsky 1961). The measurements were
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taken with pendulum instruments (Cambridge and Askania Werke) and provided 
satisfactory results. It was shown that due to the strong vibration of the engines, 
observations onboard such vessels should be carried out in drift with the diesel 
generators off and under favorable weather conditions, or when the vessel enters the 
ice to avoid the influence of high swell in open waters. 

The first high-precision marine gravimetric survey in the North Pole area was 
conducted in the central part of the Arctic Ocean using two similar gravimetric 
systems, Chekan-AM and Shelf-E developed by Concern CSRI Elektropribor 
(Blazhnov et al. 2002; Krasnov et al. 2014b). It was integrated with seismic and 
bathymetric surveys using a single grid of survey lines (Kazanin et al. 2016). As 
a result, 36 gravimetric lines were obtained and the catalog of 71,179 gravimetric 
stations was created. The estimated RMSE at the intersection points of survey lines 
was 0.28 mGal for Shelf-E and 0.72 mGal for Chekan-AM (Sokolov et al. 2016b). 
The results of this survey are discussed in detail in Sect. 4.2. 

In gravimetric surveys, icebreakers can be applied as convoying and basing 
ships for complex expeditions and groups conducting airborne surveys onboard 
helicopters. Direct gravimetric observations are recommended onboard drifting 
icebreakers, mainly for organization of floating gravity reference stations to support 
airborne surveys. 

4.1.2 Modern Russian Arctic Airborne Gravimetry 

Several solutions have been recently implemented in Russia in the sphere of airborne 
gravimetry in the Arctic. 

The GT-2A gravimeter has been upgraded based on the airborne survey experience 
in the Arctic (see Sect. 4.3 for details). The gravimeter software has been improved by 
the Laboratory of Control and Navigation of the Department of Mechanics and Math-
ematics of the Lomonosov Moscow State University. The Institute of Physics of the 
Earth RAS has proposed a number of improvements to the measuring system (see 
(Koneshov et al. 2016), and Sect. 1.3) and experimentally studied the gravimeter 
operability in latitudes up to 78°N using modern high-precision positioning tech-
nologies. In addition, Aerogeophysica has refined the surveying techniques, which 
allowed area survey with a scale of no worse than 1:1,000,000 in the North of the 
Kara Sea up to 81°N (Mogilevsky et al. 2015). 

Chekan series gravimeters developed by Concern CSRI Elektropribor (see 
Sect. 1.2) and widely used in marine gravimetry are also applied to modern airborne 
area measurements, though less often than GT-2A gravimeters. 

To support the Russian Federation claims to extend the Russian continental shelf 
in the Arctic, VNIIOkeangeologia conducted airborne magnetic and gravity surveys 
above the Lomonosov Ridge and Mendeleev Rise in 2005 and 2007 (Ekspeditsionnye 
issledovaniya 2006).
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Airborne gravimetric studies of 2005 were carried out with the airborne gravi-
metric system including three string gravimeters GAMS, GSD-M and a string barom-
eter (developed by VNIIGeophyzika, Russia). Airborne surveys above the Mendeleev 
Rise were carried out over an area of 240 × 640 km between 75° and 78°N using 
a system of submeridional lines with 10 km spacing and orthogonal crosslines with 
an interval of 20–30 km. A number of additional submeridional survey lines that 
shortened the distance between the survey lines to 5 km were passed to ensure a 
more detailed study of the central part of the area. 

The airborne gravimetric survey by VNIIOkeangeologiya in 2007 was conducted 
using a more modern gravimeter Chekan-AM. The 100 × 720 km survey area was 
located along the Arctic-2007 geotraverse in the junction zone of the Lomonosov 
Ridge with the adjacent shelf between ~78° and 84°N (Palamarchuk et al. 2008; 
Russian Arctic Geotraverses 2011). The Chekan-AM gravimeter demonstrated stable 
performance in high latitudes, and a 1:1,000,000 map of EGF anomalies was 
constructed (Fig. 4.1). The details of conducting this survey are discussed in Sect. 4.2.

In 2006–2013, IPE RAS Graviinertial Measurements Laboratory successfully 
completed aerogravimetric surveys above the southern, central and north-western 
parts of the Novaya Zemlya Archipelago and the adjacent water areas of the Barents 
and Kara Seas. The measurements were conducted using GT-1A/2A airborne gravi-
metric systems installed onboard an airborne laboratory based on Antonov AN-
26 BRL (Drobyshev et al. 2008, 2009, 2011). The total area of 180,000 km2 was 
surveyed at a scale of 1:200,000, and relevant maps were constructed. 

In 2011–2013, the IPE RAS conducted an area survey with a scale of 1:200,000 
over 60,000 km2 in the central part of the Kara Sea. 

The most recent Russian airborne gravimetric surveys in the Arctic have been 
conducted by Aerogeophysica. The objective of the surveys was to solve prospecting 
problems and compile individual sheets of the new edition of the state geological 
map. 

In 2011–2013, Aerogeophysica prepared nine survey maps at the scale 
1:1,000,000 for the eastern coast of the Russian sector of the Arctic within 132°E to 
174°W, 68°N to 72°N: R-53…R-01. Surveys with GT-2A gravimeters were inte-
grated with airborne magnetic studies onboard AN-26 and AN-30 aircraft. By 
comparing the aerogravimetric measurements with the results of 1:200,000 land 
surveys conducted in 1970–1990s, and based on internal convergence, the accu-
racy of the aerogravimetric survey was estimated at 0.6–0.7 mGal (Mogilevsky and 
Kontarovich 2015). Aerogeophysica has also completed high-latitude surveys in the 
northern part of the Kara Sea (up to 81°N), in the western part of the Laptev Sea, 
north of the New Siberian Islands and in the south-east of the East Siberian Sea 
within a number of licence areas with promising hydrocarbon fields. 

Airborne gravimetric survey in the Arctic is a very difficult task. This is not only 
due to the specific operation of gravimetric systems in this region and the refinement 
of the surveying methodological techniques, but also due to the lacking base airfields 
in a number of Arctic regions. For this reason, 1:200,000 maps have not yet been 
obtained for the junction areas of the Lomonosov and Mendeleev ridges and the shelf 
zone of Russia.
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Fig. 4.1 EGF anomaly map 
based on Chekan-AM data



206 V. Koneshov et al.

4.1.3 Modern International Arctic Airborne Gravimetry 

About 30 years ago, airborne gravimetry began to be commonly used in international 
gravity field studies. During this time, the western researchers have carried out a 
significant amount of airborne gravimetric surveys in the Arctic. 

For example, the Naval Research Laboratory, Washington, DC, USA, has surveyed 
more than 210,000 linear km covering almost 2/3 of the Arctic Ocean within the 
Arctic Airborne Gravity Measurement Program (Fig. 4.2) (Brozena and Salman 
1996). The results of these studies, along with other gravity data available at the 
time, were applied to develop EGF integrated models using satellite measurements 
of projects ERS 1 and 2 that ensured data coverage up to 81.5°N. 

To determine the resolution of aerogravimetric studies and the accuracy of the ERS 
1998 integrated global model of the Earth’s gravity field, a comparative analysis 
was performed for two groups of long lines, and the correlation was determined 
between them, airborne gravity surveys of 1996, and the Canadian ice surveys along 
these lines. Airborne gravimetric studies were conducted with LaCoste & Romberg 
gravimeters (USA). The first group of three lines of about 600 km oriented NNW 
between 71° and 75°N in the area of the Beaufort Sea demonstrated a good qualitative 
agreement between the measurements obtained by all three methods. Despite the 
fact that the standard deviation (SD) between ice observations and airborne survey 
data is about one-third lower than with the ERS 1998 model (1.86 and 2.64 mGal,

Fig. 4.2 Airborne gravimetric measurements by the Naval Research Laboratory 
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respectively), the SD between the model data and airborne survey data was 2.55 mGal. 
This indicates that when creating the global EGF model based on satellite data, the 
detailed ice and marine survey data could greatly contribute to the refinement of 
the final model values in the survey area. This assumption is also confirmed by the 
short-period anomalies in the values of the ERS model with the resolution of the 
gravimetric data estimated at 15 km. In this regard, airborne and marine and ice 
survey data (with a grid density of one station per 3–10 km2) can be considered as 
independent measurements, and deviations of the ERS 1998 model can be considered 
as regional features. For details on estimating the accuracy of global EGF models in 
the Arctic, see Sect. 6.1 of this monograph. 

In 1999–2001, Rene Forsberg and his colleagues carried out airborne surveys 
offshore Greenland with the RMSE reaching ~2 mGal for the spatial resolution of 
about 6 km (Forsberg et al. 2011). This exceeded the accuracy of earlier measure-
ments greatly (RMSE ~5 mGal with a spatial resolution of ~20 km). In 1999–2001, 
measurements were also carried out near the Svalbard Archipelago. The new airborne 
gravimetric data well correlated with the results of marine surveys of the 1990s. The 
studies were applied to check and refine the earlier surveys conducted on various 
carriers during the ArcGP-2002 (Arctic Gravity Project) creating a detailed global 
free air EGF 5 × 5' model (Fig. 4.3) (Forsberg and Keyon 2004).

Due to the unique opportunity to use airborne gravimetric data of the large-scale 
Arctic Airborne Gravity Measurement Program, as well as other available gravimetric 
data, the ArcGP-2002 project covered the area above 81.5°N not covered by the 
ERS mission data. The model first version was supplemented with the icebreaker 
gravimetric survey data, detailed gravimetric data for the Russian sector of the Arctic 
shelf, land measurements for Siberia (VNIIOkeangeologia, PMGRE, TsNIIGAiK), 
ICESat satellite mission data extending the satellite coverage to 86°N, and CryoSat 
data to create the improved EGF model ArcGP Ver. 2.0. 

The second revision of the Arctic gravity field model mentioned above became the 
basis for the global EGF model EGM2008. This global model created using GOCE 
data showed a significantly increasing correlation of the digital geoid models for 
the Arctic and Antarctic polar caps above 83°N (Forsberg et al. 2011). To solve this 
problem in the South Pole area, R. Forsberg’s group proposed to conduct an airborne 
gravimetric survey which, along with satellite data, would improve the quality of the 
global field model EGM2008 for high latitudes. 

Due to the relevance of redefining the outer border of the continental shelf in the 
Arctic and studying the structure of the Earth’s crust near the Lomonosov Ridge, the 
western researchers carried out airborne gravity and magnetic surveys over an area 
of over 550 thousand square km within the Lomgrav-09 project. The 2009 survey 
also covered the North Pole area claimed by Russia, Canada, the USA, Norway, and 
Denmark. 

Airborne gravimetric measurements were carried out with the improved 
LaCoste & Romberg S99 and SL1 airborne gravimeters using a system of lines 
located subparallel to the Lomonosov Ridge on the Norwegian side of the Arctic 
Ocean with a 12–15 km spacing and three crosslines. The survey grid was chosen 
so that to cover a rather large area in the vicinity of the Lomonosov Ridge, as well
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Fig. 4.3 Arctic gravitational field based on ArcGP project data

as due to the location of airports provided with sufficient amounts of fuel. The same 
factors probably explain the small number of crosslines (3 survey lines across the 
Alpha and the Lomonosov ridges). The survey RMSE of 2.4 mGal was obtained in 
the office processing of the airborne gravimetric data. The data from this airborne 
survey were compiled with the earlier measurements carried out on land, ice, and 
moving vehicles to create a new free-air GA map with a resolution of 2.5 km and 
18 km correlation length. The use of earlier data in the final model of free-air gravity 
anomalies sometimes led to discrepancies in the anomaly amplitudes of more than 
15 mGal compared with the LOMGRAV-09 measurements. The authors also note 
that the maximum discrepancies reached about 80 mGal and related to the airborne 
gravity surveys of 1998–1999 and to the Danish-Canadian ice surveys. This resulted 
in the need to remove these data from further analysis. 

Based on the results obtained in the Greenland sector of the high-latitude Arctic 
(between 80° and 89°N), dense systems of linear positive anomalies were detected 
running along the central part of the Lomonosov Ridge, some of which were up to 
300 km long. Some linear anomalies not represented in the modern seabed terrain 
were interpreted by the authors—based on the obtained seismic data—as presumably 
rift structures buried under Cenozoic sediments. New gravimagnetic data, according
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to the authors, do not confirm the existence of a significant strike-slip or trans-
form fault between the Lomonosov Ridge and the polar margin of the Lincoln Sea. 
The above-discussed EGF studies were used along with available seismic and other 
geological and geophysical data to determine the origin and tectonic structure of 
the Amundsen Basin and to redefine the position of the continental margin near 
Greenland. 

4.1.4 Conclusions 

Analysis of gravimetric surveys in hard-to-reach Arctic areas has shown that the 
conducted research is not extensive enough to adequately estimate the errors in the 
modern models of the gravitational field of the planet polar cap, and more detailed 
surveys are recommended in these areas. For this specific remote area of the Earth, 
airborne gravimetric surveys should be considered as the main method of gravimetric 
studies. Studying the field of the region will help solve one of the most important 
fundamental problems: refining the Earth’s figure in the Arctic. 

4.2 The Results of the Gravimetric Surveys with Chekan 
Gravimeters in Hard-to-Reach Areas 

To date, polar areas, mountain ranges, as well as transit zones at the boundary of sea 
and land remain the least studied areas of the Earth in terms of GAs. The develop-
ment of gravimetric systems and satellite technologies stimulated active industrial 
and scientific gravimetric surveys in such hard-to-reach areas at the beginning of 
the twenty-first century. Yet, the main method of measurement is, as before, deter-
mination of gravity increments on survey lines carried out with relative gravimeters 
installed onboard marine and airborne carriers, since other gravimetric methods do 
not provide the required spatial resolution. 

The main surveys using the Chekan-AM gravimeter are traditionally conducted 
as a secondary geophysical method used in explorations for hydrocarbons on the 
sea shelf (Krasnov et al. 2014a). However, gravimeters of the Chekan series have 
recently been used to study the EGF in hard-to-reach areas. Section 4.2 discusses the 
results of such works and the methodological features of their implementation. 

4.2.1 Marine Gravimetric Surveys in the Polar Regions 

As part of the Russian Antarctic Surveys, the Polar Marine Geosurvey Expedition 
annually conducts gravimetric surveys of the marginal seas of the Antarctic onboard
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the Akademik A. Karpinsky research vessel. In the period from 2005 to 2015, the 
surveys were conducted using two systems, Chekan-AM and Cheta-AGG, and since 
2016, two Chekan-AM gravimeters have been used. 

An overview map of the surveys conducted over these years is shown in Fig. 4.4. 
The total length of the survey lines is more than 70,000 km. Gravimetric studies are 
integrated with seismic and magnetic surveys. 

A significant difference in gravity (over 2.5 Gal) relative to the gravity reference 
station (GRS) in the port of Cape Town and a long duration of work with no port 
calls are specific features of gravimetric measurements. In this regard, more stringent 
requirements are imposed on the calibration quality of the gravity sensor and stability 
of the gravimeter drift. 

In the marginal seas of the Antarctic, surveys are usually conducted in severe 
meteorological and ice conditions. During hurricanes, the wind speed reaches 20 m/s 
and the sea state reaches 5–6 on the Douglas scale. When moving along most of the 
geophysical lines, it is necessary to sail around icebergs and ice fields, sometimes 
deviating from the survey line by 10 km or more, and in some cases, changing the 
direction of the line.

Fig. 4.4 Overview map of gravimetric surveys in the marginal seas of the Antarctic (RAE—Russian 
Antarctic Expedition) 
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As a result of the conducted surveys, 1:2,500,000-scale EGF maps were compiled 
for marginal seas of the Antarctic, such as the Weddell Sea, the Cooperation Sea (also 
called the Commonwealth Sea), the Riiser-Larsen Sea, the Cosmonauts Sea, and the 
Davis Sea. The RMS error of the gravimetric surveys was less than 1 mGal for all 
Antarctic surveys carried out over 11 years. 

The first high-precision marine gravimetric survey near the North Pole was 
conducted in 2014 within the Arctic-2014 survey, which was coordinated by the 
Marine Arctic Geological Expedition (MAGE) as part of integrated geophysical 
surveys of the Arctic Basin (Kazanin et al. 2015; Sokolov et al. 2016b). Surface 
gravimetric survey was a secondary method; it was conducted in conjunction with 
the seismic and bathymetric surveys at a single grid of lines. 

The survey was carried out with two gravimeters, Chekan-AM and Shelf-E, which 
were installed onboard the Akademik Fedorov research vessel (Fig. 4.5). 

The following areas were defined as spatial boundaries of the survey area: the 
Arctic Ocean, the Podvodnikov Basin, the Vilkitsky Trough, the Amundsen Basin, 
the Nansen Basin, the Makarov Basin, the outer shelf of the Laptev Sea and the East 
Siberian Sea. The total survey area was about 350,000 km2. A map of the survey 
lines is shown in Fig. 4.6.

Initial and final reference gravimetric observations were carried out at the port of 
Kiel (Germany) on July 14 and October 9, 2014, respectively. Measurements on the 
survey lines were carried out for two months from July 28 to September 27, 2014, 
with no port calls. 

Taking into account the difficult ice conditions, two vessels were used to carry 
out the survey: the Yamal icebreaker was making a channel, while the Akademik

Fig. 4.5 Chekan-AM (left) and Shelf-E (right) gravimeters onboard the Akademik Fedorov 
research vessel 
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Fig. 4.6 Map of survey lines in the Arctic Basin

Fedorov, an ice-reinforced research vessel, followed the icebreaker conducting the 
survey. 

In the polar regions, the solid ice was 4 m thick. In those conditions, the Akademik 
Fedorov could not keep on moving steadily and continuously. During the measure-
ments, the vessel performed regular stops and changed tacks. Of 10,200 km of the 
survey, 7500 km were conducted in solid ice and only 2700 km in relatively open 
water. The average speed of the vessel through the ice was 3.8 kn (with a minimum 
of 2.1 kn) and 5.1 kn in open water. 

Thirty-six gravimetric profiles were derived as a result of the complex research. 
The compiled catalog of the gravimetric sites comprises 71,179 independent 
measurements. The main criterion for the measurement accuracy was the RMS error 
of a single GA determination at repeated control points, which was 0.28 mGal for 
the Shelf-E gravimeter and 0.72 mGal for the Chekan-AM gravimeter. The results 
obtained correspond to the current level of high-precision marine surveys. 

Figure 4.7 shows values of the depths, Bouguer and free-air anomalies for Line 
AR1409-07. The plot shows a high degree of correlation of the free-air anomalies 
with the seabed terrain as well as high-frequency EGF anomalies.

The processing of the results of the whole survey made it possible to detect EGF 
anomalies with a spatial resolution of less than 1 km and amplitude of 1–5 mGal, 
which can be measured only from a marine vessel. This is also confirmed by the 
comparison (Fig. 4.8) of the survey results with the values of the EGF anomalies 
from the EGM2008 global model and the data from the Arctic Gravimetric Project 
(ArcGP), which is presented by the results of the 1999 airborne gravimetric survey 
in this region.
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Fig. 4.7 Plots of depth, Bouguer and free-air anomalies on Line AR1409-07

Fig. 4.8 Comparison of the gravimetric survey results with the data of the EGF models for Line 
AR1409-08 

It can be seen that marine measurements have higher spatial resolution and are 
free from the systematic errors of airborne surveys (ArcGP) as well as an additional 
displacement of the local maxima of the calculated model (EGM-2008). 

The results of the marine gravimetric survey carried out in the area of the North 
geographical pole have confirmed the undoubted priority of this method in the study 
of the high-frequency component of EGF anomalies. The unsteady motion of the 
vessel along the survey lines because of difficult ice conditions has little or no
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impact on the accuracy of EGF measurements. The Chekan-AM gravimeter soft-
ware and hardware allow for conducting high-accuracy gravimetric surveys in the 
Arctic latitudes up to the geographic pole of the Earth. 

4.2.2 Regional Airborne Gravimetric Surveys 

In 2007–2011, TGS-NOPEC Geophysical Company (Norway) used a Chekan-AM 
gravimeter to conduct five regional surveys in the northern, north-eastern, and south-
western parts of the Greenland shelf (Krasnov et al. 2010). Gravimetric measurements 
were carried out onboard various types of light turboprop aircraft (Table 4.1). An 
overview map of the surveys is shown in Fig. 4.9. 

One Chekan-AM gravimeter was used for each survey. The field work lasted 
about three months. Throughout the whole period, the gravimetric equipment needed 
continuous thermal regulation. During the survey period, the air temperature varied 
by up to 30 °C. Therefore, of vital importance in the surveys was to maintain a 
constant temperature in the aircraft cabin, where the gravimeter was installed. 

Quality control of temperature stabilization during the survey can be done using 
the reference observation database. Figure 4.10 shows a database of reference obser-
vations of the ULAG09 survey. Each point on the diagram represents the average 
value of the gravimeter readings for 1 h immediately before the flight. The data 
presented indicate that the standard deviation of the preflight measurements of the 
gravimeter for 33 days was about 0.3 mGal, which characterizes good temperature 
stabilization at the gravimeter location.

The aircraft speed on the survey lines of the Greenland shelf was about 70 m/s. A 
window filter with a cutoff frequency of 0.01 Hz was used in postprocessing. Thus, 
the resolution of the measurement results on the survey lines was about 7 km (half 
the wavelength). The surveys were carried out on a grid of primary and tie lines. The

Table 4.1 TGS-NOPEC airborne gravimetric measurements 

Survey Type of aircraft Survey period Duration, days Total length 
of survey lines, km 

NEGAG07 Piper Navajo PA 31  
LN-NPZ 

03.08.07—27.09.07 56 34,319 

NEGAG08 Twin Otter DH-6 21.04.08—03.07.08 75 49,776 

ULAG08 Piper Navajo 
LN-NPZ 

25.08.08—25.10.08 62 50,684 

ULAG09 Beechcraft King Air 
90 

06.07.09—21.09.09 78 39,897 

SEGAG11 Beechcraft King Air 
90 

01.08.11—27.09.11 58 24,231
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Fig. 4.9 Survey areas on the Greenland shelf

Fig. 4.10 Database of reference observations of the ULAG09 survey
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Table 4.2 Parameters of surveys 

Survey Distance 
between lines, 
km 

Total length of 
survey lines, 
km 

Number of 
cross-points 

Spatial 
resolution L/2, 
km 

Survey 
RMSD, mgal 

NEGAG07 4/20 34,319 1115 ~7 0.87 

NEGAG08 4/40 49,776 1079 ~7 0.77 

ULAG08 4/40 50,684 1082 ~7 0.70 

ULAG09 8/40 39,897 2120 ~7 0.70 

SEGA11 6/30 24,231 578 ~7 0.85 

distance between the primary lines was specified in accordance with the required 
scale of the final gravity anomaly map (Table 4.2). 

Figure 4.11 shows the gravity anomaly for one of the tie lines of the ULAG08 
project. The points on the diagram indicate the values of the anomalies at the primary 
lines. The figure also shows the gravity anomaly obtained with the use of satellite 
altimetry. It can be seen that the airborne gravity survey data have a higher resolution 
and provide a more detailed structure of the gravity field. 

Office processing of the survey results carried out with special software validated 
the high quality of the data obtained. The total length of the lines of gravimetric 
surveys on the Greenland shelf exceeded 300 thousand km. The standard deviation 
of the error does not exceed 1 mGal at a spatial resolution of about 7 km. All the 
surveys were conducted in harsh conditions of the Arctic, with two of the surveys 
conducted in latitudes above 75°N. During the surveys, no gravimetric equipment 
failure was logged and the total amount of data rejected for various reasons was less 
than 5%.

Fig. 4.11 Results of measurements on the tie line in comparison with satellite altimetry data 



4 Studying the Gravity Field in Hard-To-Reach Areas of the Earth 217

A geophysical survey conducted by the Russian company VNIIOkeangeologia 
in May 2007 is another example of production airborne surveys using the Chekan-
AM gravimeter (Palamarchuk et al. 2008). Comprehensive gravimetric and magnetic 
studies were carried out in the Arctic Ocean in the zone of the Lomonosov Ridge in 
the area bounded by 75–84°N onboard an IL-18D aircraft. The plane flew at a speed 
of 100 m/s at an altitude of 500–1500 m along primary lines spaced by 10 km, and 
a series of tie lines. 

The gravity field measured in the survey area turned out to be quite irregular. The 
average field gradient was ~0.7 mGal/km with maximum values up to 4 mGal/km. 
Figure 4.12, representing the primary line no. 2, also showing the seabed terrain, gives 
a clear idea of the field nature (Palamarchuk et al. 2008). It is easy to see a good 
correlation between the underwater terrain and the gravity anomaly. A comparison 
was made between the resulting field and the gravity anomaly map compiled in 
the ArcGP project. The comparison showed much greater detail of the first one as 
compared with the ArcGP map and a better correlation of the measured field with 
the seabed terrain. 

Since the main objective was to conduct magnetic measurements, the weather 
conditions and flight mode were chosen mainly with consideration for the require-
ments of the magnetic survey; however, they were not always favorable for gravi-
metric measurements. As a result, the noise (vertical and horizontal accelerations of 
the aircraft) turned out to be as great as 25 Gal on average for the season, reaching 
50–80 Gal at maneuvers.

Fig. 4.12 Comparison of the airborne profile with the ArcGP Project Data and the underwater 
terrain 



218 V. Koneshov et al.

The RMS error of the survey estimated from the misties was 1.5 mGal, and after 
elimination of several points measured under high turbulence conditions, it became 
0.8 mGal. The airborne survey resulted in a 1:1,000,000-scale map of the free-air 
gravity anomaly. 

Another type of hard-to-reach areas in which it is necessary to perform gravi-
metric studies is mountain ranges. Due to the rugged terrain and the irregularity of 
the gravitational field, such measurements are needed to improve the geoid model. 
In December 2010, the Technical University of Denmark carried out an airborne 
gravimetric survey to map the geoid in Nepal (Forsberg et al. 2015). The airborne 
survey in the highest mountains of the Earth, the Himalayas, was carried out using 
Chekan-AM and L&R gravimeters from a Beech King Air aircraft. 

The survey lines in Nepal were laid at a distance of about 6 nautical miles from 
each other (Fig. 4.13). Because of significantly different topographic conditions, the 
flights were conducted at altitudes from 4 km on the southern lines to 10 km on the 
northern lines. Flights along the tie lines were also conducted at an altitude of 10 km. 

In the course of airborne gravimetric surveys in Nepal under difficult conditions 
of an irregular gravitational field and turbulence, the data on the Chekan-AM and 
L&R gravimeters employed in the surveys along with the new data from the GOCE 
mission and the topographic data were used to produce an improved national geoid 
model for Nepal. The accuracy estimate of the improved geoid model was about 
10 cm over most of the country, which was confirmed by the GPS leveling data in 
the Kathmandu Valley.

Fig. 4.13 Flight altitude (m) during the airborne gravimetric survey in Nepal 
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In addition, in 2015, it was for the first time that the work on integration of marine 
and airborne gravimetric measurements in the Arctic was done. Sevmorgeo, JSC, 
conducted their airborne gravimetric survey with the use of Chekan gravimeters. 
The survey was carried out in the northern part of the East Siberian Sea, from April 6 
to August 31, 2015, with the aim to create a modern geological and geophysical basis 
for the poorly explored area with a high oil and gas potential (Peshekhonov et al. 
2016). 

Two Chekan-AM gravimeters and a Shelf-E gravimeter were used in the airborne 
gravimetric survey. The gravimeters were installed in the central part of the AN-
30 aircraft fuselage. Flight measurements were carried out relative to the reference 
station at the airdrome of the town of Pevek. 

The gravimetric survey was conducted at altitudes from 340 to 370 m. The distance 
between primary survey lines was 4 km; the distance between the tie survey lines was 
25 km. The average flight speed during measurements varied from 75 to 100 m/s. 

A distinctive feature of this survey is that the survey area is crossed by the lines of 
the marine survey that was previously carried out as part of the Arctic-2014 expedition 
(see Fig. 4.6). This allowed for a joint analysis of marine and airborne gravimetric 
data. 

A map of airborne and marine survey lines is shown in Fig. 4.14. 
The total length of airborne survey lines is more than 40,000 km. Data processing 

showed high accuracy in determining gravity acceleration. For example, the survey 
RMS error estimated for 1400 misties was as follows:

• for Chekan-AM gravimeters: 0.85 mGal and 0.83 mGal;

Fig. 4.14 Map of airborne and marine gravimetric survey lines 
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Fig. 4.15 Gravity anomaly curve on a marine survey profile and anomaly values from the airborne 
survey data 

• for the Shelf-E gravimeter: 0.69 mGal. 

For the comparative analysis, the marine and airborne gravimetric survey data 
were recalculated taking into account the absolute values of the gravity acceleration 
at reference stations. A station of Class 1 state grid was used for the Pevek aerodrome, 
and for the port of Kiel the absolute value was obtained from the AGrav international 
database (Wziontek et al. 2009). 

The average correction for reduction of the airborne measurements to an ellipsoid 
was about 110 mGal. The difference with respect to the RGS was on average 0.5 Gal 
for airborne survey and 1.5 Gal for marine survey. At the same time, marine onboard 
measurements on the lines crossing the area of the airborne survey were taken 60– 
70 days after the reference observations in the port of Kiel. 

Figure 4.15 shows an example of the gravity anomaly for one of the marine survey 
profiles, which also shows the values of the anomalies at the points of intersection 
with the airborne survey profiles. 

Based on the analysis of 133 misties at the intersection points of marine and 
airborne survey lines, the following accuracy estimates were obtained: 

• Systematic difference between surveys: 0.61 mGal; 
• RMSD between marine and airborne surveys: 1.1 mGal. 

Thus, the gravimetric lines of high-accuracy marine route survey up to the North 
Geographical Pole of the Earth can be considered as a reference grid for airborne 
gravimetric surveys. Such integration of data allows eliminating the methodolog-
ical error of the recalculation of airborne gravimetric measurements to the ellipsoid 
surface, while the high performance of airborne gravimetric surveys, sufficient spatial 
resolution, and modern gravimetric equipment make it possible to successfully solve 
the problem of prospecting for hydrocarbons in the Arctic.
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4.2.3 Carriers Used for Gravimetric Measurements 

Airborne gravimetry is a crucial method to improve the knowledge about the Earth 
gravity field, especially in hard-to-reach regions. Its main advantage, compared to 
traditional marine and land surveys, is a relatively short period of time needed to 
obtain raw data. However, to date, it still remains a problem to increase the spatial 
resolution of the results of airborne gravimetric measurements. With this purpose in 
view, low-speed aircraft, such as light turboprop planes, helicopters, and airships, 
are considered attractive as carriers of gravimetric equipment. 

The first experiment on conducting experimental methodological work using a 
Chekan-AM gravimeter onboard a light turboprop plane was performed in 2007 
in cooperation with the Braunschweig Technical University (Krasnov and Sokolov 
2009; Krasnov et al. 2007). The survey was carried out onboard a Dornier-128 aircraft 
with a flight height of about 300 m and a speed of 50–60 m/s. 

The measurement accuracy was estimated by comparing the data with a high-
resolution land map (Fig. 4.16). 

The results of experimental methodological work have confirmed the feasibility 
of conducting airborne gravimetric surveys with an error of less than 1 mGal with 
a spatial resolution of 5–6 km. However, paths with satisfactory flight conditions 
turned out to be quite short. Nevertheless, those tests made it possible to work out a 
technique for conducting airborne surveys using the Chekan-AM gravimeter. 

In January 2014, the first works were carried out using a Chekan-AM gravimeter 
onboard an AU-30 airship (Krasnov et al. 2015). The purpose of that experiment 
was to determine the possibility of using an airship as a carrier of gravimetric

Fig. 4.16 Comparison of the data of an airborne survey and a land map 



222 V. Koneshov et al.

Fig. 4.17 Chekan-AM gravimeter onboard the AU-30 airship 

equipment, to assess the level of induced perturbing accelerations, and to develop 
recommendations for creating an airship-based geophysical laboratory. 

The Chekan-AM gravimeter was installed in the cabin of Augur Aeronautical 
Center’s AU-30 airship (Fig. 4.17). The tests were conducted in the Vladimir Region. 

A test line with a length of about 50 km was passed three times. The flights were 
conducted at an altitude of 330 m with an average speed of 17 m/s, corresponding to 
the cruising speed of the AU-30 airship. The airship was held at a specified altitude 
in the range of ±40 m, which is several times worse than the satisfactory conditions 
for airborne surveys (Sokolov et al. 2016a). Deviations from the specified trajectory 
reached significant values of 100–150 m, which is due to the fact that the airship 
speed was comparable to the wind speed, and it was impossible to ensure high-
quality support for the carrier stable motion at the specified altitude and trajectory in 
such conditions. As a result, the value of inertial accelerations due to the unsteady 
motion of the carrier when running survey lines was 2–3 times higher as compared 
with similar measurements taken onboard light turboprop aircraft. 

Despite the fact that the use of an airship as a carrier increased the spatial resolution 
of the gravimetric measurements 3–4 times, the accuracy obtained is approximately 
2–3 times worse than the accuracy of measurements taken onboard aircraft that are 
less susceptible to the influence of dynamic perturbations. 

Another urgent task of studying the EGF in remote areas is detailed gravity 
measurements in transit zones with depths starting at 0 m. Conventional marine 
surveys are carried out at safe depths of more than 5 m, approximately twice the 
draft of the vessel. In order to effectively solve the problem of conducting surveys in 
the conditions of extremely shallow waters, Yuzhmorgeologia has developed and 
successfully implemented a technology of surveys with the use of Chekan-AM 
gravimeters onboard hovercraft (Lygin 2013). 

The technical specifications of the HIVUS-10 hovercraft provide for the surveys 
on lines more than 100 km long and at a distance of several tens of kilometers
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from the base with a sea state not higher than 2. For gravimetric surveys in hard-
to-reach areas, the hovercraft with gravimetric and navigation equipment installed 
in it is placed onboard a carrier vessel which is also supplied with all the necessary 
equipment for gravimetric surveys. Surveys using hovercraft have been conducted 
by Yuzhmorgeologia since 2007. They were carried out in the Sea of Azov and 
its estuaries, in the Pechora Sea, the Baydaratskaya Bay, the Yenisei Gulf, and the 
Khatanga Gulf. 

Gravimeters of the Chekan series are also used to take measurements at land 
gravimetric stations, including those in hard-to-reach areas of the Earth, such as 
deserts and transit zones. In this case, Chekan gravimeters are used in much the 
same way as relative land gravimeters. Measurements are taken on a fixed base for 
10 min after the carrier stops. As this takes place, the gravimeter equipment is not 
unloaded from the minivan. The advantages of using Chekan gravimeters for this 
type of measurements are an unlimited range of measurements, high performance 
and full automation of work (Zheleznyak et al. 2015). 

Figure 4.18 shows the results of five routes with a Shelf-E gravimeter at the 
Leningrad gravimetric test site. 

The RMS measurement error was 0.1 mGal. The test results characterize another 
way of studying the EGF; at the same time, they also show that it is possible in 
principle to use Chekan gravimeters for maintaining and developing Class 1 state 
gravimetric grid and creating Class 2 and Class 3 grids, provided that a Chekan 
gravimeter is transported to gravimetric stations by minivans.

Fig. 4.18 Measurement errors at the gravimetric test site points in five test routes 
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4.2.4 Conclusions 

Methodical features of gravimetric surveys in hard-to-reach areas of the Earth using 
Chekan gravimeters are described. 

The results of marine and airborne geophysical surveys in the Arctic and the 
Antarctic are presented. It is shown that the survey error in airborne gravimetric 
measurements onboard light turboprop aircraft does not exceed 1 mGal with a spatial 
resolution of about 7 km. 

The potential was discussed for studying hard-to-reach areas of the Earth using 
promising types of carriers such as hovercraft and airships, as well as using minivans 
for transporting gravimeters between land survey sites. 

4.3 GT-2A Gravimeter All-Latitude Versions 

Airborne gravimetric surveys in the polar regions of the Earth have recently been of 
particular interest to geophysics (Krasnov et al. 2011; Sokolov et al. 2016b; Koneshov 
et al. 2012; Drobyshev et al. 2011; Mogilevsky et al. 2015). Section 1.3 shows that 
Schuler oscillations of the GT-2A gravimeter gyro platform are damped in flight 
with the use of aiding information on the aircraft velocity projected on the free-
azimuth coordinate system, in which inertial navigation equations are solved. The 
free-azimuth coordinate system is determined by the XaYaZa frame obtained from 
the local ENZ geodetic frame by turning about the vertical axis Z and having a 
zero absolute angular rate about its vertical axis Za. In the standard configuration of 
the GT-2A gravimeter, data on the eastern V ∗ 

E and northern V 
∗ 
N components of the 

aircraft velocity, delivered by a single-antenna GNSS receiver, are used as aiding 
data. The specified velocity components are projected onto the instrument axes of 
the gyro platform using the current value of the compass heading generated by the 
navigation system of the gravimeter. It is known that the compass heading error 
increases as the aircraft approaches the pole and, as a result, the level of the gyro 
platform misalignment errors also increases, which makes it impossible to use GT-2A 
gravimeters in latitudes higher than ±75° in standard configuration. 

The advent of multi-antenna GNSS receivers on the market provided condi-
tions for creating polar versions of the GT-2A gravimeter. These modifications are 
discussed in the next section. 

4.3.1 Using Multi-antenna GNSS Receivers 

It was proposed to use a multi-antenna GNSS receiver as a source of information 
about the aircraft orientation for airborne gravimetric surveys conducted in the polar
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areas with the use of GT-2A gravimeters. Three versions of the gravimeter with an 
extended latitudinal range of application were developed. 

(1) The so-called near-all-latitude version of GT-2A gravimeter (Smoller et al. 
2013, 2015a, b). The gravimeter uses the geodetic heading delivered by a two-
or four-antenna GNSS receiver instead of the compass heading. The heading 
delivered by the multi-antenna GNSS receiver has no disadvantages of the 
compass heading discussed in Sect. 1.3; however, due to the degeneration of 
the geographical heading notion at a polar location, this version also leads to a 
latitude limitation ±89°. This version of the gravimeter firmware was created 
in 2011 and was given the code GT-2AP. Currently, GT-2AP gravimeters are 
used in airborne gravimetric surveys at high latitudes by the following compa-
nies: GNPP Aerogeophysica, the Schmidt Institute of Physics of the Earth 
of the Russian Academy of Sciences, Polar Research Institute of China, and 
Alfred-Wegener-Institut (AWI). 

(2) The all-latitude version (Smoller et al. 2013, 2015a, b). In this version, the 
concept of a geodetic reference frame is not used in intermediate calculations of 
the four-antenna GNSS receiver. The orientation problem is solved based on the 
concepts of only two coordinate systems—the one associated with the aircraft 
body frame and the Greenwich coordinate system (or Earth Centered Earth Fixed 
(ECEF) reference frame). This version has no special features at polar locations, 
which made it possible to develop an all-latitude version of the gravimeter 
capable of operating even directly at the points of the geographic poles. However, 
this version required a thorough revision of the onboard software of the GT-2A 
gravimeter and a significant computation burden on its central processing unit 
(CPU). The latter has led to the need to introduce an additional processor into 
the gravimeter. In addition, in contrast to the near-all-latitude version discussed 
above, this version can be used only in the case of using a four-antenna GNSS 
receiver. This version of the gravimeter was developed in 2012 but it was not 
put into operation due to its disadvantages mentioned above. 

(3) Further development of the proposed software solutions that helped to create 
an all-latitude version of the gravimeter was made possible owing to the use 
of quasi-geodetic coordinates known in inertial navigation and the notions of 
quasi-heading and quasi-track angle derived from them. The latter are the angles 
between the horizontal projections of the longitudinal axis of the aircraft, its 
relative velocity vector, and the direction to the quasi-north. The quasi-heading 
and the quasi-track angle do not have any special features in polar areas (Smoller 
et al. 2016). This version of the gravimeter allowed it to operate at all latitudes 
and, in addition, use the simplest and most reliable dual-antenna GNSS receiver. 
It is also important that this version does not cause any additional load on the 
gravimeter CPU in terms of the computation burden. 

Let us describe this version in more detail.
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4.3.2 Quasi-Geodetic Coordinates 

Consider one of the possible options for the introduction of quasi-geodetic coordi-
nates described, in particular, in (Belous et al. 2014; Yumanov 2013), taking a sphere 
as its reference surface. 

First, recall the definition of the ECEF coordinate system OXGYGZG (Fig. 4.19) 
used in the GNSS receiver. Point O is the geometric center of the Earth. The ZG-axis 
coincides with the Earth’s axis of rotation and is directed to the north, the OXGZG 

plane is the plane of the Greenwich (zero) meridian, and the OXGYG is the equatorial 
plane. 

The point of the Earth’s surface with the geodetic coordinates ϕ = 0°, λ = 180° 
is taken as the quasi-north pole Nq; the point with the coordinates ϕ = 0°, λ = 0° 
is taken as the quasi-south pole Sq. A circle formed by the geodetic meridians λ = 
90°W and λ = 90°E is taken as the quasi-equator (bold line in Fig. 4.19). The plane 
of the quasi-equator coincides with the plane of the zero meridian. The circle passing 
through the geodetic poles and the quasi-poles was taken as the initial (zero) quasi-
meridian (double line in Fig. 4.19). The plane of the zero quasi-meridian coincides 
with the equatorial plane. 

Multi-antenna GNSS receivers generate the following initial data: 

1. X∗ 
G , Y 

∗ 
G , Z

∗ 
G are the ECEF coordinates of the baseline antenna; 

2. V ∗ 
XG  , V 

∗ 
YG  , V 

∗ 
ZG  are projections of the relative velocity vector of the baseline 

antenna in the ECEF coordinate system OXGYGZG; 
3. d∗ 

XG  , d
∗ 
YG  , d

∗ 
ZG  are projections of the baseline vector connecting the phase centers 

of the two antennas installed along the longitudinal axis of the aircraft in the ECEF 
coordinate system OXGYGZG. 

Since the reference surface in the quasi-geodetic coordinate system—the sphere— 
almost coincides with the Earth ellipsoid for latitudes |ϕ| > 89°, quasi-track angle

Fig. 4.19 Quasi-geodetic 
coordinates 
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GHq* and quasi-heading Kq*can be calculated with sufficient accuracy using the 
following relations whose output is given in (Smoller et al. 2015a): 

V q∗ 
E = − Y ∗ 

G √  
Y ∗ 
G + Z∗ 

G 

V ∗ 
Z +

Z∗ 
G √  

Y ∗ 
G + Z∗ 

G 

V ∗ 
Y ; (4.3.1) 

V q∗ 
N = − Z∗ 

G /
Y ∗2 G + Z∗2 

G 

X∗ 
G /

X∗2 
G + Y ∗2 G + Z∗2 

G 

V ∗ 
ZG  

+ Y ∗ 
G /

Y ∗2 G + Z∗2 
G 

X∗ 
G /

X∗2 
G + Y ∗2 G + Z∗2 

G 

V ∗ 
YG  + 

/
Y ∗2 G + Z∗2 

G 
/
X∗2 
G + Y ∗2 G + Z∗2 

G 

V ∗ 
XG; 

(4.3.2) 

GHq∗ = arctg 
( 
V q∗ 
E / V 

q∗ 
N 

); (4.3.3) 

dq∗ 
E = − Y ∗ 

G √  
Y ∗ 
G + Z∗ 

G 

d∗ 
Z +

Z∗ 
G √  

Y ∗ 
G + Z∗ 

G 

d∗ 
Y ; (4.3.4) 

dq∗ 
N = − Z∗ 

G /
Y ∗2 G + Z∗2 

G 

X∗ 
G /

X∗2 
G + Y ∗2 G + Z∗2 

G 

d∗ 
ZG  

+ Y ∗ 
G /

Y ∗2 G + Z∗2 
G 

X∗ 
G /

X∗2 
G + Y ∗2 G + Z∗2 

G 

d∗ 
YG  + 

/
Y ∗2 G + Z∗2 

G 
/
X∗2 
G + Y ∗2 G + Z∗2 

G 

d∗ 
XG  (4.3.5) 

K q∗ = arctg 
( 
dq∗ 
E /d

q∗ 
N 

) 
. (4.3.6) 

4.3.3 All-Latitude Version of the GT-2A Gravimeter 

At the request of the developers of the airborne gravimeter GT-2A, the manufac-
turer, Javad Ltd., implemented the algorithms for calculating quasi-heading K q∗ and 
quasi-track angle GHq∗ in the software of the Javad DUO-G3D dual antenna GNSS 
receivers and the Javad QUATTRO-G3D four-antenna GNSS receivers in accor-
dance with relations (4.3.1)–(4.3.6). As a result, an SY message was added to the 
Javad GNSS Receiver External Interface Specification (see Table 4.3). This message 
contains data that allows implementation of three modes in the gravimeter: the stan-
dard mode (using a compass heading), near-all-latitude mode (using the geodetic 
heading from a multi-antenna GNSS receiver), and the new polar mode using the 
new GHq∗ and K q∗ calculated in the software of the Javad multi-antenna GNSS 
receivers.
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Table 4.3 Main parameters of the SY message 

No Parameter Explanations 

1 TGNSS UTC time 

2 Flag of the GNSS velocity solution 
reliability 

Flag of the GNSS heading reliability 

3 ϕ* Geodetic latitude of the GNSS receiver 
baseline antenna 

5 λ* Geodetic longitude of the GNSS receiver 
baseline antenna 

7 V* Modulus of the horizontal component of the 
relative velocity 

8 GH* Geodetic track angle 

9 Date GNSS receiver date 

10 K* Geodetic heading 

11 GHq* Quasi-track angle calculated from 
(4.3.1)–(4.3.3) 

12 Kq* Quasi-heading calculated from (4.3.4)–(4.3.6) 

The software of the airborne gravimeter GT-2AQ (the code of the GT-2A 
gravimeter version that uses the concept of quasi-geodetic coordinates) was also 
modified to meet the new requirements. 

The projections of the relative velocity of the aircraft onto its body frame V ∗x , V ∗y 
during the work using quasi-coordinates are calculated in the firmware of the GT-2AQ 
gravimeter using the following evident relations: 

V q∗ 
N = V ∗ cos GHq∗; V q∗ 

E = V ∗ sin GHq∗; (4.3.7) 

V ∗ 
y = V q∗ 

N cos K 
∗ 
q + V q∗ 

E sin K 
∗ 
q ; (4.3.8) 

V ∗ 
x = V q∗ 

E cos K 
∗ 
q − V q∗ 

N sin K 
∗ 
q . (4.3.9) 

The values of the projections of the aircraft relative velocity on the axes of the 
free-azimuth coordinate system V ∗xa, V ∗ya needed to damp Schuler oscillations of the 
gyro platform (see Sect. 1.3) are calculated using the following relations: 

V ∗ 
ya = V ∗ 

y cos(C + ASz) − V ∗ 
x sin(C + ASz); (4.3.10) 

V ∗ 
xa  = V ∗ 

x cos(C + ASz) + V ∗ 
y sin(C + ASz); (4.3.11)
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where C is the angle between the platform coordinate system and the free-azimuth 
one; 

ASz are the readings of the angle sensor on the external axis of the gimbal 
suspension (see Fig. 1.3.4 in Sect. 1.3). 

The GT-2AQ gravimeter software implements formulas for recalculating the rela-
tive velocity components from the aircraft body frame to the free-azimuth coordinate 
system taking into account not only the readings of the angle sensor on the external 
axis of the gimbal suspension ASz but also the readings of ASx and ASy of the angle 
sensors on the internal axes of the gimbal suspension X and Y. For simplicity, rela-
tions (4.3.10), (4.3.11) imply that the roll and the pitch of the aircraft are zero, and 
the terms containing the readings ASx and ASy equal to zero are not shown. 

As mentioned above, the methodic errors in calculating the angles of the quasi-
heading and the quasi-track angle using relations (4.3.1)–(4.3.6) are negligible when 
flights are carried out at latitudes |ϕ| > 89°, where the sphere is a good approximation 
of the Earth’s ellipsoid. Therefore, in this case, the methodic errors in calculating the 
projections of the aircraft velocity on the axes of the free-azimuth coordinate system 
according to relations (4.3.7) and (4.3.11) are also negligible. 

Taking into account the preceding, the GT-2AQ all-latitude gravimeter has two 
operation modes, standard and polar, to be chosen by the operator. 

As with the GT-2A gravimeter, the compass heading is used in the standard mode 
for factory and routine calibrations. The standard mode can be used for flights at 
latitudes of |ϕ| < 75° with both multi-antenna and single-antenna GNSS receivers. 
It should be recalled (see Sect. 1.3) that it is in this mode that the gravimeter gyro 
platform is stabilized in the geodetic coordinate system. 

The geodetic heading from the multi-antenna GNSS receiver (SY message) is used 
in the polar mode up to the latitude of |ϕ| < 89°, as is the case with the GT-2AP near-
all-latitude version described above. When crossing the latitude |ϕ| = 89° towards the 
geographic pole, the gravimeter software automatically switches to using the values 
of the quasi-heading and the quasi-track angle. In the polar mode, the gravimeter 
gyro platform is stabilized in the free-azimuth coordinate system. Thus, the GT-2AQ 
gravimeter version is an all-latitude version capable of functioning even directly at 
the points of the geographic poles. 

4.3.4 Method for Calibration of Instrumental Errors 
of the Gimbal Suspension Angle Sensor 

It follows from (4.3.10), (4.3.11) that, in contrast to the standard-configuration GT-
2A gravimeter, the readings of the gimbal suspension angle sensors take part in the 
damping process of the gyro platform. Since the errors of the angle sensors mainly 
consist of the first and second harmonics from a complete turn, as practice shows, 
the leveling accuracy of the gyro platform depends mainly on the ASz error.
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Fig. 4.20 ASz error estimate 

The gravimeter developers proposed the procedures and a program to estimate 
the parameters of the approximating function of the ASz instrumental error. 

For this, the gyro platform is rotated about the vertical axis. Based on the difference 
between the ASz readings and the integral of the readings of the gravimeter FOG, 
the program estimates the ASz error and four coefficients of its approximation by the 
first and second harmonics of the ASz readings. The coefficients obtained are entered 
in the gravimeter as constants and are used in real time to compensate for the ASz 
error. 

The dotted curve in Fig. 4.20 is an estimate of the ASz error. It was obtained by 
processing sixteen rotations of the gyro platform. The solid curve is the ASz residual 
error after taking into account the approximating functions. From this curve, it follows 
that the error has decreased about 4–5 times. 

4.3.5 Test and Operation Results 

The first GT-2AQ gravimeter prototype was road tested prior to the installation on 
an aircraft. It was installed in the cargo tray of a Mitsubishi Triton pickup truck 
(Fig. 4.21). A Javad QUATTRO-G3D four-antenna GNSS receiver was also installed 
on the pickup truck. Its output information stream had a new SY message containing 
the values of the quasi-track angle and the quasi-heading.

The tests were conducted on September 21, 2015. The test route was located 
80 km south of Perth, Western Australia (Fig. 4.22, left). Prior to the tests, initial 
reference measurements were made at a point located in the vicinity of the test route.
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Fig. 4.21 GT-2AQ gravimeter with Javad QUATTRO-G3D GNSS antennas in the cargo tray of a 
pickup truck

Fig. 4.22 Road test area and the route 

The average speed of the vehicle was approximately 97 km/h. First, the truck was 
moving southward along the Forrest Highway. The route was approximately 14 km 
long (the red line on the right side of Fig. 4.22). At the end of the route, the truck 
made a U-turn and continued moving in the opposite direction. The motion cycle 
was repeated: two runs southward, and two northward, following the same route. 

Then, the truck returned to the starting point for final reference measurements. 
The GNSS base station was installed on the roof of a building in the city of Perth. 
The test results for the four survey lines are presented in Fig. 4.23. The red line 

shows the average value of the gravity anomaly for four survey lines.
Average measurement time was 100 s. 
Table 4.4 shows the estimated RMS deviation of the measured gravity anomaly 

value from its average value obtained for four survey lines.
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Fig. 4.23 Road test results

Table 4.4 Statistics of the road test results 

Survey line number 1 2 3 4 Average RMSD, mGal 

RMSD, mGal 0.37 0.42 0.39 0.36 0.39 

The results presented in Table 4.4 are not inferior to the typical results of airborne 
gravimetric measurements with a GT-2A gravimeter, which confirms the fact that this 
gravimeter version is ready for surveys in high latitudes. The test results presented 
in Fig. 4.23, once again confirmed the imperturbability of the gyro platform of the 
GT-2 gravimeter by the vehicle maneuvering. 

The road tests confirmed the effectiveness of the gravimeter version under consid-
eration; however, they are of interest in themselves. The point is that some road tests 
carried out with the first prototypes of the GT-2A gravimeter having a dynamic 
measurement range of ±0.5 g showed unacceptable results because of the GSE 
saturation during the tests. 

It was for the first time that the road tests confirmed the feasibility of taking 
gravimetric measurements with the use of a GT-2A gravimeter installed on a truck 
(dynamic measurement range ±1 g) while the truck was moving along an asphalt 
road.
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Fig. 4.24 Bastler aircraft and GT-2AP gravimeter in the aircraft cabin 

4.3.6 Polar Versions of the GT-2A Gravimeter 

GNPP Aerogeophysica has been using near-all-latitude versions of the GT-2AP 
gravimeter (latitude range of application:±89°) since 2013 to conduct airborne gravi-
metric measurements from AN-30 aircraft in different areas of the world, including 
polar regions. 

Versions of the GT-2AP gravimeter were installed onboard three Bastler planes 
of polar aviation to carry out gravimetric measurements in the Antarctic. Figure 4.24 
shows photos of an aircraft and a gravimeter in the aircraft cabin. 

The GT-2AP gravimeter version was used in the Antarctic by the University of 
Texas (USA) in 2012–2015 (Richter et al. 2013), Alfred-Wegener-Institut (Germany) 
in 2014–2016, and the Polar Research Institute of China in 2014–2015. 

After the road tests, the GT-2AP gravimeter used by the University of Texas 
was modified to the GT-2AQ all-latitude version that worked in the Antarctic in 
2015–2016. 

4.3.7 Conclusions 

It has been shown that the latitudinal limitations (±75°) on using the GT-2A 
gravimeter in its single-antenna GNSS configuration are explained by the fact that 
the so-called compass heading has special features in high latitudes, which makes 
it impossible to damp Schuler oscillations of the gyro platform. Three versions of 
the GT-2A gravimeters with multi-antenna GNSS receivers have been described. All 
the gravimeters have extended latitude ranges of application. The experimental work 
has confirmed the effectiveness of the technical solutions implemented in the polar 
versions of the GT-2 gravimeter.
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Chapter 5 
Advanced Gravity Field Survey Methods 
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Abstract This chapter considers some of the promising methods for studying the 
Earth’s gravity field. It deals with the vector gravimetry method based on application 
of strapdown inertial navigation systems, which obtain information on the gravity 
disturbance vector rather than only its vertical component. Integrated data processing 
in its inertial, satellite, and gravimetric aspects is discussed. The chapter also covers 
the scalar airborne gravimetry method based on the introduction of a stochastic 
gravity model in time; the method based on decomposition of the vector gravimetry 
problem into estimation of the systematic errors of inertial sensors and estimation 
of the gravity disturbance vector from the Kalman filter residuals; a new method 
based on the spherical wavelet decomposition of the gravity disturbance vector. 
Extensive information is provided on gravity gradiometers, in particular, full tensor 
gradiometers. The section on cold atom gravimeters discusses the main methods 
for laser cooling of atoms, controlling atomic ensembles using dual-frequency laser 
light, labeling atomic states and optical detection of interference signals of de Broglie 
waves. A review of the existing cold-atom gravimeters is provided. 
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Introduction 

This chapter considers some of the promising methods for studying the Earth’s gravity 
field (EGF). 

Section 5.1 is devoted to vector gravimetry based on strapdown inertial navigation 
systems, the purpose of which is to obtain information about the gravity disturbance 
vector rather than only its vertical component. It gives a description of different 
implementations of the vector gravimetry method and discusses the features of inte-
grated data processing in its inertial, satellite, and gravimetric aspects. The inertial 
part describes possible forms of the inertial navigation system error equations taking 
into account the gravity disturbance vector for different versions of mechanization 
equations. The satellite part highlights the features of designing processing algo-
rithms for raw satellite measurements and the problems of integration of inertial and 
satellite navigation systems as applied to the vector gravimetry problem. The gravi-
metric part compares some known methods used to directly determine the gravity 
disturbance vector based on airborne data. In addition, this section considers the 
method which is common to scalar airborne gravimetry and is based on the introduc-
tion of a stochastic gravity model in time; the method based on the decomposition 
of the vector gravimetry problem into estimation of the systematic errors of inertial 
sensors and then, estimation of the gravity disturbance vector from the Kalman filter 
residuals; a new method based on the spherical wavelet decomposition of the gravity 
disturbance vector and using the harmonicity of the anomalous gravity field in the 
Earth’s outer space. 

Section 5.2 describes the current state of development of tools for measuring 
the second derivatives of the geopotential, among which the main ones are gravity 
gradiometers (GG). It describes the use of gradiometers in the search for minerals and 
in space missions and discusses the results of their testing and operation. The Section 
analyzes the features of tensor GGs designed to determine all the components of the 
tensor of second derivatives of the geopotential and considers options for building 
GGs using atomic interferometry and cold atoms. The potential for the development 
of gravity gradiometry for various, including new, applications are discussed. 

Section 5.3 provides an overview of gravimetric methods and devices using the 
wave properties of atomic ensembles cooled to ultra-low temperatures by interaction 
with resonant laser light. This section discusses the main methods for laser cooling of 
atoms, methods of controlling atomic ensembles (splitting, reflection, recombination 
of an atomic beam) using dual-frequency laser light, methods of “labeling” atomic 
states and optical detection of interference signals of de Broglie waves. It also presents 
a review of the existing cold-atom gravimeters, analyzes their inherent limitations 
and promising ways of developing such systems; in particular, interferometers based 
on a combination of various types of cold atoms, as well as on a condensate or a 
combination of Bose–Einstein condensates.
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5.1 Airborne Vector Gravimetry Based on Strapdown 
Inertial Navigation Systems 

This section is focused on airborne vector gravimetry based on strapdown inertial 
navigation systems. Studies in this area have been conducted by various authors 
since the 1990s (Schwarz et al. 1992; Jekeli and Kwon 1999). The term ‘airborne 
vector gravimetry’ is used to mean determination of all three components of the 
gravity disturbance (GD) vector. It should be noted that the vertical component of 
the GD vector coincides with the free-air gravity disturbance with accuracy of up to 
the height correction (Yelagin 2012). As it is known, a substantially more accurate 
element base is needed to determine the horizontal GD components than for tradi-
tional (scalar) airborne gravimetry, which only determines GA. The main difficulty 
in estimating the GD vector is to separate the horizontal GD components from the 
instrumental, geometrical errors of inertial sensors. For example, an orientation error 
of one arcsecond (~4.85 · 10–6 rad) leads to an error in the horizontal components of 
~5 mGal (Bolotin et al. 2002). It should be noted that airborne vector gravimetry is 
closely related to the so-called inertial-geodetic method described in Sect. 3.4 and 
in (Emel’yantsev et al. 2015), the main purpose of which is to determine deflections 
of the vertical (DOV). The parameters to be determined in the GD model in use, for 
example, a stochastic or finite-dimensional model, serve, in addition to the instru-
mental errors of inertial sensors, as state vector components in the aiding problem of 
inertial navigation (Jekeli and Kwon 1999; Bolotin et al. 2002). Satellite navigation 
system (GNSS) data serve as external aiding information. 

In accordance with the above, the description of the models of the airborne vector 
gravimetry problem in its inertial part includes: 

• reference, ideal equations of inertial navigation, sometimes referred to as equa-
tions of the ideal operation of an inertial navigation system (INS) (Golovan and 
Parusnikov 2011); 

• equations used in inertial navigation system algorithms, sometimes referred to as 
model equations which, unlike ideal equations, use sensor readings containing 
errors; 

• equations of sensor readings (instrument equations) written in the axes of the INS 
instrument frame or, in the case of a strapdown inertial navigation system (SINS), 
in the axes of the so-called quasi-instrumental frame, sometimes referred to as a 
virtual gyro platform. 

The use of notions about ideal, mechanization, and instrument equations of inertial 
navigation makes it possible to design relevant models of airborne vector gravimetry 
in a simple and clear form. 

In the GNSS part, a common approach is the use of positional carrier phase (phase-
differential) solutions (Golovan and Vavilova 2007) provided by off-the shelve soft-
ware produced by the developer of satellite navigation equipment or companies 
specializing in processing of raw satellite measurements. At the same time, other 
trajectory parameters of the vehicle motion used in airborne gravimetry, such as
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velocity, acceleration of a vehicle are determined by numerical differentiation of the 
mentioned positional solutions. As the experience in developing software for the GT-
2A airborne gravimeter (Bolotin and Golovan 2013) shows, it is advisable to have 
proprietary GNSS software focused specifically on the airborne gravimetry problem 
and directly providing GNSS-derived velocity and acceleration from carrier-phase 
measurements. 

Let us make a few general remarks on the inertial and GNSS aspects of airborne 
vector gravimetry. 

1. The airborne gravimetry problem is solved in postprocessing mode. In this regard, 
SINS is not required to operate in the inertial, Schuler’s operation mode as it does. 
SINS can only be considered as a recorder of measurements of inertial sensors 
synchronized with satellite data (Smoller et al. 2012). 

2. The airborne gravimetry problem assumes that high-precision position and 
velocity solutions of the GNSS are always available. For this reason, when 
deriving the model equations, one can use the mentioned satellite information to 
the maximum, which allows for a significant simplification of the aiding equa-
tions in airborne gravimetry. A special example of such use is the GT-2A airborne 
gravimeter. 

3. Traditionally, SINS algorithms use a numerical frame associated with a model 
geographic vertical, a particular azimuthal orientation law. Similarly, the SINS 
algorithms can be implemented in the axes of other frames, for example, in an 
inertial frame, in whose axes the algorithms have no singularities in Polar Regions 
unlike models that use the concepts of longitude and true heading. 

4. The airborne vector gravimetry problem can be solved using both SINS and 
gimballed INS. There are no fundamental differences at the level of mathematical 
models. The only difference is that, in the case of the SINS, the instrumental errors 
of the SINS inertial sensors are projected from the “fast” body frame axes to the 
axes of the “slow” geodetic or fixed inertial-centered frame. 

The gravimetric part deals with some approaches to estimating the GD vector. 
It should be recalled that in scalar airborne gravimetry, measurement processing is 
carried out in two stages (Bolotin and Golovan 2013) (see Sects. 5.1.3 and 5.2.2): first, 
the misalignments of the vertical axis of the ‘virtual platform’ frame relative to the 
navigation frame and the azimuthal error are estimated (the GD is ignored), and then, 
the basic airborne gravimetry equation (2.2.1) projected onto the vertical axis of the 
navigation frame is considered. In contrast to this, in airborne vector gravimetry, the 
attitude errors and the GD vector should be considered jointly, using some additional 
information for their separation. A common approach to separation is based on intro-
ducing a hypothesis of the stochastic nature of the GD and introducing the stochastic 
model of the GD in time. However, this approach raises the problem of choosing a 
correct model. According to recent publications, the use of the EGM2008 model for 
estimating low-frequency GD components (Cai et al. 2013), the use of the platform 
orientation star correction system (Dai et al. 2014) and others are other examples of 
introducing additional information or hypotheses about the GD characteristics.

https://doi.org/10.1007/978-3-031-11158-7_2
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An interesting heuristic approach, which does not require a stochastic GD model 
proposed in (Kwon and Jekeli 2001), suggests using repeated survey lines which 
provides additional information for the above separation. The approach is based 
implicitly on the hypothesis about the low-frequency nature of the GD vector. It 
consists in obtaining rough GD vector estimates on each repeated line as the Kalman 
filter residuals in the problem of INS aiding neglecting the GD vector in the INS 
error equations, and the subsequent decorrelation of the estimates obtained at the 
repeated survey lines (in what follows, the method is referred to as PDD—proximate 
decomposition and decorrelation). The algorithm is essentially nonlinear. Processing 
of the experimental data has given rather encouraging results. 

Section 5.1 also analyzes the new approach (Bolotin and Vyazmin 2016) that does 
not require any stochastic hypotheses about the GD vector but uses harmonicity of the 
anomalous field. It makes use of local deterministic harmonic gravity models based 
on spherical scaling and wavelet expansion of gravity (Freeden and Michel 2004) 
described in this section. The problem of airborne vector gravimetry is formulated as 
a problem of estimating scaling coefficients along with the parameters of instrumental 
errors of inertial sensors. GNSS velocity solutions are used as aiding information. 
The assumption of the harmonic nature allows taking into account the correlation 
between the data on adjacent lines without introducing stochastic hypotheses about 
the GD. We use the abbreviation LHM––local harmonic modeling––for this method. 
The effectiveness of the method is checked by processing simulated data. 

The traditional approach in geodesy consists in determining the DOV of the GD 
vector from its vertical component provided by scalar airborne gravimetry. In this 
case, DOV is determined with the use of the Vening–Meinesz formula. In what 
follows, the method based on this formula is called VCT––vertical component trans-
formation. The drawback of the method is the need to know the GD vertical compo-
nent within the vast survey area, for which data from global models are usually 
used. 

Thus, at present, researchers have accumulated a substantial set of airborne vector 
gravimetry algorithms. Unfortunately, these algorithms are difficult to compare using 
experimental data, as the latter are often unavailable or not suitable for the analysis of 
a specific algorithm. For this reason, the development of an analytical methodology 
for such a comparison is of crucial importance. This Section attempts to develop 
such a methodology. It is the authors’ opinion that the conventional comparison of 
covariance analysis along the trajectory lacks informativity since it depends on a 
specific trajectory. Therefore, the method of spectral analysis was used to compare 
various algorithms. The difficulties associated with its implementation are due to the 
nonstationary nature of the problem. A special averaging procedure was developed 
to transform this nonstationary problem into a stationary one. After averaging, the 
comparison is carried out in terms of the power spectral density (PSD) of the GD 
estimation errors. 

Finally, the above-mentioned PDD, LHM, and VCT methods for determining the 
GD vector based on airborne survey data are described in detail and compared. The 
results of their qualitative comparison using spectral analysis methods are discussed; 
also considered are the results of the study of the spatial field correlation influence
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on the quality of separation of the GD horizontal components and SINS systematic 
errors. 

5.1.1 Airborne Vector Gravimetry Equations 

An adequate choice of a coordinate system or a frame in which equations are written 
is very important for solution of inertial navigation and inertial gravimetry prob-
lems (Golovan and Parusnikov 2011). In this Section, the mechanization equations 
of airborne gravimetry are first written in geodetic and inertial frame, and then, the 
computed mechanization equations are written in the same frame. The so-called 
quasi-instrumental frames are introduced as a result of solving computed mecha-
nization equations, and the ideal mechanization equations of airborne gravimetry are 
written in this frame. Finally, the computed and ideal mechanization equations in the 
quasi-instrumental frame are used to introduce error equations with the separation 
of errors into the so-called dynamic and kinematic ones. 

Recall the standard definitions. The geodetic frame Mx is a frame defined as the 
right orthogonal coordinate system with its origin at a given point, one of the axes 
of which coincides with the outer normal to the surface of the reference ellipsoid; 
the second one is directed to the north, and the third one to the east. The instrument 
frame Mz is a frame whose axes are oriented along the sensitivity axes of sensors 
(accelerometers). The inertial frame Oξ is a frame with its origin at the center of the 
Earth and whose axes retain their direction in space. 

Reference equations of airborne vector gravimetry in the geodetic frame. 
Let us write the basic equation of airborne vector gravimetry (ideal equation)—the 
equation of motion of the sensitive mass M of the gravimeter sensing element—in 
the projections on the geodetic frame (Golovan and Parusnikov 2011): 

V̇x =
(
ω× 

x + u× 
x

)
Vx + Lxz fz + γx + Δgx . (5.1.1) 

Here, Δgx is the GD vector; Vx = (VE , VN , VU P  )
T is the velocity vector of the 

aircraft relative to the earth (eastern, northern, vertical components); fz is the external 
specific force in the projections on the axes of the frame Mz of the INS (body frame); 
Lxz is the matrix of transition from the body frame to the geodetic frame; γx is the 
normal gravity vector calculated using the known formula; ωx is the vector of the 
absolute angular velocity of the frame Mx calculated using the known formulas; ux 

is the vector of the angular velocity of the Earth’s rotation in the Mx axes; u×
x is a 

skew-symmetric matrix composed of vector components ux . 
The kinematic equation for the transition matrix is as follows (Golovan and 

Parusnikov 2011): 

L̇ zx = ω× 
z Lzx − Lzx ω

× 
x .
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Here, ωz is the vector of the absolute angular velocity of the frame Mz. 
Reference equations of airborne vector gravimetry in the inertial frame. For  

definiteness, let us assume that the axes of the inertial frame Oξ coincide with the 
axes of the Earth-centered Earth-fixed coordinate system at the initial moment of 
time. We have 

ξ̇ = vξ , v̇ξ = Lξ z fz + γ ξ + Δgξ , 
γ ξ = Lξ x γ x , Δgξ = Lξ xΔgx . 

(5.1.2) 

Here, ξ , vξ are the coordinates of point M and the vector of its absolute velocity 
in Oξ ; Lξ z is the matrix of the transition from the body frame to the inertial frame 
satisfying the equation L̇ zξ = ω×

z Lzξ ; Lξ x is the matrix of the transition from the 
geodetic frame to the inertial frame. It should be noted that this version of the mech-
anization equations is often used in airborne vector gravimetry (Kwon and Jekeli 
2001). 

As a result, the problem of vector inertial gravimetry, airborne gravimetry in 
particular, is described as follows. The following trajectory parameters of the vehicle 
(gravimetric system carrier) are known: the coordinates (geodetic λ, ϕ, h, or  ξ ), 
the vector of the linear velocity (relative Vx or absolute vξ ). The vectors of absolute 
angular velocity ωz and the specific force f z in Mz are measured. A model for the 
normal gravity γx is known. It is required to determine the GD vector Δgx (or Δgξ ) 
based on the given reference models. 

Computed mechanization equations of airborne vector gravimetry. The 
computed mechanization equations of vector gravimetry are defined from the above 
ideal equations by using the readings ω'

z = ωz −vz, f '
z = fz +Δ fz of inertial sensors. 

Here: νz is the vector of measurement errors of gyroscopes; the minus sign is chosen 
in order to match the error equations of the platform and strapdown INS; Δ fz is the 
vector of measurement errors of accelerometers. 

Below are only the versions of the computed mechanization equations that are 
based on the full use of the available high-precision satellite navigation solutions. It 
should be recalled that modern carrier phase differential satellite navigation makes 
it possible to determine locations with, at least, submeter accuracy and the velocity 
vector with an accuracy of a few cm/s. 

First, let us provide some estimates. A positioning error of the order of 30 m 
leads to an angular error in determining the orientation of the geodetic frame at the 
level of 1 arcsec. The submeter accuracy means that the accuracy in calculating the 
orientation of the “satellite” geodetic frame will be of the order of 10–2 arcsec, which 
undoubtedly makes it an ideal geodetic frame. In addition, there is no need to use 
the positional group of mechanization equations of inertial navigation. 

Mechanization equations of airborne vector gravimetry in the geodetic 
frame. Mechanization equations in the geodetic frame are written as follows 
(Golovan and Parusnikov 2011): 

V̇ '
x =

(
ω× 

x + u× 
x

)
V '

x + γx + L '
xz  f

'
z ,
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L̇ '
zx = ω'× 

z L '
zx − L '

zx ω
× 
x 

where V '
x is the computed relative linear velocity. Matrix L '

zx defines and specifies 
the orientation of the computed body frame Mz' with respect to the geodetic frame. 
The values ωx, ux, γx are assumed to be calculated with high precision using GNSS 
solutions. 

Mechanization equations of airborne vector gravimetry in the inertial frame. 
Mechanization equations in the inertial frame are written as follows: 

v̇'
ξ = L '

ξ z f
'
z + γξ . 

Here, v'
ξ is the vector of the computed absolute velocity; L '

ξ z is the matrix of 
transition from the computed body frame My to the inertial frame Oξ satisfying the 
equation L '

zξ = ω'×
z L '

zξ . 
Quasi-instrumental frames Mzx , Mξ x . The concepts of quasi-instrumental 

frames Mzx , Mzξ can be introduced based on the results of solving the corre-
sponding computed mechanization equations (Golovan and Parusnikov 2011) (as  
shown in Fig. 5.1 for the frame Mzx ): 

• the orientation matrix of the frame Mzx relative to Mz is L '
zx ; • the orientation matrix of the frame Mx relative to My is L '

zx . 

The orientation matrix L '
zξ of the frame Mξ x relative to Mz is also introduced. If 

the computed mechanization reference equations are integrated with high precision, 
then Mzx coincides with Mx , and Mzξ coincides with Mξ . Let us introduce the 
vector of infinitesimal rotation αy which characterizes the closeness of two frames: 
the computed My and the body-fixed Mz frames. In the linear approximation, their

Fig. 5.1 Orientation of the 
geodetic Mx , 
quasi-instrumental Mzx , 
computed My and 
body-fixed Mz frames 
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orientation matrix Lzy has the form Lzy = I + α×
y , where α

×
y is the skew-symmetric 

matrix corresponding to vector αy (Golovan and Parusnikov 2011). 
Similarly, let us introduce the vector of infinitesimal rotation αx = (α1, α2, α3)

T 

characterizing the orientation of the geodetic frame Mx and the quasi-instrumental 
frame Mzx , and the vector of infinitesimal rotation αξ characterizing the orientation 
of the inertial frame Mξ and the quasi-instrumental frame Mzξ . It can be shown that 
the following relations are true in the linear approximation (Golovan and Parusnikov 
2011): 

Lzx x = I + α× 
x , Lzξ ξ = I + α× 

ξ , αx = L '
xzαy, αξ = L '

ξ zαy . 

Reference equations of airborne vector gravimetry in the quasi-instrumental 
frames. The reference equations in the quasi-instrumental frames Mzx , Mzξ are 
needed for the subsequent derivation of the error equations in the case where the 
total errors of the navigation solutions are represented as a sum of the so-called 
kinematic and dynamic errors. They reflect the contribution of the errors of two 
different types of inertial sensors, gyroscopes and accelerometers, to the total error. 
Such a separation was first described in the classical monographs written by Andreev 
(1966, 1967), where they were referred to as errors of the first and second kind. 

Reference equations in the quasi-instrumental frame Mzx . We have  

V̇zx = (
ω× 

zx + u× 
zx

)
Vzx + L '

xz  
fz + γzx + Δgzx , 

Vzx = Lzx x Vx , uzx = Lzx x ux , γzx = Lzx x γx , Δgzx = Lzx xΔgx , 

and the relations ωzx = ωx + vx , vx = L '
xzvz are true. 

Reference equations in the quasi-instrumental frame Mzξ . We have  

v̇zξ = ν× 
ξ vzξ + L '

ξ z 
fz + γzξ + Δgzξ , 

vzξ = Lzξ ξ vξ , γzξ = Lzξ ξ γξ , Δgzξ = Lzξ ξΔgξ , νξ = L '
ξ zvz . 

5.1.2 Airborne Vector Gravimetry Error Equations 

Error equations in the geodetic frame. Let us introduce the total errors of velocity 
solutionΔVx = V '

x − Vx . Thus, the equations in variations can be written as follows:

ΔV̇x =
(
ω× 

x + u× 
x

)
ΔVx + α× 

x f '
x + Δgx + Δ fx , f '

x = L '
xz  f

'
z , Δ fx = L '

xzΔ fz . 

A special feature of this form is the appearance of vector f '
x in the right side of the 

differential equation. Accordingly, in the simulation, it is necessary either to simulate
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the value of f '
x based on the differentiation of the model velocity vector V '

x or to use 
noisy measurements f '

z of accelerometers when they are available. 
To eliminate this feature, it is advisable to use the expansion of the total errorΔVx 

into the so-called dynamic and kinematic components:

ΔVx = δVx + α× 
x V

'
x , δVx = V '

x − Vzx . 

The dynamic error satisfies the equation: 

δ V̇x =
(
ω× 

x + u× 
x

)
δVx + γ × 

x αx − Δgx + Δ fx + V '× 
x vx , (5.1.3) 

and the kinematic component α̂x V '
x is defined by the vector of infinitesimal rotation 

αx referred to as the kinematic error which satisfies the equation: 

α̇x = ω× 
x αx + vx , vx = L '

xzvz . (5.1.4) 

As is the convention in inertial navigation, Eqs. (5.1.3)–(5.1.4) are obtained in 
a linear approximation. Model (5.1.3) does not contain the parameter f '

x , which is 
convenient for its simulation. 

Error equations in the inertial frame. Let us introduce the total error of velocity
Δvξ = v'

ξ − vξ . Thus, the equations in variations can be written as follows:

Δv̇ξ = α× 
ξ f '

ξ + Δgξ + Δ fξ , f '
ξ = L '

ξ z f
'
z , Δ fξ = L '

ξ zΔ fz . 

As above, the right side of these equations includes vector f '
ξ . To eliminate this 

feature, it is also advisable to use the expansion of the total error Δvξ to the dynamic 
and kinematic components:

Δvξ = δvξ + α× 
ξ v

'
ξ , δvξ = v'

ξ − vzξ ; 

moreover, the dynamic error δvξ satisfies the equation: 

δ ̇vξ = α× 
ξ γξ + Δgξ + Δ fξ − ν× 

ξ v
'
ξ , (5.1.5) 

and the small rotation vector αξ also referred to as the kinematic error satisfies the 
equation α̇ξ = νξ . 

5.1.3 Models of Aiding Measurements 

The airborne vector gravimetry problem can be considered as a problem of correcting 
the solution of mechanization equations using GNSS measurements. As noted in
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Sect. 2.2.2, it is advisable to use phase-frequency GNSS solutions in the differential 
mode (Bolotin and Golovan 2013); relative velocities are used when the equations 
are written in the geodetic frame, and absolute velocities in the inertial frame. 

When considering errors “in the small”, the problem can be treated as the problem 
of correcting the solution of error equations using GNSS measurements “in the 
small”. 

Let us write down the equation for aiding velocity measurements “in the small”. 
Let us use V G N SS  

x to denote the relative velocity vector defined by its projections on 
the axes of the geodetic frame based on the GNSS position solution. In the geodetic 
frame Ox we have the following relation (Golovan and Vavilova 2003; Golovan and 
Vavilova 2007; Wei et al. 1991): 

yx = V '
x − V G N SS  

x = ΔVx − ΔV G N SS  
x = δVx + α× 

x V
G N SS  
x − ΔV G N SS  

x , (5.1.6) 

where ΔV G N SS  
x is the GNSS velocity error. 

For the inertial frame Oξ , we have:  

yξ = v'
ξ − vG N SS  

ξ = Δvξ − ΔvG N SS  
ξ = δvξ + α× 

ξ v
G N SS  
ξ − ΔvG N SS  

ξ . 

Let us present a model of aiding measurements of specific force. Let us use f G N SS  
ξ 

to denote the vector of specific force obtained by processing satellite measurements, 
f G N SS  
ξ = ξ̈G N SS  − γξ, where the value ξ̈G N SS  = v̇G N SS  

ξ is estimated using satellite 
measurements. Thus, to measure. 

y
'
ξ = f

'
ξ − f G N SS  

ξ = L '
ξz f

'
z − f G N SS  

ξ , 

the following model is valid: 

y
'
ξ = α× 

ξ f
'
ξ − Δgξ + L '

ξzΔ fz − Δ f G N SS  
ξ , (5.1.7) 

where Δ f G N SS  
ξ is the error in determining the value f G N SS  

ξ . Note that (Kwon and 
Jekeli 2001) use in essence a similar model. 

Error equations (5.1.3), (5.1.4) along with the aiding measurement equations 
(5.1.6) (when the problem is presented in the geodetic frame) or (5.1.5) along with 
(5.1.7) (when the problem is presented in the inertial frame) are used to determine 
the GD vector at the flight path of the aircraft. As already shown, these equations 
cannot be solved without using additional hypotheses about the nature of noise and 
the GD. 

It should also be noted that both equations (in the geodetic and inertial frame) have 
their advantages and disadvantages (Golovan and Parusnikov 2011). For example, 
if the equations are written in the inertial frame, inertial corrections completely 
disappear, but the normal gravity becomes variable. In the case of the geodetic frame, 
the situation is quite the opposite.
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5.1.4 Selected Approaches to the Solution of the Airborne 
Vector Gravimetry Problem 

In airborne vector gravimetry, separation of GD horizontal components and errors 
requires either additional measurements (for example, stellar correction (Dai et al. 
2014)) or the introduction of additional hypotheses. 

Application of the stochastic GD model. The approach based on the introduction 
of the stochastic GD model in time is similar to that often used in scalar airborne 
gravimetry (Jekeli and Kwon 1999; Bolotin et al. 2002; Bolotin and Golovan 2013). 
However, similar to the scalar case, the problem of choosing the correct model is 
still open. It is shown (Jekeli and Kwon 1999) that the method is very sensitive to 
the choice of model. 

Application of proximate decomposition and decorrelation method. K. Jekeli 
proposed a simple and original approach (Kwon and Jekeli 2001), which, for brevity 
sake, will be referred to as the method of proximate decomposition and decorrela-
tion (PDD) which does not require a stochastic hypothesis for gravity. The method 
assumes a repeat flight along the same survey line, which gives additional informa-
tion. It consists in a priori separation of the problem for each flight into estimation of 
the instrumental error parameters, ignoring the GD, and subsequent determination 
of GD from the Kalman filter residuals. The residual systematic errors of the SINS in 
the two GD estimates obtained in two flight paths are removed based on the mutual 
correlations found in them. 

Let us describe the PDD algorithm in more detail. Calculations are carried out in 
the inertial frame. The algorithm actually includes the following stages (Kwon and 
Jekeli 2001): 

1. transformation of the basic gravimetry equation and sensor readings into an 
inertial reference frame similar to (5.1.5); 

2. calculation of the accelerations of the antenna of the onboard GNSS receiver as 
a smoothed double difference of GNSS coordinates; 

3. smoothing of the obtained estimates of accelerations and measurements of 
accelerometers with a finite impulse-response filter with a window width of 60 s 
and decimation; 

4. estimation of the parameters of SINS instrumental errors in (5.1.5) using the KF 
from measurements (5.1.7) without taking into account the GD vector in (5.1.5); 

5. calculation of GD estimates on survey lines as residuals of measurementsΔg̃ξ = 
y'
ξ − ỹ'

ξ , where ỹ
'
ξ is the measurement estimate obtained from the KF; 

6. removal of trends from the estimates Δg̃ξ due to known GD values at the ends 
of survey lines; 

7. filtering of the residual systematic errors in the estimatesΔg̃ξ due to the decorre-
lation (removal of uncorrelated spectral components) Δg̃ξ on the repeat survey 
lines (wavenumber correlation filter). 

Since the algorithm includes smoothing which removes the high-frequency part of 
the information, it implicitly makes an assumption about the low-frequency nature of
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the GD in the time domain. This smoothing can also be interpreted as the “whitening” 
of the noise of the double difference in positional GNSS measurements for the KF 
to be applied. Since the sensor errors on repeat survey lines are independent, the 
components caused by the errors in determining the platform orientation are expected 
to be partially removed from GD estimates due to the decorrelation. In general, the 
algorithm is clearly heuristic in its nature but it provided good results from real data 
processing (Kwon and Jekeli 2001). 

Application of the local harmonic model. In the new approach proposed in 
(Bolotin and Vyazmin 2016), the solution of airborne gravimetry equations is based 
on simultaneous GD estimation along several adjacent airborne survey lines with the 
use of the local harmonic model for gravity. This automatically takes into account 
the mutual correlation of GD components and the cross-correlation of GD values on 
adjacent survey lines. The expansion of the gravity field in terms of the Abel–Poisson 
scaling functions is used in (Bolotin and Vyazmin 2015) as a local GD model (Freeden 
and Michel 2004; Bolotin and Vyazmin 2015). The problem is reduced to the joint 
estimation of constant scaling coefficients of the disturbing potential defined in the 
survey area and the instrumental errors of the SINS (for the reader’s convenience, a 
brief mathematical description of the algorithm is given in a separate section below). 
It should be noted that here, similarly to the above, we use assumptions about the 
low-frequency nature of the GD, the maximum frequency of which is determined by 
the maximum resolution level of the GD scaling function expansion. It should also 
be noted that by taking into account the harmonic nature of the disturbing potential, 
it is possible to separate the GD and the platform orientation errors. 

Application of the VCT method. It is relevant to pose a question whether airborne 
vector gravimetry is needed at all. Indeed, the GD vector can be obtained using a 
map of the vertical GD component and applying a suitable transformation method to 
this map, e. g., the Khotin kernel convolution (Jekeli 2009), or the Vening-Meinesz 
method for determining the DOV (see Formula (5.3.1) in Sect. 5.3.1). In order to try 
to answer the question asked, let us compare the PDD and LHM methods with the 
VCT method. At the same time, of course, one should be aware that the VCT method 
requires a map of a large survey region, which is not always feasible in practice, even 
when integrating airborne gravimetric data with global model data. 

Simplified block diagrams of the methods are shown in Fig. 5.2.

5.1.5 Spectral Analysis of the Airborne Vector Gravimetry 
Accuracy 

Spectral methods are used in gravimetry both in calculations and in the qualitative 
analysis of algorithms (Schwarz et al. 1990). The latter is considered here. The PDD, 
LHM, and VCT approaches are compared on the basis of spectral analysis. 

This comparison brings about two problems. First, the equations of vector airborne 
gravimetry are nonstationary, and, strictly speaking, the spectral analysis is not
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Fig. 5.2 Simplified block diagrams of the approaches to determining the GD vector

applicable to them. This problem is solved using a special averaging procedure 
which is based on a certain heuristic ergodic hypothesis. The Fourier transform, 
one-dimensional along survey lines (for PDD) and two-dimensional in the flight 
plane (for LHM and VCT), is applied to the resulting stationary system. Thus, the 
comparison problem is transferred to the frequency domain. 

The second problem is that the hypotheses for the GD, on which the approaches 
are based, are different. To make a comparison, it is necessary to introduce a common 
hypothesis. A stochastic model of the GD will be used, the introduction of which 
allows the errors of the methods to be characterized in terms of the PSD of the 
Wiener optimal error estimate. The Wiener filtering formulas are used to derive 
formulas for the optimal GD vector estimates and PSD estimate error—for the PDD 
approach in one-dimensional version and for the LHM and VCT approaches in the 
two-dimensional version. Each of these PSDs gives a lower bound for the PSD of true 
error of gravity estimation. Finally, the PSDs for the LHM and VCT approaches are 
integrated in the direction of the frequencies across the survey lines and the obtained 
estimates of the one-dimensional PSD and the corresponding variances (integrals of 
the PSD over the frequency along the survey lines) are compared. 

The analysis is based on the well-known formulas for the optimal (by the criterion 
of the minimum variance of the estimate error) Wiener estimate x̃ of a stationary 
signal x from the measurements y = H x  + r , where r is the noise, and for the PSD 
Sδx of the error δx (Kailath et al. 2002):
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S−1 
δx = S−1 

x + H T S−1 
r H, x̃ = S−1 

δx H T S−1 
r y. 

It should be emphasized that the stochastic hypothesis introduces additional infor-
mation into the problem; therefore, all the obtained accuracy estimates are inevitably 
too optimistic. 

Assumptions in spectral analysis. Let us formulate assumptions that allow conver-
sion of the airborne vector gravimetry problem into the frequency domain. Let us 
consider airborne measurements along a flight path (or a path of several flights), 
consisting of a fairly large set of survey lines and turns between them. The PDD and 
LHM approaches will be compared in the geodetic reference frame. Let us make the 
following simplifying assumptions for the spectral analysis of the approaches: 

1. the orientation matrix Lxz is close to an identity matrix; the flight altitude is 
approximately constant; 

2. the length L1 of each survey line is much greater than the gravity correlation 
radius Lg; the distance ΔL2 between the survey lines is much shorter than Lg; 

3. variations of the aircraft measured speed V G N SS  
x (t) are small on survey lines, 

and it can be represented in the form ofV G N SS  
x (t) = V0 + V1(t), where V0 = 

const, V1 is a random process with zero mean and the correlation period TV , 
which is much smaller that Tg, where Tg = Lg / V 0 is the GD correlation period, 
V0 = |V0|. TheV 1 process is assumed to be stationary with the PSD SV (u), where 
u is the angular frequency in rad/s, and ergodic properties (PV is a constant 3 × 
3 covariance matrix of V1(t)): 

E
[
V1V T 

1

] = PV ≈ 
1 

TV 

TV∫ 

0 

V1(t)V T 
1 (t)dt; 

4. the orientation and velocity errors, αx and δV x, are slowly varying functions with 
a typical period Tα, which is much greater than TV (this implicitly assumes high 
accuracy of gyroscopes, at least 0.01°/h) 

5. the errors of scale factors and the nonorthogonality of the sensitivity axes 
of accelerometers and gyroscopes are negligible after laboratory or flight 
calibration; 

6. the errors in measuring the velocity with GNSS, accelerometers, and gyroscopes 
are stationary random processes with the PSDs: 

SΔV (u) = 
σ2 

P 

2π 
u2 I, S f (u) = 

σ2 
f 

2π 
I, Sν(u) = 

σ2 
ν 

2π 
I, 

where I is the 3 × 3 identity matrix; σP, σf , σν are the standard deviations of 
the measurement errors of GNSS positions, accelerometers, and gyroscopes, 
respectively;
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7. the reference ellipsoid in the vicinity of the survey area can be considered flat, 
with Cartesian coordinates x1, x2 , where axis x1 is directed along the survey 
lines, and axis x2 lies across the lines, the GD in space is a stationary random 
process of x1, x2 with a known PSD SΔg(u1, u2), where u1, u2 are spatial 
frequencies in the directions along and across the survey lines respectively. 

Reducing gravimetry equations to a stationary form and transition to the 
frequency domain. Airborne gravimetry equations (5.1.3)–(5.1.4) are not stationary 
along the trajectory but they can be brought to a stationary form under the above 
conditions using the following technique: applying a low-pass filter “cutting off” 
nonstationary terms. It should be emphasized that this filter is speculative and it is 
in no way part of the data processing algorithm. 

We introduce a linear ideal low-pass filter with a finite impulse response with no 
phase shift Θ[·] applied to functions of time, with a transfer function in time Θ[s] 
(s is the Laplace transform argument) and a cutoff frequency close to 2π/TV with 
the following properties: Θ[V1] ≈ 0, Θ[Δgx ] ≈ Δgx , Θ[αx ] ≈ αx , Θ[δVx ] ≈ δVx . 
Due to the assumption of the ergodicity of V1(t), the low-pass filter determines the 
sample covariance matrix of V1(t), namely:

Θ
[
V1(t)V T 

1 (t)
] ≈ E

[
V1(t)V T 

1 (t)
] = PV . 

By applying the filter Θ[·] to the terms in the error Eqs. (5.1.3)–(5.1.4) and 
the aiding measurement Eqs. (5.1.6), we obtain “smoothed” equations (hereinafter, 
subscript x on δV , α, etc., is omitted): 

δ V̇ = (
ω× + u×)

δV + γ ×α − Δg + q4 + V × 
0 q3, 

α̇ = ω×α + q3, 
(5.1.8) 

y1 = δV − V × 
0 α + q1, (5.1.9) 

where the notations q1 = Θ
[
ΔV G N SS

]
, q3 = Θ[v], q4 = Θ[Δ f ] are introduced, 

and V × 
0 is a skew-symmetric matrix corresponding to the vector V0 (Golovan and 

Parusnikov 2011). 
The PSDs of the noise introduced are defined by the formulas: 

Sq1 (u) = 
σ 2 P 

2π 
u2|Θ(iu)|2 I, Sq4 (u) = 

σ 2 f 

2π 
|Θ(iu)|2 I, Sq3 (u) = 

σ 2 ν 
2π 

|Θ(iu)|2 I. 

Equations (5.1.8)–(5.1.9) are stationary, but they lost some of the information 
associated with the redesign of errors in the process of aircraft evolutions. At the 
same time, small aircraft evolutions during the survey can improve the quality of 
the estimation (Becker et al. 2016). For a qualitative analysis of the influence of 
evolutions, let us introduce a “modulated” measurement y2 which is additional to 
(5.1.9) and can be obtained by multiplying (5.1.6) on the left by the matrix V × 

1 (t)
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and averaging with the filter Θ: 

y2 = QV α + q2. (5.1.10) 

Here,y2 = Θ[V × 
1 y], q2 = Θ

[
V × 
1 ΔV G N SS

]
, QV = tr (PV ) I – PV , where PV , as  

above, is the covariance matrix of the process V1, I is an identity matrix, tr is the trace 
of a matrix. The processes q2 and q1 are not correlated. Let us write an expression 
for the PSD of the process q2(t). Let us assume that V1 is a bandpass white noise 
with a spectrum focused in the vicinity of the frequency uV = 2π/TV . Thus, the PSD 
of q2(t) can be approximately written as follows: 

Sq2 (u) = 
σ 2 P 

4π 2 
|Θ(iu)|2

[
u2 QV − 

1 

2 

d2 

dt2
(
QV + QT 

V

)[[
t=0

]
. 

To perform the spectral analysis (Schwarz et al. 1990), let us consider airborne 
gravimetry equations reduced to the stationary form (5.1.8) to (5.1.10), taking the 
coordinate x1 as an independent variable. By substituting x1 = V0t in (5.1.8), making 
the survey line length tend to infinity, and performing the Fourier transform x1 → u1, 
where u1 is the spatial frequency along the survey line (u1 = u/ V0), we obtain (while 
keeping the designation of each function for its Fourier transform): 

iu1V0δV (u1) = γ ×α(u1) − Δg(u1) + q4(u1) + V × 
0 q3(u1), 

iu1V0α(u1) = q3(u1). 
(5.1.11) 

Hereinafter, we neglect the small terms
(
ω× + u×)

δV , ω×α. By applying the 
Fourier transform in (5.1.9), substituting (5.1.11) into it, and introducing a new 
measurement y'

1 = iu1V0 y, we obtain: 

y'
1(u1) = −Δg(u1) + γ ×α(u1) + q4(u1) + iu1V0q1(u1). (5.1.12) 

Finally, after making the Fourier transform in (5.1.9), we obtain: 

y2(u1) = QV α(u1) + q2(u1). (5.1.13) 

In should be noted that, in the spatial frequency u1, the PSD of noise is Sqi (u1) = 
V0 Sqi (u1/V0), and the GD PSD on a survey line is defined by formula: 

SΔg(u1) =
∫ 

SΔg(u1, u2) du2. 

The errors of the PDD approach. Let us write the PDD errors in the frequency 
domain, ignoring measurement (5.1.13) for the sake of analytical formulas and 
assuming that the variation of V1 is much smaller than that of |V0|, i.e., assuming a 
“smooth” flight (a general case is considered in the calculations). First, let us consider
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one survey line. According to stage 4 of the methodology, let us temporarily assume 
that there is no anomaly in measurement (5.1.12): 

y'
1 ≈ γ ×α + q4 + iu1V0q1. (5.1.14) 

In the PDD approach, the optimal (according to the criterion of the variance 
minimum) estimate of the vector of the orientation errors α and the PSD of the 
estimate error according to (5.1.14) are as follows: 

α̃ = −Sαγ ×S−1 
y'
1 

y'
1, Sα = (u1V0)

−2 Sq3 , Sy'
1 
= −γ ×Sαγ × + S̃q4 + (u1V0)

2 S̃q1 . 
(5.1.15) 

The PSDs of the noise included in (5.1.15) take the following form: 

S̃qn (u1) = |N3(iu1V0)|2|N5(iu1V0)|2 Sqn (u1), n = 1 − 4, 

where Nm(iu) = sin c(uT /2)m is the m-th order B-spline transfer function (TF) (the 
filter weight function is an m-fold convolution of a rectangular window with itself, 
m = 3.5) with the width of the window T applied in stages 2, 3 of the PDD approach. 
It should be noted that the smoothed accelerometer measurement errors and GNSS 
accelerations may nevertheless remain correlated in time after resampling. This is 
not taken into account in the PDD and can lead to methodological errors. 

Let us define the GD vector estimate on a survey line as a residual (stage 5)

Δg̃ = −y'
1 + γ ×α̃. (5.1.16) 

Let us write the expression for the PSD of the orientation estimation error δα = 
α − α̃ and the GD estimation error δg = Δg − Δg̃: 

Sδα = Sα + Sαγ ×
(

S−1 
y'
1 

− S−1 
y'
1 

SΔg S−1 
y'
1

)
γ ×Sα, 

Sδg = −γ ×Sδαγ × + Sζ − γ ×Sαγ ×S−1 
y'
1 

Sζ − Sζ S
−1 
y'
1 
γ ×Sαγ ×, 

(5.1.17) 

where, for brevity, Sζ = Sq4 + (u1V0)
2 Sq1 . 

At stage 7, the last one, estimate (5.1.16) and the estimate obtained in a similar 
way for the repeat flights are decorrelated by the Fourier method. The PDD method 
is difficult to apply in the classical spectral analysis because of its nonlinear nature. 
In order to determine its accuracy approximately, let us calculate the variance of 
the optimal Wiener GD estimate error according to (5.1.17) within the stochasticity 
hypothesis for gravity (assuming that the GD vector PSD is known) and take into 
account the fact that this variance is lower than the variance of the PDD error since the 
filter is optimal. Thus, we obtain the lower bound of the PDD error. It is evident that
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as the length of a survey line tends to infinity, when the sample covariance estimates 
become consistent, the resulting lower bound tends to the true one. 

Formulas for the PSD of the GD Wiener estimation error obtained from processing 
of two survey lines require, in addition to expressions (5.1.17), for the PSD of the 
GD estimation error for each survey line, the calculation of the cross PSD of the 
estimation errors for these lines. The calculations are not given here because they are 
too cumbersome. Let us confine ourselves to giving only the cross PSD of estimation 
errors on survey lines. Let δα1, δα2 be the errors of the estimates of α obtained for 
two survey lines. Thus, the cross PSDs of the specified errors and the GDs are as 
follows: 

SΔgδα1 = SΔgδα2 = −SΔg S−1 
y'
1 
γ ×Sα, Sδα1δα2 = −Sαγ ×S−1 

y'
1 

SΔg S−1 
y'
1 
γ ×Sα. 

The errors of the LHM approach. Let us carry out a qualitative analysis of the 
LHM approach in the coordinate plane x1, x2 or in the plane of the corresponding 
frequencies u1, u2. To do this, it is necessary to write Eqs. (5.1.8)–(5.1.9) in the  
variables x1, x2. Suppose that the survey lines with numbers −K ≤ k ≤ K are 
directed along the x1 axis and have the length L1, which is much longer than the 
correlation radius of the processes under consideration. Then, we can assume for 
the analysis that −∞ < x1 < ∞. When using t(k) to denote the time on the k-th 
survey line, with no loss of generality, it can be assumed that t(k) = 0 corresponds 
to the value x1 = 0. Let us use α(k)t(k) to denote the dependence of the variable α 
(or another function) of time on the k-th survey line. Let us denote the variables as 
x1 = V0t(k), x2 = ΔL2k and perform the two-dimensional Fourier transform for α 
(continuous in x1 and discrete in x2) according to the formula (let us save the function 
designation for its Fourier transform for brevity) 

α (u1, u2) = 
KΣ

k=−K

ΔL2 

∞∫ 

x1=−∞ 

dx1 α(k)(x1/V0) e−iu1x1−iu2ΔL2k . (5.1.18) 

Here, the spatial frequencies u1, u2 correspond to x1, x2. By performing the 
specified transformation for each term in (5.1.8), we obtain: 

iu1V0δV (u1, u2) = γ ×α(u1, u2) − Δg(u1, u2) + q4(u1, u2) + V × 
0 q3(u1, u2), 

iu1V0α(u1, u2) = q3(u1, u2). 
(5.1.19) 

By applying transformation (5.1.18) to (5.1.9), substituting (5.1.19) into it, and 
introducing a new measurement y'

1 = iu1V0 y, we obtain: 

y'
1(u1, u2) = −Δg(u1, u2) + γ ×α(u1, u2) + q4(u1, u2) + iu1V0q1(u1, u2). 

(5.1.20)
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By applying (5.1.18) to (5.1.10), we obtain: 

y2(u1, u2) = QV α(u1, u2) + q2(u1, u2). (5.1.21) 

It should be noted that in (5.1.19), Δg(u1, u2), the result of applying continuous-
discrete Fourier transform (5.1.18) to the GD and its PSD, strictly speaking, differs 
from SΔg(u1, u2). However, this difference is small in the assumption of ΔL2 <<
Lg << KΔL2. It should also be noted that the two-dimensional PSD of noises, 
taking into account that they are uncorrelated at different survey lines, is defined by 
the formula: 

Sqn (u1, u2) = ΔL2 

2π 
Sqn (u1), n = 1, 2, 3, 4. 

Taking into account the PSD of the GD vector, consider the variance of the optimal 
Wiener estimation error in order to evaluate the LHM accuracy. 

From (5.1.19), (5.1.21) we obtain the optimal estimate of α and the PSD of the 
error of its estimation provided that the flight is dynamic: 

α̃ = Sα QV
(
Sq2 + QV Sα QV

)−1 
y2 = Sδα QV S

−1 
q2 y2, 

S−1 
δα = S−1 

α + QV S−1 
q2 QV , Sα = (u1V0)

−2 Sq3 . 
(5.1.22) 

Equation (5.1.20) can be rewritten taking into account estimate (5.1.22) as follows:  

y'
1 − γ ×α̃ = −Δg + γ ×δα + q4 + iu1V0q1. (5.1.23) 

The processes δα, q1 are uncorrelated since q2, q1 are uncorrelated. Thus, the 
optimal estimate of the anomaly in space for a given GD PSD SΔg and the PSD of 
the estimation error in space are as follows:

Δg̃ = Sδg
[−γ ×Sδαγ × + Sq4 + (u1V0)

2 Sq1

]−1(
y'
1 − γ ×α̃

)
, 

S−1 
δg = S−1

Δg + [−γ ×Sδαγ × + Sq4 + (u1V0)
2 Sq1

]−1 
. 

(5.1.24) 

The PSD of the GD estimation error on a survey line is determined by inte-
grating the PSD Sδg(u1, u2) over u2, similarly to the above transformation of the 
two-dimensional GD PSD to the one-dimensional GD PSD. 

The errors of the VCT approach. The VCT method estimates the vertical GD 
component Δg3 first, after which the estimates of the horizontal components are 
determined using the formulas of the corresponding transformations (Jekeli 2009). 
Based on (5.1.24), let us write the optimal estimate of the vertical GD component
Δg̃3(u1, u2) in the frequency domain and the PSD of the estimation error while 
assuming that Δg3 in (5.1.24) is not correlated with the horizontal GD components 
with the known PSD Δg3:
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Δg̃3 = Sδg3 H
T
[−γ ×Sδαγ × + Sq4 + (u1V0)

2 Sq1

]−1(
y'
1 − γ ×α̃

)
, 

S−1 
δg3 = S−1

Δg3 + H T
[−γ ×Sδαγ × + Sq4 + (u1V0)

2 Sq1

]−1 
H , 

(5.1.25) 

where the designation H = (0, 0, 1)T is introduced. The estimates of the horizontal 
components in the frequency domain and the PSD of the estimation errors are then 
calculated using the transformation formulas in the frequency domain in the flat Earth 
approximation:

Δg̃1 = iu1|u|−1Δg̃3, Sδg1 = u2 
1|u|−2 Sδg3 ,

Δg̃2 = iu2|u|−1Δg̃3, Sδg2 = u2 
2|u|−2 Sδg3 , 

(5.1.26) 

where the designation |u| =  
/

u2 
1 + u2 

2 is introduced. 
Numerical example for the spectral analysis of estimation. Formulas (5.1.25), 

(5.1.24), and (5.1.17) serve as the basis for comparing the PDD, LHM, and VCT 
approaches. It should be noted that for a smooth flight in (5.1.24) we can use Sα 
instead of Sδα , and assume that α̃ = 0. 

Let us compare the spectral composition of the GD estimation errors in the PDD, 
LHM, and VCT approaches using true GD vector PSD and noise parameters. Let 
us introduce a stochastic model of the anomalous gravity field in the form of a 
single-layer mass model (Bolotin et al. 2002): 

ST (u1, u2, h) = π L2 
gσ 2 g |u|−2 e−2(h+Lg)|u|, (5.1.27) 

where T is the potential of the anomalous field, h is the altitude above the “flat” 
surface of the ellipsoid, σg is the standard deviation of gravity, Lg is the gravity 
correlation radius. The expression for the true GD PSD is as follows (Bolotin et al. 
2002): 

SΔg(u1, u2, h) = 

⎡ 

⎣ 
u2 
1 u1u2 −u1|u| 

u1u2 u2 
2 −u2|u| 

−u1|u| −u2|u| |u|2 

⎤ 

⎦ ST (u1, u2, h). (5.1.28) 

Let us consider different flight conditions and models: 

• Smooth flight. In this case, the high-frequency component of velocity V 1 is close 
to zero and its covariance matrix PV is equal to zero (note that in this case, airborne 
gravimetry Eqs. (5.1.3)–(5.1.4) can be considered stationary without introducing 
filter Θ); 

• Dynamic flight. Here, the PSD SV and the covariance matrix PV of the variations 
of velocity V 1 are calculated from the data of one real flight and are equal to
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Fig. 5.3 PSD of horizontal
Δg1,Δg2 and vertical Δg3 
components of the a priori 
GD model on a survey line 

PV = 

⎡ 

⎣ 
8.2 0 0  
0 3.4 0  
0 0  3.8 

⎤ 

⎦ (m/s)2; (5.1.29) 

• A priori  low-intensity GD model. The chosen parameters of the GD model corre-
spond to the typical survey regions. It is assumed that Lg = 5000 m, σg = 20 mGal 
(Fig. 5.3). 

• A priori  high-intensity GD model. The comparison of accuracy for an intensive 
stochastic GD model with a large standard deviation and a wide spectrum simu-
lates the lack of information on the GD while maintaining the property of the 
harmonic nature of the anomalous field. It is assumed that Lg = 70 m, σg = 
1400 mGal. 

For calculations, let us assume that the distance between the survey lines ΔL2 

= 1000 m, the aircraft speed on a survey line V 0 = 50 m/s, the flight altitude h 
= 1000 m. Let us apply an ideal low-pass filter Θ with a cutoff frequency in time 
uV = 2π/TV , TV = 20 s. The standard deviation values of the measurement errors of 
accelerometers, gyroscopes, GNSS coordinates are assumed to be the following: 

σ f = 0.2T 1/2 
f mGal s1/2 , where T f = 60s; 

σν = 0.01◦ T −1/2 
ν s−1/2 , where Tν = 3600s if νs is white noise; 

σP = 0.005 T 1/2
ΔV m s1/2 , where TΔV = 1s. 

Since the GD vertical component is usually well-estimated, let us focus on the 
horizontal components. 

(abc) Smooth and dynamic flight with a low-intensity GD. The PSD of the GD esti-
mation errors on a survey line (after integrating the PSD over u2) obtained using the 
PDD and LHM approaches are shown in Figs. 5.4, 5.5, 5.6 and 5.7 for the frequency 
range u1 from 0 to the cutoff frequency of the ideal filter uV V0. The accuracy of esti-
mating the horizontal GD components in the LHM approach is significantly higher
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than that in the PDD for smooth and dynamic flights and in VCT in the case of a 
dynamic flight (standard deviations of the estimation errors are given in Table 5.1). 
VCT is almost independent of the type of flight and, for the case of a smooth flight, 
the LHM and VCT provide similar results. 

(abd) Smooth and dynamic flight with an intensive a priori  GD model. In this 
case, S−1 

g is close to zero. Figures 5.8, 5.9 and 5.10 show the PSDs of the horizontal 
GD component estimation errors. The PDD and VCT approaches have a greater 
methodical error than the LHM over the entire frequency range in the estimation of 
the horizontal GD components in both smooth and dynamic flights (Table 5.2).

Thus, with the simulation parameters chosen, the LHM algorithm provides signifi-
cantly more accurate estimates of the GD than the PDD algorithm; and these estimates

Fig. 5.4 PSD of estimation 
errors of the east GD 
component obtained in the 
PDD and LHM in smooth 
(QV = 0) and dynamic (QV > 
0) flights with the 
low-intensity a priori GD 
model 

Fig. 5.5 The PSD of 
estimation errors of the north 
GD component obtained in 
the PDD and LHM in 
smooth (QV = 0) and 
dynamic (QV > 0) flights 
with the low-intensity a 
priori GD model 

Fig. 5.6 PSD of estimation 
errors of the east GD 
component obtained in the 
LHM and VCT approaches 
in a dynamic flight
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Fig. 5.7 PSD of estimation 
errors of the northern GD 
component obtained in the 
LHM and VCT approaches 
in a dynamic flight 

Table 5.1 Standard deviations of GD estimation errors for the case of a low-intensity a priori GD 
model 

GD component Flight type GD estimate error SD, mGal 

PDD LHM VCT 

East Smooth 4.51 0.10 0.10 

Dynamic 0.45 0.08 

North Smooth 10.59 0.09 0.09 

Dynamic 0.62 0.07

Fig. 5.8 PSD of estimation 
errors of the east GD 
component obtained in the 
PDD and LHM approaches 
in smooth (QV = 0) and 
dynamic (QV > 0) flights 
with the high-intensity a 
priori GD model 

Fig. 5.9 PSD of estimation 
errors of the north GD 
component obtained in the 
PDD and LHM approaches 
in smooth (QV = 0) and 
dynamic (QV > 0) flights 
with the high-intensity a 
priori GD model
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Fig. 5.10 PSD of estimation 
errors of the north GD 
component obtained in the 
LHM and VCT approaches 
in a dynamic flight 

Table 5.2 Standard deviations of GD estimation errors for the case of a high-intensity a priori GD 
model 

GD component Flight type GD estimate error SD, mGal 

PDD LHM VCT 

East Smooth 5.22 0.11 0.12 

Dynamic 0.68 0.08 

North Smooth 20.07 0.10 0.10 

Dynamic 0.74 0.07

are comparable in accuracy with the VCT method. At the same time, unlike the VCT 
method, this approach does not require knowledge of the vertical GD component 
map in a large region. If the high-resolution vertical GD component is known in a 
smaller region, the accuracy of the VCT method will certainly be lower. 

An important condition that has a significant impact on the accuracy of the esti-
mates of the GD horizontal components is the requirement for a dynamic flight on 
survey lines. The latest result confirms these findings (Becker et al. 2016). It should 
be noted, of course, that for final conclusions, it is necessary to carry out simulation 
in a wide range of parameter changes and calculations using real data. 

5.1.6 Algorithm for Gravity Disturbance Vector Estimation 
Based on a Local Harmonic Model 

This Section briefly describes the LHM algorithm for solving the basic airborne 
vector gravimetry equations (5.1.3)–(5.1.4) based on parameterization of the GD 
vector using the Abel–Poisson scaling functions proposed in (Bolotin and Vyazmin 
2016). By assuming that the potential of the anomalous field T is a harmonic function 
in the outer space of the Bjerhammer sphere, we can introduce a representation of T 
as an integral convolution of the scaling function and the scaling coefficients (SC) 
of a maximum resolution level J (in a discrete form) (Freeden and Michel 2004):
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T (rx ) =
Σ

s 

ws ϕJ (rx , ys)aJ (ys) (5.1.30) 

where aJ (ys) is the SC of the anomalous field potential at ysnodes of the equiangular 
grid on the Bjerhammer sphere ΩR with a radius R; ws are the integration weights;
ϕJ (rx , ys) is the Abel–Poisson scaling function with the resolution level J introduced 
in Sect. 2.5.1. The choice of radius R of the Bjerhammer sphere is discussed in 
Sect. 2.5.1. 

Expression (5.1.30) gives a representation for the GD vector defined as a potential 
gradientΔgx (rx ) = ∇r T (rx ) in the projections on the axes of the geodetic coordinate 
system:

Δgx (rx ) =
Σ

s 

ws aJ (ys) ∇rϕJ (rx , ys) (5.1.31) 

Consider airborne gravimetric measurements on the trajectory rx(t) of a single 
survey flight. Due to the properties of the scaling function described in Sect. 2.5.1, 
it is sufficient to take into account the ys nodes only from a certain vicinity of point 
rx(t) in the  summation in (5.1.30). 

Let us introduce N × 1-vector aJ composed of the potential SCs determined at 
N nodes generated by all measurement points rx (t) of one survey flight (Fig. 5.11). 
Thus, expression (5.1.31) for the GD vector can be rewritten as follows:

Δgx (rx (t)) = Π(t)aJ , (5.1.32) 

where Π(t) is a 3  × N matrix consisting of the products of the integral weight values 
ws and the values of the Abel–Poisson scaling function at the ys nodes:

Π(t) = ( w1∇rϕJ (r (t), y1), ..., wN ∇rϕJ (r(t), yN )). 

Unknown SCs of the potential are assumed to be time invariant:

Fig. 5.11 The flight path of 
the aircraft and the set of 
nodes of the disturbing 
potential SC on the longitude 
latitude plane [km × km] 
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ȧJ = 0. (5.1.33) 

Let us substitute representation (5.1.32) of the GD vector into error Eq. (5.1.3). 
Assume that the accelerometer error Δf z in (5.1.3)–(5.1.4) is white noise with 
zero mean and the standard deviation σ f ; the gyroscope error vz is  assumed to be  
representable as vz = v0 

z + vs 
z , where v

0 
z is a constant bias: 

v̇0 
z = 0 (5.1.34) 

and vs 
z is white noise with mean and the standard deviation σv . 

The error ΔV G N SS  
x of the GNSS velocity is represented as the time-derivative of 

the GNSS position error Δr G N SS  
x , which is assumed to be white noise with a zero 

mean and the standard deviation σP. 
Let us represent (5.1.3)–(5.1.5), (5.1.33), and (5.1.34) in discrete time and use a 

shaping filter for the velocity measurement errors; then, ΔV G N SS  
x can be written as

ΔV G N SS  
x (tk) = 

1

Δt 
(ζk − ζk−1) (5.1.35) 

Here, ζk is discrete white noise with a zero mean and the standard deviation 
σq = σP Δt−1/2, where Δt is the sampling time step of GNSS data. Under the 
assumptions made, the PSD of ΔV G N SS  

x is represented as 

SΔV (u) = 1 

2π Δt2
[[eiuΔt − 1

[[2 σ 2 P ≈ u2 σ 2 P /2π. (5.1.36) 

Let us formulate the problem of estimating the potential SC and the parameters of 
the INS instrumental errors as a standard Kalman filtering problem with constraints 
(5.1.3), (5.1.4), (5.1.33), (5.1.34), (5.1.35) and aiding measurement Eqs. (5.1.5). The 
state vector x(tk) includes a 3 × 1-vector of the dynamic velocity error δVx (tk), a 3  
× 1-vector of the orientation errors αx (tk), a 3  × 1-vector of the constant biases of 
the gyroscopes v0 

z , an  N × 1-vector of the disturbing potential SC aJ , a 3  × 1-vector 
of fictitious noise ζ k . 

The estimation of the state vector is determined using the KF algorithm for the 
given initial conditions for the state vector and the covariance matrix of the estimation 
error. To obtain the potential SC estimates that are assumed to be constant, smoothing 
(KF in reverse time) is not necessary. Since the initial values of the SC vector and the 
error covariance matrix are completely unknown, the KF information form (Kailath 
et al. 2000) with zero information for the SC at the initial time is used.



264 Yu. Bolotin et al.

5.1.7 Conclusions 

Some approaches to the data fusion of vector gravimetry are described in the inertial, 
satellite and gravimetric aspects. The following conclusions can be drawn. 

The airborne gravimetry problem is solved in postprocessing mode. Therefore, 
the SINS is not required to operate in the full operation mode. The SINS can be 
considered as a recorder of inertial sensor measurements. High-precision position 
and velocity GNSS solutions are always available. For this reason, when computing 
INS mechanization equations, one can use the mentioned satellite information to 
the maximum, which leads to a significant simplification of the aiding models in 
airborne gravimetry. 

Traditionally, the SINS algorithms use a navigation frame associated with a 
geodetic vertical. Similarly, the SINS algorithms can be implemented in the axes 
of other frames, for example, in the inertial frame. It is advisable to represent INS 
error equations using the so-called dynamic errors, which simplifies the calculations. 

When estimating the GD vector, it is necessary to use additional information. 
Two types of additional information and, accordingly, two methods are consid-
ered: measurements at repeat flights and the harmonicity of the disturbing poten-
tial. A comparison of these methods is given using spectral analysis. At the same 
time, bringing the nonstationary error equations to stationary form required the intro-
duction of a special averaging procedure. Numerical results have shown significant 
advantages of the second approach. The improved quality of the estimation seems 
to be due to the harmonicity of the disturbing potential. 

The GD vector can be obtained without the use of a vector gravimeter by trans-
forming the vertical GD component obtained using a scalar gravimeter. As compared 
with the method of transformations, airborne vector gravimetry provides an improve-
ment in the accuracy of DOV estimation by 10–30 % depending on the accuracy of 
the sensors. Besides, the method of transformations requires a map of the vertical 
GD in a wide area for the determination of the DOV, which is not always feasible in 
practice. 

The obtained accuracy estimates for different methods of airborne vector 
gravimetry are given under the general assumption of the validity of the stochastic GD 
hypothesis. This assumption introduces additional information, the result of which 
is that numerical estimates of accuracy might be too optimistic. For this reason, they 
should be interpreted only as relative estimates of accuracy. 

An important condition that has a significant impact on the accuracy of the esti-
mates of the GD horizontal components is the requirement for a dynamic flight on 
survey lines. The requirements for the “dynamic” characteristics of the flight call for 
a further study.
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5.2 Current State and Outlook for the Development 
of Instruments for Onboard Measurements of Second 
Derivatives of Geopotential 

In recent years, considerable progress has been achieved in the development of 
instruments for measuring the components of second derivatives of the geopotential 
(SDGP) with the dimension of angular acceleration (s–2). The components of SDGP 
second-rank tensor are measured in Eotvos (1 Eo = 10–9 s–2 = 10–4 mGal/m). On the 
Earth’s surface, different SDGP tensor components have the order of 100–3000 Eo, 
and SDGP anomalies to be determined are several orders of magnitude lower. 

The need to measure the SDGP stems from the fact that the anomalous tensor 
field of SDGP is very informative for identification of parameters used, for example, 
in gravity surveys and navigation. Onboard SDGP measurements help to effectively 
solve the current and prospective problems in basic research, geophysics, geology, 
and geodesy (Nerem et al. 1995; Volfson 2002; DiFrancesco et al. 2009; Vasin and 
Popkov 2010). 

Gravity gradiometers (GG) are most commonly used to measure SDGP. Their 
principle of operation is based on measuring the gravity accelerations of at least 
two proof masses separated by a certain distance in chosen directions (Evstifeev 
2017). The difference between the accelerations divided by the distance determines 
the components of the gradient of the Earth’s gravity field or SDGP components. 
In geophysics, instruments for measuring the SDGP are traditionally divided into 
gravity variometers of the 1st and 2nd types and gravity gradiometers, depending 
on the tensor components to be determined. In this section, all onboard instruments 
are qualified as GG due to the arbitrary (but measurable) angular positions of their 
sensitivity axes. 

The history of GG development covers more than a century. The first GG was 
proposed and designed by the Hungarian physicist R. Eotvos at the end of the 
19th century for studying the Earth’s gravity field. Based on the principle of torsion 
balance, his instrument recorded the difference between the gravity vector projec-
tions for the centers of gravity of two proof masses of a dumbbell. Eotvos’ ideas 
were embodied in stationary gravity variometers and gradiometers developed in the 
1950s for geological exploration (Jekeli 2007; Nabighian et al. 2005). 

The need for onboard measurements of the Earth’s gravity field parame-
ters emerged in the 1980s, and the new solutions were mainly intended to aid 
autonomous inertial navigation systems (INS) in defense applications. Onboard GGs 
for measuring SDGP tensor components were designed by various companies both 
in Russia and abroad (DiFrancesco et al. 2009; Soroka 2010). 

GG performance data for priority application areas are shown in Fig. 5.12.
The major GG applications are described below. 
Autonomous navigation. Using GG for underwater navigation has become less 

relevant due to the development of satellite navigation systems and precision gyro-
scopes (see Peshekhonov 2020; Dzhandzhgava and Avgustov 2007, and Sects. 6.3
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Fig. 5.12 Application areas of gravity gradiometers

and 6.4). However, to meet the requirements for autonomous systems, particularly in 
military applications, it is needed to use a GG unit measuring all SDGP components. 

Geophysics and geology. This area includes the studies of the geological structure 
of the Earth’s crust and deep distribution of masses under the Earth’s surface. Gravity 
gradiometers are extensively used in exploration and oilfield geophysics in the search 
for mineral deposits (Dransfield 2007; DiFrancesco 2007). 

Geodesy. Possible applications to geodesy include the study and refinement of 
the Earth’s figure, detection and mapping of gravity anomalies during terrestrial 
and satellite surveys. GG data helps determine long-term, very slow fluctuations 
in the ocean level and can be employed in various physical studies. Space agen-
cies of Europe and the USA develop various global projects on designing GG for 
oceanography, meteorology, and climate studies aimed at the Earth’s surface mapping 
(Albertella et al. 2002; Rummel et al. 2002; Freeden et al. 2002; Touboul et al. 2012). 

Basic research. Gravity gradiometers are applied in various studies to verify 
the fundamental equivalence principle, measure the gravity constant, search for 
new physical interactions, and record the gravity waves. The measurements can 
be performed both on a fixed base and onboard spacecraft (Paik 1989; Iafolla et al. 
2003; Kasevich et al. 2014). 

For the majority of SDGP dynamic measurements, noise error components should 
be normalized in addition to static and dynamic characteristics. The required spec-
trum of the random component of the measured SDGP useful signal should not exceed 
1–10 Eo/

√
Hz; and for basic physical research, 0.1–0.001 Eo/

√
Hz. These values 

cannot be achieved at a normal temperature, since the thermal noise is much higher. 
The requirement can be met using the cryogenic technology providing lowered 
sensitivity threshold and enhanced potential accuracy of sensors, however, then the 
development costs will significantly increase.
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At present, high sensitivity and noise spectra of 0.02–5 Eo/
√
Hz have been 

achieved for onboard GG, which makes it possible to use them in a wide range 
of problems. 

5.2.1 Principles and Challenges of Measuring the Second 
Derivatives of Geopotential 

The set of SDGPs is one of the characteristics of the Earth’s gravity and centrifugal 
fields; it forms a symmetric second-rank tensor W, which mathematically is a deriva-
tive of the gravity vector to the radius vector of arbitrary direction. For each point in 
space, the tensor W defines a triad of mutually orthogonal eigenvectors, the orienta-
tion of which relative to the Earth can be measured. According to the general prin-
ciple of map-aided navigation, the magnitude and direction of these vectors along 
the motion path can be determined by measuring the components of the tensor W in 
order to refine the vehicle position and orientation. Each component of the tensor W 
has a normal component corresponding to the accepted gravity field model and an 
anomalous component. It is the anomalous parts of the components that carry useful 
information, and the problem lies in measuring them. 

As noted above, special devices—gravity variometers and gradiometers—are 
used to measure SDGP tensor components. According to the accepted terminology 
(Ogorodova 2006), variometers determine the individual components of the tensorW, 
while GGs determine only the gradients of gravity module Wxz, Wyz, Wzz character-
izing the change in all three gravity components with altitude changes (z coordinate) 
or, equivalently, the change in the vertical component along three axes. Hereinafter, 
the first index refers to the component of the vector on which differentiation is 
performed, and the second index, to the coordinate, with respect to which the deriva-
tive is taken. The following types of instruments are classified: first type gravity 
variometers determining the components of the vector of difference between the 
curvatures of the geoid sections WΔ = Wxx – Wyy and Wxy, second type variometers 
determining WΔ, Wxy, Wxz, Wyz, horizontal GG determining Wxz, Wyz, and vertical 
GG determining Wzz. The tensor W is represented by components in a horizontal 
coordinate system with geographically oriented axes (OX to the East, OY to the 
North, OZ up) at the point of the common Earth ellipsoid. 

The SDGP tensor contains six unknown (five independent) components Wxx, Wyy, 
Wzz, Wxy, Wxz, Wyz. The first invariant I1 of the SDGP tensor, which is the sum of the 
components of the main diagonal, has an important feature: the condition I1 =Wxx 

+ Wyy + Wzz = 2ωe 
2, where ωe is the Earth’s angular velocity, is satisfied for SDGP 

components driven by centrifugal forces. The first invariant I1 can be appropriately 
used to check the gradiometer accuracy. Due to the potential properties of the gravity 
field, the gravitational parts of SDGP diagonal components are related by the Laplace 
(or Poisson) equation; therefore, this condition is also satisfied for the elements of 
the combined field of gravitational and centrifugal forces.
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The tensor GG measures all components of the tensor W to determine the 
Earth’s gravity field anomalies by integrating the gradients of gravity acceleration 
(Peshekhonov et al. 1989; Mumaw  2004). This gradiometer can have four proof 
masses located at the vertices of a tetrahedron. Each proof mass is held in an equi-
librium position with a special elastic suspension, and the readout system measures 
the changes in their positions caused by external forces. 

Several dozen GG designs have been proposed so far. They can be divided into 
two groups: those using accelerometers or dumbbells. In accelerometer GG, the 
difference between specific forces (with account for inertial forces) is determined 
by two accelerometers, whereas in dumbbell GG, this difference shows itself as a 
torque that is applied to the dumbbell and is to be determined by the device. 

To construct a device measuring all SDGP components—a tensor GG, four three-
axis linear accelerometers (by the number of proof masses of the tetrahedron), twelve 
uniaxial accelerometers, or six measuring dumbbells (by the number of faces of the 
tetrahedron) are needed. 

Dumbbell and accelerometer GGs can be of static type, when the axes of 
accelerometers or dumbbells are fixed in a specified frame, or of modulation (rotating) 
type, when GGs are forced to rotate in a space with a constant angular velocity. 
Uniform rotation allows gravity effects to be modulated by the double rotation 
frequency, then the resonant properties of the mechanical system—high mechanical 
Q-factor, synchronous detection during conversion of displacement signals, etc—are 
used to detect the useful signal. Inertial accelerations of the base perpendicular to the 
rotation axis are modulated by the single rotation frequency, and gravity gradients 
are modulated by the double rotation frequency, so they can easily be distinguished. 

The following challenges in the development of onboard SDGP measuring 
instruments should be outlined: 

1. Detection of SDGP tensor components against the background of much larger 
acceleration gradients of inertia at the GG location. The measurement error of 1 
Eo corresponds to the gravity acceleration change of 10–10 m s–2 (10–11 g) on a 
0.1 m base, comparable with the actual size of an onboard GG. Many vehicles 
undergo intensive linear vibrations with amplitudes of up to 1 g and slowly 
varying motion accelerations up to 10–1 to 10–2 g. Thus, the measurement error 
should be 11 orders of magnitude lower than the measured value. From the above 
it follows that inertial effects should be reduced at least to 10–2 g through the use 
of effective antivibration system. 

2. Using a high-precision GG angular stabilization system to reduce apparent 
changes in tensor components while minimizing dynamic errors. For example, 
dynamic errors of the stabilized platform with an amplitude of angular oscil-
lations of 2 arcsec at 10 Hz provide an additional 400 Eo signal at GG input, 
under these oscillations the platform undergoes angular accelerations with an 
amplitude of 4 · 107 Eo. With the required measurement accuracy of 1 Eo, such 
errors are unacceptable (Staroseltsev 1995). 

3. Measurement of the full SDGP tensor, including the vertical gradient, under 
inertial disturbances. For accelerometer GG, this requires accelerometers with
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a unique sensitivity of 10–11 g and relevant parameters such as scale factors, 
alignment of sensitivity axes, etc.; for dumbbell GG, it is necessary to develop 
a set of dumbbells in elastic suspensions with static and dynamic balancing of 
10–11 (in relative units) (DiFrancesco et al. 2009). 

4. Provision of stable thermal measurement mode at the GG location. For metal 
dumbbells with the thermal expansion coefficient of about 10–5 K−1, temperature 
variations in the structure shall not exceed 10–6 K, which requires the develop-
ment of a unique thermal stabilization system. It is the main impediment to the 
development of static GG. Application of superconducting technology would 
greatly simplify the solution of this problem; however, operation of cryogenic 
systems onboard small vehicles, such as a light aircraft, also involves a lot of 
complications. 

5. Development of high-precision transducers to measure displacements of proof 
masses under the action of gravity gradients at the level of hundredths and thou-
sandths of an angstrom (10–12 − 10–13 m). For GG with two orthogonal dumb-
bells to be able to measure SDGP tensor components accurate to 1 Eo, a device 
measuring antiphase angular oscillations of dumbbells with sensitivity of 10–5 

− 10–6 arcsec should be developed. 
6. Development of a low-speed driver with a rotation rate instability of about 10–6 

− 10–7 for the rotational mode of both accelerometer and dumbbell schemes. 
Special requirement is to provide a uniform velocity at double frequency, which 
will decrease GG errors and lower the requirements for identity of accelerometer 
parameters or natural frequencies of dumbbell suspensions. 

7. Development of metrological and calibration equipment for GG calibration, 
testing, and adjustment with setting the test signals accurate to 0.1 Eo or better. 

Creation of gravity gradiometers for onboard SDGP measurements is a real chal-
lenge; in fact, the problem solution is on the verge of the present-day instrument 
engineering potential. 

5.2.2 Gradiometers for High-Precision Autonomous 
Navigation 

High-precision marine navigation involves application of various facilities, among 
which inertial navigation systems are of prime importance. The Earth’s gravity field 
anomalies, first of all deflections of the vertical (DOV), cause additional method-
ological errors, which are comparable with INS instrumental errors and present a 
serious impediment to their accuracy increase (Peshekhonov et al. 1989; Koneshov 
et al. 2016). The permissible methodological errors for perspective INS are charac-
terized by limiting DOV errors of 1 arcsec, which requires measurement of all SDGP 
tensor components with max 1 Eo error (Nesenyuk et al. 1980). This can be achieved 
by including a tensor GG in the navigation equipment. Apart from real-time DOV 
determination, GG data are used to measure the vertical components of Coriolis
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acceleration, correct the Schuler error components of the INS velocity, and detect 
local anomalies of the bottom relief (Maleev and Kapustin 2007). 

In the 1970s, the US Department of Defense initiated the development of GG to 
be used onboard submarines and to aid Trident II missile systems (Gerber 1978). A 
number of US companies, such as Bell Aerospace, Hughes Aircraft and the Draper 
Laboratory of Massachusetts Institute of Technology, participated in the creation of 
GG prototypes. Below we provide brief descriptions of their developments, which 
have become classics, especially as they have laid the basis for certain trends in the 
development of future projects. 

Bell Aerospace/Textron Inc. proposed a rotating GG with four identical 
accelerometers at the periphery of a rotating platform. Each pair of accelerometers 
had parallel differently directed sensitivity axes arranged tangentially in the plane 
of the platform; with the accelerometers installed with the radius of 10 cm, and the 
signal of 1 Eo the difference in their readings was expected to be 10–11g. The stability 
of the constant rotation rate of 5–10 Hz was at the level of 10–7. 

Hughes Aircraft developed a rotating gradiometer with two orthogonally arranged 
dumbbells in an elastic suspension. It is known as a Forward gravity gradiometer 
named after Robert L. Forward, its designer. The dumbbells are connected by a 
torsion bar with a built-in piezotransducer measuring the angular twist of dumbbells 
relative to each other. The amplitude of the measured angle is 10–5 arcsec at 1 Eo. 
The natural frequency of the elastic suspension is 35 Hz; it is equal to the double 
rotation frequency for resonance signal amplification. Two dumbbells and the elastic 
suspension were made from a single solid aluminum workpiece; as a result, the 
Q-factor exceeded 9000 (without regard for the piezotransducer losses). 

The Draper Laboratory succeeded in creating a static GG to measure the vertical 
gradient (Trageser 1984). The beryllium dumbbell shaped as a sphere with tung-
sten weights was placed in a special liquid to ensure neutral buoyancy. The sphere 
was centered with the use of electrostatic sensors and balancing was carried out by 
metal deposition onto the sphere. The need to maintain balance in the presence of 
liquid required the development of a unique system providing thermal stabilization 
of about (10–6–10–7) °C, which, despite certain progress, made the whole project 
impracticable. 

Development and accuracy of the onboard GG are considered in the publications 
of Russian scientists (Krasovsky 1983; Peshekhonov and Volfson 1996; Volfson 
1997; Soroka 2010). 

In Russia, a considerable research was conducted by the CSRI Elektropribor. 
The developed shipborne GG was built as a first type gravity variometer and had 
a sensor greatly outperforming the traditional geophysical gradiometric devices 
(Volfson 1997). The gradiometer weighed 16 kg and measured ∅270 × 170 mm 
(Fig. 5.13a). The GG sensitivity to variations of gravity gradients determined in the 
tests on a rocking base was 0.4 Eo.

Since 2001, Ramenskoye Design Company and Zhukovsky Air Force Engineering 
Academy have been jointly working on the development of rotating gradiometers, 
both with accelerometers and dumbbells. The dumbbells made of a nonmagnetic 
heavy alloy rotate at a rate of 2.3 Hz. The readout system comprises fiber-optic
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Fig. 5.13 Russian developments: a static GG by CSRI Elektropribor; b rotating GG by Ramen-
skoye Design Company and Zhukovsky Air Force Engineering Academy

channels and a three-ring fiber optical collector measuring microdisplacements up 
to 10–4 μm. Some prototypes based on Forward gravity gradiometer (Fig. 5.13b) 
have been manufactured; their errors from the bench tests were 13−16 Eo, which is 
insufficient for autonomous navigation (Avgustov and Soroka 2009). 

The gradiometer designed by Bell Aerospace, which was later incorporated into 
Lockheed Martin, served as a basis for the tensor GG used onboard the Ohio-class 
submarines for autonomous navigation. It should be noted that the development and 
application of gravity gradiometers is included in the Militarily Critical Technologies 
List of the US Department of Defense (Korchak et al. 2013). 

DARPA Research Center (USA) plans to create an autonomous noise-free preci-
sion inertial navigation system featuring positioning accuracy close to that of GPS-
aided systems. This system is supposed to use GG for real-time measurements of the 
full SDGP tensor and DOV. 

Further publications on GG intended for autonomous navigation are rather scarce 
for obvious reasons; they are mainly concerned with integrated systems comprising 
GG, INS, and GPS (Richeson 2008; DeGregoria 2010; Welker et al.  2013; Lee et al. 
2015). At the end of the 20th century, the tensor GG technology was declassified and 
the conditions for its commercialization were created (Bell 1998). 

5.2.3 Gradiometers for Mineral Exploration 

GG development projects for military applications started in the 1970–80s and 
provided the gradiometers demonstrating good performance in tests onboard satel-
lites, aircraft and ships. Gravity gradiometers were especially actively applied to 
exploration geophysics and mineral exploration. 

The interest in GG application was due to the fact that gravity gradients (see 
Sect. 6.4) were more informative than gravity anomalies measured by gravimeters. 
Moreover, measurement of SDGP components provides a more contrasting anomaly 
map and a clearer detection of higher-density areas for mineral prospecting (salt 
domains for oil and gas prospecting, kimberlite pipes for diamond prospecting, etc.),
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which greatly reduces the cost of drilling and production (Annecchione et al. 2007; 
McBarnet 2013; Mims et al. 2009). 

Lockheed Martin significantly enhanced the accuracy of the gradiometers, and 
in 1994, Bell Geospace gained commercial rights to manufacture the 3D FTG (full 
tensor gradiometer) intended for marine surveys. This gradiometer consists of three 
orthogonally arranged GGs, each containing four high-precision accelerometers on 
a rotating platform with a diameter of 15 cm (DiFrancesco 2003). The rotation 
frequency is 0.25 Hz. The arrangement of gradiometers with orthogonal sensitivity 
axes allows all SDGP tensor components to be determined on a moving base. The 
noise level of such a gradiometer is ~10 Eo/

√
Hz. 

Bell Geospace conducted the first SDGP surveys in the Gulf of Mexico (Mumaw 
2004). In 2003, Bell Geospace modernized the equipment and developed the Air-FTG 
for airborne applications (Murphy 2004). 

Under an agreement with Lockheed Martin, BHP Billiton (Australia) designed an 
airborne gravity gradiometer Falcon AGG (Airborne Gravity Gradiometer) for explo-
ration surveys. The gradiometer has an enlarged 30 cm diameter rotating platform 
with 8 accelerometers, equally spaced along the edge of the platform. This enhances 
the gradiometer resolution and allows surveys onboard an aircraft at a height of about 
100 m, which improves the efficiency of geophysical surveys (Dransfield et al. 2010; 
Dransfield and Christensen 2013; Christensen et al. 2015). The platform rotation axis 
is vertical, which allows determining the components of the tensor WΔ and Wxy. Due  
to a larger size and more convenient operating conditions the noise level is as low as 
2–3 Eo/

√
Hz. 

In airborne surveys, it is desirable to achieve a resolvable wavelength of less than 
50 m. In practice, the resolution of 200–300 m was obtained, which is associated with 
the lower limits of speed and the safe altitude. In addition account should be taken 
of the gradiometer displacement relative to the aircraft, the crew motion during the 
flight, the need to occasionally refine measurement results and introduce corrections 
at preformed zero points (reference points) in order to obtain corrected SDGP values 
(Jekeli 2006, 2011). 

However, due to large size and weight the gradiometer could not be applied on 
light airplanes. These parameters were significantly reduced due to compact digital 
electronics. The new gradiometer HeliFalcon can be placed onboard a helicopter 
in order to provide the desired wavelength measurements (Dransfield 2010). Fugro 
Airborne Surveys, which is a part of Compagnie Générale de Géophysique holds 
exclusive rights to surveying with the Falcon gradiometer technology. 

ARKeX (Cambridge, UK) commissioned by the European Space Agency (ESA) 
developed a vertical cryogenic exploration gravity gradiometer (EGG), operating 
at a temperature of 4 K. This gradiometer was specially designed to measure the 
component Wzz in highly dynamic conditions (DiFrancesco 2007; Lumley et al. 
2001). The designers used the Meissner effect, allowing for contactless suspension 
of proof masses, and superconductivity, allowing for using a SQUID magnetometer 
to provide high-accuracy and stable measurements of proof mass displacements. 
The EGG comprises two vertically-spaced accelerometers with vertical sensitivity 
axes. The gradiometer comprises two proof masses with H-shaped cross section
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(shaped as hollow cylinders with a flange in the middle), suspended in a contactless 
suspension. The proof masses with a diameter of 50 mm and weights of 100 g are 
made of niobium. The proof masses are arranged one over the other at a distance of 
150 mm. The construction with the proof masses is installed in a cryostat, which is 
mounted on a gyrostabilized platform. The desired noise level was 1 Eo/

√
Hz, the 

actual measurements showed 7 Eo/
√
Hz. 

This gradiometer was used by ARKeX in a range of geophysical surveys 
throughout the world; in 2008, the company announced its revenue from gravity 
surveys of about $30 million. Later, the company made an agreement with Lockheed 
Martin on using its FTG technology, probably because of the difficulties in operating 
cryogenic equipment onboard the aircraft and higher informativeness of FTG signal 
as compared with EGG signal. The technology was adapted for the ARKeX needs to 
create an FTGeX gradiometer. Together they developed the eFTG (Enhanced FTG) 
with improved accuracy, shock absorption and thermal stabilization, which reduced 
the noise level 3–4 times down to 2 Eo/

√
Hz. 

In November 2015, ARKeX ceased to function for financial reasons. 
The University of Western Australia (UWA) and Gedex Inc. (Canada) have jointly 

developed an airborne cryogenic dumbbell GG for mineral exploration, the key 
customer being Rio Tinto Ltd. (Australia) (Matthews 2002; Van Leeuwen 2003; 
Tryggvason et al. 2004). 

The superconducting GG comprises two orthogonally arranged dumbbells in 
elastic suspension. This elastic system was called an orthogonal quadrupole 
responder. Each dumbbell of the niobium bar with a size of 30 × 30 × 90 mm 
has special elastic variable cross-section elements 0.03 × 0.2 × 20 mm in size 
functioning as elements of the elastic suspension. The design natural frequency of 
dumbbells in the suspension was 1 Hz, but in practice it was about 3 Hz due to tech-
nological limitations in manufacturing. The Q-factor of the dumbbell suspensions 
was 1500−2500, and it was about 80 for the whole construction. Dumbbells have 
special coils mounted on them needed to pick off signals with the use of a highly 
sensitive SQUID. The coils also function as magnetic springs allowing adjustment 
of the dumbbell mechanical frequencies since the manufacturing tolerances are very 
broad. 

To improve thermal insulation, the dumbbells are placed in a vacuum chamber 
with a residual pressure of 10–11 atm. The dumbbell system is installed in a cryogenic 
chamber (dewar), with the temperature stability of about several μK. The whole 
construction is mounted onto a gyrostabilized platform with fiber optic gyroscopes. 

Vibration control technology for this GG was developed by the Canadian Space 
Agency. It protects the gradiometer both from linear and angular vibrations. Without 
vibration control, the gradiometer error was 150 Eo at 1 Hz; with the control the error 
was reduced to 1 Eo. With the use of the vibration control system, linear accelerations 
10–2−10–3g were acting on the gradiometer. This cryogenic gradiometer was named 
VK1 after UWA physicist Dr Frank Van Kann, who invented the technology (Anstie 
et al. 2010). 

Gedex Inc. (Canada) developed and patented a cryogenic high definition airborne 
gravity gradiometer (Gedex HD-AGG) consisting of three orthogonally arranged
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pairs of angular accelerometers to measure the full tensor of SDGP. It is based on the 
principles proposed by the University of Maryland (Chan and Paik 1987). Each pair 
of accelerometers measures in-phase oscillations caused by the base angular accel-
erations (common mode) and antiphase oscillations caused by SDGP (differential 
mode) about the coincident sensitivity axes. This allows determining the components 
Wxx – Wyy and Wxy, Wyy – Wzz and Wyz, Wxx – Wzz and Wxz depending on the 
angular position of sensitivity axes. 

The angular accelerometers are carefully adjusted and calibrated to ensure identity 
of their characteristics. The residual static and dynamic imbalances, misalignment of 
sensitivity axes and other technological imperfections are measured and taken into 
account in the gradiometer error model during the calculation of SDGP components. 
To reduce the effect of the base motion, the accelerometer unit is placed on a six-
degree-of-freedom antivibration platform. The temperature stability in the cryostat is 
provided at ± 20 μK. The gradiometer noise does not exceed 1 Eo/

√
Hz at 0.001–1 

Hz (Carroll et al. 2010). 
Despite the rapid development of GG gravity surveying, the number of companies 

engaged in their design and operation has not increased in recent years. Note that 
the conference Airborne Gravity (2016) included the presentations by Lockheed 
Martin, Compagnie Générale de Géophysique, Gedex, Rio Tinto, Bell Geospace on 
the products described above. 

5.2.4 Gradiometers for Space Missions 

The development of satellite geodesy and the need to refine the global models of the 
Earth’s gravity field require tools for determining the parameters of the anomalous 
gravity field, particularly SDGP. One of the first cryogenic GG for space missions 
was developed in the 1980s by the research group led by Dr. H.J. Paik from the 
University of Maryland (Chan and Paik 1987). Initially, this gradiometer was created 
under a contract with the NASA and was intended for space research in geodesy and 
fundamental Earth science. After the NASA stopped funding the project, Oxford 
Instruments (UK) continued the development of this gradiometer under a contract 
with the ESA. Both GG designs represent an analog of the accelerometer GG with 
two proof masses, but in the second case, the mechanical elastic suspension of the 
proof mass is replaced by a contactless magnetic suspension. 

The GG design accuracy should be 10–4 Eo over the measurement time of 1 s. A 
group of researchers from Oxford Instruments suggests that their gradiometer can 
be used in geophysical explorations, but the claimed accuracy can be achieved only 
onboard an unperturbed satellite, where inertial acceleration is much lower than that 
on an aircraft. For aircraft conditions this yields the noise level of about 100 Eo, which 
is hardly suitable for airborne geophysical equipment. However, its design principles 
were applied in development of other GG versions such as EGG by ARKeX. 

Dr. Paik proposed to develop a three-axis GG with 9 accelerometers (6 linear 
and 3 angular ones) for physical experiments in space. Such a gradiometer would
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determine diagonal SDGP tensor components and measure the acceleration of the 
foundation in all six degrees of freedom (linear and angular). The gradiometer noise 
is estimated to be 0.02 Eo/

√
Hz (Moody et al. 2002). 

ESA gravity mission GOCE focusing on geodetic explorations used two key 
technologies: satellite-to-satellite tracking and electrostatic gravity gradiometer. 
The tensor GG specially developed for this project has three pairs of orthogo-
nally arranged precision electrostatic triaxial accelerometers (Albertella et al. 2002; 
Rummel et al. 2002, 2011). The components of the full SDGP tensor are determined 
by measuring the differences between the accelerations of the paired accelerometer 
proof masses. The accelerometers spaced 50 cm apart are mounted on a base of a 
highly-stable reinforced carbon/carbon with a honeycomb structure and isotropic 
elasticity in all directions. The distance between the proof masses is determined 
accurate to 0.01 angstrom over 3 min. The angular position of the base was strictly 
controlled: linear and angular accelerations were measured by all nine accelerom-
eters. The base is fixed to a special equistiff suspension. The center of mass of the 
accelerometer unit is close to that of the satellite in order to reduce the influence of 
linear accelerations. Stability of the base temperature is maintained at about 10 mK 
within 200 s. The platform assembly with three pairs of accelerometers weights 150 
kg, the whole satellite, about a ton. The power consumption of the GG electronics is 
75 W. 

The accelerometers were designed by Alcatel Space Industries (France), and the 
structure of six accelerometers with electronics was assembled by ONERA (France). 
The measuring range of the tensor GG is 0.005–0.1 Hz. The noise of one accelerom-
eter is 2 × 10–13 g/

√
Hz, which, on the 50 cm base, provides the resolution of 0.002 

Eo. By the space mission data, the noise achieved 0.01−0.02 Eo/
√
Hz for Wxx, Wyy, 

and 0.02 Eo/
√
Hz for Wzz,Wxz. Such high precision was obtained at minimum inertial 

perturbations of the satellite and in zero-gravity conditions. 
Each accelerometer comprises a rectangular proof mass made of platina-rhodium 

alloy 4 × 4 × 1 cm in size, weighing 320 g. The proof mass is suspended in a noncon-
tact electrostatic suspension; its position is controlled by eight pairs of electrodes. 
Accelerometers with the similar design and proof mass dimensions were applied in 
the previous CHAMP and GRACE missions (STAR and SuperSTAR accelerometers, 
respectively). Comparative characteristics of these sensors are given in Table 5.3.

The difference in the electronics between the GOCE and cryogenic GG such as 
VK1 is that electrostatic GG measure capacities (i.e., voltage at the electrodes) in 
order to measure the displacement of the proof mass, whereas the superconducting 
GG measure inductance (i.e., current). This reduces potential sources of disturbances 
to the minimum and increases the stability of tensor GG accelerometers similarly to 
the superprecision electrostatic gyroscope.
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Table 5.3 Comparative characteristics of accelerometers used in various missions 

Mission CHAMP GRACE GOCE 

Material of the proof mass TA6V TA6V PtRh10 

Weight of the proof mass, g 72 72 320 

Gap X, μm 60 60 32 

Gap Y, Z, μm 75 175 299 

Voltage, V 20 10 7.5 

Measurement range Y, Z, g ±10–5 ±5 · 10–6 ±6.5 · 10–7 
Noise level Y, Z, g/

√
Hz <10–9 10–11 2 · 10–13 

Bandwidth, Hz 0.0001–0.1 0.0001–0.1 0.005–0.1

5.2.5 Promising Gravity Gradiometers 

As the range of GG applications is getting wider and the demands for high-precision 
measurements of SDGP tensor components are growing, designers come up with new 
methods and techniques to create novel tools based on various physical principles. 
Using superconductivity provides ultra-high threshold sensitivity; at the same time, 
it imposes special requirements for design. 

Further increase in accuracy will be possible due to atom interferometry technolo-
gies. AOSense Inc. (USA) and Stanford University are working on the new generation 
of gravity gradiometers based on atom interferometry. In a Trapped Atom Interfer-
ometer the proof masses are individual atoms that have very stable dimensions and 
weights as compared with mechanical bodies, even precisely machined. The relative 
accelerations of the two free-falling atoms are measured by an atom interferometer. 
In 1998, this kind of GG was successfully used to measure gravity gradients. In prin-
ciple, atom interferometry GG may have a very low noise component, 0.001 Eo/

√
Hz 

(the potential resolution of an individual accelerometer being 10–15 g), but the goal 
has not been reached yet. The experimental studies of the prototype on a 1 m base 
showed a noise of about 38 Eo/

√
Hz (Yu et al. 2005; Mahadeswaraswamy 2009; Wu  

2009; McGuirk 2001; Brown et al. 2012). The immediate objective is to reduce the 
weight and dimensions and decrease the noise to 2 Eo/

√
Hz so that the GG could be 

used onboard a submarine. 
To increase GG resolution and enhance interferometer accuracy, special tech-

niques are applied that slow down the atoms such as magneto-optical traps and laser 
cooling. The slowed-down atoms are called cold ones; their temperature is 2 μK and 
their speed is reduced to 2 cm/s while the standard speed is 300 m/s (Yu et al. 2010). 
This extends the time needed to measure the positions of the atoms (proof masses) 
and thus enhance the gradiometer accuracy. 

The Jet Propulsion Laboratory (JPL) develops a quantum gravity gradiometer 
measuring the distance between individual cold atoms using an atom interferometer 
(Griggs et al. 2013; Carraz et al. 2014; Yu et al.  2005, 2010; Kohel et al. 2006). A 
prototype with a 10 m base has been designed and tested. Each interferometer is
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an accelerometer, and a pair of them makes up a GG. Potentially such a quantum 
GG is millions of times more sensitive than a conventional GG. NASA spends about 
$400 million a year on this triennial JPL program on a quantum GG. 

The advantages of atom interferometry GG are the following: 

• free-falling atoms are ideal proof masses with identical characteristics; 
• GG has no moving mechanical parts; 
• laser cooling of atomic proof masses provides low temperatures of several μK 

without expensive cryogenic equipment; 
• GG involves the technology and measurement techniques used in high-precision 

atomic clocks to ensure unique stability; 
• measuring accelerations of free-falling atoms makes it possible to measure the 

absolute values of SDGP components. Therefore, quantum GGs are perspective 
for space missions studying the gravity fields of different satellites and planets, 
such as the Moon, Mars, and others (Griggs et al. 2013). 

Another absolute GG was proposed by Micro-g Solutions Inc. (USA). The device 
consists of two absolute gravimeters FG5 spaced 60 cm apart. It measures the differ-
ence between the accelerations of two simultaneously falling bodies using a laser 
interferometer. It is calibrated with the help of standards of length and time. The devel-
opment results are not published because of business considerations, but according 
to the promotional materials, the device accuracy is expected to be 20 Eo over the 
integration time of 1 min on a fixed base. The stated sensitivity is insufficient for 
the instrument to be used onboard space- or aircraft. In 2006 Micro-g Solutions Inc. 
merged with LaCoste Romberg and now it is known as Micro-g LaCoste. Now, no 
data on absolute GG is available at the company’s website. 

The gradiometer designed by Gravitec Instruments (UK) is based on an orig-
inal principle proposed by Dr. Alexey Veryaskin in New Zealand in 1996. It is a 
prolate bar–a ribbon or a string–the cross-sectional dimensions of which are much 
smaller than its length. This GG is called a Gravitec Ribbon Sensor or a String 
Gravity Gradiometer. Under accelerations, the string performs vibrations that can be 
represented as the normal mode of vibrations. The first (primary) mode (C-mode) 
is a string bending under the base linear acceleration; the second mode (S-mode) is 
proportional to the gravity gradients along the string. The second mode is measured 
by differential transducers of the readout system, which makes it possible to calculate 
SDGP. 

The gradiometer sensitivity can be enhanced by applying forced vibration of the 
string, similarly to the modulation principle used in rotating GG. Ideally, the readout 
system is sensitive only to the amplitude of the second harmonic and is insensitive to 
the amplitude of the primary mode. High requirements for the frequency and scale 
factor control are provided by the string uniformity along its length and symmetry 
of the sensors, which causes some difficulties in the new design. 

The GG is designed for military, airborne and exploration applications, and mainly 
for monitoring of wells in mineral explorations, where it is included as a part of a 
borehole GG.
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The sensitive element of the string GG has the following characteristics (Veryaskin 
2003; Golden et al. 2007): dimensions 400 × 30 × 30 mm; weight 500 g; modulation 
frequency 5–10 Hz; and the desired noise 5 Eo/

√
Hz at 1 Hz. The device measures the 

tensor components Wxy, Wxz, Wyz. The estimated instrumental noise of the prototype 
is about 8 Eo/

√
Hz at 77 K (boiling point of liquid nitrogen). 

The team from the University of Twente (Netherlands) proposed a MEMS GG 
for future satellite missions. The sensor consists of two linear accelerometers with 
proof masses moving in the plane of a silicon wafer. The advantage of such a device 
is the high precision fabrication of the proof masses and elastic suspensions (up to 
0.1 μm accuracy). Using low temperatures further reduces the noise. 

The proof masses weighing 1.34 g are suspended with four elastic elements with 
dimensions 0.05 × 0.5 × 60 mm. The proof masses and their suspensions are made 
by deep reactive ion etching technology. Additional gold weights of 1 cm3 on each 
proof mass located 3.5 cm away from the sensor center are intended to increase their 
sensitivity. With the Q-factor of suspension loops of 105 and a temperature of 77 K, 
the noise may be expected to be 0.1 Eo/

√
Hz (Flokstra et al. 2009; Liu et al. 2014). 

In conclusion, Table 5.4 summarizes the performance data of gravity gradiometers 
both in operation and under development.

5.2.6 Expanding the Scope of Gradiometer Applications 

Advances in modern technologies, theoretical and applied research as well as the 
interests of some economic sectors stimulate the development of gravity gradiom-
etry. Various problems in geology, geodesy, geophysics, navigation, and fundamental 
physics require more detailed information on the anomalous gravity field of the 
Earth and other planets. The most challenging prospective GG application areas are 
outlined below.

1. Fundamental research on specification of the gravitational constant, the main 
provisions of the theory of relativity, and detection of gravitational waves (Paik 
1989; Iafolla et al. 2003; Kasevich et al. 2014). 

2. Studies of the planetary structure and figure of the Earth, detection of gravity 
anomalies and mapping of the Earth’s gravity field in terrestrial and satellite 
surveys. For MicroSCOPE and GRACE Follow-On space missions, ONERA 
(France) has created a new MicroSTAR accelerometer with a noise of about 
10–13 g/

√
Hz, which is twice less compared to GOCE accelerometers (Lenoir 

et al. 2011). 
3. Exploration and industrial gravity measurement. GG application for mineral 

exploration was described above. This line will continue developing at an accel-
erated pace. Suffice it to say that the total length of GG survey lines increased 
by 20 times within 10 years (from 1999 to 2008) (Nerem et al. 1995).
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Table 5.4 Current state and stages of GG development 

Gravity 
gradiometer 

Designer Noise, Eo/
√
Hz Stage of development 

Rotating 
accelerometer 

Bell Aerospace (USA) 10 Completed 

Rotating 
dumbbell 

Hughes Aircraft (USA) 5 Completed 

Static 
Floated 

Draper Laboratory (USA) 1 Completed 

FTG Lockheed Martin (USA) 3–5 In operation 

3D FTG BellGeospace (USA) 5 In operation 

Falcon AGG Lockheed Martin (USA) 
BHP Billiton (Australia) 

3 In operation 

EGG ARKeX (UK) 7 Completed 

eFTG, FTGeX Lockheed Martin (USA) 
ARKeX (UK) 

2 Completed 

VK1 UWA/Rio Tinto 
(Australia) 
Gedex (Canada) 

1–2 Prototype 

HD-AGG Gedex (Canada) 1 Prototype 

Cryogenic University of 
Maryland/Oxford 
Instruments Device (USA) 

0.02 (estimate) Laboratory 

Electrostatic ESA/GOCE Alcatel/ONERA (France) 0.02 In operation 

Atom interferometer AOSense/Stanford 
University/JPL (USA) 

10–3 (estimate) Laboratory 

Two gravimeters Micro-g Solutions (USA) 20 Completed 

String Gravitec (UK) 5 Prototype 

MEMS Universityof Twente 
(Netherlands) 

0.1 (estimate) Project

4. Detection of underground structures. Within the Gravity Anomaly for Tunnel 
Exposure (GATE) program, DARPA signed a $4.8 million contract with Lock-
heed Martin to develop GG-based equipment to be installed onboard heli-
copters to detect underground structures, bunkers and fortifications of terrorists 
(Lockheed Martin 2010). 

5. Borehole gravity gradiometry. The demand for GG for borehole logging is asso-
ciated with monitoring of ore deposits using the new hydromining technology, 
which displaces the traditional mining methods using mines, pits, etc., due to 
significant economic, environmental, and social advantages. In this case, there 
is no alternative to gravity gradiometry (because of acoustic and electromag-
netic shielding of rather thick casing pipes), especially when it comes to the 
development of diamond bearing ores, which excludes the application of seismic 
exploration methods (Volfson et al. 1999; Neill 2010).
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6. Identification of internal configurations of closed containers. Since it is impos-
sible to shield the gravitational effects, GG is an ideal tool for determining the 
mass distribution within premises, carriages, containers, and so on. It can be 
applied to improve the security and customs inspection systems when looking 
for heavy items and substances, such as plutonium. It is possible to detect a 15 
cm3 high-density alloy in a shipping cargo container with a 1 Eo GG (Kirkendall 
et al. 2007). 

7. Early prediction of severe earthquakes. A properly adjusted GG can generate a 
detected response to the low-frequency microseisms and detect seismic centers 
at distances of up to 11 thousand km, thus offering great advantages over 
seismometers (Kalinnikov et al. 1992; Volfson et al. 2010). 

8. Development of new generation gravity gradiometers for measuring the third 
derivatives of the geopotential (Nerem et al. 1995). Such GGs are able to provide 
data for a more detailed gravity anomaly mapping and for determining the Earth’s 
structure. The devices for measuring the third derivatives can be constructed as a 
combination of GGs (by analogy with GG comprising two or more gravimeters) 
or may have an original design. 

5.2.7 Conclusions 

The state of the art in the development of gravity gradiometers used to measure the 
second derivatives of the geopotential has been discussed. Though the history of GG 
development is rather long, their onboard operation involves severe difficulties. In 
recent years, a breakthrough has been made in this technology, and several onboard 
GGs were created within 15 years, from 1980 to 1995. 

GG applications to mineral exploration and space missions have been described, 
their operation and test results have been discussed. It has been shown that design, 
manufacture and operation of GG are among the most complicated technologies in 
modern instrument engineering. Despite the impressive results obtained in gravity 
surveys and global modeling of the Earth gravity fields based on satellite data, gravity 
gradiometry still remains a unique and expensive method for measuring SDGP. So far 
only 11 gravity gradiometers have been manufactured for airborne gravity surveys 
(Zlotnikov 2011). 

The design of a tensor GG determining all the components of the SDGP tensor 
has been analyzed. Difficulties in reducing external inertial and thermal effects have 
been considered. 

GG designs based on atom interferometry and cold atoms have been discussed. 
Their merits have been described. It has been shown that they are the most promising 
devices for achieving the fantastic accuracies of about 10–4 Eo/

√
Hz. These gradiome-

ters are now passing laboratory tests, and their characteristics are still far from their 
potential. 

Prospects for the development of gravity gradiometry for various applications 
have been outlined.
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5.3 Current State and Outlook for the Development 
of Cold-Atom Gravimeters 

Modern absolute ballistic gravimeters (ABG) measure spatial positions of a moving 
mass using laser interferometers, the devices in which the change in the distance to 
an object is determined with an accuracy of a fraction of the light wavelength by the 
signal of laser light interference. 

The natural way of increasing the sensitivity and accuracy of the interferometer 
is to reduce the wavelength of the electromagnetic radiation used. However, the 
wavelengths of the visible light lie within a relatively narrow range between 400 and 
800 nm; then comes the ultraviolet light, which is followed by X-ray radiation. 
Though it is possible to create coherent radiation sources in these ranges (for example, 
see (Minogin 2010)), their implementation has been problematic so far. Yet, an 
alternative to an electromagnetic radiation interferometer does exist. As is known, any 
particles, including the atoms that make up the mass moving in a ballistic gravimeter, 
have wave properties and, accordingly, under certain conditions, they are able to 
interfere. The wavelength of a wavetrain (de Broglie wavelength) corresponding to 
a heavy particle is λ = h/mv, where h = 2πè is Planck’s constant (h = 6.62607 × 
10–34 J s), m is the particle mass, and v is the velocity. The lower is the atom velocity, 
the longer is the wavelength. Nevertheless, even for the atoms cooled to temperatures 
of the order of 10–3 K and, accordingly, having an average thermal velocity v ≈ 1m/s,  
the de Broglie wavelength is significantly smaller than the wavelength of the light: 
for example, for 87Rb atom, which is most often used in laser cooling experiments, 
it is 4.5 nm at a velocity of 1 m/s. 

In 1963, E.B. Aleksandrov demonstrated in his experiments that it is possible to 
observe interference of atomic states (Aleksandrov 1963). Nine years later, Yu.L. 
Sokolov built an interferometer of states of hydrogen atoms (Sokolov 1972). In 
1991, some new different schemes of atomic interferometers (AI) were successfully 
demonstrated. Diffraction and interference of helium atoms on slits cut in thin gold 
foil were carried out at the University of Konstanz (Germany) (Carnal and Mlynek 
1991); an interferometer on sodium atoms with a thermal velocity of about 103 m/s 
was built at Massachusetts Institute of Technology (MIT, USA) (Keith et al. 1991; 
Lenef et al. 1997). The novelty was that diffraction nanolattices with a period of 
100 nm were used as semitransparent “mirrors”. The first lattice split the beam into 
two beams; the second one turned the split beams, and the third one brought them 
together, resulting in interference of wavetrains that passed along different arms of 
the interferometer. Detection was carried out using a hot-wire detector (similar to 
that used in beam frequency standards). 

As will be shown below, depending on the configuration, AIs have inherent sensi-
tivity both to rotation and acceleration, and, accordingly, they can be used both as 
gyroscopes and accelerometers or gravimeters. The MIT interferometer, in which the 
atomic beam propagated in the horizontal plane, was tested as a gyroscope, wherein 
its sensitivity to rotation was 3 · 10–6 rad/s/√Hz or 0.004 °/

√
h.



282 Yu. Bolotin et al.

Though the innovative research showed significant potential of AIs, the epoch 
of thermal-atom AIs came to an end soon since novel interferometric schemes 
were developed at the same time using the latest methods of the light interaction 
with matter. It was in the same year, 1991, that new schemes were developed at 
Physikalisch-Technische Bundesanstalt (PTB)—the National Metrology Institute 
of Germany (Riehle et al. 1991), and Stanford University (USA) (Kasevich and 
Chu 1991). They used coherent laser beams as semitransparent and nontransparent 
mirrors. We cannot but recognize the beauty of the idea: while in a conventional 
laser interferometer, photons move between mirrors consisting of atoms; in AIs, the 
approach is just the opposite, i.e., atoms move between mirrors consisting of photons. 

Before proceeding to the physical methods used to create the interferometer-
gravimeter with free-falling cold atoms, let us formulate the basics of its operation 
algorithm: 

1. Preparation of an ensemble of atoms in a certain “internal” (e.g., hyperfine) state 
so that they are characterized by extremely small velocities and their uncertainty 
(laser trapping and cooling of atoms). 

2. Switching off the trapping and cooling fields and the beginning of free fall. Atoms 
can start falling at a zero vertical velocity, or they may have a low fixed velocity 
in the upward direction (“atomic fountain” configuration). 

3. Longitudinal splitting of an atomic cloud on a semitransparent laser “mirror”, 
i.e., a change in the momentum of half the atoms by 2Δk, whereΔk is the photon 
momentum. As will be shown later, such a change in the momentum is always 
accompanied by a change in the internal state of the atom, i.e., its transition from 
one hyperfine state to the other one or to a superposition of two states. 

4. Free fall over time T. 
5. Reflection of an atomic cloud on a laser “mirror”: a change in the momentum of 

the “slow” half of the atoms by + 2Δk, and the “fast” half by –2Δk accompanied 
by a change in their internal state. 

6. Free fall over time T. 
7. Recombination of an atomic cloud on a semitransparent laser “mirror”. 
8. Measurement of the phase, that is, of the relative number of atoms in each internal 

state. The end result is phase incursionΔϕ = keff ·g·T 2, where keff is the effective 
wave vector of the laser light forming “mirrors”. 

5.3.1 Basic Physical Principles of Cold-Atom Gravimeters 

Consider the basic physical principles of AIs in more detail; we assume here that the 
readers have some idea of the atom energy structure (for example, see Elyashevich 
2012). In what follows, we focus on alkali atoms with one electron in the outer shell. 
Such atoms have a similar energy structures: their ground state, i.e., the state with the 
lowest energy, is split into two so-called hyperfine states or sublevels (|1> and |2>) 
which differ in the projections of the electron angular momentum, or spin, on the 
direction of the nuclear momentum (Fig. 5.14). The spectroscopic notation for these
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levels for the 87Rb atom is |52S1/2, F  = 1> and |52S1/2, F = 2>, respectively; here, F 
is the total momentum of the atom representing the vector sum of the electronic and 
nuclear moments. 

A significant feature of these states is that the difference in their energies is 
small compared with both the thermal energy of the atom and the energies of optical 
transitions (frequency ω0 

12 of transition |1>↔ |2> lies in the HF or UHF (MW) range, 
and for 87Rb, it is 6834.681 MHz). Their lifetimes are very long and can exceed tens 
of seconds for an isolated atom; therefore, the slow relaxation that causes transitions 
between these states is neglected in the subsequent discussion. 

For the tasks of optical pumping and cooling of atoms, it is also essential that 
each hyperfine level in a magnetic field splits into 2F + 1 Zeeman sublevels mF = 
–F...+F, the energy gap between which, in the first approximation, is proportional 
to the field strength. 

In addition to the ground state, an atom has an infinite number of excited states; 
special selection rules are used to determine the possibility of transition from one 
state to another under the effect of the resonant light. Assume that |3> is the nearest 
excited state of an alkali atom (for 87Rb, this state is |52P1/2>); frequencies ω0 

13 and 
ω0 

23 of |1> ↔ |3> and |2> ↔ |3> transitions lie in the optical range, and the typical 
lifetime of an atom in state |3> is 30 ns. From states |1> and |2>, the atom can be 
transferred to state |3> by applying the resonant light with a frequency of ω13 ≈ ω0 

13 

and/or ω23 ≈ ω0 
23. 

If an atom in state |1> is affected by the light with a frequency of ω13, it can 
absorb one photon and transit to excited state |3>, from where it will transit very 
quickly (instantly as compared with the lifetime of the ground state) to one of the 
lower states, i. e., |1>, |2>. This process is accompanied by spontaneous emission 
of a photon in an arbitrary direction (Fig. 5.14a). If the excitation cycles with the 
frequency ω13 are repeated many times, all atoms will eventually gather in state |2>. 
This process is referred to as optical pumping to the level |2>. Similarly, it is possible 
to bring atoms from |2> into |1> by exposing them to the light with frequency ω23. 
Thus, resonant radiation can be used to “prepare” atoms in states |1> or |2>. 

During a cycle that comprises excitation and spontaneous emission, the 
momentum of an atom will change first by one momentum of an absorbed photon

Fig. 5.14 Simplified energy 
structure of an alkali atom 
and its interaction with the 
resonant light: a forced 
absorption and spontaneous 
emission; b Raman 
excitation 
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directed along the axis of the light propagation and then by one momentum of a 
spontaneously emitted photon directed arbitrarily. Obviously, if the momentum of 
an atom is to be changed in doses, spontaneous light emission must be completely 
removed from the system. This is possible by using the so-called Raman excitation, 
that is, simultaneous excitation of an atom by two beams, the frequency difference 
of which ω12 = ω13 – ω23 is equal to the intrinsic frequency ω0 

12 of the transition 
between the levels |1> and |2> (Fig. 5.14b). The simultaneous effect of these beams 
can be considered as a single process of the stimulated absorption of radiation with 
frequency ω13 and forced emission with the second frequency ω23 or vice versa, 
depending on the original state of the atom. 

In contrast to spontaneous emission, under the action of Raman excitation, an 
atomic momentum changes strictly by the value Δkeff , where k1 and k2 are the wave 
vectors of the Raman beams, and keff= k1 – k2. In the case when the beams are 
directed towards each other, Δkeff = Δ(k1 + k2) ≈ 2Δk1. Choosing a rather large 
common detuning Δ = ω13 – ω0 

13 = ω23 – ω0 
23 of Raman beam frequencies from 

the frequencies of the corresponding optical transitions (see Fig. 5.14b), it is possible 
to minimize the role played by the processes of ordinary single-photon excitation 
and the processes of spontaneous emission associated with them as compared with 
Raman excitation processes. 

Such a system can be considered a two-level system with resonant frequency 
ω0 

12 of the transition between levels |1> and |2>. The pair of Raman beams in this 
representation is regarded as a single light wave with frequency ω12 and the wave 
vector keff . 

Consider the probability of transition of such a quasi-two-level system “prepared” 
in state |1> to state |2> under the action of the Raman light (Fig. 5.15). After the 
“effective” light with frequency ω12 is switched on at the moment of time t = 0, 
the system populations start oscillating with a characteristic frequency ΩR, which is 
determined by the energy of interaction of the resonant light with a dipole moment 
d of the transition and is referred to as the Rabi frequency: ΩR = (d·E)/è, where 
E is the electric field intensity. If the light is switched off at a moment of time τ 
such that ΩR·τ = π (so-called π pulse), then almost all the atoms (or, in the absence 
of relaxation, all the atoms) will be transferred to state |2> and take an additional 
momentum 2Δk. If ΩR·τ = π/2 (so-called π/2 pulse), then one might expect that 
half of the atoms shall be in state |2> and take an additional momentum 2Δk, and 
the state of the second half shall not change at all.

However, quantum mechanics offers a different interpretation of this event, 
namely: under the action of the π/2 pulse, each atom finds itself in a coherent super-
position of states |1> and |2> and each atom moves simultaneously along two trajec-
tories: with the original and modified values of the momentum and, accordingly, 
velocity. Here, the difference between the quantum-mechanical interpretation and 
the classical one is that, from the standpoint of quantum mechanics, these two parts 
of the atomic beam can interfere with each other. It should be noted that the so-called 
π/2 pulse (the time interval of the resonant light with duration τ = (π/2)/ΩR) acts 
on atoms in the same way as a semitransparent mirror acts on photons.
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Fig. 5.15 Rabi oscillations: 
the dynamics of the 
populations of a two-level 
system when the resonant 
light is switched on

A simplest AI is built according to the scheme of the Mach–Zehnder interfer-
ometer (Fig. 5.16): an atomic cloud is split by π/2 pulse A into parts a and b that 
have different vertical projections of velocity. After the trajectories a and b diverge 
at a sufficient distance, they are subjected to π-pulse B which causes an “exchange” 
of states: the part of the atoms that had an additional pulse 2Δk will lose it and 
vice versa. Diverging trajectories begin to converge; the second π/2 pulse C brings 
trajectories together. In its impact zone (as shown in the inset in Fig. 5.16b), each of 
the two beams a and b splits into two, the halves of the beams merge and two atomic 
beams c and d go out of the interferometer, each containing atoms that have passed 
along both of its arms. 

Note the factor the significance of which was first realized by the French physicist 
Borde (1989): in the AI scheme described above, there is a one-to-one relation 
between the “external” state of an atom, that is, the value of its momentum, and its 
“internal” state, which therefore may be used as a kind of a “label” for the external 
state (the so-called state labeling method). In particular, the interference of de Broglie 
waves shows itself in the form of oscillations of the populations of states |1> and |2> 
in beams c and d, which makes it possible to detect the interference pattern using 
high-performance optical methods.

Fig. 5.16 a Optical Mach–Zehnder interferometer; b atomic interferometer: the shaded areas are 
Raman beams; the dotted lines are trajectories of atoms in the absence of gravity; the solid lines are 
the trajectories of atoms in the gravitational field 



286 Yu. Bolotin et al.

5.3.2 Sensitivity and Accuracy of the Cold-Atom Gravimeter 

Hereinafter, let us distinguish between the absolute accuracy and the relative sensi-
tivity (also known as resolution, variational sensitivity, or just sensitivity) of measure-
ments. In accordance with the standards adopted in metrology (for example, see RMG 
29-99 GSI), accuracy is a characteristic of the measurement quality that shows how 
close to zero the measurement error is, and relative sensitivity is a characteristic 
determined by the smallest change in the measured value which can be recorded 
with a certain device. Accordingly, it is conventional to divide measuring devices 
into two classes: absolute devices, that is, devices whose error (including systematic 
errors) does not exceed a certain level, and non-absolute devices. The latter often 
have high variational sensitivity and are referred to as variometers. 

In physics, a distinction can also be made between the concepts of accuracy and 
absolute accuracy. In this case, absoluteness is understood as the ability to take 
measurements based only on fundamental constants and on the variables that are 
measured using fundamental constants, such as frequency. It may also be expressed 
as follows: absolute measurement does not require taking into account parameters 
that depend on the design of the measuring device and need to be calibrated. As can 
be seen later, ballistic AIs belong to the class of absolute devices in exactly this strict 
sense. 

An AI signal, i.e., a phase difference in the two arms of the interferometer, is the 
sum of two terms (de Angelis et al. 2009): the first one is the inherent de Broglie 
wave phase difference. In the case of the free fall of atoms in a uniform field, it is 
equal to zero. The second term, which is the actual AI signal, is the sum Δϕ of 
phase differences that appear (and are “imprinted” in atoms) when interacting with 
the light and are equal to the local (i.e., measured directly at the points of interaction 
with atoms) light wave phases. The position of atoms in relation to the light wave in 
the gravitational field varies according to the law: 

z(t) = gt2 /2. (5.3.1) 

Thus, the laser light phase 

fi = kef  f  · z(ti ), (5.3.2) 

“imprinted” in the atoms during the pulses i = A, B, C, is summed up into the total 
phase incursion:

Δϕ = φA − 2φB + φC (5.3.3) 

Taking the time of the first pulse as a reference and designating the time between 
pulses as T, we obtain: φA = 0, φB = keff ·gT2/2, and φC = keff ·g (2T)2/2. Thus,

Δϕ = kef  f  · g · T 2 , (5.3.4)
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and, at the output of the interferometer, the population of state |2>, with regard to 
the total number of atoms, is given as 

N2 = 1/2[1 − cos(Δϕ)]= 1/2
[
1 − cos(kef  f  · g · T 2 )

]
. (5.3.5) 

The reader may notice that formula (5.3.4) includes the effective wave vector of 
the Raman light rather than the de Broglie wavelength of atoms; therefore, it is the 
Raman wavelength that determines the period of the interference pattern. But, on the 
other hand, formula (5.3.4) does not include the terms that describe the position of the 
atomic mass (of the incident mirror in the classical gravimeter) and the perturbations 
associated with them are not included in (5.3.4). This is due to the fact that the de 
Broglie wavelength is substantially shorter than the wavelength of the light under 
these conditions. 

In general, the ultimate spatial sensitivity of the interferometer can be estimated by 
dividing the period of the interference pattern by the signal-to-noise ratio. Consid-
ering that the maximum value of the signal-to-noise ratio when measuring on an 
incoherent ensemble of N = N1 + N2 atoms is 

√
N (quantum atomic projection 

noise), for one measurement with an AI, we obtain:

Δgmin ≈ 2π/ (N 1/2 · kef  f  · T 2 ) = (l/2) · N−1/2 · T −2 . (5.3.6) 

By substituting N = 108, λ = 0.8 · 10–6, T = 1 s, we obtainΔgmin ≈ 4 · 10–11 m/s2 

= 4 nGal. Thus, the potential sensitivity of AIs is extremely high, but it is difficult to 
implement from the technical standpoint, which makes it impossible to go beyond 
hundreds of nGal so far. The difficulties are primarily associated with the formation of 
a dense homogeneous atomic cloud and particularly with the generation of Raman 
beams with perfectly flat and stable fronts, because, as follows from the above, 
error δϕ of the Raman wave phase is directly summed with signal (5.3.4) of the  
interferometer. 

In addition to the limitations of the AI sensitivity, there are some factors that lead 
to its systematic errors. Formulas (5.3.4)–(5.3.5) are obtained under the assumption 
that the interferometer is fixed and its actual area S, bounded by trajectories a and 
b, is equal to zero. If this is not the case, AI obtains a rotational sensitivity which 
makes it possible to create highly sensitive gyros based on them. In the general case, 
the phase incursion in AIs is expressed by the formula:

Δϕ = 4πmΩ · S + kef  f  × gT−kef  f  (Ω × g) · T 3 . (5.3.7) 

Here, S is a vector that is numerically equal to the interferometer area and directed 
perpendicular to the AI plane; Ω is a pseudovector of angular velocity; the first term 
is responsible for the sensitivity of the device to rotation. The second term describes 
gravimetric sensitivity. The third member is a cross term. It zeroes only when there 
is no rotation or the axis of rotation is parallel to the gravity vector, i.e., at the poles 
of the planet.
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The contribution of the second term is the main source of errors in AI-based 
gyroscopes; its influence is zeroed by launching two atomic beams towards each 
other and subtracting their signals. The first term may contribute to the gravimeter 
error in a similar way; to prevent this, the wave vectors of the Raman beams must be 
perfectly parallel to the gravity vector, and the atoms in the cloud must on average 
have a zero horizontal velocity projection. The third term is a source of errors both 
in gyroscopes and gravimeters. It cannot be compensated for but can be taken into 
account. At the equator, at T = 1 s, it gives a relative measurement error of 0.7 · 10–5 
or 7 mGal. 

The gravity gradient is another source of systematic errors in the interferometer. 
On the Earth’s surface, it is ~3 · 10–6 s–2; its presence leads to a relative measurement 
error at the level of 3 · 10–8 or 30 nGal. 

In this section it was also assumed that Raman pulses are short as compared 
with the time of flight through the interferometer and that the resonant frequency 
of the falling atoms does not change as they accelerate, i.e., the Doppler effect was 
neglected. In (Kasevich and Chu 1991), it is mentioned that the use of a π/2–π–π/2 
sequence of pulses ensures that the total phase shift does not depend on the initial 
velocity; therefore, the phase shift is the same for all atoms of the atomic cloud. 
Nevertheless, any difference in the vertical projection of the velocity of an atom 
from the average value leads to a decrease in the efficiency of its interaction with 
Raman beams, and the difference of the horizontal projection of velocity from zero 
leads to spreading of the atomic cloud. Both deteriorate the signal contrast. In this 
regard, creation of a deep-cooling system is a prerequisite for the creation of an AI. 

5.3.3 Laser Cooling of Atoms 

S. Chu, C. Cohen-Tannoudji and W.D. Phillips received the Nobel Prize in 1997 for 
their work on atom cooling with the laser light (see, e.g., Phillips 1998). However, 
the ideas on which the laser cooling methods are based were put forward by Hänsch 
and Schawlow (1975) and Letokhov and Minogin (1981). Successful experiments on 
controlling the velocity of atoms using the light were carried out by A.M. Shalagin, 
V.P. Chebotaev, and others. 

The most probable velocity of atoms at room temperature is 200–500 m/s. If a 
chamber containing atoms is irradiated with the light, the frequency ω of which is 
slightly lower than the frequency of one of the resonant transitions |1> ↔ |3> or 
|2> ↔|3> (see Fig. 5.14), the probability of photon absorption by an atom will be 
low. But if an atom moves with velocity v towards the laser beam, then, due to the 
Doppler effect, frequency ω’ of the light perceived by the atom increases according 
to the following formula: 

ω' = ω[1 − (v/c) × cos(α)], (5.3.8)
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where c is the velocity of the light, α is the angle between the direction of motion of 
the atom and the light beam. Thus, the frequency detuning of the light decreases for 
such an atom and the probability that it will absorb a photon increases. Absorbing a 
photon, an atom receives a momentum in the direction opposite to the direction of its 
motion, after which it emits a photon in an arbitrary direction, as shown in Fig. 5.14a. 
Thus, if atoms are affected by the low-frequency detuned light coming from all sides 
at the same time, they can be slowed down and cooled to very low temperatures. If 
the cooling beams interact with the transition |1> ↔ |3>, all the atoms will gather at 
the level |2> after several cycles of excitation and decay, and vice versa. To prevent 
this process, the cooling beams are mixed with so-called repumping beams tuned to 
resonance with the transition |2> ↔ |3>. 

Such a cooling method is limited by the fact that the absorption line of an atom is 
not infinitely narrow: it is limited by the lifetime of the excited state and is approx-
imately 5 MHz; thus, the atom does not “distinguish” the detuning values of the 
laser light that are significantly smaller than this value. If we use formula (5.3.8) 
to transform the frequency detuning into the atom velocity, and the velocity into 
temperature, the limit of the Doppler cooling method will be ~2 · 10–4 K. Since the 
motion of atoms in the deceleration zone is described by the equations similar to the 
viscosity equation, this cooling scheme is referred to as optical molasses. The optical 
molasses slows down the movement of atoms but does not hold them in place. Due to 
gravity and residual velocities of atoms, the lifetime of atoms in the optical molasses 
does not exceed several tens of milliseconds. 

In the 1980s, Phillips (1998) suggested combining laser cooling with laser trapping 
of atoms in a magneto-optical trap (MOT). The MOT uses the above-mentioned effect 
of splitting the energy levels of atoms in a magnetic field (the Zeeman effect). 

The atoms being cooled (Fig. 5.17) are placed between the coils of the so-called 
anti-Hemholtz configuration that create a strong nonuniform magnetic field B such 
that the minimum of the field modulus (B= 0) is in the center of the trap. The distance 
between the Zeeman sublevels is proportional to the magnetic field induction and 
is also zero at the center of the trap; the atomic magnetic sublevels diverge in the 
shape of a fan towards the edges of the trap. As the distance from the center of the 
trap increases, the frequencies of the optical transitions for which the Zeeman shift 
is negative decrease so much that the laser light becomes resonant with it and the 
atoms begin interacting with it intensively.

By choosing the polarization of the laser beams (circular arrows in Fig. 5.17), it 
is possible to ensure that an atom flying up to the edge of the trap will interact with 
the beam that will give it a pulse directed towards the center of the trap. In such a 
pattern, all atoms move to the minimum field zone and accumulate in a dense cloud 
with a typical diameter of several tenths of a millimeter. 

The first experiments on cooling of atoms in a MOT showed that an ensemble of 
atoms could be cooled to a temperature that was substantially lower than the Doppler 
limit (tens and even less than ten microkelvins). In 1989, J. Dalibard and C. Cohen-
Tannoudji explained that result by creating the theory of Sisyphus cooling (Dalibard 
and Cohen-Tannoudji 1989). This effect can be briefly described as follows: counter-
propagating laser beams of different polarizations form a standing wave in the trap.
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Fig. 5.17 Schematic 
diagram of a 
magneto-optical trap. Two 
coils carrying a current form 
a spherical magnetic 
quadrupole. The optical field 
is generated by three pairs of 
counter-propagating, 
circularly polarized laser 
beams

This wave spatially “modulates” the energy of an “atom + light field” system by 
replacing the flat levels of the system with alternating “ups” and “downs”. When an 
atom moves along the trap, it travels up to the top of the potential, thus losing kinetic 
energy, then it falls down. It was found that an atom is more likely to interact with 
a photon when it is at the top of the potential; therefore, as a result of continuous 
repetition of this process, the atom is cooled significantly below the Doppler limit. 

Subsequently, new limitations on atom cooling were discovered that were associ-
ated with stochasticity of the process of emitting photons by an atom and, hence, with 
unpredictability of the momentum recoiled by an atom. The corresponding “recoil” 
limit is a few microkelvins. Various methods have been developed to overcome this 
limit, among which are Raman cooling, cooling in a strong magnetic field, polar-
ization gradient, evaporation method, etc. As a result, temperatures of the order of 
nanokelvin and even hundreds of picokelvins were achieved, which correspond to 
the atom velocities of less than 1 mm/s. 

5.3.4 Physical Design of the Atomic 
Interferometer-Gravimeter 

In the gravimetric configuration, an AI is a vertical vacuum chamber with transparent 
windows for cooling, Raman, and detecting beams. 

In the standard AI configuration (Fig. 5.18a), the MOT chamber is located at the 
top. A cloud of atoms gathers in its center, after which the cooling beams and the 
magnetic fields are deactivated and the atoms start falling freely. At the beginning 
and at the end of their fall, they are subjected to the Raman π/2 pulse; and when 
they reach the midpoint, they are subjected to π pulse. The “fountain” configuration 
(Fig. 5.18b) is different in that the MOT is at the bottom and, at the end of the 
cooling process, the atoms “shoot” upward. For this purpose, the frequency of the
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beams directed downwards is detuned relative to the beams directed upwards, so that 
the standing wave formed by these beams begins to move upwards at a velocity of 
several meters per second. In so doing, the cooling process continues, but now in a 
moving coordinate system, so that the width of the atomic velocity distribution does 
not grow. 

After cooling, the atoms are prepared in a certain internal state (e.g., |52S1/2, F 
= 1, mF = 0>). This is achieved by deactivation of cooling and repumping beams 
in a certain sequence. Besides, additional beams are used to “blow” away all atoms 
except those that are in the desired state. All the lasers used should be stabilized to 
atomic transitions or frequency-locked to the stabilized lasers. All manipulations with 
their frequencies and amplitudes are performed using acoustic and electro-optical 
modulators. 

The interaction of atoms with π pulse in this configuration takes place at the upper 
point of the trajectory; the detection zone can be located either above or below the 
MOT. Special requirements are imposed on lasers that generate Raman frequencies: 
the wave fronts generated by them must be stable relative to each other with a sub-
angstrom error. For this, their differential frequency is locked to the frequency of an 
ultra-stable generator (atomic frequency standard) having a frequency of ~6834 MHz. 
A typical width of the beat spectrum signal of two Raman lasers is 10 kHz with 
a power of 0.5 W. In order to compensate for the Doppler shift of the resonant 
frequency of accelerated atoms, the differential frequency should vary linearly with 
time. When the frequency rate exactly corresponds to the acceleration of atoms, the 
phase incursion of the AI is equal to zero. 

The interferometer signal is detected by optical methods. First, the number of 
atoms in one hyperfine state (for example, |2>) is measured, then all atoms in 
state |1> are transferred to state |2> by the π pulse and measurement is repeated,

Fig. 5.18 a AI-based gravimeter in the standard configuration; b AI-based gravimeter in the 
“atomic fountain” configuration. (1) MOT; (2) ballistic tube; (3) detection chamber. Inclined, vertical 
and horizontal beams are cooling, Raman and detecting beams, correspondingly 
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following which, the background level of luminescence is measured. The procedure 
for measuring the number of atoms is based on the use of so-called cyclic transitions, 
i.e., transitions to the excited states from which spontaneous decay is possible only to 
the initial state. Exciting an atom repeatedly during a cyclic transition and recording 
the luminescence during spontaneous decay, it is possible to record many thousands 
of photons emitted by a single atom. This method allows the amplitude of the signals 
to be increased so that the level of atomic projection noise begins to exceed the level 
of shot noise of the light, thus ensuring the maximum sensitivity of the AI. 

5.3.5 Modern Designs of Atomic Interferometers 

To date, there are several dozen cold-atom gravimeters in the world. An example of 
AI for space applications is the interferometer based on two rubidium isotopes (85Rb 
and 87Rb) built as a result of cooperation among 16 laboratories from 7 European 
countries (Schuldt et al. 2015). In this device, designed to work on a satellite, the 
working atoms are cooled to the state of Bose–Einstein condensate (see Sect. 5.3.7). 
The use of two working substances makes it possible not only to eliminate some 
systematic errors of the AIs but also conduct various scientific experiments to study 
fundamental laws, such as the equivalence law. Semiconductor lasers with external 
cavities, laser amplifiers, acoustic and electro-optical modulators can be controlled 
remotely from the Earth. Bose–Einstein condensate takes 9 s to prepare; the result 
is na ≈ 106 atoms of each substance at a temperature of 70 pK. The atom sampling 
time is 10 s with a travel length of 12 cm. The surfaces of the reflecting mirrors are 
made with an accuracy of λ/50. The whole device comprises 9 units, the total weight 
of which is 221 kg, power consumption—608 W, and the volume—470 l. 

Consider the setup assembled at the Wuhan University, China, as an example of 
a modern stationary gravimeter (Hu et al. 2013; Zhou et al. 2015). In this setup, the 
atoms are cooled down sequentially in two traps, which allows obtaining a cloud of 
na ≈ 3 · 109 atoms cooled down to 7 μK. These atoms are shot upwards at a velocity 
of 3.83 m/s, which corresponds to a distance of 0.75 m from the highest point of 
the trajectory. When the atoms approach the interferometer inlet, a speed-selective 
π-pulse is activated; it “cuts out” a relatively small fraction of atoms (~5 · 107) 
that have a longitudinal temperature of 300 nK from the velocity distribution and 
transfers them to the initial state |52S1/2, F = 1, mF = 0>, after which a standard 
π/2–π–π/2 pulse sequence affects the atoms. The gravimeter sensitivity shown in 
those experiments was 4.2 μGal/

√
Hz; such devices reach the resolution of about 

0.1 μGal at an averaging time of 1000 s or more.
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5.3.6 Gravimeter Based on Cold Atoms Trapped in an Optical 
Dipole Trap 

We have not yet considered cold-atom gravimeters whose schemes are fundamentally 
different from ballistic gravimeters, such as gravimeters on cold atoms trapped in an 
optical dipole trap (Poli et al. 2011; Beaufils et al. 2011; Zhou et al. 2013). In their 
simplest form, these devices are analogs of the classic spring gravimeter, as well as of 
the superconducting levitating-mass gravimeter. As distinct from these instruments 
built on the principles of classical mechanics and, therefore, lacking the property of 
absolute accuracy, the cold atom gravimeter built at the University of Florence (Italy) 
has demonstrated (Poli et al. 2011) the ability to measure g with a relative error of 
10–7, which is also made possible owing to the use of pure quantum effects. 

The design philosophy principles of the gravimeter based on cold atoms trapped 
in an optical dipole trap can be briefly described as follows: atoms are subjected to 
multi-stage laser cooling to a temperature of <1 μK. In addition to the usual cooling 
fields, atoms are affected by the field of a strong standing wave formed by two vertical 
beams of a solid-state laser with a power of about 1 W. The light wavelength of this 
laser is detuned very far (hundreds of nanometers) from the resonant frequencies of 
atomic transitions; therefore, this light is not absorbed by atoms and does not affect 
the cooling processes. But as the cooling fields are deactivated, part of the atoms is 
trapped, due to the nonzero polarizability of their electron shells, in the antinodes of 
the standing wave (Fig. 5.19a). 

According to the Bloch theorem (Bloch 1928), the wave functions of such a system 
are described by a quasiperiodic relation that has the same period as the lattice. The 
gravitational contribution to the interaction potential of an atom with a standing 
wave results in a situation where the potentials of atoms in neighboring antinodes

Fig. 5.19 a A cloud of cold atoms distributed over the antinodes of a standing light wave; b poten-
tials and lower energy levels corresponding to different antinodes of a light wave (Wannier–Stark 
ladder) 
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spaced by λ/2, differ by exactly ΔE = mgλ/2 (the so-called Wannier–Stark ladder, 
Fig. 5.19b) and, thus, the system has a resonant frequency (Bloch frequency) equal 
to 

ωB = ΔE/ = mgλ/2. (5.3.9) 

If such a system is subjected to perturbation with a frequency of ω = ωB, its 
transitions from one state to another one are initiated, i.e., the transitions of atoms to 
neighboring antinodes of a standing wave. This process can be recorded by measuring 
the vertical size of the atomic cloud: when it enters the resonance, it increases. The 
value of g can be calculated using formula (5.3.9). In (Poli et al. 2011), to excite 
Bloch resonances, the authors used periodic modulation of the depth of the dipole trap 
potential at the fifth harmonic of the Bloch frequency ω = 5ωB, which corresponds to 
the transition of an atom through four antinodes. The relative measurement error of 
140 ppb (parts per billion) is due to the instability of the wavelength of a high-power 
laser. According to the authors, stabilization of the laser will reduce the error by two 
orders of magnitude. 

In (Beaufils et al. 2011; Zhou et al. 2013), the scheme described above was comple-
mented with Raman beams that transfer atoms into coherent superpositions of states 
distributed over different antinodes of a standing wave and then bring them together 
again. In essence, the setup is an AI, in which separation of atoms by trajectories 
is replaced by their distribution over the antinodes of the standing wave, and the 
introduction of Raman beams allows the state labeling method (see Sect. 5.3.2) to  
be used to detect the interference signal of atoms and thereby increase sensitivity. 
In this case, as in the previous work, the signal is modulated at the Bloch frequency 
and its harmonics. However, in (Zhou et al. 2013), the sensitivity and the accuracy 
were limited at the level of Δg/g ≈ 10–5 by a small number of atoms, na ≈ 4 · 104, 
remaining in the optical dipole trap after their interaction with Raman pulses. A 
natural way to improve the characteristics of such a system is to increase the number 
of atoms cooled in a MOT and trapped in a dipole trap. 

5.3.7 Outlook for the Development of Cold-Atom Gravimeters 

The sensitivity of AIs is limited not only by technical factors, such as the level of 
vibrations, the uniformity of magnetic and electric fields in the path of the interfer-
ometer, the stability of the wave fronts of Raman beams, but also by fundamental 
factors, among which the number of simultaneously cooled atoms (na = 107–109 in 
ballistic schemes and na = 104–106 in optical dipole traps). These values are 8–12 
orders of magnitude smaller than the number of photons nph usually recorded in 1 s 
in an optical interferometer (OI). Thus, the limiting signal-to-noise ratio in AIs in√

nph/na = 104–106 is lower than that in OIs. However, such a great advantage of the 
OI is, firstly, not fully used because of the limitations inherent in the OI itself and, 
secondly, it is partially compensated by the advantages of the AI that were discussed
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above, so that today, the sensitivity of AI-based ballistic gravimeters is not inferior 
to the classic counterparts. Nevertheless, a further increase in sensitivity will require 
the use of fundamentally new methods at some point. Below is the list of the most 
promising lines of research as we see it at present. 

1. Using Bose–Einstein condensate. Such a condensate is an ensemble of atoms 
cooled to such an extent that their wave functions overlap and all atoms coalesce 
into a single quantum mechanical entity. A great number of experiments have 
already been conducted on separation and mixing of Bose–Einstein condensate, 
as well as on the interference of parts of one or more condensates prepared 
independently, e.g., the AI for space applications described in Sect. 5.3.5 (Schuldt 
et al. 2015). 

2. Quantum non-demolition measurement. Quantum mechanics has limitations 
on the accuracy with which the product of noncommuting quantities can be 
measured. This means that in each pair of such quantities, the measurement uncer-
tainty of one quantity can be reduced by increasing the measurement uncertainty 
of the second one. In the case of AI, such quantities are amplitude and phase. 
Earlier, methods for reducing phase uncertainty by increasing amplitude uncer-
tainty were developed for laser cooling schemes (for example, see (Oblak et al. 
2005). In the limit, for measurements on N atoms, this method allows for the 
signal-to-noise ratio increase from 

√
N to N. 

3. Large momentum transfer. The effect of the Raman light causes a change in 
the atom momentum by 2Δk, i.e., by two photon momentums. Multi-photon 
excitation methods provide multifold increase of one-time momentum transfer. 
Thus, if we choose Raman frequency ω12 so that ω12 = ω0 

12/3, the atom will be 
able to absorb no more and no less than three pairs of Raman photons at a time. 
Thus, each π pulse will change the photon momentum by 6Δk. Applying three 
π-pulses to atoms instead of one, it is possible to increase the velocity separation 
in the interferometer to 18Δk. To date, the transfer of 102 photon momentums 
to an atom has been successfully implemented (Chiow et al. 2011). 

5.3.8 Conclusions 

Several versions of cold-atom gravimeters have been created so far, the most accu-
rate and sensitive of which use the de Broglie interference effects. In particular, 
gravimeters-interferometers on free-falling cold atoms are counterparts of classical 
devices, except for the fact that they use a cloud of cold atoms as a falling mass, 
and the signal is the result of interference of particles that followed two different 
time-space trajectories. They inherited the absoluteness of measurements from clas-
sical ABGs, the feature that significantly distinguishes them from other modern 
promising schemes, such as the superconducting levitating-mass gravimeter. At the 
same time, AI-based gravimeters are currently superior to classical ballistic gravime-
ters in sensitivity, which continues to increase each year. For example, in (Gillot et al. 
2014), the authors present the results of comparative testing of the AI developed in
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the laboratory LNE-SYRTE (Paris) and a classical Micro-g LaCoste FG5-X ABG 
(Luxembourg). It is shown that an error of 1 μGal is achieved by averaging FG5-X 
readings over 86 s, while the AI requires only 36 s. Also, gravimeters based on cold 
atoms trapped in an optical dipole trap are currently under development. They are 
expected to surpass classical devices in their basic metrological characteristics in 
future. Taking into account the fact that AI-based gravimeters are in principle free 
from many errors to which their classical counterparts are subject, their development 
is undoubtedly justified despite their high cost and sophistication. 
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Using a large amount of survey data, EGM2008 is compared with marine gravity 
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Introduction 
This chapter focuses on modern models of the Earth’s gravity field (EGF), estimation 
of their accuracy, and use in applied problems. The Chapter contains four sections. 

Section 6.1 discusses the estimation of accuracy of the EGF models. It describes 
the main approaches, including those based on the use of a priori and a posteriori 
accuracy estimates. The role of airborne EGF data is emphasized, which are espe-
cially useful in independent validation of the EGF models in the areas where other 
methods are barely applicable, such as the Arctic and Antarctic. Gravimetric coverage 
of the Earth areas is considered. The new results of experimental comparison of 
airborne gravimetric survey data and the modern global EGF models for the Russian 
Federation and the surrounding seas are analyzed. 

Section 6.2 covers the monitoring of the quality of relative gravity measurements 
at sea with account for the global models. Using a large amount of survey data, 
EGM2008 is compared with marine gravity measurements by calculating the resid-
uals. It is shown that the field harmonics with a wavelength over 50–100 km are repro-
duced by the model without distortions. The shorter the wavelength of the harmonics 
is, the more distorted they are; and the harmonics with a wavelength below 20 km 
are indistinguishable from noise. The obtained results enable the gravity model to be 
used to suppress the outliers in sensor output, refine the gravimeter zero-point drift 
and tie the measurements to the absolute gravity value without explicit reference 
measurements. These ideas have been validated in the field surveys in the Indian 
Ocean, and some examples are presented in this section. 

Section 6.3 is devoted to the widespread map-aided navigation method using 
geophysical fields, a typical representative of which is the gravity field. The section 
discusses the current development of map-aided navigation algorithms, reviews and 
compares the filtering algorithms used for solving the navigation problem within 
the Bayesian framework. It is noted that with this framework, stochastic filtering 
methods traditionally used in navigation data processing can be applied, which help 
not only to design the algorithms, but also to correctly analyze their accuracy. 

Section 6.4 focuses on the efficiency of EGF data use for navigation purposes. The 
field of deflections of the vertical (DOV) and the second derivatives of the perturbing 
potential are taken as examples to analyze the navigation informativity of the Earth’s 
gravity field in the Sea of Okhotsk, using the EGM2008 global geopotential model 
to degree 2190. 

6.1 Estimation of Accuracy of Modern Earth’s Gravity 
Field Models 

In a wide range of EGF-related problems in navigation, geodesy, and geophysics, 
the field data are specified using mathematical models (Avsyuk et al. 2010). The 
requirements for the model accuracy grow with the requirements for the accuracy 
of solutions to these problems. One of the widely used methods to estimate EGF
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model accuracy is based on comparison with the reference data not used in the 
model development [GOST 18.101–76]. Over the past 20 years, the geoid heights 
obtained by satellite leveling have traditionally been used as the reference data. 
However, the effective use of this approach requires a sufficiently dense grid of 
leveling stations, which is not always available because, among other things, this 
estimation method can be only applied on land. For this reason, in recent years, 
as the airborne gravity surveys are becoming more widespread and accurate, the 
feasibility of EGF model accuracy estimation based on airborne gravity has been 
studied thoroughly (Nepoklonov 1998). This primarily refers to the areas where other 
methods for independent validation of EGF models are barely applicable, such as 
the Arctic and Antarctic. This section analyzes the modern approaches to estimating 
the accuracy of EGF models. The major a priori and a posteriori estimation methods 
are considered. The contribution of new space geodesy methods to improving the 
accuracy characteristics of global EGF models is noted. New estimates of the EGF 
models’ accuracy are presented, based on the comparison of model gravity anomalies 
(GA) with airborne gravity survey data in the Arctic. Due to the need to shift to 
satellite leveling technology, special consideration is given to a posteriori estimation 
of the accuracy of global and regional EGF models based on geoid heights. Actual 
data are provided, which characterize the accuracy of modern regional and national 
digital models of geoid height, including the geoid models for the territory of Russia. 

Considering the strategic importance of the Arctic regions, a special focus is 
made on a comparative study of modern global EGF models for high-latitude areas, 
including several Russian models. 

Global models based on the expansion of geopotential in spherical harmonics 
(hereinafter referred to as global EGF models) are widely used for EGF description. 
Another widespread class of EGF models includes digital (grid) models in the form of 
an ordered set of discrete field values at the nodes of a uniform grid of meridians and 
parallels. Such models are used for describing the EGF on both global and regional 
(national) scales. Digital EGF models are widely applied because the method of 
spherical harmonics does not always meet the modern requirements for accuracy and 
detail in determining the EGF parameters. They are also computationally efficient 
and easy to implement. Detailed digital geoid height models (DGHM) in continental 
areas, based on gravimetric data are given priority in the class of digital EGF models. 
Such models are extensively applied in the development of elevation datums using 
satellite (GLONASS/GPS) leveling (Avsyuk et al. 2010).
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In most cases, the construction of EGF models is reduced to linear approximation 
of geopotential and/or its linear functionals in a given system of basis functions. In 
practice, the following finite-dimensional approximations are used (Moritz 1976): 

T (P) = 
nx

i=1 

ai fi (P), (6.1.1) 

where P is the point to be determined; T is the quantity to be modeled (for definiteness, 
a disturbing potential); f i are the basis functions; ai are the coefficients (model 
parameters); n is the dimension of the model. 

For global EGF models in the form of spherical harmonics of the geopotential, 
formula (6.1.1) is given as follows (Avsyuk et al. 2010): 

T (ϕ, λ, r ) = 
f M⊕ 

a 

nmaxx

n=2

(a 
r

)n+1 nx

m=0 

(Cnm cos mλ + Snm sin mλ)Pnm(sin ϕ), 

(6.1.2) 

where a is the semi-major axis of the reference ellipsoid; ϕ, λ, r are the spherical 
geocentric coordinates (latitude, longitude, radius vector) of a point; f M⊕ is the 
product of the gravitational constant by the Earth’s mass; Pnm are the fully normalized 
Legendre functions; Cnm, Snm are the fully normalized coefficients of expansion of 
the disturbing potential in spherical harmonics that are the parameters of the model 
of the form (6.1.2). 

Two main sources of model errors are known: the errors in determining the model 
parameters conditioned by the raw data and processing errors, and methodological 
approximation errors. 

The accuracy characteristics of the EGF models can be estimated using various 
methods, including a priori and a posteriori estimation techniques. 

6.1.1 A Priori Accuracy Estimates 

A priori estimates are obtained analytically using real and/or hypothetical information 
on the statistical properties of the factors affecting the accuracy of the model to be 
created. As a rule, the results of a priori accuracy estimation are not associated with 
the actual values of the model parameters. 

Assume DM is the variance of the methodological error, DP is the variance of the 
error in determining the model parameters. Taking these errors to be stationary, 
random, and statistically independent quantities, the total model error can be 
characterized by the variance 

D = DM + DP . (6.1.3)
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A priori estimate of DM can be obtained from the deviations of the model M under 
study in (6.1.1) from some reference model [GOST 18.101–76]: 

M∗ : T ∗(P) = 
mx

i=1 

a∗ 
j f 

∗ 
j (P), (6.1.4) 

where
{
f ∗ 
j

}
and

{
a∗ 
j

}
are the basis functions and parameters of the model M*, 

respectively; j = 1, …, m. Often, a model of the same class as M but of higher 
resolution is used as M*. For example, to estimate a model in the form of spherical 
harmonics of the geopotential to some degree N, the same model to degree N ∗ >> N 
is considered. 

Assuming that the output values of the models M and M* are random zero-mean 
values, the following formula can be used for the point estimation of DM : 

DM (P) = 
nx

i=1 

nx

k=1 

E(aiak) fi (P) fk(P) + 
mx

j=1 

mx

l=1 

E
(
a∗ 
j a

∗ 
l

)
f ∗ 
j (P) f ∗ 

l (P) 

− 2 
nx

i=1 

mx

j=1 

E
(
aia

∗ 
j

)
fi (P) f ∗ 

j (P), (6.1.5) 

where E is the expectation operator. 

Obviously, to use formula (6.1.5), it is commonly needed to use the covariance 
matrices of M and M* parameters, and the matrix of their mutual covariances as the 
source data. 

A priori estimate of DP can be obtained in two ways: by analyzing the model 
sensitivity to variations in its parameters [GOST 18.101–76] and by using the error 
variance equation of the linear function. In the latter case, 

DP (P) = 
nx

i=1 

nx

j=1 

E
(
δai δa j

)
fi (P) f j (P), (6.1.6) 

where δai is the error in the i-th parameter of the estimated model. To estimate DP 

by (6.1.6), the error covariance matrix of M parameters is needed. 
As the dimension of the studied model changes (i.e., the number n of its parameters 

increases or decreases), DM and DP vary in different ways. An increase in n commonly 
leads to decreasing DM and increasing DP, and vice versa. As a result, it becomes 
necessary to find n which minimizes the total variance D, or to select the minimum 
possible n with which D does not exceed the given tolerance D0.
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A priori estimates of the accuracy of EGF models in the form of spherical 
harmonics of the geopotential can be obtained using the formula (Nepoklonov 1998) 
which can be rewritten as 

σ(N ) = 
/

δ(N )2 + ε(N )2 , (6.1.7) 

where σ is the root-mean-square (RMS) error of the model; δ and ε are the RMS values 
of the total contribution of errors in geopotential harmonic coefficients Cnm, Snm 

and methodological error due to truncation of geopotential expansion in spherical 
harmonics, respectively. 

The values of δ and ε are estimated by the formulas in Table 6.1, where ζ is the 
geoid height; .g is the gravity anomaly in free air; ξ, η are DOV components in the 
meridian and prime vertical planes; R is the average radius of the Earth, γ0 is the 
average normal gravity on the reference ellipsoid; c2 n and δ

2 
n are the so-called degree 

variances of coefficients Cnm, Snm and their RMS errors δCnm, δSnm , respectively, 
determined by the following formulas (Moritz 1980; Nepoklonov 1998): 

c2 n = 
nx

m=0

(
C 

2 
nm + S 2 nm

)
, (6.1.8) 

δ2 n = 
nx

m=0

(
δC 

2 
nm + δS 2 nm

)
. (6.1.9) 

The truncation error is estimated using a suitable analytical model of degree 
variances. The GA degree variances .g2 n are usually defined and the following ratio 
is used: 

c2 n = .g2 n/γ
2 
0(n − 1)2 . (6.1.10) 

The applied models of GA degree variances (Pellinen 1970, 1992; Kaula 1966; 
Moritz 1976, 1980; Jekeli et al. 2009) and the corresponding a priori estimates of 
truncation errors are given in Tables 6.2 and 6.3. It is proposed to use the average 
value for several models (the bottom line in Table 6.3) as a final estimate of the 
truncation error.

Table 6.1 Analytical estimates of errors in global EGF models 

Error Parameter 

ζ .g ϑ = √ ξ2 + η2 

δ2 R2Σ    N 
n=2 δ

2 
n γ2 0

Σ    N 
n=2 (n − 1)2δ2 n

Σ    N 
n=2 n(n + 1)δ2 n 

ε2 R2Σ    ∞ 
n=N+1 c

2 
n γ2 0

Σ    ∞ 
n=N +1 (n − 1)2c2 n

Σ    ∞ 
n=N+1 n(n + 1)c2 n 
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Table 6.2 GA degree variance models 

Item No Model authors Designation .g2 n 

1 Kaula (1966) K 96(n−1)2(2n+1) 
n4 

2 Pellinen (1970) P1 166n−1.12 

3 Pellinen (1992) P2

{
34(n − 1)2n−2.68 n ≤ 180 
1559(n − 1)2n−3.409 n> 180 

4 Tscherning, Rapp (1974) TR 425.28sn+2(n−1) 
(n−2)(n+24) , s = 0.999617, n > 2 

5 Moritz (1976) M (n − 1)
(

3.405sn+2 
1 

n+1 + 140.03s
n+2 
2 

n2−4

)
, 

s1 = 0.998006, s2 = 0.914232, n > 2 
6 Jekeli (2009) J 161(n − 1)2n−2.898 

Table 6.3 Geoid height and gravity anomaly truncation errors versus the highest degree of spherical 
harmonics 

Model .g2 n εζ, m ε.g, mGal  

360 720 1440 1800 2160 360 720 1440 1800 2160 

K 0.18 0.09 0.04 0.04 0.03 25.2 22.5 19.3 18.1 17.1 

P1 0.11 0.05 0.03 0.02 0.02 26.1 25.1 24.0 23.7 23.5 

P2 0.14 0.06 0.03 0.02 0.02 18.5 16.1 13.9 13.3 12.8 

TR 0.22 0.10 0.04 0.03 0.02 25.2 20.1 14.5 12.7 11.2 

M 0.30 0.12 0.04 0.02 0.01 28.7 20.1 9.8 6.8 4.8 

J 0.22 0.11 0.06 0.05 0.04 34.0 30.8 26.9 25.4 24.2 

Average 0.20 0.09 0.04 0.03 0.02 26.3 22.4 18.1 16.7 15.6 

The contribution of errors in determining the coefficients Cnm, Snm is illus-
trated by the estimates obtained for several modern combined global EGF models, 
including ultrahigh-degree ones (Table 6.4). Judging by these estimates, the accu-
racy of determining the coefficients of spherical harmonics of the geopotential has 
been significantly increased since the mid-2000s. The accuracy of geoid height 
models has been increased 4–5 times, and that of gravity anomaly models, 2–3 times 
compared with the models of the mid-1990s and early 2000s. These improvements 
were achieved mainly due to the application of new space geodesy methods in the 
international projects, including satellite-to-satellite tracking (CHAMP and GRACE) 
and low-orbit satellite gravity gradiometry (GOCE) (Koneshov et al. 2013, 2014a).

The main advantage of a priori estimates is that they are relatively easy to obtain. 
However, this may be due to various simplifying assumptions. Therefore, the accu-
racy characteristics of global EGF models should be finally determined using a 
posteriori estimates.
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Table 6.4 Influence of the errors in the geopotential spherical harmonics coefficients on the 
accuracy of geoid height and gravity anomaly models 

EGF model Country Year N δ 
Geoid height, m GA, mGal 

EGM96 USA 1996 360 0.36 8.5 

PZ-2002 Russia 2002 360 0.45 10.8 

EIGEN-GLO4C Germany, France 2006 360 0.15 4.4 

GAO-2008 Russia 2008 360 1.11 1.9 

EIGEN-5C Germany, France 2008 360 0.13 3.8 

EGM2008 USA 2008 2190 0.08 4.2 

GIF48 USA 2011 360 0.08 2.4 

EIGEN-6C Germany, France 2011 1420 0.10 3.6 

EIGEN-6C2 Germany, France 2012 1949 0.08 3.3

6.1.2 A Posteriori Accuracy Estimates 

A posteriori accuracy estimates are normally obtained for specific values of 
model parameters. Traditionally, the so-called internal and external estimates are 
distinguished in a posteriori estimates. 

Internal accuracy estimates are based on internal convergence. They characterize 
the errors in the model parameters depending on the contents, accuracy, amount, 
and distribution of the source data based on the explicit functional relationships 
between these source data and the determined values, e.g., using the least squares 
method (Bol’shakov and Gaidaev 1977). This approach, however, fails to completely 
account for the methodological errors in the EGF modeling. 

External accuracy estimates characterize the proximity of the tested model to 
independent (conditionally independent) reference data. Statistical characteristics of 
deviations are normally used as the measures of proximity: boundary values (min., 
max.), mean value μ, standard deviation σ. The proximity can also be analyzed using 
histograms of deviations between the model and reference values of EGF parameters. 
Depending on the type of reference data, a posteriori estimates can methodically be 
divided into three groups. 

The first group includes the estimates, the reference data for which are the EGF 
characteristics (geoid height, GA, DOV, etc.) calculated using a model of higher 
accuracy, conditionally accepted as a reference. EGM2008 global EGF model to 
degree 2190 is commonly used as a reference (Pavlis et al. 2008). The estimates, i.e., 
the comparison of EGM2008 with other models, are listed in Table 6.4. The resulting 
deviations (Table 6.5) can be considered to be the errors of the model geoid height 
and GA with respect to EGM2008 reference model to degree 2190.

Comparison of EGF models in the form of spherical harmonics of geopotential in 
space domain can be complemented by analyzing the model differences in frequency 
domain. Here, the proximity of models at different frequencies can be estimated, for



6 Earth’s Gravity Field Models and Their Application 311

Table 6.5 Statistical characteristics of deviations of EGF global models from EGM2008 reference 
model to degree 2190: geoid height and gravity anomaly 

Model nmax Geoid height, m Gravity anomaly, mGal 

min. max. μ σ min. max. μ σ 
EGM96 360 –10.43 11.98 0.00 0.72 –478.8 461.1 0.2 29.9 

PZ-2002 360 –10.66 10.60 0.01 0.74 –480.0 437.8 0.2 29.7 

EIGEN-GLO4C 360 –6.01 7.22 0.01 0.36 –492.1 430.1 0.3 28.9 

GAO-2008 360 –8.56 8.45 0.01 0.58 –491.3 400.8 0.3 32.8 

EIGEN-5C 360 –6.31 7.04 0.00 0.33 –521.8 415.9 0.3 28.7 

GIF48 360 –3.91 4.13 –0.01 0.19 –465.9 388.1 0.2 27.4 

EIGEN-6C 1420 –2.51 3.49 0.00 0.14 –334.1 315.0 0.2 24.0 

EIGEN-6C2 1949 –2.45 3.64 0.00 0.13 –220.5 231.4 0.2 23.0

example, by degree variances δζ2 n and δg
2 
n of the differences of model geoid heights 

(δζ) and gravity anomalies (δg), expressed as the differences between the coefficients 
Cnm, Snm of the first and second models. The examples for EGM96, GAO-2008 and 
GIF48 are presented in Fig. 6.1. 

The comparison helps to detect the frequency range (values n), where δζn(δgn) 
characterizing the error spectrum of the studied model relative to the reference model 
do not exceed some significant limit. 

The second group includes the estimates obtained by the orbital method using 
the ephemeris of artificial Earth satellites, calculated using the studied global model. 
The model accuracy is estimated by the residuals of trajectory measurements, and by 
the residuals of the measured sea levels at the crossover points of altimetry routes for 
satellites equipped with altimeters. High-precision laser and radio observation data

Fig. 6.1 Errors in model geoid height (a) and gravity anomaly (b) for different EGF models 
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Table 6.6 Standard deviations of satellite calculated ranges from the measured values averaged by 
orbital arcs, m 

Satellite Orbit altitude, km EGM96 EIGEN-GLO4 EGM2008 EIGEN-5 

Envisat 800 0.087 0.058 No data No data 

Jason-1 1340 0.042 0.041 No data No data 

Lageos-1 5900 0.015 0.046 0.015 0.014 

Ajisai 1480 0.056 0.014 0.053 0.047 

Starlette 810 0.050 0.031 0.046 0.031 

Stella 810 0.091 0.026 0.029 0.026 

ERS-2 800 No data No data No data 0.043 

(DORIS, PRARE) obtained at terrestrial stations, and satellite orbit determination 
data obtained by space navigation systems can be used as the trajectory measure-
ments. The orbital method application is illustrated in Table 6.6 with the accuracy 
estimates of global EGF models based on laser observations from artificial Earth 
satellites Envisat, ERS-2, Jason-1, Lageos-1, Ajisai, Starlette, and Stella (Foerste 
et al. 2008; Cheng et al. 2009; Gruber et al. 2011). These estimates characterize the 
model accuracy as the deviations of the calculated satellite orbit parameters from 
the measured ones, obtained using high-precision laser observations. The orbital 
method provides global information, however, it features relatively low sensitivity 
of satellite orbits to local gravity anomalies, and the need to exclude non-gravitational 
perturbations of the orbital motion (Gruber 2004). 

The third group includes a posteriori estimates obtained by comparing the studied 
model with the reference values of the geoid height, GA, DOV components, and 
other functionals of the perturbing potential, obtained using various instrumental 
EGF survey methods such as the gravimetric and astrogeodetic methods, satellite 
altimetry, satellite gradiometry, and satellite leveling. 

Such estimates are widely used for various global EGF models in modern publi-
cations. The differences between the model GAs and terrestrial gravimetric survey 
data in various parts of the Earth are listed in Table 6.7 compiled using the data of 
(Arabelos and Tscherning 2010). Over the past 20 years, geoid heights from satellite 
leveling have been extensively used for accuracy estimation and verification of EGF 
models. However, the effective use of this approach requires a sufficiently dense 
grid of leveling stations, which is not always available, among other things because 
this estimation method can be only applied on land. For this reason, in recent years, 
as the airborne gravity surveys become more widespread and accurate, the feasi-
bility of EGF model accuracy estimation based on airborne gravity has been studied 
thoroughly. This primarily refers to the areas, where other methods for independent 
validation of EGF models are barely applicable, such as the Arctic region.

This section presents the new accuracy estimates for the global EGF models. 
They are based on comparing the model GAs with the data obtained in airborne 
gravimetric surveys in the Arctic in 2011 by the RAS Institute of Physics of the 
Earth (Russia), using Russian airborne gravimetric systems. Fourteen survey lines
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Table 6.7 Statistical characteristics of differences between the model and gravimetric GA for 
various regions of the Earth 

Model nmax Region Number of stations Differences, mGal 

min max μ σ 
EGM96 360 Australia 1,117,054 –194.7 219.9 –0.3 12.1 

Arctic 56,878 –193.3 195.9 –1.0 18.0 

Antarctic 57,140 –355.5 279.9 4.3 22.1 

Canada 14,177 –124.9 114.2 –0.1 13.4 

Scandinavia 66,904 –47.4 76.7 –0.4 8.9 

EIGEN-GLO4C 360 Australia 1,117,054 –192.1 218.3 0.3 12.1 

Arctic 56,878 –191.5 193.4 –1.2 15.9 

Antarctic 57,140 –356.4 282.2 4.4 23.2 

Canada 14,177 –124.1 105.9 –0.1 13.6 

Scandinavia 66,904 –50.9 83.9 –1.1 8.5 

EGM2008 2190 Australia 1,117,054 –200.2 238.7 –0.3 5.4 

Arctic 56,878 –193.6 103.5 –1.0 10.9 

Antarctic 57,140 –349.9 268.3 4.3 18.6 

Canada 14,177 –100.7 85.7 –0.9 8.2 

Scandinavia 66,904 –47.8 49.4 –0.8 3.6

with a total length of over 2430 km were processed during the flights. A database 
containing over 23 thousand gravimetric stations was compiled. The accuracy and 
detail of measurements met the requirements for a 1:200,000 gravimetric survey. 
Statistical characteristics of differences between the model and measured GA values 
are presented in Table 6.8. 

According to Tables 6.7 and 6.8, a posteriori accuracy estimates of modern global 
EGF models, obtained by comparing with gravimetric data, are consistent with the 
above a priori estimates. They illustrate the accuracy improvement through refining 
the harmonic coefficients of the geopotential and increasing the model resolution. 
A similar conclusion can be made from the published comparison of global EGF 
models with satellite altimetry data, including both the sea level (geoid height), and 
the gravity anomalies.

Table 6.8 Statistical 
characteristics of differences 
between model GA and 
Arctic airborne gravimetric 
survey data from IPE RAS 

Model nmax Differences, mGal 

μ σ 
EGM2008 2190 –2.58 2.01 

EIGEN-6C 1420 –3.04 2.25 

PZ-2002 360 –4.06 4.67 
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6.1.3 Estimation of Accuracy of Geoid Height Models 

One of the main purposes of modern EGF models is to ensure the global coverage of 
the vertical datum, therefore, special attention is given to testing such models using 
geoid heights obtained by the inverse satellite leveling, i.e., as differences between 
the geodetic (satellite) and leveling heights. 

The accuracy of the studied models is normally estimated using absolute heights 
only at individual geodetic points. Accuracy estimates of global EGF models using 
leveling geoid heights are given in Table 6.9.

To obtain more information on the accuracy characteristics, the model is tested not 
only by absolute heights, but also by relative ones, i.e., by geoid height differences at 
two stations grouped by the distances between the stations, e.g. 0–50 km, 50–100 km, 
etc. (Nepoklonov et al. 2007). 

At present, obtaining similar external estimates of DGHM accuracies in conti-
nental areas is of particular importance, primarily in the context of studying the accu-
racy of the gravimetric geoid modeling. The estimates characterizing the dependence 
of DGHM accuracy and detail on the geographical location and national identity are 
presented in Table 6.10 (Nepoklonov and Abakushina 2016).

Two digital geoid height models have been constructed for the territory of the 
Russian Federation over the past 20 years. The first one is the Russian Gravimetric 
Geoid model developed in 2000 (RGG-2000) for experimental purposes with the 
support of the Russian Foundation for Basic Research (Fig. 6.2). Its main charac-
teristics are as follows: the source data is EGM96 (up to degree 360), average GAs 
and heights in 5 × 5 arcmin trapezes (based on 1:1,000,000 gravimetric maps); the 
fixed interval is 5 arcmin; the borders are 40–80° in latitude, 26–192° in longitude. 
Nodal geoid heights are calculated using the Stokes formula. The average difference 
between the RGG-2000 and the similar European gravimetric geoid model EGG97 is 
0.40 m and the standard deviation is 0.42 m. The errors of RGG-2000 in the leveling 
geoid heights are characterized by average values and standard deviations from 1 to 
3–4 dm depending on the region (Nepoklonov and Abakushina 2016).

The second model was constructed by the Central Research Institute of Geodesy, 
Airborne Survey, and Cartography of Russia (TsNIIGAiK) in 2012 under the super-
vision of G.V. Dem’yanov. The following source information was used: the latest 
Russian global gravitational model GAO-2012; average values of GA and heights 
from 1:200,000 gravimetric maps. A specific feature of this model is that it consists 
of three units (schematically shown in Fig. 6.3).

In units 1 and 2, the geoid height grid has a grid size of 5 × 7.5 arcmin; and in 
unit 3, the grid size is 5 × 5 arcmin. The differences between the model and leveling 
geoid heights (835 stations of geodetic networks FAGS, VGS, and SGN-1 in Russia 
were used for reference) are schematically shown in Fig. 6.4. Statistically, these 
differences have the mean value of 0.15 m and the standard deviation of 0.42 m.
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Table 6.9 Statistical characteristics of differences between model and leveling geoid heights 

Model (N) Region Number of 
stations 

Differences, m 

min max μ σ 
EGM96(360) Turkey 313 –2.19 0.82 –0.81 0.46 

Greece 1542 –1.06 1.58 –0.45 0.42 

Australia 1013 –2.44 3.54 0.02 0.50 

Poland 360 –0.54 0.57 –0.04 0.19 

Algeria 71 –0.90 0.78 –0.03 0.34 

Republic of 
South Africa 

79 –0.95 0.68 –0.24 0.35 

South America 1190 –3.30 3.70 0.24 0.80 

Greenland 78 –0.52 2.62 0.71 0.52 

Belarus 196 –0.52 0.47 0.01 0.22 

EIGEN-GLO4C(360) Greece 1542 –1.17 1.77 –0.28 0.45 

Algeria 71 –0.63 0.64 –0.02 0.33 

South America 1190 –2.90 3.10 0.22 0.70 

China 652 –2.26 1.80 –0.25 0.43 

EIGEN-5C(360) Turkey 313 –3.33 0.75 –0.87 0.66 

Poland 360 –0.22 0.52 0.10 0.11 

EGM2008(2190) Turkey 313 –0.29 0.71 0.29 0.16 

Greece 1542 –0.44 0.54 –0.38 0.14 

South Korea 500 –0.54 1.17 0.10 0.18 

Poland 360 0.04 0.26 0.12 0.04 

The Czech 
Republic 

1024 –0.52 –0.33 –0.42 0.04 

Italy 977 –0.33 0.34 0.00 0.10 

Algeria 71 –0.67 0.61 –0.08 0.21 

Republic of 
South Africa 

79 –0.84 0.02 –0.42 0.24 

South America 1190 –3.30 3.40 0.22 0.68 

Greenland 78 –0.43 1.60 –0.19 0.40 

Canada 2579 –0.92 0.09 –0.38 0.13 

China 652 1.89 1.64 –0.12 0.26 

Belarus 196 –0.16 0.11 0.05 0.05

6.1.4 Estimation of Accuracy of the Global Models 
of the Earth’s Gravity Field in the Arctic 

Considering relatively low und uneven geophysical coverage of the Arctic and its 
planned exploration, it is interesting to find out how adequately the modern global
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Table 6.10 Characteristics of modern digital geoid height models 

Region, 
country 

Model Grid size 
(arcmin) 

EGF reference 
model (order) 

Accuracy characteristics 

μ σ 
Europe European gravimetric 

geoid 2008 (EGG08) 
1 × 1.5 About 

1.4 thousand 
– 0.06 0.08 

Africa African geoid project 
2007 (AGP2007) 

5 × 5 No data No data 0.21 

South 
America 

GEOID2014 5 × 5 About 
1.8 thousand 

0.17 0.52 

Australia AUSGeoid09 1 × 1 Over 
6.5 thousand 

No data 0.05 

USA US gravimetric geoid 
2012 (USGG2012) 

1 × 1 Over 
18 thousand 

0.01 0.06 

Canada Canadian gravimetric 
geoid 2013 (CGG2013) 

2 × 2 Over 
2.5 thousand 

– 0.19 0.13 

Mexico Mexican gravimetric 
geoid 2005 (GGM05) 

2.5 × 2.5 About 
1.4 thousand 

No data 0.20 

China National gravimetric 
geoid 2011 (CNGG2011) 

2 × 2 650 – 0.16 0.13 
(Tibet—0.22) 

Kazakhstan KazGM2010 5 × 5 20 No data 0.18 

Mongolia National gravimetric 
geoid 2007 

5 × 5 58 – 1.14 0.20 

Iran Iranian quasigeoid 2009 
(IRQG09) 

1.5 × 1.5 No data 0.28 

Turkey Turkey geoid 2009 
(TG09) 

3 × 3 30 0.113 0.107 

Ukraine Ukrainian gravimetric 
geoid 2013 (UGG2013) 

1.5 × 1.5 4 No data 0.10 

Poland Poland gravimetric 
quasigeoid 2013 
(GDQM-PL13) 

1.5 × 3.0 360 0.10 0.02 

Hungary Hungary gravimetric 
geoid 2013 (HGG2013) 

1.5 × 1.5 18 0.01 0.04 

Germany Germany combined 
quasigeoid 2011 
(GCG11) 

1.0 × 1.5 675 <0.01 0.02

EGF models describe the EGF in high-latitude areas (from 70°N to the pole). Insight 
into this is offered by the available results of comparative analysis of the model geoid 
heights (ζ), gravity anomalies (.g), and DOV components in the meridian (ξ) and 
the prime vertical (η) planes (Koneshov et al. 2012a, b). The calculations were made 
using various models with a 5 arcmin interval on the PZ-90.11 reference ellipsoid. To 
account for the geographical location of the Arctic regions, the models were analyzed
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Fig. 6.2 Geoid heights in the territory of Russia according to RGG-2000: a general scheme; b 
European part of the country (enlarged); the lines of equal heights are plotted in 0.5 m intervals

separately for the polar cap sector .0 (B ≥ 85°) and for the remaining survey area
.1. 

The list of the studied models (Table 6.11) adequately reflects the state of the art 
in the research of geopotential. On the one hand, it includes the models constructed 
by various developers (both Russian and international); on the other hand, there are 
the models differing in the source data (satellite, combined), methods to obtain them, 
and the degree N of spherical harmonics.

The study followed different lines: comparison of Russian and international 
models, of satellite and combined models, and the models obtained with and 
without the use of new space geodesy methods (inter-satellite measurements, satellite 
gradiometry).
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21 
3

 

Fig. 6.3 The structure of the new DGHM (TsNIIGAiK) in Russia

Fig. 6.4 Differences between leveling geoid heights and TsNIIGAiK model (2012)

In the course of analysis, statistical characteristics of the calculated ζ, .g, ξ, 
η for each model and their deviations δζ, δg, δξ, δη from the reference values were 
estimated. EGM2008, initially considered to be a high-precision model, was taken as 
the reference (Pavlis et al. 2008). The mean value μ, standard deviation σ, minimum 
(min.) and maximum (max.) values were estimated.
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Table 6.11 Global EGF models 

Model Year Country (organization) N Source data 

EGM96 1996 USA 360 S, G, A 

GAO-98 1998 Russia (TsNIIGAiK) 360 S, G, A 

GPM98 1998 Germany 1800 S, G, A 

PZ-2002/360 2002 Russia (29 NII MO) 360 S, G, A 

EIGEN-CG03C 2005 Germany 360 S (CHAMP, GRACE), 
G, A 

EIGEN-GLO4C 2006 Germany, France 360 S (GRACE,  
LAGEOS), G, A 

GAO-2008 2008 Russia (TsNIIGAIK, 29th 
Central Research Institute, 
Ministry of Defense) 

360 S (CHAMP, GRACE), 
G, A 

EGM2008 2008 USA 2190 S (GRACE), G, A  

EIGEN-5C 2008 Germany, France 360 S (GRACE,  
LAGEOS), G, A 

GGM-03C 2009 USA 360 S (GRACE), G, A  

GOCE-DIR 2010 Germany, France 240 S (GOCE) 

GOCE-TIM 2011 Germany, Austria 250 S (GOCE) 

GOCO02S 2011 Austria, Germany, and 
Switzerland 

250 S (GOCE, GRACE, 
CHAMP, etc.) 

EIGEN-6C 2011 Germany, France 1420 S (GOCE, GRACE, 
LAGEOS), G, A 

GIF48 2011 USA 360 S (GRACE), G, A  

GAO-2012 2012 Russia (TsNIIGAiK) 360 S (GOCE), G, A  

Note S—satellite; G—gravimetric; H—altimetric; N—maximum degree of geopotential spherical 
harmonics

Tables 6.12, 6.13, 6.14, 6.15, 6.16, 6.17, 6.18 and 6.19 present the estimates, 
including those averaged over the following groups: Russian and international 
models; satellite and combined models; low-degree (N ≤ 360) and high-degree 
(N ≥ 1420) models; and the models issued before and after 2005. The distinction 
in the latter two groups actually lies in the use of new space geodesy technology 
implemented in CHAMP, GRACE, and GOCE satellite missions.

The statistical characteristics of the model ζ, .g, ξ, η first of all can be consid-
ered as the characteristics of anomalous EGF structure. It should be noted that the 
estimates obtained using different models are mostly consistent with each other and 
show that the Arctic as a whole can be classified as a region of medium anomalies. 
For geoid heights, long-wave changes are the most typical. For gravity anomalies, 
shortwave components are quite well visible. They are manifested mainly as merid-
ional structures. Shortwave effects are also detected for DOV components, including
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Table 6.12 Statistical characteristics of predicted geoid heights ζ, m  

Model .0 .1 

min max μ σ min max μ σ 
EGM96 6.21 26.64 15.37 3.70 –28.19 60.04 10.72 16.84 

GAO-98 7.61 25.05 14.88 3.13 –27.64 59.19 10.47 16.36 

GPM98 5.97 25.70 15.48 3.73 –28.77 59.83 10.71 16.83 

PZ-2002/360 7.25 27.58 15.87 3.70 –28.34 60.24 10.65 16.78 

EIGEN-CG03C 7.01 26.27 15.58 3.77 –28.11 60.28 10.73 16.85 

EIGEN-GLO4C 7.07 26.17 15.58 3.74 –28.17 60.33 10.73 16.85 

GAO-2008 6.77 26.47 15.58 3.78 –28.26 61.01 10.72 16.86 

EGM2008 6.83 26.86 15.55 3.75 –28.24 60.25 10.73 16.85 

EIGEN-5C 7.15 26.25 15.56 3.74 –28.28 60.33 10.73 16.85 

GGM-03C 7.16 26.24 15.49 3.74 –28.03 60.12 10.67 16.85 

GOCE-DIR(3) 7.43 25.87 15.63 3.77 –28.37 59.98 10.72 16.85 

GOCE-TIM(3) 7.46 26.02 15.38 3.90 –28.16 60.10 10.72 16.85 

GOCO02S 7.50 26.94 15.53 3.74 –28.27 60.17 10.73 16.85 

EIGEN-6C 7.22 26.53 15.55 3.74 –28.15 60.05 10.72 16.85 

GIF48 7.25 26.17 15.49 3.74 –28.24 60.20 10.67 16.85 

Russian 7.21 26.37 15.44 3.54 –28.08 60.15 10.61 16.67 

International 7.50 26.30 15.52 3.76 –28.25 60.14 10.72 16.85 

Satellite 7.46 26.28 15.51 3.80 –28.27 60.08 10.72 16.85 

Combined 6.96 26.33 15.50 3.69 –28.20 60.16 10.69 16.80 

Low-degree 7.16 26.31 15.50 3.70 –28.17 60.17 10.69 16.80 

High-degree 6.67 26.36 15.53 3.74 –28.39 60.04 10.72 16.84 

Before 2005 6.76 26.24 15.40 3.56 –28.24 59.82 10.64 16.70 

After 2005 7.17 26.34 15.54 3.76 –28.21 60.26 10.72 16.85

those appearing as extended linear elements partly oriented in the meridian direc-
tion, partly in the transverse direction, which can be clearly observed, for example, 
in Greenland, Novaya Zemlya and Franz Josef Land. 

The predicted geoid height and gravity anomaly values have a clearly pronounced 
positive trend both in .0 and .1 zones: from 10 to 16 m and from 3 to 9 mGal, 
respectively. At the same time, standard deviations and the spread of ζ and .g in
.1 are noticeably (several times) larger than in .0, which is probably caused by a 
significant difference in the areas of zones and increased disturbing potential in .1. 
The difference in statistical characteristics of the Earth’s gravity field (EGF) in .0 

and .1 also shows itself in the fact that in .0 the standard deviations and spread 
in the model ξ and η are normally much (several times) smaller than in .1. This  
correlates with the relationship between similar characteristics of geoid heights and 
gravity anomalies and may also be partly due to the higher anomaly of disturbing 
potential, namely its horizontal gradients, in .1.
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Table 6.13 Statistical characteristics of predicted gravity anomalies .g, mGal 

Model .0 .1 

min max μ σ min max μ σ 
EGM96 –65.67 105.86 4.95 20.10 –142.30 147.87 3.14 26.45 

GAO-98 –39.56 38.57 6.61 10.61 –126.97 100.76 3.04 21.74 

GPM98 –88.45 130.51 5.20 24.50 –190.62 239.125 3.04 27.87 

PZ-2002/360 –59.64 96.22 6.66 18.17 –132.46 137.80 2.96 24.40 

EIGEN-CG03C –60.44 79.21 7.63 17.19 –138.38 153.62 3.08 25.65 

EIGEN-GLO4C –58.25 79.04 7.69 16.99 –136.49 147.03 3.08 25.52 

GAO-2008 –114.60 133.35 7.90 24.65 –211.52 248.97 3.03 34.38 

EGM2008 –258.77 274.97 7.18 64.91 –270.82 293.44 3.08 50.94 

EIGEN-5C –57.00 78.04 7.35 16.26 –139.21 147.44 3.08 25.52 

GGM-03C –55.73 74.80 7.07 16.95 –130.99 143.56 3.08 25.24 

GOCE-DIR –47.06 65.07 9.20 18.88 –133.94 135.83 3.08 24.01 

GOCE-TIM –31.58 44.73 6.12 14.85 –127.03 138.16 3.07 24.24 

GOCO02S –48.96 61.95 6.70 15.62 –130.65 142.01 3.02 24.51 

EIGEN-6C –94.30 146.72 7.32 24.86 –191.50 236.64 3.07 29.65 

GIF48 –62.66 76.71 6.93 17.22 –137.81 147.14 3.07 25.60 

Russian –71.27 89.38 7.06 17.81 –156.98 162.51 3.01 26.84 

International –77.41 101.47 6.94 22.36 –155.81 172.66 3.07 27.93 

Satellite –42.53 57.25 7.34 16.45 –130.54 138.67 3.06 24.25 

Combined –84.59 109.50 6.87 22.70 –162.42 178.62 3.06 28.58 

Low-degree –58.43 77.80 7.07 17.29 –140.64 149.18 3.06 25.60 

High-degree –147.17 184.07 6.57 38.09 –217.65 256.40 3.06 36.15 

Before 2005 –63.33 92.79 5.86 18.34 –148.09 156.39 3.04 25.11 

After 2005 –80.85 101.33 7.37 22.58 –158.94 175.80 3.08 28.66

It should be noted that the statistical characteristics of the EGF in the Arctic 
vary not only with the region but also with the global EGF model used. This is 
especially true for boundary values varying from about 1.1 to 2.5 m for ζ, from  
144 to 236 mGal for .g, from 27 to 30 arcsec for ξ, and from 26 to 35 arcsec for 
η. The discrepancies between the models slightly increase in .0 zone, which can be 
attributed to insufficient coverage of EGF in the polar cap area. 

From the point of view of intergroup differences, the greatest discrepancies in 
geoid heights are observed between Russian and international models, and between 
the models created before and after 2005. This is probably due to the success of 
international centers in determining the low-degree harmonics of the geopotential 
using new space geodesy methods. This factor is of fundamental importance, because 
in the Arctic region, space geodesy can compensate for the lack of traditional data 
(gravimetric, altimetric).
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Table 6.14 Statistical characteristics of predicted DOV in meridian plane ξ, arcsec 

Model .0 .1 

min max μ σ min max μ σ 
EGM96 –10.68 13.23 0.66 3.05 –27.25 21.40 –1.08 4.44 

GAO-98 –6.00 6.52 0.07 2.38 –19.40 19.62 –0.97 3.92 

GPM98 –13.23 15.20 0.65 3.72 –26.73 42.65 –1.08 4.59 

PZ-2002/360 –9.44 10.85 0.41 2.98 –25.08 19.37 –1.10 4.10 

EIGEN-CG03C –8.94 11.81 0.09 3.22 –27.28 20.50 –1.06 4.40 

EIGEN-GLO4C –9.25 12.36 0.08 3.21 –27.13 20.71 –1.07 4.38 

GAO-2008 –11.37 13.11 0.07 3.53 –38.40 32.21 –1.07 5.34 

EGM2008 –35.42 37.36 0.20 9.50 –46.73 46.02 –1.07 8.00 

EIGEN-5C –9.21 11.48 0.16 3.09 –27.66 20.50 –1.07 4.36 

GGM-03C –10.32 11.41 0.24 3.23 –26.23 19.90 –1.07 4.36 

GOCE-DIR(3) –9.25 9.73 –0.28 3.74 –26.77 20.10 –1.05 4.18 

GOCE-TIM(3) –8.06 9.21 0.40 3.23 –27.36 19.82 –1.06 4.19 

GOCO02S –9.91 13.90 0.37 3.41 –27.45 20.46 –1.08 4.24 

EIGEN-6C –21.24 20.12 0.17 4.31 –37.43 35.35 –1.07 4.92 

GIF48 –10.03 11.92 0.24 3.23 –26.71 21.52 –1.07 4.38 

GAO-2012 –11.26 11.57 0.06 3.60 –32.27 26.23 –1.06 5.06 

Russian –9.52 10.51 0.15 3.12 –28.79 24.36 –1.05 4.61 

International –12.96 14.81 0.30 3.91 –29.56 25.74 –1.07 4.70 

Satellite –9.07 10.95 0.35 3.46 –27.19 20.13 –1.06 4.20 

Combined –12.98 14.48 0.20 3.83 –30.09 27.05 –1.06 4.82 

Low-degree –9.52 11.32 0.24 3.22 –27.61 21.72 –1.06 4.41 

High-degree –23.3 24.23 0.34 5.84 –36.96 41.34 –1.07 5.84 

Before 2005 –9.84 11.45 0.45 3.03 –24.62 25.76 –1.06 4.26 

After 2005 –12.86 14.50 0.20 3.94 –30.95 25.28 –1.07 4.82

The greatest discrepancies in the gravity anomalies are observed between high-
degree and low-degree models, which is due to the significant contribution of the 
high-frequency part of the geopotential spectrum to .g values; and between satel-
lite and combined models, which is explained by the use of detailed gravimetric 
and altimetric information in constructing the combined models, even considering 
incomplete coverage of the Arctic regions with this information. 

The greatest discrepancies in DOV are also revealed between low-degree and 
high-degree models, and between satellite and combined models. In both cases, these 
discrepancies are due to the extended use of detailed source information (gravimetric, 
altimetric) in the modeling, even taking into account the incomplete coverage of the 
Arctic with this information. The differences between the groups of models created
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Table 6.15 Statistical characteristics of predicted DOV in prime vertical plane η, arcsec 

Model .0 .1 

min max μ σ min max μ σ 
EGM96 –16.21 19.55 0.00 4.06 –21.37 29.59 0.00 4.98 

GAO-98 –7.65 6.10 0.00 2.61 –17.96 21.09 0.00 4.38 

GPM98 –17.70 20.49 0.00 4.48 –30.79 33.44 0.00 5.19 

PZ-2002/360 –14.54 17.71 0.00 3.84 –21.49 28.10 0.00 4.80 

EIGEN-CG03C –10.86 14.25 0.00 3.73 –22.96 27.95 0.00 4.84 

EIGEN-GLO4C –11.25 14.05 0.00 3.61 –22.65 27.40 0.00 4.82 

GAO-2008 –20.95 25.42 0.00 4.99 –31.22 43.91 0.00 6.13 

EGM2008 –42.91 41.01 0.00 9.87 –44.90 46.16 0.00 8.00 

EIGEN-5C –10.81 13.74 0.00 3.56 –22.36 26.78 0.00 4.84 

GGM-03C –10.84 13.51 0.00 3.53 –21.84 27.72 0.00 4.78 

GOCE-DIR –8.86 10.58 0.00 3.41 –19.12 26.07 0.00 4.65 

GOCE-TIM –7.87 9.19 0.00 3.80 –19.14 26.89 0.00 4.69 

GOCO02S –8.39 9.40 0.00 2.93 –19.44 26.80 0.00 4.72 

EIGEN-6C –19.25 24.24 0.00 4.36 –33.79 33.54 0.00 5.32 

GIF48 –10.38 13.83 0.00 3.67 –22.26 28.80 0.00 4.84 

GAO-2012 –22.38 25.43 0.00 4.96 –32.07 40.14 0.00 5.77 

Russian –16.38 18.67 0.00 4.1 –25.69 33.31 0.00 5.27 

International –14.61 16.99 0.00 4.25 –25.05 30.1 0.00 5.14 

Satellite –8.37 9.72 0.00 3.38 –19.23 26.59 0.00 4.69 

Combined –16.59 19.18 0.00 4.41 –26.59 31.89 0.00 5.28 

Low-degree –12.38 14.83 0.00 3.75 –22.61 29.33 0.00 4.94 

High-degree –26.62 28.58 0.00 6.24 –36.49 37.71 0.00 6.17 

Before 2005 –14.03 15.96 0.00 3.75 –22.9 28.06 0.00 4.84 

After 2005 –15.40 17.89 0.00 4.37 –25.98 31.85 0.00 5.28

before and after 2005 are less significant. This is probably due to the limited capabil-
ities of satellite data (including those obtained with new space geodesy methods) in 
refining the high-frequency spectrum of the geopotential, compared to the detailed 
gravimetry and altimetry data. As to the differences between the groups of Russian 
and international models, the use of a new Russian model GAO-2012 has helped to 
minimize them. 

It should also be noted that significant discrepancies in the model EGF parameters 
in the Arctic are observed not only between the groups of models, but also within 
these groups. For example, the output characteristics of GAO-98 differ significantly 
from other models of its group. Both in the groups of Russian and combined global 
EGF models, it appears to be too smooth both in the range and in the variance of the 
model quasigeoid heights and gravity anomalies. For this reason, the use of the new
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Table 6.16 Statistical characteristics of deviations of predicted geoid heights ζ from reference 
values, m 

Model .0 .1 

min max μ σ min max μ σ 
EGM96 –3.12 4.99 –0.18 0.85 –4.66 4.83 0.00 0.78 

GAO-98 –6.13 1.84 –0.67 1.05 –6.94 4.12 –0.26 1.07 

GPM98 –3.32 4.90 –0.07 0.82 –5.06 3.96 –0.02 0.87 

PZ-2002/360 –2.66 5.30 0.32 0.85 –4.45 4.10 –0.08 0.60 

EIGEN-CG03C –1.37 1.46 0.03 0.34 –2.12 2.08 0.00 0.25 

EIGEN-GLO4C –1.33 1.51 0.03 0.30 –2.22 1.83 0.00 0.23 

GAO-2008 –2.12 2.84 0.03 0.48 –3.92 4.08 0.00 0.50 

EIGEN-5C –1.28 1.30 0.01 0.29 –1.74 1.92 0.00 0.22 

GGM-03C –1.47 1.25 –0.06 0.28 –1.67 1.59 –0.05 0.23 

GOCE-DIR(3) –2.26 2.46 0.08 0.71 –2.64 2.40 0.00 0.33 

GOCE-TIM(3) –2.78 3.41 –0.17 0.99 –2.58 2.56 0.00 0.33 

GOCO02S –2.53 2.11 –0.02 0.55 –2.53 2.52 0.00 0.35 

EIGEN-6C –0.79 0.76 0.00 0.19 –0.82 0.90 0.00 0.15 

GIF48 –1.36 1.05 –0.06 0.27 –1.53 1.69 –0.05 0.20 

Russian –3.64 3.33 –0.11 0.79 –5.10 4.10 –0.11 0.72 

International –1.96 2.29 –0.04 0.51 –2.51 2.40 –0.01 0.36 

Satellite –2.52 2.66 –0.03 0.75 –2.58 2.56 0.00 0.34 

Combined –2.27 2.47 –0.06 0.52 –3.20 2.83 –0.04 0.46 

Low-degree –2.06 2.83 –0.04 0.50 –2.94 2.43 –0.01 0.51 

High-degree –2.37 2.46 –0.05 0.58 –3.08 2.81 –0.04 0.42 

Before 2005 –3.81 4.26 –0.15 0.89 –5.28 4.25 –0.09 0.83 

After 2005 –1.73 1.82 –0.01 0.44 –2.18 2.16 –0.01 0.28

Russian model GAO-2012 is of interest. According to the comparative estimates, it 
does not significantly differ from the previous Russian model GAO-2008, at least in 
terms of DOV. The differences between these models in zones.0 and.1 have almost 
zero mean values and standard deviations of 1.05 and 1.11 arcsec for ξ component, 
and 1.52 and 1.28 arcsec for η component, respectively. 

The estimated statistical characteristics of δζ, δg, δξ, and δη can be considered as 
the accuracy characteristics of the global EGF models in terms of deviations of the 
model values ζ, .g, ξ, η from the corresponding reference data. 

Obviously, the estimates of these characteristics also depend on the region (the 
approximation errors of the reference data in .0 zone are usually larger than in .1 

zone) and on the global EGF model used. The variation of the boundary values is 
especially significant: from about 3.9 to 6.1 m for δζ and  from 29 to 98 mGal for  
δg. This can be attributed to more frequent updates of the source data on low-degree 
harmonics of the geopotential due to the use of space geodesy methods. Low-degree



6 Earth’s Gravity Field Models and Their Application 325

Table 6.17 Statistical characteristics of deviations of predicted gravity anomalies .g from  
reference values, m Gal 

Model .0 .1 

min max μ σ min max μ σ 
EGM96 –242.74 319.76 –2.23 65.05 –229.46 266.02 0.07 45.80 

GAO-98 –258.24 260.44 –0.57 64.22 –274.18 237.81 –0.04 45.94 

GPM98 –258.98 325.27 –1.98 66.41 –276.42 233.81 –0.04 47.30 

PZ-2002/360 –240.89 313.01 –0.52 64.94 –236.62 256.15 –0.11 45.11 

EIGEN-CG03C –235.69 227.66 0.45 62.92 –224.34 232.57 0.00 44.34 

EIGEN-GLO4C –239.89 232.37 0.50 62.85 –222.62 233.73 0.00 44.32 

GAO-2008 –262.42 228.72 0.71 64.31 –266.29 278.19 –0.05 46.74 

EIGEN-5C –240.34 231.87 0.16 62.85 –224.91 238.50 0.00 44.26 

GGM-03C –236.92 233.48 –0.12 62.76 –219.67 236.82 0.00 44.48 

GOCE-DIR(3) –264.30 249.91 2.02 65.98 –236.08 237.06 0.04 45.40 

GOCE-TIM(3) –262.22 256.75 –1.06 65.70 –240.87 242.76 0.00 45.39 

GOCO02S –263.74 277.84 –0.48 65.01 –237.57 241.00 –0.05 45.58 

EIGEN-6C –235.26 232.03 0.14 61.41 –210.35 227.23 –0.01 43.17 

GIF48 –237.13 237.13 –0.26 62.75 –209.80 234.28 –0.01 44.15 

Russian –253.85 267.39 –0.13 64.49 –259.03 257.38 –0.07 45.93 

International –247.02 256.73 –0.26 63.97 –230.19 238.53 0.00 44.93 

Satellite –263.42 261.50 0.16 65.56 –238.17 240.27 0.00 45.46 

Combined –244.41 258.34 –0.34 63.68 –235.88 243.19 –0.02 45.06 

Low-degree –247.12 278.65 –0.92 63.91 –243.38 230.52 –0.02 45.24 

High-degree –248.71 255.74 –0.12 64.11 –235.20 244.57 –0.01 45.13 

Before 2005 –250.21 304.62 –1.32 65.16 –254.17 248.45 –0.03 46.04 

After 2005 –247.79 240.78 0.21 63.65 –229.25 240.21 –0.01 44.78

harmonics are the main contributors to the estimation of the quasi-geoid heights 
as compared to the satellite altimetry and gravimetric survey data that are mostly 
employed in the estimation of gravity anomalies. 

The statistical characteristics of δξ, δη provide a better understanding of how 
well the lower-degree models including GAO-2012 approximate the ultrahigh-degree 
geopotential model EGM2008 in the Arctic regions. 

Analysis of the obtained estimates reveals, first of all, a considerable improvement 
in the accuracy characteristics of models released after 2005, especially in quasi-
geoid heights. Compared to the earlier models, the average discrepancies between 
post-2005 models and the reference quasi-geoid heights have decreased two or more 
times, with the RMS errors of the models considered to be the best in this respect 
not exceeding 0.3 m. In comparison, the improvement in GA and DOV is smaller: 
for gravity anomalies, the absolute deviations vary from a few mGal to a few dozen
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Table 6.18 Statistical characteristics of deviations of predicted DOV component ξ from the 
reference values, arcsec 

Model .0 .1 

min max μ σ min max μ σ 
EGM96 –36.21 36.10 0.46 9.16 –45.13 39.21 –0.01 6.96 

GAO-98 –36.81 34.08 –0.13 9.15 –44.14 41.47 0.10 6.99 

GPM-98 –37.73 39.16 0.45 9.42 –38.66 45.66 –0.01 7.26 

PZ-2002/360 –36.21 35.39 0.21 9.17 –44.97 38.93 –0.03 6.85 

EIGEN-CG03C –36.66 34.51 –0.11 8.99 –44.22 39.74 0.00 6.75 

EIGEN-GLO4C –36.02 34.53 –0.11 8.98 –44.58 40.44 0.00 6.74 

GAO-2008 –40.26 37.43 –0.12 9.12 –45.93 46.21 0.00 7.05 

EIGEN-5C –35.47 34.88 –0.04 8.98 –44.92 39.65 0.00 6.73 

GGM-03C –35.47 34.72 0.04 8.98 –44.77 40.40 0.00 6.80 

GOCE-DIR(3) –38.54 37.13 –0.48 9.45 –48.21 40.11 0.02 6.89 

GOCE-TIM(3) –35.71 34.70 0.20 9.38 –47.90 40.23 0.01 6.88 

GOCO02S –37.68 35.64 0.18 9.34 –48.04 40.22 –0.01 6.91 

EIGEN-6C –37.60 35.73 –0.02 8.68 –33.90 36.50 0.00 6.56 

GIF48 –35.34 35.50 0.05 8.94 –43.84 38.65 0.00 6.70 

GAO2012 –39.73 39.57 –0.14 9.14 –42.25 40.03 0.01 6.98 

Russian –38.25 36.62 –0.05 9.15 –44.32 41.66 0.02 6.97 

International –36.58 35.69 0.06 9.12 –44.02 40.07 0.00 6.83 

Satellite –37.31 35.82 –0.03 9.39 –48.05 40.19 0.01 6.89 

Combined –36.96 35.97 0.05 9.06 –43.11 40.57 0.01 6.86 

Low-degree –36.93 35.71 0.00 9.14 –45.3 40.41 0.01 6.86 

High-degree –37.67 37.45 0.22 9.05 –36.28 41.08 –0.01 6.91 

Before 2005 –36.74 36.18 0.25 9.23 –43.23 41.32 0.01 7.02 

After 2005 –37.13 35.85 –0.05 9.09 –44.41 40.20 0.00 6.82

mGal and the RMS errors are from about 1 to 1.5 mGal; and for the DOV, the absolute 
deviations are 1.5 arcsec and the RMS errors are 0.2 arcsec. 

The improvement is mainly attributed to the use of international combined models, 
including EIGEN-GLO4C, EIGEN-5C, GIF48 to degree 360, and EIGEN-6C to 
degree 1420; the latter has expectedly become the leader in most parameters. This 
is due to not only its higher resolution, but also to the application of GOCE satellite 
gradiometry data. Among the above-mentioned combined models up to degree 360, 
GIF48 (USA) features the smallest deviations from the reference values. 

The GAO-2012 model has slightly improved the rating of the Russian models; 
however, it can be hardly called a significant step in the DOV accuracy improve-
ment in the Arctic, especially as compared to the latest international models. This
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Table 6.19 Statistical characteristics of deviations of predicted DOV component η from reference 
values, arcsec 

Model .0 .1 

min max μ σ min max μ σ 
EGM96 –40.78 43.38 0.00 9.71 –42.95 40.12 0.00 6.64 

GAO-98 –40.25 40.65 0.00 9.49 –36.84 37.59 0.00 6.65 

GPM98 –40.60 44.23 0.00 9.84 –39.96 41.31 0.00 6.77 

PZ-2002/360 –39.66 43.48 0.00 9.69 –41.17 37.16 0.00 6.53 

EIGEN-CG03C –37.08 40.34 0.00 9.25 –37.64 36.75 0.00 6.40 

EIGEN-GLO4C –36.86 40.70 0.00 9.24 –37.33 37.00 0.00 6.40 

GAO-2008 –38.85 42.10 0.00 9.53 –42.16 37.40 0.00 6.82 

EIGEN-5C –36.91 40.82 0.00 9.24 –37.42 37.32 0.00 6.39 

GGM-03C –37.34 40.53 0.00 9.21 –37.41 36.89 0.00 6.39 

GOCE-DIR(3) –38.73 41.62 0.00 9.67 –36.06 35.54 0.00 6.58 

GOCE-TIM(3) –41.00 42.58 0.00 9.81 –36.52 36.52 0.00 6.58 

GOCO02S –42.22 41.36 0.00 9.54 –36.54 36.03 0.00 6.61 

EIGEN-6C –37.19 39.82 0.00 9.09 –32.12 33.86 0.00 6.24 

GIF48 –36.61 39.96 0.00 9.24 –38.32 37.01 0.00 6.39 

GAO-2012 –38.46 40.79 0.00 9.59 –41.69 37.14 0.00 6.73 

Russian –39.31 41.76 0.00 9.58 –40.47 37.32 0.00 6.68 

International –38.67 41.39 0.00 9.44 –37.48 37.12 0.00 6.49 

Satellite –40.65 41.85 0.00 9.67 –36.37 36.03 0.00 6.59 

Combined –38.38 41.40 0.00 9.43 –38.75 37.46 0.00 6.53 

Low-degree –38.83 41.41 0.00 9.48 –38.62 37.11 0.00 6.55 

High-degree –38.90 42.03 0.00 9.47 –36.04 37.59 0.00 6.51 

Before 2005 –40.32 42.94 0.00 9.68 –40.23 39.05 0.00 6.65 

After 2005 –38.30 40.97 0.00 9.40 –37.56 36.50 0.00 6.50

model was developed with the use of satellite gradiometry data, which have rela-
tively low resolution and could not significantly improve the determination of high-
degree spherical harmonics of the geopotential, that are the main contributors to the 
estimation of model gravity anomalies and DOVs. On the other hand, GAO-2012 
outperforms other Russian global EGF models in terms of the accuracy of the geoid 
heights approximation in high-latitude areas. 

Now let us focus on the comparison of accuracies of satellite and combined global 
EGF models. Generally, the satellite models (GOCE-DIR, GOCE-TIM, GOCO02S), 
including low-degree ones, are inferior to the combined EGF models in terms of the 
accuracy of rapidly changing EGF parameters such as gravity anomalies and DOVs, 
especially in the polar cap area. This can be explained by insufficient completeness 
and sensitivity of satellite data to local gravity anomalies. In other regions, the differ-
ence between satellite and combined (low-degree) models is less pronounced. This



328 V. Koneshov et al.

can also be interpreted as a result of the new space geodesy methods used in GRACE 
and GOCE low-orbit measurement missions. 

In the group of satellite models, GOCO02S stands out in .0 zone, and GOCE-
TIM does in .1 zone. The advantage of GOCO02S is that it is based on both GOCE 
(96.7° orbit inclination) and GRACE (89° orbit inclination) satellite data. As a result, 
it was possible to compensate for the lack of polar cap coverage by GOCE data, using 
the data from GRACE satellites moving in near-polar orbit. 

6.1.5 Conclusions 

Based on the analysis of the methods and results of estimating the accuracy of EGF 
models, the following conclusions can be made. 

Among the EGF models, the main objective is to estimate the accuracy of models 
in the form of spherical harmonics of the geopotential and digital (grid) EGF models. 
The accuracy characteristics of modern EGF models should be estimated using the 
combination of methods, including a priori and a posteriori accuracy estimation. A 
priori estimates should be used in a preliminary analysis of the model accuracy, and 
final conclusions should be made using a posteriori estimates, including the external 
ones obtained by comparing the model with independent reference data. 

The external estimates of EGF model accuracy can be obtained by the following 
methods: by comparing the studied model with a reference model conventionally 
accepted as a standard; by using the orbital method (based on the residuals of satel-
lite measurements for the studied global model used for calculating the ephemeris 
of artificial Earth satellites); by comparing the studied model with the reference 
values of geoid heights, gravity anomalies, DOV components, and other functionals 
of perturbing potential, obtained using various methods of EGF study, such as 
gravimetric and astrogeodetic methods, satellite altimetry, satellite gradiometry, and 
satellite leveling. 

At present, the accuracy of EGF models for geoid heights is of particular impor-
tance for geodetic applications. The accuracy of geoid height estimation on land 
can be improved by applying regional and national digital geoid height models 
constructed by refining the global EGF models in continental areas, using detailed 
gravimetric data. The geoid height models currently have the following character-
istics: resolution (detail) from 5 to 1–2 arcmin; accuracy (RMS error) from a few 
decimeters (Africa, Asia, South America, Russia) to a few centimeters (Europe, USA, 
Canada). 

The Arctic regions, especially the polar cap area, have always been problematic 
from the point of view of accuracy characteristics of EGF models. The best EGF 
models in terms of the proximity to the reference EGM2008 model to degree 2190 in 
the Arctic are EIGEN-6C (N = 1420) in the class of high-degree models and GIF48 
(N = 360) in the class of low-degree models. The new Russian model GAO-2012 
approaches the best international counterparts for the most part of the Arctic due to 
the use of satellite gradiometry.
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6.2 Using the Earth’s Gravity Field Model in Marine 
Gravity Measurements 

A specific feature of marine gravity measurements is that the vessel is away from 
the reference stations at the ports of call for a long time. Under these conditions, it 
is important to monitor the reliability and accuracy of relative measurements, which 
depend on proper operation of the equipment, tying to reference stations, and the 
influencing physical factors that should be taken into account. To implement such 
monitoring, modern EGF models can be used for continuous real-time monitoring 
of the measurement process. 

A new phase of the EGF studies began when space geodesy methods appeared 
(Rapp 1986). Since the gravity field anomalies define the figure of the geoid, they 
can be estimated using the heights of the geoid measured by satellite altimetry in 
the World Ocean along with other satellite-based measurements. Obviously, such 
measurements do not contain the high-frequency components of the gravity field. 
The frequency ranges of gravity anomalies (GAs) calculated from satellite data can 
be evaluated experimentally by comparing them with marine gravity measurements. 

6.2.1 Comparison of Satellite Data with Marine Gravity 
Measurements 

Based on altimetry measurements in the World Ocean from the GEOS-3 and SEASAT 
satellites, geoid heights with an error of 10 cm were obtained and further used 
in calculating the gravity anomalies on a 15 × 15 arcmin grid with an error of 
±8 mGal. The leading role in the development of the methodology for GA estimation 
in water areas, using space data belongs to the National Geospatial-Intelligence 
Agency (NGA) (Yale and Sandwell 1999). 

The RAS Institute of Physics of the Earth (IPE RAS) compared the GAs calculated 
from altimetry data with marine gravity measurements conducted in 1993 in the 
World Ocean (Zheleznyak and Koneshov 1995). Gravity anomalies were compared at 
two test sites: the Dacia Seamount in the Atlantic Ocean and the region of Kamchatka 
and Komandorskie Islands in the Pacific Ocean. The analysis confirmed that the data 
under study were highly consistent in terms of the long-wavelength components 
of the spectrum and the presence of outliers in the altimetric data, caused by the 
short-period components of the spectrum. 

Similar comparison was made on long survey profiles in the Indian and the Pacific 
Oceans. The systematic difference between the GAs obtained using altimetry and 
marine measurements was calculated on 38 profile lines including a sample of more 
than 3000 gravimetric stations with an increment of 15 arcmin. Its average value 
was 0.02 mGal, which actually indicates that there is no systematic difference. On 
some individual profiles the difference varied from –2.9 to +3.5 mGal. The standard 
deviation on individual profiles varied from 4.1 to 11.3 mGal, and amounted to
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Fig. 6.5 Survey profiles and sites for GA comparison. Lines show survey profiles with their working 
numbers, and rectangles show survey sites 

7.2 mGal over the entire sample set. The maximum error of marine measurements was 
0.7 mGal for the random component and 1 mGal for the systematic one (Zheleznyak 
1992; Zheleznyak and Koneshov 1992). 

At the next stage (Drobyshev et al. 2005), the 1 arcmin grid of GAs calculated 
from the altimetric data, provided by the Scripps Institute of Oceanography of the 
University of California, San Diego, was compared to the results of the surveys 
using a Cheta-AGG marine gravimetric system, conducted with the participation of 
the IPE RAS on board the “17th S’yezd Profsoyuzov” research vessel in 1990–1993 
(Fig. 6.5). 

The data on more than 80,000 points on 10 profiles ranging from 2500 to 7000 km 
and more than 73,000 site survey points on 9 sites ranging from 400–60,000 km2 

were used for comparison. The random error of marine measurements was in the 
range of 0.25 to 0.7 mGal on survey routes and in the range of 0.10 to 0.4 mGal on 
survey sites after adjustment (Zheleznyak 1992; Zheleznyak and Koneshov 1992). 
Measurements did not contain systematic errors greater than 0.7 mGal. The distance 
between points ranged from 0.3–1 km and perturbing accelerations often exceeded 
200 Gal. 

Table 6.20 presents statistical characteristics of the differences between marine 
measurements and satellite-based estimation of GAs. The systematic discrepancy 
between the results, excluding the Black Sea, was about 1 mGal, and the random 
error varied from 2.1 mGal in low anomaly zones to 6.2 mGal in high anomaly zones, 
regardless of the location of the survey. The differences for outliers far exceeded the 
triple RMS value in high anomaly areas.
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Table 6.20 Characteristics of discrepancies between GAs obtained using the two methods, mGal 

Profiles or 
sites (P) 

Survey 
area 

Number of 
points 

Systematic 
component 

Random 
component 

Minimum 
value 

Maximum 
value 

001 Atlantic 
Ocean 

4700 1.51 5.72 –20.07 27.82 

002 Atlantic 
Ocean 

4862 1.17 3.97 –13.53 15.43 

68 P1 Atlantic 
Ocean 

427 –3.17 5.70 –19.94 4.72 

80 P1 Atlantic 
Ocean 

411 5.26 6.15 –4.83 22.55 

P1 Atlantic 
Ocean 

4700 1.51 5.72 –20.07 27.82 

P2 Atlantic 
Ocean 

9725 1.17 3.97 –13.53 15.43 

004 Indian 
Ocean 

4998 0.53 5.29 –37.97 17.15 

003 Indian 
Ocean 

5243 –0.02 4.75 –24.70 14.90 

050 Pacific 
Ocean 

10,510 1.89 5.04 –16.13 24.21 

057 Pacific 
Ocean 

14,440 0.52 4.48 –20.50 24.56 

P3 Pacific 
Ocean 

1656 2.12 2.83 –6.21 9.38 

P4, P5, P6 Barents 
Sea 

24,325 1.04 2.06 –11.39 7.54 

502 Black 
Sea 

816 –14.41 8.43 –17.86 2.44 

503 Black 
Sea 

956 –5.72 5.01 –21.20 4.84 

P8 Black 
Sea 

8663 –12.47 6.96 –51.84 1.92 

P9 Black 
Sea 

15,155 –17.88 16.16 –101.16 27.72 

The greater discrepancies obtained in the Black Sea are apparently because these 
profiles are located near the Caucasus mountain system. This region is an isostati-
cally uncompensated area where there are significant gravitating masses above the 
geoid equipotential surface, which is a violation of the Stokes theorem conditions 
(Morgunova et al. 2004). 

Transatlantic Profile Line 002 (located at the latitude 23°N and intersecting two 
basins and the Mid-Atlantic Ridge, see the curves in Fig. 6.6) was investigated in 
most detail.



332 V. Koneshov et al.

Fig. 6.6 Profile line 002, Atlantic Ocean: a—depth H; b—gravity anomaly measurements Gm; 
c—satellite-based estimate of gravity anomaly Gsat; d—difference . = Gm – Gsat
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Fig. 6.7 Power spectra on Profile line 002, Atlantic Ocean (see also Fig. 6.6 caption) 

Figure 6.7 shows the power spectra of the values presented above. These diagrams 
indicate that the difference between the satellite and marine gravity data contains only 
high-frequency components. Besides other factors they are caused by the numerical 
and methodological errors in satellite data processing. Similar spectra were obtained 
for other survey profiles. Thus, the spectra of marine and satellite GA estimates 
coincide only in their low-frequency part. 

Squared modulus of the coherence spectrum between these two methods was 
calculated to quantitatively estimate the boundaries of the coincidence region 
(Brillinger 1975). The procedure allows one to identify the matching frequencies 
in these two data arrays. The curves of the squared modulus of the coherence spec-
trum for all the survey profiles are presented in Fig. 6.8. They are similar to one 
another in all areas of the World Ocean, except for the Black Sea.

The analysis of these graphs shows that the satellite-based GA estimates almost 
coincide with the marine measurements in the open ocean for the wavelength above 
50 km, where the squared modulus of the coherence spectrum exceeds 0.9. All field 
harmonics with wavelengths less than 20 km derived from satellite measurements 
should be considered as noise due to the errors in the initial altimetry data. The distor-
tion of the field harmonics in the range from 20 to 50 km increases with wavelength 
shortening. 

Maps of gravity anomalies based on marine measurements and altimetry data on 
the same site P3 in the Pacific Ocean are presented below in Fig. 6.9. Field patterns 
do not match each other due to altimetry errors.
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Fig. 6.8 Squared modulus of the coherence spectrum between marine and satellite data in the 
Atlantic (001–002), Indian (003–004), Pacific (15, 21, 50, 57) Oceans and in the Black Sea (502–505)
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Fig. 6.9 GA maps based on the results of marine (a) and satellite altimetry (b) measurements, Site 
P3 (Table 6.20), Pacific Ocean 

The profiles in Fig. 6.10, corresponding to the marine data and the EGM2008 
model, also clearly show the difference in high frequencies where the smoother line 
belongs to the model.

The idea of using the satellite data instead of the onshore reference point to tie the 
marine measurements was expressed as early as in 1995 (Zheleznyak and Koneshov 
1995). The practical use of this idea became possible when the EGF models were 
improved and their frequency characteristics were studied in detail. In recent years, 
international and Russian experts have created several new combined EGF models 
calculated using the satellite altimetry and gradiometry along with integrated land, 
marine, and airborne measurements. These models have improved characteristics 
in terms of accuracy in the estimation of geopotential harmonic coefficients, and 
increased spatial resolution (Koneshov et al. 2014b). A special place in the series 
of these models is occupied by the EGM2008 global ultrahigh-degree EGF model 
(Koneshov et al. 2014a, b), the materials of which are published by the NGA (Earth 
Gravitational Model 2008). The EGM2008 model is the most accurate and detailed 
global model as of today (Koneshov et al. 2012b). 

A survey on a site in the Atlantic Ocean, located at the junction of the Mid-Atlantic 
Ridge and the Kane Transform Fault was conducted in 1991 using the Cheta-AGG 
marine gravimetric system to estimate the suitability of the EGM2008 model for 
solving the problem at issue. The area of 300 × 200 km2 is  covered with a grid of  
intersecting profiles with 5 km × 10 km pitch. The seabed terrain and GAs are very 
complex in this area and are strongly stratified within the range of 1000–6000 m and 
−65 mGal to +100 mGal, respectively. 

Figure 6.11 shows a GA map based on marine measurements using a gravimetric 
system.
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Fig. 6.10 Profiles of GA marine measurements (black line) and EGM2008 model (red line)

Fig. 6.11 GA map of the Kane Transform Fault. Lines show the site survey routes
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Fig. 6.12 Map of the differences between GA marine measurements and EGM2008 model for the 
Kane Transform Fault 

The accuracy of the survey after adjustment is 0.35 mGal as estimated by residuals 
at 1230 crossover points. The accuracy of tying to the coastal point in Novorossiysk 
is not worse than 0.3 mGal as estimated by residuals between the output of marine 
gravimetric systems and the measurements at 5 reference stations in different ports. 
The differences between the GA measured values and the values of the EGM2008 
model were calculated at all survey points with an interval of 1 min or 300 m. The 
mean value of this difference is 0.60 mGal, while the standard deviation is 3.97 mGal 
due to the strong stratification of the field. 

Figure 6.12 shows a map of the differences between GA marine measurements 
and EGM2008 model, illustrating the model frequency distortion. 

Experimental results show that the EGM2008 model can be used for monitoring 
the survey bias or tying the gravity survey to the model if there are no reliable 
reference values at the port of departure. 

6.2.2 Method for Tying Marine Measurements to the Earth’s 
Gravity Field Model 

The method for tying the measurements to the EGF model at the post-processing 
stage involves several steps. 

First, it is necessary to complete a cycle of gravimeter measurements processing. 
The initial knowledge of gravity in the port of departure can correspond to a normal 
field or another known value, and the value of the zero-point drift of the gravimeter 
is to be predicted.
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Then, the difference . between the measured GAs and those taken from the 
EGM2008 model is calculated at all the site survey points. All the resulting residuals 
are sorted by time and approximated by a linear (or other) function which is then 
used to tie the measurements to the EGF model and to refine the zero-point drift rate. 

The final step involves the survey adjustment and its accuracy estimation 
(Zheleznyak 2002). 

The idea of monitoring the survey bias and tying the marine measurements to 
the EGM2008 model was tested during the fieldworks in the Indian Ocean, carried 
out in 2012–2013 using the Chekan-AM mobile gravimeter on three survey sites. 
Figure 6.13 shows the residuals between the measurements and the model on Site P1 
located on the continental slope. 

The normal gravity field value was used as the initial value at the reference point, 
and the processing was carried out without correcting the gravimeter zero-point drift. 
The coefficient for the linear term of the approximating function of these differences 
is +2.199 mGal/day. It has the physical meaning of the zero-point drift rate. The 
linear function obtained is used for tying the measurements to the GA values in 
the EGM2008 model, and for adjusting the gravimeter zero-point drift rate. The 
systematic difference between the survey lines and crosslines in this experiment was

Fig. 6.13 Residuals between measurements and model on Site P1 



6 Earth’s Gravity Field Models and Their Application 339

0.08 mGal, and the random component was 0.25 mGal. After the crossover point 
adjustment, the random error was 0.17 mGal, and the average difference between 
the GAs and EGM2008 model values was –0.07 mGal. 

According to the results of standard processing of measurements on Site P1 using 
the gravity values at the reference stations in the ports, the gravimeter zero-point 
drift rate was estimated at +2.184 mGal/day. The random error on Site P1 after 
adjustment was 0.17 mGal, and the average difference between the measured and 
model GA values was +2.12 mGal. 

The parameters to be estimated in the experimental and standard versions of 
processing are almost the same except for the bias: –0.07 mGal and +2.12 mGal 
respectively. It may be both due to the errors in tying and due to the inaccuracy of 
the EGM2008 model on the continental slope. 

Figure 6.14 shows a map of residuals between the measured and model GA values, 
illustrating the frequency distortions of the model on Site P1. 

Site P2 of square shape with a side of 120 km was surveyed in the rift zone of 
the Mid-Ocean Ridge in the Indian Ocean. The residuals between the measured and 
model values for this site are shown in Fig. 6.15.

The residuals shown cannot be approximated by a linear function due to the nature 
of their occurrence. With an increase in perturbing accelerations above 200 Gal, a 
bias appeared in the gravimeter output, which was associated with its malfunction. A 
processing technique differing from the recommended one was used here. First, the

Fig. 6.14 Map of the residuals between measurements and model on Site P1 
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Fig. 6.15 Residuals between measurements and model on Site P2

site adjustment was performed. Then, the mean difference between the measurements 
and model was calculated for the entire site, after which it was used as a correction 
for all measurements. Table 6.21 shows the results of estimating the accuracy of 
measurements at different stages of data processing on Site P2. 

The maps of the measured field values and their differences from the EGM2008 
model on Site P2 are presented in Figs. 6.16 and 6.17.

It follows from the above processing results that it is possible to obtain satisfactory 
survey data using the EGM2008 model even under very adverse weather conditions 
and instrument malfunctions. 

Another example of using the EGM2008 model to check the gravimeter operation 
is shown in Fig. 6.18.

It shows the difference between the measured and model GA values (black) on 
Site P3, and the results of the linear approximation of the recording intervals before 
and after the spike in the gravimeter output (red). Based on the plot of this difference, 
the time and magnitude of the spike could be determined. The spike occurred when

Table 6.21 Error estimates at different processing stages, mGal 

Site P2 Number of 
crosslines 

Systematic 
component 

Random 
component 

Deviation from the 
model 

Primary processing 54 1.17 5.77 13.6 

Adjustment and 
leveling 

54 0.02 1.01 0.00 
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Fig. 6.16 Map of GA on Site P2, based on marine measurements

the vessel stopped for technical reasons and the measurements were suspended on 
Profile Line 34. 

Figure 6.19 shows the position of Profile Line 34 (black line) and GA profile from 
the EGM2008 model (blue curve), Survey Line 34_1 before the spike (red curve), 
and Survey Line 34_2 after the spike (magenta curve).

A GA spike is observed in the zone of overlapping survey lines on Profile Line 34 
which can be easily detected by comparing the measurements with the model. More 
precisely, the magnitude of this spike of +3.5 mGal corresponds to the crossover 
error. After correcting the spike, starting from Profile Line 34, the RMS error on 
Site P3 became equal to 0.15 mGal. 

6.2.3 Conclusions 

The use of the EGM2008 model makes it possible to conduct gravimetric surveys in 
remote waters of the World Ocean without tying to any onshore reference station; 
and to estimate and, if necessary, correct the data obtained in abnormal conditions.



342 V. Koneshov et al.

Fig. 6.17 Map of the residuals between measurements and model on Site P2

Using this survey method, the measurements can be processed offline directly on 
board the vessel in the absence of gravity reference stations in ports of call. 

6.3 Map-Aided Navigation 

The design of modern navigation systems generating the navigation parameters of 
moving vehicles, in particular, the coordinates and velocity components, is based 
on the integration of inertial and GNSS technologies [for example, see (Dmitriev 
et al. 1999; Stepanov 2002; Groves et al. 2006; Veremeenko et al. 2009; Grewal  
et al. 2013; Groves 2013; Emel’yantsev and Stepanov 2016)]. However, interest in 
navigation methods applicable to GNSS-denied environment has recently increased 
(Boreyko et al. 2008, 2010; Carreno et al. 2010; Adler et al. 2015; Vaman, 2014; 
Berkovich et al. 2016; Chernodarov 2016; Stepanov 2016). One of such methods 
is map-aided navigation based on the use of geophysical fields which, in particular,
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Fig. 6.18 Residuals between measurements and model on Site P3

include the gravity and the terrain fields (Lowrey and Shellenbarger 1997; Stepanov 
1998; Bergman 1999; Berdyshev and Kostousov 2007; Nygren 2005; Karlsson and 
Gustafsson 2006; Teixeira  2007; Richeson 2008; Baklitski 2009; Veremeenko et al. 
2009; Carreno 2010; Pavlov et al. 2010; Shcherbinin 2011; Afzal 2011; Meduna 
2011; Shockley 2012; Beloglazov et al. 2012; Klyueva and Zav’yalov 2013; Toropov 
2013; Dzhandzhgava et al. 2013; Vaman 2014; Avgustov et al. 2015; Stepanov and 
Toropov 2015, 2016; Karshakov et al. 2018; Klyueva 2016; Koneshov et al. 2016; 
Vyazmin et al. 2016; Melo and Matos 2017; Wu et al.  2017; Wei et al. 2017; Kiselev  
et al. 2017; Zhou et al. 2018; Dzhandzhgava and Avgustov 2018; Pasnani and Seto 
2018; Kostousov and Tarkhanov 2019; González-García et al. 2020; Karshakov et al. 
2018, 2021; Lee and Canciani 2020; Minligareev et al. 2020; Stepanov and Nosov 
2020; Dunaevskaya et al. 2021). The idea of the method consists in the comparison 
of the field values measured by sensors installed on board a moving vehicle and the 
same values calculated using the available a priori information normally presented 
as a digital map or a field model. 

Depending on the amount of information used, it is a common practice in Russia 
to classify systems in which the measurements are taken at a current time at a point, 
along a certain line, or from an area of a field, i.e., the measurements are actually 
presented as a frame or an image (Beloglazov et al. 1985; Stepanov et al. 2020). 
The specific feature of geophysical map-aided navigation is best manifested in the 
systems that use point information accumulating during the vehicle motion, which
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Fig. 6.19 GA plots based on the EGM2008 model and gravimeter measurements

means that the problem solution is a long-lasting process. This Section addresses the 
systems of this type. 

Various approaches and methods have been applied to map-aided navigation. 
However, according to the authors of this Section, this problem appears to be consid-
ered most comprehensively within the Bayesian framework which is the basis for 
the stochastic estimation methods conventionally used in navigation data processing. 
Besides formulating and solving the problem of algorithm synthesis, these methods 
imply correct accuracy analysis. 

The purpose of this Section is to review and compare Bayesian filtering algorithms 
used in solving the map-aided navigation problem based on geophysical fields. The 
Section relies heavily on the published studies in this area (Stepanov and Toropov 
2015, 2016), with the focus made on illustrating the advantages and disadvantages 
of various algorithms.
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6.3.1 Statement and General Solution of Map-Aided 
Navigation Problem Based on the Nonlinear Filtering 
Theory 

Let us assume, without loss of generality, that the navigation parameters to be updated 
are the coordinates of a moving vehicle on a plane in a Cartesian coordinate system, 
and the problem is considered for the case of discrete time. 

Thus, assume that on board the vehicle there is a navigation system (NS) that 

provides the estimates of its two-dimensional position in a plane yNS  
i = [ y(1) 

i y(2) 
i

]T 

at the i-th time points. There is also an additional sensor to measure the geophysical 
field (parameter) yi, and the measurements can be written as 

yNS  
i = Xi + .yNS  

i , (6.3.1) 

yi = φ(Xi ) + .yi , (6.3.2) 

where Xi =
[
X (1) 
i X (2) 

i

]T 
is the true position of the vehicle in a Cartesian coordinate 

system;.yNS  
i = [.y(1) 

i .y(2) 
i

]T 
are the NS positioning errors; φ(Xi) is the function 

of the vector argument describing the dependence of the field used on coordinates; 
and .yi is the sensor error. These values are normally calculated using a function 
that allows calculating the field values at an arbitrary point in a given area with some 
error.yk i relative to φ(Xi), i.e., φk(Xi ) = φ(Xi ) +.yk i . As a rule, function φ

k(Xi) is  
formed using the available a priori information accumulated from the results of the 
preliminary field survey, and is given in the form of a digital map or using various 
analytical models, e.g. those described in Sect. 6.1. In view of the above, instead of 
(6.3.2), we can write: 

yi = φ(Xi ) + .yi = φk (Xi ) + .y.
i , (6.3.3) 

where .y.
i = .yi − .yk i is the cumulative error of the sensor and the field map. 

The problem basically consists in obtaining the estimates of the NS errors .ŷN S  
i 

and, if possible, the current characteristics of their accuracy, based on the available 
set of measurements (6.3.1), (6.3.3) with i = 1, 2. These estimates and characteristics 
could be further used for updating the NS output. In other words, it is necessary to 
solve the problem of the NS output correction using external nonlinear measurements 
(Stepanov 2017). 

A general block diagram explaining the essence of the problem is given in Fig. 6.20 
(Stepanov and Toropov 2015).

Let us consider the main features of the problem under discussion, which 
complicate the design of algorithms and their accuracy analysis.
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Fig. 6.20 Block diagram of a map-aided navigation system

1. The function φk(Xi) is nonlinear, and the area of a priori position uncertainty 
yNS  
i may be such that it is not always possible to accurately use the linearized 
representation for φk(Xi) obtained by applying Taylor series expansion with 
rejection of higher-order vanishing terms. This function can be formed with the 
use of preliminary survey data, or obtained analytically; to solve the problem, it 
is necessary, first, to build such a function and, second, to take into account the 
presence of errors of the field map along with those of the sensor. 

2. Usually, to solve this problem, it is necessary to have an aided NS, and the map 
data are selected with respect to its output. Thus, in most cases only updating the 
output of this system is concerned. 

3. To accumulate the information necessary for updating the position using a single 
scalar field, the vehicle is required to move in space, thus resulting in the long-
term solution of the problem and, as a consequence, in the need to specify the 
models to take into account the time variability of the NS errors .yNS  

i and .y.
i . 

4. Positioning accuracy within a selected area of the field is essentially dependent on 
the length of the vehicle path, the field variation in its vicinity, the level of the map 
errors, the field sensor accuracy, and the level of a priori uncertainty of the position 
generated by the NS used. Thus, to improve the efficiency of NS correction, it is 
important that the paths are selected properly to ensure navigation with required 
accuracy. To do this, it is necessary to have a method for finding these paths, 
including a procedure for calculating the expected accuracy considering all the 
factors listed above. 

Let us formulate the problem of map-aided navigation based on the Bayesian 
nonlinear filtering theory. For definiteness, we assume that the models of errors
.yNS  

i and .y.
i can be specified using two shaping filters for the vector sequences 

x N S  
i , x.

i with dimensions nNS and n. (Stepanov and Toropov 2015):
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x N S  
i = .NS  

i x N S  
i−1 + .NS  

i wNS  
i , (6.3.4) 

x.
i = ..

i x
.
i−1 + ..

i w
.
i , (6.3.5) 

so that .yNS  
i = H N S  

i x N S  
i , .y.

i = H.
i x

.
i + v.

i . In these equations, .l 
i , .l 

i , H
l 
i 

are the known system matrix, noise matrix, and observation matrix; wl 
i is zero-

mean system white-noise sequences with dimension pl with covariance matrices Ql 
i , 

l = NS, .; v.
i is the zero-mean white-noise component of the total errors of the 

map and the sensor with the covariance matrix R.
i . For simplicity, it is assumed that 

these sequences are independent of each other and of the initial conditions. With the 
agreed notation, measurements (6.3.3) can be written as follows: 

yi = φk
(
yNS  
i − H N S  

i x N S  
i

)+ H.
i x

.
i + v.

i = si
(
H N S  
i x N S  

i

)+ H.
i x

.
i + v.

i , 
(6.3.6) 

where si
(
H N S  
i x N S  

i

) = φk
(
yNS  
i − H N S  

i x N S  
i

)
. 

Introducing the augmented vectors xi =
[ (

x N S  
i

)T (
x.
i

)T ]T , wi =
[ (

wNS  
i

)T (
w.

i

)T ]T , dimensions n = nNS  + n. , p = pNS  + p. and functions 

s̃i
(
x N S  
i

) = si
(
H N S  
i x N S  

i

)
, ˜̃si (xi ) = s̃i

(
x N S  
i

) + H.
i x

.
i , it is possible to form the 

following equations for the state and the measurement vectors: 

xi = .i xi−1 + .i wi , (6.3.7) 

yi = ˜̃si (xi ) + v.
i , (6.3.8) 

where .i, .i and wi, v.
i are formed according to (6.3.4), (6.3.5). 

Now, after specifying the probability density functions (PDF) (hereinafter referred 
to as densities) f

(
wNS  

i

)
, f
(
w.

i

)
, f
(
v.
i

)
, f (x0), the nonlinear filtering problem can 

be formulated. Its purpose is to obtain, using the measurements Yi = [y1, ..., yi ]T 
collected by the current time i, a mean-square optimal estimate that minimizes the 
unconditional covariance matrix 

Gopt 
i = 

¨ {(
xi − x̂ opt i (Yi )

)(
xi − x̂ opt i (Yi )

)T}
f (xi , Yi )dxi dYi , (6.3.9) 

where f (xi, Yi) is the joint PDF for vectors xi and Yi. Matrix minimization is under-
stood in the sense that for any arbitrary estimate x̃i (Yi ) with a covariance matrix G̃i , 
the inequality Gopt 

i ≤ G̃i holds true as an inequality for quadratic forms. It is well 
known that such an estimate and the current accuracy characteristic corresponding to 
it in the form of a conditional covariance matrix are determined using the following
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formulas (Stratonovich 1968; Stepanov 1998; Bergman 1999; Yarlykov et al. 2004): 

x̂ opt i (Yi ) = Exi /Yi {xi } =
{

xi f (xi /Yi )dxi , (6.3.10) 

Popt 
i (Yi ) = Exi /Yi

{(
xi − x̂ opt i (Yi )

)(
xi − x̂ opt i (Yi )

)T}
. (6.3.11) 

Here, f (xi/Yi) is the a posteriori density, for which the following recurrence 
formula quite useful when solving the problem in consideration holds true: 

f (xi /Yi ) = f (yi /xi ) f (xi /Yi−1)}
f (yi /xi ) f (xi /Yi−1)dxi 

, (6.3.12) 

where f (yi/xi) is the likelihood function obtained taking into account (6.3.8), and 
f (xi /Yi−1) is the prediction density determined as 

f (xi /Yi−1) =
{

f (xi /xi−1) f (xi−1/Yi−1)dxi−1. (6.3.13) 

The transition density f (xi /xi−1) in this formula can be obtained using Eq. (6.3.7). 
In (6.3.10) and (6.3.11), integrals are understood as multiple ones with infinite limits, 
and E is an expectation sign with the subscript characterizing the probability density 
function for which it is taken. 

Thus, the solution of the problem reduces to the calculation of multiple inte-
grals (6.3.10), (6.3.11). Having the estimate xi, the desired estimate .yNS  

i and 
the corresponding accuracy characteristics can be easily found using the equality
.yNS  

i = H N S  
i x N S  

i . 
Let us consider an example explaining the above equations. 

Example 1 Assume that NS errors are described using Gaussian Wiener sequences, 
the field measurements are scalar, and the total errors of the map and the sensor are 
the sum of the slowly changing component, also specified as the Gaussian Wiener 
sequence, and the high-frequency component described by white Gaussian noise 
with the variances r2 i . In other words, we assume that 

x N S  
i = x N S  

i−1 + .NS  wNS  
i , 

x.
i = x.

i−1 + q.w.
i , 

yi = si
(
x N S  
i

)+ x.
i + v.

i , (6.3.14) 

where .yNS  
i = x N S  

i = [
x N S  
i,1 x 

N S  
i,2

]T 
, i.e., H N S  

i = I2 (I2 is an identity matrix with 
a dimension of 2 × 2), si

(
x N S  
i

) ≡ s̃i
(
H N S  
i x N S  

i

)
, .NS  

i = q N S  I2, .y.
i = x.

i + v.
i ,

.HC  
i = I2, ..

i = 1, wNS  
i , w.

i are two-dimensional and one-dimensional white 
noises with unit variances; q N S , q. are positive scalar values.
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When refining the recurrence formulas (6.3.12), the likelihood function and the 
transition density under the assumptions made will be as follows: 

f (yi /xi ) = N
(
yi ; si (xi ), r2 i

)
, f (xi /xi−1) = N

(
xi ; xi−1, diag

{
q N S  , q N S  , q.

})
, 

where diag
{
q N S, q N S, q.

}
is a diagonal matrix, on the main diagonal of which 

there are the elements indicated in brackets. It should be recalled that the notation 
f (x) = N (x; x, P) is used for the Gaussian vector with the expectation x and the 
covariance matrix P, i.e., 

f (x) = N (x; x, P) = 1 

(2π)n/2 
√
det P 

exp

(
− 
1 

2 
(x − x)T P−1 (x − x)

)
, 

where n is the dimension of this vector. 
The equation for the a posteriori density becomes much simpler if we assume 

that the NS position errors do not change while solving the problem, and there is 
no slowly changing component, i.e., x N S  

i = x N S  
i−1 = x N S , x.

i = 0, wNS  
i = 0. Since 

x.
i = 0, the state vector includes only NS errors, i.e., x = x N S . Let us assume that a 
priori PDF for the initial state vector is a Gaussian one with independent components 

and variances σ2, i.e., f (x) = N

([
x1 
x2

]
;
[
0 

0

]
,

[
σ2 0 
0 σ2

])
. In this case, we can write 

the following representation for the a posteriori density: 

f (x/Yi ) = c exp 

⎧ 
⎨ 

⎩− 
1 

2 

⎛ 

⎝ x
2 
1 

σ2 
+ 

x2 2 
σ2 

+ 
ix

j=1

(
y j − s j (x1, x2)

)

r2 j 

2 
⎞ 

⎠ 

⎫ 
⎬ 

⎭, (6.3.15) 

where c is a normalizing constant. 
Figure 6.21 shows the behavior of the a posteriori density isolines when solving 

the navigation problem using a terrain field when the vehicle moves from the lower 
left to the upper right (Toropov 2013). It was assumed that the state vector included 
only NS errors, i.e. x = xNS , and the formula for the a posteriori density was (6.3.15). 
The figure shows the isolines of the field and examples of isolines of a posteriori 
density (6.3.15) for different numbers of measurements. The “+” symbol indicates 
the true position of the vehicle, and the “∗” symbol indicates the position according 
to the NS output which was updated according to the results of the problem solution. 
Black lines indicate a posteriori confidence ellipses (Stepanov 2017).

Figure 6.22 shows the samples of a posteriori densities (6.3.15), the isolines of 
which are shown in Fig. 6.21.

It should be noted that the behavior of the a posteriori density for the first measure-
ment corresponds to the behavior of the field isolines, the nonlinear nature of which 
in this area actually generates the nonlinearity of the problem under consideration.
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Fig. 6.21 Field isolines and an example of the solution to map-aided navigation problem

Fig. 6.22 Behavior of a posteriori density (15) with different numbers of measurements
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When calculating the integrals (6.3.10), (6.3.11), it is necessary to specify the func-
tion f (xi /Yi ). To do so, various PDF approximations are used within the Bayesian 
framework. It should be noted that in addition to adequate representation of the 
function f (xi /Yi ), the chosen approximation should be convenient for the recursive 
solution of the problem. 

According to (Stepanov and Toropov 2015), there are two main methods that can 
be distinguished among various approximation methods used, including in solving 
the problem under consideration. These two methods are defined by the following 
formulas: 

f (xi /Yi ) ≈ 
Mx

j=1 

ω j i N
(
xi ; x̂ j i , P j i

)
, (6.3.16) 

f (xi /Yi ) ≈ 
Lx

j=1 

μ j i δ
(
xi − x j i

)
. (6.3.17) 

Here, μ j i , ω j i are the weights that ensure normalization of the densities on the left; 

N
(
xi ; x̂ j i , P j i

)
are Gaussian densities with the expectations x̂ j i and the covariance 

matrices P j i , j = 1.M ; δ
(
xi − x j i

)
is a set of delta functions for different grid nodes 

x j i , j = 1.L . 
A special case of representation (6.3.16) for  M = 1 corresponds to the Gaussian 

approximation of the a posteriori density generating the algorithms of the Kalman 
type. When M > 1, the density approximation is referred to as the Gaussian sum 
approximation of a posteriori density (Sorenson and Alspach 1971). 

When points (grid nodes) x j i are selected deterministically in the (6.3.17) repre-
sentation, the corresponding algorithm is called the point mass method (filter), or 
the grid method. If these nodes are chosen at random, various versions of the Monte 
Carlo method are obtained (Bucy and Senne 1971; Stepanov 1998; Bergman 1999; 
Toropov 2013; Stepanov and Toropov 2014). 

Further we discuss the specifics of filtering algorithms based on the use of the 
above approximations. 

6.3.2 Algorithms Based on Gaussian Approximations 

Let us consider the algorithms generated by the density approximation using (6.3.16) 
for M = 1. Such a representation can be obtained, for example, based on linearization 
of a function describing a geophysical field si

(
.yNS  

i

)
, i.e.,



352 V. Koneshov et al.

si
(
.yNS  

i

) ≈ si (0) + 
∂si
(
.yNS  

i

)

∂
(
.yNS  

i

)T

|||||
.yNS  

i =0

.yNS  
i , (6.3.18) 

where si (0) = φk
(
yNS  
i

)
; 

∂si (.yNS  
i ) 

∂(.yNS  
i )

T

||||
.yNS  

i =0 

= ∂φk (yNS  
i −.yNS  

i ) 
∂(.yNS  

i )
T

||||
.yNS  

i =0 

. 

and 

ỹi = yi − si (0) ≈ 
∂si
(
.yNS  

i

)

∂
(
.yNS  

i

)T

|||||
.yNS  

i =0

.yNS  
i + .y.

i . (6.3.19) 

The approximation of the nonlinear function in the form (6.3.18) makes it possible 
to use the linear Kalman filter for solving the problem of map-aided navigation. In 
the Russian literature these algorithms are often referred to as searchless estimation 
algorithms (Beloglazov et al. 1985). 

Figure 6.23 illustrates two cases of the linearization procedure (6.3.18), (6.3.19) 
application in a one-dimensional problem. In the first case, the linearization point is 
chosen in such a way that the linear representation of the geophysical field profile 
reflects its real behavior around the true position of the vehicle. In this case, Kalman 
filter allows obtaining the correct estimate of the vehicle position. In the second case, 
the situation is different. Here, the linearization point is chosen improperly, and the 
resulting linear representation does not reflect the real behavior of the field near the 
true position, which results in algorithm divergence and significant estimation error. 

Fig. 6.23 Illustration of geophysical field linearization procedure
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Fig. 6.24 Iterative linearization procedure 

The diagrams presented in Fig. 6.23 show that the use of such algorithms in the 
case of nonlinear nature of the function si

(
.yNS  

i

)
is limited; the reason is that a linear 

field representation is inappropriate when there is a significant distance between the 
linearization point and the true value of the coordinate to be estimated. 

The efficiency of approximation type (6.3.18) can be increased using various 
modifications of Kalman type filters, in particular, the so-called iterative algorithms 
that correct the linearization point (Yazwinski 1970; Dmitriev 1991; Simon  2006; 
Stepanov 2017). For this purpose, the same measurements are processed several 
times with the linearization point being changed at each iteration. The idea of an 
iterative algorithm is illustrated in Fig. 6.24. The left part of the figure shows the 
approximation of the function describing the behavior of the field (profile) used with 
conventional linearization (Linear approximation 1 in Fig. 6.24), and the right part 
shows the behavior after updating the linearization point based on the results of 
measurement processing at the first iteration. 

In this case, such a procedure provides a more accurate description of the nonlinear 
function in the vicinity of the measurement point after adjusting the linearization 
point. At the same time, it should be noted that the use of an iterative procedure does 
not always result in a positive effect and, if the choice of the linearization point is 
improper, the filter may diverge, i.e., its error will increase with increasing number 
of measurements. 

Filters using the so-called statistical linearization procedure were proposed in 
addition to the iterative algorithms (Gelb 1974). Such linearization differs from 
Taylor series expansion (6.3.18), (6.3.19) in that the derivative of the field is not 
used when a linear representation of a function describing the field is searched. 
The least squares method is used here for this purpose. It minimizes the difference 
between a nonlinear function and a linear counterpart in a priori uncertainty. The 
idea of this linearization method is explained in Fig. 6.25
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Fig. 6.25 Statistical linearization method 

In addition to the aforementioned, a number of recently proposed “new” Kalman-
type filters can be used to solve the problem under consideration, including the 
so-called Unscented Kalman Filter (UKF) and a number of other filters (Norgaard 
et al. 2000; Juiler and Uhlmann 2004; Li and Jilkov 2004; Metzger 2005; Simon  
2006; Stepanov 2006; Ånonsen and Hallingstad 2007; Stepanov et al. 2007; Särkkä 
2013; Candy 2016; Šimandl et al. 2016; Afshari et al.  2017), as well as filters similar 
to the above ones in terms of the design idea and based on the statistical linearization 
method (Gelb 1974; Lefebvre et al. 2005) and others (Luhtala et al. 2015; Stepanov 
et al. 2019, 2021a, b). 

Example 2 As applied to Example 1 given above, Kalman filter-based algorithms 
are easy to obtain if the measurements in (6.3.14) are given as follows: 

yi ≈ yKT  
i = Hi xi + yi + vadd 

i + v.
i , 

where Hi is a three-dimensional row matrix, yi is a known value, and v
add 
i is a random 

quantity characterizing the error caused by the replacement of nonlinear measure-
ments (6.3.8) by linear ones. Matrix Hi, value yi , and statistical characteristics v

add 
i 

depend on the type of Kalman algorithm used. For example, when using an extended 
Kalman filter in which the prediction value of the state vector from the previous 
step is chosen as a linearization point (in this example, this value coincides with the
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estimate from the previous step x̂ N S  
i−1), we have: 

Hi =
[

dsi (x N S  
i ) 

dx  N S  
i,1

|||
x N S  
i =x̂ N S  

i−1 

dsi (x N S  
i ) 

dx  N S  
i,2

|||
x N S  
i =x̂ N S  

i−1 

1
]
, vadd 

i = 0, yi = si
(
x̂ N S  
i−1

)
. 

Using the standard procedures of the extended Kalman filter with the measure-
ments ỹi = yi − yi = Hi xi + vadd 

i + v.
i and the model corresponding to the example 

in consideration, it is possible to find the desired estimate and covariance matrix. 
The literature with more detailed description of the Kalman filter versions and 

their application to map-aided navigation can be found in (Stepanov and Toropov 
2015, 2016). 

6.3.3 Algorithms Based on Gaussian Sum Approximations 

Kalman-type algorithms are easy to implement and do not require much calcula-
tions. Their main drawback is that all of them, in one way or another, are based on 
the Gaussian approximation of a posteriori density. It does not support possible multi-
extremal nature of the PDF associated with nonlinearity of the function Si

(
.yNS  

i

)
. 

To overcome this drawback, Gaussian sum approximation of a posteriori density, 
based on representation (6.3.16) with M > 1, can be used (Sorenson and Alspach 

1971; Stepanov 1998). The parameters of partial Gaussian densities N
(
xi ; x̂ j i , P j i

)

included in (6.3.16) can be found using a set of M Kalman filters (or their versions 
mentioned above) of the dimension n = nNS + n. with corresponding linearization 
points. Rather simple formulas for the desired estimates and covariance matrices 
follow from (6.3.16): 

x̂ opt i (Yi ) ≈ x̂i (Yi ) = 
Mx

j=1 

ω j i x̂ 
j 
i , 

Pi (Yi ) ≈ 
Mx

j=1 

ω j i
(
x̂ j i

(
x̂ j i

)T + P j i
)

− x̂i (Yi ) ̂xT i (Yi ). (6.3.20) 

Approximation (6.3.16) proved to be quite suitable for designing the map-aided 
navigation algorithms. A schematic illustration of the Gaussian sum approximation 
with several linearization points is shown in Fig. 6.26.

In contrast to conventional linearization, several linearization points are used here, 
each of which generates Gaussian approximation of a posteriori density in (6.3.16). 
This is exactly what determined the name of the corresponding algorithm proposed 
for solving the problem of map-aided navigation in (Dmitriev and Shimelevich 1978). 
The contribution of partial densities in representation (6.3.16) is determined by the 
weight which depends on the value of the likelihood function. Its value, in turn,
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Fig. 6.26 Gaussian sum approximation example

depends on the residual between the measured and calculated field values. It is 
clear that in the case of several linearization points in the a priori uncertainty area, 
there is a high probability that one of the points will be chosen properly and the 
corresponding linear approximation will most likely show the actual behavior of the 
field in the vicinity of the measurement point. Figure 6.26 shows that the third linear 
approximation is the most apposite one. 

The difficulty of implementing the algorithms arising from (6.3.16) is that the 
number of summands increases at each step when processing a recurrent measure-
ment and presenting the likelihood function in a form similar to (6.3.16). Various 
methods based, for example, on occasional substitution of sum (6.3.16) with Gaus-
sian density were proposed in order to limit them. More detailed information on the 
versions of these algorithms can be found in (Dmitriev 1991; Stepanov 1998). 

6.3.4 Point Mass Method 

The filtering algorithms based on approximation (6.3.16) do not always work effec-
tively with high a priori uncertainty. In some cases, the filters converge to a single 
filter, and often to a point that does not correspond to the true position. This is what 
triggered the development of the algorithms based on approximation (6.3.17) which 
generated rather simple formulas for the estimate and the covariance matrix:
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x̂ opt i (Yi ) ≈ x̂i (Yi ) = 
Lx

j=1 

μ j i x 
j 
i , 

Popt 
i (Yi ) ≈ Pi (Yi ) = 

Lx

j=1 

μ j i
(
x j i

(
x j i

)T)− x̂i (Yi ) ̂xT i (Yi ), (6.3.21) 

where x j i , j = 1.L are the grid nodes of vector xi. 

In the simplest case, when the vector xi =
[ (

x N S  
i

)T (
x.
i

)T ]T = x is time-

invariant, the point-mass filter makes it possible to find the weights in (6.3.17) 
according to the following equations: 

μ j i = μ̃ j iΣ    L 
j=1 μ̃ j i 

, μ̃ j i = f
(
yi /x 

j
)
μ̃ j i−1, μ̃ j i−1 = f

(
Yi−1/x 

j
)
, μ̃ j 0 = f

(
x j
)
, 

(6.3.22) 

where f
(
yi /x j

) = N
(
yi ; si

(
x N S  j

)+ H.
i

(
x.
) j 

, R.
)
. If the subvector xi is time-

varying, the weights are calculated using the below equations rather than (6.3.22) 
(Bucy and Senne 1971; Stepanov 1998): 

μ̃ j i = f
(
yi /x 

j 
i

)
μ̃ j i,i=1, μ̃ j i,i=1 = 

Lx

k=1 

μk 
i−1g 

jk  
i , g jk  i = 

f
(
x j i /x

k 
i−1

)

Σ    L 
j=1 f

(
x j i /x

k 
i−1

) . 

These equations significantly increase the amount of computation due to double 
summation. 

When designing the algorithms of the type discussed, it is very important that 

the density can be represented for the augmented vector xi =
[ (

x N S  
i

)T (
x.
i

)T ]T as 
follows (Lainiotis 1976): 

f (xi /Yi ) = f
(
x N S  
i /Yi

)
f
(
x.
i /x 

N S  
i , Yi

)
. (6.3.23) 

It follows from models (6.3.7) that if the densities f
(
w.

i

)
, f
(
v.
i

)
, f
(
x.
0

)
are of 

Gaussian nature, it is generally possible to design efficient algorithms for optimal 
estimates and covariance matrices, based on a bank of Kalman filters of n. dimension. 
This can be explained by the fact that for the fixed subvector x N S  

i , i = 1, 2 …, the 
density f

(
x.
i /x 

N S  
i , Yi

)
will be a Gaussian one, and its parameters can be found using 

Kalman filter. 
Let us explain this by an example where the errors of the NS are time-invariant, 

i.e., .yNS  
i = x N S  

i = x N S  
i−1 = x N S  (Stepanov 1998). 

Example 3 We use approximation (6.3.17) for the subvector x N S:
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f
(
x N S  /Yi

) ≈ 
Lx

j=1 

μ j i δ
(
x N S  − x N S  j

)
. 

Taking into account (6.3.23), we can write: 

f (xi /Yi ) ≈ 
Lx

j=1 

μ j i f
(
x.
i /x 

N S  j  , Yi
)
δ
(
x N S  − x N S  j

)
. (6.3.24) 

Considering Gaussian-type densities f
(
w.

i

)
, f
(
v.
i

)
, f
(
x.
0

)
, the densities 

f
(
x.
i /x 

N S  j  , Yi
) = N

(
x.
i , x̂

.
i

(
x N S  j  , Yi

)
, P.

i

(
x N S  j

))

with different j = 1, ..., L will also be Gaussian with the parameters x̂.
i

(
x N S  j  , Yi

)

and P.
i

(
x N S  j

)
. Thus, these parameters can be easily found with the use of a set (a 

bank) of recursive Kalman filters based on the measurements ỹ j i = yi − si
(
x N S  j

) = 
H.
i x

.
i + vi with the dimension n. . As applied to model (6.3.14) in the absence of 

generating noise for the subvector x N S  
i , these formulas will be as follows: 

x̂.
i

(
x N S  j  , Yi

) = x̂.
i−1

(
x N S  j  , Yi−1

)+ Ki

(
ỹ j i − x̂.

i−1

(
x N S  j  , Yi−1

))
, x̂.

0 = x.
0 , 

Ki = 
P.
i

(
x N S  j

)

r2 i 
, P.

i

(
x N S  j

) = 
r2 i P

.
i/ i−1

(
x N S  j

)

P.
i/ i−1

(
x N S  j

)+ r2 i 
, 

P.
i/ i−1

(
x N S  j

) = P.
i−1

(
x N S  j

)+ (q.
)2 

, P.
0 = (σ.

0

)2 
, 

where x.
0 , σ.

0 are a priori mathematical expectation and root-mean-square deviation 
for the vector x. . 

Having x̂.
i

(
x N S  j  , Yi

)
and P.

i

(
x N S  j

)
, it is possible to obtain recursive formulas 

for the weights as well: 

μ̃ j i = exp

{
− 
1 

2

(
yi − si

(
x N S  j

)− x̂.
i−1

(
x N S  j  , Yi−1

))2 

r2 i + P.
i / i−1

(
x N S  j

)
)

μ̃ j i−1, μ̃ j 0 = f
(
x N S  j

)
. 

The method based on representation (6.3.23) was called the partitioning method in 
(Lainiotis 1976). A congenial method specifically developed for map-aided naviga-
tion is known in the Russian literature as the recurrence-search algorithm (Beloglazov 
et al. 1979).
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6.3.5 Sequential Monte Carlo Methods 

It should be noted that Monte Carlo method is widely used along with the point mass 
method in designing the algorithms using approximation (6.3.17). These methods 
are based on density approximation, where x j i , j = 1.L is a set of samples of some 
independent random vectors. In particular, when using the simplest Monte Carlo 

method with a constant state vector xi =
[ (

x N S  
i

)T (
x.
i

)T ]T = x the weights are 
determined using (6.3.22); however, the nodes x j are formed by sampling the random 
vectors in accordance with the a priori density f (x), and the formula for weights at 
the initial time point is defined as μ̃ j 0 = 1/L (Stepanov 1998; Bergman 1999). When 
using the simplest Monte Carlo method with variable vector xi, the relationships for 
the weights do not change, and the difference will be that the sample x j i , j = 1.L is 
formed at each step in accordance with the density f

(
xi /xi−1 = x j i−1

)
. 

One of the advantages of the Monte-Carlo method is that it allows implementing 
a recursive approximation procedure (6.3.17) which is simpler than the point-mass 
method. The term recursive is taken to mean a procedure where density approxi-
mation like (6.3.17) at the  i-th step is formed with the use of x j i−1 sample and the 
weights are calculated using the data from the previous step. 

Over the recent decades, the Monte Carlo method has developed rapidly in 
the form of its recursive versions called the sequential Monte Carlo methods or 
particle filters (Doucet et al. 2001). The main techniques that are used in the Monte 
Carlo method and increase its efficiency, including those applied to the map-aided 
navigation, are described below. 

First, for approximation (6.3.17), it is important to choose a set of samples x j i to 
be used. These samples should be formed in the area where the values of a posteriori 
density are significantly above zero. To achieve this, the importance sampling method 
is widely used, which is aimed at exactly this way of samples formation (Stepanov 
1998; Doucet et al. 2001). The technique that provides for importance sampling and 
recursive procedures for samples generation and weights calculation in Monte Carlo 
methods is called sequential importance sampling (Doucet et al. 2001). 

Implementation of the sequential Monte Carlo methods brings up a problem of 
algorithm degeneration, which shows itself in the fact that only one weight will have 
a value close to one when time is increased, whereas the others will be close to 
zero (Doucet et al. 2001). This drawback is partially overcome by using a procedure 
referred to as sequential importance resampling or a bootstrap procedure. The essence 
of the bootstrap procedure as applied to the problem under consideration is that a new 
set of samples x̃ j i , j = 1.L is formed based on the set x j i ( j = 1.L) in accordance 
with the discrete distribution (6.3.17), which allows for the following approximation 
instead of (6.3.17): 

f (xi /Yi ) ≈ 
1 

L 

Lx

j=1 

δ
(
xi − x̃ j i

)
. (6.3.25)
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It is important that the values x̃ j i are chosen from the previously generated set 
x j i , j = 1.L , which retains the possibility of recursive generation of samples x j i , 
i = 1, 2... and, as a result, the capability of designing a recursive algorithm as 
a whole. An illustration of this procedure as applied to Example 1 discussed in 
Sect. 6.3.1 is shown in Fig. 6.27. 

It is evident that this procedure allows a sample to be redistributed to the domain, 
where the a posteriori density is substantially different from zero, which determines 
its effectiveness. 

A very important feature of the successive Monte-Carlo methods is that it is 
possible to use all the advantages of the a posteriori density representation as (6.3.23) 
not only for quasi-deterministic models for the vector x N S  

i , but also for models in the 
general form of Markov sequences (Doucet et al. 2001). This feature is successfully 
used in the development of map-aided navigation algorithms (Gustafsson et al. 2002; 
Gustafsson 2010; Stepanov and Toropov 2014).

Fig. 6.27 Resampling procedure example: a—a posteriori density; b—gray and black: sampling 
before and after the resampling procedure; c—isolines of a posteriori density against the background 
of the sample prior to resampling; d—isolines of a posteriori density against the background of 
sampling after resampling 
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6.3.6 Analysis of the Accuracy of Filtering Algorithms 

Unconditional covariance matrix (6.3.9) which quantitatively characterizes the 
potential estimation accuracy is normally used when analyzing the accuracy and 
comparing various estimation algorithms. This matrix can be calculated using the 
simulation as 

Gopt 
i ≈ G̃a 

i = 1 L 
Lx

j=1

(
x j i − x̃ j i

(
Y j i

))(
x j i − x̃ j i

(
Y j i

))T 
, (6.3.26) 

where x j i , Y 
j 
i are the j-th samples ( j = 1.L) of the estimated sequence and its 

corresponding measurements, obtained by modeling using (6.3.7), (6.3.8); x̃ j i
(
Y j i

)
is 

an estimate calculated using the algorithm under study. For unconditional covariance 
matrix (6.3.9), the formula Gopt 

i = } Popt 
i (Yi ) f (Yi )dYi also holds true, from which 

it follows that it can be calculated using the formula 

Gopt 
i ≈ G̃b 

i = 1 L 
Lx

j=1 

P̃ j i

(
Y j i

)
, (6.3.27) 

where P̃ j i
(
Y j i

)
is the calculated covariance matrix of x j i estimation errors formed in 

the algorithm to be tested. The coincidence of G̃a 
i and G̃

b 
i confirms the consistency 

of the results obtained. 
Taking into account the fact that the described procedures require a significant 

amount of computation, the accuracy analysis in map-aided navigation often involves 
the Cramer–Rao inequality which makes it possible to calculate the theoretical lower 
bound (CRLB) for estimating the desired parameters (Stepanov 1998; Bergman 1999; 
Stepanov and Vasil’ev 2016). For model (6.3.7), (6.3.8), one of the versions of this 
inequality can be written as follows: 

Exi ,Yi

[(
xi − x̂i (Yi )

)(
xi − x̂i (Yi )

)T ] ≥ J −1 
i , (6.3.28) 

where Ji is defined as 

Ji = Exi ,Yi

[
d ln f (xi , Yi ) 

dxi

(
d ln f (xi , Yi ) 

dxi

)T
]
. (6.3.29) 

It is the diagonal elements of the matrix J −1 
i that determine the minimum possible 

variances for the parameters to be estimated. When using the Cramer–Rao inequality, 
it should be kept in mind that it allows finding only a theoretical bound which does
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not have to be achieved by using an optimal algorithm. At the same time, the CRLB 
makes it easy to identify the areas of the geophysical field where it is impossible 
to obtain good navigation accuracy, which is of vital importance when choosing the 
paths that are recommended for NS position update (Stepanov 1998; Stepanov and 
Nosov 2021). 

Example 4 Below is the explanation of the procedure for calculating the CRLB 
from the Example 1, assuming that the subvector x N S  

i does not change, i.e. x N S  
i = 

x N S  
i−1 = x = [ x1 x2

]T 
, x.

i = 0, the RMS error (RMSE) of measurements is constant 
ri = ri−1 = r , and a priori functions of the density of the state vector and noise are 
Gaussian. In this case, matrix (6.3.29) is defined as 

Ji = P−1 
x + 

1 

r2

{ [
dST i (x) 
dx  

dSi (x) 
dxT

]
f (x)dx, (6.3.30) 

where Si (x) =
[
s1(x) ... si (x)

]T 
; Px is the a priori covariance matrix for the state 

vector; dS
T 
i (x) 
dx is the derivative of the vector function of the vector argument (Stepanov 

2017). The integrals
} ∂s j (x) 

∂ xl 
∂s j (x) 
∂ xm f (x)dx , j = 1, 2...., l, m = 1, 2 in (6.3.30) can 

be found by Monte Carlo methods using the formula 1 L
Σ    L 

k=1 
∂s j (x) 

∂ xl

|||
x=xk 

∂s j (x) 
∂ xm

|||
x=xk 

, 

where L is the number of samples, xk f (x), k = 1..L . With these data, the lower 
bound can be found by inversion of matrix Ji. 

It is easy to notice that instead of (6.3.30), a convenient recursive equation can be 
used: 

Ji = Ji−1 + 
1 

r2

{ [
dsi (x) 
dx  

dsi (x) 
dxT

]
f (x)dx, (6.3.31) 

where J0 = P−1 
x . 

Based on (6.3.30), it is possible to derive a formula for approximate accuracy 
estimation using a certain geophysical field. Let us neglect the contribution of a 
priori information, i.e., the first term in (6.3.30), and assume that the scalar x is to be 
estimated, i.e., only one component of the coordinates is to be refined. We introduce 
a sample average gradient of the geophysical field: 

hi =
[|||1 

i 

ix

j=1

{ (
∂s j (x) 

∂x

)2 

f (x)dx . 

In this case, the following approximate formula for the RMSE corresponding to 
the CRLB can be written (Stepanov 1998):
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σlb  i ≈ r 

hi 
√
i 
, (6.3.32) 

from which it follows that the expected minimum possible positioning RMSE is 
determined by the ratio of the RMSE of the field measurement to its gradient. 

6.3.7 Comparison of Filtering Algorithms 

As an illustration, we present the simulation results that allow us to compare some 
of the above map-aided navigation algorithms based on the information about the 
seabed terrain field. The simulation uses a field with an average depth of 190 m and 
average gradients of 150 m/km and 100 m/km in two perpendicular directions. The 
field map was represented as a grid of field values in the nodes with a space .. The  
measurements were taken with the same interval during the simulation. 

It was assumed that the NS errors did not change and there was no slowly changing 
component, i.e., x N S  

i = x N S  
i−1 = x N S , x.

i = 0, wNS  
i = 0. The RMSE for the 

measurement noise was assumed to be 2% of the average depth of the sea. 
The following algorithms were compared: the extended Kalman filter, the iterated 

Kalman filter, the unscented Kalman filter, the point-mass method, and the sequential 
Monte Carlo method. 

Real and calculated covariance matrices of estimation errors in accordance with 
(6.3.26) and (6.3.27) were calculated to analyze the accuracy of these algorithms. 
The number of statistical tests for calculating these characteristics was chosen in 
the range of 104–106. The calculated RMSEs of the NS coordinates, which are the 
square roots of the matrix (6.3.27) diagonal elements, are denoted as σ̃ μ 

(1) and σ̃ μ 
(2), 

and the real RMSEs corresponding to matrix (6.3.26) are  σ μ 
(1) and σ μ 

(2), where the 
superscript μ defines the algorithm, and subscripts (1), (2) are the components of the 
coordinates. Additionally, the CRLB was calculated. 

The simulation results are presented in Table 6.22 (Toropov 2013). The table 
shows that for small areas of a priori uncertainty σ0 = 0.1., the coordinate RMSEs 
for all algorithms almost coincide with each other and reach the CRLB. The accuracy 
coincidence for different algorithms is explained by the fact that the problem is almost 
linear in the given conditions.

As the area of a priori uncertainty (σ0 = 0.3− 0.5.) increases, the difference in the 
RMSEs between the corresponding algorithms becomes noticeable. The difference 
in the estimation accuracy of coordinates components is due to the fact that the 
angles of the relief inclination along the route are different. With the assumptions 
made, the linearization-based algorithms (extended Kalman filter), in contrast to the 
unscented Kalman filter, do not allow obtaining a consistent accuracy characteristic. 
With the values σ0 ≥ ., the a posteriori density becomes multi-extremal (as shown 
in Fig. 6.22). In this case, the difference between the RMSEs corresponding to the 
Kalman type algorithms and the RMSEs achieved using the point-mass method or
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Table 6.22 Calculated and real RMSEs for various algorithms, in fractions of 0.1 .

σ0 in fractions 
of .

RMSE Algorithm used 

Extended 
Kalman filter 

Iterated 
Kalman filter 

Unscented 
Kalman Filter 

Point-mass 
method, 
Monte Carlo 
method 

CRLB 

0.1 σ μ 
(1)/σ̃ μ 

(1) 7/7 7/7 7/7 7/7 7 

σ μ 
(2)/σ̃ μ 

(2) 6/6 6/6 6/6 6/6 6 

0.3 σ μ 
(1)/σ̃ μ 

(1) 8/8 8/8 8/8 8/8 7 

σ μ 
(2)/σ̃ μ 

(2) 10/9 10/9 10/10 9/9 8 

0.5 σ μ 
(1)/σ̃ μ 

(1) 9/8 8/8 8/8 8/8 7 

σ μ 
(2)/σ̃ μ 

(2) 14/10 12/11 12/11 11/11 7 

1 σ μ 
(1)/σ̃ μ 

(1) 20/8 16/8 14/10 9/9 6 

σ μ 
(2)/σ̃ μ 

(2) 33/12 25/12 19/18 13/13 10 

1.4 σ μ 
(1)/σ̃ μ 

(1) 40/8 33/9 24/16 10/10 8 

σ μ 
(2)/σ̃ μ 

(2) 68/12 51/12 34/27 15/15 9

the Monte Carlo method is noticeable, and the calculated accuracy characteristic 
generated in the Kalman-type algorithms is not equal to the real value. Thus, the 
Kalman-type algorithms do not always provide an accurate solution to the problem. 
At the same time, the algorithms based on the point-mass method and Monte Carlo 
methods are effective in all the cases considered and produce a consistent accuracy 
characteristic. 

When designing the algorithms for map-aided navigation, it is very important to 
take into account the variability of the vector xi. For example, as shown in (Toropov 
2013), if the variability of NS errors is neglected in NS error model, this can result in 
the algorithm divergence manifested in a significant difference between the calculated 
and real accuracy characteristics. This fact is illustrated in Fig. 6.28, where the results 
are shown for the case when a dead-reckoning system is used as NS. The positioning 
errors of this system are described as integrals of the speed errors defined by Markov 
processes of the first order. Figure 6.28a shows the dependence of the real and 
calculated RMSE for estimating the error by one of the coordinates taking into 
account variability using sequential Monte Carlo methods. Figure 6.28b shows  the  
same without taking into account the variability. It is obvious that the difference 
between the calculated accuracy and the real accuracy is over 200% in the second 
case.

It should be noted that the point-pass method becomes more cumbersome when 
solving a problem with a variable vector xi due to the need to perform double summa-
tion when calculating the weights, which is not required in the Monte Carlo method. 
In addition, the idea of representing the density in the form of (6.3.23) jointly with 
the point-pass method becomes difficult to implement (Stepanov and Toropov 2010).
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Fig. 6.28 The results of solving the map-aided navigation problem with (a) and without (b) consid-
eration for the variability of the estimated vector. The blue curves show the calculated accuracy 
characteristics, the green curves show the real ones

Thus, the use of various versions of sequential Monte Carlo methods is preferable in 
this situation. 

6.3.8 Conclusions 

Within the Bayesian framework, the problem of map-aided navigation has been 
considered as a nonlinear filtering problem which takes into account all its specific 
features; in particular, its nonlinear and prolonged nature. A corresponding problem 
statement has been given, and an overview of filtering algorithms based on various 
types of a posteriori PDF approximation has been presented. The considered 
algorithms have been compared to each other. 

It has been shown that the effectiveness of filtering algorithms depends directly 
on the level of a priori position uncertainty. When it is high, Kalman-type algorithms 
can lead to significant losses in accuracy and to inconsistent calculated accuracy 
characteristics. It has been stated that the most efficient algorithms for solving the 
problem of map-aided navigation are based on sequential Monte Carlo methods. 

6.4 Estimating the Navigation Informativity of the Earth’s 
Gravity Field 

When solving the problem of map-aided navigation (Beloglazov et al. 1985; 
Dzhandzhgava et al. 2013; Avgustov et al. 2015; Stepanov and Toropov 2015), using 
the Earth’s gravity field (EGF), it is important, as noted in the previous Section, to
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choose the area of the field that is suitable for position updating. At the same time, a 
certain generalized factor characterizing its navigation informativity may correspond 
to each spatial domain of the EGF. Navigation informativity estimates can be used 
for plotting the traffic routes and removing the insufficiently informative areas from 
the solution of the navigation problem. The issues associated with the informativity 
estimation of the gravity field and other physical fields of the Earth were addressed in 
a number of Russian and international publications (Stepanov 1998; Richeson 2008; 
Dzhandzhgava et al. 2013; Wang et al. 2013; Stepanov and Nosov 2021; Kalinovskii 
et al. 2015). Obtaining relevant estimates generally involves the choice of character-
istics and criteria of navigation informativity as well as an appropriate EGF model. 
As follows from the materials of Sect. 6.1, a number of new global EGF models 
with enhanced accuracy and spatial resolution have been created in recent years. 
This Section contains an analysis of potential use of these models for estimating the 
navigation informativity of EGF. 

6.4.1 Choosing a Model of the Earth’s Gravity Field 

The factors determining an EGF model choice for the estimation of its navigation 
informativity include the geographical location, the area of the survey site or route, the 
height or the depth of the surface for which the navigation informativity is estimated; 
the scope of EGF parameters to be measured, the accuracy, the sample rate, the 
measurement data averaging interval, as well as acceptable accuracy characteristics 
of the model itself and the laboriousness of its numerical implementation. 

Navigation problems can be solved in areas (on routes) of considerable lengths (up 
to several thousand kilometers), located in different parts of the globe and at different 
altitudes. The EGF parameters to be measured may include various functionals of 
the perturbing potential, such as gravity anomalies (GAs), deflections of the vertical 
(DOV), and second derivatives of the gravity potential (SDGP). The accuracy char-
acteristics of measurement information have been steadily increasing. Therefore, the 
navigation informativity should be estimated with the use of modern EGF models in 
the form of spherical harmonics of the gravity potential, based on the combination of 
various geodetic data. Such models are global, universal, and can serve as a consol-
idated source of information on the EGF navigation properties in different parts of 
the globe. Special focus is made on the EGF informativity in the oceans, since in this 
part of the globe there are limited options of using other geophysical fields which 
may be more informative on land in comparison with the EGF, for example, radar 
contrast fields, surface relief fields, or optical fields (Beloglazov et al. 1985). 

As shown in Sect. 6.1, due to the progress in space geodesy and gravimetric 
coverage of the globe in recent years, a number of new models of this class have been 
created abroad. The new models have much better accuracy and spatial resolution: 
EGM2008 (N = 2190), EIGEN-6C (N = 1420), EIGEN-6C2 (N = 1949), EIGEN-
6C3 (N = 1949), EIGEN-6C4 (N = 2190), GECO-2014 (N = 2190), where N is the 
highest degree of the geopotential spherical harmonics. The international experience
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shows that the EGM2008 model by the US National Geospatial-Intelligence Agency 
has received the widest international recognition (Pavlis et al. 2012). This is due to 
its fairly high accuracy and the formal status of a model which supports the world 
geocentric coordinate system WGS-84. Thus, EGM2008 can be considered as the 
basic option in choosing a computational model for estimating the EGF navigation 
informativity. 

6.4.2 Methods for Estimating the Navigation Informativity 
of the Earth’s Gravity Field 

The analysis of the current situation with the application of gravity and other phys-
ical fields of the Earth to autonomous navigation has shown that there are no 
unified approaches to the estimation of navigation informativity of these fields today. 
Section 6.3 mentions that the expected accuracy of navigation which essentially char-
acterizes the navigation informativity can be estimated using a value representing 
the ratio of the field measurement error to the value of this field gradient. The values 
of the variance Dz and the radius (interval) of correlation ρz which characterize the 
vertical and horizontal stratification of the parameter (z) under study, respectively, 
can also be used as indicators of the navigation informativity of the EGF parameters. 
It is these characteristics that will be used in this subsection. It should be noted that, 
given the values of Dz and ρz, it is possible to approximately estimate the value of 
the gradient using the expression

√
Dz/ρz , so the above-mentioned informativity 

characteristics are interrelated to some extent. 
These values are determined through the autocorrelation function (ACF) of the 

parameter Z – Czz(P, Q), where P, Q are sample points of the studied area. Using 
the traditional approach to the correlation analysis of the EGF, distribution of the 
parameter z can be considered as a random field which is ergodic, stationary in a 
broad sense, and isotropic. Under these simplifying assumptions, the ACF can be 
interpreted as a function of one variable Czz(r ), where r is the distance between the 
sample points. The correlation interval is the distance ρz, for  which  

Czz(ρz) = α Dz, (6.4.1) 

where α is some significance coefficient (0 < α < 1). For commonly used exponential-
type ACFs, it is normally assumed that α = 1/e ≈ 0.37 (Levitskaya 1988). Another 
fairly common option is α = 1/2. In the general case, the interval from 0.3 to 0.5 is 
a suitable range of permissible values for the significance coefficient α. 

In practice, determination of Dz and ρz is reduced to the calculation of the empirical 
ACF Czz(r ) with r ∈ [0, rmax], based on specified model values of the parameter 
Z, the assignment of a value Czz(0) to Dz , and approximate solution of Eq. (6.4.1) 
using a set of discrete values of the empirical ACF.
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The problem of building an empirical ACF is conveniently solved on a plane. This 
is done by choosing an appropriate system of planimetric rectangular coordinates x, 
y. The values of the parameter z specified at the nodes of a uniform grid of lines in 
this coordinate system are used as source data. 

In the simplest case, Dz and ρz are estimated using the values of the empirical ACF 
on the route (or the route segment) oriented along one of the axes of the specified 
coordinate system. Assume that, for definiteness, the route coincides with axis x and 
the ACF is constructed using the values z1, z2, ..., zN of parameter z in N grid points, 
respectively, x0, x1, ..., xN−1, where xk = k.x (k = 0, 1, ..., N − 1; .x is the grid 
step along axis x). The ACF values for this route can be calculated by the following 
formulas (Pellinen and Neyman 1980): 

C '
zz(xk) =

1 

N − k 

N−kx

i=1 

(zi − z)(zi+k − z), (6.4.2) 

z = 
1 

N 

Nx

i=1 

zi , (6.4.3) 

where z is a sample average of the initial values of the parameter z on the survey 
route segment. The index k takes values from 0 to n, where n is the integer part of 
the number N /2. Note that formulas (6.4.2), (6.4.3) make it possible to obtain values 
of a route ACF for any grid line that is parallel to axis x. 

This example can be expanded to the construction of an areal ACF in the direction 
of axis x . The following formulas can be used for that: 

C '
zz(xk) =

1 

(N − k)M 

Mx

j=1 

N−kx

i=1

(
zi, j − z

)(
zi+k, j − z

)
, (6.4.4) 

z = 
1 

M 

Mx

j=1 

z j , (6.4.5) 

where z1, j , z2, j , ..., zN , j are the values of the parameter z along the j-th line of the 
grid ( j = 1, 2, ..., M); z j is their average value determined by Eq. (6.4.3); M is the 
number of grid lines in the given direction. Obviously, formulas (6.4.2) and (6.4.3) 
are special cases of formulas (6.4.4), (6.4.5) for  M  = 1. 

The resulting ACF values C '
zz(x0), C '

zz(x1), ..., C '
zz(xn) are used for the subsequent 

estimation of variance D'
z = C '

zz(x0) and correlation radius ρ'
z , assuming that N is 

sufficient to solve this problem, i.e. C '
zz(xn) > α D'

z . 
Alternatively, the problem is solved along the grid lines parallel to axis y. The  ACF  

values are calculated using the same formulas with x replaced with y, and.x replaced 
with .y, where .y is the grid size along the axis y; and also with interchanges 
N ↔ M and i ↔ j . Having them as an array C ''

zz(y0), C ''
zz(y1), ..., C ''

zz(ym), where
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m is the integer part of the number M/2, it is possible to find the corresponding values 
of the variance D''

z = C ''
zz(y0) and the correlation radius ρ''

z . 
It is easy to verify that the variance estimates in two versions should coincide(

D'
z = D''

z

)
. On the other hand, in the general case, the values of ρ'

z and ρ
''
z do not 

have to be the same, as evidenced by the results of experimental calculations. The 
discrepancy between the ρ'

z and ρ
''
z estimates may be due to the actual anisotropy of 

the field. 
The integral estimate of the correlation radius over the area can be obtained either 

by weighted averaging of the ρ'
z and ρ

''
z values, for example, using the formula (with

.x = .y) 

ρz = 
N ρ'

z + Mρ''
z 

M + N 
, (6.4.6) 

or by using the integral values of the ACF which can be obtained in different 
ways, either as the weighted average of C '

zz(x) and C ''
zz(y) with the same values 

of the arguments, by generalizing formulas (6.4.2)–(6.4.5), or by using the spectral 
approach. 

In the first method, assuming again that.x = .y and xk = yk = rk , the averaged 
ACF values can be obtained by the following formula (Pellinen and Neyman 1980): 

Czz(rk) = 
(N − k)MCzz(xk) + (M − k)NC ''

zz(yk) 
(N − k)M + (M − k)N 

. (6.4.7) 

In the second method, the following formula (Dem’yanov and Savel’yeva 2010) 
can be used as a generalized formula: 

Czz(rk)= 
1 

Nk 

Nkx

i=1 

z(Pik)z(Qik) − 
1 

N 2 k 

Nkx

i=1 

z(Pik) 
Nkx

i=1 

z(Qik), (6.4.8) 

where Pik, Qik  is the i-th pair of points separated by a distance equal to the specified 
value rk (within permissible deviations); Nk is the number of such pairs. 

In the third case, the algorithm for calculating the ACF integral values can be 
formed on the basis of the following equations (Serkerov 1986): 

Czz(rk) = 
M−1x

p=0 

N−1x

q=0 
(p+q>0) 

Z pq Z
∗ 
pq J0

(
rk 
/
u2 p + v2 

q

)/
u2 p + v2 

q , (6.4.9) 

Z pq = 1 √
MN  

M−1x

m=0 

N−1x

n=0 

z(xm, yn) exp
[
i2π
(np 
N 

+ 
mq 

M

)]
, (6.4.10)
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where J0 is the zero-order Bessel function of the first kind; u p, vq are the values of 
angular frequencies (u p = 2πp/N.x , vq = 2πq/M.y);

{
Z pq
}
M×N are Fourier 

coefficients of zero-mean values of the initial function (asterisked terms are their 
complex conjugated values); i is an imaginary unit. 

The described methods for estimating the variance and the correlation radius in 
relatively large areas can provide the results that are not detailed enough for the 
navigation informativity awareness. In such cases, it is advisable to divide the initial 
area into smaller sections and estimate Dz and ρz for each of them, that is, to apply 
moving-average estimation of the variance and correlation radius (both for route and 
site survey estimates). To provide more detail, these areas can overlap. 

Sections with Dz ≥ D∗
z and (or) ρz ≤ ρ∗

z , where D
∗
z and ρ

∗
z are specified threshold 

values, can be considered informative. Thus, the sections for which these conditions 
do not hold should be considered unsuitable for map-aided navigation. The threshold 
values of variance should be sufficiently high because only the areas with high 
enough variability of the field can be considered informative. According to rough 
estimates that take into account the achieved accuracy characteristics of the EGF 
parameter measurements, D∗

z can be represented by the following values of the 
variance: 16 mGal2 for GAs; 4 arcsec2 for DOV; and 25 E2 for SDGP. 

The threshold values of the correlation radius should be sufficiently small because 
only the areas with relatively high roughness can be considered informative. Bearing 
in mind that the values of the EGF correlation radius vary from several kilometers to 
several tens of kilometers and also taking into consideration the requirements for the 
accuracy of navigation solutions, ρ∗

z = 10 km can be taken as a generalized threshold 
value of the correlation radius. 

6.4.3 Results of Experimental Studies 

Let us consider the results of an experimental study of the described approach to esti-
mating the navigation informativity of EGF using the above-mentioned EGM2008 
model to degree 2190. A test area located in the southern part of the Sea of Okhotsk 
was chosen for this study. This area is a strip ±100 km relative to the center line 
with the following geographic coordinates (latitude B, longitude L) of the boundary 
points: the initial point coordinates are 45.5330°N, 143.500°E; the endpoint coordi-
nates are 49.7170°N, 150.000°E. The EGF structure in and around the survey area 
is illustrated in Fig. 6.29 which shows that within the area boundaries marked with 
thick black lines, sections with a relatively smooth field alternate with sections with 
increased roughness. The distribution of the sections acceptable for map-aided navi-
gation over the whole area is not uniform. Note that the western part of the area 
is visually characterized by significant vertical segmentation, while the eastern part 
generally has significant horizontal segmentation.

To obtain the quantitative estimates of navigation informativity indicators, the 
following parameters of the EGF were used: horizontal components of the gravity 
disturbance vector, characterized by the DOV components in the meridian (ξ) and
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Fig. 6.29 GA areal distribution in the southern part of the Sea of Okhotsk and the survey area

the prime vertical (η), as well as the horizontal gradients of the gravity disturbance 
vector, characterized by the second derivatives Txx  , Tyy of the perturbing potential T 
along the axes of a planimetric rectangular coordinate system x, y. According to the 
EGM2008 model data, for the area as a whole, these parameters have the statistical 
characteristics shown in Table 6.23. 

The parameters of EGF navigation informativity (variance and correlation radius) 
were estimated on the field route cross-sections parallel to the center line and spaced 
10 km apart (including the center line) across the width of the area. Their values were 
calculated for each cross-section at 100 km intervals in the moving-average mode, 
with an increment of 20 km. The initial values of the EGF parameters at the route 
points were calculated with an increment of about 2 km (1 arcmin).

Table 6.23 Statistical characteristics of the EGF parameters in the survey area 

Parameter Value 

min max Average Standard deviation 

ξ, arcsec –9.3 13.7 1.5 3.0 

η, arcsec –7.6 20.8 1.1 4.0 

Txx  , E –52.3 53.9 0.3 8.9 

Tyy , E –91.5 55.5 0.5 11.9 
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The estimates of the navigation informativity parameters are presented in detail 
in Figs. 6.30, 6.31 as two-dimensional diagrams describing the areal distribution of 
Dz and ρz. The ordinal numbers of the moving-average intervals in determining the 
current values of the variance and the correlation radius are plotted on the horizontal 
axis. The linear measurement unit is a specified value of the moving interval shift 
(20 km). The shifts of cross-sections relative to the center line of the area are plotted 
on the vertical axis. The linear measurement unit is the specified interval of the 
cross-section shift (10 km). The values of shifts for all the diagrams are fixed in the 
interval from –10 to +10. The distribution of the values of each parameter is shown 
by isolines and coloring. 

Analysis of the diagrams confirms the visual estimation of the EGF segmentation 
based on the gravity anomaly data in the survey area; generally, the highest values 
of variances predominate in the western part of the area, while the lowest values of 
the correlation radius are mainly concentrated in its eastern part. 

General characteristics of the navigation informativity parameters for the whole 
area are summarized in Table 6.24. They present the range of fluctuations of vari-
ances and correlation radiuses of DOV and SDGPs, as well as the proportion of 
informative sections in relation to their total number, based on the threshold values 
of D∗

z and ρ
∗
z given above. Comparison of the generalized navigation informativity 

indicators of different EGF parameters shows that an average of about 23% of the

Fig. 6.30 Areal distribution of DOV informativity parameters: a, b—variance and correlation radius 
ξ; c, d—variance and correlation radius η
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Fig. 6.31 Areal distribution of SDGP informativity parameters: a, b—variance and correlation 
radius Txx  ; c, d—variance and correlation radius Tyy

area are informative (in the sense of the above definition of this term) for the gravity 
disturbance vector, and 65% are informative for the horizontal gradients. 

It should be noted that in the general case, interpretation of EGF navigation infor-
mativity model parameters should take into account modeling errors, including the 
errors of geopotential harmonic coefficients and the errors due to the replacement of 
infinite series of spherical harmonics with finite sums (truncation errors). In this case, 
the variance of the total modeling error Dz,m is defined as the sum of the variance 
Dz,c which reflects the contribution of the errors of harmonic coefficients, and the

Table 6.24 Generalized characteristics of the navigation informativity parameters of the survey 
area 

Parameter Variance Correlation radius, km 

min max Informative 
sections (%) 

min max Informative 
sections (%) 

ξ, arcsec 0.04 16.77 20 6 28 21 

η, arcsec 0.03 103.21 26 6 30 27 

Txx , E 2.31 473.89 70 6 26 66 

Tyy, E 2.11 1261.75 57 4 29 68 
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variance Dz,r of the truncation error. The value of Dz,c is estimated using the avail-
able data on the RMSE of the geopotential harmonic coefficients determined from 
geodetic measurements. The value of Dz,r is estimated using a suitable asymptotic 
model of degree variances of EGF (Nepoklonov 1998). For instance, the following 
estimates were obtained for GAs and DOV components (for the globe as a whole): 
17.5 mGal2 and 0.8 arcsec2 for Dz,c; 11.2 mGal2 and 2.5 arcsec2 for Dz,r . There-
fore, Dz,m can be estimated with the following values (globally): 28.7 mGal2 for 
the GA, and 3.3 arcsec2 for the DOV components. For comparison, when using the 
EGM2008 model data, the variances of GAs and DOV over the globe as a whole are 
about 900 mGal2 and 50 arcsec2, respectively. As for detailed estimates of Dz,c, Dz,r , 
and Dz,m , they can vary significantly from area to area. The analysis of modeling 
errors effect on the correlation interval determined for the EGF parameters requires 
further study which goes beyond the scope of this book. 

It should be emphasized that the obtained estimates characterize the EGF navi-
gation informativity at the sea (geoid) level. In practice, navigation using the EGF 
is associated mainly with airborne and/or underwater vehicles. Accordingly, the 
characteristics of the EGF navigation informativity should be recalculated for flight 
altitudes in the first case, and for the vehicle’s depth of immersion in the second case. 
In both cases, recalculation can be done on the basis of the same global EGF model 
in the form of spherical harmonics, using standard formulas for harmonic synthesis 
of perturbing potential and its functionals (Barthelmes 2009). 

At the same time, it should be kept in mind that each of these options has its 
own features. When performing upward recalculation, one should remember that the 
effect of EGF smoothing with increasing height may result in weakening of some 
field features, which will make it necessary to improve the measurement accuracy. 
Recalculation, as such, is a correctly formulated problem to be solved by replacing 
the value r of the geoid geocentric radius-vector (reference ellipsoid) with r + H , 
where H is the geodetic height of the calculated point. In contrast to this, the problem 
of downward recalculation is incorrect in terms of its formulation, which can increase 
the errors in the model values of the EGF parameters. Elimination of the effect of 
this inconsistency can generally involve regularized harmonic synthesis algorithms 
(Neyman 1979) and taking into account the effect of underwater terrain. 

6.4.4 Conclusions 

The studies on the estimation of the EGF navigation informativity allow drawing the 
following conclusions. 

EGF navigation informativity can be estimated with the use of variance (RMS 
value) and the radius (interval) of correlation of measured EGF parameters (gravity 
anomalies, deflections of the vertical, second derivatives of perturbing potential). 
The present level of EGF knowledge, including the availability of high-precision 
global geopotential models, makes it possible to estimate the parameters of the EGF 
navigation informativity with a resolution of a few kilometers.
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We have considered the formulas that provide the estimation of the EGF navigation 
informativity both for individual routes and for areas. According to the experimental 
data obtained with these formulas and the modern EGM2008 geopotential model to 
degree 2190, the parameters of navigation informativity, i.e., the variance and corre-
lation radius, may vary considerably depending on the area and the EGF parameter 
being studied. 

Sufficiently informative (in terms of the above criteria) sections may alternate with 
the sections the information content of which is below an acceptable level. Keeping 
this in mind, it seems appropriate in the future to divide the water area of the World 
Ocean (which is a probable area of application of autonomous navigation systems 
based on the EGF) into zones based on the navigation informativity of various EGF 
parameters, using modern geopotential models. 
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