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The modelling and simulation community extends over a range of diverse
disciplines and this landscape continues to expand at an impressive rate. Modelling
and simulation is fundamentally a computational tool which has an established
record of significantly enhancing the understanding of dynamic system behaviour
on one hand, and the system design process on the other. Its relevance is
unconstrained by discipline boundaries. Furthermore, the ever-increasing availabil-
ity of computational power makes feasible applications that were previously
beyond consideration.

Simulation Foundations, Methods and Applications hosts high-quality contribu-
tions that address the various facets of the modelling and simulation enterprise.
These range from fundamental concepts that are strengthening the foundation of the
discipline to the exploration of advances and emerging developments in the
expanding landscape of application areas. The underlying intent is to facilitate and
promote the sharing of creative ideas across discipline boundaries. The readership
will include senior undergraduate and graduate students, modelling and simulation
professionals and research workers.

Inasmuch as a model development phase is a prerequisite for any simulation
study, there is an expectation that modelling issues will be appropriately addressed
in each presentation. Incorporation of case studies and simulation results will be
strongly encouraged.

Titles can span a variety of product types, including but not exclusively,
textbooks, expository monographs, contributed volumes, research monographs,
professional texts, guidebooks and other references.

These books will appeal, varyingly, to senior undergraduate and graduate
students, and researchers in any of a host of disciplines where modelling and
simuation has become (or is becoming) a basic problem-solving tool. Some titles
will also directly appeal to modelling and simulation professionals and
practitioners.
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Preface

Any scientific Body of Knowledge is a comprehensive and concise representation
of concepts, terms, and activities needed to explain a professional domain by
representing the common understanding of relevant professionals and professional
associations. Defining this body for Modeling and Simulation (M&S) is essential
for the discipline of M&S. These concepts must include the science-philosophical
foundations and implications, the understanding what models are and how their
implementation in form of simulations can be used to support the many application
domains, such as gaining experience for training and education, as well as exper-
imentation for analysis, design, control, and optimization, within increasing number
of computational disciplines.

But is Modeling and Simulation really a discipline? To some people, simulation
is a very useful technique for representing a system under study to enable com-
putational experimentation with a view to improve system performance. In this
perspective, modeling, the representation itself, is of secondary importance—
merely a necessary means to an end. For other users, simulation provides a virtual
environment that allows to train people. The defense simulation community is a
good example for this type of simulation use, but also the aviation community using
flight simulators to educate and qualify their pilots. These users look at simulation
as a powerful computational tool.

In contrast, underlying the SCS Modeling and Simulation Body of Knowledge
(M&SBoK) is the assertion that there is a discipline called Modeling and Simulation
(M&S). Moreover, this discipline provides visibility into the holistic nature, and the
conjoint activities, of model creation and simulation experimentation. At the core
of the M&S discipline is the identification of the elements manipulated by its
associated activities: real system data, experimental frame, model, and simulator, as
well as the relationships that must bind these components together to form a
meaningful composition.

There is a huge paradigm shift from M&S as a computational tool to the M&S as
discipline world view. Taking this shift, the M&S framework ontology (the four
elements and their relations) effectively lays the foundation for computational
experiments, clearly stating boundaries, and interactions, of systems, data, and
representation. This shifts the focus from simulation to modeling, placing the model
at the center, making the model the curated artifact of knowledge that must be

vii



viii Preface

maintained, enhanced, and reused over time. This viewpoint allows the application
of simulation in many computational sciences to help gaining new knowledge by
creating numerical insight into the dynamic behavior of the modeled entities, the
use of M&S as an epistemological tool.

These views are not mutually exclusive. Contrarily, they represent multiple
facets of the variety how M&S is and can be used. M&S supports many disciplines,
computationally as well as epistemologically. The simulation engineer must be
aware of the whole picture to serve their communities best. They must understand
the application domains and must be able to support the best conceptualization and
capture this in a model that is implemented as a simulation. If the application
domain uses IT support, the simulation engineer should be aware of interfaces that
can support the data information exchange needs. The M&SBoK provides a first
collection of such knowledge and surely needs to be a living document that is
augmented over time.

In this initial Guide to M&SBoK, Chap. 1 sets out the concepts of the M&S
framework ontology that lay the groundwork for subsequent discussion. Chapter 2
covers the core areas of M&S and provides an overall big picture portrait of this
emerging discipline and how it supports other knowledge domains. Chapter 3
covers the traditional view of simulation as experimentation. Indeed, there is no
other discipline that can provide powerful simulations providing numerical insight
into complex dynamic systems. And yet, the epistemology of M&S is the brain
power that enables these tools. Simulation is the muscle; modeling is the soul!

Chapters 4 and 5 introduce simulation as experience, both in the technical and
entertainment arenas. Chapters 6—10 cover the internals of the M&S disciple, its
mechanics, ethics, and economics, while Chaps. 11-16 concern the external rela-
tionships, how M&S is taking its place among, and increasingly central to, the
recognized disciplines in science, technology, and the arts. Finally, Chaps. 17-19
review the development of M&S over time and set forth the trends, aspirations, and
challenges of the future.

It is expected that the M&SBoK will grow over time. This first version is a first
set of core concepts, but as the application domains of simulation grow, so will the
body of knowledge. We already see growing fields that need to be addressed in
more detail, such as complexity, deep uncertainty, and quantum simulation. We
assume that in the next iteration, we will see how M&S can be increasingly used to
address complex system, which comprises a variety of heterogenous entities, often
highly interdependent and connect in nonlinear fashion. We assume to see an
increasing use to address the challenge of deep uncertainty in operations research,
which requires multi-model approaches and a new paradigm to conduct
simulation-based optimization to understand the topology of the solution space
instead of looking for point-solutions. And finally, with quantum computing
becoming increasingly available, simulation engineers have to address how we use
this new resource: like we developed concepts for parallel and distributed simu-
lation we will have to address quantum computing-based simulation soon to be
ready as the community of simulation engineers when the time comes.
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We like to express our thanks to the Virginia Modeling, Analysis, and Simu-
lation Center (VMASC) of Old Dominion University, Norfolk, Virginia, as they
committed to provide a website hosting any errata as well as supplemental material
for the M&SBoK. The website can be accessed at http://vmasc.org/partnerships/
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In summary, we are convinced that we are indeed an M&S discipline. We have
our professional societies, our journals, our code of ethics, and our common
knowledge. We address many of these concepts, we are grateful to the many
contributors to create this foundational initial version, and we are excited about the
future and the new insights to come and to be integrated to witness to the growing
contributions of M&S to solve the challenges of our society.
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Preliminary

Tuncer Oren®, Bernard P. Zeigler®, and Thorsten Pawletta

Abstract

In this chapter, we provide an introductory view for the scope of the SCS M&S
Body of Knowledge, including the terminology. We provide a rationale for the
theoretical basis of M&S and give an overview of the modeling and simulation
framework (MSF) applied in many contributions, followed by the basic system

entity structure (SES) concepts.

Keywords

Modeling and simulation * Discrete event systems specification (DEVS) -
Modeling and simulation framework (MSF) * System entity structure (SES)

1.1 Scope

Tuncer Oren

The term simulation, based on the concept of similarity, has been used in English
since mid-fourteenth century. Hence, simulation has non-technical as well as
technical meanings. Accordingly, it has many definitions. A collection of about 100
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definitions of the term simulation is compiled and categorized in three groups and
nine subgroups by Oren [1]. In a sequel article, a critical review of these definitions
was given [2].

In a Body of Knowledge document, it is imperative to delimit the scope of the
main concept. Therefore, the meaning(s) of the term “simulation” as used in this
document is clarified based on Oren [2].

From a pragmatic point of view, based on the purpose of its use, simulation has
three aspects:

(1) Perform experiments,
(2) Gain experience
for training to gain/enhance any one of the three types of skills, or for enter-
tainment, and
(3) Imitation, pretense.
Only the experiment and experimentation aspects are within the scope of this
study.
From experimentation aspect: “Simulation is performing goal-directed experi-
ments with models of dynamic systems.”
Purpose of simulation, as well as definitions and explanations of different types
of experiments—outlined in Oren [2]—is elaborated later.
From the experience perspective, simulation has two distinct usages for training
and for entertainment:
“Simulation is providing experience under controlled conditions for training, i.e.,
for gaining/enhancing competence in one of the three types of skills:

(1) motor skills (virtual simulation or use of simulators),
(2) decision and/or communication skills (constructive simulation such as business
games, war games, or peace games; aka serious games), and

(3) operational skills (live simulation).”

Experience through gaming simulations can be used for training as well as for
entertainment purposes.

Simulation has many aspects. A recent publication lists 750 types of
simulation [3].

1.2 Terminology

Bernard P. Zeigler

After several decades of development, there are still a wide variety of modeling and
simulation terms and associated concepts with multiple interpretations. This variety
derives from different historical streams of development of Modeling and Simu-
lation (M&S) within different contexts (whether industrial, governmental, or mili-
tary) or disciplinary (whether in “hard” or “soft” science or engineering). The
premise behind the need for a body of knowledge for M&S is that there is some
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core set of concepts that identify its activities as different from others and that are
common no matter in which context they are employed. The reference list [4]
contains 29 dictionaries of modeling and simulation. Some definitions can provide a
good “first approximation” to understanding a term and how it is used, and they
lack the precision and rigor that a BoK should aspire to. Therefore, this BoK
employs a Framework of M&S (reviewed in Sect. 1.4) to map out the basic entities
and their relationships employed in M&S and at the same time, providing a
theory-based set of definitions employed in the framework. Terms such as “model”
and “simulator” are often loosely used in current practice but have a very sharp
meanings in the framework. Therefore, it is important to understand what is
included and excluded by the definitions. (This is especially true if you have some
experience in M&S and are likely to associate (or prefer) meanings that are different
from those developed here.) Based on the Modeling and Simulation Framework
(MSF), the basic issues and problems encountered in performing M&S activities
and using their vocabulary can be better understood and coherent solutions
developed. Understanding the MSF core concepts and employing the associated
terminology will help everyone involved in a simulation modeling project such as
analysts, programmers, managers, and users to better carry out their tasks and
communicate with each other.

1.3 Rationale for Theoretical Basis of M&S

Bernard P. Zeigler

“An established body of knowledge (BoK) is one of the pillars of an established
discipline” [5]. The BoK establishes a kernel of topics that categorically charac-
terize the discipline. When sufficiently mature, a comprehensive theory of the
domain provides an essential framework to define a kernel of topics and to organize
these topics in a meaningful way. Further, the framework and its underlying theory
provide a sound foundation for conduct of activities in the disciple.

At this point in time, it has been asserted that “Theory of Modeling and Sim-
ulation (1976) gives a theory for simulation that is based on general system theory
and this theory is considered the only major theory for simulation. This book
showed that simulation has a solid foundation and is not just some ad hoc way of
solving problems” [6]. Furthermore, “Theory of Modeling and Simulation (1976)]
is a major reference for modeling formalisms, particularly the Discrete Event
System Specification (DEVS). ... We mention the System Entity Structures and
Model Base (SES/MB) framework as breakthrough in this field [Model-base
management]. It enables efficiency, reusability and interoperability” [5].

For an empirically based discipline, still in its formative stage, the theory and
framework provided by Theory of Modeling and Simulation (1976) provided a
sound foundation for M&S to emerge as an established discipline. Such a foun-
dation is necessary to foster the development of M&S-specific methods and the use
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of such methods to solve real-world problems faced by practitioners. Even when
not fully accepted as gospel (as is theory in Theoretical Physics), the theory is
sufficiently mature to provide the necessary skeleton to define a kernel of topics for
the emerging M&S discipline and to meaningfully organize these topics. Further-
more, the theory’s basic entities and relations such as the separation, and
inter-relation, of models and simulators, provide starting points to enumerate and
address core M&S research challenges [7]. At the time of first writing of this
M&SBOoK, theory and practice are being more strongly aligned in a comprehensive
formulation of the simulation development life cycle [8]. Indeed, as the richness
and applicability of the field increase, it becomes more and more urgent to have an
openly available M&SBoK.

1.4 Modeling and Simulation Framework (MSF)

Bernard P. Zeigler

1.4.1 System Concepts

The US Department of Defense M&S Glossary (M&S Glossary) gives these def-
initions: (1) system model: A representation of a system; and (2) simuland: The
system being simulated by a simulation. These define “system model” and “sim-
uland” in terms of “system” but nowhere to be found is a definition of “system”
itself. In contrast, the Modeling and Simulation Framework (MSF), to be reviewed
here, includes the “system” as one of the four basic entities along with “experi-
mental frame,” “model,” and “simulator.” Moreover, we need some basic concepts
about systems that are reviewed only in outline (for details, see Zeigler et al. [9],
Theory of Modeling and Simulation, Chap. 1—any edition.)

1.4.1.1 System Specification Hierarchy Levels of System
Specification

The MSF sets forth the fundamental entities and relationships in the M&S enter-

prise. To describe these items, we employ the systems’ specification hierarchy as

the basis for the MSF.

Table 1.1 identifies five basic levels of system specification forming a System
Specification Hierarchy. The fourth column gives an example of a system speci-
fication at each level applied to a person in a conversation. Later, we will formulate
a conversation, itself, as system composed of two interacting persons. At each level,
we know some important things about a system that we did not know at lower
levels.

At the lowest level, the Observation Frame identifies a portion of the real world
(source system) that we wish to model and the means by which we are going to
observe it.
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Table 1.1 Levels of system specification

Level  Specification What we know at this level Example: a person in a
name conversation
0 Observation How to stimulate the system The person has inputs and
frame with inputs; what variables to outputs at the usual cognitive
measure and how to observe level, such as streams of words
them over a time base
1 I/0 behavior Time-indexed data collected For each input that the person
from a source system; consists recognizes, the set of possible
of input/output pairs outputs that the person can
produce
2 I/0 function Knowledge of initial state; Assuming knowledge of the
given an initial state, every person’s initial state when
input stimulus produces a starting the conversation, the
unique output unique output response to each
input
3 State How states are affected by How the person transits from
transition inputs; given a state and an state to state under input words
input what is the state after the =~ and generates output words
input stimulus is over; what from the current state
output event is generated by a
state
4 Coupled Components and how they are A description of a person’s I/O
component coupled together. The behavior in terms of neural

components can be specified at
lower levels or can even be

structure systems themselves—
leading to hierarchical structure

components and their
interaction by spikes is at this
level

As the next two levels, the I/O Behavior and Function levels, we have a database

of measurements and observations made for the source system. When we get to
Level 3, the State Transition Level, we have the ability to recreate this data using a
more compact representation, such as a formula. Since typically, there are many
formulas or other means to generate the same data, the particular means or formula
we have settled on constitutes knowledge we did not have at the lower data levels.
When people talk about models in the context of simulation studies, they are
usually referring to the concepts identified at this level. That is, to them a model
means a program to generate data.

At the highest level, the Coupled Component Level we have a very specific kind
of generative system. In other words, we know how to generate the data observed at
Level 1 in a more specific manner in terms of component systems that are inter-
connected together and whose interaction accounts for the observations made.
When people talk about systems, they are often referring to this level of knowledge.
They think of reality as being made up of interacting parts so that the whole is the
sum (or sometimes claimed, more, or less, than the sum) of its parts. Although some
people use the term “subsystems” for these parts, we call them component systems
(and reserve the term subsystem for another meaning).
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The System Specification Hierarchy is a useful starting point since it provides a
unified perspective on what are usually considered to be distinct concepts. From
this perspective, there are only three basic kinds of problems dealing with systems
and they involve moving between the levels of system knowledge.

In systems analysis, we are trying to understand the behavior of an existing or
hypothetical system based on its known structure.

Systems inference is done when we do not know what this structure is—so we
try to guess this structure from observations that we can make.

Finally, in systems design, we are investigating the alternative structures for a
completely new system or the redesign of an existing one.

1.4.2 The Entities of the Modeling and Simulation
Framework

As illustrated in Fig. 1.1, the basic entities of the framework are source system,
model, simulator, and experimental frame. The basic inter-relationships among
entities are the modeling and the simulation relationships. The entities are defined in
Table 1.2 which also characterizes the level of system specification that typically
describes the entities. The level of specification is an important feature for distin-
guishing between the entities, which is often confounded in the literature. You can
return to Fig. 1.1 and Table 1.2 to keep an overall view of the framework as we
describe each of the components in the following presentation.

1.4.2.1 Source System

The source system (we will omit the “source” qualifier, when the context is clear) is
the real or virtual environment that we are interested in modeling. It is viewed as a
source of observable data, in the form of time-indexed trajectories of variables. The

Experimental Frame

™ [

N T #

Modeling — Simulation
Relation Relation

l Model

\__/

Fig. 1.1 Fundamental entities and relationships in the M&S framework
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Table 1.2 Defining the basic entities in M&S and their usual levels of specification

Basic entity Definition Related system
specification levels

Source Real or artificial source of data Known at level 0

system

Behavior Collection of gathered data Observed at level 1

database

Experimental Specifies the conditions under which system is Constructed at levels

frame observed or experimented with 3 and 4

Model Instructions for generating data Constructed at levels
3 and 4

Simulator Computational device for generating behavior of Constructed at level 4

the model

data that has been gathered from observing or otherwise experimenting with a
system is called the system behavior database. As indicated in Table 1.2, this
concept of system is a specification at level O and its database is a specification at
level 1. This data is viewed or acquired through experimental frames of interest to
the modeler.

Applications of M&S differ with regard to how much data is available to pop-
ulate the system database. In data-rich environments, such data is abundant from
prior experimentation or can easily be obtained from measurements. In contrast,
data-poor environments offer meager amounts of historical data or low-quality data
(whose representativeness of the system of interest is questionable). In some cases,
it is impossible to acquire better data (e.g., of combat in real warfare); in others, it is
expensive to do so (e.g., topography and vegetation of a forest). In the latter case,
the modeling process can direct the acquisition of data to those areas that have the
highest impact on the final outcome.

1.4.2.2 Experimental Frame

An experimental frame is a specification of the conditions under which the system
is observed or experimented with. As such, an experimental frame is the operational
formulation of the objectives that motivate a modeling and simulation project. For
example, out of the multitude of variables that relate to a forest, the set {lightning,
rain, wind, smoke} represents one particular choice. Such an experimental frame is
motivated by the interest in modeling the way lightning ignites a forest fire. A more
refined experimental frame would add the moisture content of the vegetation and
the amount of unburned material as variables. Thus, many experimental frames can
be formulated for the same system (both source system and model) and the same
experimental frame may apply to many systems. Why would we want to define
many frames for the same system? Or apply the same frame to many systems? For
the same reason, we might have different objectives in modeling the same system or
have the same objective in modeling different systems. More of this in the sequel.
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There are two equally valid views of an experimental frame. One views a frame
as a definition of the type of data elements that will go into the database. The
second views a frame as a system that interacts with the system of interest to obtain
the data of interest under specified conditions. In this view, the frame is charac-
terized by its implementation as a measurement system or observer. In this
implementation, a frame typically has three types of components (as shown in
Fig. 1.2): generator that generates input segments to the system; acceptor that
monitors an experiment to see the desired experimental conditions are met; and
transducer that observes and analyzes the system output segments.

1.4.2.3 Objectives and Experimental Frames

Objectives for modeling relate to the role of the model in systems design, man-
agement, or control. The statement of objectives serves to focus model construction
on particular issues. Figure 1.3 depicts the process of transforming objectives into
experimental frames. Typically, modeling objectives concern system design. Here,
measures of the effectiveness of a system in accomplishing its goal are required to
evaluate the design alternatives. We call such measures, outcome measures. In
order to compute such measures, the model must include variables, we will call
output variables, whose values are computed during execution runs of the model.
The mapping of the output variables into outcome measures is performed by the
transducer component of the experimental frame. Often there may be more than one
layer of variables intervening between output variables and outcome measures. For
example, in military simulations, measures of performance are output variables that
typically judge how well parts of a system are operating. For example, the success
of a missile in hitting its target is a performance measure. Such measures enter as
factors into outcome measures, often called measures of effectiveness, that measure
how well the overall system goals are being achieved, e.g., how many battles are
actually won by a particular combination of weapons, platforms, personnel, etc. The
implication is that high performing components are necessary, but not sufficient, for
highly effective systems, in which they must be coordinated together to achieve the
overall goals.

Fig. 1.2 Experimental frame
and its components

SYSTEM >

EXPERIMENTAL FRAME

- generator acceptor transducer




1 Preliminary 9

Objectives

~

Outcome Measures

™~

Output Variables

N

Fig. 1.3 Transforming objectives to experimental frames

Experimental Frame

Example: Two-person Interaction

The conversation example for the System Specification Hierarchy of Table 1.1
actually assumes an underlying experimental frame that was not completely spec-
ified. We can specify the objective of trying to characterize when a two-person
interaction is a valid conversation, i.e., when the participants exchange words that
make sense to an observer. We restrict the interaction to an exchange of greetings of
two people passing by each other. There are relatively few pairs of words that make
sense such as “Hello, Hi” as a greeting by one person and a response of the other,
whereas most other pairs of words do not. Such pairs are in effect a description at
the I/O Behavior level for the interaction of two persons. An experimental frame in
this case centers on collecting such I/O pairs in both a real two-person encounter
and a simulation model of it. The acceptor component of such a frame can monitor
the interaction for pairs judged to be indicative of a valid conversation.

Model

In its most general guise, a model is a system specification at any of the levels of the
System Specification Hierarchy. However, in the traditional context of M&S, the
system specification is usually done at levels 3 and 4. Thus, the most common
concept of a simulation model is that it is a set of instructions, rules, equations, or
constraints for generating I/O behavior. In other words, we write a model with a
state transition and output generation mechanisms (level 3) to accept input trajec-
tories and generate output trajectories depending on its initial state setting. Such
models form the basic components in more complex models that are constructed by
coupling them together to form a level 4 specification.

Example: Two-person Interaction

An example of a conversation between two persons can be modeled as agents
interacting through exchange of messages carried by discrete events. This consti-
tutes a coupled model with atomic model components. Each component alternates
between speaking and listening phases. If moreover, the components adhere to the
discipline that only one is in the speaking phase at any time, then the result rep-
resents a valid conversation. If at any time, both components are in the same phase
(speaking or listening) then the experimental frame acceptor just discussed will stop
the simulation and declare this as an invalid conversation.
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There are many meanings that are ascribed to the word “model.” For example, a
model is conceived as any physical, mathematical, or logical representation of a
system, entity, phenomenon, or process. The definition in terms of system specifi-
cations has the advantages that it has a sound mathematical foundation and it has
a definite semantics that everyone can understand in unambiguous fashion. Like
other formal definitions, it cannot capture all meanings in the dictionary. However,
it is intended to capture the most useful concepts in the M&S context.

1.4.2.4 Simulator

As a set of instructions, a model needs some agent capable of actually obeying the
instructions and generating behavior. We call such an agent a simulator. Thus, a
simulator is any computation system (such as a single processor, a processor net-
work, the human mind, or more abstractly an algorithm), capable of executing a
model to generate its behavior. A simulator is typically specified at a high level
since it is a system that we design intentionally to be synthesized from components
that are off-the-shelf and well-understood. Separating the model and simulator
concepts provides a number of benefits for the framework:

e The same model, expressed in a formalism, may be executed by different sim-
ulators thus opening the way for portability and interoperability at a high level of
abstraction.

e Simulator algorithms for the various formalisms may be formulated and their
correctness rigorously established.

e The resources required to correctly simulate a model afford a measure of its
complexity.

Example: Two-person Interaction

The two-person discrete event model just mentioned can be formulated within the
Discrete Event System Specification (DEVS) formalism as illustrated in
Chap. 10 of (Zeigler et al. 2017). This then allows the model behavior to be
generated by a DEVS simulator, i.e., a simulation program implementing the rules
of the Abstract DEVS simulation protocol that guarantees correct simulation of any
DEVS model.

1.4.3 Primary Relations Among Entities

The entities—system, experimental frame, model, and simulator—become truly
significant only when properly related to each other. For example, we build a model
of a particular system for some objective—only some models, and not others, are
suitable. Thus, it is critical to the success of a simulation modeling effort that certain
relationships hold. The two most fundamental are the modeling and the simulation
relations (Table 1.3).
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Table 1.3 Primary relationships among entities

Basic relationship Definition Related system specification
levels

Modeling relation Concerned with how well Comparison is at level 1
Replicative validity =~ model-generated behavior agrees Comparison is at level 2
Predictive validity with observed system behavior Comparison is at level 3, 4
Structural validity

Simulation relation Concerned with assuring that the Basic comparison is at level
Correctness simulator carries out correctly the 2; involves homomorphism

model instructions at levels 3 or 4

1.4.3.1 Modeling Relation: Validity

The basic modeling relation, validity, refers to the relation between a model, a
system, and an experimental frame. Validity is often thought of as the degree to
which a model faithfully represents its system counterpart. However, it makes much
more practical sense to require that the model faithfully captures the system
behavior only to the extent demanded by the objectives of the simulation study. In
the MSF, the concept of validity answers the question of whether it is impossible to
distinguish the model and system in the experimental frame of interest.

The most basic concept, replicative validity, is affirmed if, for all the experiments
possible within the experimental frame, the behavior of the model and system agree
within acceptable tolerance. Thus, replicative validity requires that the model and
system agree at the I/O relation level 1 of the system specification hierarchy.

Stronger forms of validity are predictive validity and structural validity. In
predictive validity, we require not only replicative validity, but also the ability to
predict as yet unseen system behavior. To do this, the model needs to be set in a
state corresponding to that of the system. Thus, predictive validity requires
agreement at the next level of the system hierarchy, that of the I/O function level 2.
Finally, structural validity requires agreement at level 3 (state transition) or higher
(coupled component). This means that the model not only is capable of replicating
the data observed from the system but also mimics in step-by-step,
component-by-component fashion, the way that the system does its transitions.

The term accuracy is often used in place of validity. Another term, fidelity, is
often used for a combination of both validity and detail. Thus, a high-fidelity model
may refer to a model that is both high in detail and in validity (in some understood
experimental frame). However, when used this way, beware that there may be a
tacit assumption that high detail alone is needed for high fidelity, as if validity is a
necessary consequence of high detail. In fact, it is possible to have a very detailed
model that is nevertheless very much in error, simply because some of the highly
resolved components function in a different manner than their real system
counterparts.
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1.4.3.2 Simulation Relation: Simulator Correctness

The basic simulation relation, simulator correctness, is a relation between a sim-
ulator and a model. A simulator correctly simulates a model if it is guaranteed to
faithfully generate the model’s output trajectory given its initial state and its input
trajectory. Thus, simulator correctness requires agreement at the I/O function level
2. In practice, simulators are constructed to execute not just one model but a family
of possible models. This flexibility is necessary if the simulator is to be applicable
to a range of applications. In such cases, we must establish that a simulator will
correctly execute a particular class of models. Since the structures of both the
simulator and the model are at hand, it may be possible to prove correctness by
showing that a homomorphism relation holds. Here, a homomorphism is a corre-
spondence between simulator and model states that is preserved under transitions
and outputs.

1.4.4 Other Important Relationships

Besides the two fundamental modeling and simulation relationships, there are
others that are important for the M&SBoK. These relations have to with the
interplay and comparative complexity-related orderings of models and experimental
frames.

1.4.4.1 Modeling as Valid Simplification

The inescapable fact about modeling is that it is severely constrained by complexity
limitations. Complexity is at heart, an intuitive concept—the feeling of frustration
or awe that we all sense when things get too numerous, diverse, or intricately
related to discern a pattern, to see all at once—in a word, to comprehend. Gener-
alizing from the boggled human mind to the overstressed simulator suggests that the
complexity of model can be measured by the resources required by a particular
simulator to correctly interpret it. As such, complexity is measured relative to a
particular simulator, or class of simulators. However, properties intrinsic to the
model are often strongly correlated with complexity independently of the under-
lying simulator. Successful modeling can then be seen as valid simplification. We
need to simplify, or reduce the complexity, to enable our models to be executed on
our resource-limited simulators. But the simplified model must also be valid, at
some level, and within some experimental frame of interest. As in Fig. 1.4, there is
always a pair of models involved, call them the base and lumped models. Here, the
base model is typically “more capable” and requires more resources for interpre-
tation than the lumped model. By the term “more capable,” we mean that the base
model is valid within a larger set of experimental frames (with respect to a real
system) than the lumped model. However, the important point is that within a
particular frame of interest the lumped model might be just as valid as the base
model. The concept of morphism affords criteria for judging the equivalence of base
and lumped models with respect to an experimental frame.
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Fig. 1.4 Base/lumped model Experimental Frame
equivalence in experimental
frame

base model

morphism

lumped model

1.4.4.2 Experimental Frame—Model Relationships

Assume that we have a whole repository of models and experimental frames that
have been built up over years of experience. Then, it is critical to have an ability to
ask whether there are any experimental frames that meet our current objectives and
whether there are models that can work within this frame. Only those models have a
chance of providing valid answers to our current questions. The relation that
determines if a frame can logically be applied to a model is called applicability and
its converse is called accommodation (Table 1.4). Notice that validity of a model in
a particular experimental frame requires, as a precondition, that the model
accommodates the frame.

The degree to which one experimental frame is more restrictive in its conditions
than another is formulated in the derivability relation. A more restrictive frame
leaves less room for experimentation or observation than one from which it is
derivable. So, as illustrated in Fig. 1.5, it is easier to find a model that is valid in a
restrictive frame for a given system. It turns out that applicability may be reduced to
derivability. To see this, define the scope frame of the model to represent the most
relaxed conditions under which it can be experimented with (this is clearly a
characteristic of the model.) Then, a frame is applicable to a model, if it is derivable
from the scope frame of the model. This means that a repository need not support
both applicability and derivability queries. Only the latter is sufficient if each model
has an associated scope frame.

Table 1.4 Other M&S relationships important when dealing with a model repository

Relationship Definition

Experimental frame applies to a The conditions on experimentation required by the
model (or “is applicable to”) frame can be enforced in the model

Model accommodates experimental ~ Frame is applicable to the model

frame

Experimental frame 1 is derivable Any model that accommodates experimental frame 2

from experimental frame 2 also accommodates experimental frame 1
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Fig. 1.5 Illustrating More demanding frames More Detailed Models
important M&S relations O
relevant to model repositories
appli
derivable

from homomorphism

O
A
experimental models
frames

1.4.5 Time

A time base is an ordered set, usually the real numbers, for indexing events that
models the flow of actual time (Table 1.5). If the interpretation of such a time base
is left abstract in this manner, we refer to it as logical time. In contrast, when we
consider events happening in the real world, in real time, we refer to a time variable
as measured by an actual clock. Thus, physical time, also called metric time or
wall-clock time, is measured by ticks of physical clocks, while logical time is
measured by ticks of a clock somehow embedded in a model. Also, as relativity
theory made clear, time, as perceived by observers at different locations may be
different. Based on this distinction, time can be either local or global. The former is
valid only within a component of a system; the latter is valid in the whole system.
Thus, there are at least two dimensions for classifying time: one along the
logical/physical axis and the other along the local/global axis. Consequently, a time
base can be interpreted as falling in any one of the four combinations shown in O.

Traditionally, modeling and simulation have considered mainly the first (global,
logical) combination. That is, we assume all components of a modeled system have
the same time frame of reference and we consider time as an abstract quantity.

Table 1.5 A time taxonomy

Logical/physical
Logical time Physical time
Local/global ~ Global Global logical: Global, physical:
time All components operate on the same All components
abstract time base All components operate on the same
operate on the same abstract time base system clock
Local Local, logical: Local, physical:
time A component operates on its own A component
abstract time base operates on its own

system clock
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However, when a model is executing in a simulator, which may be distributed
among computer nodes in a network and may also be interacting with the real
world, it is hard to maintain this fiction. We note that synchronization between time
bases requires maintaining a correspondence between the two. For example, a
distributed simulation protocol synchronizes the local, logical times maintained by
the individual simulator nodes. Another example of synchronization occurs in a real
time, human-in-the-loop simulation-based training. Here, the simulator employs a
physical time base (e.g., computer system clock) to synchronize between a pilot’s
physically perceived time base and the logical time of a model of the aircraft being
simulated.

1.4.6 Mapping Informal Terminology to MSF Formalization

Bernard P. Zeigler

Often in the literature of M&S, terminology is defined conceptually but not in the
mathematically precise manner of the MSF presented here. For example, we have
seen how the US Department of Defense M&S Glossary (M&S Glossary—
M&SCO) defines “system model” and “simuland” in terms of “system” without
giving a definition of “system” itself. A rough equivalence between terminology
often found in the literature and entities of the framework can be established in
Tables 1.6 and 1.7:

Since the MSF defines its entities as mathematical systems, it can define typical
activities involved in M&S work as mathematical relations. A rough equivalence is
given in Table 1.7:

Table 1.6 Some common conceptual definitions and MSF equivalents

Conceptual definition of object MSF formalization

A simuland is the real-world system of Real-world system is a source of data that can
interest. It is the object, process, or be represented by a system specification at a
phenomena to be simulated behavioral level

A model is a representation of a simuland, Model is a set of rules for generating behavior
broadly grouped into conceptual and and can be represented by a system
executable types specification at a structural level. A modeling

formalism, e.g., DEVS, enables conceptual
specification and is mapped to a simulation
language for execution by a simulator

Simulation is the process of executing a A simulator is a system capable of generating

model over time the behavior of a model; simulators come in
classes corresponding to formalisms, e.g., an
abstract DEVS simulator describes
implementable simulators of DEVS models

The results of simulation are the output The behavior of a model generated by a

produced by a model during a simulation simulator constitutes a specification at the
behavior level
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Table 1.7 Conceptual definitions and MSF equivalents

Conceptual definition of activity

Verification is the process of determining if
an implemented model is consistent with its
specification

Validation is the process of determining if a
model behaves with satisfactory accuracy
consistent with the study objectives within its
domain of applicability to the simuland it
represents

MSF formalization

There is a relation, called simulation
correctness, between models and simulators.
Verification is the process of proving this
correctness in a simulator generating the
behavior of the model. When this is done for
a formalism, it certifies a simulator as correct
for any model of the associated class

There is a relation, called validity in a frame,
between models and real systems within an
experimental frame. Validation is the process
of establishing that the behaviors of the
model and real system agree in the frame in

question. The frame can capture the intended
objectives (extended to intended uses),
domain of applicability, and accuracy
requirements
Abstraction is the omission or reduction of
detail not considered necessary in a model

Abstraction is the process of constructing a
lumped model from a base model intended to
be valid for the real system in a given
experimental frame

The definition of validation is a synthesis of various definitions in the literature
that separately relate the model to a real system, the purposes of model construc-
tion, the domain of applicability, and the accuracy required. For example, Balci [10]
defines validation as the assessment of behavioral or representational accuracy and
then later conditions accuracy on intended use. Our intent is to best represent the
conceptual literature for the purposes of relating it to the MSF.

1.5 Basic System Entity Structure (SES) Concepts

Thorsten Pawletta

The System Entity Structure (SES) is a structural knowledge representation scheme
introduced by Zeigler [11]. It contains knowledge of decomposition, taxonomy, and
coupling of a system. In combination with a Model Base (MB), it supports different
concepts for system modeling, investigating design alternatives, reusing good
designs, and collaborative modeling [7, 12, 13].

Figure 1.6 shows the general procedure model of an SES/MB-based M&S
according to Pawletta et al. [14]. Possible configurations of a system or a family of
systems are analyzed. That means, basic dynamic components, their relations, and
parameter settings are identified. Dynamic components are modeled or implemented
as reusable basic systems with defined input and output interfaces and organized in a
MB. The possible system structures and parameter settings are modeled with an
SES, which specifies formal links to basic systems in the MB. Figure 1.7 shows an
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Fig. 1.6 Procedure model of an SES/MB-based M&S according to Pawletta et al. [14]
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Fig. 1.7 Basic example of a SES, which describes ten admissible system structures. There are two
variants of composing entity B (aspects BI-Dec and B2-Dec), three variants for selecting a specific
type of entity C and entity D can be replicated one, two, or three times. However, the semantic
condition limits the selection to C3_C and only one replication of D when using aspect B2-Dec.
The coupling relations of the replicated entities D result dynamically dependent on the value of
attribute numRepD

example of an SES with associated MB. In the application phase, executable models
are generated with transformation methods such as pruning and build. Based on
defined objectives, the pruning method derives a unique system configuration from
the set of possible configurations. The result of pruning is called Pruned Entity
Structure (PES). Based on the information in the PES, the build method generates an
Executable Model using basic systems from the MB.
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The transformation methods can be executed interactively or automatically.
Extended SES/MB-based architectures for automated and reactive pruning of SES
are presented in Schmidt et al. [15] and Folkerts et al. [16]. Different approaches of
the build method are discussed in Folkerts et al. [17]. The generation of executable
models for different simulators based on a uniform MB is discussed by Pawletta and
Folkerts (Sect. 18.6).

An SES is represented by a directed tree structure, as illustrated in Fig. 1.7. The
different edges are related to different node types. Each node can define attached
variables, also called attributes. Real-world or imaginary objects are represented by
entity nodes. Entity attributes represent properties of the respective object. The root
and the leaves are always entities. Relations between entities are specified by three
types of descriptive nodes, called aspect, multi-aspect, and specialization. The
attributes of descriptive nodes specify relations between their parent node and
children nodes or decisions for the pruning process. Aspects describe how entities
can be decomposed in partial entities. Coupling relations can be specified in a
couplings attribute. Multi-aspects describe the decomposition of an entity into
entities of the same class. They define an additional attribute, called Number of
Replications (numRep). The taxonomy of an entity is described by specialization(s)
and concerns admissible variants of an entity. Rules for selecting a variant during
pruning can be defined in a selection rule attribute. With the extended procedural
knowledge representation according to Pawletta et al. [14], attributes can be
dynamically assigned values. For example, coupling relations of a multi-aspect can
result dependent on the value of attribute numRep.

The semantics of the SES is defined by axioms. Types of each node have to
follow the axiom alternating mode. Every entity node has to be followed by a
descriptive node, and vice versa. A strict hierarchy is needed. In every path of the
tree, a name of a node may occur only once. If nodes in different paths have the
same name, they need to have the same variables and isomorphic partial trees. This
is called uniformity. Nodes on the same level of a hierarchy, called sibling nodes,
have to be valid brothers, meaning that sibling nodes must not have the same name.
The axiom of attached variables implies that a node must not have variables of the
same name. The axiom of inheritance implies that during pruning, the parent and
the child of a specialization combine their variables, aspects, and specializations.
The configurations modeled in an SES tree can be delimited by selection con-
straints and semantic conditions.

There are numerous additional SES concepts, such as using the SES as a general
ontology for data modeling [18], the specification of abstraction hierarchies and
time granularities for families of systems [19], interfaces for automated, reactive
pruning [15], methods for the pruning of deep hierarchies of certain node type
combinations [16], or the combination with performance metrics to evaluate and
select the best possible system configurations [20].
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2.1 The Big Picture

Tuncer Oren

This section is adopted from [1, 2] and has been updated accordingly. Simulation is
a model-based activity [3]. Hence, core areas of simulation include models and
data; their relationship is straightforward. Data is used to formulate and calibrate
models, and models are used to generate data. Models are formulated according to
modeling formalisms. Model engineering covers all aspect of formulation, pro-
cessing, and use of models. Experiments and experience are the main reasons of
using modeling and simulation.

Models or representations of existing or non-existing reality are used in simu-
lation. Study of reality/model dichotomy can help us explore different types of
simulation. Table 2.1 outlines model/reality dichotomy based on usage in art,
engineering, science, decision support, education, training, entertainment, as well as
pretense and representation.
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Table 2.1 Model/reality dichotomies

Based on reality/model dichotomy

In simulation, models or representations of existing or non-existing reality are used. Study of
reality/model dichotomy can help us explore different types of simulation. Reality/model
dichotomy depends on the purpose: art, engineering, science, decision support, education,
training, entertainment, as well as pretense, representation

Art In art, reality is a source of inspiration and is called ‘model’
The model—for an artist—is what a simulationist would say real
system!

Engineering There are two possibilities for design and control problems:
Design A design (or a model) is an instrument to engineer a

system

Control A model is a basis to control a system

Science Use of models in analysis problems

Analysis A model is a representation to understand a system

Decision support A model is a substitute of reality to perform experiments
A model or a representation of reality can be used to gain experience
to develop/enhance three types of skills

Education A model is a representation to explain/teach dynamic systems

Training A representation of a system provides experience to enhance three
types of skills
— Motor skills (virtual simulation, simulators, virtual simulators)
— Decision-making skills (constructive simulation; serious games)
— Operational skills (live simulation)

Entertainment A representation of a system provides experience for entertainment

pretense/representation ~ We are often exposed to simulated reality, in postmodern societies
[4] (boundary becomes blurred)

Simulation can be perceived from different perspectives such as purpose of
use, problem to be solved, connectivity of operations, types of knowledge pro-
cessing, and philosophy of science.

Table 2.2 outlines perceptions of simulation based on purpose of use and
problem to be solved.

Use of simulation experiments for decision support has many aspects. Table 2.3
outlines several ways simulation experiments are used for decision support.

Perceptions of simulation based on the connectivity of operations of simulation
and system of interest are outlined in Table 2.4.

Based on knowledge processing, simulation can be perceived as a computational
activity, a system theory-based activity, a model-based activity, a knowledge
generation activity, and a knowledge-processing activity. Table 2.5 outlines per-
ceptions of simulation from the perspectives of computational and system
theory-based activities.

As a model-based activity, simulation has several advantages and covers four
types of activities. Table 2.6 outlines advantages and four types of activities.
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Table 2.2 Perceptions of simulation based on purpose of use and problem to be solved

Based on purpose of use

This perspective is user oriented and clarifies main categories of uses of simulation

Experiment  Simulation is performing experiments (for decision support, understanding, and
education)

Experience Simulation provides experience (under controlled conditions) for:

Training (for gaining/enhancing competence) for three types of skills:

— Motor skills (virtual simulation by using virtual or simulated
equipment)

— Decision and/or communication skills (constructive simulation—
serious games)

— Operational skills (live simulation)
Entertainment (gaming simulation)

Imitation Imitation is another aspect of simulation (such as simulated leather or fake) and
is the original meaning attached to the term simulation. Art can also be
perceived as experience [5]. However, these aspects are beyond the scope of this
document

Based on problem to be solved
(Simulation is perceived as an infrastructure to support real-world activities and is perceived as
not being the “real thing”)

Table 2.3 Several ways simulation experiments are used for decision support

Use of simulation experiments for decision support

Prediction of behavior and/or performance of the system of interest within the constraints
inherent in the simulation model (e.g., its granularity) and the experimental conditions

Evaluation of alternative models, parameters, experimental and/or operating conditions on
model behavior or performance

Sensitivity analysis of behavior or performance of the system of interest based on granularities
of different models, parameters, experimental and/or operating conditions

Evaluation of behavior and/or performance of engineering designs
Virtual prototyping

Testing

Planning

Acquisition (or simulation-based acquisition)

Proof of concept

Model analysis covers many model-based activities. It can be descriptive model
analysis or model characterization and evaluative model analysis or model evalu-
ation. Table 2.7 outlines types of model characterization.

Model evaluation or evaluative model analysis can be done with respect to
modeling formalisms, another model (model comparison), real system, and goal of
study. Table 2.8 outlines types of model evaluations.

Model transformation is another type of model-based activity. Table 2.9 outlines
types of model transformations.
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Table 2.4 Perceptions of simulation based on the connectivity of operations of simulation and
system of interest

Based on connectivity of operations of simulation and system of interest
Two possibilities can be identified

No connection This is the case of stand-alone simulation which is the most widely used
type of simulation

Operations are This is the case of integrated or symbiotic simulation. It can be used for

interwoven two purposes

To enrich real system’s operations

(The system of interest and the simulation program operate
simultaneously) for

— Online diagnostics (or simulation-based diagnostics)

— Simulation-based augmented/enhanced reality operation (for
training to gain/enhance motor skills and related decision-making skills)
(e.g., Al airplane in a dogfight training with real aircrafts)

To support real system operations

(The system of interest and the simulation program operate
alternately to provide simulation-based predictive displays)
— Parallel experiments while system is running

Table 2.5 Perceptions of simulation from the perspectives of computational and system
theory-based activities

Based on types of knowledge processing
Simulation is a computational activity, a system theory-based activity, a model-based activity, a
knowledge generation activity, and a knowledge-processing activity

Computational This point of view clarifies some legacy definitions of simulation
activity Simulation is “A method for implementing a model over time.” [6]
“Simulation: the exercising of a model over time.” [7]
Some examples of circular, incorrect, and misleading definitions of
simulation were cited by Oren [1]

System theory-based ~ This approach [8] is the basis of system-theoretic approach for
activity modeling and symbolic model processing

— The widely used standard approach is discrete event system
specification (DEVS) [9]

— General system theory implementor (GEST) was a system
theory-based [10] declarative language for continuous systems
expressible by ordinary differential equations [11, 12]. Its coupling
features, which include time-varying coupling [13], go beyond
traditional programming [14]. However, there is no commercial
version

— Dynamo (DYNAmic models) is a historic language developed by
J. W. Forrester et al. in late 1950s and was based in industrial
dynamics (later system dynamics) (Wikipedia-Dynamo)
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Table 2.6 Advantages of model-based simulation and four types of activities

Based on types of knowledge processing: simulation is a model-based activity

Some of the advantages of model-based approach [3] are efficiency in computerization,
reliability, reusability and composability, and interoperability

— Efficiency in computerization: model bases (or model repositories) may contain model
specifications that can easily be converted into programs. Hence, programming aspect can and
should be fully automated. This aspect also eliminates programming errors and contributes to the
reliability of the computerization of models

— Reliability: models can easily be read and understood by specialists in the field. This aspect
can help assuring model reliability

Model specifications can be checked by specialized software as well as manually for consistency,
completeness, and correctness. This aspect is definitely superior to traditional V&V techniques
that work on code only and can be the basis for built-in reliability in M&S studies

— Reusability and composability: model specifications can easily be modified for model
reusability as well as model composition. Some of the model composability techniques can be
dynamically applicable for systems that not only have dynamic behavior but also can and should
be modified dynamically as the simulation evolves

— Interoperability: it is highly desirable to check interoperability of model specifications
rather than the codes of models since executability of code does not necessarily signify its
semantic interoperability
As a model-based activity, simulation includes the following four types of activities: model
building, model-based management, parameter base management, and model processing

— Model building
It consists of modeling (from scratch) and model composition including dynamic model
composition at run time (or execution time)

— Model-based management
It includes model search, semantic model search, and model integrity

— Parameter base management

In some applications, such as nuclear fuel waste management simulations, a large number of
parameters may be involved, and some parameters may not have point values and may be
described by probability density functions

— Model processing: it consists of

— Model analysis (descriptive model analysis (model characterization)) evaluative model
analysis (model evaluation)

— Model transformation, and behavior generation

Table 2.7 Types of
descriptive model analysis or
model characterization

Descriptive model analysis (Model characterization) for
Model comprehensibility
Model documentation
Static model documentation
Dynamic model documentation

Model ventilation (to examine its assumptions, deficiencies,
limitations, etc.)

Model usability
Model referability

Model-based management
Model integrity

Model composability
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Table 2.8 Types of model evaluations

Evaluative model analysis (Model evaluation) with respect to
Modeling formalisms
Consistency of model representation
Static structure of
Component models
Total system (coupled model, model of system of systems)
Dynamic structure
State transitions, output function(s)
Structural change
Dynamic coupling
Model robustness
Another model (model comparison)
Structural model comparison
Model verification (comparison of a computerized model and corresponding
conceptual model)
Checking
Model homomorphism, model isomorphism
Model equivalencing for:
— Any two models
— A simplified and original model
— An elaborated and original model

Behavioral model comparison (comparison of behaviors of several models within a
given scenario)

Real system
Model qualification
Model realism (model veracity, model verisimilitude)
Adequacy of model structure:
— Static structure (relevant variables, interface of models)
— Dynamic structure
Adequacy of model constants and parameters
— Model identification, model fitting, model calibration
Model correctness analysis
Dimensional analysis
Model validity
Goal of the study
Model relevance
Domain of intended application(s) (appropriate use of a model)
Range of applicability of a model
Acceptability of a model with respect to its technical system specification
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Table 2.9 Types of model
transformations

Table 2.10 Types of model
behavior

Table 2.11 Types of model
behavior generation

Types of model transformation

Model copying

Model reduction

Model pruning

Model simplification
Structural model simplification
Behavioral model simplification

Model elaboration

Model isomorphism

Model homomorphism

Model endomorphism

Types of model behavior
Point behavior (as a result of)
Computation
Optimization
Search
Trajectory behavior
Simulators
Simulation
Intermittent simulation
Optimizing simulation
Gaming simulation
Structural behavior
Growth systems
Lindenmayer systems (L-systems)
Mixed trajectory and structural behavior

Types of model behavior generation by
Numerical techniques
Deterministic techniques
Stochastic techniques
Non-numerical techniques
By symbolic techniques
By analogical techniques

Mixed numerical and symbolic techniques
(multi-paradigm modeling)
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Table 2.12 Characteristics of simulation as a knowledge generation activity

Based on types of knowledge processing: (Simulation is a knowledge generation activity)
From this perspective, “Simulation is model-based experiential knowledge generation” [2].
Based on this feature

— Advanced simulation environments can combine modeling, model processing, behavior
generation, and other types of knowledge processing (integrated use of M&S with optimization,
Al and software agents)

— Combination of simulation systems with sensors and affectors; and switching from
simulation to real system operation or vice versa is possible

— Combination of several types of knowledge processing such as soft computing,
cognitive, and emotive computing is possible

Table 2.13 Characteristics of simulation as a knowledge-processing activity

Based on types of knowledge processing: (Simulation is a knowledge-processing activity)
Advanced simulation environments can

Combine modeling, model processing, behavior generation, and other types of knowledge
processing such as

— Integrated use of M&S with optimization, Al, and software agents

Combine simulation systems with sensors and affectors; and switching from simulation to
real system operation or vice versa

Allow combination of several types of knowledge processing: soft computing, cognitive,
and emotive computing

A pragmatically important type of model processing is generation of model
behavior which is done in every simulation study. Tables 2.10 and 2.11 outline,
respectively, types of model behavior and types of model behavior generation.

Characteristics of simulation as a knowledge generation activity are outlined in
Table 2.12.

Characteristics of simulation as a knowledge-processing activity are outlined in
Table 2.13.

From the point of view of philosophy of science, simulation supports and
enriches modern scientific thinking as advocated by Bacon [15].

2.2 Data

Umang Kant, Mayank Sing

Data plays a pivotal role in the process of simulation. Data works as the input to the
simulation models which in turn produce data. Simulations are often used to solve
real-time problems, and hence, we need real-time data to make the simulation a
success. Simulation process gives solutions to problems by giving clear insights.
The data used for simulation will shape the outcome of the process. Hence, it is of
utmost importance to be clear about what type of data is to be used.



30 T. Oren et al.

The choice and value of data used in simulation can have an impact on the
underlying mechanisms that control the behavior of the system. In this chapter, we
explore and discuss the types of data and various terms related to data with respect
to M&S BOK.

Accessible data

Accessible data refers to the data which can be retrieved, modified, copied, or
moved from an organization’s repository (hard drives, disks, database, data ware-
house, cloud, etc.) provided the party (users) accessing the data has proper
authority. The data can be accessed on demand as per needs, and authorized users
can perform above-mentioned functions at any location as per convenience. So,
data access can be defined as the way by which authorized users can get access to
this data and its location in an authenticated manner approved by the organization
having that data. This data can either be at rest or in motion. When data is at rest in
a repository, we can access the data in two ways: (i) sequential access: where seek
operation is used till the required data is found and (ii) random access: data can be
retrieved from anywhere in the disk.

Actual data

Actual data is the data which has been interpolated using the current parameters,
hence making it more fluid data. Actual data is different from historical data, as
well as forecast data; where the historical data is the collection the data which has
happened in the past and has records of its existence, whereas forecast data is the
prediction based on the correlations of the historical and current trends.

Adjusted data

The principle behind the concept of adjusting data is that the data is adjusted to
satisfy the constraint which is believed to be true and is a fact. Hence, adjusted data
can be defined as data which has had some modifications and manipulations to
adjust in the required specifications of the application. Three of the most signifi-
cation methods of adjusting the data are (i) weighing data, (ii) variable respecifi-
cation, and (iii) scale transformation.

ALSP data

ALSP stands for aggregate level simulation protocol. This protocol facilitates
interoperating the simulations with each other. It manages the adaptable demands of
the system with respect to the application in use. ALSP data refers to the data which
supports the various simulations and their relationship with each other.

Ambiguous data

Ambiguous data refers to the data having same representation but different meaning
or value. Ambiguous data leads to ambiguous information which in turn affects the
process of decision making. Ambiguous data can be mined using multi-instance
multi-label learning and other algorithms.
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Auditable data

Auditable data is set of data which is forwarded to the process of data auditing. Data
audit is the process to auditing the data to evaluate the utility and quality of the data
being used for a specific purpose. The process of data audit requires considering
key metrics to assess the quality of the data set. The main objective to carry out this
process is to check if the data set fits the organization’s data for a particular purpose,
i.e., to check how the data set affects the performance, cost, and profits/loss of the
organization.

Bivariate data

Bivariate data refers to the data of two related variables. For example, sale of ice
cream and temperature are related; similarly, the booking of hotel rooms is
dependent upon the weather and vacation months. Such examples refer to bivariate
data. Bivariate data is different from univariate data which is dependent on only one
variable.

Calibrated data

Calibration refers to the process of comparing a device under test (DUT) on an
unknown value with respect to a standard of a known value. Calibrated data can be
defined as the data upon which the calibrated settings have been applied. Cali-
bration settings are flexible, and they are applied after applying the suitable data
settings.

Certified data

Data is interpreted as certified data when a certified data analyst (CDA) acquires,
cleanses, processes, and analyzes the data. Certified data helps the certified data
analyst in making efficient decisions and producing business reports in various
industries such as retail, telecommunication, financial, medicine, tourism, and
others.

Coarse data

Coarse data can be interpreted as data that one observes not the true value of
variable of interest but rather a subset of the sample space in which the true data
lies. When the data is not to be found, their true values are known to lie somewhere
in their sample space. The process of coarsening is not stochastic in nature. The
degree of coarsening is pre-decided and is known in advance.

Complex data

Complex data is a type of data which indicates the level of difficulty while trans-
lating it into some business value. As the name suggests, complex data is difficult to
collect, model, and analyze than simple data. Such data requires various tools for
interpretation and processing. Data falls into the category of complex data when it is
‘big’ in nature and when it is coming from various disparate sources.
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Consistent data

By consistent data, it is understood that the data is produced in a regulated and
predictable manner. Consistent data is constant over time and relationship with
other elements of the system environment. Each time the data is run on a particular
system or application, it produces the same result, i.e., there is no data discrepancy.
Data is considered to be consistent if it is formatted in a manner. A system is said to
include consistent data if it does not contain contradiction or does not allow the
users to infer any contradiction with respect to the data.

Correct data

As the name suggests, correct data is exact in nature, i.e., it is accurate and is free of
faults and inconsistencies with respect to the system or the application, where that
data is to be used and processed.

Current data

Current data lets the organization team to view the state-of-the-art analytics data
even before the data is completely processed and confirmed for decision making. It
is in the nature of current data to display the metrics in least amount of time, which
in turn provides actionable data which is further used for decision making. In
reports, the current data is enabled by default to support quick decision making.

Digital data

Information which can be stored on the machine in the form of collections of Os and
1s, i.e., in binary language is called digital data. A sequence or collection of Os and 1s
is forwarded to digital machines because these machines do not understand human
understandable language (high-level language); hence, it is must to convert the
information into low-level language and then covert the low-level language using a
complier into a sequence of Os and 1s. Digital data is different from analog data.

DIS protocol data

DIS stands for distributed interactive simulation. DIS refers to a protocol that has
been specifically designed to facilitate communication between heterogenous
simulators built by different manufacturers. The protocol data unit (PDU) is the DIS
format for truth conveyance. It is an ambiguous data format for communicating a
particular event or specific piece of information.

Environmental data

Environmental data refers to that data which is solely based on the (i) measurements
of environmental characteristics such as pressure and temperature, (ii) state of the
environment, and (iii) the environment impacts on the ecosystems. Environmental
statistics are also often considered as environmental data. While understanding
environmental data, we need to understand what data we need to collect and
analyze and then break down the types of data. The environmental data can be
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classified into following types: (i) continuous, (ii) count (simple or categorical),
(iii) proportion, and (iv) binary or unary, etc.

Evaluation data

Evaluation data refers to the compilation of data and the use of consistent analysis
methods. Evaluation data includes identification of research goal, existence of
research problem, methodology type, data compilation processes, sample data, and
data analysis techniques and outcomes. If we are trying to find out: how many? how
much? what percentage? how often? what is the average amount?, etc., then we
must choose quantitative methods. If we are trying to find out: what worked best?
what did not work well? what do the numbers mean? how was the project useful?
what factors influenced success or failure?, etc., we must choose qualitative
methods.

Exchange data

Exchange data refers to the data being shared among different stakeholders or
different computer programs. Here the data is structured under a source schema and
transformed into a target schema. It provides data points from various parts of the
world to support data marketing and advertising. Here we can use previously
unavailable or outdated data and use it to power the marketing campaigns.

Experimental data

In science and engineering, experimental data is the data produced by a test method,
a measurement, an experiment design, or quasi-experimental design.

Haptic data

Haptic data is the data being generated by haptic technology. The aim of haptic
technology is to simulate the sensory environment and enable the users to touch,
feel, and manipulate virtual objects in the environment through haptic interfaces as
true to the reality as possible. By incorporating perceptual cues such as feel, shape,
texture, stiffness, and friction, one can depict properties of virtual object.

Hardwired data

By hardwired data, we mean the data which is not flexible and will not thrive in
different environments. Hardwired data comes wired up by the developer or by the
system before it can be used, and during the use, there is no possibility of changing
its properties.

Heterogenous data

Data which is generated by Internet of Things (IoT) is heterogenous data. These
types of data come with high variability of data formats and data types. These data
are ambiguous in nature, and since they are collected over the Internet with sensors,
i.e., they are collected on a large scale, there is no guarantee of their quality. This
type of data needs to be analyzed before use. Heterogenous data falls into the
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following categories: (i) syntactic heterogenous data, (ii) conceptual heterogenous
data, (iii) terminological heterogenous data, and (iv) semiotic heterogenous data.

Historical data

In broad context, historical data can be defined as the data which is collected from
past events and situations pertaining to a particular application. This data is gen-
erated either manually or routinely within an enterprise.

HLA protocol data

HLA stands for high-level architecture, and HLA protocol data refers to more
recent standard for interoperability among simulations. This data refers to archi-
tecture with a set of API standards as opposed to a networking protocol like DIS.
Real-time infrastructure supports and implements the HLA protocol data and
transports data from one federate to another.

Input data
Input data serves as input to the system, device, or programs.
Instance data

Instance data completely describes the state of object in question. It consists of all
the internal states of the object so that it almost becomes synonymous to the object
itself.

Instance meta-data

Instance meta-data discusses the instance. This data can be used to manage the
current running instance. Instance meta-data can be divided into categories
depending upon the application in question such as events, partners names, and
security levels. Instance data can also be used to access user data specified at the
launch of the instance.

Irrelevant data

Irrelevant data refers to the data which is not connected or relevant to the appli-
cation being dealt. Using irrelevant data will lead to change in the desired outcome.
Irrelevant data can also be understood as unimportant data.

Legacy data

Legacy data refers to such data which comes in the category of enterprise essential
information. This data is stored in some old format in computer system. Legacy
data is usually used in government schemes or in industries. This data is generally
available online depending upon the use. It is important to handle the legacy data by
following some steps: (i) develop data error handling strategy, (ii) support
read-only legacy data access, (iii) encapsulate legacy data access, etc.
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Livewired data

Livewired data is complete opposite if hardwired data. As opposed to hardwired,
livewired data provides huge flexibility and possibility of changes as per the
environment. This type of data can thrive in any type of environment as it learns to
adapt to the environment, and hence, the properties are also not fixed.

Meta-data
Meta-data refers to data about data.
Model data

Model data is the data used in a data model, where model data and other related
elements are organized together. The related data follows model’s standardization.

Monitoring data

Monitoring data is obtained by the method of evaluating and reviewing the data at
every step. The quality of the data is to be ensured and monitored so that it is fit for
the purpose. For the monitoring purpose, we can use data monitoring software
which helps in tracking the data for the use.

Multisample data

Multisample data is obtained in those instances where enough experiments are
performed so that the reliability of the results can be assured by statistics.

Noisy data

Noisy data can be referred to as corrupt data or meaning less data. This data cannot
be understood and interpreted by the machines used in the organizations. Other
issues with noisy data are that it wastes the storage capacity of the machine and
yields incorrect results. Noisy data is generated by human or computer error, faulty
instruments, data transmission errors, naming convention inconsistencies, incon-
sistent formats, etc.

Non-stationary data

The data which is unpredictable and hence cannot be modeled or forecasted is
known as non-stationary data. They yield spurious results and hence indicate that
they are fake or nonexistent in nature. They must be converted into stationary data
in order to obtain better results.

Notional data

Notional data refers to such data which exists only in theory, i.e., it does not exist. It
is such data which has not been scientifically proven but still can be used for
experimentation purposes.
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Observational data

Observational data is collected by systematic methods and hence is valuable from the
point of view of a particular research. Observational data, as name indicates, is col-
lected by observation. There are many observations which yield observational data:
(i) participant and non-participant observation, (ii) simple and behavioral obser-
vation, (iii) direct and indirect observation, and (iv) covert and overt observation.

Obsolete data

Information which is either outdated or no longer in use, incorrect, or incomplete is
termed as obsolete data. This type of data is usually replaced by new more accurate
data.

Original data
Data or information relating to original material is referred to as original data.
Output data

Output data refers to the output value of the system or software. This data reports
the extent to which the intervention impacts.

Perceived data

Perceived data measures the report of competency attainment, beliefs, and attitudes
along with perceived gains in knowledge.

Persistent data

It refers to the data which does not change with time, does not change across
systems, and memory. This data is non-volatile and durable even with the change in
software and devices, and it exists from one instance to another. This data is
opposite of transient or dynamic data. This type of data is also called as dimensional
data with respect to data warehousing.

Qualitative data

Qualitative data describes the quality of the object. It characterizes and approxi-
mates the object. It is non-numerical in nature and is collected through methods of
one-on-one interviews, observations, record keeping, focus groups, case studies,
etc., and qualitative data can also be termed as categorical data with respect to
statistics.

Quantitative data

Quantitative data represents the numerical value of the object. This data can be
measured with respect to numbers or counts. This data is also termed as numeric
data. Quantitative data can be further classified into (i) digital data and (ii) con-
tinuous data. This type of data can be used in census, data projection, data pre-
diction, etc.
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Real-world data

Real-world data refers to the data which has been collected through observation and
not through experimentations. Real-world data plays a pivotal role in real-time
applications like healthcare systems, medical and clinical research, weather pre-
diction, air traffic control systems, etc.

Reference data

Reference data can be defined as the data which defines structures of other data
stored in the database. They are used to categorize or classify other data. They are
usually static in nature or are rarely or slowly changed over period of time.

Relevant data

The data which is useful and not distracting is termed as relevant data. They are
used at the runtime to complete the work in hand. Relevant data is indisputable and
can be used to create strong strategies. Relevant data is useful to optimize and
quantify the research.

Semantic data

Semantic data is useful in semantic data model which is a method of structuring the
data in order to represent it in logical way. Semantic data adds meaning to the data
and the relationship among other data in the model.

Sensor data

Sensor data can be defined by the data which is the output of a sensor (things in
IoT) that identifies and acts on the input from the environment. This data is col-
lected through sensors which in turn are connected through gateways, and collected
data is transferred to the cloud or fog.

Sensory data

Sensory data is the data which is made available to the person through its sensory
organs. In case of machines, the sensors are used to sense and collect the data.
Sensory data can also be referred to as the physical effects of the external envi-
ronment on the senses.

Significant data

Significant data can be interpreted as relevant data. The data which is useful and not
distracting is termed as significant or important data. They are used at the runtime to
complete the work in hand. Significant data is indisputable and can be used to create
strong strategies. It is useful to optimize and quantify the research.

Simulated data

The data produced by data simulation process is called as simulated data.
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Single sample data

Single sample data is the type of data in which few uncertainties may not be
discovered by repetition. They are the opposite of multi-sample data.

Smooth data

Data obtained by the process data smoothing is called as smooth data. Smooth data
is free from outliers and noise. Algorithms can be used to perform data smoothing
process.

Source data

Source data is the primary location from where the data comes. Also termed as data
source, it can be data set, database, and Excel spreadsheet.

Stationary data

Stationary data is predictable in nature, and hence as opposed to non-stationary
data, they are predictable in nature and can be forecasted.

Technical data

Technical data is a recorded information of a scientific or technical nature. It can be
defined as recorded information regardless of the ways of recording. Technical data
can be represented in a technical data package.

Test data

Test data is the data which is given as input to a software during test execution. It is
used for testing purpose. It is the data which either gets affected by the software or
affects the software.

Theoretical data

Theoretical data is collected by the process of theoretical sampling for generating
theory. They are abstract in nature.

Time indexed data
Data which is naturally evenly spaced in time is called time indexed data.
Traceability data

Traceability data is the information which refers to completeness of information
about every step of the process.

Transient data

Transient data is in contrast to persistent data. It is volatile in nature as it is created
within an application session. As soon as the application session is over, this data is
discarded or reset to their default state.

Additional definitions and explanations on these topics are published in [16-23].
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2.3 Models and Modeling Formalisms

Paul Fishwick, Mamadou Kaba Traoré

We begin with a broad cultural introduction to the idea of modeling and follow this
with a description of how models can be formalized.

A model is a simplified representation of something in the world. A toy car
represents an actual, real-sized automobile, but the toy car leaves out much detail
while providing relatively inexpensive and flexible usability (i.e., handling the car).
We say that the toy car models the automobile. Models are studied in every field,
and there are significant differences depending on these fields; however, all models
capture a simplified representation of something else. This overarching goal is the
same regardless of discipline. Within single disciplines, there is much literature. For
economic models, for instance, [24] presents a comprehensive review.

Model taxonomy has to be constructed from the ground up, through induction of
any use of the word ‘model” within the broad literature. Such a taxonomy will not be
explicitly defined here, but we introduce the sorts of models available. Modeling is
fundamentally cultural. This cultural aspect of modeling is partly due to discipline.
The electrical engineer may model an analog or digital circuit at different levels of
abstraction. The languages used by the engineer have a cultural foundation. Engi-
neering as a discipline is strongly visual—in the form of schematics and diagrams. It
comes as no surprise, then, that when the engineer thinks of modeling, they frequently
refer to the dynamics of an object through liberal use of diagrams and drawing and
contrast this culture with the culture of the mathematician. The mathematician and the
physicist, who relies on applied mathematics, tend toward canonical modern math-
ematical notation, which is lexical. This is not to suggest that the mathematician does
not use diagrams, but their work is most naturally found in text-based notation. These
notations have evolved over the centuries and will continue to evolve. The ways of
thinking, and so ways of modeling, differ among cultures.

The following represents an incomplete list of types of model by topic area,
while referring to specific examples:

(1) The scale model—this is perhaps the most widely used type of model. The
model is a scaled-down, simplified, geometrically similar, object when com-
pared to the object being modeled. We say that the scale model looks like the
actual object; the representation is similar from a visual perspective. An
example is the town model of Bourton on the Water [25]. While the Bourton
village captures the model of category [26], other model villages [27] are
examples of model for.

(2) The art model—within the arts, a model is either a quick sketch or prototype of
the target object or a human who models one example of an ideal human (e.g.,
the model who sits and poses for artists who sketch and paint). Examples are
found in Bernini’s terra-cotta models [28] with a sample exhibition [29].

(3) The engineering model—based on mathematical notation or the use of dia-
grams [30].



40 T. Oren et al.

(4) The mathematical model—based on mathematical notation indicating the
modeling of a real scenario [31].

(5) The logic model—based on an interpretation of a formal language satisfying
specified axioms (e.g., a mapping or set of equivalences that cause one or more
logical sentences to be true) [32].

The case of system dynamics (SD), initiated by Forrester [33], captures the
cultural essence of modeling. In SD, there are phases in the modeling process.
While all models can be said to begin with abstract concepts which eventually lead
to more detailed concepts and formalisms, SD explicitly defines these transitional
steps, whereas most modeling languages do not. SD begins with natural language
where concepts are drawn on a board. These concepts are then connected with
arrows. The arrows are labeled with plus and minus signs to define cause/effect or
increase/decrease. Then, the directed graph of arrows creates negative and positive
feedback loops. The process so far yields a causal loop diagram. The diagram must
be annotated so that specific nodes in the graph become levels or rates, or one of a
small set of other possibilities. This is then converted into a flow graph. Finally, the
flow graph is translated into a set of ordinary differential equations. These equations
are then translated into computer language and can be executed on the computer.
Not only does SD capture an evolutionary process for a certain type of modeling,
yielding ordinary differential equations, but each level represents a different cultural
lens for the target objects being modeled. The starting point of natural language
provides a common familiarity since anyone who knows English, for example, can
create such a model. The diagrams have an engineering cultural appeal. The
equations represent the formal foundation and for the casual user may appear
daunting. Incremental modeling, or model engineering, involves baby steps at first,
gradually moving toward an ever-refined mathematical model.

Models are social and cultural in addition to having different forms of repre-
sentation. These representations reflect the cultural differences of those who model.
Some models are simple, others complex. Some models use two-dimensional or
three-dimensional materials. We also need to be aware of model for” versus model
of. A model can be made from a preexisting object (i.e., the target of modeling) or
the model can be a prototype for something not yet constructed.

While models, across all disciplines, are deeply cultural with different types of
representation and detail, there are notable standards based on mathematical nota-
tion used frequently in science and engineering. We refer to these models as formal
models, where the formality derives from mathematical notation as a lingua franca
for many disciplines.

Formalisms provide the means to explicitly express models. While browsing the
whole space of all formalisms seems not realistic, there has been attempts to classify
them along criteria that can help choosing the right ones in a given modeling
situation. One such approach is proposed under the umbrella of multimodeling [34],
where the following classification of abstractions is done, and for each class of
abstractions, a family of adequate formalisms is indicated:
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e Conceptual models describe, at the highest level of abstraction, the general
knowledge about the system under study. Their purpose is to highlight system
entities (or classes), as well as the relationships between them. They, therefore,
constitute a knowledge base for subsequent abstractions. UML and natural
language are examples of adequate formalism for this abstraction level.

e Declarative models provide systems description in terms of sequences of events
that move the system from one state to another. This level of abstraction is
adequate to represent the dynamics of objects identified in the conceptual model.
Sequential automata (for passive objects) or Petri nets (for active objects) are
adequate formalisms for this abstraction level.

¢ Functional models provide system descriptions in terms of sequences of func-
tions (the outputs of the ones feeding the inputs of the others), arranged such that
the final treatment performed by the system is found downstream of this
sequence. Such a level of abstraction specifies the flow of processing within the
system. Queueing networks or functional block diagrams are examples of ade-
quate formalism for this abstraction level.

¢ Constraint (or conservative) models provide system descriptions in terms of laws
and constraints. Differential equations or difference equations are examples of
adequate formalism for this abstraction level.

e Spatial models focus on describing the decision rules for systems operation. The
main idea, at this level of abstraction, is to represent global decisions as the fruit
of the interactions of multiple local decisions. Cellular automata or multi-agent
systems are examples of adequate formalism for this abstraction level.

A more system-theoretic approach to formalism classification emphasizes on the
concepts of time and state [35] and distinguishes the following cases:

e The evolution of the state of the system of interest is specified as a continuous
process in a continuous time base. Formalisms that allow such a specification fall
under the label DESS (for “Differential Equation System Specification”).

e The state dynamics is specified as a continuous process in a discrete time base.
Formalisms for such a specification fall under the label DTSS (for “Discrete
Time System Specification”).

e The state evolution is specified as a discrete process. Therefore, the time base is
necessarily discrete even if it can take values in a continuous (respectively,
discrete) set, i.e., the set of reals or a subset (respectively, the set of integers or a
subset).

Modeling formalisms are strongly related to the modeling objectives. The latter
are concerned with the overall process that makes use of models, while the former
are tools used among others within this process to describe models. Therefore, the
use of whether a unique formalism or multiple formalisms is guided by the mod-
eling objectives, including the questions to be answered about the system, the
properties of the system to be analyzed, the capabilities of available model solver,
the analyst's experience, etc. When multiple levels of abstractions are at stake, this
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may lead to the use of various formalisms, each of them most suitable to a level of
abstraction. Such heterogeneity raises issues related to semantics alignment of the
overall model, like consistency between the different specifications, overlapping
descriptions, or unifying semantics. At the other side, a single formalism, thought
free from semantics alignment issue by construction, is rarely appropriate alone for
all levels of abstraction.

In order to conciliate the semantics unity of a homogeneous situation with the
expressive power of heterogeneous specification, unifying modeling approaches
have been defined, ranging from formalism interfacing (i.e., the use of a third party
as a glue to combine various formalisms) as proposed in multimodeling [34], to
formalism federation (i.e., the use of complementary formalisms to cover various
viewpoints of the same system) as proposed by UML [36], formalism subsumption
(i.e., the act of defining a model of computation that subsumes the semantics of
different formalisms) as proposed by DEVS [37], and formalism weaving (i.e., the
creation of a pivotal formalism by weaving the metamodels of existing formalisms
to create a new domain-specific language) as proposed by HiLLS [38].

2.4 Model Engineering

Lin Zhang, Yuanjun Laili

Model engineering (ME) or named as model lifecycle engineering (MLE) deals
with the model lifecycle credibility and scalability problem for complex systems,
especially systems of systems. ME is supposed to be taken as a sub-discipline of
M&S, which aims to provide standardized, systematic, and quantifiable manage-
ment and control to guarantee the credibility of the model lifecycle. Moreover, ME
can be used not only in the domain of M&S, but also other fields that need
modeling and model management.

2.4.1 Model Life Cycle

The life cycle of a model is shown in Fig. 2.1. It contains six phases, i.e., problem
definition, model design, model construction, VV&A (verification, validation and
accreditation), model implementation, model evolution and reconfiguration, and
model maintenance [39].

| Definition H Design HConstruction H W&A H Application H rs‘(’g:’ff'g‘jl:‘r;"‘gn H Maintenance

X

Fig. 2.1 Lifecycle of a model
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Problem definition is to define the specification of requirements. Model design is
to design the framework and relationships of different parts of the system. Model
construction is to build the model using description languages or mathematical
formalisms. VV&A is the process of verification, validation, and accreditation.
Application is to apply the model in a specific simulation environment. Evolution is
an incremental adaptation process to make the specific model more scalable and
credible to the current system requirements, including modification and refinement
of model parameters and relationships. Reconfiguration is to change parts of the
model during its runtime. Maintenance is to manage data, parameters, and different
versions related to all other phases of the lifecycle.

2.4.2 Definition of Model Engineering Model Life Cycle

Based on this cycle, model engineering is defined as a general term for theories,
methods, technologies, standards, and tools relevant to a systematic, standardized,
and quantifiable engineering methodology that guarantees the credibility of the full
lifecycle of a model with the minimum cost [40, 41].

2.4.2.1 Model engineering regards the full lifecycle of a model as its object of
study, which studies and establishes a complete technology system at the
methodology level based in order to guide and support the full model lifecycle
process such as model construction, model management, and model use for com-
plex systems.

2.4.2.2 Model engineering aims to ensure credibility of the full model lifecycle,
integrate different theories and methods of models, study and find the basic rules
independent of specific fields in the model lifecycle, establish systematic theories,
methods, and technical systems, and develop corresponding standards and tools.

2.4.2.3 Model engineering manages the data, knowledge, activities, processes,
and organizations/people involved in the full lifecycle of a model and takes into
account time period, cost, and other metrics of development and maintenance of a
model.

2.4.2.4 Here the credibility of a model includes functional and non-functional
components. Functional components are measurement of the correctness of func-
tions of the model compared to the object being modeled. Non-functional com-
ponents include features related to the quality of a model, such as availability,
usability, reliability, accuracy, integrity, maturity, ability of modelers as well as
management of modeling process. Credibility is a relative index with respect to the
purpose of modeling and simulation. Evaluation of credibility includes objective
and subjective evaluation. Objective evaluation is mainly based on data and doc-
uments, while subjective evaluation is mainly based on expertise. Quantitative
definition and measurement of credibility will be one of the most important research
topics of model engineering.
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Fig. 2.2 Key technologies of model engineering

2.4.3 Key Technologies of Model Engineering

According to the framework of the body of knowledge of model engineering given
in (Zeigler and Zhang 2015; [41]), technologies involved in ME can be divided into
the following categories (Fig. 2.6) including general technologies, model con-
struction technologies, model management technologies, model analysis, and
evaluation technologies, supporting technologies. Some key technologies in the
categories will be discussed in this section (Fig. 2.2).

2.4.4 General Technologies

2.4.4.1 Modeling of Model Lifecycle Process

In accordance with the standards of ME, modeling of model lifecycle process
means to build a structural framework of activities that usually happen in the
lifecycle. The framework is a visible pipeline to show the state of a model related to
the key stages, key elements, and key data of its lifecycle management. It is also
designed as a reference to evaluate the lifecycle cost and comprehensive efficiency
and improve both the model and the management strategy.
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2.4.4.2 Model Engineering Lifecycle Management

The lifecycle management of model engineering is carried out for managing data
(development data and runtime data), knowledge (common knowledge shared by
different models and the domain knowledge), activities, tools (especially M&S tools
and model evaluation tools), and person (the modeler, the tester, and the user).
Data/knowledge management technology focuses mainly on the data and knowl-
edge in model, runtime environment, and the whole model lifecycle. It includes the
methods for key data extraction during the model engineering lifecycle, knowledge
classification from multi-disciplines, information learning throughout modeling and
simulation, and data/knowledge storage for further improvement.

In the near future, we expect that the number of multi-disciplinary models will
grow, and the assembly and disassembly of a systems, data, and models will
continue to become more complex.

Accordingly, data mining strategies and knowledge extraction algorithms used
in ME must become much more: (1) scalable, to adapt to a wider arrange of domain
information, (2) efficient, to implement intelligent system construction, and
(3) stable, to ensure credible simulation and model management.

ME lifecycle management also consists of monitoring the processes of model
reconfiguration, evolution and maintenance, and the multilayer optimization of
modeling practices, operational workflows and maintenance schemes to realize an
efficient risk/cost control and speedup throughout the whole lifecycle of a model.

2.4.5 Model Construction Technologies

A large amount of research on model construction (modeling) has accumulated over
the years in the M&S domain. From the point of view of model engineering, some
issues for modeling methods are of most concern. Such issues include (1) acquisi-
tion and management of model requirements, (2) model specifications and mod-
eling languages, (3) modeling process management, and (4) conceptual model
construction.

2.4.5.1 Acquisition and Management of Model Requirements

The model lifecycle starts with requirements. Accurate requirement acquisition is
the key to credible M&S. However, requirement acquisition and management are
very challenging due to uncertainty and ambiguity in the systems being modeled.
Research on requirement acquisition is needed to improve the means to extract,
describe, parse, and validate requirements via automated or semi-automated means.
Similarly, research is needed on management of requirements to formulate how to
reflect changing requirements to influence model construction and maintenance in
an accurate and timely manner.

To acquire accurate model requirements for system simulation, we need to get as
much information as we can to understand (a) the underlying modeling objectives
of the simulation, (b) the nature of the targeted system, and (b) the kind of envi-
ronmental conditions that are required. Therefore, an analytical strategy is
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particularly important in which we hierarchically decompose the structural
requirements for further design and model matching.

Additionally, system features (user demand, system structure, and environmental
conditions) extracted from the above strategy must be stored and managed by
category of the facet. When a new requirement comes in, these facets will be used
to match similar models and existing domain knowledge to support rapid system
construction.

2.4.5.2 Model Specification and Language
Model specification is informed by the detailed description of system simulation
requirements, model input/output, model functionalities, model activities/states and
the related domain rules. The model requirement is not only a documental or
structural description about what kind of model we need, but also a simple and
uniform representation of the general features possessed by a targeted system.
These features should specify some common rules corresponding to system com-
ponents and their interconnections. Similarly, at the component level, the specifi-
cation for the meta-model (which performs some domain-independent
functionalities/states/activities) and the domain rule (which represents some
domain-dependent state transformation mechanisms) should be prebuilt. By
dividing a general domain model into meta-model and domain rule, a domain
model is easily assembled and disassembled for efficient reuse. In addition, this
division enables the modeling data/knowledge to be clearer and easier to manage.
Although a model can be built by different sorts of lower-layer model languages,
an unified upper-layer language is still necessary for engineers to efficiently con-
struct a new system model or transform an existing one to meet the simulation
demand. Following the vision of the above specifications, an upper-layer model
language should also clearly describe the outer structure and inner behavior of a
system and be able to transform into multiple lower-layer model languages.

2.4.5.3 Modeling of Process Management
Two kinds of efforts are necessary to guarantee the credibility of a model. One is to
do VV&A after the model is built. The other is to manage and optimize the
modeling process. VV&A has important implications to discover model problems
and defects, but it clearly does not and cannot solve the problem of how to acquire a
correct model. Especially for complex systems, due to the complexity and uncer-
tainty of the system, the modeling process can be very complicated, which makes
VV&A of a model also extremely difficult. Even if the defects are found via
VV&A, the modification of the model will be very difficult and expensive.
Therefore, it is very important to structure and optimize the modeling process.
Consequently, methods are needed to measure the degree of formality and opti-
mization (maturity) of modeling and simulation processes. A highly structured level
of organizational capabilities and the use of proven processes applied to modeling
can guarantee, to a large extent, the credibility of a model. (Fujimoto et al. 2017).
Capability maturity model (CMM) and CMM integration (CMMI), originating
in software engineering, can be introduced to establish a capability maturity model
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for the modeling and simulation process (M&S-CMMI) (Zhang and Mckenzie
2017). Such an approach can enhance both the management efficiency and per-
sonnel capabilities in high-quality model construction and management. Related
research opportunities include M&S-CMMI evaluation, optimization, risk analysis
and control of modeling processes, notional mappings with CMMI, etc.

24.6 Model Management Technologies

Model management consists of core methodologies and technologies that guarantee
highly efficient and credible composition, sharing, reuse, evolution, and
maintenance.

2.4.6.1 Model Library

A scalable model library is key to implement efficient model engineering. It should
be able to handle heterogeneous models by using a formal description language,
recognize multi-disciplinary model features, and enable a fast indexing and location
of similar/suitable model for a task specification. The main techniques with respect
to model library are model classification criteria, model storage mode, model
indexing schemes, and ways of searching for models. In contrast to a database, the
model library stores and processes not only model descriptions, but also their
instances and interconnection relationships. Currently, there is lack of techniques
for establishing a model library.

2.4.6.2 Model Evolution
Model evolution is one of the most important innovations proposed in ME. From
the separated meta-model and domain knowledge point of view, ME aims at using
models as a service and enabling them to autonomously evolve to new improved
version instead of through manual refinement. Borrowing the idea of incremental
learning, model evolution refers to an incremental adaptation process to make the
specific model more scalable and credible to the current system requirements.
The factors including parameters, states, behaviors, and functions in meta-model
and different sorts of domain knowledge such like additional domain parameters,
action rules, constraints, and domain-related functions are all able to be updated as
modules of a simulation system, as shown in Fig. 2.3. To enable the meta-model
and domain knowledge to update autonomously over time, we need to establish
dynamic connections between system requirements and these lower-layer factors in
line with the historical data from the model lifecycle. These connections, which can
be trained by the existing incremental learning algorithms and intelligent
multi-agent system-based strategies, will then guide the factors of a model to
change toward the ones connected to the most similar requirements.

2.4.6.3 Model Reconfiguration
Different with model refinement in the stages of application and maintenance,
model reconfiguration means to change part of model during its runtime. It is an
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important basis to implement model reuse with a minimum rollback design cost.
According to the above-mentioned model specification, a model should be designed
to hold multiple functionalities and flexible interfaces. How to dynamically choose
suitable functionalities and domain knowledge to ensure accurate response in
simulation is the main concern of model reconfiguration methods. Specifically, it
can be divided into lower-layer reconfiguration and upper-layer reconfiguration.

Lower-Layer Reconfiguration

The lower-layer model reconfiguration method is only for a meta-model which is
independent with domain knowledge. It includes functional reconfiguration,
structural reconfiguration, and parameter reconfiguration, as shown in Fig. 14.
Specifically, structural reconfiguration refers to combined multiple meta-model to
form a larger one with more functionalities.

Upper-Layer Reconfiguration

On the contrary, upper-layer reconfiguration is directly related to domain knowledge
and the practical simulation environment. Thus, it can be divided into domain-related
reconfiguration and simulation-related reconfiguration. The domain-related part is
responsible for selecting add-on domain knowledge (i.e., domain functionalities,
domain parameters, and constraints) to a model, while the simulation-related
reconfiguration is set up to determine environmental parameters and simulation
engine-related settings to assure a correct and fluent simulation process. Obviously,
model reconfiguration is a complex dynamic optimization problem, in which the
two-level variables can be either determined in two steps or in one time.

2.4.6.4 Model as a Service
With the development of cloud-based technologies, a heterogeneous model with its
execution engine can be integrally encapsulated as a service. That is to say, not only
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a meta-model and a domain component model can be encapsulated, a composed
system model is also capable of being encapsulated. This makes the execution of
different sorts of model easier in any cloud-based environment. To implement
flexible model sharing, the scheme of cloud-based servitization of simulation model
is illustrated in Fig. 2.3.

(Servitization is a new concept that has two meanings from IT and business
perspectives. From the IT perspective, it means the service encapsulation of objects
with service-oriented technology. From the business perspective, it is defined as
“the innovation of organization’s capabilities and processes to better create mutual
value through a shift from selling product to selling Product-Service Systems,”
where a product-service system is “an integrated product and service offering that
delivers value in use” and a “servitized organization is one which designs, builds
and delivers an integrated product and service offering that delivers value in use”
(http://andyneely.blogspot.com/2013/11/what-is-servitization.html).

First of all, a uniform servitization template (i.e., a service class) should be
designed previously for different levels of model. When a system construction
requirement arrives, the suitable models will be deployed or replicated into different
virtualized cloud resources to support a distributed simulation.

2.4.6.5 Model Composition

Model composition is a technology established upon the flexible model reuse
scheme. It is designed to realize more intelligent model collaboration and system
construction when the number of models is too large to be implemented with
manual selection. In the research of model composition, two critical problems are
how to match suitable models to form a valid candidate set and how to select the
best models for a collaborative system simulation. The former matching problem
can be solved by some feature-based or domain-based model classification and
model clustering methods, while the latter model selection has to be considered in
different conditions, i.e., offline condition and online condition.

Offline Model Composition

Different with the general service composition, the collaboration between models
are not usually perform in a strict sequential or directed acyclic manner. Feedback
cycles and concurrencies may exist simultaneously in their collaborative topology.
Therefore, traditional algorithms designed for service composition may not appli-
cable. An offline model composition method should be able to recognize each kind
of connection in a specific collaborative topology (extracted from a standardized
system simulation requirement) and generate feasible solutions with the consider-
ation of sequencing rules, cycling rules, and concurrency rules between the can-
didate models.

Online Model Composition

Online model composition is executed during the real-time simulation process
based on a given offline composition scheme. The main workflow of an online
model composition method is drawn as shown in Fig. 2.4. Specifically, it is driven
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by online evaluation of the current system state compared with a desired state. If
online adjustment threshold is reached, the method will perform the adjustment in
four steps, i.e., candidate adjustment, domain rule adjustment, connection adjust-
ment, and parameter adjustment from the top down. After the online refinement, the
evaluation model will continue to monitor the system state and determine whether a
further modification is required. In other words, an online model composition
method should be perform at a high speed and provide a feasible solution at
different levels and thus is more difficult to design.

2.4.7 Analysis and Evaluation Technologies

Model evaluation is a very traditional topic in the domain of M&S. In ME, it means
not only the VV&A of a model, but also the evaluation of the whole process of ME.

2.4.7.1 The VV&A of a Model

In the past decades, different authoritative organizations and researchers have
established a few standards for the VV&A of a non-separable model. However,
little research has been done on the evaluation of models in a composed situation
and in its further maintenance process. As demonstrated in Fig. 2.5, the bridge
between the existing model evaluation indicators and the models in different layers
of system construction is a key to implement the efficient evaluation of model
lifecycle.

In addition, most current research focuses on qualitative analysis and quantita-
tive and formalized analysis methods are lacking, so VV&A quantitative analysis
and formalized analysis technology are still main research content in the model
engineering.
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2.4.7.2 The Evaluation of the Whole Process of ME

The quality of the ME process will directly determine the quality of a model in its
design, implementation, application, and maintenance. To ensure the control and
management quality of ME, key issues from both the control stages and the
management process should be extracted first for the construction of evaluation
indicators. With a suitable set of indicators to fully cover the whole process of ME,
existing expert scoring mechanisms such like fuzzy AHP and TOPSIS can be
directly applied to assess it. Because the process of ME is not a one-time execution
workflow but a long-accumulated management framework, the evaluation must be
carried out based on historical information. Thereby, a case library is also a fun-
damental element in evaluation to quantify the quality of the ME process and so as
to form a hybrid evaluation mechanism for fast ME evaluation.

Research topics related to evaluation also include quantitative analysis of the
complexity and uncertainties risk analysis and control of ME processes, quantitative
measurement of model lifecycle quality and cost, etc.

With the combination of model lifecycle evaluation and ME process evaluation,
a comprehensive evaluation scheme can be drawn as shown in Fig. 2.6 to guide the
further optimization and calibration targeted to the whole ME framework.

2.4.7.3 Model Maturity Definition and Evaluation

The maturity of a model is a very important index for model composition, sharing,
and reuse. Maturity definition of a model is not an easy job since different models
have different features, different application requirements, and different execution
environments. Model maturity will be a comprehensive index related to
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multi-dimensional features. Research effort needs to be made on definition and
evaluation of model maturity.

2.4.8 Supporting Technologies

The supporting technologies for the implementation of ME primarily consist of the
transparent visualization ways for model lifecycle and operational platform to
enable fundamental execution of activities involved in the whole process of model
engineering, as illustrated in Fig. 2.7.

2.5 Model Curation for Repository Integration: Discovery,
Composition, and Reuse

Bernard P. Zeigler, Andreas Tolk, Tuncer Oren

Within the context of model management (Sect. 2.4), we note that a large backlog
of legacy simulation models has accumulated over the years that is potentially
exploitable for reuse in solving newly arising problems at relatively low cost and
quick turnaround. Unfortunately, although organized databases of simulation
models were the subject of early research interest [42], much of this source of
simulation model knowledge remains untapped. This is due to the fact that legacy
models were not developed with later reuse in mind for unforeseen applications.
Even today, simulation models are still developed for specific scenarios with
built-in organization-specific data and domain-specific (often unstated) assump-
tions. This renders them hard to apply to evaluation of the effectiveness of newly
proposed strategies, designs, and plans. Consequently, interpretation of model
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applicability and integration of models with others in a repository (Sect. 6.4) is a
labor-intensive activity currently performed only by human modelers with assis-
tance of subject matter experts.

Computational intractability of the general problem [43, 44] suggests that a firm
theoretical foundation for producing robust and reliable reuse practices is critically
needed to ensure efficient and error-free operation [45]. For semantics-based tools
to be effective, they must be based on a solid foundation for modeling and simu-
lation (M&S) that views its products as legitimate knowledge structures. Specifi-
cally, the foundation must support effective knowledge representation of the
multiple formalisms in which models can be expressed and the correspondences
between model structures (parameters, state variables, and couplings) necessary to
cross-validate the models for consistency and agreement with the specification of
their intended applications. Indeed, there has been recognition of the need to codify
the intended use (IU) of a model: in principle, a comprehensive listing of specifics
in relation to the problem that the model is intended to address [46]. Reuse and
composition entail automating the process of retrieval (specifying an IU and
locating potential reuse candidate models within a model library), suitability
evaluation (determining the relationship between a retrieved model and the
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specification of the desired component), and adaptation (making changes to a
model to meet reuse requirements).

On the foundation the Theory of Modeling and Simulation (TMS) (Sect. 1.3) and
Modeling and Simulation Framework (MSF) (Sect. 1.4), [47] formalized the
duality between simulation models and experimental frames (EF) to support frame
applicability to models in the service of composability and reuse. They defined a
methodology to capture the observable/objectives, assumptions, and constraints
(OOAQC) associated with a given frame and that a model has to satisfy. To enable
partial satisfaction, a more relaxed version of full applicability, it was formulated as
a conjunction of satisfaction sub-functions (for the OOAC components, respec-
tively) and an interval estimating confidence in the applicability [48].

The formalization of experimental frames (EF) was extended by Traore and
Muzy [49] as a basis for specifying the context in which simulation models are
built. Such formalization enables development of formal methods for verification of
models’ consistency, composability, reuse, and validity. Cheon et al. [50] extended
the concepts of model matching and the role of context to further support
ontology-based model discovery, noting that much work is left to reduce the pro-
posed concepts to working mechanisms.

Zeigler and Nutaro [51] further extended the TMS from the “modeling in the
large” perspective of Zeigler [52]. The extension enables suitable EFs to compu-
tationally represent given IUs. In this theory, a model developed for an application
is expected to be valid in one or more EFs associated with the IU that formalizes
that application. In the context of evaluating candidate models, this enables users to
select candidates for composition or integration that are best suited for a given IU.
In effect, the EF associated with an IU acts as a key to inform search for the models
whose EFs best fit it.

This foundation allows us to discuss how to curate (annotate based on
well-founded theory, [53] simulation models so that they can more easily discov-
ered from a model repository given analytical objectives. From a historical per-
spective, curation is a form of symbolic processing of simulation models [12]
within a larger scope of model-based activity that was envisioned early in the
development of simulation languages and concepts [12].

This breaks down into three main considerations:

(1) Employ the system theory-based entities and relations identified by TMS to
develop a knowledge structure that covers the most commonly employed
modes of expression (mathematical, statistical, algorithmic) and types of formal
specifications and suggests derivable mathematical specifications and useful
theorems to support model curation;

(2) Develop a model-matching process and workflow based on the developed
knowledge structure to discover models that match analytical objectives for-
mulated in a manner attuned to the curation structure;

(3) Augment the TMS-based knowledge structure to capture linkages and attributes
necessary to validate the correctness of the curation with respect to the mod-
eler’s intent.
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We assume that the entities in a model repository will be found in an uncurated
form that we will refer to as “Model Packages”. The questions then concern how to
design an approach to curation of such packages that can be executed with available
computational resources and coverts them into a form that satisfies the TMS
specifications for decomposition into model, simulator, experimental frame, and
associated relations.

1. Decomposing a model package into its MSF elements

Having assumed that model packages constitute our starting entities, we must
develop an approach to representing a model package by its elements from the
MSF. Basically, this requires that we separate the model from the simulator and
experimental frame. As a start, we consider the following characterization:

e A model is (collectively) that part of parts of the package that relates to the
real system of interest, e.g., it might make a claim about how some mech-
anism in the system works. A model can be considered as a set of instructions
that when executed are intended to replicate or predict the real system’s
behavior.

e A simulator is the code sections that directly, or indirectly, execute the
model’s instructions and generate its behavior.

e An experimental frame is constituted by the sections of code that relate to the
conditions under which the model is intended to simulated, i.e., the inputs,
controls, and expected outputs that specify the realm of system behavior of
interest.

2. Identifying a model’s underlying formalism and level of system specification
Having identified the model within a model package, critical to its curation for
eventual reuse, and composition is the proper designation of the software from the
perspective of the predictability of its behavior in new compositions. The system
specification hierarchy of TMS provides an orderly way of establishing relation-
ships between system descriptions as well as presenting and working with such
relationships. DEVS compliance is necessary to assign a model package to the right
level of system specification and to curate it for accurate repository discovery using
the SMRC architecture. Wymore and Bahill [54] relate the incident in which a
virtual reality simulator for troop movement in challenging terrain was reused to
depict mobs of kangaroos in the same environment with superficial adaptations.
This proved successful until a demonstration revealed that such ‘kangaroos’ also
could regroup and launch missiles. Here reuse was based on behavioral equivalence
(with respect to movement) but neglected to check equivalence at the more
revealing state equivalence level. The system specification hierarchy (Sect. 1.4.1)
provides an orderly way of establishing relationships between system descriptions
as well as presenting and working with such relationships.
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Table 2.14 System specification levels and types framework for model package characterization

[55]

System Differential equation Discrete time Discrete event

specification/level system specification system system

of specification (DESS) specification specification
(DTSS) (DEVS)

Observation frame v v v

1/0O behavior v v v

LO function v v v

State transition v v v

Coupled v v v

component

As in Table 2.14, orthogonal to the level at which a system is specified is the

subclass of systems in which the model resides where the most common subclasses
are spanned by the modeling formalisms shown in the table. Thus, curation entails
assigning an incoming model to the correct cell in the table, and there are two
corresponding activities:

Determine the level of system specification in which a model resides: This
requires characterization of the levels of system specification in an operational
form that enables examination of the documentation to uncover whether the
model is presented as data at the I/O behavior level, behavior generation
instructions in the form of a state diagram, or in the form of interacting com-
ponents, etc.

Characterize the system specification formalism of model: This requires iden-
tification of the models expressed in types of simulation languages as instances
of the basic types of system specification: DESS, DTSS, and DEVS. The table
shows that such system specifications can occur at any of the levels of
specification.

Together, these processes implement the assignment of a model to a pair (system

specification level, system specification formalism) which constitutes essential

knowledge upon which to base the possibilities for reuse and composition.

To add models to the repository, we must develop an approach to characterizing

the model package’s intended use. We must sufficiently refine the concept of ana-

Iytical objective and relate it to the operational simulation consequences expressed

in the experimental frame. Specifically, the IU requires.

Narrative description of the analysis problem and tasks or processes the IU
stakeholder user performs

Specification of the outputs that the stakeholder user will employ in the process
Special conditions of experimentation or runs to produce outputs usable in the
stakeholder’s process
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e Threshold acceptance or goal goodness criteria for each IU.

Recommendation of best configuration fulfilling input objectives in the form of
IUs is formulated in the form of model matching. The model-matching concept
based on IUs requires developing concepts, and associated software tools enable
locating the most suitable model in the repository for a given analytical objective.
Here TMS provides a set of relations between experimental frames and models that
provide a basis for such matching.

The relations outlined in Table 1.4 in Sect. 1.4.4.1 must be implemented in
algorithmic form so that the given EF can be tested for derivability against the EFs
of models in the repository and accommodation by the model with best matching
EF confirmed to enable simulation. The duality between simulation models and
experimental frames for the algorithmic implementation given by Traore and Zei-
gler [47] can be employed to capture the observable/objectives, assumptions, and
constraints (OOAC) associated with a given frame and that a model has to satisfy.
In addition, more advanced features need to be implemented such as partial match
satisfaction and confidence interval estimation of signature matching and specifi-
cation matching [56] to build an efficient model frame/applicability prover.

1. SES Support for Model Repositories

The System Entity Structure (SES) (Sect. 1.5) is used to organize the family of all
possible configurations of a system. The SES enables the development of model
repositories of reusable M&S components. SES model repository components are
composable and executable to fulfill the objectives of stakeholders’ IUs. Reusability
support methodology differs in a major respect from most simulation environments
in its use of the SES to support composability (Sect. 2.4). The composability fea-
ture of SES results in significant reduction in time to develop models for new
objectives that can only be emulated with the use of ad hoc configuration scripts
that are needed when using DEVS alone SMRC facilities for objective-driven SES
pruning guide the user and automate the configuration process to achieve an exe-
cutable SMRC composition best suited to fulfill the stakeholder’s objectives for the
IU [57]. The SES supports model repositories using the suites of models in the MS4
Me environment [58]. In a suite of models, each component SES represents a
family of models that can be pruned and transformed to execute in a simulation.
Component SESs can be merged to a new SES with the same compositional
properties. This functionality leads to the concept of a repository of models. SES
supports families of models for combinatorial generation of architectural alterna-
tives for exploration and optimization. As an ontological framework, the SES
supports composition of models drawn from one or more model repositories.
Operations on SES objects such as merging ease development by maintaining
coherence of shared constructs among modifiable components. Merging enables
divide-and-conquer component-based development of suites of models.

Figure 2.8 depicts a set of intersecting SESs representing a suite of related
families of models concerning global warming. The families, and the questions they
address, include:
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Fig. 2.8 Composition structure of SESs representing global warming families of models

Greenhouse effect model family: What is the greenhouse effect that causes
warming of the earth?

Polar ice melting model family: How does global warming cause increased
melting of the polar ice cap?

Permafrost melting model family: How does the warming of the permafrost
contribute to ever increasing global warming?

Sea level rising model family: How does the global warming contribute to the
rising of the sea level?

Storm intensity increasing model family: How does the global warming con-
tribute to the increasing intensity of storms?

Flood increasing model family: How does the global warming contribute to the
increasing incidence of floods?

Drought increasing model family: How does the global warming contribute to
the increasing incidence of droughts?

In such a suite, there are SESs that are “components of other SESs. This use of

the term ‘components’ transfers the “component of” concept from its use in
component-based model construction [59] to the domain of SES construction. Thus,
an SES is a component of another SES in the sense that the models the first SES
generates are components of models generated by the second SES. The operation of
composing DEVS models to create a coupled model is mirrored by the merging
operation for composing SESs.

As illustrated in Fig. 2.8, these SESs form a set that is related by a composition

relation. Here an arrow indicates composition, i.e., an SES is composed of the SESs
and atomic entities sending arrows to it. For example, the GreenHouseEffect SES is
composed only of atomic entities, while it is a component in many other SESs,
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Fig. 2.9 Merging, pruning, and transforming SESs

reflecting the case that greenhouse gases are a cause of the related climate change
phenomena.

The process for developing, merging, pruning, and transforming an SES is
illustrated in Fig. 2.9. The workflow supporting the development of an SES rep-
resenting a new family of models in an existing suite of models starts with a
top-down search starts with looking for existing models that can be used as com-
ponents. Identification of candidate models can be supported by the objectives and
intended uses that motivate the development of the family as discussed in Section x.
In Step 1, an experimental frame in the form of an SES is formulated either fresh or
as needed from existing EF components. In Step 2, existing family of models is
sought to accommodate the EF SES. Such existing models include families of
models generated by SESs as well as atomic models in the repository. An existing
family of models generated by an SES becomes a component SES when its name
appears as a leaf entity in the SES under development. In a later pruning process,
this component SES will be merged into the target SES. For needed components
that are currently not available in the suite of models, the same procedure applies,
with the additional task of recursively developing the components in the same
manner as the target. Of course, one may decide at any point that is better to
develop a needed component as an atomic model rather than as one generated by an
SES. In Step 3, the EF and model SESs are merged to form a simulation model
family for execution. Note that before pruning, the SES components of the resultant
SES are merged (recursively) to give the merged version of the resultant SES. In
Steps 4 and 5, the resultant SES is pruned and transformed to a hierarchical coupled
model. For example, to create the merged SES for FloodIncreasing, the unmerged
SES is merged with the component SESs GreenHouseEffect, SeanAndPolarIce, and
LandFlood, where the latter is merged from components, LandFloodScape and
LandFloodPlots. In Step 6, the executable model is configured by setting parameter
values that are not set through the pruning choices and simulation results are
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obtained [57] The cycle is repeated if necessary to converge to desire results
(methodology for conducting such iterative experiments is discussed in other lit-
erature such as [29] (Fig. 2.9).

The concept of repository of models extends the support for developing suites of
models by using Web Services backed by cloud technology. For collaborative team
developers, it provides the composition and integration facilities based on the SES
described above. Going beyond support for sharing, it provides advanced support
for browsing the SES structures of models aimed at enabling comprehension of
model content and functionality. Such comprehension is necessary to realistically
enable a developer to acquire and reuse a simulation model developed by someone
else. Further research is needed to develop the most efficient and effective ways of
generating views of SES entities, relationships, and variables. After construction,
the suite of models can be hosted in a cloud-based repository of models as a basis
for collaborative model development.

1. Further Research Needed in a Wider Context

A model-model coupling interface concept can be a prerequisite for many
composition-related features [60, 61]. Acquiring additional interface information was
found to provide a foundation for desired features such as (1) unit testing, (2) automatic
unit conversion, and (3) the automatic detection of specialization and multi-aspect
pruning options. Interfaces make the creation and management of unit tests easier for
modelers. Unit conversion can be automated by inspecting the units of interfaces. The
unit conversion feature includes the conversion of multi-dimensional units such as
coordinate transformation (e.g., Polar to Cartesian). The SES concept can be expanded
to allow for pruning options to include models that satisfy certain interfaces.

A significant technical challenge will be to characterize the composability of
existing models, developed for use in external frameworks, as DEVS components.
In addition to the theoretic elements of composability expressed in the SMRC
architecture, there are the technical and computing elements of composability that
define the compute architecture and information exchange protocols that allow them
to work together.

The DEVS-DMF framework developed by Kewley et al. [62] is a DEVS
implementation based on microservices that enables location transparency and
affords the use of web and cloud-based technologies for integration. In short, DEVS
models can be microservices running on any computational infrastructure and any
location, integrated via a variety of widely used information exchange protocols
such as HTTP, messaging systems, or websockets. Kewley et al. [62] developed
soldier models that can be wrapped to work in a variety of simulation frameworks
by breaking DEVS models into stateless (transition functions, output functions) and
stateful (state variables) components in a distributed environment using the actor
model of computation.

MS4 Me and DEVS integrating technologies to capture the requirements and
modeling and simulation as a service (MSaaS) are a promising approach to improve
efficiency in simulation use and better utilization of valuable resources [63, 64].
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Experiments are being conducted to investigate operational benefits of MSaaS
repositories to improve awareness of existing resources and to offer workflow
support for key MSaaS activities such as resource discovery, exercise preparation
and setup, service composition, and finally deployment and execution.

Finally, it is interesting to place model curation within the broader framework of
modeling and simulation as an integrative factor in bringing together multiple
disciplines to address complex problems. Addressing the today’s challenging
complex problems, such as the recent response to the pandemic, or the increasing
social need for equality in many daily domains, requires the collaboration of experts
from multiple disciplines. Simulation studies are increasingly conducted by teams
of multidisciplinary, interdisciplinary, and transdisciplinary researchers and prac-
titioners, who apply theories, methods, and tools from their respective disciplines
toward a common solution. To take full advantage of curation, a formal alignment
of conceptual approaches is needed. Tolk et al. [65] present a conceptual framework
for hybrid approaches generally applicable to all kinds of computational support of
research presenting a framework that supports the collaboration of research efforts
from multiple disciplines. This transdisciplinarity-enabling methodology allows
such efforts to grow into transdisciplinary research. Research is needed to further
evaluate the degree to which these concepts can be applied to allow the utilization
of curations beyond the boundaries of the discipline that created the original model
so as to enhance the model’s applicability in such a broader transdisciplinary
context. These approaches can extend systems engineering approaches, such as
described in [66].

2.6 Model-Based Simulation

Greg Zacharewicz

This section presents most commonly used model-based and model-driven
approaches (MB-MD) to reach a simulation model. Indeed, all major research
initiatives agree that the problem of inconsistency in system and simulation design
can be partly solved by early unambiguous descriptions (i.e., semiformal or formal
model) of the system [67]. We identify and detail the main problems related to the
need of early modeling, discuss current solutions, approaches, and frameworks, and
present the relative obstacles that need to be overcome to implement simulation.

As pioneer contribution, authors of [3] described a simulation program that was
dichotomized for the first time, and lines of simulation program code were iden-
tified as representing the model and different elements of the experimental
conditions.

The evolution from document or speech-based software engineering to
model-based software engineering [68] concurs with the model-based approach
already successfully applied to simulation and systems engineering. The unified
modeling language (UML), also developed in the 1990s [69], has opened new
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horizons in the field of software-intensive systems engineering. In system domain,
according to INCOSE, MBSE is part of a long-term trend toward model-centric
approaches adopted by other engineering disciplines, including mechanical, elec-
trical, and software. Then, simulation-based analysis is an effective technique to
support verification and validation of complex systems throughout their lifecycle,
and it is another challenge in the model-driven cycle.

According to Tuncer Oren, the motivation for model-based approaches in
software engineering is to improve productivity through the generation of software
artifacts, including source code through the transformation and progressive
refinement of models [70].

2.6.1 Model-Based/driven Approaches

There are several types of model-based/driven approaches in system and software
engineering. We introduced a non-exclusive categorization of the model-based
approaches used by engineering community frequently extended:

e Model-based engineering (MBE) utilizes model-driven practices pragmatically,
not necessarily in an integrated fashion, in various steps of the engineering
process. While models are important in MBE, they do not necessarily drive the
development process. In this sense, all model-driven processes are regarded as
model based.

e Model-based system engineering (MBSE) aims to facilitate system description
understanding by moving from a classic documentary, textual approach, used for
several years, to a model approach. The companies in charge of the imple-
mentation thus receive a model, a conceptual/formal/visual approach that is more
efficient than the textual approach. Current activities of the MBSE initiative are
sponsored by the International Council on Systems Engineering (INCOSE) [71].

e Model-driven development (MDD) proposes a paradigm that utilizes models as
the primary artifacts and redefines the implementation as (semi) automatic
generation from the models. The process relies on the use of models and the
systematic production and transformation of models.

e Model-driven engineering (MDE) expands MDD to cover all engineering pro-
cess areas with a focus on developing metamodels to facilitate automated
transformations.

e Model-driven architecture (MDA) is the particular vision of MDD proposed by
the Object Management Group (OMG). It is originally focused on software
development.

e Model integrated computing (MIC) refines MDD approaches and provides an
open integration framework to support formal analysis tools, verification tech-
niques, and model transformations in the development process [72].

e Model-driven systems engineering (MDSE) defined by Mittal and Martin [73]
for system of systems utilizes the benefits of both MBSE and MDE
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e Model-driven interoperability (MDI) methodology that was realized in the frame
of the Task Group 2 (TG2) of INTEROP-NoE [74] to tackle interoperability.
The goal is to tackle the interoperability problem at each abstraction level
defined in MDA and to use model transformation techniques to link horizontally
to ensure interoperability of models of collaborating enterprises at each level.

e Model-driven system engineering architecture (MDSEA) [75] fills a gap in other
methods by considering resource categories. It separates the IT, human orga-
nization, and physical means resources. This separation allows to better model
and control their interaction with the system to be specified.

These MB-MD approaches are tackling model-oriented needs of users, but the
behavioral aspect regarding time is forgotten. Indeed, these approaches are not
situating neither involving explicitly and natively simulation in the approaches.
A simulation-driven engineering approach can be an important resource for all
researchers and practitioners involved in system or software engineering, who may
be interested in adopting MDE principles when developing systems. But the
development of a simulation is by itself a challenging task in terms of effort,
guidelines, and required know-how.

2.6.2 Simulation-Based/Driven Approaches

Model-driven simulation engineering is hot topic in the 2020s. As one state of the
art, authors [76] provides a comprehensive review of distributed simulation (DS)
from the perspective of model-driven engineering (MDE), illustrating how MDE
affects the overall lifecycle of the simulation development process. They describe a
road map for building a DS system in accordance with the MDE perspective and a
technical framework for the development of conceptual models. They present a
focus on federate (simulation environment) architectures, detailing a practical
approach to the design of federations (i.e., simulation member design). They discuss
the main activities related to scenario management in DS and explore the process of
MDE-based implementation, integration, and testing.

Moreover, some more technical contributions have considered that project
methodology or lifecycle is crucial because the inherently distributed nature of
complex systems makes the use of heterogeneous simulation approaches hard to set
up. For that purpose, IEEE HLA standard [77] has proposed FEderation DEvel-
opment Process (FEDEP) and now Distributed Simulation Engineering and Exe-
cution Process (DSEEP) to develop distributed simulations with keeping the
objective of model reuse and interoperability. Automated model-driven engineering
principles and standards to ease the development of distributed simulations.
Authors [78] approach is framed around the development process defined by the
DSEEP standard, as applied to distributed simulations based on the high-level
architecture (HLA), and is focused on a chain of automated model transformations.
A case study is used in the tutorial to illustrate an example application of the
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proposed model-driven approach to the development of an HLA-based distributed
simulation of a space system.

Another important point is about the fact that many projects start from existing
and legacy systems approaches to simulation evolution and modernization, in-
cluding architecture-driven modernization for simulation modernization and, also,
potential synergies and interoperability between other systems while developing
and running such as agent, DS, and MDE methodologies, suggesting avenues for
future research at the intersection of these three fields.

2.6.3 Models Simulations-Based/Driven Approaches

As stated in the previous approaches, model development is mainly IT directed and
the models are already designed with IT goal, not always centralizing the users view
and requirements. Moreover, most of the MD approaches presented do not propose
and support specific modeling languages. Another drawback is that model trans-
formation remains limited to certain categories of models as presented by Den Haan
[79]. Also, the modeler is not guided to delimit the subpart of the system to be
computerized. Silingas [80] stated that a tool to identify and delimitate the subpart
of the model to be considered at a down level modeling would be valuable to
prepare transformation. In addition, the transformation is not fully automatic; the
model generated from model transformation is typically an abstract structure with
slight content coming from the information collected in the source model. The
transformation to lower-level models requires systematic user enrichment.

As one recent tentative of convergence and inclusion of previous MB-MD
approaches, authors [81] introduced Fig. 2.1 with the goal to gather best practices
in MD-MB. Efficient model matchings ensure both horizontal interoperability
(between blocks) and vertical interoperability model transformation to ensure
interoperability between business people (dotted zone) and the IT department
(dashed zone). As well in this figure, authors introduced the simulation as a sys-
tematic step in MD-MB approaches. In consequence, one raw is dedicated to
simulation in the figure (yellow blocks). Authors believed that simulation is a
mandatory step in the model-driven approach. It is confirmed by authors [70] that
stated that any complex system study (design, analysis, or control) cannot be
conducted without considering simulation-based techniques. They state that
simulation-based approaches in any discipline are a rational way to enhance
engineering performance in an effective way. As recap, simulation is proposed to be
used as a middle layer in system development for behavior prediction, performance
analysis, analysis of alternatives, sensitivity analysis, engineering design test, vir-
tual prototyping, planning, acquisition, and proof of concept. To complete this
approach, the framework includes a model discovery from legacy systems flow, and
it is as well open to human and organization thanks social media links and human
interfaces (Fig. 2.10).

Furthermore, although the MD-MB field is becoming increasingly aware of
simulation, studies by Oren and his colleagues conclude that the role of simulation



2 M&S Bok Core Areas and the Big Picture 65

<€ = >
: : Model-Based : : (o] izational 4
Model : Sl=vass Interoperability rganizationa
'"7| Discovery | Systam Model and Human
' 1! Specification || = = Model
] = . »
]
: ode 0 dll0 e eqratio
: TN AT TR T SCTETTTEY STy
System
' System R
: | Embedding = Co?nystt)enr:nts - Interoperability = O;?‘Zn::::::‘a! \\\
. & Simulation [N©® Simfllation L Component C ieane. N
: R = Simulation S 2 -
: OUe 8 - S0l
PN 7 @ T ystem
' N Embedded N
: S System S System =| Organizational N
I Legacy = Corr): orents Interoperability £ and Human
. N | System P Component Interface \
; 3 ! Compon N
: AN AR A RN N
]
i External Interoperabili
1 PR RO L]
| i
i i 7
i Legacy Social
" System afiar Ayston Networks

Fig. 2.10 Models simulation-based/driven conceptual framework

is still not systematically and sufficiently taken into account methodologically. It
needs to be promoted through education in many disciplines so that future pro-
fessionals in these disciplines can be better equipped for their profession. They
propose to involve simulation—even non-computer based—in the teaching of
young children, so that future generations will be better prepared to have better
thinking skills.

2.7 Transient Elimination in Simulation

Mohammad S. Obaidat, Balgies Sadoun

The practice of analyzing simulation outcomes is a crucial one since without such
an analysis we will not have good confidence that the simulator is accurate and
close to reality to a reasonable degree. Every time a model requires to be realized
for a real-time application, we have to test if the functionality of the model meets
our needs and meets the anticipated objectives. This article gives a review on the
techniques used to eliminate transient results in simulation outcomes as transient
results may affect the credibility of simulation results if they are not removed. It also
sheds some light of criteria that are used to stop/end simulation in order to save
resources without affecting credibility of outcomes.
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2.7.1 Introduction

In almost all simulation techniques, we are interested in the performance of the
simulation model at steady-state situations, which means that we should remove the
initial part of results from the final outcomes so that we can have accurate con-
clusions to make decisions. This initial portion of simulation results is frequently
termed the transient part/state. Recognizing the completion of transient state is often
called transient state elimination or removal. The key problem about transient state
is that it is not easy to delineate the interval of the transient state and where it
essentially ends [82—103].

In this article, we shed some light on the major approaches used to eliminate
transient results in simulation outcomes as well as schemes to end simulation
properly so that we get safe resources, but at same time get credible simulation
results.

2.7.2 Techniques to Eliminate Transient Results

We, here, review the major techniques used for transient removals as well as their
features and domains. Almost all of these schemes are heuristic techniques that are
usually applied for transient elimination [82—86].

1. Long runs methodology. In this technique, the simulator is executed for an
extended length to the level that the presence of initial states will be insignificant
or will not affect the outcome. This technique appears to be easy; however, it
misuses the computing time and related resources. Besides, it is difficult to
identify the duration of the simulation run that can lessen the effects of initial
outcomes [82-89] (Fig. 2.11).

2. Batch means methodology. In this scheme, the simulation is executed for a long
time, and then it is divided into several equal durations. Each part or division is
named a batch. Each mean observation in each batch is called a batch mean. This
is the reason that leads to call this technique the batch means [82—-87].

(a) A batch average is calculated for every batch.
(b) The overall average is then figured out.
(c) Then, the variance of the batch means is then determined.

These (a) and (c) steps are repeated by changing the size of each batch ‘n’.
A chart is then drawn with variance for a range of batch sizes n. While the variance
gets decreasing, the related value of ‘n’ is described as the length of the transient
period/time [82-85].

3. Truncation procedure. In this scheme, we assume that the changeability or
variability in the transient state is greater than that in the steady state, which is
typically a rational hypothesis. This method determines the extent of the



2 M&S Bok Core Areas and the Big Picture 67

. SMALL
\.

PROBABILITY OF N, SAMPLE
ACCEPTING MODEL AS \-\
VALID N

LARGE \~\

SAMPLE N

SIZE \

\.
\.
\.
\

B* \ .

v

}\ *
Validity Measure (A)

Fig. 2.11 Operating characteristic curves

changeability like the greatest and smallest number of observations. If we work
out these observations on a graph, then we will be able to see that the curve turns
out to be stable as the simulation moves to the steady state [82-89].

4. Good initialization. In this method, the simulation program is commenced in a
state that is neighboring to the projected steady state, which is generally non-
zero. The length of the transient phase is decreased, thereby having a slight
influence on the total performance results. For instance, the normal queue size in
the input or output buffer of an asynchronous transfer switch model is nonzero;
therefore, in simulation we initialize the queue with a representative value that is
found from experience and past record.

5. Initial data deletion. In this scheme, some of the early observations from the

sample are eliminated after complete analysis. During the entire steady state, the
mean does not vary, even though the observations are removed. Nevertheless,
the mean can change even during a steady state due to randomness of the
observations. The outcome here can be minimized by averaging throughout a
number of replications [82-91].
If we suppose that we have ‘m’ replication with size ‘n’ for each and x;; is the jth
observation in the ith iteration where j changes from 1 to n along the time axis,
whereas i varies from 1 to m along replications axis, this methodology can be
summarized by the following steps:
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(a) By averaging across the repetitions/repetitions, a mean trajectory is
obtained.

(b) Then the total (general) mean is attained.

(c) If we suppose that the interval/length of the transient state is 1, then the
whole (overall) mean is obtained by removing the first | observations from
the mean path or curve/trajectory.

(d) This, the relative change in the overall mean is calculated.

(e) Next, we do again the steps by changing the values of | from 1 to (n — 1).

The charts of the common average and relative change are plotted in order to
see that after a particular value of |, the relative variation plot settles down.
This point is termed the knee, which essentially provides the length of the
transient period and exhibits the conclusion of the transient state [8§2-91].

6. Moving mean of separate replications. This scheme has good similarity with the
initial data deletion procedure excluding that the mean in this method is found out
over a moving time period window rather than by computing the overall mean.

If we suppose that we have ‘m’ replications with size ‘n’ for each. Then, let us
denote by x;; the jth observation in the iy, iteration/repetition where j varies from 1
to n across the time axis while i changes from 1 to m through the replications axis.
The phases shown below summarize this technique:

1. The average trajectory is attained by averaging the repetitions/replications.
2. Then, we plot a path for the moving average of the consecutive 2k + 1 values
where k signifies the moving time interval window.

(b)
(©)

Next, we repeat phase 2 for various values of k = 2, 3, ...., until a smooth
plot is achieved.

Finally, the interval of the transient interval is attained by locating the knee
on this curve.

Figure 2.12 depicts two distinctive trajectories of moving averages. The curve of
the second trajectory is smooth, and thus, identifying the knee would be easy.
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2.7.3 Stopping Criteria for Simulations

In simulation modeling, it is essential to simulate the system under study for suf-
ficient length of time. If the simulation time is short, then accuracy and credibility
of the results are in doubt. However, if the simulation time is lengthy, then we
mainly waste the computation power and used resources.

We can identify three chief methods that permit the simulation to be executed
until the required confidence interval is obtained. These are independent replica-
tions, rebirth, and batch means techniques [82-97].

1. Independent replications scheme. In this scheme, simulation is reiterated with
a different seed values so as to obtain various replications. Now, if we have m
replications that are performed of size n + n', where n' represents the transient
interval length, then we remove the first n0 observations and implement the
following phases [83-90]:

For every repetition or replication, the mean is calculated.

The total mean is then computed for all of the replications.

The variance of these replicate averages is then computed.

The confidence interval is achieved by the summation of the overall mean and the
variance as shown below: overall mean + Z;_, Var (x") = x" £+ Z;_, Var (x'),
where Z,_,, is obtained from special tables; quantile unit normal variate table.

Nk

The width of the confidence interval is inversely proportional to square root of
mn. In this, we can get a narrower confidence interval by either enlarging ‘m’ or ‘n’
[82-87].

2. Rebirth technique. A rebirth or regeneration point is defined as the instant at
which the system enters into an independent stage. The time between two such
points is named as rebirth or generation cycle.

Now, let us suppose that we have a regenerative simulation that encompasses m
phases with sizes Ny, N, N3... N,,. Thus, the confidence interval can be found by
following the steps below:

1. The cycle totals are calculated, and the overall mean is established.

2. Next, the differences between expected and noticeable/observable cycle sums

are figured out.

3. Finally, the variance for these differences is also computed along with the

mean cycle interval.

The confidence interval is found out by exploiting the overall average, variance,
and the average cycle length. It is noted that the rebirth technique does not impose
the transient interval to be excluded. This scheme has some shortcomings:
(a) Majority of the variance reduction schemes cannot be employed as the length of
the cycles is not fixed and cannot be projected, (b) the length of cycles is irregular,
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(c) the expected values for means and variances are not equal to the size that is
being assessed, and (d) it is hard to locate the rebirth points [82-86].

3. Batch averages/means. In this method, the full interval of the simulation length
is partitioned into m batches of similar size n by discarding the transient interval
period. The long run of (n + n') is apportioned into m batches by eliminating the
transient interval, where n’ denotes the transient interval length and the fol-
lowing phases can be performed:

1. For each batch, the average/mean is determined.

2. Next and after finding the average for all batches, the overall average is then
computed.

3. Finally, the variance of the batch means is then established.

Thus, the confidence interval is then obtained as the total of the entire mean and
the variance. Size of the confidence interval is conversely proportional to square
root of mn. Given this, we can say a thinner confidence interval can be realized by
either increasing ‘n’ or ‘m’ values [82-91].

2.7.4 Conclusion

We reviewed the key techniques to remove transient results of simulation outcomes
in order to reduce their effects on credibility of simulation model and its validity
and accuracy. The process is challenging, and most proposed approaches are
heuristic. We also studied the chief criteria to stop simulation and decide when it is
time to do so in order to save computation power and resources.
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3.1 Types of Experimentations

Tuncer Oren

Science as we know it today is no more than 500 years old. It is firmly based on
certain rules of procedure that scientists must follow to obtain accurate knowledge.
These rules were formulated during a revolution in scientific thinking—the birth of
experimental science—and are upheld today by the world’s scientific societies. [1]

The true worth of an experimenter consists in his pursuing not only what he
seeks in his experiment, but also what he did not seek. (Claude Bernard)

An experiment is “an operation or procedure carried out under controlled con-
ditions in order to:

(1) discover an unknown effect or law,
(2) to test or establish a hypothesis, or
(3) to illustrate a known law.” (Merriam-Webster-experiment) (reformatted).

Experiments—and specifically replicable experiments—are the backbone of
scientific method since Francis Bacon who in 1620 published “Novum Organum”
to lay down the foundations of the scientific method [2].

There are several types of experiments.

As shown in Table 3.1 two types of experiments can be identified based on the
location of the experiments.

Types of experiments performed with living organisms are shown in Table 3.2.

M. E.-A. Hamri
Aix-Marseille University (LSIS), Marseille, France
e-mail: amine.hamri@Isis.org

N. Mustafee
University of Exeter Business School, Exeter, UK
e-mail: N.Mustafee @exeter.ac.uk

A. L. Harper
University of Exeter Medical School, Exeter, UK
e-mail: A.L.Harper@exeter.ac.uk

B. Hou
Midea Cloud Tech Co., Ltd, Jilin, China
e-mail: houbc2 @meicloud.com

B. H. Li
Beihang University, Beijing, China
e-mail: bohuli@moon.bjnet.edu.cn

Y. Liu
CASICloud-Tech Co., Ltd., Haidian, China


mailto:amine.hamri@lsis.org
mailto:N.Mustafee@exeter.ac.uk
mailto:A.L.Harper@exeter.ac.uk
mailto:houbc2@meicloud.com
mailto:bohuli@moon.bjnet.edu.cn

3 Simulation as Experimentation 79

Table 3.1 Types of experiments based on the location of the experiment

Criteria Type of Also known as
experiment
Experiment is In original place In situ Field experiment
performed of objects experiment
In a computer In silico Simulated experiment
experiment (Computerized experiment)

Table 3.2 Types of experiments performed with living organisms

Criteria Type of experiment Also
known as
Experiments In their normal In vivo experiment In the
performed with biological body
living organism context experiment
Outside their ex vivo (on a Sample Lab
normal biological sample)  taken from experiment
biological experiment the donor
context Sample In vitro
cultivated in experiment
a test tube

Thought Experiment

“Thought experiments are performed in the imagination. We set up some situation,
we observe what happens, and then we try to draw appropriate conclusions. In this
way, thought experiments resemble real experiments, except that they are experi-
ments in the mind. The terms ‘thought experiment,” ‘imaginary experiment,” and
‘Gedankenexperiment’ are used interchangeably” [3, 4] (Table 3.2).

Seven types of thought experiments are identified more information at
(Wikipedia-thought experiment).

e “Prefactual thought experiments—speculate on possible future outcomes,
given the present, and ask ‘What will be the outcome if event E occurs?’”
(Wikipedia-thought experiment).

o “Counterfactual thought experiments—speculate on the possible outcomes of
a different past; and ask “What might have happened if A had happened instead
of B?”” (Wikipedia-thought experiment).

e “Semi-factual thought experiments—speculate on the extent to which things
might have remained the same, despite there being a different past; and asks the
question ‘Even though X happened instead of E, would Y have still occurred?’”
(Wikipedia-thought experiment).

e Prediction (or forecast)}—“attempts to project the circumstances of the present
into the future.” (Wikipedia-thought experiment).
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e Hindcasting (historical re-forecasting)—is “to test (a mathematical) model by
observing whether it would have correctly predicted a historical event.”
(Collins-hindcast)

¢ Retrodiction—“involves moving backward in time, step-by-step, in as many
stages as are considered necessary, from the present into the speculated past to
establish the ultimate cause of a specific event.” (Wikipedia-thought experiment).

¢ Backcasting—“involves establishing the description of a very definite and very
specific future situation. It then involves an imaginary moving backward in time,
step-by-step, in as many stages as are considered necessary, from the future to
the present to reveal the mechanism through which that particular specified
future could be attained from the present.” (Wikipedia-thought experiment).

Several interesting thought experiments exist in philosophy, science, and edu-
cation [5, 6].

3.2 Reasons to Use Simulation Experiments

Paul K. Davis

3.2.1 Aren’t the Reasons Obvious?

To some, it may seem obvious that we want experiments with models and simu-
lations. Today, however, data analytics is in vogue and it is common to hear
questions such as “What does the data say?” as though data speaks to us articu-
lately, precisely, and insightfully. Truth is otherwise. The ideal for science and its
applications is a combination of theory-informed experimentation and data analysis
on the one hand, and data-informed theoretical development on the other [7, 8].
This chapter discusses some of the reasons.

3.2.2 Relying on Data is Often Impossible

Relying on data is not possible when the needed data is not always available. This
may be because

1. The needed data does not exist, although it could reasonably be obtained.
2. The needed data does not exist and could only be obtained with unacceptable
delays, expense, or trouble.
. The needed data cannot be obtained.
4. Data exists, but is unreliable perhaps due to measurement uncertainty, mea-
surement error, non-representativeness, or fraud.

W

The first two cases need no elaboration. The third, however, is sometimes
unappreciated. The most evident example of data that cannot be obtained, outside of
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science fiction, is data on the future. Sometimes, of course, historical data can be
used as a proxy, as when insurance companies set premiums by extrapolating from
historical data and trends. Historical data often does not suffice, however, as when
one is planning to introduce a new technology, reorganize a company, prepare for
possible future wars, or negotiate an international treaty. The changes will create
new incentives, new behaviors, and new relationships. The basic problem is that:
(1) systems change, sometimes rendering past data obsolete; and (2) even for stable
systems, issues arise for circumstances on which past data has not been collected
As for the case of unreliable data, in this era of ubiquitous data connected by the
Internet of Everything, it is easy to overlook the fact that the data pouring in does
not adhere to experimental standards. It may suffer due, e.g., to measurement
uncertainty, measurement error, non-representativeness, and various subtle biases.
Also, some of the data may have been deliberately falsified. Historical examples
include corruptly invalid battlefield data during the Vietnam War [9], bogus ratings
of financial packages before the Great Recession [10], and initial underreporting of
COVID-19 cases in China—later acknowledged even by China itself [11].

3.2.3 Even if the Data Exists, It’s Not Enough: Understanding
and Reasoning Demand Causal Models and,
Sometimes, Systematic Experimentation

Even if we have massive, accurate data in a particular domain, and even if accurate
predictive empirical models have been developed to answer some questions, we
will still of- ten want theory, models and simulation, and related experiments. This
will be the case whenever there is need to understand the phenomenon at issue
(even if imperfectly), or when it is important to reason about the phenomenon and
its underlying factors and processes. Such understanding and reasoning require
causal models, and in complicated or complex problems, they require systematic
experimentation.

(Causal models are distinct from what are variously called correlations, asso-
ciations, or statistical models. The issue of causality is deep [12, 13], but it is
fundamental to science and the practicalities of life).

The issue of causality is deep, as discussed in several books. A particularly
salient discussion is that of Pearl [14], particularly his Book of Why [15], written to
be accessible to a broad audience of educated people. Policymakers, for example,
want to know whether and how to intervene in a system. If their interventions will
be more than marginal; i.e., if their interventions will change the system and per-
haps the actors within it and/or their incentives, previously collected system data
may not even be relevant, much less the basis for estimating consequences.

This is particularly so when dealing with complex or complex adaptive systems
[16] something for which simulation experiments are particularly well-suited. This
includes using newer methods such as agent-based simulation to generate potential
trajectories of complex systems, such as modeled societies [17, 18].
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3.2.4 Planning Toward Objectives and Avoiding
or Managing Failures

As a first illustration of how simulation experiments can be valuable, consider the
history-making Project Apollo that led to man reaching the moon and returning
safely. Simulations (live, virtual, and constructive), and simulation experiments
were used at every stage, as in designing the rocket and landing craft, in planning
the trajectory to the moon and the technique for maneuvering its landing craft to the
moon's surface, in choreographing the numerous activities undertaken by the crew,
such as activities in space and collecting material and data from the surface of the
moon itself, and for mission rehearsal.

(Many materials exist describing these applications of simulation, such as those
pertaining to engineering simulation [19] or space flight [20])

As a second example, consider the long history of using simulation experiments
to avert or manage failures. This function was part of the narrative in Jay Forrester's
pioneering work in System Dynamics as he pointed out how intuitively reasonable
actions can prove counterproductive because of feedback phenomena, the effects of
which become clear with simulation [21]. For example, addressing the problem of
urban traffic by building more highways into the city leads over time to new
home-building along the new high-ways, which in turn increases the eventual flow
into the city [22]. Addressing the problem of urban poverty only with welfare
payments and subsidized housing can attract more unemployed people to the area,
making things worse, whereas creating attractive areas and effective infrastructure
to attract job-providing companies can be more effective (but with its own prob-
lems) [22]. Constant economic growth powered by pollution-creating energy
sources and avoiding pollution controls can increase GDP until it doesn't, after
which the economy may decline disastrously [23]. Despite extreme controversy, the
latter work on Limits to Growth has proven prescient and held up empirically [24].
The more recent analogue is, of course, the battle over climate change, where
climate models have consistently predicted disastrous changes of climate in the
absence of radical changes. Again, the model-based work has been controversial
but the temperature trends have been accurately predicted [25] and, rather than
exaggerating the threat of sea-level rise, modeling has tended to show a bias toward
underestimating effects—for reasons such as the scientists leaning over backward to
avoid being accused of exaggeration [26].

The feasibility of avoiding disaster by using simulation experiments was also
championed in Europe by German psychologist Dietrich Dorner under the rubric
“Complex Problem Solving” (CPS) using computer-generated scenarios. As with
System Dynamics, many of the applications have been to aid executives managing
large companies [27].
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A recent book by William Rouse discusses a broad range of failure types in
business, health systems, and other settings using well-documented cases to illus-
trate them. Noting that failures will occur, despite best efforts, he argues that
computational modeling can help avoid some and manage other failures, in part by
establishing mechanisms for recognizing early signs of impending failure [28]. The
book builds on previous research on organizational simulation [29] and
human-centered decision support [30].

As the last example, during the early months of the COVID-19 pandemic
simulation experiments convinced reluctant governments to take extremely con-
sequential decisions in order to avoid millions of deaths beyond those that would
otherwise occur. Controversy abounds and time will tell which of the models were
most and least sound, but doing nothing was not an option. An early model from
Imperial College London influenced decisive actions by the UK and USA [31], and
a more empirically driven model from the University of Washington was used
continuously in subsequent months [32]. A third effort was notable for being fully
public, documented, and posted as an interactive tool allowing state and local
officials to conduct simulation experiments on easing restrictions faster or slower
[33]. New models on the COVID-19 epidemic were continuing to emerge as this
chapter was completed (e.g., the TRACE model from the Brookings Institution).

3.2.5 Cautions

3.2.,5.1 Model Validity

Unfortunately, models or the data on which they depend are imperfect. It is not just
a matter of obtaining the correct input data. Often, on consequential matters, the
correct structure of the model is uncertain. Does it include all the important vari-
ables? Are the cause—effect relationships captured correctly? Does it deal appro-
priately with random events, both discrete and continual? It has been argued that
failure to confront model uncertainty continues to be one of the serious short-
comings in analysis supporting policymakers [34].

Even if the model structure is sound, the model often has many uncertain input
parameters, changes of which can have profound effects. This was so with the early
models (March to May 2020) of COVID-10 [35]. A key parameter (percentage of
infected people reported as infected) was hugely uncertain, leading to predictions of
death rate differing by an order of magnitude.
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As always, then, it is difficult to exaggerate the importance of assuring the
quality of models and their data, as discussed further in Chap. 7 of this volume
(Oren et al., forthcoming).

3.2.,5.2 Analysis Under Deep Uncertainty

As a related caveat, simulation experiments are frequently beset with the problems
of deep uncertainty as discussed further in Sect. 7.3.1 and an overview book [36].
In such cases, experimentation should not be about finding an “optimum solution”
based on best-estimate assumptions, but rather finding solutions (e.g., a strategy for
action) that will prove reasonably good over a wide range of possible assumptions
—i.e., across a sizable portion of the parameter-value case space (sometimes called
scenario space, case space, input space). The experimentation may then be seen as
exploratory analysis to support what is called robust decision making (RDM),
associated with Lempert et al. [37]. This is drastically different philosophically and
practically from merely doing some sensitivity analysis after having identified the
nominal optimum solution. See also Chap. 14 (Davis).



3 Simulation as Experimentation 85

3.3 Types of Simulation Techniques for Experimentation

Tuncer Oren

Experimentation is one of the pillars of simulation (Sect. 1.1 Scope). The separation
of experimentation and model parts of a simulation study was proposed in a historic
document [38]. Specification of the experimental conditions is evolved to experi-
mental frames.

3.3.1 Sections of BoK Guide Related to Experimentation

Due to its importance, several aspects of experimentation are covered in the fol-
lowing sections:

Chapter 1. Preliminary

1.4.2.2 Experimental Frame

1.4.2.3 Objectives and Experimental Frames

1.4.4.2 Experimental Frame—Model Relationships
Chapter 3. Simulation as Experimentation

3.1 Types of Experimentations

3.2 Reasons to Use Simulation Experiments

3.3 Types of Simulation Techniques for Experimentation
Chapter 7 Reliability and Quality Assurance of M&S

7.3 Validation

7.3.2.2 Defining Purpose: The Experimental Frame
Chapter 16 Philosophy and Modeling and Simulation

16.4 Experiments vs Simulation
Chapter 17 History of Simulation

17.2 History of Simulation for Experimentation on Digital Computers

3.3.2 Simulation Experimentation for all 3 Types of System
Problems

Simulation can be used for all three types of system studies [39, 40], namely for
design, analysis, and control problems as outlined in Fig. 3.1.

In design problems, the aim is to determine a system which would satisfy a
predetermined input/output relationship.

In the simulation of design problems, for a design (i.e., a model), the state is
given. During simulations with a given model, for input trajectories, output tra-
jectories (or model behavior) are generated. Model behavior, normally, consists of
the trajectories of output variables. However, when model structure is variable, the
sequence of model structures can also be part of the model behavior. If the model’s
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System Known .
Determine

problem Input State Output

Design Input State - Output

Analysis Input - Output State

Control - State Output Input

Fig. 3.1 Use of simulation in system problems

simulated input/output behavior is acceptable, then the model can be implemented
as the designed system.

In analysis problems, the state of the system is unknown, and the aim is to
understand the mechanism of how it functions.

In the simulation of analysis problems, input/output behavior of the system is
known; the problem is to construct a model (i.e., define state and output variables as
well as state transition and output functions) which for some input trajectories, will
generate output trajectories comparable to the outputs of the real system under same
input trajectories. This would be an iterative process to start with a model (state)
and modify the model, until input/output behavior of the model is an acceptable
replica of the input/output behavior of the real system.

In control problems, a system (hence, its model—with its states, state transition
functions, and output functions) is given; the problem is to determine the sequence
of the input variable(s), which will cause generation of the output trajectories of the
model comparable to the output variables of the real system for the same input
variable(s).

The simulation of control problems, like the simulation of analysis problems,
an iterative process is needed. During the simulation study, one modifies the input
trajectories, until a desired output trajectory is obtained.

3.3.3 Relationship of Operations of Simulation and Real
System
As outlined in Table 3.3, there are two possibilities so far as the relationship of the
operations of simulation and real system are concerned.
3.3.4 Use of Simulation for Decision Support

Simulation experiments are basically used for decision support. Table 3.4 outlines
types of simulation used for decision support.
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Table 3.3 Possibilities of the relationship of the operations of simulation and real system

Relationship of the operations To
of simulation and real system

The system of interest and the Enrich operations Real-system
of real system

simulation program operate
simultaneously and provide
augmented- (enhanced- or
mixed-) reality

The system of interest and the Support
simulation program operate
alternately to provide system
predictive displays

operations of real

Type of simulation For the purpose of

— Decision support/

enriching online diagnosis
simulation for — Training
— Realistic virtual
reality

Real-system — Decision support
support simulation — On-the-job
training

Table 3.4 Types of simulation used for decision support

Purpose of decision support

Description
Explanation

Prediction of behavior/performance

Evaluation of alternative models, parameters,

experimental conditions (scenarios), policies

Prescription

Category of Use of simulation for

simulation

Descriptive simulation
Explanatory simulation
Predictive simulation

Evaluative — Feasibility studies
simulation — Sensitivity studies
for — Acquisition

(simulation-based

acquisition)
Prescriptive — Planning
simulation (simulation-based
for planning)

— Online decision support

— Engineering design
(simulation-based
design/simulative
design)

— Virtual prototyping:
(Simulation-based
prototyping/simulative
prototyping)

3.3.5 Statistical Experiment Design Techniques

Designing simulation experiments is an essential aspect of simulation experiments
[41-43]. It has been in practice since the early days of simulation [44].
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3.4 Simulation of Discrete Systems, DEVS

Rhys Goldstein, Azam Khan

Introduced in 1976, the Discrete Event Systems Specification (DEVS) formalism
plays a foundational role in the body of M&S knowledge. DEVS provides a
theory-based approach for modeling and simulating systems of essentially any type,
with a focus on systems regarded as partially or fully discrete. What distinguishes
DEVS from other modeling techniques is the way it incorporates simulated time
into the state transition functions that specify the behavior of the represented sys-
tem. Note that physical time is the (DEVS) formalismtechnical term for “time” as it
is perceived in the real world; simulated time is a quantitative representation of
physical time that is also commonly expressed in units such as years, days, hours,
minutes, seconds, and fractions of seconds.

The book Theory of Modeling and Simulation by Zeigler et al. [45] serves as the
definitive reference on DEVS and other foundational modeling formalisms.
Here DEVS is presented from the ground up as special type of state machine that
incorporates time into every transition. The presentation begins with a discussion of
discrete systems and how they differ from continuous systems.

A continuous system is a system in which the state varies continuously over
simulated time. An example of a continuous system is illustrated in Fig. 3.2, where
the system’s state is plotted on the vertical axis. In general, both continuous and
discrete systems can have multi-dimensional states comprising many variables of
different types.

Although many real-world systems exhibit smoothly varying quantities like the
one depicted in Fig. 3.2, there are also many systems that tend to alternate between
long time periods of relative constancy and short time periods of rapid change. For
example, an office worker may remain at their desk for an hour or more, then spend
less than a minute walking to a conference room or other common area, then spend
an hour at the new location interacting with colleagues. If the worker’s position is
regarded as the state of the system, then the state will change continuously, but only
for the relatively short time periods in which they are walking to a different loca-
tion. For the long periods of time in which the worker remains in one place, the
state will remain constant. Figure 3.3 provides an example of this sort of “nearly
discrete” system.

Fig. 3.2 A continuous 1
system. The state varies State
continuously over simulated

time

Simulated Time
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State

Simulated Time

Fig. 3.3 A continuous system that is nearly discrete. Continuous state transitions unfold over
relatively short periods of simulated time

State

Simulated Time

Fig. 3.4 A discrete system. The state transitions instantaneously at a finite number of points in
simulated time

A discrete system is a system that transitions from one state to another at a finite
number of time points in any finite period of simulated time. In other words, the
system transitions instantaneously from one state to another then remains in that
state for a duration of time, then instantaneously transitions to another state. An
example of a discrete system is shown in Fig. 3.4. Observe that the duration of time
between successive transitions may vary.

The choice of whether to regard a real-world system as discrete or continuous may
require judgment. For systems that are nearly discrete, such as the one depicted in
Fig. 3.3, it is often practical to treat short periods of continuous change as instanta-
neous. In many cases, this assumption simplifies the representation of the physical
system without significantly affecting the results of a simulation-based experiment. To
give an example, it may be reasonable to model an office worker as transitioning
instantly from one location in a building to another. The time the person spends
walking may not be significant, though that depends on the nature of the investigation.

Electronic devices are often regarded as discrete systems. When someone flips
on a switch, the state of the system is typically assumed to change instantly from
“OFF” to “ON.” This assumption is made notwithstanding the fact that the
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real-world transition involves a net flow of electrons that increase continuously
from zero to some steady-state level. There are countless examples of both artificial
and natural real-world systems that can be beneficial to regard as discrete.

DEVS provides a set of conventions for representing discrete systems of
more-or-less any domain. Later it will be demonstrated that DEVS can model
continuous systems as well. But since DEVS treats state transition as instantaneous,
discrete systems are the most obvious application of the formalism.

To understand the rationale for DEVS, it is helpful to consider a more basic and
more widely known approach for modeling discrete systems: a state machine. Both
state machines and DEVS feature discrete events, or events for short, which are
self-contained sets of operations that occur at the points in time at which a discrete
system may transition from one state to another. The key difference between a state
machine and DEVS is that DEVS incorporates simulated time into these transitions.

State machines are based solely on virtfual time, a time representation that orders
events in a way that is consistent with causality and consistent with simulated time.
The consistent with causality (causal consistency) property tells us that if one event
influences a second event, then the second event occurs at a later point in virtual
time. The consistent with simulated time property means that if one event occurs
before a second event in simulated time, then the second event occurs at a later
point in virtual time as well. What is not captured by virtual time is the real-world
duration of time between events. Two successive events in virtual time may be
separated by any duration of simulated time, including zero duration. Figure 3.5
depicts the same system as illustrated in the previous figures, but with the state
plotted over virtual time. Each segment of the state trajectory is shown as the same
width, even though the simulated time durations vary.

Because a state machine is based on virtual time only, its events may not be
triggered by the passage of simulated time. Instead, each event must be triggered by
an input. One approach to formulating a state machine is to associate each event
with an output as well. In Fig. 3.6, the same system that appeared in previous
figures is shown with states labeled s, through s;. Each transition from one state to

State

l L l | | l 1 -

-

T T
Virtual Time

Fig. 3.5 A discrete system plotted over virtual time. The real-world duration associated with each
state is not represented
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Fig. 3.6 A discrete system represented by a state machine. Each event is triggered by a single
input and, in this example, produces a single output

the next is triggered by an input labeled x4 through xs and produces an output
labeled y, through yg.

A state machine can be defined using a function fthat is invoked at each event in
response to an input. As shown below, the function may take the current state s and
the input x as arguments, and produce the new state s’ and the output y.

s/,y :f(s,x)

Although they serve a foundational role in the specification of computing sys-
tems, state machines are limited in that they do not inherently represent the dura-
tions of time associated with real-world processes. DEVS addresses this limitation
by incorporating simulated time into the state transitions that govern the behavior of
a discrete system. In essence, a DEVS model is a state machine with time included
as a component of the state.

In the DEVS literature, the term state still refers to the set of variables that
remain constant between events. However, a new variable called the elapsed
duration is introduced to represent the continuously increasing duration of simu-
lated time that has elapsed since the previous event. As shown in Fig. 3.7, the
elapsed duration falls instantaneously to zero whenever the state transitions, then
increases linearly until the next event.

Together, the state and the elapsed duration are referred to as the rotal state. The
normal convention is that the state is denoted s, and here the elapsed duration is
denoted At,. The total state is therefore [s, Af.]. A DEVS model can be regarded as
a state machine that specifies transitions of the total state [s, Af.]—that is, transi-
tions of the state and elapsed duration in combination—rather than transitions of the
state s by itself.

Combining the state and elapsed duration introduces a need for two types of state
transitions. One type of state transition is analogous to that of a state machine in that
it is triggered by an input from an external source. These externally triggered state
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Fig. 3.7 A discrete system represented by the state in combination with the elapsed duration

transitions, or external transitions for short, are specified by an external transition
function .. In essence, the external transition function transforms the current total
state [s, Az.] into a new total state [s', At.'] using the input value x as an additional
source of information. However, the new elapsed duration Az,’ is always zero. The
result of J.y is therefore just the new state s’ by itself, as shown below.

5" = Oext([s, Ate), x)

The other type of transition is triggered by the total state itself. Consider that the
elapsed duration Az, is a continuously increasing quantity. It follows that the total
state [s, Atz.] also varies continuously with time and may in fact reach a point at
which it is no longer desirable for the system to remain on its current trajectory. If
such a point is reached, a transition occurs. These internally triggered state tran-
sitions, or internal transitions, are specified by the internal transition function djy,.
In essence, the internal transition function transforms the current total state [s, Af.]
into a new total state [s’, Az.']. But as with the external transition, the new elapsed
duration At is always zero, so the result of d;, is just the new state s'. Also, as
explained below, the current elapsed duration Az, can also be omitted because it has
a known value. Hence, as shown below, the definition of the internal transition
function includes the current and new states but excludes any explicit quantity of
time.

5" = Oint(s)

The internal transition occurs at the point where the continuously increasing
elapsed duration Az, reaches a certain duration that depends on the state. That
duration is specified by the time advance function fa, which is a function of s. The
reason why the elapsed duration is not an argument of J;,, is because, at that
moment of the simulation, the elapsed duration is known to be za(s).

At = ta(s) (at internal transitions)
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In DEVS, outputs are associated with internal transitions and not external
transitions. This convention is a practical one, as it allows there to be an arbitrary
duration of time separating an input from the subsequent output. If za(s) = 0, then
an output may occur immediately after an input with no advancement of simulated
time in between. But if ra(s) > 0, an output can be arranged to occur after an
arbitrarily long delay. The output value is specified by the output function A, which
is a function of the state prior to the invocation of J;,. In essence, the output
function could be considered a function of the total state [s, Af.], but At, is not
needed because it is known that Az, = fa(s) at that moment of the simulation.

y = 4(s)

In the same way that a lone function f can specify the behavior of a state
machine, the four functions Oy, Oin,, 4, and fa specify the behavior of a DEVS
model. To complete a DEVS model specification M, one defines all four functions
as well as the set of all possible input values X, the set of all possible output values
Y, and the set of all possible states S.

M= <X> Y, S; 5exl,5int7)vv ta >

For an example of a DEVS model specification, consider simulating a person in a
workplace. The worker exhibits the following behavior:

1. At any point in time, the worker is either working or taking a break.

2. When the worker begins working, they continue working for 1 h before starting
their break.

3. When the worker begins taking a break, they initially intend to resume working
in 10 min.

4. Despite their initial intent, the actual duration of the worker’s break is influenced
by their co-workers. Specifically, if a co-worker transitions from working to taking
a break, then the original worker increases the length of their break. In such cases,
they remain on their break for a duration of (Atp2 - Atez)”z, where Az, is the
duration they were planning to remain on break at the previous transition (which
occurred at a duration of Az, in the past). If a co-worker on break resumes working,
then the original worker decreases the length of their break. They resume working
themselves after a duration of At,'= Az, — (2:At,At, — At HY.

The example aims to capture a social behavior that may occur in certain work
environments. If there are n workers taking a break and an (n + 1)th worker joins
them, they are compelled to interact with their colleague and thus extend the
remainder of their breaks. But if there are n workers taking a break and one of them
leaves to resume working, the remaining n — 1 workers are reminded of the action
of leaving and consequently shorten the remainder of their breaks.
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The behavior of a worker in this scenario is described by the DEVS model
Mworker-

Mworker = <X7 Y7 S7 5ext7 5int7 }w ta>

DEVS model inputs and outputs are often associated with ports. In this case,
there is a single input port that receives the change in the number of other workers
taking a break. As indicated by X, these inputs take the form of the port ID
“Anpea” followed by the received value Anyeq.

X = {[”Anbreak”a AI’lbreakHAnbreak S Z}

There is also one output port, named “task,” that sends out the task that has just
begun. As specified by Y, the sent value fask is either “work” or “break.*

Y = {["task”, task]|task € {"work”” break”}

The state consists of two variables: the task currently being performed (fask) and
the duration of time after which the worker is planning to switch tasks (At,). The
definition of S below indicates that task is either “work™ or “break,” and the planned
duration Az, is either zero or any positive real number.

S = {[task, Ar,]|task € {"work”,” break”}, A1, € Ry }

When an input is received, an instance of the DEVS model responds differently
depending on whether it is in the “work” or “break” state. If fask = “work,” then the
input is essentially ignored. To ignore the input, it is necessary to update the planned
duration At, by subtracting the elapsed duration Az,. The new planned duration
At = At, — At, effectively schedules the next internal transition at the point in
simulated time that it would have occurred had there been no input at all. If the input
value Anpeq is received when fask = “break,” then the length of the break is adjusted
according to the calculations specified in the description of the model. The worker’s
response to an input is formally defined by the external transition function Jy,.

e ([[task, Aty], Ar] " At Artrea]) = task, Ary |
(task =" work”) = (Atfy = At, — Ate)
(task =" break”) = ...
(Anprea = 0) = (Atl/, =At, — Ate)
(Anbreak > 0) = <At; = (At; — Al‘g) 1/2)

(Anpreax <0) = <At; = At, — (2 - AL, - At — At?)l/z)
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When the planned duration (At,) elapses, an internal transition must be triggered
so that the worker can transition from working to taking a break, or vice versa. The
state variable trask changes from “work” to “break” or “break” to “work.” The
planned duration is also updated with the amount of time the worker intents to
perform the new task, either 3600 s (1 h) if they are now working or 600 s (10 min)
if they are now taking a break. These planned state changes are formally defined by
the internal transition function Jjy,.

S ([task, Ary) ) = [taskf, At;]

(task =" work”) = ...

task’ =" break”

At; =600

(task =" break”) = ...
task’ =" work”
Atz/ﬂ = 3600

Immediately before the internal state transition occurs, the output function 1 is
invoked to provide the output value. The value is simply the worker’s new task,
which is the opposite of the current task.

A([task, At,]|) = ["task”, task']
(task =" work”) = (task’ =" break”)
(task =" break”) = (task’ =" work”)

The time advance fa function expresses the fact that, provided there are no
intervening inputs, the internal transition will occur when the elapsed duration
reaches the value of the state variable Az,

ta([task, Atp]) = A,

Figure 3.8 shows the progression of a simulation with 12 workers who adjust
their break schedule in response to their co-workers. The 12 schedules are initially
staggered by 5 min, but eventually the workers separate into two groups. In each
group, workers start and end their breaks at the same time.

The worker model is just one example of a discrete system that can be modeled
using the DEVS formalism. By incorporating time into every state transition, DEVS
can be used to represent nearly any time-varying system. Due to its generality, DEVS
can be considered foundational to modeling and simulation in much the same way
that state machines are foundational to conventional software development.

An important practical feature of DEVS is the ability to couple DEVS models so
they can interact with one another. These interactions take the form of messages
that originate from the output of one model instance and are then treated as inputs
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Fig. 3.8 A timeline produced by 12 instances of the worker example model. The workers enter
the system at 5-min intervals starting in the “work” state. The colored bars indicate when each
worker is taking a break. Although the breaks are initially staggered, a behavior emerges in which
the breaks become synchronized within two distinct groups of workers

for other model instances. If an output occurs at a certain point in simulated time,
then it is received at the same time point. (In virtual time, however, a message is
received at a later point than when it is sent.)

Couplings between DEVS model instances are defined in the context of a
coupled model, which is itself a form of DEVS model. A coupled (or “network”)
model N is specified by supplying eight elements. Two of these elements—the input
set X and the output set Y—are the same as in the basic specification.

N = (X,Y,D,{M,|d € D},EIC, EOC,IC, Select)

The elements of a DEVS coupled model specify a graph-like or network-like
structure involving instances of DEVS models referred to as components. Using the
coupled model in Fig. 3.9 as an example, the component name set D contains the
IDs of the three components (“A,” “B,” and “C”), and the component set {M,}
contains the corresponding DEVS model specifications ((XA, Ya, ), (XB, Y, ),
(Xg, Yg, ...)). The external input coupling EIC formally represents all the purple
links (arrows) in the diagram, which direct messages from the inputs of the overall
coupled model to the inputs of the components. The external output coupling EOC
represents the green links, which direct messages from the outputs of the compo-
nents to the outputs of the coupled model. The internal coupling IC represents the
blue links, which direct messages from the outputs of some components to the
inputs of other components.

During a simulation, it may happen that multiple components are scheduled to
undergo an internal state transition at the same point in simulated time. In such
cases, the Select function is invoked to identify the component that should transi-
tion first. The Select function is part of the original formulation of the theory,
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Fig. 3.9 An example of DEVS coupled model

known as Classic DEVS. It is worth noting that a variant of DEVS called Parallel
DEVS was introduced in 1994 to eliminate the Select function and allow the internal
transitions of multiple components to be invoked in a synchronous fashion. There
are many other subclasses and variants of DEVS, including Cell DEVS, Dynamic
Structure DEVS, Multi-Level DEVS, Routed DEVS, and Symmetric DEVS, to
name a few. Most of these derived formalisms are based on either Classic DEVS or
Parallel DEVS.

A component of a DEVS coupled model may itself be a coupled model. This
feature is enabled by a property of DEVS models known as closure under coupling,
which means that any coupled model specification can be mapped onto a basic
DEVS model specification with external and internal state transitions. It is
impossible to tell, for example, whether each of the three components in Fig. 3.9 is
an atomic or coupled model. Note that if Component A is a coupled model, then
some of its components could also be coupled models. The ability to nest coupled
models allows complex systems to be defined as hierarchies of simpler systems.

Although the primary focus of DEVS is the representation of discrete systems,
the formalism can be used to model continuous systems as well. Again, the key
insight is that DEVS is essentially a state machine that specifies transitions of the
total state: the state s in combination with the elapsed duration Az,. Whereas s is a
discrete function of time, the total state varies continuously due to the linear
increase of Ar, between transitions. The downside to representing continuous
systems using DEVS, however, is that either an analytic or a numerical solution to
one or more differential equations must generally be incorporated into the model to
derive the continuously varying quantities of interest from the total state.

To demonstrate the representation of continuous systems using DEVS, consider
the following differential equations expressing the height # and velocity v of a
falling object subject to a gravitational acceleration g.
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dh/dt=v
dv/dt = —g

A DEVS model can track the continuous quantities 4 and v by integrating the
differential equations from the time of the previous event to the current time, a
duration that is always equal to the elapsed duration Af,. The updated quantities /'
and v' have analytic solutions, which are given below for external transitions where
At, is available as a function argument. For internal transitions, one can replace Af,
with za(s).

W=h+v -At,—(1/2) g-A
V=v—g-At

Given a set of differential equations with no analytic solution, a numerical solver
would have to be incorporated into the DEVS model to produce the trajectories of
the continuous values. Note that in sophisticated models, the trajectories of con-
tinuous quantities are likely to change whenever certain inputs are received.

Regardless of the system under investigation, the DEVS formalism can be
applied in several ways. Modelers seeking to take full advantage of the formalism
may create formal system specifications using mathematical conventions like those
presented above. It is also possible to implement DEVS models without first
specifying them. DEVS models are generally implemented using M&S libraries
developed for mainstream procedural and object-oriented programming languages
such as Python, Java, or C++. A third option is to implement a simulation model
using a different paradigm or set of conventions and automatically map the authored
model onto an equivalent DEVS model. With this third approach, modelers can use
domain-specific languages dedicated to their areas of expertise, then couple the
resulting models as if they had been implemented using DEVS conventions. In all
three approaches, a DEVS-based simulation framework serves as a platform sup-
porting the integration of system models from any number of application domains.

3.5 Simulation of Continuous Systems

Amine Hamri, Laurent Capocchi

The simulation of dynamic systems and especially of continuous systems allows
reproducing the expected behavior of such systems on a computer (calculator) for
verification and validation. However, the lack of concepts to model and simulate
directly continuous systems forces the modeler to discretize some variables: the
time, state variables, or both of them. Recently, many scientists have proposed
paradigms and techniques to discretize such variables. In opposite to time dis-
cretization modeling and simulation techniques that are widely used by different
communities, a small group of scientists at his head the professor Bernard P. Zeigler
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has highlighted the discrete event simulation techniques that provide a clear
framework for the modelers. We can cite Discrete Time Systems Specification
(DTSS), Quantized DEVS (Q-DEVS), Generalized DEVS (G-DEVS) that allow
modeling and simulation of dynamic systems more faithfully with some advantages
and disadvantages [45].

For example, G-DEVS [46] models the state trajectory of dynamic system with
piece-wise polynomial functions instead of piece-wise constants like in DEVS. This
characteristic enhances the simulation results of many applications like digital
circuits and moving agents. The lack of such formalisms is that suffering from the
powerlessness of formal and analytical techniques like theorem-proving to give
solutions. However, these formalisms-oriented simulation remain excellent tools to
understand and analyze continuous systems where analytical techniques fail due to
the complexity of dynamic systems that increases more and more.

3.6 Hybrid Modelling and Simulation

Navonil Mustafee, Mamadou Kaba Traoré

We begin with an introduction to the idea of hybridization, both within the mod-
eling and simulation (M&S) discipline itself as well as between M&S and other
disciplines, and follow this with a formalization of hybrid M&S.

3.6.1 From Complexity to Hybridization

Managing complex systems can be tedious [47] not only because of a huge number
of subcomponents that may compose them but also because of the complex pro-
cesses that govern the relations that exist between them rendering their analysis and
design more difficult. Modern complex systems require multiple levels of expla-
nation to be provided to achieve their various objectives, while keeping a holistic
understanding of the behavioral pattern of the overall system and its interaction
with the surrounding environment [48]. As such, a hybridization of approaches that
would evidently provide useful knowledge from various angles on how such sys-
tems perform at the holistic level rather than focusing on specific problems in
isolation for specific solutions is an appropriate means to address their complexity.
In modeling and simulation (M&S), such a hybridization can be envisioned
endogenously or exogenously, and at different levels of concern [49-51].

As described in Table 3.5, the concepts level, where the universe of discourse is
set (such as the notions of state, event, and concurrency), calls for formalisms and
(more generally) methods to capture the required concepts in a symbolically
manipulable way. While the M&S community traditionally distinguishes between
discrete and continuous phenomena as regard to central time-related concepts,
qualitative and quantitative computational approaches, such as operation research
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or artificial intelligence methods, rather focus on problem-solving steps and
mechanisms. Hybridization comes at this level with the objective-driven need to
deal with temporal considerations for the system under study while trying to find a
solution to the problem under study. Such a situation happens for example when
optimization techniques make use of simulation as a black box-type of evaluation
function (exogenous hybridization), or when the requirement for a fine-grained
understanding of the system entails both continuous and discrete phenomena be
considered (endogenous hybridization). At the specification level, the real-world
system and problem under study are expressed as a model, using the universe of
concepts adopted, i.e., discrete or continuous simulation model (within M&S
world) or problem-solving algorithm (within the wider computational world). The
literature has coined various terms to qualify the various possible hybridizations,
such as DisM + ContM, or DisM/ContM + Alg (where “+” denotes a
composition/mixing operation that can vary from loose to tight integration). At the
operations level, engines are built to execute the model defined at the immediate
upper level. Such engines are often referred to in the M&S world as simulators and
integrators (for respectively discrete and continuous operations), while solvers
implement the algorithms defined in non-M&S-centered computational approaches.
Operational hybridization occurs here to support the requirement for multiple
execution engines, each devoted to aspects that other engines do not support. The
hybridization done at the operations level between computational engines and
physical components is the essence of the so-called Cyber-Physical Systems. The
hierarchy of levels in Table 3.5 implies stronger hybridization at the upper level and
weaker hybridization at the lower level.

Table 3.5 Hybridization strategies in computational frameworks

Concepts DEVS, Petri Net, ODE, PLE, OR methods, Al
5 Multi-Agents... Systc_m methods...
(formalisms) = Dynamics...
. . Discrete Continuous .
Apecyications simulation models | simulation models A gorihing
(models) (DisM) (ContM) A -
e —f—gm===== P Z iz b
Operations v Simulators e a Integlators ,\ iSol\'ers ‘: \\Physica] devices \=
o \
(engines) \ (Snnl / \\(Int)_/ X (So])lz’ Y% (Phy) =0
----------- == Yy - 1 il
\ M& S)\p_;lg_(Sun\g) ‘:"_'::':::".’.’. - ’J! /,’
Con:putahonal world (CompW) e e
DEVS: Discrete Event System Specification ODE: Ordinary Differential Equations
PDE: Partial Differential Equations OR:  Operation Research
Al Artificial Intelligence -——-: often referred to as hybrid simulation

-——=: often referred to as combined simulation -— CPS
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3.6.2 Definitions

Hybrid Simulation is the combined application of simulation techniques like Sys-
tem Dynamics (SD), Discrete Event Simulation (DES), and agent-based Simulation
(ABS) in the context of a single simulation study. Its objective is to better represent
the system under scrutiny through the conjoined application of multiple simulation
techniques. Traditionally, modelling efforts have primarily been undertaken in
distinct M&S communities, each with their International Societies, Conferences,
and Journals. For example, the SD, DES, and ABS communities have continued to
thrive under scholarly societies like the System Dynamics Society, The Society for
Modeling and Simulation International, and European Social Simulation Associa-
tion; each community has its conferences, e.g., International Conference of the
System Dynamics Society, Winter Simulation Conference, Social Simulation
Conference, and scholarly publication outlets, e.g., System Dynamics Review,
Simulation: Transactions of the SCS, the Journal of Artificial Societies and Social
Simulation. Hybrid Simulation presents the opportunity to draw on these different
world views and structured methods of system representation and to realize syn-
ergies through mixing methods and applying them to model the increasingly
complex systems of today.

Hybrid Modelling is the combined application of simulation with methods and
techniques from disciplines such as Computer Science/Applied Computing, Opera-
tions Research (OR), Humanities, Engineering, and Data Science. Unlike Hybrid
Simulation, whose focus continues to be inward to the M&S community, Hybrid
Modelling proposes a cross-disciplinary approach for the best possible representation
of a system, more specifically, the combined application of simulation, or indeed
Hybrid Simulation, with methods, techniques from broader disciplines. Examples
include the use of game-theoretic approaches (Economics) with computer simulation,
faster execution of simulations using Grid, Cloud, GPGPU and Paralle] Computing
technologies (Computer Science), formal testing (Software Engineering) of simula-
tion models, use of problem structuring methods and Qualitative System Dynamics
(Soft OR) in the problem formulation and conceptual modelling stages of a simu-
lation study, the combined application of load plan heuristics (Hard OR) with
computer simulation. As illustrated in Fig. 3.10, Hybrid Modelling is
cross-disciplinary and, at its very core, is a call to the M&S community to engage
with researchers from diverse disciplines, and learn the extant knowledge and
underlying philosophies and methodologies, frameworks and techniques (subse-
quently referred to as discipline-specific artifacts) with the aim of extending the
theory and practice of M&S. In the context of Hybrid Modelling, it is important to
note that the discipline-specific artifacts could be used in one or more stages of a
simulation study, for example, conceptual modelling phase, model coding, input data
analysis, V&V, scenario development, experimentation and implementation of the
results of a simulation study. Mustafee and Katsaliaki [52] identified a plethora of OR
methods and techniques, some of which are already used together with simulation
approaches (e.g., the combined application of forecasting with DES—Harper et al.
[53], Harper and Mustafee [54]). Yet, others are avenues for future research.
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3.6.3 The Unified Conceptual Representation of Hybrid
Modelling and Hybrid Simulation

Mustafee and Powell [56] present a unifying conceptual representation of Hybrid
Simulation and Hybrid Modelling to clarify the terminologies further and put them
in perspective. With increasing interest in Hybrid Simulation and debates around its
definition, scope, and purpose [57], it was felt that it was essential to present the
definition of Hybrid Modelling, which was distinct from Hybrid Simulation, and
without which the community world continue to look inwards (Fig. 3.10). In
developing the definition of Hybrid Modelling and Simulation, the authors con-
sidered its alignment with the historic (albeit infrequent) use of the term—see [51]
—the past (Case 1); the use of Hybrid Simulation in present-day academic dis-
course—the present (Case 2); and, the use of the term to support future research in
advancing the theory and practice of M&S—the future (Case 3). Figure 3.11 pre-
sents the classification of Hybrid Modelling and Simulation into distinct Model
Types. In laying the basis of the unified definition, they revisited [58] definition of
paradigm, methodology, technique, and tool and adapt it for hybrid study.

Operations
Research (OR)

Computer
Science

Hybrid Model

(cross-disciplinary)

¥
Hybrid
JJ Simulation l!~

(e.g., DES+SD)

seale 123[gns JaY10

¥
Conventional
Simulation
(e.g., DES)

Other subject areas

Social

Sciences Psychology

)) )) Conventional Simulation and Hybrid Simulation: Looking inward to the
community of researchers and practitioners in M&S

‘ Hybrid Modelling: Looking outward and engaging with researchers
from broader disciplines

Fig. 3.10 Hybrid models focus on cross-disciplinary engagement (adapted from Fishwick and
Mustafee [55])
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Fig. 3.11 Unified conceptual representation of hybrid modelling and simulation into distinct
model types (adapted from Mustafee and Powell [56])

e Paradigm: They distinguish between qualitative (interpretive, subjective, soft)
and quantitative (positivist, objective, hard) paradigms; M&S is in the quanti-
tative paradigm. If qualitative approaches are used, e.g., in conceptual modelling
phase, then it is an example of Multi-Paradigm Hybrid Modelling.

e Methodology: Methodologies develop within a paradigm and usually embody its
philosophical assumptions (ibid.). In the quantitative paradigm, [59] distinguish
between discrete and continuous methodologies. In discrete execution of com-
puter models, the system state changes from one event to the next (as in DES) or
as per defined time steps (as can happen in both DEA and ABS). For continuous
simulation, the change in system state is continuous (as with SD and Compu-
tational Fluid Dynamics, or CFD). A Multi-Methodology Hybrid Simulation is
one which has both Discrete and Continuous elements, e.g., SD-DES, SD-ABS.

e Technique: Techniques exist within the context of methodologies and have
well-defined purposes, e.g., DES (ibid). Mustafee and Powell [56] distinguish
between techniques such as DES (event list/queuing theory) and ABS (time
stepped/emergence) under discrete methodology, and SD (stock and flow) and
CFD (numerical approach) under continuous methods. A Multi-Technique
Hybrid Study is one which uses two or more techniques under the same
methodology, e.g., using CFD to model traffic flow with SD to investigate
strategic policy related to transportation at an urban level. It follows that a
Multi-Methodology, Multi-Technique Hybrid Simulation is one which uses a
combination of techniques from both discrete and continuous methodologies,
with at least two techniques from either of the two methods. Studies demon-
strating the combined application of SD-DES-ABS are an example of this.

e Tool: We define these as M&S packages which can be used to “perform a
particular technique” (ibid.), and more recently, can execute multiple techniques
that are classified under one or more methodologies. Discussion of the tool is not
important for the hybrid modelling and simulation classification scheme.
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3.6.4 Classification of Hybrid Modelling and Simulation

into Distinct Model Types

Type A—Multi-Methodology Hybrid Simulation—Models of this type align
with present practice (Case 2). Numerous studies used SD-DES and SD-ABS.
Type B—Multi-Technique Hybrid Simulation—Although these align with pre-
sent practice (Case 2, e.g., use of ABS-DES models), there is some debate as to
whether these could be called as hybrid since both techniques conform to dis-
crete methodologies. In [56] classification, a combined application of ABS-DES
is Type B Hybrid Simulation since there are fundamental differences in the
execution of the simulation logic, which makes them agreeable to model par-
ticular category of problems (top-down queuing approach versus bottom-up
emergence).

Type C—Multi-Methodology, Multi-Technique Hybrid Simulation—This aligns
with Case 2 (present practice, e.g., ABS-DES-SD models) and also accommo-
dates future hybrid studies (Case 3).

Type D—Hybrid Modelling—This aligns with Case 1 and encompasses [51]
original use of Hybrid Simulation/Analytical Model and the four defined Classes
of such models. An example of Type D model is the combined application of
mathematical modelling/optimization approaches with simulation models, e.g.,
use of load plan heuristics with ABS [60]. However, Hybrid Modelling is also
Case 3 (the future), since there are numerous well-defined methods and tech-
niques to problem-solving in Operations Research—refer to the classification of
OR [52]—and which could potentially be used in one or more stages of a
simulation study. Also, as shown in Fig. 3.12, OR is but one of the many
disciplines for cross-disciplinary collaboration with M&S (Case 3).

Type D.1—Multi-Paradigm Hybrid Modelling—When Soft OR techniques are
used with M&S, e.g., Soft Systems Methodology and Qualitative System
Dynamics, then we have a special case of Type D model which interests para-
digm. This is our Type D.1 or Multi-Paradigm Hybrid Model.

Types D and D.1 are referred to as Hybrid Model (rather than Hybrid Simula-

tion) since only one constituent of the combined model is a simulation model; the
other component is a discipline-specific artefact (which could be a philosophy,
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Fig. 3.12 RT-DES real-time simulation experimentation using synchronization algorithm
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methodology, framework, technique or a structured approach) that could be com-
bined in one or more stages of an M&S study. For Type A, Type B, and Type C
Hybrid Simulation, please refer to the literature review paper “Hybrid Simulation
Modelling in Operational Research: A State-of-the-art Review” [61]. Refer to
Mustafee and Bischoff (2016) for an example of Type D Hybrid Model. Refer to
Powell and Mustafee [62] for a review of literation on Type D.1 models.

3.7 Real-Time Discrete-Event Simulation

Alison Harper, Navonil Mustafee

3.7.1 Overview:

Real-time discrete-event simulation (RT-DES) uses real-time or near real-time data
in a computer simulation. RT data can inform different stages of a simulation study.
For example, in the conceptual modeling phase, RT data streams can inform the
scope and the modeling objectives. In the input data analysis stage, the use of RT
data enables us to recompute the distributions more frequently than has traditionally
been possible (most simulations rely on distributions derived from historical data).
In the model implementation stage, RT data can populate key variables at run-time,
for example, the length of the queues, the number of servers available (e.g.,
machine breakdown would affect the replication count), and updated server pro-
cessing time (computed real-time). In the model validation stage, the output of the
simulation can be compared with the real system; the comparison is especially valid
for simulations developed for short-term decision making.

With the growth of Industry 4.0 and the widespread use of ubiquitous computing
technologies such as Internet of Things (IoT), RT data feeds from sensors and
enterprise information systems are more readily available for subsequent process-
ing. RT data can be used in an overarching data analytics framework comprising
descriptive, predictive, and prescriptive approaches. An example of this is the
RH-RT data analytics framework for reducing wait time at hospitals [63].
Descriptive analytics (including business intelligence) has been the primary con-
sumer of RT data, for example, updating the location of a fleet of cars using GPS
information being relayed in real time. Predictive analytics has also used RT data
(as time series) for short-term decision making, for example, by applying fore-
casting algorithms on RT data streams [64, 65]. The focus of RT-DES is pre-
scriptive analytics. Here, RT data is used for both the modeling process
(conceptual modeling, input data analysis, model logic, validation and verification,
scenario development) and its eventual execution (updating distributions, global
and local variables, and flow control). Arguably, the use of RT data is more
challenging for the latter (i.e., real-time experimentation), as it may require
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synchronization with time-stamped data streams. This is the realm of parallel and
distributed simulation and the use of synchronization protocols [66].

The focus of this technical note is on real-time simulation experimentation. In
Sect. 3.2, we identify two forms of RT-DES and provide illustrations that con-
ceptualize the execution of two forms of real-time models and have identified key
literature.

3.7.2 Two Forms of RT-DES

RT-DES using time-stamped data may need to incorporate synchronization algo-
rithms to prevent causality errors. The concept of digital twins arguably adheres to
this real-time simulation experimentation paradigm where RT data continually
updates the DES model (Fig. 3.12). In such cases, the simulation time and
wall-clock time can be kept in sync using conservative and optimistic synchro-
nization protocols. For example, Fig. 3.12 illustrates a scenario where the simula-
tion time is ahead of the wall-clock time. However, upon receiving time-stamped
data from the real-time system, the simulation may be rolled back to a previous
state. The rollback is necessary to prevent causality errors. Examples of synchro-
nization algorithms include Chandy—Misra—Byrant conservative time synchro-
nization [67, 68] and Jefferson’s Time Warp optimistic algorithm [69].

Faster than real-time experimentation is our second form of RT-DES. This
experimentation strategy is implemented when the model automatically executes
the pre-defined scenarios upon receiving a tranche of RT data (no further data
updates are allowed until the simulations have concluded). The subsequent set of
experiments can then be executed when new RT data is received. Note that the
newly received data will often be a subset of the overall data being used by the
model. As such, there may be logic to determine whether the new feed of RT data
necessitates a fresh execution of the scenarios. In Fig. 3.13, it is assumed that data
is received every half-an-hour and is significant. Thus, the model is initialized every
thirty minutes and the experiments are executed until the simulation end time
(shown as stop). The insights gained from the results of such faster than real-time
experiments may enable decision-makers to swiftly make changes to the real-world
system, with the intended objective of preventing bottlenecks that may have been
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Fig. 3.13 RT-DES faster than real-time simulation experimentation
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identified through the experiments. Harper [64] provides such a framework for
real-time decision support in the context of the emergency department. Here the
decision-makers are clinicians and managers.

The decision making can also be automatic (incorporated in an algorithm) and be
used to make changes to a physical system. This is often referred to as symbiotic
simulation. According to Aydt et al. [70], symbiotic simulation is the close coupling
of a physical system and a computer model. Such simulations can benefit from the
faster than real-time RT-DES approach. This is especially true for simulations of
assembly lines and production facilities where decision making could be automated.
For example, Onggo et al. [71] propose a hybrid modeling architecture for sym-
biotic simulation which includes data acquisition to receive data from the physical
system, simulation and optimization models for faster than real-time experimen-
tation, and an actuator that relays the results to the physical system.

3.8 Simulation of Comprehensive Systems

Baocun Hou, Bo Hu Li, Yang Liu

3.8.1 Connotation

Simulation of comprehensive systems is an important means of development and
application of a comprehensive system, and it is becoming one of the research
highlights in the field of modeling and simulation technology. Comprehensive
systems mostly behave as continuous-discrete mixed, qualitative and quantitative
mixed systems. They pose new challenges to modeling and simulation technology
not only because they are large in size, complicated in composition and imperfect in
knowledge but also because their behaviors are fuzzy, uncertain, difficult to qualify,
and characterized with self-adaptivity, evolution, chaos, emergence, and gaming. It
is our belief that the modeling and simulation technology of a comprehensive
system is a kind of modeling and simulation technology which integrates the
new-generation information communication technology, the new-generation artifi-
cial intelligence technology and the modern modeling and simulation technology
with the specialized technology in the field of comprehensive system application,
aiming at optimizing the overall performance of comprehensive system modeling,
simulation operation, and result analysis/processing [72].

3.8.2 The Technical Framework
The technical framework of modeling and simulation technology for a compre-

hensive system is mainly composed of three kinds of technology, i.e., the modeling
theory and methods for a comprehensive system, the simulation system technology
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Fig. 3.14 Technical framework of modeling and simulation technology for a comprehensive
system

for a comprehensive system, and the application engineering technology of simu-
lation system for a comprehensive system, as shown in Fig. 3.14.

3.8.3 Key Technologies

The key technologies included in the technical framework of modeling and simu-
lation technology of a comprehensive system are as follows.

The modeling theory and methods for comprehensive systems

The modeling theory and methods for comprehensive systems covers qualitative
and quantitative modeling methods for a hybrid system, metamodel framework-
based modeling methods, modeling method for dynamic changing structure system,
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big data-based modeling methods, depth learning-based modeling methods,
four-level high-efficiency parallel simulation algorithms, optimization algorithm-
based simulation methods, and machine learning-oriented simulation algorithms,
etc. [72].

@

(@)

3)

“)

®)

(6)

The qualitative and quantitative modeling methods for a hybrid system include
the qualitative and quantitative unified modeling methods, that is, those studies
oriented to the modeling theory and methods for system top-level description
and sub-domain description; the quantitative and qualitative interactive inter-
face modeling, i.e., those studies oriented to transformation of the quantitative
and qualitative interactive data into the structure and format required by the
qualitative model and the quantitative model; the quantitative and qualitative
time advance mechanism, namely those studies oriented to the time coordi-
nation and advance mechanism of the quantitative and qualitative models.
The metamodel framework-based modeling methods are the research on inte-
grated simulation and modeling methods for multi-disciplinary, heterogeneous
and emerging comprehensive systems through the top-level abstraction of the
metamodel. It mainly includes multi-disciplinary unified modeling method
based on meta modeling, i.e., the unified modeling method for continuous,
discrete, qualitative, quantitative, and other multi-disciplinary models in a
comprehensive system; the meta-model-based modeling method for compre-
hensive adaptive systems, namely the integrated simulation modeling method
for perception, decision making and interaction between various system com-
ponents in comprehensive adaptive systems.

The modeling method for dynamic changing structure systems mainly studies
the dynamic changeability of the contents, ports, and connections of dynamic
changing structure system model, in support of the overall modeling of the
system structure in dynamic change.

The big data-based modeling methods: The high complexity of a comprehen-
sive system’s mechanism makes it difficult to build the system principle model
on the mechanism (in an analytical manner), but renders it necessary to sim-
ulate its internal mechanism through a large number of experiments and
application data. The big data-based modeling methods are a group of methods
which enable an effective simulation of a comprehensive system with an
unclear mechanism through massive observation and application data. The
main research scope covers data-based reverse design, data-based neural net-
work training and modeling, and data clustering-based modeling.

The depth learning-based modeling methods: In the environment of a com-
prehensive system, the data that can be collected and put to use grow explo-
sively. At the same time, the neural network that can learn and evolve based on
Al-based deep learning and human brain simulation can provide evolutionary
support for the development and application of modeling and simulation ori-
ented to a comprehensive system.

The four-level high-efficiency parallel simulation algorithms: In order to make
full use of the super parallel computing environment to accelerate the problem
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simulation of comprehensive systems, it is necessary to study high-efficiency
four-level parallel simulation algorithms, including the job-level parallel
method for large-scale simulation, the task-level parallel method for members
of the simulation system, the model-level parallel method for members of the
Federation, and the thread-level parallel method based on a comprehensive
model solution.

The optimization algorithm-based simulation methods: Multi-sample iterative
simulation is carried out based on optimization algorithms.

The machine learning-oriented simulation algorithms as an important driving
force for the development of a comprehensive system to intelligence, machine
learning, an important research field of artificial intelligence application, has
evolved into a huge pedigree. How to effectively use machine learning to
simulate and model comprehensive systems will become a new research ori-
entation of great significance.

The simulation system technology for a comprehensive system

The simulation system technology for a comprehensive system includes the intel-
ligent simulation cloud for comprehensive system, the multi-disciplinary virtual
prototype engineering for comprehensive products, the intelligent simulation lan-
guage for a comprehensive system, the intelligent simulation system based on edge
computing, the intelligent cross-media visualization technology, and the CPS
interface and intelligent parts technology.

6]

(@)

The intelligent simulation cloud for a comprehensive system [73] is a new
high-performance intelligent simulation mode that is based on ubiquitous net-
work (including the Internet, Internet of Things, narrowband Internet of things,
Internet of Vehicles, mobile Internet, satellite network, space-ground integrated
information network, future Internet, etc.), being service-oriented and net-
worked. Based on the idea of cloud computing, it evolves in response to appli-
cation demands, integrating, and developing three kinds of technology, that is,
(1) the existing networked modeling and simulation technology, (2) the emerging
information technology such as cloud computing, Internet of Things, SOA,
intelligent science, efficient computing and big data, and (3) the expertise for
application fields. By virtualizing and servitization, it turns all kinds of simula-
tion resources and capabilities into a cloud-based service pool, which are coor-
dinated and optimized in terms of management and operation so that users can,
via the network, terminals and cloud simulation platforms, gain access to such
high-performance resources and capabilities for completion of various activities
throughout the full life cycle of intelligence simulation [74].

The multi-disciplinary virtual prototype engineering for comprehensive products
[75] is a kind of system engineering with a virtual prototype as the core and
modeling and simulation as the means. Based on the integrated support envi-
ronment, it is applied to optimize the five factors, that is, human, organiza-
tion, business management, technology and data as well the four flows,
i.e., information, knowledge, control, and service within the whole system of
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comprehensive product development throughout the full life cycle. Its main
research contents include the multi-stage unified modeling methods for virtual
prototype engineering, the comprehensive decision making and simulation
evaluation technology, the comprehensive management and prediction methods
and the multi-disciplinary virtual prototype engineering platform.

The intelligent simulation language for a comprehensive system [76] is a
simulation software system oriented to the modeling and simulation of a
comprehensive system. Its main features are as follows: (1) the model
descriptive form, which is composed of symbols, statements, and grammatical
rules of the simulation language, and is very similar in terms of the model
description to the original form of the system model under study; (2) the
experiment description, which is composed of experimental operation state-
ments similar to macroinstructions, and some ordered control statements; (3) it
has rich parameterized and componentized simulation algorithm library, func-
tion library, and model library. It enables system researchers to focus on the
comprehensive system simulation problem itself, therefore greatly reducing the
software programming and debugging work related to modeling and simula-
tion. Based on this simulation language, advanced simulation languages can be
further developed for various special fields (such as military system-of-systems
confrontation, multi-disciplinary virtual prototype simulation, etc.). Its main
research contents involve the intelligent simulation language architecture,
description specifications of simulation language for models and experiments,
intelligent compilation and execution framework of simulation language based
on simulation computer, etc.

The intelligent simulation system based on edge computing refers to the inte-
grated intelligent simulation system that is aimed to optimize the overall per-
formance of “system modeling, simulation operation and result analysis /
processing.” Oriented to two kinds of simulation users (high-end modeling of
comprehensive systems and on-demand provision of high-performance simu-
lation cloud service), it enables three kinds of simulation (mathematics, human
in the loop, hardware in the loop / embedded simulation) by integrating
emerging computer technology (such as cloud computing, Internet of Things,
big data, service computing, and edge computing), modern modeling and
simulation technology, and supercomputer system technology. Its main
research content involves computer system architecture, independent and
controllable basic hardware / software, etc.

The intelligent cross-media visualization technology [77] mainly includes the
GPU group-based parallel visualization system technology and the
virtuality-reality fusion technology. The GPU group-based parallel visualiza-
tion system technology involves the data organization and scheduling tech-
nology of large-scale virtual scene, the two-level parallel rendering technology
based on multi-computer and multi-core technology, the high-efficiency visu-
alization technology of amorphous objects in a comprehensive environment,
and the real-time dynamic global illumination technology.
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(6) The CPS interface and intelligent parts technology: It mainly includes the
research of the CPS interface technology and the R&D of simulation-specific
acceleration components based on big data and artificial intelligence
algorithms.

The application engineering technology of simulation system for a compre-
hensive system

The engineering technology of simulation system application for a comprehensive
system mainly includes the intelligent simulation model verification, verification,
and acceptance (VV&A) technology, the result management, analysis, and evalu-
ation technology of intelligent system simulation experiment, and the big
data-based intelligent analysis and evaluation technology.

(1) The intelligent simulation model verification, verification, and acceptance
(VV&A) technology [76] mainly includes such VV&A technologies as are
applicable throughout the full life cycle and to the whole system, all hierar-
chical levels, all personnel, and all-round management.

(2) The result management, analysis, and evaluation technology of intelligent
system simulation experiment [76]: It mainly includes the simulation experi-
ment data acquisition technology, the simulation experiment data analysis and
processing technology, the simulation experiment data visualization technol-
ogy, the intelligent simulation evaluation technology, and the benchmark
technology (including two kinds of users and three kinds of simulation).

(3) The big data-based intelligent analysis and evaluation technology [72] mainly
includes the big data integration and cleaning technology, the big data storage
and management technology, the big data analysis and mining technology, the
big data visualization technology, the big data standards and quality system,
and the big data security technology.

3.8.4 Development Trend

With the rapid development of Internet of Things, big data, cloud computing,
high-performance computing and artificial intelligence, as well as their deep inte-
gration with modeling and simulation technology and specialized technologies for
application fields, the modeling and simulation technology for a comprehensive
system is developing to become more digitalized, high-efficient, networked /
cloud-based, intelligent, service-oriented, and ubiquitous.

(1) Digitalized

Based on the Internet of Things and empowered with intelligent gateway, intelligent
sensor and other means, the full life-cycle activities of the modeling and simulation
for a comprehensive system are being digitized as a result of deep integration of the
technologies used for collection, transmission, processing, and application of digital
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information with simulation modeling, simulation systems, and the supporting
technology as well as the engineering technology of simulation application.

(2) High-efficient

The deep integration of high-efficiency (high performance, high reliability, high
energy saving, high availability) computing technology with simulation modeling,
simulation systems, and the supporting technology as well as the engineering
technology of simulation application is promoting the modeling and simulation of
comprehensive systems to become highly efficient in the full life-cycle activities.

(3) Networked/Cloud-based

The deep integration of network communication, cloud computing, edge computing
technology and simulation modeling, simulation systems and the supporting tech-
nology as well as the engineering technology of simulation application is making
the modeling and simulation of a comprehensive system realize the networked /
cloud-based full life-cycle activities.

(4) Intelligent

The deep integration of intelligent science and technology (brain science, cognitive
science, artificial intelligence technology) with simulation modeling, simulation
systems, and the supporting technology as well as the engineering technology of
simulation application is adding intelligence to the modeling and simulation of
comprehensive systems in the full life-cycle activities.

(5) Service-oriented

The deep integration of service computing (expression, discovery, construction,
operation, evaluation, etc.) technology with simulation modeling, simulation sys-
tems and the supporting technology as well as the engineering technology of
simulation application is promoting the modeling and simulation of comprehensive
systems to turn service-oriented in the full life-cycle activities.

(6) Ubiquitous

The deep integration of ubiquitous computing (the integration of computing,
communication and network technologies, and the integration of information space
and physical space into a whole) technology with simulation modeling, simulation
systems, and the supporting technology as well as the engineering technology of
simulation application is making the modeling and simulation of comprehensive
systems ubiquitous in the full life-cycle activities.

3.8.5 Application
The modeling and simulation technology for a comprehensive system is widely

applied to the full life-cycle activities of a comprehensive system in the fields of the
national economy, people’s livelihood, national security, and so on. Our team has
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developed some typical applications based on the research in respect of virtual
prototype collaborative design simulation, intelligent simulation based on big data
and cross-media reasoning, intelligent simulation based on virtual reality, and other
related technologies. Examples are as follows:

(1) Application of the virtual prototype-based multi-disciplinary design and sim-

ulation technology in collaborative design of comprehensive products
In the field of intelligent manufacturing, the collaborative design of comprehensive
products is realized through the virtual prototype-based multi-disciplinary design
and simulation technology. A simulation application system for the virtual proto-
type collaborative design of intelligent aircraft is mainly composed of the control
system model, the multi-body dynamics model, the hydraulic model, and other
multi-disciplinary heterogeneous models. The aircraft shall be capable of moni-
toring its own flight parameters and status indicators, automatically predicting faults
and adjusting flight status. Therefore, its capability of automatically anticipating
faults and flight status is difficult to be described by a traditional quantitative model.
It requires the use of qualitative rules. For this reason, we have built a simulation
application system for the virtual prototype collaborative design of intelligent air-
craft based on the modeling and simulation technology of a comprehensive system.
The main work is as follows: In the stage of system construction, the internal static
structure and the dynamic behavior logic of the comprehensive system are modeled
at the top level of the system to eliminate the differences between various
multi-disciplinary heterogeneous models in the system for the purpose of unified
modeling. After the top-level modeling, a graphic model of the automatic prediction
of faults and flight status is built on the basis of the fuzzy cause and effect diagram,
with fuzzy concepts defined and modeled. In the meantime, the membership cloud
model is trained by the training algorithm for the membership cloud model reverse
generator. During the operation of the system, the simulation component model of a
comprehensive system will be solved by the qualitative and quantitative joint
approaches via the quantitative solution engine and qualitative reasoning engine
that are driven by the service simulation engine.

(2) Application of multimodal data-based intelligent simulation analysis in Intel-
ligent City
In the field of Intelligent City, the modeling and simulation technology is applied to
realize the intelligent control of urban traffic light systems. The “green wave band”
is the multi-point control technology of traffic lights, which can avoid congestion
and save traffic time through intelligent control of signal lights. The “green wave
band” uses the intelligent signal system, which senses the traffic flow through the
underground coils, and automatically adjusts via computer the interval time of the
traffic lights to reasonably distribute the signal period and prioritizes the traffic flow
at the intersections. In the process of building a city’s green wave bands, the
intelligent simulation and analysis are made based on multimodal data acquired
through satellite navigation, monitoring cameras, traffic stations, sensor coils, etc.,
so that priority will be given to the installation and configuration of various



3 Simulation as Experimentation 115

equipment in the green wave band system for the specific road layout to provide
real-time analysis data for the urban signal system.

(3) Application of big data-based intelligent analysis in the medical field for
disease early warning and prediction

In the field of intelligent health care, it has been made possible preliminarily to have
an intelligent early warning and prediction of diseases based on the modeling and
simulation technology for medical big data applications. At present, there are 70
million pieces of related infectious disease information on the national platform.
Based on the ten million-level big data of major infectious diseases such as hepatitis
B, tuberculosis and AIDS screening and queues, big data intelligence and
cross-media reasoning technologies are used to establish a multi-factor analysis
model and an intelligent visual analysis platform for the spread, evolution, and
intervention of the “three diseases,” so as to enable intelligent early warning and
prediction.

(4) Application of crops intelligent monitoring based on VR and M&S technology
In the field of intelligent agriculture, the independent growth of virtual crops is
intelligently simulated by using the independent intelligent technology and the
virtual reality technology, making it possible to reduce the research time and costs,
and improve the quality and yield of crops through simulation and virtualization of
the phenomena and process of crop growth. A geometric, physical, and behavior
simulation is made of the object through the intelligent behavior modeling tech-
nology of virtual object, so as to improve the intelligent, social, diverse, and
interactive fidelity of virtual object behavior. And the human—environment fusion
technology in the virtual environment is used to realize the high-resolution 3D
display, orientation tracking, gesture tracking, data glove, haptic feedback, and
sound positioning.
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Enhancing skills is one of the main reasons for the use of simulation. This
chapter of the SCS M&S Body of Knowledge looks mainly at training. The use
of simulators, often referred to as virtual simulation, is described and followed
by the use of constructive simulation systems, where all relevant entities of
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4.1 Types of Simulation Techniques for Experience

Tuncer Oren.

Gaining experience is another pillar of modeling and simulation—along with
experimentation. Simulation-based experience is used to gain/enhance three types
of skills or for entertainment purposes.

4.1.1 Simulation Experience for Training

As outlined in Table 4.1, simulation experience can be used for training get/enhance
three types of skills.

1. Virtual simulation (i.e., use of simulators or virtual simulators) is used to
enhance motor skills to gain proficiency of use of equipment such as an airplane,
a tank, or a car. In virtual simulation, real people use virtual equipment in virtual
environments, hence the term ‘virtual simulation’.

2. Constructive simulation (or gaming simulation such as war gaming, peace
gaming, international relations gaming, and business gaming) is used to enhance
decision-making and/or communication skills. In constructive simulation, sim-
ulated people use simulated equipment in a virtual environment and real people
get experience by interacting with the simulation system.

3. Live simulation is used to gain/enhance operational skills by getting real-lifelike
experience in a controlled environment. Live simulation is used in such diverse
areas as military exercises as well as for the training of health specialists. In live
simulation, real people use imitation (or virtual or dummy) equipment in the real
world” [1].

Table 4.1 Use of simulation for training to get/enhance three categories of experience-based
training

Purpose of training Category of Type of simulation

simulation
To enhance motor skills Virtual — Simulators

simulation — Virtual simulators
To enhance decision-making and/or Constructive — Gaming simulation
communication skills simulation — Wargaming

— Peace gaming

To operate by getting real-lifelike Live — Single platform simulation
experience opportunities in a simulation — Integrated multiplatform
controlled environment simulation

— Live simulation of systems of
systems; federations of federations;
hyper federations
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4.1.2 Simulation Experience for Entertainment

Use of simulation in entertainment covers a large application area. The techniques
used in this area have an important overlap with serious games [2] and education [3].

4.2 Virtual Simulation

Umut Durak.

DoD Modeling and Simulation Glossary [4] defines the term “virtual” as an entity
or data that stems from a modeled or simulated representation of the actual system.
At the same reference “virtual simulation” is defined as a simulation involving real
people operating simulated systems. While there are various application areas,
training simulators are typical examples of this type.

Training is one of the major application areas of simulation. While the virtual
simulation is not exclusive for training, the area is widely driven by training sim-
ulators. Application domains render a wide range from flight training to surgery
training. Flight simulators can be taken as a representative example for virtual
simulation. Allerton [5] and Page [6] present a comprehensive historical perspective
for flight simulators.

The flight simulators date back to the beginning of the twentieth century. During
the early 1900s, the idea was to design a truly ground-based trainer that can provide
the students with an understanding of how to fly an aircraft. Sanders Teacher [7]
depicted in Fig. 4.1 was one of the earliest flight simulators, a virtual simulation,
that was constructed from actual aircraft mounted on a universal joint facing toward
an existing wind. It was simulating the real aircraft using the response of its
aerodynamic responses to the prevailing wind. Due to the irregular nature of the
wind, Sanders Teacher did not bring the expected success. Almost at the same time,
Antoinette company designed its training rig, called “Tonneau Antoinette”—
Antoinette’s barrel where the instructor is manually changing the attitude of the
aircraft to train students for using controls. Edward Link is the founder of modern
flight simulators. In the late 1920s, he designed his Link trainer, commonly known
as the Blue Box applying compressed air to tilt the cockpit and drive the gauges for
aircraft instruments [5]. Over half a million pilots were trained in Blue Boxes only
during the Second World War. Since then, flight simulators are indispensable parts
of flight training (Fig. 4.2).

Flight simulators have also been utilized by the research community since the
Apollo mission [8]. They are invaluable ground-based test facilities in developing
and experimenting with advanced concepts and conducting human factor research.
Some of the well-known early examples are ATTAS Ground-Based Simulator from
German Aerospace Center (DLR), [8, 9] NASA Crew Vehicle Systems Research
Facility in Ames Research Center [10], and Visual Motion Simulation and Cockpit
Motion Facility from Langley Research Center [11]. Relatively recent research
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Fig. 4.1 Sanders teacher (Reprinted from [7])

flight simulators that are currently in operation include Air Vehicle Simulator
(AVES) of German Aerospace Center (DLR) [12], HELIFLIGHT from the
University of Liverpool [13], NASA Ames Vertical Motion Simulator [14], and
SIMONA of Delft University of Technology [15].

Flight simulator experiments have long been used to evaluate the handling
qualities of air vehicles [16-20]. Besides quantitative analysis, qualitative ratings
can also be collected from the pilots by incorporating flight simulators in the air
vehicle design process. Today, it is also a common practice to test avionic systems
on the ground with flight simulation in respective integration test facilities before
testing them in real flight. Examples include Boeing 777 System Integration Lab
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Fig. 4.2 Link trainer (the blue box)

[21] and F-35 flight simulators [20] in which support engineering laboratories from
multi-ship simulations to HIL testing.

The human-in-the-loop nature of virtual simulation brings several challenges
some of which are real-time constraints and high fidelity visual, aural, and motion
queuing requirements [5]. Furthermore, the wide utilization of simulators for
training the operators commonly in safety—critical domains, such as aviation,
brought certification and accreditation regulations of virtual simulators. Examples
could be the ICAO manuals of criteria for the qualification of flight simulation
training devices [22, 23].

Typical organization of virtual simulators consists of the dynamic model of the
device, its operational environment, a visual system, a sound system, possibly a
motion system, a realistic human device interface, and an instructor operator sta-
tion. Figure 4.3 presents the architecture of the rotorcraft simulation at the German
Aerospace Center (DLR) Air Vehicle Simulator (AVES). It depicts the simulator
components that correspond the above-explained virtual simulator organization.
Examples could be the Air Vehicle Model as the dynamic model of the device and
its operational environment, or the Cockpit and the Control Loading System for
human device interface.

Virtual simulation—as a very powerful tool—is applicable to many disciplines.
For example, several examples from the medical community are given in the virtual
simulation section of a book on healthcare simulation [24]. Another book focuses
on virtual simulation in nursing education [25]. Rozenblit et al., contributed to very
specific applications of virtual simulation in health care, such as “haptic guidance
system for computer-assisted surgical training [26].
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A completely different successful application is virtual simulation in manufac-
turing process of high-speed trains [27]. Another study focuses on “issues related to
human effectiveness within embedded virtual simulations (EVS) for training.” [28].

4.3 Constructive Simulation

Ernest H. Page and Andreas Tolk.

According to the introduction of this section, constructive simulation is a computer
simulation in which people, equipment, and environment are simulated, although
real people get experience and enhance their decision-making and/or communica-
tion skills by interacting with the simulation and potentially with each other. Why
do we call this category constructive?

According to Dictionary.com, the adjective constructive has four different
meanings, which are (1) helping to improve; promoting further development or
advancement (opposed to destructive); (2) of, relating to, or of the nature of con-
struction; structural; (3) deduced by inference or interpretation; inferential; and
(4) Law: denoting an act or condition not directly expressed but inferred from other
acts or conditions. How do these definitions help to understand what constructive
simulation is?

We surely hope that all categories of simulation will be helpful (as in (1)), and
we also assume that we use good practices when constructing our simulations (as in
(2)), and we furthermore assume that we can exclude the law context (as in (4)).
This leaves us with the third definition to be the most meaningful in our context:
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Constructive simulation is simulation that has been deduced by inference or
interpretation, leading to a computer simulation of the system of interest. However,
as every simulation is based on a model which is a simplification and abstraction of
the real system within the constraints of the experimental frame this is also not a
clear distinction.

The best way to think about a constructive simulation is that all relevant pro-
cesses of the systems of interest, including possible users of those systems and their
decision processes, are simulated. There will be trainees outside of the simulation,
but everything important reacting to their inputs is simulated. There are obvious
close relations to virtual simulation, particularly when the communication with the
simulation uses everyday operational equipment of the trainees to do so, but while
virtual simulators are focused more on individuals or small teams, constructive
simulation is used to train decision makers, or leadership team group members.
With the provided examples, this should become clearer.

4.3.1 Examples for Constructive Simulation

Constructive simulations provide reactive representations of complex, often socio—
technical systems. Examples are battles with hundreds or thousands of weapon
systems engaging along a very long front to train military headquarters, or highly
complex flight tracking systems connecting continents to train crews of aviation
administration. We can also think about a city to support city planners in many
details, from coordination of traffic lights to maximize traffic throughput to better
placing of restaurants or grocery chops.

The application domains are not limited to training, but this simulation category
is also used for analysis and planning, as the simulations often ran faster than real
time, so that many repetitions are possible, allowing not only for sensitivity anal-
ysis, but also for exploratory modeling [29].

In some cases, game technology allowed for very realistic interfaces, as games
are designed to immerse players into the simulated processes, at least as an
observer. When, e.g., an avatar must provide a situation report via a video-feed,
game technology gives simulated person a face. Another example is the use of
video streams to display the discoveries of a drone when flying over an area. In
some cases, the whole simulation can be a serious game [30].

Computer-Assisted Exercises

Within the defense domain [31], the use of constructive simulation systems to train
command posts and headquarters on various military levels and different scales is
well-established. Training the headquarter personnel of a military organization is
challenging. Headquarters oversee coordinating and synchronizing the activities by
their subordinated commands by means of Command and Control. The activities are
often captured in form of the so-called O-O-D-A loop, which stands for observe,
orient, decide, and act. The loop starts with observation, which triggers all the fol-
lowing activities. Observation, in this context, is not just what can be seen visually,
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but includes data and information available through other sensing mechanisms,
communications reports, and so forth. Within orientation, the headquarter works
toward understanding the observation, i.e., understanding where the opposing forces
are, where their own forces are, in which state they are in, and other relevant con-
ditions. Based on the results of the orientation, the staff comes to a decision by
evaluating alternative courses of action and choosing the best option. The decision is
followed by actions putting this decision to work, usually by generating orders for the
subordinated commands and forces. This leads to the next loop, as the result of such
action is observed, leading to new orientation, decision, and action, and so forth.

Providing realistic input to the training staff as well as adequate feedback on
developments and effects is the main challenge to be addressed for an exercise. The
most realistic way is to use all the subordinated forces to provide the input and react
to the commands (see the next subsection on live simulation and maneuvers), but
even when not taking an enemy into consideration, the pure manpower needed
quickly becomes overwhelming regarding costs and administration: A military
battalion has 400 to 1000 soldiers, and lots of equipment, if you go up to the
division level, this number grows to 6000 up to 25,000 soldiers. Only in war
situation, such numbers of personnel will be available.

Constructive simulation systems that realistically simulating all the soldiers,
weapon systems, equipment, communication, movement, attrition, etc., were
therefore always required by the armed forces. While in early computer-assisted
exercise only the training personal had access to the simulation, and they did feed
the resulting reports into the Command and Control systems used by the trainees (as
well as taking the orders and feeding them into the simulation), the technical
integration of simulation systems to directly communicate with the Command and
Control systems allow for significant reduction of personnel needed for an exercise
[32]. By the early 1990s, Command Post Exercises (CPXs) shifted from predom-
inantly live events to a mixture of live, virtual, and constructive, with the pre-
dominant amount of the force structure represented in constructive simulation, as
discussed in Sect. 4.4.2).

Wargaming
At its core, wargaming is a tool for exploring human decision making, particularly
in environments with incomplete and imperfect information. Perla [33] defines
wargaming as “...a warfare model or simulation whose operation does not involve
the activities of actual military forces, and whose sequence of events affects and is,
in turn, affected by the decisions made by players representing the opposing sides.”
Typically, wargames are strategically focused. During a wargame, players may
discover the need to make unanticipated decisions in order for the game to progress.
According to [34], there can also be an educational component to a wargame.
Experience has shown that players learn from each other while participating in the
wargame. Most players find the exchanges of ideas and information that occur
during a wargame to be professionally rewarding.
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Some common types of wargames are [35]:

Table-Top Exercise. A table-top exercise is a discussion-based wargame where
players sit at tables and interact with one another to address the key issues of the
wargame. While not specifically structured as a turn-based game, facilitators will
often cause players to consider issues in a particular order, to determine the
relationship between specific decisions or actions.

Workshop. Workshops involve subject-matter experts (SMEs) gathered to dis-
cuss a problem. Workshops have a narrow, discrete focus, and often serve as an
input to follow-on events.

Inductive game. Inductive games begin without a pregame concept. With
inductive games, the concept is discerned after analyzing game data for patterns.
This type of gaming is used early in the concept development process and makes
use of open-ended brainstorming styles during the event.

Deductive game. In contrast, deductive games begin with general game ideas to
be tested, followed by observations collected during the game to support or
refute the initial game hypothesis. This type of gaming is used later in the
concept development process, after the concept is more fully developed. This is
used during course of action (COA) analysis or to test a plan prior to execution.
Scenario-based game. This technique presents players with a specific scenario,
which is used to guide the course of the wargame while the players examine a
particular strategic problem or issue. Scenario-based games, starting with
present-day conditions, can be used to “take an intellectual walk into the future.”
Based on a sponsor’s requirements, the wargame may be based on a specified
scenario.

Alternative futures game. An alternative futures wargame involves presenting
the participants with two or more scenarios of a plausible future. Players are
asked to determine key indicators that would signal that the future represented
by the scenario might be emerging. In contrast to the scenario-based game, an
alternative future game starts in the future and works backward to the present.
Game results often include identifying both unique and common indicators from
across several scenarios. Toward the end of game play, the players may be asked
to identify what they believe is the most plausible future based on game play.
Single-sided game. A single- or one-sided game includes one player cell, with
the opposition furnished by a control group that presents scripted scenario
injects.

1Y2—sided game. A 1'»—sided game also includes one player cell, with the
opposition furnished by a control group, but with scenario injects developed
during game execution, versus pre-scripted, to force the players to wrestle with
specific decisions related to game objectives.

Two-sided game. Two-sided games involve two, separate, competing player
cells. The two sides play by rules that vary from restrictive to entirely free play.
Player decisions from each cell are adjudicated, with results presented to the
players and used to inform subsequent game play.
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® Multisided game. Games may be designed with several competing cells. These
games are referred to as multisided, or by the actual number of sides (e.g.,
“three-sided”). The rules of conduct for multisided games can be significantly
more complex than in a two-sided game due to the number of possible inter-
actions between the various player cells.

Wargaming has a rich history in the US military. The Naval aviation commu-
nity’s deliberate and aggressive use of wargames during the 1930s is often credited
with the defeat of the Japanese carrier force at the Battle of Midway in the Second
World War [36].

As captured by [37], the reason for the need to rely increasingly on computa-
tional support by simulations lies in the complexity of evolving concepts. As
observed in the epilogue, “such challenges of complexity and emergence have been
addressed in language and constructs of their times by authors from Sun Tzu to
Clausewitz. However, due to jointness, networking, long-range fires, precision
weapons, special operations, gray-area operations, and other developments, the
complexity of military planning and operations has increased substantially. Tradi-
tionally separated domains merge into each other on the modern battleground,
including the new elements of cyber. This requires true creativity of wargamers, but
also the support by simulation in two main categories: (1) providing a decision
space with the necessary complexity to be representative of the real-world scenario,
and (2) allowing for exploratory analysis of situations.” This observation is not only
true for military application, but also in many other domains, from business to
health care.

Healthcare
Medical training applications are typically focusing on individual or small group
skills required, e.g., in the surgery room, so that more examples can be found in life
and virtual training domains [24]. Examples given in [38] demonstrate that con-
structive simulations of hospitals or even hospital groups are increasingly used by
decision makers in wargaming-like scenarios. Most of these exercises are currently
conducted in support of finding better strategies, e.g., how to better organize a
hospital, how many Intensive Care Units to run versus using the space alternatively
for more hospital beds, but also how to better align with other hospitals in the
region, e.g., by providing rarely needed specialty treatment not in all facilities, etc.
However, conducting such efforts also leads to better problem understand and
communication among these decision makers, as described among others in [39].
In addition, biology and health care are using constructive simulation increas-
ingly to understand the complex interplay of interest, as described among others in
[40] and [41]. Such models were applied in the recent fight against the COVID-19
pandemic as well.

Emergency and Crisis Management
Simic [42] provides examples on how the crisis staff community can learn from the
military community when using constructive simulation systems as a collaborative
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learning tool. Again, the constructive simulations of crisis situations comprising
various personnel and equipment applicable to cope with these crises are in the
center of the approach. Such applications are not yet as common as in the military
domain, but the numbers of examples of successful use of constructive simulation
are growing, as the scholastic community starts to engage more in this new
application field [43]. Here are some examples.

Planning and evacuation [44] is an endeavor that requires the orchestration of
many organizations that usually do not work or train together daily. First respon-
ders, like fire departments and police, should know how to direct people from the
danger zones. Neighbored cities must align their evacuation plans to avoid that one
community uses a route for evacuation that another community reserves for quick
responder movement and therefore blocks for standard traffic. Providing a realistic
environment is key for success. Hurricane evacuations in coastal areas must react
timely to flooding within the evacuation area: Are the evacuation routes still
passable? Can hospitals still be reached? A good constructive simulation provides
such challenges to the trainees in form of geospatial representations as well as
simulating the related effects when simulating actions.

Emergency with mass casualties [45] often require the collaboration of different
organizations, from security forces safeguarding the emergency are, hospitals being
prepared to accept certain numbers of patients and communicating their pre-
paredness, ambulance crews with the best equipment are directed to the victims in
need and to the hospitals prepared to accept patients, etc. Using constructive
simulation to prepare these crews, e.g., in case of a high-speed train accident or a
bomb attack on a crowded sports event, will increase the awareness, preparedness,
and communication between the various organizations.

4.3.2 Serious Games

In his seminal paper, [46] defines a serious game as “a mental contest, played with a
computer in accordance with specific rules that use entertainment to further gov-
ernment or corporate training, education, health, public policy, and strategic com-
munication objectives.” While traditional computer games are focusing on the
story, presenting art, and software development challenges, serious games add the
challenge of pedagogy. In other words, the main purpose is no longer entertain-
ment, but teaching a skill needed for real-life tasks.

As in many of the other sections, the defense domain was among the strong
supporters [47], and serious gaming has a secure place since 2006 as the Serious
Games Showcase & Challenge (SGS&C) during the annual Interservice/Industry
Training, Simulation and Education Conference (IITSEC), but as shown in [48]
many other industry and business domains are applying serious games for team
building, communication, interpersonal skills, negation skills, creativity, as well as
learning innovation, risk management, health and safety, and more.
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One of the reasons to use gaming technology for training and education was the
development of immersive, realistic graphics. While traditional simulations used
maps and dashboard-like displays, serious games used 3D displays of the story. In
the military domains, Virtual Battle Space from the company Bohemia Interactive
Simulations gained a lot of support for its realistic display and integration of artificial
intelligence to create challenging opponents [49]. As the entertainment industry
provided significant resource for the development of these technologies for enter-
tainment, the serious gaming community could focus on the pedagogic elements.

Serious gaming is today contributing to the body of knowledge with dedicated
journals, such as Simulation and Gaming by SAGE Publications, but also in special
issues of other simulation publications. As gaming and simulation are also taught
together in high schools, this interdependence will likely become even more
important in the future.

4.3.3 Additional Application Domains of Interest

Within the previous section, we already extended the application domains beyond
the traditional domain of defense and emergence response. Those were geared
toward command centers that are in charge to orchestrate many different processes,
be it the coordination of a military operation or the synchronization of humanitarian
relief operations after a hurricane.

With the increasing awareness how much complexity effects are decision-
making abilities, the use of constructive simulations to educate decision makers in
coping with complexity becomes more and more popular. Rouse [39] proposes that
decision makers must be able to immerse into the complex problem space. They
also need to have controls at hand easy enough to use them intuitively, but also
powerful enough to evaluate their various options. Rouse uses the picture of a
“decision makers’ flight simulator” to help to look at alternative courses of action
and their results. This kind of policy evaluation has been identified as a helpful use
of constructive simulation in various domains and received great popular visibility
during the COVID-19 pandemic, where various models were used to evaluate the
effectiveness of interventions, see, e.g., [50] or [51].

Another topic of interest is climate change and its effects. Constructive models
can link the effects of climate change and the effects of possible policy decisions
and show the result to provide immediate feedback to the decision makers. Using
the latest insights from computational social sciences, artificial societies can now be
created that let agents act based on insights how humans perceive situations and
make decisions from cognitive and psychological perspectives. This opens even
more application domains, such as questions of social justice, equity, and others.
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4.4 Live Simulation

Saikou Y. Diallo, Andreas Tolk.

Modeling is as old as humanity. It is one of the ways we experience the world, teach
our children, entertain ourselves, and maintain a link with our past. From the
humanities to social sciences and the arts, models embody theories, ideas, concepts,
and act as an effective means of communication. Live models should be quite
familiar as we use them frequently to navigate our day. From parents modeling
behaviors for their children, to actors role-playing in movies and the Theater,
modeling is omnipresent in our life.

Simulation modeling is essentially a mapping activity. Each map varies by person,
activity, subject-matter, and objective. Mapping can be objective or subjective. It can
be biased and instantaneous or follow strict rules over a long period of time. In some
instances, mapping can be automated, discovered, or projected and in others it relies
on ingrained and evolved processes that we are not even fully aware of. Mapping
helps us identify, classify orient, solve problems, and make decisions.

In the context of this section, we understand live simulation as acting upon these
concepts, purposefully placing individuals of groups into a realistic scenario to
expose them to experiences needed to better cope with upcoming challenges while
minimizing the danger that comes with practicing the behavior in its real setting,
such as battle, emergencies, and accidents.

4.4.1 Examples for Live Simulation

Live simulation or live modeling is mostly used to train, practice, and rehearse with
the goal of gaining and enhancing skills through lifelike experiences in a controlled
environment. The argument can be made that this is likely the oldest form of
applied simulation borne out necessity and a pragmatic approach required to sur-
vive a sometimes harsh environment. For example, we have archeological evidence
that hunters practiced their aiming skills to ensure successful hunting expeditions
from the earliest days on. According to Flavius Josephus, as quoted in [52], the
Roman Army successfully used organized training regiments at the beginning of
our common era: “Their battle-drills are no different from the real thing... It would
not be far from the truth to call their drills bloodless battles, their battles bloody
drills.” This gave the Romans a clear advantage, as many of the peoples they faced
during their conquests learned the art of war on the job: they gathered community
members fit for military service for battle in case of need and often had little chance
against the well-practiced drills.

It is no surprise that live simulation in a controlled environment became practice
in many domains. Surgeons practiced on cadavers to learn where important organs
are in the human body, so they did not create additional harm by wounding
important organs during the surgery on life patients. Architects experimented with
different building styles before building houses. Today, fire drills help building
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occupants learn how to best escape a real fire; active shooter exercises help schools
and other organizations to be better prepared for such emergency. As a rule, live
simulation is best suited when people need to gain skills in a domain but cannot
train on the job because it is impractical, too dangerous, or too expensive. In the
next section, we present a few examples.

Military and Law Enforcement Domain

The military examples of drills and maneuvers are provided among others [31]. As
defined above, in these drills and maneuvers, soldiers behave like they should do in
real warfare, but they are not in danger by real opposing forces. There may be an
opposing force in place, but their goal is to educate the soldiers, not to kill them in
battle. They are today common practice in all defense forces and, as the next section
shows, are increasingly made more realistic by borrowing methods from other
simulation categories.

Law enforcement personnel of local, state, and federal organizations practice
their skills in live simulation environments, such as provided in the Federal Law
Enforcement Training Centers (FLETC) in Glynco, GA. FLETC has multiple
firearms ranges, including an indoor range complex with many separate firing
points. Law enforcement officers do not only train the use of their firearms, but they
are also put into realistic lifelike scenarios like hostage situations where they must
decide of to engage using their weapons. Furthermore, driver training ranges, a
physical techniques facility, explosives range, fully functional port of entry, and
numerous other structures support the training effort.

Medical and Healthcare Domain

Medical simulation is also making use of life simulation. Cardiopulmonary resus-
citation (CPR) is a life-saving skill as many people as possible should have, and
training for it requires drills in a controlled environment. Usually, mannequins are
used to practice CPR to be prepared in case of need. A recently conducted study
[53] indicates that simulation-based CPR training programs are effective in
improving knowledge and performing CPR, as well as in decreasing stress of CPR
in clinical nurses. Medical personnel are also trained by human actors who describe
their simulated symptoms to the trainees, described beside other means by [54]. The
live actors are using increasingly supplemental devices to provide additional sim-
ulated hints on the source of the symptoms. An additional example is the use of
simulated hospitals, such as used in the Center for Simulation and Education
Enhancement of the Health branch of the University of California in Davis. In a
realistic setting, nurses practice CPR, assist in operation rooms, and have to take
care of multiple patients with different symptoms and needs at the same time.

Management, Theater, and Entertainment

Many organizations provide employees regular training on how to behave legally
and ethically to provide a safe and comfortable workplace for everyone. The
training usually involves some live simulation where the employees are exposed to
representative scenarios and vignettes that model key situations. In addition,
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employees might participate in might participate in team-building exercises that at
their workplace or during a retreat. These exercises often involve some form of live
simulation where role-playing in a simulated context helps make a point or stress
key aspects of teamwork.

Similarly, theater is used in schools to teach children social, cultural, and his-
torical aspects of life in society. In those cases, children are often asked to play
archetypical roles where they embody an ethos. The group lead by a teacher is then
asked to critique, explain, and discuss the situations represented in the play thereby
simulating key situation and hopefully understanding the key concepts embodied in
the play. The entertainment industry also relies heavily on live simulation to
practice key aspects of their craft such as positioning, lighting and live rehearsal to
ensure an effective delivery of the final product.

4.4.2 Live Simulation in the Context of LVC Architectures

The term “live simulation” became popular as part of the so-called live—virtual—
constructive federation. It can be traced back to the 1993 Report of the Defense
Science Board [55], which was tasked in a summer study to evaluate the impact of
advanced distributed simulation on readiness, training, and prototyping for the
armed forces of the United States. The defense community provides the following
definitions, such as in the United States Department of Defense in the Modeling and
Simulation Glossary (2014). The definitions are captured in Table 4.2 as well. They
are applicable to the broad simulation community and by no means limited to the
defense domain.

Live—A simulation involving real people operating real systems. Military
training events using real equipment are live simulations. They are considered
simulations because they are not conducted against a live enemy.

Virtual—A simulation involving real people operating simulated systems.
Virtual simulations inject a Human-in-the-Loop into a central role by exercising
motor control skills (e.g., flying jet or tank simulator), decision-making skills (e.g.,
committing fire control resources to action), or communication skills (e.g., as
members of a C4l team).

Constructive—A simulation involving simulated people operating simulated
systems. Real people stimulate (make inputs to) such simulations but are not
involved in determining the outcomes. A constructive simulation is a computer
program. For example, a military user may input data instructing a unit to move and
to engage an enemy target. The constructive simulation determines the speed of

Table 4.2 Live-virtual—-

< = A Live Virtual Constructive
constructive simulation Peool Real Real Simulated
categories eople eal eal imulate
Equipment Real Simulated Simulated

Environment Controlled Virtual Synthetic
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movement, the effect of the engagement with the enemy, and any battle damage that
may occur. These terms should not be confused with specific constructive models
such as computer-generated forces (CGF), a generic term used to refer to computer
representations of forces in simulations that attempts to model human behavior.
CGF is just one example model being used in a constructive environment. There are
many types of constructive models that involve simulated people operating simu-
lated systems.

The environment is real but controlled for live simulation. For simulators, i.e.,
virtual simulators, the environment is virtual: implemented as a situated environ-
ment for the simulator and presenting it often in detail as an immersive represen-
tation. This immersive component is not always needed for constructive simulations
but can be utilized, e.g., when the video-stream of a simulated drone through
synthetic terrain and simulated enemy systems must be shown to live audiences.

When building a composition of simulation systems from all three categories,
some additional challenges must be addressed.

e LVC architectures require real-time simulations. Live participants with their real
systems in their controlled but real environment cannot execute tasks faster than
real-time, nor is it tolerated having to wait for slower-than-real-time simulation
results too often, as that will contradict the training objectives.

e The controlled environment of life simulation cannot be controlled by virtual or
constructive simulation results. A bridge in the real world is not destroyed by a
simulated attack, and virtual bombing campaigns do not leave craters in landing
strips of airports. However, the use of extended reality (see next paragraph) can
support better alignment.

4.4.3 Enhancing Live Simulation with Augmented Reality

The recent developments in extended reality (XR), such as defined by Hillmann
[56], which combines immersive techniques of virtual reality (VR)—lifelike display
of virtual environments—and augmented reality (AR)—the lifelike display of
synthetic objects overlayed into real world—are blurring the limits between the
three simulation categories. Life soldiers participating in a maneuver wearing AR
glasses displaying enemy troops that are simulated in a constructive simulation is an
example using elements from all three categories. These recent developments
support the original goal of live simulation: to gain or enhance operational skills by
real-lifelike experiences in a controlled environment. We are just using new
simulation-based methods to enhance this even further in all domains, as surgeons
operating on realistically reacting cadavers or mannequins benefit from these
developments as much as air traffic controllers having to react to hazardous situ-
ations realistically presented to them via all senses.
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4.4.4 Ethical Constraints and Conclusion

We close this section with a discussion on the ethical considerations associated with
live simulation. It is important to recognize that humans operate on a physical,
cognitive, and socioeconomic spectrum. Modelers share the responsibility of
ensuring that models capture the spectrum of stakeholders impacted by the solution
they are designing. This is especially true for live simulations since it relies on the
physical and cognitive abilities of the participants. As a result, it is essential to
follow an ethical, inclusive, and traceable modeling process where bias is recog-
nized, managed, and disclosed. The modeling process for live simulation requires
obtaining information from stakeholders to gain insight into their perspectives on a
situation. It is also essential to consider those who are impacted by the models as
part of the stakeholder group. Without those considerations, the simulation will
miss key insights and will not be sable by some segments of the stakeholder
community. An inclusive design tied to ethics in modeling is even more important
to ensure that people of all spectrums (visual, hearing, etc.) are accounted for in the
definition of the problem space. We also reiterate the need to be multidisciplinary
and seek expertise where it exists. Modeling is a team effort that requires
subject-matter experts, modelers, and analysts to collaborate. The teams need to be
diverse and inclusive as much as possible to account for the diversity in experience
and background found in society. We recommend actively seeking diversity as
another way to account for the bias inherent in modeling.

Although live simulation predominantly has been seen as training of physical
skills, the domain is widening to social and even cognitive skills. New technologies
can provide a nearly lifelike experience, immersive environments so real that our
brains can hardly cope with the difference of live simulation and reality. This leads
to tremendous opportunities, but also a great responsibility of the simulation experts
supporting such endeavors to avoid manipulation of the participating individuals or
groups.
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Abstract

This chapter of the SCS M&S Body of Knowledge describes scope,
terminology, and applications of simulation in the context of gaming for health,
education, business, transportation, environmental challenges, and sports.
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5.1 Scope

Rodrigo Pereira Dos Santos, Esteban Clua.

According to Salen and Zimmerman [1], a game is a system in which players engage
in fictional conflicts, operated by well-defined rules, resulting into an objective or
quantifiable outcome. A digital game has the same definition, but it operates into a
virtual world and environment. Typically, this system simulates different scenarios,
inspired by real or completely fictional contexts. In any case, it is possible to assume
that any game is and requires a simulation [2]. However, while entertainment games
have as its main objective to entertain, a simulation system intends to create and
operate a specific situation, not necessarily aiming to bring fun.
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Therefore, it is comprehensible that the terms “game”, “simulation”, and “simu-
lation game” have been explored by researchers and practitioners over the years, even
though a common sense on their precise meanings is a challenge for quite some time
[3]. Some features are explored or even required in games and, consequently, in
simulation game: (1) technological and mathematical elements, (2) arts and design
concerns; (3) cultural aspects; (4) focus on application domains; and (5) game ele-
ments such as participants, roles, rules, competition, and cooperation [4]. Other fea-
tures refine the definition of simulation games based on the simulation background:
(1) real-world system representation, (2) rules and strategies for evolving flexible and
variable activities; and (3) low cost of error with no critical consequences or losses [5].

The entertainment and engagement aspect of games brings important features
related to the learning and understanding process. A game is interactive and
requires actions of the player, who is the protagonist of the system. As such, the
simulation only flows when a user is doing the required tasks and the player is also
protagonist of his/her comprehension process, drastically enhancing the capacity of
teaching [6]. For this reason, making simulation systems with game elements
creates enhanced and powerful educational systems.

In some contexts, simulation and serious games can be seen as a combination of
game features and simulation features [7]. Within this scope, gamification became
an important topic, in which elements of games (e.g., rules, storytelling, challenges,
etc.) are incorporated into “serious” or real case simulations or processes [8].

Despite any blurred frontier, the preparation of (and participation in) a simula-
tion game can support a better understanding of a real-life situation, then enhancing
participants’ knowledge and skills, even in the case of simulation for entertainment
[9]. It is worth highlighting that the use of many game elements in simulation
games varies according to the application domain. An example is presented in a
recent systematic literature review on students’ experiences in learning clinical
reasoning based on simulation games, in which self-developed instruments used to
assess experiences were found, but most of them were poorly validated [10].
Moreover, results of another systematic review on the transportation domain show
that the existing studies used to reproduce real environments through simulation
games. To do so, such games combine achievement (challenges and points),
immersion (role playing), and social (cooperation) resources [11]. As such, simu-
lation games have been played by experienced gamers because such games require
some time for familiarity to be not only accessible, but also enjoyable [12].

More recently, another important topic related to the field is receiving special
attention: the creation of metaverses or Digital Twins. Due to the big number of
tools and resources available for modeling virtual scenarios for games and simu-
lations, the process of creating virtual clones of real elements (e.g., real cities, oil
and gas platforms, vehicles, human bodies, etc.) is growing fast. This will allow the
availability of complex simulations to many areas and application domains. NVI-
DIA Omniverse [13] and Microsoft Azure Digital Twins [14] are examples of
powerful tools that are already commercially available. In the near future, it is
expected that almost all factories, big corporations, and complex scenarios will have
their virtual clone, allowing to simulate any kind of situation and process.
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Given the evolving nature and challenges on development and use of simulation
for the past decades, different areas have explored games in the topic, for example:

e “Organizational Simulation”, covering aspects from modeling and simulation to
games and entertainment [15];

e “Ecosystem Simulation”, covering strategies to improve quality of life in the
world based on analysis of trade-offs, e.g., a better environment and food pro-
duction, despite the potential limitation of simplifying scenarios [16];

e “Discrete-Event Simulation”, covering research and learning on modeling and
simulation (M&S) in queueing systems, not only with real application in biol-
ogy, chemistry, physics, and statistics, but also considering entertainment [17];

e “Software Engineering Simulation”, covering education and training of software
company management on teams, projects, products, and customers with the
benefits of fun and entertainment, from conception to completion of the software
development process [18, 19];

e “Information Systems Simulation”, covering simulation games for explaining
and exploring case studies in some dynamic, contemporary actions such as
digital marketing, given the previous successful adoption [20].

The potential of simulation games in those areas (and others) depends on active
collaboration and interaction among players, especially due to the fact that humans do
not learn from their own exposure to (or experience with) complex relationships from
real-world scenarios [5]. In this direction, simulation games used to be more effective
than other instructional methods, considering the intertwined affective and cognitive
processes, so that its use in education is highly recommended to develop skills [21].
Moreover, augmented reality can enrich simulation games in their ability to connect
educational content and the physical world, balancing and managing resources [22].
This combination is indeed confirmed by several studies published in the journal
Simulation and Games from the end of 1960s [23]. A similar scenario was reported in
the context of business simulation games from 1950s, in which seven key dimensions
should be considered: realism, accessibility, compatibility, flexibility and scale,
simplicity of use, decision support systems, and communication [24].

Finally, some effects of simulation game preferences relate to different game
player profiles, e.g., age, gender, background, etc., [25]. Trade-offs between
faithfulness to reality, simplicity, and fun factors should also affect players, for both
card-based and automated approaches [18]. Other issues to be considered from
game players are as follows: first adoption experience, objectives for use,
achievements, information search, game evolution, etc., [26]. Additionally, simu-
lation games are more effective if players should develop decision-making abilities
for managing complex and dynamic situations [27]. In the engineering domain, for
instance, their use maximizes the transferability of academic knowledge to the
industry, since “what-if” analyses can explore different (sometimes non-feasible)
solutions based on a “practice in safety” approach [28].
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5.2 Terminology

Rodrigo Pereira Dos Santos, Esteban Clua.

Attributes [3]: It consists of characteristics or specific properties used to describe an
element. For example, in the educational domain, some game attributes are player,
conflict, rules, goal, artificial character, and educational character. In turn, some
educational simulations attributes are a model of reality (system), dynamic-
simplified-valid, and an educational purpose. Finally, as a combination, educational
simulation game attributes are a simulation, players in competition or cooperation,
rules, and educational character.

Concept [24]: A simulation game focuses on a specific area of an application
domain. As such, a concept of simulation refers to such area. For example, in a
business simulation game, a concept can focus on traffic management, advertising,
sales, human resources, etc. This allows more precise analyses on players’
behaviors based on mental models and cognitive mapping as well as simulation
game effectiveness [29].

Design [11]: It is a step that focuses on the identification of the most relevant
decisions to be implemented. In addition, simulation game design aims to improve
solutions and cope with complexity. As such, designers should analyze the pre-
defined goals as well as how to achieve them. For example, a multiplayer and
cooperative simulation game explores shared situational awareness, whereas a
single player simulation game explores achievement-based resources in order to
stimulate individual efficiency.

Debriefing [9]: It refers to an important phase in the use of simulation games, in
which participants are invited to link experiences from playing the simulation
game and experiences from real-life situations. Some issues raised when
designing a debriefing session are as follows: transfer of knowledge and skills, the
simulation game’s design, context of the participants, individual and collective
learning, facilitator’s knowledge of the simulation game, participants’ perceptions
of the relation between simulation game and real life, and type of process
(stepwise or cyclical). Three phases are involved: description, analysis, and
application [30].

Digital Twin [31]: It addresses a virtual and digital model from a real object,
process, or complex scenario, capable of simulating and recreating different aspects
of its functionalities. It involves a collection of relevant digital artifacts including
domain data, behavioral descriptions, life cycle details, and interface information.

Gamification [8]: It involves incorporation of game elements, such as objectives,
points, badges, challenges, storytelling, etc., into a process or system in order to
include more engagement and lucidity for the participants.
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5.3 Applications

Rodrigo Pereira Dos Santos, Esteban Clua.

Health: Simulation games influence behavioral determinants (e.g., knowledge,
attitudes, skills, etc.). As such, improving quizzes with role-playing and simulation
games stimulates behavioral determinants and intense interaction. Therefore, some
important factors in the health domain are different formats, user customization,
levels of difficulty, and feedback. Some applications: (1) In sexual health, real-world
activities are mimicked through accurate depictions of steps in that process, and
opportunities are provided for practice in a safe gaming environment [32], (2) in
mental health, interventions included simulation games to improve communication
with patients with disorders, as well as significant improvements in knowledge and
skill scores post-intervention [33], and (3) in child health care, group interventions
for the prevention of injuries in young children based on simulation games [34].

Education: Given the large number of studies on simulation game in the educational
domain, four elements are pointed out as success key factors: the role of an
instructor, the integration in the context of a course, the technical specifications
covered in the course, and the practical experience based on intense collaborative
work [35]. In this context, improvements on virtual learning environments to
support remote education have been performed, as several institutions evolved their
strategies, especially considering the COVID-19 pandemic [36]. This scenario
opens opportunities for integrating simulation games in the development and
improvement of knowledge, skills, and competencies [37]. In addition, students
learn more in their experience in simulation games if there is a personalized
communication agent [38]. This is somehow crucial to avoid some level of bore-
dom and anxiety, which can negatively affect problem solving strategies [39].

Business: Referred as business simulation games (BSG), the goal is to explore real
aspects of a business environment in order to assist beginners and experts in
managing organizational activities and decision-making based on risk-free sce-
narios and on a view of strategic functions [40]. In this case, the use of an attractive
and interactive approach to do so is relevant, including research on user experience
and its effects on the participants from the perspectives of psychophysics, cognitive
neuroscience, and computer science [37], even considering some natural simplifi-
cation [41]. In addition, over a decade, supporting a virtual team member to rec-
ognize colleagues’ knowledge, trust in colleagues’ expertise, and coordinate
knowledge remains as a challenge [42]. Some measures in this context comprise
team performance, disposition to trust, and trust itself [43], sometimes depending
on the team members’ distribution [44].

Transportation: According to a recent literature review on the topic [11], the
existing studies focus on implementing simulation games to cope with operational
level issues regarding road and maritime transportation modes when improving
freight transportation. From 40 studies analyzed in this context, simulation games



146 R. P. d. Santos and E. W. G. Clua

covered all decision-making levels, considering psychological (experience, per-
ceived reality/learning/usefulness, fun, engagement, motivation, satisfaction, and
attitude) and behavioral (efficiency and resilience) issues. Some scenarios investi-
gated in the existing studies are supply chain and logistics operation management,
development of a new area in a maritime port, shipping schedule and optimization,
as well as profit maximization in road transportation.

Environment: Simulation game allow the investigation of coupled natural and
human systems if exploring interaction between humans and the environment in
which they live (or have interested in). For example, considering urban hydrology
and air pollution, a player (e.g., mayor) can analyze people's actions and the built
and nature environment, as well as their how such relations dynamically affect each
other, in the geography and novel engineering curricula [45].

Sports: The assessment of intensity and energy cost of different modalities in sports
is also explored in Simulation game, including different levels of difficulties as well
as training and performance indications. For example, quantity/quality of exercise
for developing and maintaining cardiorespiratory fitness ensuring a player’s safety
is addressed in a dance simulation game, driven by recommendations of reference
authorities on the subject [46].
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6.1 Standards

Margaret L. Loper

Standardization involves the use of common products, processes, procedures, and
policies to facilitate attainment of business objectives. Standardization is about
enabling interoperability: a fundamental objective of all stakeholders, be they
policy-makers, industrial players, or users. Numerous industrial initiatives in a
variety of different economic sectors owe their success to a commitment of the
stakeholders to join forces to agree on open specifications for interoperable systems.
Since the earliest days of distributed simulation, standards have played a crucial
role in achieving interoperability.

The most widely used distributed simulation standards in place today are the
Distributed Interactive Simulation (DIS) Protocol, the High Level Architecture
(HLA), and the Test- and Training Enabling Architecture (TENA). There are
various means to establish standards, and the communities responsible for these
Live, Virtual, and Constructive (LVC) simulation standards have chosen different
approaches.

6.1.1 De Jure, De Facto, and Proprietary Standards

There are three basic types of standards in existence today and prevalent in the IT
industry:

e De Jure standard: endorsed by a standards organization (TechEncyclopedia
http://www.techweb.com/encyclopedia/defineterm.jhtml?term=de+jure
+standard);

e De Facto standard: widely used, but not endorsed by a standards organization
(TechEncyclopedia http://www .techweb.com/encyclopedia/defineterm.jhtml?
term=defactostandard); or

e Proprietary standard: belongs to an entity that exercises control over the
standard.

The three types of standards are not orthogonal. There are cases where the lines
between the types of standards may become blurred or combined. An example of
blurring the lines between De Facto and proprietary standards is the two “stan-
dards” for High Definition DVD formats. Each standard is supported by a group of
vendors, and the formats are incompatible. The expectation is that one of the
proprietary standards will become the community De Facto standard for digital
video recording, much like the battle some years ago between VHS and BETA
formats. An example of combining types of standards is the BMD benchmark
environment used by the Missile Defense Agency (MDA). The MDA simulation
community has created an environment for its developers to benchmark new
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algorithms and components. The environment, considered an MDA standard, is
based on the proprietary MATLAB environment. Thus, MDA has created De Facto
standards which use proprietary standards as its foundation.

6.1.2 Open Standards

Open standard is another term often used when discussing standards. An open
standard is more than just a specification; the principles behind the standard and the
practice of offering and operating the standard are what makes the standard Open.
The term “open standard” may be seen from perspectives of its stakeholders (“Open
Standards Requirements”, Ken Krechmer, http://www.csrstds.com/openstds.pdf:

¢ Organizations representing the standards creators consider a standard to be open
if the creation of the standard follows the tenets of open meeting, consensus, and
due process.

e An implementer of a standard would call the standard open when it serves the
market they wish, it is without cost to them, does not preclude further innovation
(by them), does not obsolete their prior implementations, and does not favor a
competitor.

e The user of an implementation of the standard would call a standard open when
multiple implementations of the standard from different sources are available,
when the implementation functions in all locations needed, when the imple-
mentation is supported over the user-planned service life, and when new
implementations desired by the user are backward compatible to previously
purchased implementations.

There are numerous definitions of an open standard by national standards bodies
(http://en.wikipedia.org/wiki/Open_standard). The definition by Krechmer lists ten
requirements that enable open standards.

6.1.3 Standards Organizations

A standards organization is any entity whose primary activity is developing,
coordinating, promulgating, revising, amending, reissuing, interpreting, or other-
wise maintaining standards that address the interests of a wide base of users. There
are two general types of standards organizations: standards developing organiza-
tions (SDO) and standards setting organizations (SSO).

SDOs are formal organizations accredited to develop standards using open and
transparent processes. Examples include the International Organization for Stan-
dardization (ISO) and the Institute of Electrical and Electronics Engineers (IEEE).
SSOs refer to organizations that set what the market perceives as standards. The
term “recognized SSO” refers to any SSO recognized directly or indirectly by a
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government entity. Consortia is the term used for SSOs that are not recognized
SSOs. Examples of a “recognized SSO” include the World Wide Web Consortium
(W3C) and the Internet Engineering Task Force (IETF).

6.1.4 M&S Standards Organizations

M&S standards organizations can be classified into two types: government and
commercial. Government refers to standards forums under US government control.
These types of standards organizations are typically composed of systems engineers
and technical leads of major DoD stakeholders of the architecture. They discuss
requirements, design trade-offs, and issues associated with the architecture. These
standards organizations also have contractor support that is responsible for archi-
tecture design and prototyping. Simulation-related standards that have been created
using this approach include TENA.

Commercial refers to standards created in open forums outside of government
control. Examples of this include IEEE, SISO, International Organization for
Standardization (ISO), and Object Management Group (OMG). These types of
organizations are composed of users, vendors, academics, government organiza-
tions, and developers of the architecture. Like government forums, they discuss
requirements, trade-offs, and other issues associated with the architecture. However,
they do not have contractor support for architecture design and prototyping. Instead,
these forums rely on members to develop prototypes and provide technical feed-
back on the architecture specifications.

Another model of standards development that has been successfully used for
LVC architectures is a combination of government and commercial organizations.
This was demonstrated with the first set of HLA standards. The government was
responsible for developing and evolving the early versions of the HLA specifica-
tions. This enabled DoD stakeholders to include requirements and provide technical
feedback resulting from their programs. Once they reached a point of maturity, the
HLA specifications were transferred to SISO and went through IEEE standard-
ization. The HLA standards were also taken to OMG to be standardized. Similarly,
the Synthetic Environment Data Representation and Interchange Specification
(SEDRIS) (http://www.sedris.org/ and http://en.wikipedia.org/wiki/Sedris) stan-
dards were initially developed as government standards and then taken to ISO for
standardization. Using IEEE, OMG, and ISO enabled the standards to receive a
broader commercial review. Simulation-related standards that have been created
using this approach include DIS, HLA, and SEDRIS.

There are two main standards developing organizations in the LVC community
today: the Architecture Management Team, which develops TENA standards, and
SISO, which develops DIS and HLA standards. In addition to these standards
organizations, the DoD services each have a group responsible for coordinating
standards use, both from developing object model content (i.e., FOMs) as well as
endorsing standards that meet the requirements of their programs. These groups
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have people that participate in the AMT or SISO, but they do not have formal
representation nor formal requirements generation functions for these standards
developing bodies.

There are also commercial standards organizations involved in developing
specifications and standards for technologies related to LVC. For example, the
Internet Engineering Task Force (IETF) develops communication standards,
including security; the World Wide Web Consortium (W3C) develops web-related
standards such as SOAP and XML; the OMG develops modeling standards such as
UML, SySML, and UPDM; OASIS and the Open Group have developed specifi-
cations for the service-oriented architecture; and ISO has standardized SEDRIS.
Thus, there is a hybrid approach to standards, encompassing standards and tech-
nologies from all IT-related organizations. However, there is little, if any, coordi-
nation among these standards development activities resulting in a stovepipe
approach to standards management.

6.1.5 Compliance Certification

The overarching purpose of compliance certification to a standard is to ensure that
products adhere to that particular standard. Compliance certification provides a
level of security to users of compliant products and provides a level of assurance
that certified products satisfy some set of requirements. Compliance certification is
an important element of the standards process.

Compliance certification may be defined as the act or process of determining
compliance to a defined standard. The primary reasons for standards compliance in
the M&S LVC domain are a greater probability of interoperability between simu-
lation assets and a greater probability for reuse of those assets in different config-
urations. A number of processes are in use today with existing LVC standards.
Those processes range from very informal approaches such as checklists to formal
compliance tests. Operational certification is most often associated with verification
and validation however.

6.2 Code of Best Practice

Tuncer Oren.

“The set of best practices recommended for use for any MS&A application
includes:

conceptual modeling practice,

innovative approaches,

software engineering practice,

model confidence/ verification, validation, and accreditation (VV&A),
use of standards,

Al
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interoperability,
execution performance, and
user-friendliness and accessibility” [1].
9. country modeling [2],
10. military and business [3, 4],
11. networks [5],
12. participatory modeling [6], and
13. railways [7].
Code of best practices for: Crash modeling and simulation [8], engineering
applications [9, 10], healthcare [11, 12], homeland security applications [1], and
modeling and simulation [13, 14].

®© N

6.3 Lessons Learned

Tuncer Oren.

The following list comprises seminal papers comprising lessons learned from
selected application domains.

6.4 Resource Repositories

Valdemar V. Graciano Neto and Claudio Gomes.

The multiplicity of Modeling and Simulation (M&S) formalisms and simulation
paradigms is high. That diversity often forces researchers to produce their own
simulation models from scratch every time they initiate a new project due to dif-
ficulties in reusing existing models. Those difficulties range between (i) not
knowing whether similar models already exist, (ii) differences in formalisms, even
when models were produced for a similar domain, and (iii) lack of documentation
about how to use such models. The Modeling and Simulation Resources Reposi-
tories (MSRR), also known as resource libraries or suites, have potential to foster
reuse by gathering a diversity of resources in a unified access point. Resources (also
known as assets or artifacts) such as models (simulatable or not-simulatable [15]),
experimental frames, pairs of base and lumped models [16], specifications of
physical environments and scenarios, datasets, composable simulation components
and simulation services can be made available to a large audience [17]. Models
capturing specific domains can be available in several formats, such as XML, UML,
or DEVS, and model transformations can also be available to transform
non-executable models into simulatable formats.

Sharing and exchanging models have the potential to accelerate the systems
development. Efforts have been made, for instance, to standardize the representation
of physical system models, through languages such as Modelica [18], and interfaces
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such as the Functional Mockup Interface (FMI) standard [19]. Modelica standard
library is a collection of modular physical system models and common block
diagram elements enabled by the Modelica Language, while FMU Cross Check
Repository is a collection of black box simulators exported from different modeling
and simulation tools. The Modelica standard library allows a researcher to quickly
create a model for a physical system by reusing pre-existing components in the
standard library. The FMI standard, in turn, through its black box and Intellectual
Property (IP) protecting interface, enables an unprecedented level of integration of
models (as black boxes) provided by different and even competing suppliers.

These advances democratize M&S by making it cheaper to produce high-quality
models of the system, which in turn can be more easily exchanged with researchers.
Smaller companies and universities can then reap the benefits of M&S, speeding up
innovation. Another advantage brought by resources repositories is that they enable
benchmarking. For instance, researchers who create a new machine learning
technique can apply it to many freely available datasets. Over time, benchmarks
emerge when researchers are expected to tackle their contributions. This leads to
more mature contributions and easy comparison with existing ones.

Ideally, a resource repository should be capable of: Catalog/index/organize the
resources stored, persist, and allow for resources search and retrieve, resource
management, and resources delivery through well-defined interfaces, resource
stores (analogous to application stores), and as services (simulation as a service, for
instance) [20]. Resources repositories are common in other areas, such as software
engineering [21, 22] and biology [23]. MSRR have also been proposed over the
years [24-26] (https://ntrs.nasa.gov/citations/20060023324).

However, several challenges still remain, such as a standardized representation
in order to enable their existence. This is hard to be achieved due to the diversity of
formalisms, which can be categorized as [27-31]:

e Time Domain—The time can be a singleton (e.g., algebraic equations), a con-
tinuous set (e.g., Ordinary and Algebraic Differential Equations), discrete set
(e.g., Difference equations, Petri-nets, Automata), or superdense set (e.g., Hybrid
Automata and Classic DEVS). In Superdense time [32-34], each time point is a
pair consisting of a real number and a natural.

e State Domain—The state domain can be a continuous set (e.g., ODEs and
DAESs), a discrete set (e.g., Petri-nets), or a mix of both (e.g., DEVS and Hybrid
Automata).

e Behavior Trace—The behavior trace can be discontinuous (e.g., DEVS and
Hybrid Automata), and continuous (e.g., ODEs and DAEs).

e Causality—Models can be a-causal, when they can be coupled to other models
without any notion of inputs and outputs (e.g., DAEs), or causal, when outputs
need to be connected to inputs and vice-versa (e.g., DEVS and Difference
Equations).
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e Evolution—The evolution of the state can be deterministic (e.g., DEVS),
stochastic (e.g., Markov Chains), or non-deterministic (e.g., Hybrid Automata).
To overcome these difficulties, the following suggestions have been made in the
literature to conform different formalisms to make them be coupled [35]:

e Super Formalism—The formalisms used to express each model are unified into
one single formalism, with well-defined syntax and semantics. This is what is
done in [36, 37]. Other examples include: timed Petri-nets, Markov chains, etc.

e Common Formalism Reduction—The models are transformed into a model that
is expressed in a single formalism. The “common” adjective refers to the fact
that each model can be transformed into a restricted set of formalisms. Hence,
one formalism must be found to which all models to be integrated can be
transformed. For example, differential equations can be used to represent the
model of a PID controller sampling a plant model. The latter was originally
modeled as a differential equation. More examples are detailed in [35].

Co-simulation can be seen as taking the common formalism reduction integra-
tion technique to the extreme, where models that produce behavior are coupled
solely on their behavior (inputs/outputs, over time). However, automatically con-
figuring co-simulation can be very difficult [29, 38].

For more challenges and potential solutions to establishing model repositories,
we recommend the following references. Basciani et al. [23] established a discus-
sion on the reality of resource repositories some years ago. Zeigler et al. [20] show
how to build a model suite relying on the MS4 Me tool and Oren [17] presents
requirements necessary to achieve reuse through MSRR.

6.5 Distributed Interactive Simulation (DIS)

Ernest H. Page, Margaret L. Loper.

For nearly a half-century, the defense simulation community has explored, devel-
oped, and applied technologies and methods that support the runtime interoperation
of simulations and other systems. Major milestones in this history are:

DARPA Simulator Networking (SIMNET) program [39-42]
Distributed Interactive Simulation (DIS) protocol [43—47]

Aggregate Level Simulation Protocol (ALSP) [48, 49]

High Level Architecture (HLA) for Modeling and Simulation [50], and
Test and Training Enabling Architecture (TENA) [51]

Within this M&SBoK, we highlight DIS and HLA. But a brief discussion of
SIMNET is warranted to establish the context for each of these distributed simu-
lation standards.



6 Infrastructure 157

6.5.1 Simnet

Shortly after the development of the ARPANET, DARPA initiated the SIMNET
program to investigate the feasibility of using networked simulators to support
group training (also referred to as collective training) at large scales and at great
distances. The SIMNET vision was a large-scale, interactive, collection of
networked simulations forming a synthetic environment that could be entered by
any authorized combatant from anywhere on the network using his/her simulator as
a porting device. The initial project scope called for a simulator networking testbed
with four geographically distributed sites hosting 50-100 vehicle simulators each,
with a focus on slower-moving ground-based platforms, e.g., tanks and armored
personnel carriers. The project required technological advances in a variety of areas,
including image generation, distributed databases, and real-time network protocols.
Key design principles for SIMNET included:

e Selective fidelity. In order to minimize simulator costs, a simulator should only
contain high fidelity representations of those elements essential to the training
task. Everything else should be represented at lower fidelities, or not all.

e Autonomous simulation nodes. Each node is responsible for maintaining the
state of at least one object in the synthetic environment, and for communicating
to other nodes any events caused by its object(s). Each node receives event
reports from other nodes and calculates the effects of those events on its objects.
All events are broadcast on the simulation network and are available to any node
that is interested. There is no centralized controlling process. Nodes may join
and leave the network without affecting other nodes. Each node advances sim-
ulation time according to a local clock.

o Transmission of ground truth data. Each node transmits the absolute truth about
the current state of the object(s) it represents. Alteration of data to suit simulation
objectives is the responsibility of the receiving node. For example, the position
of a vehicle is broadcast to the network with 100% accuracy. If an object in
another simulator determines that it would perceive the vehicle through a par-
ticular sensor, with an accuracy determined by the alignment of the sensor and
current weather conditions, then the receiving simulator should degrade the
reported position accordingly.

o Transmission of state change information. To minimize network loading, nodes
transmit state update information only. To accommodate late-joining nodes and
networks with high packet loss, this rule is often relaxed. In these situations,
nodes send periodic (but relatively infrequent) updates for each owned object
regardless of whether or not their state changes. This update interval is known as
the “heartbeat.”

e Dead reckoning. Between state update messages, receiving nodes may extrap-
olate the last reported state of remote objects that are of interest. To keep the
extrapolated values and actual values roughly aligned, the sending node main-
tains the same approximation used by the receiving node(s) and transmits a state



158 M. L. Loper et al.

update whenever the true position (or orientation) of an object diverges from the
calculated dead reckoned values by more than an agreed-upon threshold. Lin
[52] and Fujimoto [53] discuss common dead reckoning algorithms.

SIMNET was adopted by the Army as the basis for the Combined Arms Tactical
Trainer (CATT) in 1990 and continued to be used in a variety of programs until
supplanted by the DIS standard. SIMNET has been identified as one of the most
significant transitions of technology from DARPA to DoD [40].

6.5.2 Origins of the DIS Protocol

Recognizing the importance of the SIMNET program and concerned that activity
related to networked simulation was occurring in isolation, a small conference was
held in April 1989 called “Interactive Networked Simulation for Training. The
group believed that if there were a means to exchange information between com-
panies, distributed simulation technology would advance more rapidly. The group
also believed that technology had stabilized enough to begin standardization. The
conference developed into the Distributed Interactive Simulation (DIS) Workshops.

Through these workshops, networked simulation technology and the consensus
of the community were captured in proceedings and standards. The standards ini-
tially focused on SIMNET, but evolved to include a broader range of technology
areas. DIS Workshops were held semi-annually from 1989 through 1996. In 1996,
the DIS Workshops transformed itself into a more functional organization called the
Simulation Interoperability Standards Organization (SISO), which focused on
creating standards for the broad area of simulation interoperability. The first Sim-
ulation Interoperability Workshop (SIW) held under the SISO banner was the 1997
Spring SIW in Orlando. SIWs have continued since 1997, holding some workshops
at various locations in Europe.

The Distributed Interactive Simulation (DIS) protocols became the Institute of
Electrical and Electronics Engineers (IEEE)1278.1 standard in 1993. The funda-
mental design principles for DIS follow directly from SIMNET, and much of the
standardization effort focused on extending the basic SIMNET communication
structure—the Protocol Data Unit (PDU)—a bit-encoded packet for communicating
entity state and other types of information necessary for distributed combat simu-
lations, e.g., weapons fire and weapons detonation events.

Like SIMNET, DIS was designed to support the internetworking of simulations
that run in real-time. Whereas SIMNET had achieved the ability to support rela-
tively small numbers of concurrently running simulators representing platoon and
squad-sized engagements, the vision for DIS was to support the interoperation of
thousands of simulators/simulations and scale to a military campaign level (tens to
hundreds of thousands of battlefield entities). This appetite for scale led to a bur-
geoning market in Semi-Automated Forces (SAF). SAFs—a concept initiated
within SIMNET—were used to populate synthetic environments with background
objects that behaved in a “reasonable” way [46]. They were dubbed
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“semi-automated” because human intervention was often required to make the
modeled entities maintain their reasonable behavior. However, the power and utility
of SAFs were recognized very quickly. Entity behavior in SAFs became the focus
of numerous conferences, workshops, and texts. SAFs were a ripe area for research
in Artificial Intelligence engines such as Soar [54]. DIS-supported simulation
environments consisting entirely of SAFs became commonplace.

One of the lasting contributions of the DIS Workshops was the definition of
Live, Virtual, and Constructive (LVC) simulations. This taxonomy categorizes
simulations by the way in which humans interact with them. Live simulation refers
to real people operating real systems (e.g., a pilot flying a jet) for a simulated
purpose. A virtual simulation is one that involves real people operating simulated
systems (e.g., a pilot flying a simulated jet). Constructive simulations are those that
involve simulated people operating simulated systems (e.g., a simulated pilot flying
a simulated jet).

6.5.3 DIS Today

The goal of DIS is to create a common, consistent simulated world where different
types of simulators can interact. Central to achieving this goal is a set of IEEE
standards. The most commonly used standard is 1278.1, which describes the
PDUSs. The first DIS standard defined 10 PDUs; the most recent standard, DIS 7,
was published in 2012 and defines 72 PDUs arranged into 13 families. The
approved IEEE Standards for DIS include:

IEEE 1278.1—Application Protocols

IEEE 1278.1 A—Enumeration and Bit-encoded Values

IEEE 1278.2—Communication Services and Profiles

IEEE 1278.3—Exercise Management & Feedback (EMF)

IEEE 1278.4—Verification Validation and Accreditation

IEEE P1278.5—XXXX—TFidelity Description Requirements (never published).

In addition to the IEEE standards, SISO maintains and publishes an “enumer-
ations and bit-encoded fields”” document yearly. This document is referenced by the
IEEE standards and used by DIS, TENA, and HLA.

From an implementation perspective, simulation owners either custom-develop
DIS interfaces or buy commercial products. There is also an open-source initiative,
Open-DIS, to provide a full implementation of the DIS protocols in C++ and Java
[55].

There have been numerous DIS federation events over the last 25 years. Two
examples are “bookend” LVC events presented at the Interservice/Industry Train-
ing, Simulation and Education Conference (I/ITSEC). Twenty-three years spanned
the two events, and while technology has progressed, some aspects have not pro-
gressed as quickly as we might think. The 1992 event was the first-ever
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demonstration of DIS and distributed simulation among dissimilar, heterogeneous
simulations [45]. The 2015 event was an effort to recreate the demonstration with
modern technology and architectures [56].

6.6 High Level Architecture (HLA)

Ernest H. Page, Margaret L. Loper.

By 1995, the evidence was clear that interconnecting simulations could be of
practical value. SIMNET provided an efficient and effective mechanism for linking
man-in-the-loop simulators. DIS extended SIMNET and provided scalability to
many thousands of entities in SAF-based exercises. Another DARPA project, the
Aggregate Level Simulation Protocol (ALSP), developed a capability to intercon-
nect “logical time,” e.g., discrete event, simulations [49]. Also by this time, many
defense simulations had interconnection interfaces—some SIMNET, some DIS,
some ALSP, some “homegrown,” and some had multiple such interfaces. To
mitigate against the proliferation of interconnection approaches, the DoD, through
the Defense Modeling and Simulation Office (DMSO) and SISO, began developing
a standard for simulation interconnection known as the High Level Architecture
(HLA). The HLA was envisioned as an approach to bridge live, virtual, and con-
structive simulations in one architecture, representing a generalization and exten-
sion of SIMNET, DIS, and ALSP. The HLA architecture is defined by three
components:

e An Object Model Template—a common model definition and specification
formalism,

¢ An Interface Specification—a collection of services describing the HLA runtime
environment, and

e The HLA Rules—governing compliance with the architecture.

The HLA standards began in 1995 under a government standards process
managed by DMSO. The DoD adopted the baseline HLA architecture in 1996 and
the standards were moved to an open standards process managed by SISO. The
IEEE standards for HLA, first approved in 2000 and updated in 2010, include:

1516—Framework and Rules

1516.1—Federate Interface Specification

1516.2—Object Model Template (OMT) Specification

1516.3—Federation Development and Execution Process (FEDEP) Recom-
mended Practice

e 1516.4—Recommended Practice for Verification, Validation, and Accreditation
of a FederationAn Overlay to the HLA FEDEP
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The HLA was conceived to have applicability across the full range of defense
simulation applications, including those used to support training, mission rehearsal,
analysis, and test and evaluation.

At core of HLA is the notion of a federation. A federation is a collection of
federates—simulations and other systems—that interoperate using the protocols
described by the architecture. The HLA is based on the idea of separating the
functionality of simulations from the infrastructure required for communication
among simulations. This separation is accomplished by a distributed operating
system called the Run-Time Infrastructure (RTI). The RTI provides common ser-
vices to simulation systems and provides efficient communications to logical groups
of federates. Federation execution is accomplished through the RTI, which is an
implementation of the services defined by the interface specification.

In contrast to SIMNET and DIS, HLA includes time management services to
support event ordering [57]. Both time stamp order, where messages are delivered
to simulations in order of time stamp, and receive order, where messages are
delivered to simulations in order received, are supported in HLA. While HLA
provides global time management, use of these services is not required. Simulations
can choose to advance time at its own pace, not synchronized with other
simulations.

In contrast to the static DIS PDUs, HLA uses the concept of OMTs to specify the
information communicated between simulations. This enables users to customize
the types of information communicated among federates based on the needs of the
federation. A Federation Object Model (FOM), and instantiation of the OMT,
provides the model specification and establishes a contract between the federates
with respect to the nature of the activity taking place during federation runtime.

In a typical federation execution, a federate joins the federation, indicates its
operating parameters (e.g., information the federate will provide to the federation
and information it will accept from the federation), and then participates in the
evolution of federation state until the federate departs the federation, or the simu-
lation terminates. FOM data is provided to the RTI at runtime, enabling the
infrastructure to enforce the information contract that the FOM represents.

In 1996, HLA compliance was mandated for all defense simulations, with the
intention that support for other protocols would cease [58]. To accommodate DIS
applications the Real-time Platform Reference (RPR), FOM was developed which
defines a translation between DIS PDUs and HLA services [59]. As with an earlier
mandate of the programming language Ada, however, the “No Can Pay/No Can
Play” HLA mandate was perceived as onerous and became too unwieldy to enforce.

Distributed simulation architectures are designed to meet the needs of one or
more user communities, and the design choices made by the HLA attempted to
improve on perceived shortcomings of existing architectures [60]. The static nature
of DIS PDU’s was identified as a significant problem; as the real world is always
changing. A flexible object model capable of modeling changing data without
having to continuously change the underlying standard was seen as a better
approach. Allowing users to define their data exchange based on specific require-
ments using the OMT was seen as providing improved object model extensibility.
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However, increased flexibility to the user also allowed users to independently
develop a plethora of object models that were rarely interoperable. Additionally,
HLA adopted an API Standard as opposed to an on-the-wire standard that allowed
it to more rapidly adopt technological advancements in how data are transmitted.
While this enabled commercial RTI developers the freedom to innovate and opti-
mize their RTI implementations, the result was non-interoperable RTIs. In practice,
when disparate RTI versions are used in a given event, gateways or other
inter-protocol translation mechanisms are used to bridge the federates.

Today, both HLA-compliant and DIS-compliant simulations abound.
Since HLA separates the functionality of simulations from the infrastructure, it has
had more success in being adopted by non-DoD applications, including NASA,
transportation, and supply chain management. The existence of multiple architec-
tures means users will select the methodology that best meets their needs. This often
results in multiple architectures being used in the same federation execution. In this
case, incompatibilities between DIS, HLA, and TENA require the development of
point solutions to effectively integrate the various architectures into a single, unified
set of simulation services. The future of distributed simulation to solve and
understand complex problems will rely on the development of simulation standards.
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7.1

Errors—Types and Sources

Tuncer Oren

7.1.1

Definitions

The term “error” has the following meanings (Merriam-Webster-error: https://www.
merriam-webster.com/dictionary/error):

1. a.

b.

)

2

: an act or condition of ignorant or imprudent deviation from a code of
behavior

: an act involving an unintentional deviation from truth or accuracy

/fmade an error in adding up the bill

: an act that through ignorance, deficiency, or accident departs from or fails
to achieve what should be done

/lan error in judgment: such as

: a defensive misplay other than a wild pitch or passed ball made by a
baseball player when normal play would have resulted in an out or prevented
an advance by a base runner

: the failure of a player (as in tennis) to make a successful return of a ball
during play

: a mistake in the proceedings of a court of record in matters of law or of fact
: the quality or state of erring

/l the map is in error

Christian Science: illusion about the nature of reality that is the cause of
human suffering: the contradiction of truth

: an instance of false belief

something produced by mistake

// a typographical error

especially: a postage stamp exhibiting a consistent flaw (such as a wrong
color) in its manufacture

: the difference between an observed or calculated value and a true value
specifically: variation in measurements, calculations, or observations of a
quantity due to mistakes or to uncontrollable factors

: the amount of deviation from a standard or specification

a deficiency or imperfection in structure or function

// an error of metabolism.”


https://www.merriam-webster.com/dictionary/error
https://www.merriam-webster.com/dictionary/error
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7.1.2 Types of Errors

Table 7.1 lists 360 types of errors. Some types of errors are not related with M&S.
An example is medical errors (that result in deaths). A recent (2021 March) blog
states that: “A recent study from Johns Hopkins suggests that medical errors are
now the third-leading cause of death in the U.S., having surpassed strokes, Alz-
heimer’s, and diabetes. In addition, one in seven Medicare patients receiving care in
a hospital are victims of a medical error. However, medical errors can occur in
almost any healthcare setting including hospitals, clinics, surgery centers, medical
offices, nursing homes, pharmacies, and patients’ homes. This post will explore the
most common causes of medical errors” [1].

Considering useful and sometimes even vital contributions of M&S to many
disciplines [2], it would be worthwhile to explore extensive use of M&S in
healthcare to lower medical errors.

7.1.3 Terms Related with Errors

Table 7.2 lists terms related with “errors”.

7.1.4 Terms (Other Than Error) Related with Failure

See Table 7.3.

7.1.5 Other Sources of Failure

There are other sources of errors in addition to those listed in Tables 7.1, 7.2 and
7.3. They are based on several types of biases such as cultural biases and
dysrationalia.

The value systems of cultures differ—as clarified by Hofstede and debated by his
critiques—(Wikipedia) hence cultural priorities can be different.

Dysrationalia—The inability to think and behave rationally despite adequate
intelligence—developed by Stanovich [4] has important implication in
decision-making.

The achievements in artificial intelligence (Al) increases expectations from it.
However, it would be prudent to consider Al failures [5].
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Table 7.1 List of 360 types
of errors (terms are selected
from the TBD informatics
dictionary)

Absolute error
Acceleration error
Acceptance error
Access error
Accessibility error
Accidental error
Accounting error
Accumulated error
Accumulation error
Activation error
Active error
Adjustment error
Algorithm error
Alpha error
Ambiguity error
Analysis error
Angular error
Anticipated error
Anticipation error
Application error
Approximation error
Ascertainment error
Associative activation error
Assumption error
Asymptotic standard error
Attribute error
Attribution error
Authentication error
Authorization error
Average error
Azimuth error
Azimuthal error
Babbling error
Balance error
Balanced error
Barometric error
Benchmark error
Beta error

Bias error

Biased error

Bit error

Bus error

(continued)
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Table 7.1 (continued) e —

Calibration error
Capture error
Chance error
Chaotic error
Circular error
Classification error
Clear error
Clerical error
Combined error
Command error
Communication error
Compass error
Compensated error
Compensating error
Compilation error
Compile-time error
Composite error
Computational error
Computer error
Computerization error
Conceptual error
Configuration error
Connection error
Consistency error
Constant error
Constraint error
Control error
Convergence error
Copying error
Corrected error
Correlated error
Course error
Creation error
Cultural bias error
Cultural perception error
Cumulative error
Cylindrical error
Damping error
Data error
Database error
Data-driven error
(continued)
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Table 7.1 (continued)

Data-entry error
Decision error
Deductive error
Definition error
Deflection error
Deletion error
Description error
Design error
Detected error
Detection error
Device error
Digitization error
Discretization error
Disk error

Disk seek error

Disk write error
Driver error
Dumping error
Dynamic error
Encoding error
Encryption error
Environment error
Equipment error
Error of closure
Error of judgment
Error of measurement
Error of the first kind
Error of the second kind
Error of the third kind
Estimation error
Ethical error
Evidentiary error
Executable error
Execution error
Experimental error
Experimentation error
Exposure error
External error

Facial recognition error
False alarm error
Fatal error

Fencepost error

(continued)
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Table 7.1 (continued) .

Fiducial registration error

File creation error

File error

Filing error

Formatting error

Full-scale error

Gain error

General error

Generalization error

Grammatical error

Hard error

Hardware error

Hardware installation error

Harmless error

Heeling error

Heuristic error

Human error

Hypothesis error

Hysteresis error

Identification error

Illegal access error

Illegal error

Illegal seek error

Inadvertent human error

Inconsistent accessibility error

Inconsistent formula error

Index error

Initialization error

Input quantization error

Input/output error

Inscription error

Installation error

Installer error

Instrument error

Instrumental error

Instrumentation error

Internal error

Interpolation error

Interpolation error

Interpretation error

Trrecoverable error
(continued)
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Table 7.1 (continued)

Irregular error
Judgment error
Language error
Legal error
Legislative error
Lexical error
Linearization error
Literal error

Loading error

Local error

Logic error

Logical error
Loss-of-activation error
Machine error
Macro error

Mean error
Mean-square error
Measurement error
Measuring error
Measuring instrument error
Mechanical error
Medical error
Memory error
Message error
Method error

Miss error

Missed error
Misspecification error
Mode error

Model error
Modeling error
Moral error

Network device error
Network error
Network permission error
Non-sampling error
Non-spherical error
Numerical error
Obi-wan error
Observation error
Observational error
Off-by-one bug

(continued)
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Table 7.1 (continued) Off-by-one error

Offset error
Omission error
Operative error
Overflow error
Override error
Parallax error
Parity error
Password error
Percentage error
Perception error
Permanent error
Persistent error
Personal error
Phenomenological error
Pilot error

Plain error
Polarization error
Position error
Positive spatial error
Prediction error
Printer error
Probability error
Probable error
Procedure error
Process error
Processing error
Program error
Programming error
Program-sensitive error
Projection error
Proportional error
Quantization error
Quantum error
Queue error
Random error
Ranging error
Read error
Reasoning error
Recoverable error
Rectification error

Refractive error
(continued)



176

T. Oren et al.

Table 7.1 (continued)

Register error
Regular error
Rejection error
Relative error
Remote error
Renaming error
Representation error
Requirement error
Residual error
Residual standard error
Resolution error
Resource error
Retrieving error
Reversible error
Root-mean-square error
Rounding error
Round-oft error
Runtime error
Sampling error
Scientific error
Semantic error
Sensitivity error
Sensor error
Sequence error
Sequencing error
Serious error

Server error

Set-up error
Simplification error
Simulation error
Single error

Soft error

Software design error
Software error
Solution error
Sorter error

Span error

Spatial error
Spatially correlated error
Specification error
Specification error

Specified error

(continued)
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Table 7.1 (continued)

Spherical error
Spherical probable error
Stable error

Standard error
Standard error of estimate
Static error
Steady-state error
Subjective error
Substitution error
Syntax error

System error
Systematic error
Systemic error
System-level soft error
Table error

Target registration error
Technical error
Temporal error
Temporal prediction error
Temporary error
Tendency error

Tiny error

Tool error

Tracking error
Transaction error
Transcription error
Transfer error
Translation error
Transmission error
Transposition error
Trial-and-error
Truncation error
Tuner error

Type I error

Type II error

Type III error

Typical error

Typing error
Typographical error
Unbalanced error
Unbiased error

Uncorrelated error
(continued)
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Table 7.1 (continued)

Table 7.2 List of terms
related with errors (terms are
selected from the TBD
informatics dictionary)

Undefined error
Unforced error
Unification error
Uninstaller error
Unintentional computing error
Unintentional error
Unknown error
Unknown hard error
Unrecoverable error
Unspecified error
Unstable error
Usage error

User error

User interface error
Variable error
Velocity error
Virtual device error
Virtual network device error
Willful error

Write error

Write protect error
Writing error

Zero error
Zero-scale error

Automatic error correction
Automatic error detection
Barometric error code
Bit error rate

Circular error probability
Circular error probable
Err (v)

Erring

Error

Error analysis

Error bar

Error-based testing

Error checking

Error code

Error concealment
(continued)
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Table 7.2 (continued) T

Error-correcting

Error-correcting code

Error-correcting memory

Error correction

Error correction code

Error data

Error detecting

Error detecting code

Error detection

Error function

Error handler

Error handling

Error interrupt

Error log

Error message

Error propagation

Error rate

Error ratio

Error recovery

Error resilience

Error-bar chart

Error-based testing

Error-correcting

Error-correcting code

Error correction

Error correction qubit

Error free

Errorful

Erroring

Errorist

Errorless

Error-prone

Error-prone image Transmission

Error-tolerant

Error-tolerant system

Forward error correction

Functional error correction

Gauss error function

Law of error

Margin of error

More errorful
(continued)
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Table 7.2 (continued)

Table 7.3 List of terms
(other than error) related with
failure (Terms are adapted
from: Oren [3])

Most errorful

Normal law of error

Optimal error rate

Plaintiff in error

Ultra-low-error rate

Ultra-low-error rate quantum system

Accident
Amphibology
Blunder

Bug

Computer blunder
Counterfactual
defect

Delusion
Deviation
Disinformation
Erratum

Failure

Fallacy

Fallacy of composition
Fallacy of division
False acceptance
False alarm error
False alarm error
False document
False information
False negative
False news

False positive
Falsehood
Falsehood
Falsity

Fault

Faulty

Faux pas

Flaw

Formal fallacy
Glitch

Goof
(continued)
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Table 7.3 (continued)

Howler
Inaccuracy
Inaccurate
Inadequate
Incorrect

Lapse of time
Lie

Malfunction
Malinformation
Material fallacy
Misapprehension
Miscalculation
Misconception
Miscue
Misdeed
Misinformation
Misinterpretation
Misjudgment
Mismanagement
Miss (v)
Misstep
Mistake
Misunderstanding
Malfunction
Noise

Noisy

Omission
Oversight
Paralogism
Shortcoming
Slight (v)
Slip-up

Slip-up (v)
Solecism
Sophism
Stumble (v)
Transgression
Unethical behavior
Untruth

Verbal fallacy
Weak
Weakness
Wrongdoing
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7.2 Need for Reliability (Including Philosophical/Ethical
Considerations About Reliability)

Valdemar Vicente Graciano Neto

Under the modeling and simulation framework (MSF) established for this BoK,
reliability comprises the property of a simulation model (and its respective simu-
lator) to be reliable, i.e., the simuland (system being simulated by a simulation, as
seen in Sect. 1.4.1 of this BoK) should be enough detailed and accurate, and
faithfully correspond to the system of interest being represented and/or developed.
If the simulation model is reliable, conclusions and perceptions obtained from its
execution can be reliably used to draw inferences about the simuland.

The need for reliability becomes even more evident during the engineering of
large-scale and/or critical systems, i.e., those ones whose failures or malfunction
could cause extensive financial losses, damage, and injuries to their users [6], such
as aerospace, nuclear reactors, defense, crisis and emergency response, health
applications, among others. Hence, simulations are demanded to anticipate systems
properties, enabling corrections, and adjustments to make the resulting system
equivalently reliable.

As seen in Sect. 1.4.4, models are valid simplifications that reduce the com-
plexity to enable them to be executed on simulators. Briefly, providing reliability
then involve confirming that each part being represented in the simulation model
has a mapping counterpart in the simuland. Hence, reliability assurance inherently
relies on conducting verification and validation (V&V) activities in regard to the
simulation model. Rereading concepts presented in Table 1.6b, both V&V of a
simulation model involve the simuland. From a philosophical perspective, a sim-
ulation model is validated and verified (and should be considered reliable, as a
consequence) according to the degree of correctness it offers in regard to the system
of interest being represented. Validation concerns to the degree to which a model
with its associated data has an acceptable range of accuracy in regard to the system
of interest in the real world as determined by the established experimental frame to
support inferences on that simulation [7, 8]. In turn, verification consists of ensuring
that the simulation model implementation is correct and is correctly executed [8].
Under MSF formalization, verification is a relation, called simulation correctness,
between models and simulators; while validation is a relation, called validity in a
frame, between models and real systems within an experimental frame. A simula-
tion model should be validated and verified to be consistently reliable.

Techniques can be used to enhance the simulation model reliability. Particularly,
V&V and inspection techniques can be adopted. Regarding simulation validation,
an entire book has discussed in more than 1000 pages techniques for validation of
computer simulation models [9]. A list of simulation model validation techniques is
available in the literature (See a brief list in Sargent [8], and a broad, philosophical,
and practical discussion on Beisbart and Saam [9]). Multi-resolution technique is
also a technique to support validation by an examination of a simulation model
under different granularities in order to assure its correctness against the real-world
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counterpart system [10]. In turn, verification is primarily concerned with deter-
mining that the simulation functions (e.g., the time-flow mechanism, pseudo ran-
dom number generator, and random variate generators) and the computerized
(simulation) model have been programmed and implemented correctly [8]. Refer-
ence [11] mentions steps on the verification process, such as code verification and
solution verification. A taxonomy of eight categories of techniques for simulation
models verification is also available (See Whitner and Balci [12] for a quick
summary of classic simulation model verification techniques).

7.3 Validation

Paul K. Davis

7.3.1 Introduction

The literature on model validation is massive, and this article is by no means a
comprehensive review. It identifies unifying definitions, principles, and themes, but
then points to important sources in varied research communities. The article is
drawn from Davis [13].

7.3.1.1 Validity: Perhaps a Misnomer, but One We Can Live with
Models are imperfect and can never be given an unqualified stamp of validity.
Further, working with models often goes far beyond just running a particular model
that should be validated. As argued in by Jay Forrester in 1971 and reprinted later
[14],

In any real-life applications of modeling to the generation of policy...the models are always
in a continuous state of evolution. Each question, each reaction, each new input of infor-
mation, and each difficulty in explaining the model lead to modification, clarification, and
extension...

Rather than stressing the single-model concept, it appears that we should stress the process
of modeling as a continuing companion to, and tool for, the improvement of judgment and
human decision-making. [underline added]

Similar sentiments have been expressed in different domains of study, such as
human-centered decision support in large organizations [15, 16]. One of the most
valuable uses of simulation is in helping to educate senior leaders. Such leaders are
often too savvy to imagine that the simulations are perfect, but they recognize the
ability to learn from the simulations about the complex adaptive systems they deal
with—enough to help them make better decisions currently and adaptively later as
reality unfolds ([15, 17], p. 921).

All of this said, the term validation will not go away. Thus, we must live with it.
The key is simply interpreting the validity of a model as its usefulness in some
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particular effort. Does the model provides information that is good enough for the
purposes at hand? The validation process should be understood as festing the model
in many ways to see when (i.e., for what purpose and in what context) we can have
an acceptable level of confidence in using the model. Excellent discussions on this
exist in the literature.

A rigorous text discusses validation while recognizing the need to be “living
with error” (Zeigler et al. [18], pp. 443-67). The text on system dynamics devotes
50 pages to testing of models (Sterman [19], pp. 843-92). Another text provides
concepts and practical advice for military simulation (Tolk [20], pp. 263-94). Many
other materials are readily accessible. Sargent and Balci [21] reviews the history of
verification and validation (V&V), primarily for discrete-event simulation. See also
Davis [22] Balci [23], Pace [24], Sargent [25] and a DoD best-practices guide and
supporting material (Defense Modeling and Simulation Coordination Office
(DMSCO), undated). The literature is meager on validation of agent-based models,
but a Website includes sections on empirical validation http://www2.econ.iastate.
edu/tesfatsi/ace.htm. The issues and challenges are discussed in short papers [26,
27], including the need to think in terms of incremental validation. Another paper
emphasizes an approach that justifiably improves a client’s trust in the use being
made of agent-based modeling [28].

7.3.1.2 Over Interpreting the Cautions
Many authors emphasize the conditional usefulness of models by repeating a
famous quote from Box [29]:

All models are wrong; some are useful.

Regrettably, some of those hearing Box’s admonition take on a more negative
attitude about models than is appropriate. It is not uncommon to hear something
like the following from a modeler being pestered about whether his model has been
tested.

Give me a break. No, I have not carefully validated the model. After all, it is only a model.
It seems useful for what I am doing.

The phrase “only a model” should be troubling. If a model is being used to help
understand the world and evaluate options for action, then it needs to be good for
what it is being used for.

To reinforce this point, consider that some models are intended to be extremely
close to reality. This is so for certain kinds of command and control systems where
learning, training, mission rehearsal, and operations may use the same software, the
same displays, and many of the same underlying calculations. Some exercise data
may be synthetically generated (e.g., that of adversary aircraft or of approaching
tornadoes), but the displayed information may be the same as if the aircraft or
tornadoes were real. As another example, consider training of airline pilots. The
best aircraft simulators are expected to exhibit aircraft behavior very similar to that
of a real aircraft. This is why it came as a shock when, in 2019, Boeing
acknowledged that its simulator for the Boeing 737-Max had not yet been able to
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reproduce the problems that led to the crashes of two such aircraft [30]. In par-
ticular, pilots using the simulator for similar flight conditions would not have been
prepared for the strength and persistence of the airplane’s automated system forcing
down the nose of the airplane when a sensor erroneously reported a troublesome
angle of attack. As a last example, surgeons use virtual reality models to prepare for
brain surgery [31]. Perhaps the models should be very good.

For most of those involved in modeling and simulation, it is nonetheless true that
the models and their data are decidedly imperfect in some respects, and the issue
becomes one of understanding whether they are sufficiently right in the respects that
matter for the application.

7.3.1.3 Definitions

Against this background, there is need for corresponding formal definitions. These
tend to address verification and validation as a set. The definitions used in this
volume are (Zeigler, forthcoming). The U.S. Department of Defense uses similar
definitions (Defense Modeling and Simulation Coordination Office (DMSCO),
undated)

e Verification is the process of determining if an implemented model is consistent
with its specification

e Validation is the process of determining if a model behaves with satisfactory
accuracy consistent with the study objectives within its domain of applicability
to the simuland it represents.

7.3.2 Distinctions

Primary Distinctions

Discussing validation is easier with a set of distinctions. A primary set of idealized
distinctions involves the real world, the body of knowledge that we have about the
real world, a conceptual model to describe implications of that knowledge, a fully
specified version of that model suitable for implementation in a computer program,
the mechanism by which the model’s implications are generated (the program,
computer program, computer model, or simulator), and the simulation results.
Figure 7.1 is a simple sketch of this that builds on an influential depiction by
Sargent [32] and on points made by Zeigler [33, 34], Patrick Hester and Tolk [20],
and Davis [35]. The diagram is to be read as follows: Given something to be
represented—i.e., the referent or simuland (sometimes called the problem entity or
real-world aspect), a model is developed—perhaps first in a conceptual form that
captures the primary entities, relationships, and processes but is neither complete
nor precise; and then in a fully specified but abstract form that provides a set of
rules for generating model-predicted behavior for specified inputs. A simulator
(computer program or computer model) then “executes” the model. The distinctions
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+ Related data also requires
definition, verification, and
validation

Referent or Simuland
(Real system or a trusted surrogate)
: .- ---- Needs
Needs in-context, or ,-” ° e eldaticn
operational validation
Model
Simulation 1. Conceptual
(Simulator, program,  ®—___ _'_‘_'_'__,__,_,—'—'-"'—F/ 2. Fully specified
computer model) '
Needs verifcation

Fig. 7.1 Important distinctions

are valuable in understanding the many different ways that the activity of modeling
can go badly: the knowledge base may be wrong, the model may represent the
knowledge base poorly, or the program may fail to reflect the model’s intentions.
Unfortunately, authors use terms for the concepts of Figure 7.1 differently because
work developed in parallel streams. Table 7.4 compares the terminology.

Defining Purpose: The Experimental Frame

If a model’s validity (usefulness) depends on what it is being used for, then
translating that broad idea into something more rigorous may require a good deal of
detail. Precisely what variables will be held constant? Precisely what inputs will be
provided? Precisely what outputs will be observed? And, for each, of these, what
ranges of values will be considered? Recalling that “simulation” is often seen as
experimentation (to others, the term refers to a model that generates system
behavior over time), defining such matters can be seen as defining an experimental
frame [18, 33].

A Fuller Depiction

Figure 7.2 shows a fuller depiction of the idealized distinctions and activities [35].
It is only modestly different from a diagram of Sargent [24].

This indicates myriad activities, in both the real and model worlds, to observe,
experiment, and compare. When comparing model predictions with empirical
information, it shows where the concept of the experimental frame fits in. It also
indicates that inquiry may consider alternative conceptual models and alternative
implementations. The former may be necessary because opinions differ on how the
world works and how to represent it (e.g., with continuous differential equations,
discrete-event simulation, agent-based modeling, or some combination). Also,
competing simulations may differ in their simulators rather than their conceptual
model.
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Results might, for example, differ because of differently sized time steps in
continuous simulation or having agents act in a different order. A discrepancy might
reflect a failure to adequately specify the model or a failure to implement the model
correctly. Sometimes, differences have arisen because of unusual and embarrassing
sensitivity of simulated events to computational details close to a boundary or
discontinuity, as in instances where the same computer program has different
answers when implemented on different machines [36]. Sometimes, such phe-
nomena relate to the interaction of computer arithmetic and nonlinear effect, as in
errors in the operation of the Patriot Air Defense System in 1991 [37].

Figure 7.2 is an idealization. In reality, it is rare for the conceptual model and the
formal model to exist separately from the implemented model. One reason is that
model builders use programming environments in which they can quickly “cut
code” and build a running model with which to experiment. They may extoll the
virtues of rapid prototyping in preference to prolonged agonizing in the abstract.
However, a consequence is that it is difficult to understand and debate about either
the conceptual model or a fully specified version. Instead, it is necessary to go
immediately to often-opaque computer code or to trust documentation. This is a
serious problem, but people disagree about how to do better.

One approach is to do initial modeling in a high-level visual language so that
major features of the conceptual model can be readily reviewed visually and so that
details and mathematics can be sharply expressed with the economy of array
algebra. Such a model may then be used operationally or reprogrammed for a
particular research environment [35]. A second approach, favored by most com-
puter programmers, calls for better documentation, particularly of the conceptual

Objectives
Objectives of modeling
experiments

Formal
maodel (fully
o specified)
Rough

system
theories lementing

Implemented
model (e.g.,
simulation)

Experimental
results

Comparisons within
an experimental
frame

NOTE: Currently, the yellow items (conceptual and formal models) seldom exist separately.
MAND RRZI08-52

Fig. 7.2 Idealized relationships. Source Davis et al. [35], but only modestly different from
Sargent’s depiction [24]



7 Reliability and Quality Assurance of M&S 189

model, while assuming that details will need to be worked out by people who are
adept at computer programming in such common languages as

C, Java, R, and Python. A good protocol for documenting agent-based models
has been proposed [38], and ambitious research continues in this spirit [39].

7.3.3 Generalizing the Concept of Validation

Types of Validity as Recognized Early

Historically, most discussion of model validation has reflected the perspective of
physical scientists and engineers, such as those behind NASA’s first flight to the
moon. It was both necessary and feasible for the models guiding the moon landing
to be remarkably accurate. In such a context, model validity is about the model’s
predictive accuracy.

Since at least the 1970s, however, some authors have distinguished among
replicative, structural, and predictive validity [18, 33]. A model has replicative
validity if it can mirror the referent system’s input—output behavior, as when testing
a model against empirical data. A simulation model has structural validity if its
intermediate states and state transitions correspond to those of the referent system.
A simulation model is said to have predictive validity if it can generate accurate
predictions for circumstances other than those on which prior data exists.

The difference between replicative and predictive is referred to in social science
work with terminology such as “the regression model fits the data reasonably well (a
reasonably high R?) versus “the regression model proved predictive when tested
against out-of-sample data” (i.e., date not used in the model’s formulation and cali-
bration).” That distinction is crucial in modern artificial intelligence/machine learning.

The issue of structural validity is more knotty. It demands not just that the model
gives the right answers, but that its internal processing relates well to real-world
processes. That may or may not be important. For example, if a simulation correctly
predicts equilibrium conditions, perhaps it is not important whether the simulation’s
intermediate states and processes are like those of the real world. Such was the
argument of economist Milton Fried- man, who argued that the economy behaved
“as if” actors made decisions according to a simple model without much internal
structure [40]. The arguments were strongly but politely criticized by another
economist, Robert Samuelson [41]. In any case, for many purposes a simulation
must have a significant degree of structural validity.

Broadening Scope of Information Used

One early generalization of the validation concept emphasized the need to consider
a broad range of information in evaluating models. In the military domain, this
include drawing on expert testimonies from officers experienced in combat, as well
as on history, laboratory and field tests, and so on [22]. Figure 7.3 illustrates the
range of information that can be brought to bear, but frequently is not. For example,
model validation often relies heavily on face validation, i.e., on experts observing
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Fig. 7.3 Illustrative classes of information to use in validation

simulation behaviors and seeing them as credible, even though experts are far better
at identifying the factors at work than at predicting consequences [42], much less
the consequences of nonlinear interactions. The best use of subject matter experts is
well structured and focused on eliciting the kinds of in- formation that experts are
good at providing [43].

Diverse Testing Methods

A more comprehensive approach recognizing the need for multifaceted evaluation
of models can be found in the realm of system dynamics. From the pioneering work
of Jay Forrester onward, those building such models have focused less on validation
in its narrow sense conjuring up an image of precise calibration than to informing
and testing the model against a broad range of information with a broad range of
methods [44]. The authors noted that models are often used to look into matters for
which no reliable data exists (e.g., the operation of future systems, conflict in future
wars, side effects of innovative societal interventions). As a result, relatively, few of
the tests can exploit the statistical methods that have been well developed for
data-intensive testing.

Challenges for Validation as Seen in 2004

Early in the century, a good review article identified seven major challenges for
model validation [24], all of which are still relevant despite notable progress. Pace’s
challenges were (paraphrased slightly):

Improving qualitative assessment (e.g., greater structure and rigor)

Use of formal assessment processes

Estimating costs and benefits of both M&S and V&V

Confronting and quantifying uncertainty and making inferences about domains
for which no data exists

Coping with adaptation (e.g., validating agent-based models)

Aggregation and multi-resolution modeling

7. Human behavior representation in simulations (including by humans) (HBR).

Rl o

g
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7.3.3.1 Rethinking the Concept of Validation
It has been recognized for some time that the very concept of validation needs to be
broadened if it is to be applicable in such realms as policy analysis and social
science more generally. A recent review concluded that the definition of model
validation can be improved in important ways by elaborating on the classic defi-
nition [35], pp. 23-31, 129-134). Adapting discussion to use this volume’s baseline
definition, the improvement consists of adding the bolded language in what follows:

Validation: It is the process of determining if a model behaves with satisfactory
accuracy consistent with the study objectives within its domain of applicability to
the simuland it represents. A model’s validity should be assessed separately with
respect to five criteria, the model’s capability for (1) description, (2) causal ex-
planation, (3) postdiction, (4) exploratory analysis, and (5) prediction.

That is, we should ask how well the model accomplishes the following:

e Description: identifying salient structure, variables, and processes in the target
system (the system being modeled)

e Causal explanation: identifying causal variables and processes and describes
reasons for behavior in corresponding terms;

e Postdiction: explaining past system behavior quantitatively with the benefit of
knowing, afterward, the initial conditions pertaining at the time;

e FExploratory analysis: estimating approximate system behavior as a function of
simultaneous changes in all identified parameters and variations of model
structure (coarse prediction);

e Prediction: predicting system behavior accurately and even precisely;

e Prediction (the last item) is well understood, but the other items bear discussion.

Causal explanation is a familiar and primitive concept but is also deep and subtle
[45, 46]. Postdiction (sometimes called retrodiction) may sometimes be
after-the-fact rationalization but is very important in physics and say, in the diag-
nosis of why an aircraft crash occurred. Exploratory analysis refers to studying the
model’s behavior across the space of uncertain inputs (also called scenario space or
case space), the space generated by discretizing the input parameters and listing
alternative model structures, and then considering the possibilities implied by the
combinations of all possible values of all the parameters and choice of model
structures. With today’s methods and technology, this is not as daunting as it may
seem if the model used for exploration is relatively small (e.g., 3-20 independent
variables, rather than 100s). Capabilities-based planning assesses alternative port-
folios of capabilities (material, human, and otherwise) for their ability to address
challenges across as wide a portion of the case space as is feasible within the budget
[47]. Its cousin, robust decision-making (RDM) does similarly: searching for
strategies that are as robust to assumptions as possible [48]. Such analysis can be
used for a kind of coarse prediction, such as that a given strategy will do well (not
necessarily optimally) in a range of circumstances and poorly (or disastrously) in a
range of other circumstances.
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These dimensions refer to different model functions. They relate to the previ-
ously mentioned distinctions among replicative, structural, and predictive validity,
but not always in a straightforward way. Further, the relationships are confused by
differences of terminology across disciplines. To those using statistical models,
“explanation” may mean large coefficients of determination (R?), whereas others
have in mind cause-effect relationships. Similarly, whereas a statistician refers to
predictive capability, the goal may be only to predict existing out-of-sample data
(i.e., data not used to build and calibrate the model). Others have in mind predic-
tions based on cause-effect reasoning that may be applied to circumstances very
different from those on which data exists (e.g., descending through the Martian
atmosphere, operating a future weapon system in a future war, or making a social
intervention that will change the incentives of numerous actors in society).

The points causality being made here are closely related to those of Judea Pearl.
As Pearl has notably observed, correlational information in insufficient to address
many of the most important questions that face decision-makers, questions relating
to influence, intervention, attribution, and so on. Pearl’s primary book on such
matters is technical [49], but a more recent book is written for a broader audience. It
has admirable examples [50]. He discusses what he calls a ladder of causation. The
highest ladder corresponds roughly to the level of requiring a degree of structural
validity (see also Zeigler [51]).

Figure 7.4 illustrates how a particular model might be characterized for its
validity along these dimensions. The values {1, 2, 3, 4, 5} correspond to the
qualitative meanings{very poor, poor, marginal, good, very good}. How these
would be measured would depend on the application context. Prediction to within
10% might be very good in some cases and woefully inadequate in others. The

Scale of validity
O=very low: 5=very high

Description
H

Prediction Causalexplanation

Exploratory analysis Postdiction

Fig. 7.4 Characterizinan an illustrative model’s validity along five dimensions. Source Davis
et al. [35]
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assessment might need to combine qualitative and quantitative considerations (e.g.,
a causal explanation might seem subjectively to be too complicated to be useful,
meriting a 1). The particular example shown imagines a model that is very good at
describing what happened in a studied case, very good for broad exploratory
analysis, rather good for causal exploration and postdiction, but of very little use for
prediction. Why? Perhaps the input variables have highly uncertain values although
the values might be well defined when the time comes. In contrast, certain artificial
intelligence models based on machine learning can be extremely good for what
those in that field call prediction (predicting data not used in tuning the model or
future data of the same system under different conditions), but useless for assessing
the consequences of options that would substantially change the nature of the
system (e.g., options greatly changing the incentives to which actors in the system
respond).

The concept of Figure 7.4 enhances our vocabulary for discussing the validity of
models. Better methods are needed to assess models along each of these
dimensions.

7.4 \Verification

Bernard P. Zeigler

7.4.1 Introduction

Adhering to the definitions of Table 1.6a for verification and validation (V&V), this
article focuses in on the problem of verification, particularly we discuss integration
of simulation and formal verification as well the role of morphisms in providing the
preservation of properties common to real systems and their simulation models.

We start with noting that concepts for organizing models and data for simulation
based on systems theory [52, 53] and implementable in model-based systems
engineering [54] are included in the modeling and simulation framework
(MSF) (see Sect. 1.4). The system specification hierarchy (Sect. 1.4.1.1) provides
an orderly way of establishing relationships between system descriptions as well as
presenting and working with such relationships. Pairs of system can be related by
morphism relations at each level of the hierarchy. A morphism is a relation that
places elements of system descriptions into correspondence. For example, at the
lowest level, two observation frames are isomorphic if their inputs, outputs, and
time bases, respectively, are identical. In general, the concept of morphism tries to
capture similarity between pairs of systems at the same level of specification. Such
similarity concepts have to be consistent between levels. When we associate lower
level specifications with their respective upper level ones, a morphism holding at
the upper level must imply the existence of one at the lower level. The morphisms
are set up to satisfy these constraints.
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The most fundamental morphism, called homomorphism, resides at the state
transition level consider two systems specified at level 3, S and S°, where S may be
bigger than S’ in the sense of having more states. S could represent a complex
model and S’ a simplification of it. Or S could represent a simulator and S’ a model
it is executing. If such a homomorphism holds for all states of S’, then any state
trajectory in the S’ will be properly reproduced in S. Often, we require that the
correspondence holds in a step-by-step fashion and that the outputs produced from
corresponding states be the same. In this type of homomorphism, the values and
timing of the transitions and outputs of the big system are preserved in the small
one. Thus, in this case, the state and output trajectories of the two models, when
started in corresponding states, are the same.

Within the MSF, the EF formally recognizes that the intended use (IU) of a
model is a fundamental determinant of its validity with respect to the source system.
The MSF helps clarify many of the issues involved in modular reuse, validity, and
executability of simulation compositions and V&V. The MSF underlies the DEVS
simulation protocol [55, 56], which provides provably correct simulation execution
of DEVS models, thereby obviating commonly encountered sources of errors in
legacy simulations.

7.4.2 Intended Uses and Experimental Frames
Figure 7.5 shows the application of the framework to V&V. First, we consider that

an organization with a heavy reliance on M&S for SoS, the US Missile Defense
Agency is establishing a standard IU specification that contains a comprehensive

Structural
Behavioral
Equivalence
-
Base Model
Acquired Modeling Relation
Data Flow Validation. calibration
Parameter Info Flow
|
‘ Experimental Lumped
Data Sets - Frames Models
Data Mappings EF Organization Model Mappings
Intended "
Uses

Fig. 7.5 Architecture for SoS V&V based on M&S framework
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listing of specifics in relation to the analysis problem that the model is intended to
address [57]. Indeed, this specification significantly expands the set of elements that
characterize the objectives of the user. The fundamental elements of an IU include
pertinent analyst tasks, model inputs and outputs, experimental designs, calibration
methods and data, test objectives, and concepts of operations (CONOPS). In
addition, the specification requires characterization of key attributes, i.e., aspects
and values that identified stakeholders and developers agree on such as focus (from
narrow consideration of a component (e.g., specific radar) to broad scope of the
end-to-end SoS), simulation type (constructive, virtual, live), fidelity, uncertainty
quantification, interoperability, level of detail, and relation to operator training or
exercise experience.

Our formulation, based on such a specification, is that once the IU is known,
suitable experimental frames can be developed to accommodate it. Such frames
translate the IU elements into more precise experimentation conditions for the SoS
base model and its various abstractions and aggregated models called lumped
models. A model developed for an application is expected to be valid in each frame
associated with the IU specification that formalizes that application. An IU specifies
a focus, fidelity, and a level of detail to support the problems and tasks it concerns.
Different foci, fidelities, and levels of details may both require and allow different
models that exploit these factors to enable optimal set up and runtime attributes.
The basic concept in Fig. 7.5 is that IUs act as keys to all data and models that
have been acquired and developed thus far. In the storage process, a new data set
or model is linked to the IU that motivated its development. In retrieval, given an
application of interest to the user, the system supports formulating a representative
IU and finding the closest IU matching the newly formulated IU. If the user is
unsatisfied with the match, or wishes to explore further, the system supports syn-
thesizing a composite IU using available lattice-like operations (upper and lower
bounds, decomposition, etc.). [58] provide a metric-based method which aims to
guide experimental frame and/or model definition to assist finding the right model
and the right experimental frame for a given intended use.

7.4.3 Integration of Simulation and Formal Verification

Zeigler and Nutaro [59] discuss the use of morphisms that builds upon recent
extensive work on verification combining DEVS and model checking for hybrid
systems. The mathematical concepts within the DEVS formalism encompass a
broad class of systems that includes multiagent discrete-event components com-
bined with continuous components such as timed automata, hybrid automata, and
systems described by constrained differential equations. System morphisms can
map a model expressed in a formalism suitable for analysis (e.g., timed automata or
hybrid automata) into the DEVS formalism for the purpose of simulation. Con-
versely, it is also possible to go from DEVS to a formalism suitable for analysis for
the purposes of model checking, symbolic extraction of test cases, reachability,
among other analysis tasks.
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Humphrey [60] explored the use of linear temporal logic, the SPIN model
checker, and the modeling language PROMELA [61] for high-level design and
verification in unmanned autonomous vehicles (UAV)-related applications. She
reported some success while suggesting limitations and needed extensions.
Table 7.5 shows three UAV-related cases she discussed.

In each case, the focus of model is shown along with a simplifying assumption.
Because they are oriented to verification, model checking tools tend to lack many
functions that exist in DEVS environments and require abstractions that fit the
tools’ operation. This forces an abstraction of the real system that, on the one hand,
enables the modeler to better understand the model, and on the other hand entails
numerous assumptions to enable the model checker to verify the focal requirement.
Despite these drastic simplifications, state space explosion prevents employing
more than a handful of UAVs and sensors.

Several DEVS methodologies have been developed which incorporate
non-DEVS verification methods [54, 62—-64]. These methodologies attempt to
employ DEVS to enable loosening the simplifying assumptions typically made by
non-simulation models. In another variation, functional and temporal properties of a
Timed Stream Petri Net models are checked using exhaustive verification or
DEVS-based simulation [65]

The combination of simulation and formal verification gives a much more
powerful capability to test designs than can be achieved with either alone. In a
design process that incorporates both types of analysis, verification models can be
used to obtain absolute answers concerning system behavior under idealized

Table 7.5 Example Model: A centralized UAV controller that coordinates the

applications of model actions of multiple UAVs performing a monitoring task
checking to a UAV

. Focus of Model Checking: Assuring that all sensors are
multiagent system of system

eventually visited

Sample Simplifying Assumptions: Communication between
UAVs and sensors can only occur when in the same location
and is error free

Model: A leader election protocol for a decentralized system of
unattended ground sensors sending estimates of an intruder’s
position to a UAV

Focus of Model Checking: At least one leader exists at every
time step

Sample Simplifying Assumptions: The sensors all use
sampling epochs of the same length enabling a single time step
for time advance

Model: Verification of high-level UAV mission plans for a
scenario in which multiple UAVs must be used to safely escort
an asset across a road network

Focus of Model Checking: The path traveled by the asset is
safe, i.e., all road segments in the path have been scanned by
UAV
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conditions. Failures in this verification stage should indicate a need to find and
correct fundamental flaws in the system design. On the other hand, if a successfully
verified model can be formally extended into a simulation model for which the
verification model is a homomorphic simplification, the simulation model might
retain the properties that were verified with the simpler model and then can be used
to explore scenarios that are necessarily outside the scope of formal verification.

The representation of this idea within the organization of relations is shown in
Fig. 7.6. Here, the lumped model represents an analysis model that we are seeking
to verify for a set of requirements and assumptions represented by EF 5 .. Further,
the base model represents a simulation model that has more of the structure and
behavior representative of the real-world system and accommodates a “larger”
frame, EFg qpe. The fact that the latter is “larger,” i.e., more inclusive, than the latter
is captured by the derivability relation. Then, if we can demonstrate a homomor-
phism from the base to the lumped model EF g, We expect that any property
proved to hold for the lumped model would also hold for the base model in that
frame. However, it is more questionable whether the property continues to hold in
EFScope.

To illustrate, let EF 5, contains the first simplifying assumption of Table 7.5
“communication between UAVs and sensors can only occur when in the same
location and is error free” and suppose the lumped model of the UAV system has
been shown to meet the requirements that “all sensors are eventually visited.” Now
suppose that in addition, we construct a base model that allows for realistic com-
munication (less spatially constrained and error-prone). Under what circumstances
would it be possible to show that all sensors are still eventually visited? Presum-
ably, the base model would have to be extended in such a way as to have the
“same” structure and behavior as the lumped model—which would require that a
strong morphism hold between them. It would be natural to first consider that the
morphism holds when the simplifying assumption is made (i.e., within EFsqgum),
and then, whether it still holds when the condition is relaxed (i.e., within EFgope).

A full framing of the problem for SoS is obtained by returning to architecture of
Fig. 7.5 where for the UAV multiagent SoS in Table 7.5, we have at least 3 EFs

accommodates
Base
Model
Scope
morphism
E FAssum
Lumped
Model

Fig. 7.6 Relation between verification and simulation
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(each representing different simplifying conditions) and 3 lumped models (each
representing a verified analyzable model). What can we say about a base (simu-
lation) model that attempts to be compatible with each of the simplified models and
therefore retain the desired properties they satisfy? The fundamental ordering
relations and the system theory hierarchy of specifications and morphisms give us,
at minimum, a means to frame the problem and develop a methodology to approach
its solution.

In the last section, we address the question of what kind of morphic relation is
needed between base and lumped models in order for proven properties of the
lumped model to also hold for the base model.

7.4.4 Morphisms and Preservation of Properties

Consider base and lumped models with a homomorphism holding in an EF as in
Fig. 7.6. Assume the lumped model has property P. Is it true that the based model
must have property P as well?

Consider Fig. 7.6, where for convenience, we will use S (or system) to refer to
the base model and M (or model) to refer to the lumped model. We call upward
preservation or structural inference. The inference: “If M has P, then S has P,” and
as emphasized, it represents the kind of preservation we are focusing on here.
However, downward preservation where a property P is inherited from S to M is of
interest as well. The problem of downward preservation was raised by Foo [66, 67]
who provided sufficient conditions for inheritance of stability properties for con-
tinuous systems and pointed out that downward preservation of P implies upward
preservation of —P, the negation of P. Unfortunately, properties of interest seem not
to be expressible in negative form. Indeed [68] clarified the situation by applying a
well-known universal algebraic formulation of the logician Lyndon to finite auto-
mata. Informally, a positive property is one expressible in first order logic without
use of negation. Conversely, a negative property is one that requires negation to
express it. Sierocki enumerates a number of properties of automata that are of
interest (e.g., relating to reachability, connectedness, and reversibility) and are
positive by direct statement. Applying Lyndon’s theorem, Sierocki shows that
upward inheritance of positive properties holds for the usual homomorphism of
automata. Moreover, downward inheritance holds for negative properties.

The general situation is unsettled. Saadawi and Wainer [63] show that some
properties transfer upwards from safety timed automat models verified in UPPAAL
to real-time advance DEVS models under a strong form of bi-simulation similar to
isomorphism. Zeigler et al. [69] provide examples of morphisms and properties
where it is both possible and not possible to make structural inferences.

Given this situation, one direction for research is to look at more special cases.
Another is to formulate the problem within a probabilistic, rather than logical,
framework. It turns out we can get a more robust approach to making structural
inferences as well as gaining more insight into the role of morphisms in the process.
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7.4.4.1 Probabilistic Perspective: Bayesian Reasoning

The thin arrows in Fig. 7.7 denote paring of systems and models corresponding to
morphisms. Consider that in the situation for downward preservation, with the blue
arrows, that systems having P map to models having P. The problem is caused by
the possibility, shown as a gray arrow, that systems not having P also map to
models having P. In other words, a morphism may be deceptive even though it
preserves behavior and/or structure at some level of the hierarchy. Certainly, if we
set up a random pairing of Ss and Ms where Ss with P always map to Ms with P, we
would not expect that Ss without P also map to M’s without P, However, there may
be constraints on the Ss. Ms. and mappings that pull it away from pure randomness
and make it less likely that a deceptive cross-mapping exists. Indeed, we can show
that under conditions consistent with downward preservation of hard-to-prove
properties, the posterior probability that S has P given that M has P is greater than
the prior probability that S has P. In other words, demonstrating a homomorphism,
or more generally a strong morphism, can significantly increase the likelihood that a
lumped model property is truly reflective of the more complex base model [70].

7.4.5 Summary

The extended MSF provides a framework for V&V of simulation models that
include the concept of intended use, a characterization of modeler objectives that
enriches experimental frames. The MSF framework is applied to the case of inte-
grating model checking with simulation where there is a need to have confidence
that the properties proved for idealized models also hold in more realistic simulation
models strongly related to them. Taking both logical and probabilistic perspectives
clarify the situation and suggests that more research to introduce Bayesian rea-
soning to increase the robustness of V&V of simulation models.

It is possible that a M
does has P but its pre-
image does not

All systems

Allmadels

Models
Havingp

t_ Models
b, Not Having,

Downward preservation:
5 has P implies M has P

Really want this so can
infer from verification i
of model to system Upward preservation: I unlikely

M has P implies 5 has P kil

Mot Having P Possible but

Systems
Lyndon’s theorem for automata: Having P
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Fig. 7.7 Downward and upward preservation of properties
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7.5 Failure Avoidance

Tuncer Oren

“Simulation, agent-directed simulation, and its synergy with systems engineering
similar to many other advanced and sophisticated artifacts are prone to several
categories of failures. Hence, to get full benefits of simulation, without undesirable
error-prone side effects, one needs to consider sources of failures in M&S and have
them under control. For this reason, V&V and more comprehensibly QA studies are
done in M&S. However, failure avoidance for agent-directed simulation as well as
for systems engineering should also be considered, especially in advanced M&S
systems benefiting from the synergy of agent-directed-simulation and systems
engineering” [71].

As failures of systems based on simulation studies are not desirable, validation
(Sect. 7.2), and verification (Sect. 7.3) techniques aim to eliminate them. Some
early publications promoted avoidance of failures of systems based on simulation
studies. A classical article by Annino and Russell [72] was on “the ten most
frequent causes of simulation analysis failure—and how to avoid them!” Even an
earlier publication was about “don’ts of mathematical modeling” [73]. Sturrock’s
contribution is titled: “avoid failures! tested success tips for simulation excellence”
[74]. A systematization of the acceptability of components of simulation studies
was given by Oren [75] and later generalized by Sheng et al. [76]. A further
elaboration about the criteria for assessment as well as elements of M&S to be
assessed is given by Oren and Yilmaz [71].

To assure reliability, it is useful to analyze sources of failures. Some basic
concepts which might compromise reliability were outlined by Oren and Yilmaz
[71]. They are failure, mistake, error, fault, defect, deficiency, flaw, shortcoming,
sophism, and paralogism. Section 7.1 elaborate on sources of failures and lists 360
types of errors and many terms related with errors and failures.

Contribution of simulation to failure avoidance as well as need for
multi-paradigm approach for successful M&S projects (including failure avoidance
paradigm for successful M&S projects) is elaborated by Oren and Yilmaz [71].
Furthermore, failure avoidance is utmost important for the following types of M&S
studies [71]:

(1) agent-based modeling,
(2) agent-directed simulation,
(3) simulation where rule-based Al systems are used,
(4) agents with personality, emotions, and cultural background
(5) inputs (both externally generated inputs and internally generated inputs), and
(6) systems engineering of M&S studies
In a follow up publication, Longo and Oren [77] elaborate on enhancing quality
of supply chain nodes simulation studies by failure avoidance.
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“For example, the supply chain nodes operation study can be enhanced in the

following dimensions:

Role of terrorist activities: Impact of two types of activities can be studied; to
eliminate them or to alleviate their impact: (1) Using containers to smuggle
material to be later used in terrorist activities within a country. (2) Impact of
terrorist activities on the equipment of a supply chain node.

Global supply chain risk management simulations.

Container scanning risk management simulation.

Role of maintenance of several types of equipment: Similar to the simulation
studies of a job shop, several types of equipment in a supply chain node would
require maintenance. The existing study can be extended for this purpose.
Otherwise, the existing study may not be sufficient to analyze the need and
allocation of resources for maintenance purposes.

Trend analyzes of the usage of the capacity of supply chain node: Under dif-
ferent past conditions, the capacity utilizations and associated usage trends can
be established. This information can be used in marketing the unused capacity;
or coupled with simulation studies with anticipated demands can be used to
perform investment analyzes” [77].
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Ethics is a branch of philosophy that studies moral problems. This chapter of the
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8.1 Branches of Ethics

Nico Formanek, Juan Manuel Duran

8.1.1 Ethics in Technical Disciplines

Ethics has grown into many different branches, treating increasingly specialized but
also interdisciplinary problems. There are ethics of engineering, ethics of computers,
and ethics of medicine—just to name a few branches. In general, we will call them
ethics of X, where X can be basically any field where ethical problems emerge. To
call them the ethics of X presupposes that each branch purports different and disjoint
ethical issues. Thus, the ethics of engineering is concerned with issues alien to the
ethics of computer simulations. But in practice, it is quite common to find shared
concerns among all these branches of ethics. In this context, there are different
connections between, say, the ethics of engineering and the ethics of computer
simulation. If one thinks computer simulation as a sub-discipline of engineering,
then the ethics of engineering will treat more general problems arising from engi-
neering practice without reference to computers, while the ethics of computer
simulation will be an application of the ethics of engineering to computer science.

A general problem which is treated in the ethics of engineering is the problem of
unintended consequences. Every technology is designed with a specific end. To
reach this end desired and undesired impacts are accounted for. It is obvious that
not every effect of a technology, desired or undesired, can be predicted in the design
process. For example, the use of fossil energy on a vast scale, which emerged
during the industrial revolution, has as we now know some very undesirable side
effects. Those were certainly not intended, nor known, by the early innovators
constructing steam engines.

A similar problem will of course arise with every technology, one of which
happens to be computer simulation.

Before we consider the special case of the ethics of computer simulation, let us
talk briefly about what ethics and ethical problems are in general.

Ethics is the branch of philosophy that studies moral problems, that is, problems
of right and wrong action. It is thus closely connected to the philosophy of action.
For the purposes of this article, it is sufficient if we remain close to a common-sense
concept of what an action is: One does something under self-determining conditions
of possibility (e.g., one is not being forced to take some action). Actions and their
consequences can be evaluated, and the task of an ethics of X is to give reasons for
evaluating the special class of actions picked out by X. The scenario is like this: If
you ask yourself “What is the best action in situation A4, is it F or G or ...?” then the
ethics of X will be a reservoir of reasons to pick out the best possible action—or so
it is expected/desired.

For example, the ethics of medicine treats concerns about medical interventions
on humans. Questions evaluating the action of the relevant stakeholders might be:
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How does a physician weigh the needs of patients suffering from an illness in a
randomly controlled study? Should the cheapest but less effective treatment be
chosen, or rather the most expensive but also most effective treatment be chosen?

It should be noted that there is a more general classification of ethics in phi-
losophy. Standardly, they are classified as consequentialism, deontology, virtue
ethics, and pragmatic ethics. An ethics of X will employ one or more of these
frameworks to evaluate the problem at hand. A perhaps too simplistic description of
those frameworks would be that consequentialism only evaluates an action with
respect to its consequences, deontology according to rules for carrying out those
actions, virtue ethics corresponding to the virtue of the agent, and lastly pragmatic
ethics evaluates actions according to the wider context in which they occur.

Consider the following example on how an ethical evaluation could work in the
different frameworks.

Situation: You are in a hurry to get a job interview and are stuck in traffic. There
is a shortcut, but you have to pass wrongly through a one-way road.

Question: Should you take the shortcut?

Actions: (A) Take the shortcut. (B) Don’t take the shortcut.

Below are answers that certain ethical frameworks could give.

Consequentialism: Act always to maximize utility. A maximizes utility. Answer:
Do A.

Deontology: Act always according to rule R. Action B satisfies rule R. Answer:
Do B.

Virtue ethics: Act always to preserve your virtuousness. Action B preserves
virtuousness. Answer: Do B.

Pragmatic ethics: The one-way road is rarely used by cars and taking it would
reduce your stress levels. Answer: Do A.

Ethical frameworks do not generally provide unique answers about what to do.
This has several reasons. Firstly, the frameworks themselves are justified by
adducing artificial situations (sometimes more or less so—think of trolley prob-
lems), which makes picking out the adequate framework dependent on the situation
description and the moral intuition underlying said description [1].

Secondly, even for non-pragmatic frameworks, the provided answers depend on
the preselected actions. Those actions are generally not picked out according to
some specified rule in the ethical framework, they rather depend on what the person
doing the ethical evaluation is willing to admit. The kind of arguments that these
frameworks supply for or against an action are at the very least enthymematic; in
other words, in most cases it is not unclear if these frameworks can provide
deductive certainty at all about which action to choose.

It is the uncertainty in the description of situations which connects ethics to other
branches of philosophy like epistemology and philosophy of science. One of the
biggest problems in ethics is how to make a morally sound decision under uncertainty.

You will notice that our later examples from the ethics of computer simulation
could all be labeled as decision under uncertainty. While it would be nice if phi-
losophy could reduce the uncertainty in the situation description, this is in many
cases not possible. Uncertainty might even be the property of a situation
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description, e.g., limited time and mental capacity of a person to adequately eval-
uate all presented options.

8.1.2 The Ethics of Computer Simulation

With this in mind, we now turn to ethics of computer simulation. First, some
foundations have to be laid. We would not say what a computer simulation is, but
rather what can be done with it. A computer simulation can run on a computer to
compute and obtain simulation results. These results give an answer to a previously
—however vaguely—stated question. The quality of the answer depends on many
factors, internal and external to the simulation. One external factor is the specificity
of the question according to which the computer simulation was built. More specific
questions lead to better models, which in turn lead to better computer simulations.
An internal factor would be the quality of the program. Does it contain many hacks,
kludges, etc., which might affect it is representational qualities?

In philosophy of science, models have for long been an object of inquiry.
Models try to represent a part of the world and might include a number of ideal-
izations, abstractions, and fictionalizations in order to do this. Uncertainty, then, is
already introduced at these stages if it is unknown how those idealizations,
abstractions, and fictionalizations affect the representational capacity of the model.
The same is true for computer simulations with one addendum: computer simula-
tions typically introduce more and different sources of uncertainty. This will
become apparent in later examples. Among other things epistemology evaluates
why some forms of uncertainty are tolerable while others might not.

Now, computer simulations would not be an interesting case for ethics if they
did not figure prominently in ethical questions. And this is where the current
literature on the topic takes its starting point. Everyone knows cases where simu-
lation results have been used to justify policy decision. Examples include the IPCC
report on global climate and the simulation of pedestrian traffic preceding the
approval of the 2010 love parade in Germany.

So, whenever simulation results are used in situation descriptions for ethical
questions this elevates the uncertainty of those results from a “mere” epistemo-
logical concern to an ethical issue.

Following [2] Chap. 7 and [3], I will now discuss several frameworks that have
been proposed to cope with the uncertainty of simulation results in ethics.

According to Williamson [4], simulation results must be trustworthy if they are
used in ethical decisions. Trustworthiness itself depends on several ethical and
epistemic factors. For a simulation result to be trustworthy, it has to be credible,
transferable, dependable, and confirmable. Williamson takes credibility to be
established by inter-subjective methods of verification and validation, but also by
expert authority. It is therefore a mixed epistemic and ethical concept to reduce the
possible uncertainty inherent in the simulation results. The rest of the concepts are
epistemic in nature. Transferability is the possibility of extending simulation results
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beyond their original context. A situation that often happens in policy decisions that
should apply across different situations.

Dependability is the property of simulation results to apply after a certain
amount of time passed. Uncertainty might arise due to the target system changing in
unknown and unaccounted for ways.

Williamson’s last criterion of confirmability amounts to concerns about different
idealizations that were introduced into the computer simulation, for example, ide-
alizations that make the problem computationally tractable in the first place. Such
idealizations can introduce uncertainties in the simulation results if they are not
properly accounted for.

In the end, if uncertainties are present, they taint the ethical decision that rests on
the simulation result, possibly leading to unethical choices of action.

A similar point is made by Brey [5], for whom uncertainty enters through
misrepresentations. Computer simulations can represent or fail to represent a phe-
nomenon, depending for example on which idealizations were in place during their
implementation. Instances of misrepresentation might be hard to detect because
direct comparison to experimental data is impossible. This epistemic concern again
threatens ethical decision-making with uncertainty.

As we saw earlier, the authors of the quoted studies on computer simulation
ethics are concerned with harm that might arise from ethical decisions which are
based on uncertain simulation results. It is very hard to say what could be done to
reduce the uncertainties, which is not bordering on platitudes like “improve veri-
fication and validation procedures.” The most general kind of advice that is given in
the existing literature is contained in codes of conduct.

Oren et al. [6] proposes such code of conduct specifically for computer simu-
lations which is also described in Sect. 8.3 of this book.

In general, codes of conduct follow the spirit of virtue ethics or deontology.
They provide rules for action or guidance on how virtuous conduct can be achieved.
Oren’s code is adapted to the needs of simulationists and thus applies only to ethical
questions concerning the genesis, running, and use of computer simulations. The
justification of the rules of the code depends on more general principles of good
scientific conduct, best practices from programming, and previous codes of conduct
for the engineering discipline.

8.2 Ethics for Simulationists and Analysts Using Modeling
and Simulation

Paul K. Davis, Andreas Tolk

The rationale for addressing ethics in this volume on modeling and simulation has
several components. For engineers, the basic rationale is that engineers build things
that change the world. In doing so, they assume responsibilities to individual,
organizational, and government clients, and to humanity in the large. Sometimes,
the obligations are in conflict, which creates difficult tensions. Scientists, who often
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use M&S, have obligations such as the search for truth and advance of science but
also obligations to the people and even animals who participate in or are subjects of
research. A third category of users consists of analysts. These may also be scientists
or engineers, but they aid decision-makers and often support activities affecting
people and the world. Those who build models have the obligation to make it
possible for analysts to use the models well, correctly and wisely inform
decision-makers, and assure fairness, and minimize harm. This article addresses, in
turn: (1) definitions, (2) ethics in the modeling and analysis cycle, (3) why such
ethics matter, (4) approaches to ethics, and (5) the role of professional codes.

8.2.1 Definitions

A recent textbook covers definitions, distinctions, and comparisons. It then has a
number of concrete examples that illustrate vividly the ethical issues that arise for
engineers [7]. Most of its material applies also to those associated with science,
technology, and analysis. This article draws also on ideas in other published papers.
For example, an early text laid much groundwork that is still very relevant [8] and
the need for simulationists to have a code of conduct was discussed in an influential
conference paper [9].

The definitions of morals and “ethics™ are often used interchangeably. Distinc-
tions are sometimes drawn, but in contradictory ways. Here, we use:

Ethics, also Called Moral Philosophy, is the discipline concerned with what is morally good
and bad and morally right and wrong. The term is also applied to any system or theory of
moral values or principles. (https://www.britannica.com/topic/ethics-philosophy)

In making distinctions, we use the formula that

Ethics are the science of morals, and morals are the practice of ethics. (Fowler and Crystal

[1o])

The adjectives “ethical” and “moral” can also be ambiguous, but “moral” usually
refers to personal matters whereas “ethical” is favored when referring to matters of,
e.g., medicine, law, science, or business.

8.2.2 Ethics in the Cycle of Modeling and Analysis

Why does ethics matter in a volume on modeling and simulation? Adapting a
concept laid out in the text mentioned above [7], we note that ethical considerations
are or should be important in each stage of the cycle shown in Fig. 8.1. The top line
shows the process from problem definition to the delivery of well-articulated
evaluation of options. Feedbacks (shown as dashed lines) occur throughout the
process. For example, as options emerge, one recognizes the need to consider
additional objectives with corresponding metrics. Also, when comparing options,
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Fig. 8.1 Ethics in the cycle of modeling and analysis

one may be sensitized to uncertainties that should be explicitly addressed in the
analytic plan.

As indicated by the italic material at the bottom, numerous ethical issues arise or
should arise at every step. These are illustrated by the items shown, which indicate
only some of the many ethical errors or lapses that may occur, such as ignoring
long-term effects on the environment or the public's interests in privacy [11], doing
the analysis with biased data [12], or obfuscating risks and distributional issues (as
in dwelling only on average economic effects). Some other examples are
(1) omitting key variables, which precludes correctly analyzing their effects (e.g.,
omitting the possibility of a tax cut's stimulus effect), and (2) explaining results
based on concepts not actually in the model (e.g., ascribing an intention to a model
object that merely follows some rules, oblivious of intention).

8.2.3 Why Ethical Considerations Matter

Most readers may find the importance of such matters evident, but a few examples
may be worthwhile. Consider urban planning that focuses entirely on economic
rejuvenation. The results may include destroying neighborhoods and cultural fea-
tures, depriving people of their life-long homes, forcing such people to move to
more hostile but affordable areas, and generating a “sterile” downtown without
character. Such obliviousness to the many dimensions of the problem might be seen
as incompetence, but not if the only consideration was stimulating economic
growth in the downtown area. Or consider developing a simulator for a new aircraft,
a simulator that is exceedingly accurate for most conditions but does not address



212 N. Formanek et al.

some plausible circumstances that would be expensive to understand and represent
well. Pilot training in such simulators would not be prepared if the trouble cir-
cumstances arose. This occurred in the notorious case of failures of the Boeing
737-MAX. (A newspaper account touched high points [13], but more definitive
accounts of the fiasco are slowly emerging [14]. The aircraft's failures killed 346
people. Many other examples could be given [7, 15].

One of the earliest discussions of ethics in the context of simulation was a paper
by John McLeod, the founder of the Society for Modeling and Simulation [16].
McLeod was commenting on the danger that some use of simulation might be
analogous to that of the accountant who “when asked ‘How Much is 2 + 27’ replied
‘How much do you want it to be?”” McCleod went on to provide draft ethical
guidelines that emerged from a study by the National Science Foundation. Many
other references might be named, each with own bibliographies (e.g., [7, 15]) A
recent paper illustrates with critical review the important ethical subtleties that arise
when attempting to address social issues with simulation [17].

8.2.4 Approaches to Applying Ethics

It is sometimes useful to distinguish among three different approaches that scholars
take in addressing issues. The exact labels vary, but the three approaches are
(1) consequentialist (utilitarian); (2) deontological (duty-driven as with adherence to
laws, norms, or principles); and (3) virtue-seeking (seeking good character traits,
such as reliability, honesty, ...). These are, roughly, associated, respectively, with
Jerome Bentham and John Stuart Mill, Emanuel Kant, and Aristotle. They are
discussed and compared, with examples, in Van de Poel and Royakkers [7].

8.2.5 The Role of Professional Codes

Many ways exist for addressing ethical considerations, but in this volume, we
address only one, having professional organizations adopt codes of conduct.
Ethical codes can be crafted to be inspirational, advisory, or disciplinary in
nature [18, 19]. Numerous examples exist, as well as a corresponding literature.
Here, we merely touch upon examples.
An inspirational expression of engineering ideals is the oath taken to join the
Order of the Engineer:

I am an Engineer; in my profession I take deep pride. To it I owe solemn
obligations.

Since the Stone Age, human progress has been spurred by the engineering
genius. Engineers have made usable Nature's vast resources of material
and energy for Humanity's benefit. Engineers have vitalized and turned to
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To be sure, not all engineers take the oath, and not all that do necessarily live up
to it in all respects, but the oath reflects an ideal with which many can resonate and

practical use the principles of science and the means of technology. Were
it not for this heritage of accumulated experience, my efforts would be
feeble.

As an Engineer, I pledge to practice integrity and fair dealing, tolerance
and respect, and to uphold devotion to the standards and the dignity of my
profession, conscious always that my skill carries with it the obligation to
serve humanity by making the best use of Earth's precious wealth.

As an Engineer, I shall participate in none but honest enterprises. When
needed, my skill and knowledge shall be given without reservation for the
public good. In the performance of duty and in fidelity to my profession, I
shall give the utmost.

(the Oath is copyrighted by the Order of the Engineer, Inc.)

to which many make every effort to adhere.

Advisory professional codes provide guidelines that help the simulationist to
make good decisions, often very similar to Code of Best Practices. Many codes of
professional conduct advise society members how to behave professionally. The
IEEE Code of Ethics—documented in the IEEE Policies, Sect. 7: Professional

Activities (Part A: IEEE Policies)—falls into this category.

We, the members of the IEEE, in recognition of the importance of our

technologies in affecting the quality of life throughout the world, and in
accepting a personal obligation to our profession, its members and the
communities we serve, do hereby commit ourselves to the highest ethical and
professional conduct and agree:

1.

to accept responsibility in making decisions consistent with the safety,
health, and welfare of the public, and to disclose promptly factors that
might endanger the public or the environment,

. to avoid real or perceived conflicts of interest whenever possible, and to

disclose them to affected parties when they do exist;

. to be honest and realistic in stating claims or estimates based on

available data;
to reject bribery in all its forms;

. to improve the understanding of technology; its appropriate application,

and potential consequences;

to maintain and improve our technical competence and to undertake
technological tasks for others only if qualified by training or experience,
or after full disclosure of pertinent limitations;

213
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7. to seek, accept, and offer honest criticism of technical work, to
acknowledge and correct errors, and to credit properly the contributions
of others;

8. to treat fairly all persons regardless of such factors as race, religion,
gender, disability, age, or national origin;

9. to avoid injuring others, their property, reputation, or employment by
false or malicious action;

10. to assist colleagues and co-workers in their professional development
and to support them in following this code of ethics.

Disciplinary codes impose negative consequences for violations of standards.
The consequences may include, e.g., paying fees for not disclosing conflicts of
interest, exclusion from certain types of contract competition because of past vio-
lations, or being removed from the professional society.

Although many professional science and engineering societies have their own
code of ethics (e.g., that of the Association for Computer Machinery [20]), certain
elements are common to most of them, such as pursuit of truth, protection of
community and environment, accountability for actions, mentoring the next gen-
eration, and informing and engaging the public. Recently, diversity and integration
of minorities have been recognized as valuable goals for fairness because they
allow new perspectives and ideas suggesting better solutions supporting society.
Rigor, respect, responsibility, honesty, and integrity have been identified as the core
values for scientists and engineers, including simulationists.

It has been noted that policy analysts do not have an ethical code and that it
would be difficult to develop a sensible code. Douglas Amy stated “Ethical inquiry
is shunned because it frequently threatens the professional and political interests of
both analysts and policymakers. The administrator, the legislator, the bureaucracy,
and the profession of policy analysis itself all resist the potential challenges of
moral evaluation” [21]. Others have long argued otherwise and have suggested a
code of conduct [22, 23]. A book on the subject [24] includes examples and
recommendations.

8.2.6 A New Obligation for Those Who Build M&S and Use It
for Analysts

It has long been an ethic that analysts identify the assumptions on which their
results depend. Much more is necessary. Analysts should routinely discuss how
results vary with major assumptions on which there is uncertainty or disagreement.
This should reflect exploratory analysis in which assumptions are varied simulta-
neously, rather than mere variable-at-a-time sensitivity analysis. Further, analysts
should demonstrate ways in which clients can hedge against uncertainties, i.e., how
to identify strategies that are relatively more Flexible (to changes of mission),
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Adaptive (to changes of circumstance), and Robust (to adverse shocks). This is
sometimes referred to as planning for FARness [25, 26] or as what is becoming
widely known as supporting Robust Decision-Making (RDM) under deep uncer-
tainty [27, 28]. Such efforts should become an ethical obligation.

To put the matter differently, the analyst should go well beyond so-called
best-estimate calculations (which are often misleading because of uncertainties) and
indicate the range of circumstances under which the consequences of the strategies
being considered are relatively predictable and favorable, relatively predictable and
bad, or very uncertain and therefore risky [26]. M&S should be designed so as to
make related analysis easier and routine. Failure to do such analysis may leave
decision-makers with inappropriate confidence in best-estimate results, which may
lead to seriously harmful decisions.

8.2.7 Final Observation

Today’s simulations are powerful computational tools that can be seen as the third
pillar of science [29], along with theory and empirical data. When used with
visualization tools and augmented reality, they allow immersion into the problem
space and direct interactions with the model. This vividness, however, can deceive
a user that into seeing the simulations as valid surrogates of the real system when
they are not. The ethical responsibilities of simulationists and those who use sim-
ulations are growing in parallel to these technological advances.

8.3 Code of Ethics for Simulationists

Tuncer Oren

The code of ethics for simulationists (as posted at https://scs.org/ethics/) has been
developed by the following members of the Ethics committee of the SCS:

e Prof. Emeritus Tuncer I. Oren (Chair)—SCS AVP Ethicss Founding Director of
M&SNet—McLeod Modeling & Simulation Network of SCS

e Prof. Emeritus Maurice S. Elzas, Wageningen Univ., Wageningen, The
Netherlands

o Prof. Emeritus Louis G. Birta—Ottawa Center of the McLeod Institute of
Simulation Sciences

e Dr. Iva Smit, E&E Consultants, Netterden, The Netherlands.

The rationale for the code is clarified in:


https://scs.org/ethics/
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Oren, T. (2002). Rationale for A Code of Professional Ethics for Simulationists.
Proceedings of the 2002 Summer Computer Simulation Conference, pp. 428-433.
https://www site.uottawa.ca/ ~ oren/index-pubs/pubs-2000s.pdf

The code is posted at different languages:

English https://scs.org/wp-content/uploads/2015/12/Simulationist-Code-of-Ethics_
English.pdf

Turkish https://scs.org/wp-content/uploads/2015/12/Simulationist-Code-of-Ethics_
Turkish.pdf

French https://scs.org/wp-content/uploads/2015/12/Simulationist-Code-of-Ethics_
Turkish.pdf

Italian https://scs.org/wp-content/uploads/2015/12/Simulationist-Code-of-Ethics_
Italian.pdf

Chinese https://scs.org/wp-content/uploads/2015/12/ZH-20150810-03-Code_0_
Chinese_Zhang.pdf

Bulgarian https://scs.org/wp-content/uploads/2020/08/Simulationist-Code-of-
Ethics_Bulgarian.pdf

The English version of the Code is provided here in the following paragraphs.

m Sc&i l"-; O}DDEI).(I h:G s. sTMe ULATION

INTERNATIONAL

Simulationist Code of Ethics
Preamble

Simulationists are professionals involved in one or more of the following areas:
Modeling and simulation activities.

Providing modeling and simulation products.

Providing modeling and simulation services.

1. Personal Development and Profession

As a simulationist I will:

1.1  Acquire and maintain professional competence and attitude.

1.2 Treat fairly employees, clients, users, colleagues, and employers.

1.3 Encourage and support new entrants to the profession.

1.4 Support fellow practitioners and members of other professions who are
engaged in modeling and simulation.

1.5 Assist colleagues to achieve reliable results.

1.6 Promote the reliable and credible use of modeling and simulation.

1.7 Promote the modeling and simulation profession; e.g., advance public
knowledge and appreciation of modeling and simulation and clarify and
counter false or misleading statements.
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2. Professional Competence

As a simulationist I will:

21
2.2
2.3
24
25
2.6
2.7

2.8

Assure product and/or service quality by the use of proper methodologies
and technologies.

Seek, utilize, and provide critical professional review.

Recommend and stipulate proper and achievable goals for any project.
Document simulation studies and/or systems comprehensibly and accurately
to authorized parties.

Provide full disclosure of system design assumptions and known limitations
and problems to authorized parties.

Be explicit and unequivocal about the conditions of applicability of specific
models and associated simulation results.

Caution against acceptance of modeling and simulation results when there is
insufficient evidence of thorough validation and verification.

Assure thorough and unbiased interpretations and evaluations of the results
of modeling and simulation studies.

3. Trustworthiness

As a simulationist I will:

3.1
3.2

33

34

Be honest about any circumstances that might lead to conflict of interest.
Honor contracts, agreements, and assigned responsibilities and
accountabilities.

Help develop an organizational environment that is supportive of ethical
behavior.

Support studies which will not harm humans (current and future generations)
as well as environment.

4. Property Rights and Due Credit

As a simulationist I will:

4.1
4.2
4.3
4.4

Give full acknowledgement to the contributions of others.

Give proper credit for intellectual property.

Honor property rights including copyrights and patents.

Honor privacy rights of individuals and organizations as well as confiden-
tiality of the relevant data and knowledge.
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5. Compliance with the Code

As a simulationist I will:

5.1 Adhere to this code and encourage other simulationists to adhere to it.
5.2 Treat violations of this code as inconsistent with being a simulationist.
5.3 Seek advice from professional colleagues when faced with an ethical
dilemma in modeling and simulation activities.
5.4 Advise any professional society which supports this code of desirable
updates.
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9.1 Introduction

Hezam Haidar, Nicolas Daclin, Gregory Zacharewicz, Guy Doumeingts.

Traditional manufacturing companies are entering the digital age either internally or
when they need to collaborate [1]. The Information and Communication Tech-
nology (ICT) sector is faced with an increasing amount of information exchanged
between partners through machines (physical means), people/organization, and IT
in the context of business collaboration. Interoperability management is becoming
increasingly critical, but it is not yet fully anticipated, controlled, and effectively
supported to recover from security problems or failures.

Enterprises decision-makers are faced by several questions when collaboration
with partners within a supply chain process is required. Based on our experience in
enterprise and business modeling on which we accompany companies in their
projects, many questions arise. The most frequently received questions from
companies are: What is the main objective of the collaboration? How to organize
the collaboration? What interoperability barriers must be to overcome? What about
focusing on the interaction with actors and humans? These questions clearly list the
need of guidelines, methodology, and simulation support.

This chapter intends to propose a model-driven method that addresses simulation
in existing model-driven methods. For that purpose, it elaborates the Model-Driven
Interoperability System Engineering (MDISE) that focuses on the vertical and hori-
zontal interoperability model-driven approach between enterprises while MDSEA
remains focused on enterprise integration between internal domains (IT, human/
organization, physical means) before connecting the different models. The chapter
concludes with some current development of the MDISE framework and method with
model system tool box (MSTB) that evolved in the frame of Interop-V-Lab Task
force. Finally, it gives some perspectives about the interest of MDISE in the frame of
future cyber-physical system (CPS) research works.

9.1.1 Problem Statement About Enterprise Modeling
and Simulation

An enterprise is an organization composed of people, activities, information, and
resources involved in supplying a product or service to a consumer [2]. Physical
supply chain activities involve the transformation of natural resources, raw mate-
rials, and components into a finished product that is delivered to the end customer
[3]. This work focuses on enterprise system (ICT Supply Chain 2020), which
requires the management of data linked by computer components. In addition, on
each link between ICT components, different types of resources are also involved,
so different simulation problems can arise. In the frame of Industry 4.0, a
cyber-physical system (CPS) [4] and its environment can be considered as relevant
instances of SC-ICTS with the inherent need of simulation.

According to common definitions, supply chain management (SCM) is the
management of the flow of goods and services and involves the movement and
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storage of raw materials, work-in-process, and finished goods from the point of
origin to the point of consumption. Here, we consider interdependent networks of
goods or services, where ICT supply chain management is required to manage the
channels and nodes for the delivery from source to end customers. To support
services, SC-ICTS simulation is widely recognized as a major concern for orga-
nizations (ICT Supply Chain 2020) and companies [5]. More technically, SC-ICTS
refers to data/information exchanges among ICT systems involved in physical
supply chains or industrial systems. For instance, [6]have defined an ICT supply
chain as “the full set of actors included in the network infrastructure”. It includes
end-users, policy makers, procurement specialists, systems integrators, network
provider, and software/hardware vendors that produce (big) data.

While they are booming, these systems face conceptual and technological bar-
riers that can limit their adaption. The lack of simulation is the camulative effect of
the increased sophistication of ICT, the scale of the information systems, and the
increasing speed and complexity of a distributed global supply chain. The lack of
sufficient visibility and control throughout the ICT supply chain is making it
increasingly difficult to understand the exposure of the enterprise and manage the
simulation associated with the supply chain. This, in turn, increases the risk of
miss-exploiting the supply chain through a variety of means, including materials,
products, data, and cyber-physical resources and processes.

The authors in Reference [7] identified a demand for supply chain simulation
guidance. However, the ICT supply chain discipline is in an early stage of devel-
opment with diverse perspectives on foundational SC-ICTS definitions and scope,
disparate bodies of knowledge, and fragmented standards and best practice efforts.
Additionally, there is a need to identify the available and needed tools, technology,
and research related to ICT supply chain simulation and better understand their
benefits and limitations.

In brief, the SC-ICTS is not yet fully standardized or even well-defined. Yet,
potential supply chain participants attempt to find or define terms, definitions,
characterizations of the collaboration, but frequently fail to identify and evaluate
current and SC-ICTS-related standards and practices (need, scope, and development
approach). In consequence, a methodology that list models, tools, technology, and
techniques useful in securing the building of ICT supply chain is still wanted. For
that purpose, this chapter will acclaim to join efforts with methodology to improve
the efficiency of SC-ICTS simulation based on a model and an approach to answer
Industry 4.0 needs due to the hybrid/heterogeneous composition of CPS, they are
interesting candidate nodes for this SC-ICTS approach.

9.1.2 Methodological and Technical Approach

According to the objective of identifying a list of models, tools, technology, and
techniques useful in building consistent and interoperable ICT supply chain, this
section recalls components about enterprise modeling, simulation, and MDSEA,
which contribute to building a model-driven simulation for systems.
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9.2 Enterprise Modeling

Hezam Haidar, Nicolas Daclin, Gregory Zacharewicz, Guy Doumeingts.

Enterprise modeling (EM) is the abstract representation, of an enterprise with its
structure, the various functions, the processes, the information, the resources
(physical and human), the management, the relationships with the environment
(customers and suppliers), and all activities required to produce industrial products
or services. The goal of EM is to represent (based on models) a system as it stands
and improve its performances or to follow the evolution of the enterprise. Addi-
tionally, the relation of EM and integration domain has been considered [8].

Enterprise modeling concepts in industrial environment were developed, starting
at the end of 1970’s, mainly in USA by the Department of Defense (DoD), in order
to improve the competitiveness of the industry that seems at this period to be behind
the competitiveness of the Japanese industry. A second reason was the more and
more use of Information Technology (IT) in manufacturing and the appearance of a
new way to design manufacturing systems: computer-integrated manufacturing
(CIM). The DoD launched several projects in cooperation with industrial compa-
nies such as Boeing, General Electric, Westinghouse, IBM, Hughes Aircraft, and
Softech Inc. One of the first formalisms developed to represent a part of EM
concept in this new approach was the IDEF method (integrated definition) (IDEFx)
[9], for which a series of formalisms were proposed. Among them: IDEFO to
represent functions and activities with a simple syntax and a hierarchical decom-
position from a global representation of the enterprises to a detailed representation,
IDEF1 to represent information, and IDEF 3 to represent the logic of process
execution, which can be used to develop a simulation tool.

At the same time, in Europe, the Group of Research in Automation Integration
(GRAI) of the University of Bordeaux developed the graph with results and activities
interrelated (GRAI) and also the GRAI model [10] to represent the manufacturing
based on system theory [11, 12, 13], the theory of hierarchical multilevel system [14],
which allows the decentralizing of the decision-making and to increase the reactivity,
the organization theory [15, 16], the discrete event systems [17, 18], and the pro-
duction management concepts [19, 20]. Three subsystems are defined: physical
(Fig. 9.1 (transformation of purchased items and information in products or ser-
vices)), decisional (to control the physical system (Fig. 9.1)), and information (to
manage the creation and the exchange of information (Fig. 9.2)). This research work
was completed by a cooperation with the industry to validate the concepts: Télé-
mécanique Electrique (in Nice) and Merlin Gerin (in Grenoble (today both in Sch-
neider Electric), and Crouzet (in Valence) in order to improve the performances of
workshops; SNECMA (today Safran) in Le Creusot to design a flexible manufac-
turing system (FMS), AMRI (near Bordeaux) to design a FMS, and other companies
such as Suez to improve the management of water distribution and Airbus Toulouse
to improve the performance of a composite workshop. In the last four years, the GRAI
model and method have been extended to be applied in the domain of services, but
also to develop integrated solutions in the three domains: Information Technology
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(IT), Physical System, and Organization/Human System called Model-Driven Sys-
tem Engineering Architecture (MDSEA (see Sect. 3.3.4). At the same time, other
methods appear, one major one is CIMOSA [21], which was developed in the late
1980’s. Additionally, IEM [22] and ARIS [23] have been largely used.

9.2.1 GRAI Model and GRAI Formalisms

The previous section focused on the main theories that have supported the creation
of the GRAI model. This section describes the structure of the basic model and the
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formalisms to describe the enterprise. The previous concepts allow us to consider
the enterprise as a complex system that can be split up into two entities (Fig. 9.1):
The physical system or controlled system (also called the transformation system)
which produces the products or/and the services, the decisional system (control
system) that controls the physical system.

This systemic view introduces the concept of control loop. In Fig. 9.2, the
information system is added to manage all the information.

Currently, GRAI model uses various formalisms to graphically represent the
components of a manufacturing system: physical, decision, and information.

Concerning the modeling of activities, two formalisms are selected: IDEFO and
extended actigram star: (EA*). In IDEFO (Fig. 9.3), there are four types of flows:

e Input represents the flow of entities which will be transformed.
Output represents the flow of entities which have been transformed.
Control represents the conditions or circumstances that govern the transforma-
tion (objectives, constraints ...).

e Resource represents the resources required to perform the transformation.

Extended actigram star (EA*) formalism is in line with IDEFO and IDEF3 to
facilitate the transformation of models from bottom business specific model (BSM)
level to technology independent model (TIM) level [24]. The other GRAI for-
malisms are

e Global level for the control using GRAI grid formalism (Fig. 9.4)
e Detailed level for the control using GRAI nets formalism derived from EA*
(Fig. 9.5).

The GRALI grid is a formalism which represents the decisional subsystem. It is a
matrix in which functions, decision levels, decision centers, and decision links are
identified as follow.

The functions are represented vertically; a function includes a set of activities
that contributes to the same purpose. The decision levels for these functions are
represented horizontally and define the temporality of the decisions. The criteria of



9 Enterprise Modeling and Simulation 227

Décisiogial Functions
Levels
\
External To manage | To Plan To manage |............. |Internal
Information | Products Resources Information
Level 3} * <
1 $
Level 2 | v ]
AT
Level 1 v \ ]
\\j
Decision Decision
Frame Center
Fig. 9.4 GRALI grid formalism
Fig. 9.5 GRAI nets Trlgger Initial
formalism ] A
i 'S_l}p')'l’:_il"! B State
1
1 L 4
iy
* Objectives
Decision
upport > < ;
SUpp To Variables
decide .
Rules > <+ Constraints
< Criteria
Result
State

decomposition are the horizon and the period of time. Each cell represents a
decision center, i.e., intersection between a function and a decision level.

The decision frames represent the hierarchical links between decisions and
include all information for decision-making (objective, decision variable, con-
straint, and criteria).

GRALI nets (Fig. 9.5) give the detailed description of the various activities in
each decision center identified in the GRAI grid. By using GRAI nets, the result of
one discrete activity can relate to the support of another discrete activity.
With GRALI nets, four fundamental elements are to be identified:
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Fig. 9.6 Information system
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The formalism used to describe the information system is entity/relationship
modeling proposed by UML (Fig. 9.6). It describes the information structure in
coherence with the decisional system.

Several IT tools have been developed to support the description of formalisms.
The last one is the model system tool box (MSTB), as described in Sect. 5.1.

9.2.2 BPMN

Atmore technical level, business process modeling and notation (BPMN 2.0) (business
process model and notation [25] language can be used. It is more complex to use than
EA* but offers a wider range of detailed process modeling concepts. It is formalized in
XML format, making model transformation easy. In addition, BPMN allows the rep-
resentation of human and technical resources that are required in model-driven
approaches representation principles. BPMN has the advantage of providing a meta-
model developed by the object management group (OMG) that facilitates its imple-
mentation. Finally, it prepares the transition to the lower levels on the IT aspect thanks to
its simulation with many BPM IT platforms, thus allowing the deployment and
semi-automatic transformation for the execution of BPMN processes.

9.2.3 Other Formalisms for Information System Design

With a more technical view of information systems than BPMN, the open group
architecture framework (TOGAF) and architecture-animate (ArchiMate) models
can be used to capture other views at a more technical level. [26, 27]. In details, the
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enterprise architecture frameworks TOGAF and ArchiMate propose different layers
from business level to application level to design the information system of orga-
nization. TOGAF with its ADM cycle highlights a step-by-step methodology to
migrate toward a new information system consistently. It does not propose any
languages and relies on existing ones and adapted such as UML. ArchiMate pro-
poses different models at each layer (motivation, business, application, and tech-
nology) in addition to its framework. Let us note that the ArchiMate specification
can be used with TOGAF to build expected models. While the languages proposed
and deployed in these frameworks are fully adapted to develop an information
system that meet enterprise expectations, they allow for the representations of
different points of view but often in a less accurate way than a language fully
dedicated and developed for a particular point of view. Some points of view are not
considered by existing frameworks such as, for instance, the decisional and physical
points of view. In addition, dedicated languages often go beyond the descriptive
aspect and propose means to analyze and improve the system under study. This is
the case, for instance, with the GRAI methodology that proposes formalisms (GRAI
grid and GRAI networks) to model and analyze the decisional point of view of an
organization.

9.2.4 Conclusions

Currently, EM is not used as expected in industrial world, particularly in Europe. It
seems that in USA, the use is more important, certainly based on the influence of
IDEFx. Education must be developed in this domain by elaborating examples based
on the concrete experience with real cases. Another argument is the development of
end-users-oriented and adapted IT tools because they capture the knowledge on
their own manufacturing system. For this purpose, the graphical modeling aspect
and ease of use are very important. The last objective is to link EM to other areas
like enterprise simulation and the model-driven approach as proposed in Sect. 3.5.
Modeling Enterprise at the Different Levels of Abstraction

Based on the modeling levels just previously described, the methodology
MDSEA proposed to associate relevant modeling languages at each level to rep-
resent confidently the existing system and the future service product and service
system. To achieve this goal, the standards for process modeling are gaining
importance, with several process modeling languages and tools available to enhance
the representation of enterprise processes. To choose among the languages, the
level of abstraction required is important.

The first specification step of a model to be established between two partners is
crucial. At the BSM level, the modeling language must be simple to use, expres-
sive, and understandable by business-oriented users. Moreover, this (or these)
language(s) must cover processes and decisions with coherent models. The choice
is affected by the capacity of the language to propose a hierarchical decomposition
(global view to detailed ones), which is especially required at this level. Indeed,
business decision-makers often have a global view of the running system and need
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languages allowing this global representation with few high-level activities
(physical process or decisional activities). This global view must be completed by
more detailed activities models elaborated by the enterprise sector responsible.
These models are connected to top level models in a hierarchical and inclusive way.
These are the principles of systemic and system theory to consider selecting the
languages. However, it is also obvious that the choice of modeling languages is
subjective, depending on the experience of the languages’ practitioners and on their
wide dissemination within enterprises.

As for process modeling at the business level (BSM), several languages exist.
Extended actigram™® (EA*) presented in Sect. 3.1 was chosen to model processes at
the BSM level due to its independence regarding IT consideration, its hierarchical
decomposition, and the fact that it can model three supported resources: material,
human/organization, and IT. It has been developed as an answer to the previous issues
encountered with IDEFQ regarding its simulation with BPMN for example. It intends
to capture business process models at a high-semantic level, independently from any
technological or detailed specifications. Service-oriented modeling and architecture
principles [28], developed by IBM, were also considered, but these languages are
more IT oriented and thus were far away from our industrial requirements.

At the TIM level, BPMN 2.0 is used because this language offers a large set of
detailed modeling constructs, including IT aspects and benefits from the simulation
of many BPMN? IT platforms allowing for the deployment and automated trans-
formation for the execution of BPMN processes. Moreover, BPMN also enables the
representation of human and technical resources, which are required in the MDSEA
principles of representation. BPMN also has the advantage to provide a metamodel
developed by OMG, which facilitates the implementation of the language. It is also
extensible with third party metamodels, which is important and respects the OMG
simulation standards (e.g., Xmi).

In detail, GRAI approach is to be used by business representatives at BSM and
BPMN at the TIM level. BPMN is used to be the backbone language between the
business view and IT level. However, because the languages have different con-
sideration and view on the system, it must be able to link them. In detail, the EA*
models designed at BSM level need to be transformed into BPMN 2.0 models to
obtain the coherent business process models at the TIM level.

9.3 Driving Models to Simulation

Hezam Haidar, Nicolas Daclin, Gregory Zacharewicz, Guy Doumeingts.

9.3.1 Interoperability

According to ISO 11354, enterprise interoperability is the “ability of enterprises and
entities within those enterprises to communicate and interact effectively”. To
structure the different concept of interoperability, ISO 11354 makes available a
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Fig. 9.7 Framework for
enterprise interoperability
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framework that provides a set of interoperability solutions relevant with the prac-
titioners’ requirements. Thus, this framework for enterprise interoperability relies
onto three dimensions such as concerns, barriers, and approaches (Fig. 9.7).

Interoperability concerns highlights the interoperability viewpoints, i.e., the
levels in enterprises at which interoperability needs to be developed. Interoper-
ability concerns include business level (ex. working methods, decision-making...),
process level (collaborative business processes), service level (application deployed
in collaborative processes), and data (shared and exchanged within the process and
through application).

Interoperability approaches take the classical approaches proposed in ISO
14258: integration unification and federation. Integration encourages the use of a
common format through all collaborative organizations (ex. use of BPMN 2.0
language to model processes). Unification relies on the use of a “meta”-level
principles to ensure the mapping between different formats (ex. use of model-driven
engineering approach). Federation promotes to develop mechanisms allowing to
collaborative organization get used to each other’s methods, data, and tools on the
fly (no use of standard or any mapping).

The barriers represent the problems of interoperability that can occur between
the organizations. Conceptual barrier deals with exchanged information (syntax and
semantic problems) [29]. Technological barrier deals with the compatibilities issues
between application and information systems. Lastly, organizational barrier deals
with the definition of responsibilities and authorization of involved actors,
authority, process, and regulatory aspects.

The intersection of three dimensions (e.g., conceptual x process x unification)
makes available a set of relevant solution to develop interoperability according to
the intersection’s requirements. Thus, the integrated approach, despite it is con-
straining, is likely the easy way to set up interoperability since each organization
adopts the same methods, models, or tools. The unified approach seems the most
implemented approach since the concepts and tools are well identified, defined, and
equipped, the model-driven engineering or else model-driven engineering and their
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practices are the most known approaches. Lastly, the federated, although it repre-
sents the most challenging approach and meets the simulation “spirit” expectations
(no mapping, no standards but a dynamic and continuous adaptation), still remain
poorly developed. Thus, the Enterprise Simulation roadmap published by the
European Commission [30], developing the federated approach for interoperability
is considered to be one of the research challenges in the next years.

9.3.2 Vertical Decomposition: Toward Alignment
from Business to Operational

Considering resource domains while modeling at the bottom BSM helps to antic-
ipate how the different kinds of resources will be called, how they will interact with
the other components of the system and how they will be used to perform the
process. Nevertheless, it requires an extraction strategy by choosing appropriate
methods and models to get their specificity properly.

Figure 9.8 shows the interest of such architecture that is to design and implement
a service product and to produce a dedicated service system coherent with business
service models, represented with enterprise models. Looking at TIM and TSM
levels show how the methodology differentiates three kinds of resources catego-
rized into IT, human, and physical means. The reason is to tackle the different
requirements of resources at the implementation stage of the service system. Then,
the implementation of the resources detailed in the TSM model allows for the
implementation of the service system and related service product through a set of
services, i.e., a system in which the service provider (an enterprise inside a network,
or in a cloud of service providers) is not directly identified by the customer, which
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Fig. 9.8 MDISE architecture for enterprise interoperability
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can only remain interfaced with a service delivery. The service maintenance and
decommission activities can be ensured by different companies in the network
without direct identification by the customer. However, the virtual organization
keeps the property rights on the services.

About IT domain, several model languages exist. GRAI introduced at the
beginning of the chapter has demonstrated the capacity to tackle modeling aspect
from the decisional perspective at the BSM level. At the lower level, UML can be
used to describe more technical views.

About physical means, some physical models can help to better catch the
behavior of machines used in the systems. It can include performance models as
well as other expressed properties thanks to physical and mathematical models to be
considered in this part of the model. This topic is being discussed in several
simulation projects (I-V-Lab (http://interop-vlab.eu/projects-i-vlab/)), including the
DIH4CPS project [31].

About human and organization, we believe that holacracy, which is decision-
making distributed throughout a holarchy of self-organizing teams, can bring people
to work together. The challenge is to catch and model holacracy systems.

It is important to mention that the service system represented at each level of
MDISE remains the same system, but with details and including implementation
constraints. Nevertheless, after having described each category of resource with
appropriate models, another challenge is to deal with the coupling of these models
together. For this aim, simulation plays the role of gluing them together.

Additionally, in Sect. 5.1, MDISE vertical decomposition will be implemented
in MSTB evolved as an open-source tool extended to cover new category of models
introduced in the next section. The new level of description introduced here will be
considered as well, such as decisional models in addition to process models and
human machine interaction in the simulation management life cycle. The service
approach will keep driving this development [32].

9.3.3 Horizontal Alignment: Toward Simulation for Better
Collaboration Between Service Network

Figure 9.8 shows the collaboration between two enterprises to produce a service.
Collaboration between different entities can happen at different MDSEA abstraction
levels (BSM, TIM, and TSM). The BSM models allow to represent the TO BE
models of both entities and to align the simulation of practices in terms of business
process models and decision models. In MDSEA, simulation is a key factor for
enterprise collaboration. Enterprise models ensure not only simulation of practices,
but also between the human resources and IT systems supporting these practices.

Business Service Model (BSM): BSM specifies the models, at the global level,
describing the service running inside a single enterprise or inside a set of enterprises
as well as the links representing cooperation between these enterprises. The models
at the BSM level must be independent of the future technologies that will be used
for the various resources and must reflect the business perspective of the service
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system. In this sense, it is useful, not only as an aid to understand a problem, but
also it plays an important role in bridging the gap between domain experts and the
development experts who will build the service system. The BSM level allows for
the defining of the link between the production of products and the production of
services.

Technology Independent Model (TIM): TIM delivers models at a second level
of abstraction independent from the technology used to implement the system. It
gives detailed specifications of the structure and functionality of the service system,
which do not include technological details. More concretely, it focuses on the
operational details while hiding specific details of any technology to stay inde-
pendent from any technology, used for the implementation. At TIM level, the
detailed specification of a service system’s components is elaborated with respect to
IT, organization/human, and physical means involved within the production of the
service. It is important to mention that, in comparison with MDA or MDI or
service-oriented modeling and architecture (SOMA), the objective of MDSEA is
not only IT oriented, and then, this requires enabling the representation of human
and technical resources from the BSM level. At the TIM level, the representations
must add some information in comparison with the BSM models.

Technology Specific Model (TSM): TSM enhances the TIM model specifica-
tions with the implementation details of the system, i.e., how it will use a specific
technology or physical means (IT applications, machine, or a person) for delivering
services in the interaction with customers. At TSM level, the models must provide
sufficient details to develop software applications, hardware components, recruiting
human operators/managers or establishing internal training plans, buying, and
realizing machine devices. As for IT applications, a TSM model enhances a TIM
model with technological details and implementation constructs that are available in
a specific implementation platform, including middleware, operating systems, and
programming languages (e.g., Java, C++, EJB, CORBA, XML, Web Services, etc.).
After the technical specifications given at TSM level, the next step consists in the
implementation of the service system in terms of IT components (applications and
services), physical means (machine or device components or material handling), and
human resources and organization ensuring human related tasks/operations.

Initially, the simulation models developed in the MDI focus on the principles of
“mappings” to establish interoperability. In that sense, it implements the unified
approach and requires the linking of concepts and relations of heterogeneous
modeling languages, for example. This kind of approach is robust but time con-
suming, with a possibility of a partial overlapping of languages (e.g., one concept
does not exist in both) requiring the extension of the languages and to develop
transformation rules that can change if languages change.

Thus, this approach is completely relevant, especially for collaborative organi-
zation mid- and long-term-oriented, i.e., stable over time and for which the intensity
of the collaboration tends toward cooperation and collaboration and an important
level of integration, according to Reference [33].

In the frame of MDISE, the purpose is to extend the MDSEA and MDI prin-
ciples to a federative approach to develop simulation. This means to prevent, as
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much as possible, any common format or predetermined model, and each partner
keeps its own organizational structure, business processes, tools, data format, etc.

To this end, the goal is to create a simulation model to insert between organi-
zations. This model aims to identify and allow simulation independently of the
models, organizational structure, or physical means used by partners. This model
can be initiated with known and simple but limited mappings (or any other basic
mechanisms) to avoid reaching a unified or integrated approach. Thus, it must be
built on the knowledge about the characteristic of partners without any (or at least
strictly limited) modification or adaptation. These characteristics are the interfaces
(I/0) requested for the collaboration (functional and/or physical), human resources,
data, models, etc., allowing for the establishment of consistent interaction. Thus, the
proposed simulation model does not take any interest in the modeling language,
organizational structure, or physical means used by partners and does not aim to
establish a strict mapping or equivalence between them. It aims to build a transient
simulation bridge based on the identification and the analysis of knowledge, con-
straints, and specific features stemming from partners. It should be noted that the
principle to build a “centric simulation model” approach to the “mutual adjust-
ment”, mentioned in Reference [34], thus fits the federated approach of the simu-
lation framework.

Therefore, whether for the IT, the human/organization, or the physical means
domain, this model can be considered in two ways:

A “component mode” relying on commercial off-the-shelf (COTS) sufficiently
generic to be deployed in different organizations. These bricks are
pre-existing basic models (or skeleton) from identified and known simulation
situations. These atomic COTS belong to a set and can be combined to
provide a complex COTS to establish simulation in specific situations. They
cannot be modified and are used from identified characteristics and
requirements of the collaboration such as the synchronization, integrity,
quality, or quantity of data. For instance, the buffer is a well-known
mechanism that can be used for the IT domain to allow a synchronization
between two processes.

An “emergent” mode relying on a model built on the fly for complex
requirements and constraints making the direct use of “component mode”
impossible. In this case, the model is based on rules allowing for the building
of simulation from scratch. These rules are built from the specificities of the
collaboration in terms of IT, organization, or physical means. These primo
rules set can be raised with other discovered rules. In that sense, the use of
techniques from artificial intelligence (self-learning, process mining, data
mining, etc.) is an important challenge for this approach. Moreover, a
simulation model highlighted in the emergent mode can become a COTS in
the component mode if it appears regular in different collaborative
organizations. Thus, the purpose of this mode is to be free from any
components—once a component deployed for simulation it cannot consider
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modification of organization—and make a dynamic adaption possible in the
case of the modification of partners and entailed constraints on the
collaboration. For instance, the short-lived ontology can be used for the
simulation of data in the IT domain, it uses an ontology valid for a limited
duration. At the human/organizational level, the principles of the holacracy
and its concepts of circles and roles can be considered, by way of an adaption
for the simulation purpose, to make different organizational structures
(hierarchical, functional, matrix, etc.) interoperable. Thus, by identifying
actors from both sides, the definition of rules could authorize the building of
time bounded circles and allowing for a coherent interaction between persons
without any modification of internal structures. For the physical means
domain, take the example of a floppy disk. The principles are to build a set of
data that physically describe the system. The description of the object can be
based on physical data (e.g., dimension), which is data related to the business
or stemming from an image analysis. From this step, other partners can
anticipate the reception of the object and be prepared to exploit it.

Lastly, both modes, “component” and “emergent”, can be used in a comple-
mentary manner. The simulation model can be initiated with existing components
and continued with emergent ones if requested.

9.4 Implementing Framework and Method in MSTB
Evolved

Hezam Haidar, Nicolas Daclin, Gregory Zacharewicz, Guy Doumeingts.

As an historical perspective, to operationalize the models from BSM to TSM, [35],
Gregory [36] proposed the frame of the EU FP7 Research Project MSEE “Manu-
facturing Service Ecosystem” ID 284860 (http://www.msee-ip.eu/). The authors of
References [35] introduced the implementation of the SLMToolBox that is a ser-
vice graphical modeler, model transformer, and simulation engine. Since then,
SLMToolBox has been improved and renamed MSTB. This tool has been imple-
mented as an Eclipse RCP service. In detail, it runs the transformation from service
processes models designed by business users to BPMN models. Then, the BPMN
models are transformed into DEVS models to simulate the behavior of the entire
process model. Thus, MSTB aims at proposing a TO BE process-oriented modeling
framework to represent the architecture and data workflows that exist in the ICT
supply chain at the TIM level of MDSEA.

Therefore, to meet the expectation expressed in the chapter, an operationaliza-
tion of MDISE to extend MSTB according to the MDISE methodology is under
development. This will allow for the identification and modeling of the enterprise
frontier that can be initially poorly compatible with the environment and potentially
places the interoperability barriers in organizational relations, including managing
multi-tenancy, multi-providers, and system/service continuity. In addition, it will
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make a methodology available to model the planning and execution to mitigate or
avoid interoperability issues during the whole life cycle, such as considering the
evolution of ICT from both IT and OT points of views. Models will identify and
highlight the need for simulation. It will help users mitigate barriers to simulation
using models and simulations to manage exceptions and ensure business continuity.
The objective is to prevent an ICT simulation issues occurring during production or
manage it with short business resilience duration. The new version of MSTB is
called MSTB evolved.

9.4.1 Models and Model Transformation in MSTB (BSM
Level)

To show the usability and applicability of MDISE and MSTB evolved in SC-ICTS,
the methodology is detailed in this subsection. First, the conceptual workflows from
the requirements established at level BSM are defined. Then, it prepares the tech-
nical works for the implementation of the information system.

9.4.2 Using GRAI Grid and Extended Actigram* at Top BSM

Among the different systems, complex systems (systems of systems and eco sys-
tems), and organizations, the GRAI grid focuses on modeling the decisional aspects
of the management. The proposition in MDISE is to use the GRAI grid at the top of
the BSM to define the coordination and simulation of two enterprises, detailing the
points where decisions can be made (decision centers) while participating and the
information relationships among these. In the frame of MDISE, models built using
the grid allows for the analysis and design of how decisions are coordinated and
synchronized at the frontier of two enterprises.

As for process modeling at the business level (top BSM), several languages
exist. EA*, introduced in Sect. 3.1.1, is chosen to model processes at the BSM level
due to its independence regarding IT consideration, its hierarchical decomposition,
and the fact that it can easily model three supported resources: material, human and
IT. It was developed as an answer to the previous issues encountered with other
enterprise modeling languages regarding its capacity to represent interoperability
[35]. However, EA* is chosen to capture business process models at a
high-semantic level, independently from any technological or detailed specifica-
tions in MDISE. Service-oriented modeling and architecture principles [37]
developed by IBM were also considered, but these languages are more IT oriented
and thus were far away from our requirements. EA* provide at top BSM a common
and explicit graphical notation for business process modeling of enterprises inter-
faces within MDISE, so it fits business-oriented people requirements, who need to
describe and communicate high-level business processes involving enterprise
resources with the help of a simple and explicit formalism. In comparison with
other initiatives such as BPMNZ2.0, it relies on a reduce set of graphical objects and
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focus on the “business” aspects of enterprise processes. The accessible syntax of
EA¥* facilitates the design of business process.

To recap, at the top of BSM in MDISE, GRAI grid and EA* facilitate the
modeling of business process and decision at the interface of the enterprise with its
environment, offering a scalable view of the decision and process modeled. This
level is addressed to users responsible of the creation of the first model, business
people responsible of the management, and to technical developers responsible of
the development of business process modeling tools. As a graphical modeling
language, EA* and GRALI grid provide business users and analysts standards to
visualize business processes in an enterprise, and thus in a comprehensible way.

9.4.3 Domain Specific Languages at Bottom BSM

At the bottom BSM, the approach needs to identify and catch different concepts
related to the domains: IT, human, and physical means. To capture these concepts,
models can facilitate description and abstraction. However, it is required to keep a
simple set of modeling notations comprehensible by business users. This method-
ology will drive the BSM concepts down to TIM still independently of technologies.
The proposition provides models to express each domain. Even at BSM, models will
have to consider input/output information coming from the workflow along the
supply chain. To support stakeholders, this methodology will make a library of
potential simulation solutions available to handle them; they will be used to stress the
models and simulate interoperability management scenarios to evaluate their interest.

According to Sect. 4, and at this MDISE stage, it is required to integrate domain
specific models with a process-oriented way for each domain human, IT, and
physical means:

At collaboration time, no orchestration is formalized between participant of two
distinct entities and without any organizational structure between the enterprises.
The idea of MDISE is to better train and support humans in this situation to reach a
better response time in critical situations. The proposition takes advantage of
holacracy structures and rules. Holacracy rules must be described by models. These
models will provide a framework to help