
Chapter 5
Circuit analysis

High level design of VLSI systems assumes correct functionality of the underlying
electrical circuits. Digital systems, for example, utilize clearly distinguishable
binary signals. At lower abstraction layers, however, the electrical signals behave
similar to analog signals. The electrical waveforms therefore satisfy stringent
requirements, such as propagation delay, slew rate, and power dissipation, to satisfy
signal integrity requirements. To evaluate these waveforms, circuit level analysis
of VLSI systems is necessary. Due to the significant increase in the speed and
complexity of integrated systems, accurate and computationally efficient circuit
analysis has gained critical importance over the past decades.

Since the establishment of a mathematical structure for circuit theory in 1827
by G. S. Ohm [394], different methods for circuit analysis have been reported in
the literature. A graph theoretic basis for circuit analysis was described in 1847 by
G. R. Kirchhoff [256] by postulating two laws governing the current and voltage
relationship within an arbitrary electrical circuit. By the late 19th century, the theory
of transient and alternating current was developed, incorporating the concepts of
capacitance and inductance into the circuit analysis process [395]. Nonlinear circuit
theory emerged in the early 20th century, driven by the advent of nonlinear devices,
particularly vacuum tubes [396].

Entering the era of integration, the need for accurate analysis of complex systems
motivated the development of circuit simulation tools. Tensor analysis of electrical
circuits, pioneered in 1934 by G. Kron [397], was a crucial precursor of early
circuit simulators. The Transistor Analysis Program (TAP), developed in 1959
[398], is considered the earliest circuit simulation program [399]. Based on TAP,
more advanced simulation tools were developed, including NET1 in 1963 [400] and
SCEPTRE in 1967 [401], capable of handling a wide range of circuits, including
both passive and nonlinear components. Important advancements in numerical
integration, driven primarily by H. Shichman [402, 403], were vital in creating
CIRcuit analysis PACkage (CIRPAC) [403] which exhibited an order of magnitude
speedup as compared to other simulators of the time.
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Fig. 5.1 An example of AC
analysis of a low pass filter
using SLIC [261]. a) Target
circuit, and b) SLIC code.
Resistor R1, inductor L1, and
capacitor C1 are described on
lines 4 to 6. Note the
similarity with SPICE syntax.
The TEMP statement specifies
the operating temperature of
the circuit. The GAIN
statement specifies the output
(03 and 00) and input (01
and 00) ports and the type of
analysis (e.g., AC voltage
transfer function). The range
of frequencies is 0.1 to 100
MHz with ten points per
decade, as specified in the
FREQ statement on line 3.
The input is terminated with
the END statement.

01 02 03R1 L1

C1

+

-

+

-

Vin Vout

a)

1. TEMP 300.0
2. GAIN 01 00 03 00 V/V AC
3. FREQ 10 0.1 100
4. R1 01 02 10.0
5. L1 02 03 200.0E-12
6. C1 03 00 10.0E-12
7. END

b)

The application of sparse matrix analysis to circuit simulation was a crucial
advancement in the Advanced STatistical Analysis Program (ASTAP), developed in
IBM in 1971 [404], significantly reducing memory requirements. Variable time step
integration further improved accuracy and runtime by increasing or reducing the
time resolution if the rate of change in the parameters is, respectively, high or low
[404]. Other notable circuit simulators of the early 1970’s include Computer Analy-
sis of Nonlinear Circuits, Excluding Radiation (CANCER) [260], and Simulator for
Linear Integrated Circuits (SLIC) [261], which utilized advanced linear algebraic
methods for linearization, numerical stability, and accuracy control. An important
feature of CANCER and SLIC was the user friendly input description language
that contributed to the widespread adoption of these tools in both the industrial and
academic communities. An example of a circuit described in the SLIC language is
shown in Fig. 5.1. Note the similarity with current circuit simulation tools. Since an
electrical circuit is fundamentally a graph, only connectivity information is required
to describe a circuit, enabling efficient textual representation of the system.

The popularity of CANCER in the academic community motivated the devel-
opment in 1973 of the open source Simulation Program with Integrated Circuit
Emphasis, commonly known today as SPICE [399]. The second version of SPICE,
released in 1975 [50], became the worldwide standard for circuit simulation. The
success of SPICE2 can be largely attributed to the applicability of the tool to a wide
range of linear and nonlinear circuits. This crucial feature of SPICE2 is achieved
by utilizing modified nodal analysis (MNA), a robust method for numerical circuit
analysis [405].
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5.1 Modified nodal analysis

First presented in 1975 [64], MNA is a versatile method for analyzing linear circuits.
The impedances, current sources, voltage sources, and nonlinear devices within a
circuit are described in matrix form. If the conductance of each wire, voltage of each
voltage source, and current of each current source is known, the potential difference
across each edge (i.e., a circuit element, such as a resistor or current source) can be
determined.

Suppose a circuit is represented by a directed multigraph G = (V ,E), the
direction of the edges is arbitrary chosen, and the edge set is composed of five
subsets,

E = Ev ∪ Ei ∪ Er ∪ Ec ∪ El, (5.1)

each representing, respectively, independent voltage sources, independent current
sources, resistors, capacitors, and inductors. Recall from Subsection 3.4.1 that Yd is
the incidence matrix of a directed graph where an entry is

yn,e =

⎧
⎪⎨

⎪⎩

1, if the positive terminal of element e connected to node n (5.2a)

−1, if the negative terminal of element e connected to node n (5.2b)

0, otherwise. (5.2c)

The elements within the network can be ordered such that

Yd = [
Yv Yi Yr Yc Yl

]
, (5.3)

v =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

vv

vi

vr

vc

vl

⎤

⎥
⎥
⎥
⎥
⎥
⎦

, (5.4)

i =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

iv
ii
ir
ic
il

⎤

⎥
⎥
⎥
⎥
⎥
⎦

, (5.5)

where v ∈ R
|E| and i ∈ R

|E| are vectors of, respectively, the voltage across
and current through the corresponding element, and subscripts v, i, r , c, and
l indicate the type of circuit element, respectively, the independent voltage and
current sources, resistors, capacitors, and inductors. The elements of ii ∈ R

|Ei |
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represent the current through the independent current sources and are known a
priori. The remaining current and voltage vectors are related via the following
relationships [406],

ir = Gvr , (5.6)

ic = C d

dt
vc, (5.7)

vl = L d

dt
il , (5.8)

where G ∈ R
|Er |×|Er | and C ∈ R

|Ec|×|Ec| are diagonal matrices representing,
respectively, the conductance and capacitance of the respective elements, and L ∈
R

|El |×|El | is the inductance matrix representing the self- and mutual inductance
within a circuit. Note that L is a diagonal matrix if the mutual inductances are
ignored.

The primary equation governing the static analysis of circuits without dependent
sources can be formulated as

[
G Yv

YT
v 0

]

e = Yi ii , (5.9)

where e ∈ R
|V | is the vector of voltage at each node, and G = YgGYT

g is the
conductance matrix of a resistive network.

By constructing and solving (5.9), the steady state voltage at each node can be
determined. Practical VLSI circuits however contain circuit elements that display
transient behavior. These elements include linear primitives, such as capacitors and
inductors, and nonlinear elements, such as transistors and memristors. To model
the behavior of these elements, numerical differentiation is applied. Each transient
element is replaced by an equivalent circuit element called a companion model that
includes resistors and independent sources. For example, the transient current iC(t)

through a capacitor as a function of time t is

iC(t) = C
dvC(t)

dt
, (5.10)

where C is the capacitance and vC is the voltage across the capacitor. Discretization
by the Backward Euler method yields

iC(tk) = C

h
vC(tk) − C

h
vC(tk−1), (5.11)
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where tk−1 and tk are consecutive discrete time instants, and h is the time step. This
expression is equivalent to

iC(tk) = geqvC(tk) + ieq , (5.12)

where geq is the equivalent instantaneous conductance of the capacitor,

geq = C

h
, (5.13)

and ieq is the equivalent current source across the capacitor,

ieq = −C

h
vC(tk−1). (5.14)

During transient analysis, a capacitor is replaced by an equivalent companion model,
as shown in Fig. 5.2a. During each time step, the transient parameters within the
model are adjusted, modeling the instantaneous behavior of the element.

C

v−

v+

ieq =
C

h
vk−1
+ − vk−1

−
)

vk−1
+

vk−1
−

ik

geq =
C

h

a)

b)

Fig. 5.2 Companion models for transient analysis of circuits. a) Capacitor model, and b)
independent voltage source model
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In matrix form, the companion models transform (5.9) into

[
A Yv

YT
v 0

]

x +
⎡

⎣
C 0 0
0 L 0
0 0 0

⎤

⎦
d

dt
x =

[
Yi ii
0

]

, (5.15)

or, in a more compact form,

G̃x + C̃ẋ = b (5.16)

where

A =
[

G Yl

−YT
l 0

]

, (5.17)

x =
⎡

⎣
e
il
iv

⎤

⎦ , (5.18)

and C = YcCYT
c is the capacitance matrix [406].

Discretizing (5.15) yields

(

G̃ + 2

h
C̃

)

xk = bk + bk−1 − xk−1
(

G̃ − 2

h
C̃

)

, (5.19)

where k is the iteration number. Equation (5.19) is a system of linear equations.
MNA-based transient analysis therefore requires an iterative solution of a system of
linear matrix equations for each time step.

The primary advantage of MNA is versatility. Any linear circuit can be analyzed
with MNA. To analyze nonlinear devices within a circuit, such as transistors,
memristors, and magnetic tunnel junctions, linearized models are used [407, 408].
These models approximate the device behavior around a specific operating point.
The computational and memory complexity of MNA is however of great concern.
The runtime to solve a linear equation grows superlinearly with the number of
nodes, requiring significant computational time for large systems, as in VLSI
systems [145]. Furthermore, matrices G̃ and C̃ lose the symmetric positive definite
(SPD) property in the presence of independent voltage sources. Efficient algorithms
suited for SPD matrices, such as Cholesky factorization [409] or conjugate gradient
method [410], can therefore no longer be used to solve (5.15), requiring more
expensive algorithms such as LU factorization [411].

To preserve the SPD property, those circuit elements producing the voltage
source and additional nodes within the network can be transformed using a Norton
equivalent circuit to eliminate the voltage source and any associated rows and
columns. An example of a Norton equivalent of an independent voltage source
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connected in series with a resistor is shown in Fig. 5.2b [412]. By eliminating the
independent voltage sources, (5.15) becomes

[
G Yl

−YT
l 0

]

e +
[
C 0
0 L

]
d

dt
e = Yi ii , (5.20)

yielding the SPD matrix
(
G̃ + 2

h
C̃

)
in (5.19) [406].

Despite restoring the SPD property, the analysis of large circuits requires
significant computational resources. Direct linear matrix solvers place excessive
demand on the memory during computations of extremely large networks. Alter-
native methods have been introduced to circumvent the superlinear complexity
of the circuit analysis process. For example, a significant structural similarity
exists between linear electrical circuits and finite element discretization of partial
differential equations (PDE). Methods for accelerated solution of PDEs are therefore
often applicable to the analysis of linear circuits. Many approaches utilize graph
theory to accelerate the analysis process. A variety of techniques for fast circuit
analysis is described in the upcoming sections.

5.2 Iterative numerical methods

Both DC and transient forms of MNA can be represented as a standard system of
linear equations [65],

Ax = b, (5.21)

where x is the vector representing the voltage at each node and the current through
each voltage source within a network, and b is the vector of the current being
injected and the voltage sources. Network models of modern ICs are prohibitively
large, disallowing the use of direct solution methods such as LU factorization or
Cholesky factorization [411]. Iterative solvers, such as the conjugate gradient (CG)
method [410] or generalized minimal residual method (GMRES) [413], should
therefore be used to circumvent this limitation.

Reformulating (5.21) yields

b − Ax = 0. (5.22)

If vector x is replaced by vector x′, (5.21) becomes

b − Ax′ = r, (5.23)
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where r is called a residual. Observe that the norm of the residual ||r|| becomes
smaller if x′ is close to x. Iterative linear equation solvers attempt to minimize ||r||
by iteratively adjusting vector x′, thereby closely approximating the exact solution x.

Classic iterative algorithms are stationary methods [414] that represent a system
of equations as

xk = Bxk−1 − c, (5.24)

where xk is the approximation of the solution after the kth iteration, and matrix
B and vector c depend upon the chosen iterative method. Note that matrix B and
vector c remain invariant during the iterative process, hence the methods are called
stationary [415]. Classical stationary methods operate by splittingmatrix A into two
matrices [415],

A = M − N. (5.25)

The kth iteration of these methods is

xk = M−1
(
Nxk−1 − b

)
. (5.26)

Common iterative methods suggest different methods for splitting matrix A [416],

M =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

D, Jacobi method (5.27a)

D − E, Forward Gauss-Seidel method (5.27b)

D − F, Backward Gauss-Seidel method (5.27c)

1

ω
D − E, Successive OverRelaxation (SOR) method, (5.27d)

where ω is the relaxation parameter, E and F are, respectively, the strictly lower
and strictly upper triangular parts of A, and D is the diagonal part of A.

Advanced iterative methods are typically not stationary, i.e., the terms of (5.24)
are not maintained constant. The CG method [410] is one of the most common
non-stationary iterative method for solving systems of the form described by (5.21)
when matrix A is symmetric positive definite (SPD). The algorithm is based upon
the observation that the exact solution x minimizes a convex function,

f (x) = 1

2
xT Ax − bT x. (5.28)

The solution of (5.21) is determined by minimizing f (x) via gradient descent [417].
The gradient of function f (x) is

∇f (x) = Ax − b. (5.29)
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The solution is found by iteratively shifting f (x) in the direction of steepest descent,

xk+1 = xk−1 − αk
(
Axk−1 − b

)
, (5.30)

or, alternatively,

xk = xk−1 + αkrk−1, (5.31)

where αk is the step size during iteration k.
A limitation of the CG method is the limited applicability of the algorithm,

since only SPD matrices are considered. Furthermore, the upper bound on the
number of CG iterations before converging is equal to the size of the matrix,
impractical for large systems. A large variety of solvers is proposed that partially
or fully overcome these limitations, including the BIConjugate Gradient (BICG),
BIConjugate Gradient STABilized (BICGSTAB), MINimal RESidual (MINRES),
and Generalized Minimal RESidual methods (GMRES) [418].

Preconditioning is often used to accelerate the convergence of the iterative
methods. During preconditioning, a linear matrix equation is transformed into

Ãx̃ = b̃ (5.32)

where

Ã = M−1
1 AM−1

2 , (5.33)

x̃ = M2x, (5.34)

b̃ = M−1
1 b, (5.35)

and M = M1M2 is a nonsingular matrix called a preconditioner [418]. After
solving (5.32), (5.34) is solved to determine x. Proper choice of the preconditioner
accelerates the convergence of the iterative solvers, ensuring that determining M

and solving (5.32) and (5.34) are more efficient than solving the original system.
The computational cost of producing the preconditioner should however be small
since the difficulty in producing matrix M negates the computational benefits.

Matrix M , described in (5.25), and (5.27a) to (5.27d) can be used as a
preconditioner during the circuit analysis process [416]. Several features make
methods (5.27a) to (5.27d) attractive. Systems involving matrix M are relatively
easy to solve, since M is either diagonal or triangular. Systems produced in practical
VLSI systems are sparse diagonally dominant matrices. The diagonal elements of a
Laplacian matrix of an underlying graph are typically larger than the non-diagonal
elements. The number of nodes of an underlying circuit graph is proportional to the
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number of edges, since most nodes are only connected to the immediate neighbors.
Systems composed of sparse diagonally dominant matrices are well suited for
preconditioning using split matrices, significantly accelerating the convergence
process [418].

Other popular preconditioning approaches exist that include incomplete factor-
ization and approximate inverse. Incomplete LU (ILU) factorization, for example,
is based on approximating A ≈ L̃Ũ [416], where L̃ and Ũ are sparse upper and
lower triangular matrices, yielding a preconditioned system,

L̃−1AŨ−1(Ũx) = L̃−1b. (5.36)

Incomplete Cholesky decomposition is a similar procedure restricted to positive
definite matrices where the sparse approximation A ≈ RT R is determined. The
SParse Approximate Inverse (SPAI) [419] preconditioner exhibits performance
superior to incomplete factorization methods [420] when applied to diagonally
dominant problems.

The iterative methods and preconditioners described in this section are con-
sidered general purpose, effectively handling a wide range of problems while
significantly reducing the memory requirements. Superior performance can however
be achieved by applying advanced analysis methods, exploiting special features
of practical circuit graphs, such as sparsity, smoothness, and graph partitioning.
The upcoming subsections describe enhancements to MNA-based circuit analysis,
including domain decomposition, multigrids, and hierarchical matrices.

5.2.1 Domain decomposition

Due to the superlinear complexity of linear system solvers, the divide-and-conquer
approach [421] can be effective in tackling these problems. Two advantages make
divide-and-conquer algorithms particularly attractive for circuit analysis. If solving
a problem requires O (np) time, where n is the problem size and p > 1,
decomposing the problem into m sequentially solved parts yields a runtime of

O
(

np

mp−1

)
, assuming negligible computational overhead. Due to the superlinear

complexity of linear system solvers, i.e., p > 1, this approach can be effective
in reducing the computational burden. Furthermore, these m parts can be processed
in parallel, further reducing the runtime.

Domain decomposition (DD) is one of the most successful divide-and-conquer
strategies for circuit analysis. The main principle of the DD technique is partitioning
a circuit graph G = (V ,E) into multiple subgraphs Gi = (Vi, Ei), i ∈ {1, . . . , m}
and a subgraph of interface nodes G0 = (V0, E0). An illustrative example is
shown in Fig. 5.3. Observe that the interface nodes do not belong to any subgraph,
and no node belongs to more than one partition. Note that this limitation not
only prohibits conduction between the subgraphs, but also forbids capacitive and
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Fig. 5.3 Domain
decomposition process within
a grid. a) A large mesh is
divided into m = pq

subdomains {�1, . . . , �pq }
(gray nodes) and interfaces
(black nodes). b)
Connectivity within domain i

is described by matrix Ai ,
while connections with the
interface are described in Ei

and Fi . A� encodes the
connectivity within the
interface. The dimensions of
A� are typically smaller than
the dimensions of Ai .

1 2

p++1 p+2

p

2p

q(p 1)+2 pqq(p 1)+1

a)

A1 0

0 A2 0

0

Apq00

E2

E1

Epq

AFpqF2F1

b)



160 5 Circuit analysis

inductive coupling between subdomains. The standard linear equation of (5.21) can
therefore be represented as an “arrowhead matrix” [422],

⎡

⎢
⎢
⎢
⎢
⎢
⎣

A1 0 . . . 0 E1

0 A2 . . . 0 E2
...

...
. . .

...
...

0 0 . . . Am Em

F1 F2 . . . Fm A0

⎤

⎥
⎥
⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎢
⎢
⎣

x1
x2
...

xm

x0

⎤

⎥
⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎢
⎣

b1
b2
...

bm

b0

⎤

⎥
⎥
⎥
⎥
⎥
⎦

, (5.37)

where Ai represents the connectivity within subgraph Gi , Ei and Fi represent the
connectivity between Gi and interface G0, A0 represents the connectivity among
the interface nodes, xi denotes the unknown voltages and currents within Gi , and bi

is the vector of current and voltage sources connected to Gi . Equation (5.37) can be
split into two parts,

Ax + Ex0 = b, (5.38)

Fx + A0x0 = b0, (5.39)

where A is a block diagonal matrix produced from subgraph matrices Ai , and F , E,
x, and b are produced by concatenating Fi , Ei , xi , and bi . Solving (5.38) for x and
substituting into (5.39) yields

x = A−1(b − Ex0), (5.40)

(A0 − FA−1E)x0 = b0 − FA−1b. (5.41)

To solve (5.41), P = A−1E and q = A−1b are determined. Due to the block
diagonal structure of A, these equations can be decomposed into m independent
equations,

Pi = A−1
i Ei, (5.42)

and

qi = A−1
i bi . (5.43)

Matrix P and vector q are substituted into (5.41), yielding

(A0 − FP)x0 = b0 − Fq. (5.44)
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Since the size of the interface set |V0| is typically much smaller than the size of any
subgraph |Vi |, (5.44) requires relatively small computational resources. Equation
(5.40) is transformed into

x = q − Px0. (5.45)

Similar to (5.42) and (5.43), (5.45) can be decomposed into m independent systems,

xi = qi − Pix0. (5.46)

Due to the mutual independence of these expressions, (5.42), (5.43), and (5.46) can
be solved in parallel. Furthermore, due to the small dimensions (i.e., relatively few
interface nodes), the total runtime to solve m systems is smaller than the runtime to
solve the original system, yielding additional performance improvement.

One of the earliest applications of domain decomposition in circuit analysis
is discussed in [423]. A DRAM system composed of 130,000 transistors was
successfully analyzed using 27 connected workstations operating in parallel. On-
chip power delivery system analysis using domain decomposition is proposed
in [422]. Domain decomposition combined with direct LU factorization of the
subdomains achieved the maximum performance in case studies, completing a DC
analysis of a ten million node system in 450 seconds.

The major advantage of domain decomposition is parallelization. Increasing
the number of subdomains however increases the size of the interface graph G0,
potentially negating any performance gains. Overlapping domain decomposition
modifies the original non-overlapping technique by allowing partitions to overlap
[424], as illustrated in Fig. 5.4. The combined analysis of overlapping domains is
based on the Schwarz method [425] and is used in [426] to complete the analysis of
a power grid with 192 million nodes in five minutes while utilizing 1,200 processors
operating in parallel.

5.2.2 H-matrix

Another divide-and-conquer approach to circuit analysis is the application of the
hierarchical matrix (H-matrix) technique. Assume the target graph G = (V ,E) is
described by a nodal analysis matrix A. The method commences with hierarchical
clustering of the entries within matrix A, yielding cluster tree T , as illustrated in
Fig. 5.5d. The first step of top-down clustering [427] splits matrix A into multiple
submatrices,

A =
⎡

⎢
⎣

A1,1 . . . A1,m
...

. . .
...

Am,1 . . . Am,m

⎤

⎥
⎦ . (5.47)
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1

2

3

m

a)

A1

A2

A3

Am

b)

Fig. 5.4 Overlapping domain decomposition technique. a) Overlapping domains within the mesh.
The black dots represent shared nodes. b) Resulting MNA matrix with overlapping sections
corresponding to shared nodes.

Blocks Ai,j ∈ R
p×q become the children of the root node of cluster tree T . The

diagonal blocks Ai,i , i ∈ {1, . . . , m} are typically full rank matrices, while the off
diagonal blocks are rank deficient. If rank ki,j of block Ai,j is smaller than the
specified threshold kmin, the matrix can be efficiently factorized as the product of
two small matrices,

Ai,j = MNT , (5.48)

where M ∈ R
p×k , N ∈ R

q×k , and k � p, q. Any block within T is split if the size
of the block is greater than the specified minimum size mmin and if the rank of the
matrix is greater than kmin. Otherwise, the block is not split and is stored in factored
form.

The main purpose of an H-matrix is a cluster tree representation of matrix
A. The resulting block matrix is illustrated in Fig. 5.5c. Those leaves stored in
factored form require relatively low processing runtime. These features enable an
efficient approximation of the LU factorization and inverse of matrix A, yielding
significant improvement in runtime and memory. For example, the complexity
of LU factorization is reduced from O

(
n3

)
to O

(
n (log n)2

)
. Partial element

equivalent circuit analysis of a power supply layout is presented in [428], achieving
up to four orders of magnitude speedup and up to a 50 fold reduction in memory
requirements. The compatibility of the H-matrix with finite element analysis
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Fig. 5.5 Construction of an H-matrix of a sparse matrix describing a circuit with 256 nodes and
471 edges. The black dots represent the sparsity pattern of the original matrix. a) The original
matrix is divided into four submatrices. b) Submatrices 1 and 2 are significantly rank deficient
and are therefore not divided. Submatrices 0 and 3 are further split into four submatrices. c) H-
matrix after the third iteration. d) Cluster tree T after three iterations. e) Final H-matrix after five
iterations. The densest regions along the diagonal are split until the minimum submatrix size is
achieved.

enables efficient fine grained thermal analysis of a three-dimensional IC with more
than a million discrete points [429].
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5.2.3 Multigrid methods

The earliest works on multigrids date back to the 1960’s when R. P. Fedorenko
suggested doubling the mesh spacing to solve the Poisson’s equation [430]. This
approach allowed an approximate solution of a coarse grid to be efficiently
determined. The coarse grid solution is subsequently mapped onto the original grid,
providing a good initial point for solving the original grid. An order of magnitude
reduction in the number of iterations was reported when using a coarser grid [430].
The method, applied in [430], was subsequently formalized in the 1970’s by A.
Brandt [431] and W. Hackbusch [432].

Three cornerstone operations constitute the multigrid method, namely smooth-
ing, restriction, and prolongation. Fundamentally, smoothing is the partial appli-
cation of an iterative solver, as described in Section 5.2. Several iterations of
an iterative solver significantly reduce the residual error, thereby shifting the
approximate solution closer to the exact solution. Consider, for example, a one-
dimensional Poisson’s equation,

f ′′(x) = sin(x), (5.49)

with boundary conditions f (0) = f (1) = 0. The problem is discretized using the
trapezoidal rule,

f (x + h) − 2f (x) + f (x − h)

h2
= sin(x), (5.50)

where h is the discretization step. In matrix form, the equation becomes

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0 0 0 . . . 0 0 0 0
−1 2 −1 0 . . . 0 0 0 0
0 −1 2 −1 . . . 0 0 0 0
...

...
...

...
. . .

...
...

...
...

0 0 0 0 . . . 0 −1 2 −1
0 0 0 0 . . . 0 0 0 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

x =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

sin(0)
sin(h)

sin(2h)
...

sin(1 − h)

sin(1)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (5.51)

The system is solved using the Loose GMRES (LMGRES) method [433]. Con-
vergence of the algorithm is depicted in Fig. 5.6. Observe that any difference
between the adjacent points is quickly reduced, i.e., the high frequency errors are
significantly dampened during each iteration.

Eliminating low frequency errors however requires significantly longer runtime.
To overcome this issue, a restriction step is performed to coarsen the domain of
the system. The frequency of the error is therefore effectively increased, permitting
efficient elimination by smoothing. Formally, restriction of function f : E → F is
function f |A : A → F , where A ⊂ E and f (x) = f |A(x)∀x ∈ A. In the context of
multigrids, this operation is effectively coarsening, reducing the number of points
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Initial guess
Iteration 1
Iteration 20
Final Result

Fig. 5.6 Convergence of Poisson’s equation using LMGRES method. The one-dimensional space
is discretized using 1,001 points. The initial guess is a vector of random numbers. After the first
iteration, the high frequency components of the initial vector are significantly reduced, producing
a smoother curve. To eliminate the remaining low frequency components, additional iterations are
necessary. In this example, the solution is achieved after 62 iterations.

within the grid. Suppose the grid is described as a graph G0 = (V0, E0), and
function v : V → Rmaps each node to the node voltage. The goal of the coarsening
operation is a reduced version of an initial grid G1 = (V1 ⊂ V0, E1), where the
voltage within the original system v0(n) is equal to the voltage within coarse system
v1(n) at any node n ∈ V1. To recover the original solution from the approximate
coarse solution, a prolongation operation is performed. Using interpolation, the
solution of a coarse grid is mapped onto a fine grid. The resulting vector is typically
a close approximation of a solution requiring few iterations to converge.

A single restriction procedure is often insufficient for significant acceleration.
The restriction process is therefore repeatedly applied to further reduce the size of
the mesh. Multiple prolongation operations are therefore necessary to recover the
original grid. These procedures are formalized in cycles where a system undergoes
a series of restrictions, prolongations, and smoothing. The most common cycles
are V-cycle, W-cycle, and F-cycle [434], as illustrated in Fig. 5.7. These techniques
tradeoff robustness with computational speed. The V-cycle is typically faster than
the other cycle types but may fail to converge to a correct result. In contrast, the
F-cycle requires more operations but is highly robust and accurate.
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Fig. 5.7 Multigrid cycles. a) V-cycle, b) W-cycle, and c) F-cycle. ‘S’, ‘R’, and ‘P’ denote,
respectively, the smoothing, restriction, and prolongation operations. At the coarsest level, a system
is typically solved using an exact solver. This operation is denoted by ‘E.’

One of the earliest applications of geometric multigrids to VLSI systems is
described in [435]. A relatively straightforward application of geometric multigrids
in [435] yields a 300 fold improvement in runtime with a peak error of over 20%.
Geometric multigrids are highly suitable for analyzing regular physical layouts,
supporting the efficient analysis of circuits with tens of millions of nodes [436].

The theoretical computational complexity of the geometric multigrid is O(|V |)
[437], an attractive feature in the analysis of large systems. A major limitation
of geometric multigrids is reliance on the structural regularity of the problem
domain. The algebraic multigrid (AMG) is an important generalization of geometric
multigrids where no structural information is required for restriction and prolon-
gation. One of the earliest applications of AMG to circuit analysis is proposed in
[438], where a 16 to 20 fold improvement in runtime is achieved. Another notable
result is PowerRush, an AMG-based DC and transient simulator exhibiting linear
complexity [439, 440]. Up to nine levels of grid reduction are reported in [439],
completing the analysis in 169 seconds after reducing a circuit with 38 million
nodes to 264 nodes. The efficiency of AMG simulation enables large scale circuit
optimization. For example, in [441], decoupling capacitor allocation is performed
using AMG, optimizing circuits with up to a million nodes.
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Restriction, smoothing, and prolongation are highly parallelizable due to the
small number of steps with few dependencies [442]. These features enable GPU-
based geometric multigrid acceleration of the circuit analysis process, achieving up
to two orders of magnitude speedup [442, 443].

5.3 Non-MNA techniques

MNA and associated enhancements enable the efficient analysis of a wide range
of complex circuits. Alternative techniques however exist that avoid MNA-based
equations, often yielding superior performance as compared to MNA-based meth-
ods. Three techniques are presented in this section, namely, scattering parameters,
random walks, and lattice graph analysis.

5.3.1 Scattering parameters

The detailed structure of an IC component is often unknown. This situation
frequently occurs in two cases. If the components of the integrated system are
supplied by a third party vendor, the internal structure of the components is treated
as intellectual property (IP) and is typically not described or is purposely obfuscated
[444, 445]. The structure of a component can also be highly complex, complicating
the construction of a distributed model [75]. A scattering parameter (S parameter)
model is often utilized in these cases, characterizing the frequency response of
a circuit to input stimuli without revealing the internal structure (a black box).
Examples of an S parameter model with two and n ports are depicted in Fig. 5.8.
Parameters ak and bk correspond to normalized power waves [446],

ak = 1

2gk

(Vk + IkZk) , (5.52)

bk = 1

2gk

(
Vk − IkZ

∗
k

)
, (5.53)

where Zk is the reference impedance at port k. Z∗
k denotes the complex conjugate

of Zk and

gk = √|�(Zk)|. (5.54)

By measuring the response bm of a circuit at port m in response to a unit power
wave at port k, scattering parameter sk,m is
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Fig. 5.8 Scattering parameter (S parameter) model of a component. a) Two port network, and b)
multiport network. The component is treated as a black box with no knowledge of the internal
structure, as opposed to a grey or white box utilizing, respectively, partial or complete structural
information [447]. By applying stimuli at different ports of the components, the response of the
system at each port is determined. The relationship between an excitation at port i and the response
at port j is described by S parameters.

sk,m = bm

ak

. (5.55)

In a multiport network, scattering parameter matrix S is produced that describes the
relationship among the signals at different ports,

⎡

⎢
⎢
⎢
⎣

b1

b2
...

bn

⎤

⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎣

s1,1 s1,2 . . . s1,n

s2,1 s2,2 . . . s2,n
...

...
. . .

...

sn,1 sn,2 . . . sn,n

⎤

⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎣

a1

a2
...

an

⎤

⎥
⎥
⎥
⎦

. (5.56)

Note that any scattering parameter is a function of frequency. Measurements should
therefore be performed at different frequencies to evaluate the response over the
entire bandwidth of interest.

A major advantage of the S parameter model is the applicability of the model
to an arbitrary system. The S parameter model requires no information describing
the internal structure of the system. Furthermore, based on an S parameter matrix,
other electromagnetic characteristics of a system can be determined [446]. Based
on open circuit impedance (Z) parameters, for example, crucial parameters can be
determined such as the self- and mutual inductances within a network [332].

Z = G−1
0 (I − S)−1 (

SZ0 − Z∗
0

)
G0, (5.57)
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where I is the identity matrix,

G0 =

⎡

⎢
⎢
⎢
⎣

g1 0 . . . 0
0 g2 . . . 0
...

...
. . .

...

0 0 . . . gn

⎤

⎥
⎥
⎥
⎦

, (5.58)

and

Z0 =

⎡

⎢
⎢
⎢
⎣

Z1 0 . . . 0
0 Z2 . . . 0
...

...
. . .

...

0 0 . . . Zn

⎤

⎥
⎥
⎥
⎦

. (5.59)

Other parameters widely used during the design of analog circuits, such as Y ,
ABCD, or h parameters [446], can also be derived from the S parameters.

5.3.2 Random walks

A random walk is a stochastic process that describes a succession of steps of an
object within a mathematical space [448]. A classic example of a random walk is a
random walk along a one-dimensional integer axis, as illustrated in Fig. 5.9a. The
particle is initially at position 0 and, every time step, the particle moves in a random
direction. Different types of space and probability distributions of the transitions
in a random walk exist, such as a discrete two-dimensional space, continuous
two-dimensional space with a variable step length (such as Lévy Flight [449]),
or a biased, continuous walk in three-dimensional space (see Figs. 5.9b to 5.9d).
Common issues relating to a random walk include the expected distance of an object
from the source after n steps, probability of a return to the origin after n steps, and
probability of reaching a before reaching b, where a and b are arbitrary points within
the space.

Manifestations of a random walk in physical systems have been studied before
this term was first coined. In 1880, Lord Rayleigh studied the amplitude of
oscillations due to multiple strings vibrating at the same frequency with a random
phase [450]. This problem is analogous to a randomwalk on a one-dimensional axis.
The erratic movement of dust particles, what will later be called Brownian motion,
was discovered as early as 1784 by the Dutch scientist, J. Ingen-Housz [451]. A
formal study of random walks has been applied to different physical phenomena,
including diffusion in molecular physics [452], genetic drift in genetics [453], and
measuring certain features of the World Wide Web [454, 455].
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Fig. 5.9 Examples of a randomwalk. a) Discrete time one-dimensional randomwalk on an integer
axis. b) Three unbiased random walks within a two-dimensional integer grid. c) Unbiased random
walk within a continuous two-dimensional space. The direction of the step is uniformly random.
The step size follows a Cauchy distribution. This type of random walk is commonly referred
to as Lévy Flight [449]. d) Biased random walk within a three-dimensional integer space. The
probability of a transition toward +∞ is greater than the probability of a transition toward −∞
along the x, y, and z axes.

One of the most extensively studied spaces of a random walk is a graph, where
a particle moves towards the neighboring vertex at each time step. The probability
of moving from vertex a toward vertex b is proportional to the weight of the edge
(a, b). The analogy between a random walk and an electrical network was studied
by C. St. J. A. Nash-Williams in [456]. The random walk equivalent of the effective
resistance between a and b is the commute time between nodes a and b, i.e., the
expected number of steps in a random walk starting at a, visiting b, and returning
to a (see Fig. 5.10). The conductance of a resistor is equivalent to the weight of
an edge within a network. The probability of a transition along a specific edge is
proportional to the weight of that edge. A particle moving in a random walk is
therefore less likely to transition along a high resistance edge (or path).

The analogy between electrical circuits and random walks can be exploited in
the analysis of electrical circuits. Different simulation tools based on random walks
have been explored in the literature. By performing a random walk experiment
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Fig. 5.10 Effective resistance between arbitrary nodes a and b is equivalent to the expected
number of steps for a random walk to visit node b while starting and returning to node a, a)
electrical circuit, and b) equivalent graph. The probability of transitioning towards a neighboring
node is proportional to the conductance of the corresponding edge.

multiple times, the average number of steps converges towards the commute time
which corresponds to the effective resistance. The earliest application of a random
walk to linear circuit analysis is described in [70]. A major advantage highlighted
in [70] is the linear relationship between circuit size and computational complexity.
Different circuit simulation tools have been described in the literature, achieving
a significant speedup as compared to conventional circuit analyses [70, 457–459].
Another aspect is the locality of the random walk. If the target nodes are located
close to each other within a network, the random walk is more likely to terminate
while exploring only a small portion of the network. This result is highly desirable
when studying system perturbations, since only the affected portion of the system is
analyzed. This advantage is exploited in [460] in the analysis of incremental changes
in power grids.

A major issue pertaining to random walk-based simulation tools is the number
of random walk experiments required to achieve a sufficiently small error. The error
ε of a random walk is inversely proportional to the square root of the number of
experiments M ,

ε ∝ 1√
M

. (5.60)

To reduce the error by 50%, the number of experiments should be increased four
fold. To overcome this issues, the ’importance sampling’ technique is introduced
in [461], significantly improving the speed of convergence. Another challenge of
random walk-based tools is the possibility of excessively long walks, negating any
computational speedup [70]. This issue can be eliminated by limiting the length of
the random walk. The accuracy of the solution is however degraded by limiting the
length.

Random walks are found in a wide variety of VLSI applications. A sensitivity
analysis of VLSI power networks [462], for example, is a notable application, where
the critical parameters affecting a power grid are evaluated. Matrix preconditioning
based on random walks is described in [463], significantly accelerating the circuit
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analysis process. Other notable applications of random walks in VLSI include
modeling of thermal behavior [464], decoupling capacitor placement [465], and
electromigration analysis [466].

5.3.3 Lattice graph

Due to the large scale of VLSI systems, the physical structures are often highly
regular, composed of millions to billions of identical elements distributed within
a system. The on-chip power grid is a prominent example of a regular structure
composed of two or more layers of identical interconnects. An example of a power
grid is shown in Fig. 5.11a. Grids are highly reliable due to the many redundant
paths. The number of paths connecting two corners of a grid is [467]

(
x + y

x

)

= (x + y)!
x!y! , (5.61)

where x and y are, respectively, the horizontal and vertical dimensions of a grid. The
number of paths in (5.61) grows superlinearly with x and y, yielding a high degree
of redundancy even in relatively small grids. The failure of a single or multiple
wire segments can be tolerated since the remaining wires provide the necessary
connections. Additional benefits of a grid include shielding and decoupling that
reduce parasitic capacitive and inductive coupling in global clock and data lines
[468]. A grid structured power network can be modeled as a two-dimensional
resistive lattice, as shown in Fig. 5.11b [469]. Depending upon the metal pitch and
die size, the dimensions of a grid can vary from hundreds to tens of thousands of
segments [72]. The large dimensions enable the use of infinite mesh methods for
analyzing grid structured power networks.

Multidimensional mesh structures assuming infinite mesh dimensions have been
extensively studied in the literature. In 1936, W. H. McCrea studied the following
problem [470],

“In a rectangular lattice, at every time instant a point P moves from one lattice point to
one of the neighboring points. Each adjacent point has equal probability of being selected.
Determine the probability that the particular boundary point is ultimately reached.”

Variations of this problem on different two- and three-dimensional lattices were
solved by W. H. McCrea and F. J. W. Whipple in 1940 [471], where different finite
and infinite rectangular lattices are analyzed. A notable result is an expression for
the average flow of particles between the source and target points within an infinite
two-dimensional lattice,

G(x, y) = 2

π

∫ π

0

1 − cos(λy) exp(−μ|x|)
sinh(μ)

dλ, (5.62)
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a) b)

Fig. 5.11 On-chip power grid. a) Layout of power (dark grey) and ground (light grey) distribution
networks, and b) power distribution network modeled as a resistive lattice.

where cos(λ)+ cosh(μ) = 2, and x and y denote the number of resistors separating
the source and target points in, respectively, the horizontal and vertical direction.

The link between random walk and circuit theory was not widely recognized in
the 1940’s. An electrical formulation of the problem solved by W. H. McCrea and
F. J. W. Whipple in [471] is

Determine the effective resistance between two arbitrary points (x0, y0) and (x, y) within
a two dimensional grid of resistors with resistance r (see Fig. 5.11b)

An easier problem of determining the effective resistance between adjacent
nodes in an infinite resistive lattice was solved in 1949 [472] based on the principles
of symmetry and superposition. Suppose current 4i is injected at an arbitrary node
a, as illustrated in Fig. 5.12a. Due to symmetry, the current through each of the
four adjacent branches is i. Now withdraw current 4i from neighboring node b.
The current though each adjacent branch is also i, as shown in Fig. 5.12b. By
superimposing these solutions, the current through a resistor connecting a and b

is 2i, as illustrated in Fig. 5.12c. The effective resistance is found by equating the
voltage drop across resistor ab with the voltage drop across the effective resistance
of the grid,

4iReff = 2ir, (5.63)

yielding

Reff = r

2
. (5.64)
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Fig. 5.12 Superposition applied to determine the effective resistance between adjacent nodes a

and b in an infinite two-dimensional resistive lattice. a) Current 4i is injected into node a. Due to
symmetry, the current through each adjacent resistor is i, flowing away from node a. b) Current
4i is drawn from node b. Due to symmetry, the current through each adjacent resistor is i, flowing
towards node b. c) Superposition of current injection and withdrawal. The current through resistor
ab is 2i.

Despite the relative simplicity of the problem for adjacent nodes, the general
problem requires advanced mathematical methods. Different alternative solutions to
the problem of determining the effective resistance within a grid have been presented
in the literature [472] in the context of operational calculus [473], discrete analytic
functions [474], partial differential equations [475–477], random walks [471, 478],
and lattice Green’s function [479]. Notable examples include the expressions by A.
Stöhr [475],

R(x, y) = − 1

2π

∞∫

0

[(

1 − t

ζ

)x+y (

1 − t

ζ 3

)x−y

(1 − ζ t)−x+y
(
1 − ζ 3t

)−x−y
]

dt

t
, (5.65)

ζ = e
2πi
8 , (5.66)

and

R(x, y) = − 1

π

π∫

0

[
λ − √

λ2 − 1
]y

cos xθ
√

λ2 − 1
dθ, (5.67)

λ = 2 − cos θ, (5.68)

F. Spitzer [478],

R(x, y) = 1

8π2

π∫

−π

π∫

−π

1 − cos (xα + yβ)

1 − 1
2 (cosα + cosβ)

dα dβ, (5.69)
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B. van der Pol [473],

R(x, y) = 1

2π

∞∫

0

[

1 −
(

t + i

t − i

)x+y (
t − 1

t + 1

)|x−y|]
dt

t
, (5.70)

and W. H. McCrea and F. J. W. Whipple [471], later rediscovered by G. Venezian
[476] and J. Cserti [479],

R(x, y) = 1

π

π∫

0

1 − e−xμ cos yλ

sinhμ
dβ, (5.71)

coshμ + cos λ = 2. (5.72)

Expressions (5.65) to (5.71) describe uniform resistive lattices. Many practical
VLSI grids are anisotropic, i.e., the resistance along the horizontal dimension is
not the same as the resistance along the vertical dimension. An expression for the
resistance within an infinite anisotropic resistive grid is presented in [469],

R(x, y, k) = kr

π

∫ π

0

2 − e−|x|α cos yβ

sinhα
dβ, (5.73)

where k is the ratio of the horizontal resistance to the vertical resistance, and

k + 1 = k cosβ + coshα. (5.74)

This result has significant value for the analysis of power grids. To determine the
equivalent resistance within an M × N grid using MNA, a solution of the linear
equation of size MN × MN is necessary, requiring prohibitive computational time.
In contrast, the effective resistance between two nodes within a grid can be found
in constant time, assuming these nodes are sufficiently far from the grid boundaries.
A linear complexity, IR voltage drop analysis algorithm is introduced in [480].
The contribution of the voltage sources and current loads to IR voltage drops is
evaluated separately based on the effective resistance computed in constant time.
The solutions are superimposed to determine the total IR voltage drop within a
circuit. The solution is further accelerated by observing that the IR voltage drop
contribution of distant voltage sources and loads is negligible. By restricting the
analysis to the vicinity of a node, the runtime can be drastically reduced while
maintaining the error below 0.5%.
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5.4 Summary

Due to the stringent performance requirements of modern VLSI systems, the
demand for accurate circuit analysis has drastically increased over the past decades.
The immense complexity of modern VLSI systems however makes standard circuit
analysis based onMNA impractical. A wide range of algorithms have been proposed
to reduce the runtime of the circuit analysis process while maintaining sufficient
accuracy. The most prominent techniques are described in this chapter.

Domain decomposition methods split a circuit into multiple independent
domains, thereby reducing the computational complexity and enabling paral-
lelization. In the H-matrix representation, the sparsity of practical matrices is
exploited to produce a cluster tree, enabling efficient algorithms with less memory
requirements and lower computational complexity. Using multigrid techniques, a
solution is initially approximated using a coarse version of the system. The solution
is subsequently determined after interpolation and smoothing operations.

Alternative circuit analysis techniques attempt to accelerate the circuit analysis
process by avoiding costly MNA-based analysis. A complex or obfuscated circuit
can be represented by a multiport network model, efficiently described by S

parameters. In random walk-based methods, the voltage within a grid is determined
statistically, yielding linear computational complexity at a fixed accuracy. The
infinite lattice model can often be used to analyze large grids, often encountered
in on-chip power distribution systems.

Common circuit analysis methods are discussed in this chapter. These methods
enhance traditional MNA processes or follow alternative approaches. Despite
the immense potential, few of these techniques are used in mainstream circuit
analysis methodologies. Further research is required to improve the versatility and
performance of the advanced circuit analysis techniques discussed in this chapter.
For example, a significant limitation of infinite lattice analysis is poor accuracy
near the boundaries of the grid. This limitation is overcome by applying the
image method [71] and infinity mirror technique [72], described, respectively, in
Chapters 6 and 7.
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