
Graphs in VLSI

Rassul Bairamkulov
Eby G. Friedman

Graphs in VLSI

Rassul Bairamkulov • Eby G. Friedman

Graphs in VLSI

Rassul Bairamkulov
University of Rochester
Rochester, NY, USA

Eby G. Friedman
University of Rochester
Rochester, NY, USA

ISBN 978-3-031-11046-7 ISBN 978-3-031-11047-4 (eBook)
https://doi.org/10.1007/978-3-031-11047-4

© The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland
AG 2023
This work is subject to copyright. All rights are solely and exclusively licensed by the Publisher, whether
the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse
of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and
transmission or information storage and retrieval, electronic adaptation, computer software, or by similar
or dissimilar methodology now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors, and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or
the editors give a warranty, expressed or implied, with respect to the material contained herein or for any
errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional
claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

 -2016
39040 a -2016 39040 a

https://doi.org/10.1007/978-3-031-11047-4

To my dear Zhansaya

To my wife and companion in life, Laurie

Preface

Advances in semiconductor fabrication technology have produced explosive growth
in the number of transistors within an integrated circuit (IC). Modern devices consist
of dozens of components, thousands of modules, millions of registers, and many
billions of transistors. Despite the capacity to fabricate exorbitant quantities of
nanoscale devices, converting these transistors into functional products is a complex
multifaceted challenge. Synchronization, power integrity, logic synthesis, and phys-
ical layout represent only a small portion of the many issues encountered during
the very large scale integration (VLSI) design and analysis process. These issues
are only expected to grow in complexity as microelectronic systems evolve due
to three-dimensional integration, shrinking transistor dimensions, and emerging,
beyond CMOS technologies.

Since every integrated system is fundamentally a network, solutions to many of
the challenges inherent to VLSI can be resolved using graph theory. Many forms
of graphs naturally occur at each level of the VLSI system design hierarchy. At
the architectural level, register allocation is often viewed from a graph coloring
perspective. Synchronization of the sequential logic is achieved by optimizing
timing graphs. The electrical characteristics of a VLSI system are determined from
the analysis of circuit graphs. Graph-based partitioning, floorplanning, placement,
and routing are integral parts of the multi-tiered VLSI physical layout process.

The quality and complexity of ICs have been greatly enhanced by graph theoretic
techniques and algorithms. In return, novel practical VLSI applications have
revitalized certain subfields of graph theory. Classic graph theoretic problems, such
as Steiner minimal trees, pathfinding, and graph partitioning, have been extensively
studied and applied, in no small part, due to the practical effectiveness of graph
theory to the design and analysis of VLSI systems. A virtuous cycle of theory and
application has greatly advanced both graph theory and ever more powerful VLSI
systems.

This book is based on the body of research produced by Rassul Bairamkulov
during his doctoral studies from 2017 to 2022 at the University of Rochester under
the supervision of Professor Eby G. Friedman. Two observations inspired this book:

vii

viii Preface

• Despite the significance of graph theory to the design of VLSI circuits and
systems, a comprehensive review of applications of graph theory in VLSI is
currently missing from the literature. Books discussing the overall VLSI design
process typically only provide a basic description of graph theory, while books
focusing on graph theory contain few applications relating to the VLSI design
process. Books discussing specialized topics in VLSI also exist, yet these books
only cover a small subset of graph theoretic applications.

• Despite the apparent omnipresence of graphs in the VLSI system design process,
the authors believe that the full potential of graph theory has yet to be fully
realized in modern VLSI design tools. Many areas of the VLSI design process,
such as system exploration and the integration of emerging technologies, will
require novel design methodologies and algorithms, many of which rely on graph
theory.

These observations are reflected in the organization of this book. The first half
of the book is focused on existing applications of graph theory and algorithms
to the design of integrated systems. After a brief description of the fundamental
concepts of graph theory, common applications of graph theory at different levels
of abstraction within the VLSI system design process are discussed. Individual
chapters are dedicated to synchronization and circuit analysis, two particularly
important issues in the VLSI design process which are deeply affected by graph
theory.

The second half of the book is focused on three novel unorthodox applications
of graph theory. The first application is the Infinity Mirror Technique (IMT) – a
constant time mesh analysis algorithm accelerating the IR drop analysis process in
practical on-chip power networks by several orders of magnitude. An IMT-based
computationally efficient algorithm for on-chip voltage regulator distribution is
also described. The second application is related to the exploration of system-level
power delivery. The SPROUT – Smart Power ROUTing algorithm is presented to
efficiently produce a prototype of a board-level power network, enabling efficient
analysis with high-level architectural tradeoffs, such as the number of layers within
the board or the position of discrete components. The second half of the book is
completed with QuCTS – single flux Quantum Clock Tree Synthesis algorithm,
which describes a graph-based algorithm to satisfy the stringent requirements for
clock distribution networks in superconductive electronics.

Due to the focus on the VLSI design process, this book is expected to become
a useful addition to the library of engineers, researchers, and students working in
the areas of VLSI system design and computer science. For professionals working
in the design of VLSI systems (typically electrical and computer engineers and
computer scientists), this book provides a deeper insight into the theory behind many
established design techniques based on graph theory, such as clock skew scheduling,
system partitioning, circuit analysis and optimization, and interconnect routing. For
mathematicians and computer scientists, the book elucidates the link between graph
theory and the design and analysis of VLSI circuits and systems.

Acknowledgments

The authors would like to acknowledge the support of our many collaborators who
facilitated the development of this book. The authors would like to thank Charles
B. Glaser and Shabib Shaikh from Springer for their assistance in the publishing
process. The authors are very grateful to Dr. Mikhail Popovich from Google, Dr.
Kan Xu and Dr. Juan S. Ochoa from Apple, Dr. Abinash Roy from Intel, Mr.
Mahalignam Nagarajan and Dr. Vaishnav Srinivas from Qualcomm Technologies,
and Mr. Jamil Kawa from Synopsys, for their continued support and collaboration
during the research projects that constitute a considerable part of this book. Special
thanks are reserved for Tahereh Jabbari from the High Performance Integrated
Circuit Design and Analysis Laboratory for sharing her expertise in single flux
quantum circuit design.

This research is supported in part by the National Science Foundation under
Grant Nos. CCF-1329374, CCF-1526466, CCF-1716091, Intelligence Advanced
Research Projects Activity under Grant Nos. W911NF-14-C-0089 and W911NF-
17-9-0001, American Institute for Manufacturing Integrated Photonics under Award
No. 059447-007, the Intel Collaborative Research Institute for Computational
Intelligence, Singapore Ministry of Education Tier 2 under Grant No. MOE2014-
T2-2-105, and grants from Cisco Systems, Google, OeC, Qualcomm, and Synopsys.

Rochester, NY, USA Rassul Bairamkulov
Rochester, NY, USA Eby G. Friedman

ix

Contents

1 Introduction . 1
1.1 Precursors of VLSI . 3
1.2 The rise of VLSI. 6
1.3 Outline of book . 10

2 Graph fundamentals . 13
2.1 Graph categories. 15

2.1.1 Hypergraph . 16
2.1.2 Graphs with parallel edges . 17
2.1.3 Graphs without parallel edges. 18
2.1.4 Weighted graph . 19
2.1.5 Directed graph . 21

2.2 Inter-graph relationships . 21
2.3 Graph exploration . 23
2.4 Bipartite graph . 25
2.5 Directed acyclic graph . 25
2.6 Tree . 27
2.7 Common problems in graph theory . 29

2.7.1 Pathfinding . 31
2.7.2 Spanning tree . 40
2.7.3 Graph coloring . 49
2.7.4 Topological sorting . 52

2.8 Summary. 55

3 Graphs in VLSI circuits and systems. 59
3.1 Graphs as a VLSI abstraction tool . 60
3.2 Register transfer level . 63

3.2.1 Register allocation . 64
3.2.2 Task scheduling . 68
3.2.3 Synchronization. 72

xi

xii Contents

3.3 Gate layer . 74
3.3.1 Ordered binary decision diagram . 76
3.3.2 And-inverter graph. 79

3.4 Circuit layer . 81
3.4.1 Laplacian matrix of a circuit graph . 82

3.5 Physical layer . 87
3.5.1 Partitioning. 88
3.5.2 Floorplanning . 91
3.5.3 Placement . 92
3.5.4 Routing . 95

3.6 Summary. 97

4 Synchronization in VLSI . 101
4.1 Graph-based timing analysis . 105

4.1.1 Timing constraints in synchronous systems 106
4.2 Clock skew scheduling . 117

4.2.1 Robustness . 117
4.2.2 Performance. 123
4.2.3 Power . 126

4.3 Clock tree synthesis . 131
4.3.1 Clock tree topology . 132
4.3.2 Clock tree embedding . 141
4.3.3 Method of means and medians . 141
4.3.4 Deferred merge embedding . 143
4.3.5 Elmore delay . 144
4.3.6 Bounded skew tree. 144
4.3.7 Useful skew tree . 145

4.4 Summary. 146

5 Circuit analysis . 149
5.1 Modified nodal analysis . 151
5.2 Iterative numerical methods . 155

5.2.1 Domain decomposition . 158
5.2.2 H-matrix . 161
5.2.3 Multigrid methods . 164

5.3 Non-MNA techniques . 167
5.3.1 Scattering parameters. 167
5.3.2 Random walks . 169
5.3.3 Lattice graph . 172

5.4 Summary. 176

6 Effective resistance of truncated infinite mesh structures. 177
6.1 Historical perspective . 178
6.2 Electric potential in an infinite mesh . 179
6.3 Electric potential within a truncated infinite mesh. 182

6.3.1 Modeling truncation with image . 182
6.3.2 Integral expressions for effective resistance 185

Contents xiii

6.4 Closed-form approximation. 188
6.5 Model evaluation . 190

6.5.1 Accuracy evaluation . 190
6.5.2 Computational speed . 191

6.6 Conclusions . 194

7 Effective resistance of finite grids . 195
7.1 Infinity mirror technique . 197

7.1.1 Infinite strip . 198
7.1.2 Semi-infinite strip. 200
7.1.3 Finite mesh . 201
7.1.4 Generalization to higher dimensions . 205

7.2 Simplification of the effective resistance expressions 207
7.3 Case studies. 209

7.3.1 Mesh reduction based on effective resistance 209
7.3.2 Resistive noise in capacitive touch screen 211
7.3.3 Resistive substrate noise. 212

7.4 Conclusions . 214

8 Placement of on-chip distributed voltage regulators 217
8.1 On-chip voltage regulation. 219
8.2 Model of power network . 221

8.2.1 Fast grid analysis . 223
8.2.2 Limited regulator current . 227

8.3 Load clustering . 228
8.4 Optimization setup . 229
8.5 Case studies. 231

8.5.1 Unrestricted placement – case study one 231
8.5.2 Restricted placement – case study two . 233
8.5.3 Restricted current – case study three . 233

8.6 Conclusions . 236

9 Exploratory methodology for power delivery . 237
9.1 Optimization framework . 238

9.1.1 Specification of the electrical design requirements 239
9.1.2 Specification of non-electrical design requirements 241
9.1.3 Combination of electrical and nonelectrical metrics 242
9.1.4 Circuit simulation procedure . 243

9.2 Case studies. 246
9.2.1 Single rail system . 246
9.2.2 Multiple rail system . 250

9.3 Conclusions . 255

xiv Contents

10 SPROUT - Smart Power ROUting Tool for board-level
exploration and prototyping . 257
10.1 SPROUT algorithm . 260

10.1.1 Available routing space. 261
10.1.2 Equivalent graph . 262
10.1.3 Seed subgraph . 264
10.1.4 Growth stage . 265
10.1.5 Refinement stage. 268
10.1.6 Subgraph reheating . 269
10.1.7 Back conversion . 269
10.1.8 Algorithm runtime analysis . 269

10.2 Validation of case study . 272
10.2.1 Two rail system . 272
10.2.2 Six rail system . 272
10.2.3 Area/impedance tradeoff . 274

10.3 Conclusions . 276

11 QuCTS – single flux Quantum Clock Tree Synthesis 281
11.1 Clock skew scheduling . 283

11.1.1 Timing graph. 283
11.1.2 Minimum clock period . 284
11.1.3 Clock skew optimization . 286

11.2 Clock tree synthesis . 288
11.3 Delay equilibration . 290

11.3.1 Coarse routing . 291
11.3.2 Analysis of proxy path delay . 294
11.3.3 Fine routing . 296

11.4 Case study . 298
11.5 Conclusions . 300

12 Conclusions . 301

A Green’s function for a truncated grid . 305

B Uniqueness based on boundary conditions . 307

C Multilayer routing algorithm . 309

References . 313

Index . 345

About the Authors

Rassul Bairamkulov was born in August 1994 in Kara-
ganda, Kazakhstan. He received a Bachelor of Engi-
neering in Electrical and Electronic Engineering degree
from Nazarbayev University in Astana, Kazakhstan in
2016, and a Master of Science degree in Electrical Engi-
neering from the University of Rochester in Rochester,
New York in 2018. He completed the Ph.D. degree in
electrical engineering from the University of Rochester
under the supervision of Prof. Eby G. Friedman in 2022.
In the summers of 2018 and 2020, he interned with the
Power Design team at Qualcomm Inc. in San Diego,
California. His research interests include graph theory,
physical design of integrated circuits, and electronic
design automation of conventional and emerging VLSI
technologies.

Eby G. Friedman received the B.S. degree in elec-
trical engineering from the Lafayette College, Easton,
Pennsylvania, and the M.S. and Ph.D. degrees in elec-
trical engineering from the University of California at
Irvine, Irvine, California. He was with Hughes Aircraft
Company in southern California, from 1979 to 1991,
rising to Manager of the Signal Processing Design and
Test Department, where he was responsible for the
design and test of high performance digital and analog
ICs. He has been with the Department of Electrical
and Computer Engineering, University of Rochester
in Rochester, New York, since 1991, where he is a
Distinguished Professor and the Director of the High
Performance VLSI/IC Design and Analysis Laboratory.

xv

xvi About the Authors

He is also a Visiting Professor with the Technion–Israel
Institute of Technology in Haifa, Israel. He has authored
more than 600 articles and book chapters; authored or
edited 20 books in the fields of high speed and low
power CMOS design techniques, 3-D design method-
ologies, high speed interconnect, superconductive cir-
cuits, and the theory and application of synchronous
clock and power distribution networks, and he holds
26 patents. His current research and teaching inter-
ests include high performance synchronous digital and
mixed-signal circuit design and analysis with applica-
tion to high speed portable processors, low power wire-
less communications, and server farms. Dr. Friedman
is a recipient of the IEEE Circuits and Systems Mac
Van Valkenburg Award, the IEEE Circuits and Systems
Charles A. Desoer Technical Achievement Award, the
University of Rochester Graduate Teaching Award, and
the College of Engineering Teaching Excellence Award.
He was the Editor-in-Chief (EIC) and Chair of the
Steering Committee of the IEEE TRANSACTIONS ON

VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS

and EIC of the Microelectronics Journal, a Regional
Editor of the JOURNAL OF CIRCUITS, SYSTEMS AND

COMPUTERS, an editorial board member of numerous
journals, and a program and technical chair of several
IEEE conferences. He is a Senior Fulbright Fellow, a
National Sun Yat-sen University Honorary Chair Pro-
fessor, and an Inaugural Member of the UC Irvine
Engineering Hall of Fame.

Chapter 1
Introduction

Considering the fundamental nature of graph theory and the importance of intercon-
nected systems, the relative historical novelty of the field is somewhat surprising.
Most fundamental areas of mathematics, such as arithmetic, geometry, and com-
binatorics, emerged in ancient times. The earliest traces of combinatorics, for
example, are found in the 6th century B.C. [1], whereas early forms of arithmetic
date to 20,000 BC, older than the earliest writing system [2]. The history of graph
theory however only dates back to the second quarter of the 18th century, when
Leonhard Euler tackled the famous problem of the Seven Bridges of Königsberg [3].
This question is how to route a walk through the four land masses of Königsberg,
divided by the Pregel River, such that each of the seven bridges is crossed exactly
once (see Fig. 1.1a). Euler stated in this problem formulation that a path within a
land mass is irrelevant. The solution is exclusively determined by the sequence of
bridge crossings, enabling an abstract analysis of networks.

Using a graph notation, the Seven Bridges of Königsberg can be rephrased as:
Given the undirected multigraph G in Fig. 1.1b, determine a trail that contains all
edges of G (an Eulerian trail). In 1736, Leonhard Euler showed that no such trail
exists by recognizing that the degree of all vertices in G should be even other than
the start and finish nodes [4]. This proof of what today is known as the handshaking
lemma is widely regarded as the earliest work in graph theory [5]. Despite the
ingenuity of the solution and the generalization provided in Euler’s work, the field
of graph theory has been relatively dormant for more than a century. The practical
significance of graph theory had not yet been recognized. Graph theoretic problems
occasionally appeared in recreational mathematics. In 1805, for example, Louis
Poinsot published a puzzle particularly relevant to graph theory:

Given some points situated at random in space, it is required to arrange a single
flexible thread uniting them two by two in all possible ways, so that finally the two
ends of the thread join up, and so that the total length is equal to the sum of all
the mutual distances [5]. In graph theoretic terms, Poinsot asked a reader to find
an Eulerian circuit within a complete graph of degree k, a task that is only possible

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
R. Bairamkulov, E. G. Friedman, Graphs in VLSI,
https://doi.org/10.1007/978-3-031-11047-4_1

1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-11047-4_1&domain=pdf

 -2016 61494 a -2016 61494 a

https://doi.org/10.1007/978-3-031-11047-4_1

2 1 Introduction

a) b)

Fig. 1.1 Seven Bridges of Königsberg problem. a) Simplified map of Königsberg bridges as drawn
by Euler in [4], and b) equivalent multigraph representation.

if k is odd. The first practical application of graph theory appeared in 1857 when
Arthur Cayley discovered a subclass of graphs which he named trees and used this
formulation as a tool to analyze nested operations [6]. The first use of graphs in
chemistry is believed to be introduced by Alexander Crum Brown and published in
1866 by Edward Frankland [7]. In ‘graphic notation,’ each atom within a compound
is represented by a circle with a letter denoting the element, where the lines represent
the chemical bonds between atoms [7]. Notably, this system is still in common use
today, often with minor modifications, such as the omission of circles or a different
notation for benzene coils. A graphic notation quickly became popular and was
crucial in explaining isomerism – the existence of substances with an identical
composition but different properties (see Fig. 1.2). The term graph was proposed
by James Joseph Sylvester in 1878 [8] based on an analogy with chemicograph, the
visual representation of chemical bonds. Interest in graph theory gradually sprouted
new branches during the late 19th century to early 20th century, such as algebraic
graph theory, extremal graph theory, and random graph theory [9].

The advent of electronics and computers produced a variety of novel graph theory
applications. Many known problems at the time, such as graph coloring [10] and
partitioning [11], were successfully applied to computer design. The invention of
the integrated circuit (IC) in 1958 [12] created new avenues for the application of
graph theory. The demand for greater semiconductor integration motivated rapid
advancements in algorithms for circuit partitioning, interconnect routing, and logic
verification, all assisted in no small part by graph theory.

The primary purpose of this chapter is to introduce a graph theoretic perspective
to the design of VLSI circuits and systems. In investigating the history of VLSI,
the significance of graph theory to the design of integrated circuits is highlighted.
Technology advancements preceding the birth of VLSI in the 1970’s are discussed
in Section 1.1. The growth of computer-aided design during the early years of VLSI
is described in Section 1.2. The chapter is concluded with an outline of the book in
Section 1.3.

1.1 Precursors of VLSI 3

H

C

H

H

C

H

H

C

H

H

C

H

H

C

H

H

C

H

H

C

H

H

C

H

H H

a)

C

H

H

C

H

C

H

H

C

H

H

H

C

H

H

C

H

H

H

HH C

H

H

HC

b)

Fig. 1.2 Earliest application of graphs is in chemical notation. The figures illustrate the difference
between C8H18 isotopes [7], a) octane, and b) 3,4-dimethylhexane.

1.1 Precursors of VLSI

The initial stages of the IC design process were largely driven by advancements
in materials science and semiconductor manufacturing. Prior to 1947, electronic
applications, such as the radio, telephone, and telegraph, were based on vacuum
tubes and relays. Relays are electrically controlled mechanical switches. The control
electrode establishes a mechanical connection between terminals, as illustrated in
Fig. 1.3. Relays were used in electronic engineering since the early 19th century
[13] to amplify attenuated signals in telegraph lines. Vacuum tubes are similar to
incandescent light bulbs due to the physical phenomenon used in both of these
devices. A vacuum tube is depicted in Fig. 1.4. Electrons are emitted from a
conductor heated to a sufficiently high temperature. This effect is called thermionic
emission and was first documented by Frederick Guthrie in 1875 [14]. In vacuum
tubes, electrons from a heated cathode filament travel towards the cold anode
electrode, producing current. The current through the device can be controlled by
adjusting the electrical potential at the cold and hot electrodes. Since electrons are
not emitted by the cold conductor, the device behaves as a diode. An additional
electrode (typically a grid) between the anode and cathode produces a triode,
enabling more precise control of the output current.

The earliest electromechanical computers were manufactured using relays. For
example, Z3 was an electromechanical programmable computer built in 1941 by
Konrad Zuse, which utilized 2,600 electrical relays [17]. The Automatic Sequence
Controlled Calculator built in 1944 used 3,500 relays [18]. Later, pre-semiconductor
era computers primarily used vacuum tubes. The famous Electronic Numerical
Integrator and Computer (ENIAC), shown in Fig. 1.5, was built in 1945 at the
University of Pennsylvania [19] and contained 18,000 vacuum tubes. A major
limitation of these systems was however soon exposed. Although vacuum tubes

4 1 Introduction

iin iout

a) b)

Fig. 1.3 Magnetic relay. a) Schematic diagram illustrating a normally open (NO) relay. The circuit
is inactive if the input current is zero. The input current iin passes through the input coil, producing
a magnetic field that mechanically closes the switch. Output current iout flows through the switch.
Reducing the input current disables the switch, stopping the output current. A normally closed
relay has a similar structure, but the switch is closed when iin is zero and is open when input
current is applied. b) Omron Electronics G2R-1A-AC240 NO relay [15]. Observe the coil under
the metal plate. The metal plate is attached to one of the contacts pictured on the right part of
the image. The current passing through the coil produces a magnetic field that displaces the metal
plate, connecting the circuit.

and relays supported small scale electronics, the reliability of these devices was
insufficient to simultaneously maintain stable operation of thousands of these
devices. In the ENIAC, for example, on average, one vacuum tube burnt out every
two days, necessitating regular preventive measures and thorough testing [19].
Furthermore, vacuum tubes required enormous power due to the need for heating.

The successful demonstration of the point contact transistor in 1947 [20]
and bipolar junction transistor (BJT) in 1948 [21] revolutionized electronics and
computers [22, 23]. As compared to relays and vacuum tubes, these novel devices
dissipated much less power, were smaller in size, and cost considerably less to
produce. Crucially, these early transistors were highly reliable, enabling thousands
of hours of uninterrupted operation [24]. The first transistor-based computer was
built in 1953 in Manchester, UK [25] and contained 92 point contact transistors
[26], starting the era of computers based on semiconductor transistors. Although the
computational performance of these early transistor-based computers was inferior
to the vacuum tube computers of the time, a significant reduction in size, cost, and
power was achieved [26]. A year later, in 1954, TRansistorized DIgital Computer
(TRADIC), the first American transistor computer, bridged the performance gap,
offering computational performance comparable to vacuum tube computers of the
time [24]. Weighing 1,191 pounds and dissipating less than 100 watts of power,
TRADIC was sufficiently small to install within a bomber aircraft, enabling use for
navigation and targeting [27]. The small power and size enabled transistors to be

1.1 Precursors of VLSI 5

Control grid

Anode (cold)

Cathode filament (hot)

a) b)

Fig. 1.4 Vacuum tube. a) Internal structure of a vacuum tube. The cathode filament is heated
inducing thermionic emission [14]. The electrons emitted from the cathode are captured by the cold
anode. The grid is placed between the anode and cathode to control the output current. Without the
grid, the vacuum tube behaves as a diode. b) Solen Électronique SI-12AX7B vacuum tube [16].
The thick vertical wire at the center of the tube is a filament cathode. The filament is surrounded
by several anode plates capturing electrons emitted by the filament.

used not only for computing, but also for data storage [28], radio [29], telephony
[30], and a host of other novel applications.

The next decade is largely characterized by the many rapid advancements of
semiconductor manufacturing technology. The first integrated circuit, built in 1958
by Jack Kilby, used multiple discrete components integrated onto a single substrate
[31]. The next year, the first monolithic IC was invented by Robert Noyce based
on a planar manufacturing process developed at Fairchild Semiconductor [32].
In the late 1950’s, the research group lead by Mohamed M. Atalla developed
a silicon oxidation process. This invention was an important precursor to the
metal-oxide-semiconductor field effect transistor (MOSFET) developed in 1959 by
Mohamed M. Atalla and Dawon Kahng [32]. Formation of p-n junctions based
on ion implantation, described in 1965 by Manchester, Sibley, and Alton [33],
was a crucial prerequisite of the self-aligned gate process proposed in the late
1960’s by Bower, Dill, Aubuchon, and Thompson [34, 35]. The self-aligned gate in
MOSFETs enabled highly accurate fabrication of MOSFETs, reliably operating at
high frequencies due to the small parasitic capacitance [36]. These inventions were

6 1 Introduction

a) b)

Fig. 1.5 Electronic Numerical Integrator and Computer (ENIAC) built in 1945 using 18,000
vacuum tubes. The operating frequency of the ENIAC was 100 kilohertz, producing 5,000
operations per second. a) The ENIAC occupied more than 167 square meters and consumed
more than 150 kilowatts [19]. b) The reliability of the ENIAC was poor due to the large number
of vacuum tubes that occasionally burnt out. Locating and replacing the broken tubes required
significant time and effort.

primary drivers of MOSFET technology, becoming a mainstay in IC manufacturing
in the early 1980’s, enabling the integration of large numbers of transistors within a
single IC.

1.2 The rise of VLSI

The number of devices integrated within a single IC has rapidly increased, produc-
ing increasingly complex systems. In 1968, for example, the Rockwell ‘1502’ large
scale array contained 658 MOSFETs within approximately 10 mm2 [37]. Only three
years later, in 1971, the Intel 4004 microprocessor contained 2,250 transistors within
12 mm2 [38], an almost threefold increase in density. The growing complexity of
these systems required qualitatively new techniques to design these ICs, giving rise
to the new field of large scale integration (LSI) and supporting fields like electronic
design automation (EDA).

The issues induced by integrating a large number of transistors onto a single die
were raised as early as 1968, when the excessive time and high error rates during
the manual LSI design process were noted [39]. A sophisticated manufacturing
technology alone was no longer sufficient for achieving high performance integrated
circuits and systems. Similar progress in other aspects of the integrated system
design process was required, including layout synthesis, computer architecture, and
logic design. LSI technology during the 1970’s was characterized by the prolifera-
tion of computer-aided design (CAD) and EDA, greatly assisted by advancements
in graph theory in LSI engineering [40, 41].

1.2 The rise of VLSI 7

a) b)

Fig. 1.6 Manual layout of an integrated system during the pre-CAD/EDA era. a) An interconnect
pattern of a logic circuit scaled by a factor of 250, manually drawn with pencil on a routing grid
[42]. b) Visual inspection of the resulting layout [42].

Prior to the advent of EDA, the physical layout of early ICs was drawn manually,
as illustrated in Fig. 1.6, and therefore required significant time and labor. Systems
consisting of hundreds to thousands of elements required enormous time to be
schematically drawn and laid out. Early CAD tools for integrated systems were
proposed in the late 1960’s to assist the drawing of circuit schematics [45, 46].
A drafting tool for circuit layout was presented in [47] where the drawings are
encoded using standardized blocks that enabled digital storage of the drawings for
subsequent reproduction. Similar to most tools developed during the 1960’s, these
tools were intended for internal use within semiconductor manufacturing companies
and were therefore used by only a few people. The market for commercial CAD
tools for IC design and analysis emerged in the early 1970’s. Many of the seminal
CAD tools for LSI development were introduced into the marketplace during this
time. These tools consisted of a computer equipped with a display and a graphic
input device, such as a RAND tablet [48], as exemplified in Fig. 1.7. Among the
early LSI graphic tools was the Calma Graphics Design System Integrated Circuit
Mask maker (GDS-ICM) [43]. The GDS computer graphic format used in this
tool evolved into the GDS-II format, today’s industry standard for representing the
physical layout of an IC [49]. Many tools were developed to verify the design of the
transistor circuits and physical layout. For example, the Simulation Program with
Integrated Circuit Emphasis, commonly known as SPICE, was developed in 1973
[50]. With SPICE, complex circuits are efficiently represented in text format, as
illustrated in Fig. 1.8, allowing a circuit to be simulated to predict circuit behavior.

Despite the proliferation of CAD tools into the VLSI design process, errors
frequently occurred, necessitating significant time and labor for corrections and
modifications. The explosive growth in the complexity of these integrated circuits

8 1 Introduction

a)

b)

Fig. 1.7 Workstations used during the development of integrated systems during the early years of
CAD/EDA. a) Two workstations used in Texas Instruments circa 1970 [43]. The left workstation,
used for schematic design, is equipped with a large interactive screen and stylus. The right
workstation is used for layout drawing and is equipped with a large interactive screen and a small
additional display. b) IC design workstation during the mid-1980’s used to generated the layout of
an IC [44].

and systems motivated the automation of the labor intensive and error prone tasks.
EDA tools were an upgrade over standard CAD tools so as to improve the speed and
accuracy of the design process with minimal human intervention. Early EDA tools
emerged in the late 1960’s and targeted primarily IC layout. In 1969, one of the first
automated layout synthesis tools was developed [51]. A topological layout graph

1.2 The rise of VLSI 9

VDD

y
a

b

p

M1 M2

M3

M4

a)

M1 y a vdd vdd tp L=0.6u W=1.2u
M2 y b vdd vdd tp L=0.6u W=1.2u
M3 y a a 0 tn L=0.6u W=1.2u
M4 p b 0 0 tn L=0.6u W=1.2u

b)

Fig. 1.8 Example of a two input NAND gate in SPICE using four transistors. a) Initial schematic
representation. b) Circuit in SPICE format. Each line encodes the type and name of the component
(e.g., M1 describes a transistor with name ‘1’), connection to other nodes (e.g., M1 is connected to
nodes y, a, and vdd), and model parameters such as the channel dimensions (length and width).

was produced, specifying the relative position of the cells within an IC. These early
EDA tools were primarily developed by IC manufacturers to accelerate the product
development process. The widespread adoption of EDA was soon facilitated by the
advent of commercial EDA companies and products. Three of the most prominent
companies of the time were Daisy Systems, Mentor Graphics, and Valid Logic
Systems, each of which produced a variety of EDA products in the areas of logic
and circuit design and analysis [52, 53], automated placement and routing [54], and
silicon compilation [55, 56]. The size of the EDA market grew rapidly, reaching
$2.5 billion in 1994 [57], $5 billion in 2006 [58], $6.4 billion in 2013 [59], and over
$9 billion in 2020 [60].

Graph theory plays an important role in enabling VLSI by managing the
complexity of these systems. The characteristics of these objects are represented
by graphs, intentionally omitting many design details to focus on only relevant

10 1 Introduction

Wait on
1st floor

Go up2

Wait on
2nd floor

1

2Go
down 1

1 2

2 1

Fig. 1.9 An example of a finite state machine [62, 63] representing a two floor elevator. The nodes
represent the four states of the system, i.e., wait on the first or second floor, go up, or go down.
The edges represent the transition between the states. The edge labels 1 and 2 denote the events of
pressing button 1 and 2 in an elevator. These events trigger the transition of an elevator to the next
state. The loops (edges starting and ending at the same node) indicate events that do not change
the state of the system.

features. Many CAD/EDA tools heavily rely on graph theory [61]. Synchronization
of sequential logical systems is one of the earliest applications of graph theory to
the design of computing systems. Classic techniques include finite state machines
(FSM), exemplified in Fig. 1.9. A FSM were first described in the mid-1950’s by
G. H. Mealy [62] and E. F. Moore [63], where a complex synchronous system
is represented by a network of states. By applying abstraction, data flow within
an integrated system could be efficiently modeled while disregarding the less
significant details. SPICE is largely based on modified nodal analysis (MNA) [64]
– a method utilizing a Laplacian matrix describing a circuit graph. Interconnect
routing tools utilize graph-based methods for finding an optimal connection between
terminals [61, 65, 66]. Graph theory continues to be used in modern IC design,
including three-dimensional integration [67], hardware security [68, 69], circuit
analysis [70–72], and networks-on-chip (NoC) [73, 74].

1.3 Outline of book

Applications of graph theory to the design of VLSI circuits and systems are the
primary focus of this book. Fundamental concepts in graph theory frequently
encountered in the IC design process are reviewed in Chapter 2. In addition to
basic terminology, common graph theoretic problems are discussed, including graph
traversal, construction of minimum spanning trees, and graph coloring.

1.3 Outline of book 11

Graph theory is introduced in Chapter 3 as an effective tool for managing the
complexity of VLSI circuits and systems. Abstraction in the IC design process
is explained, and four levels of abstraction are identified; namely register transfer
level, gate level, circuit level, and physical level. Applying a hierarchical model,
applications of graph theory at each level of the IC design process are reviewed,
including task scheduling, logic verification, circuit analysis, and wire routing.

Synthesis of clock distribution networks in VLSI circuits are reviewed in
Chapter 4. The process is composed of three parts; namely, clock skew scheduling,
clock tree topology, and clock tree embedding. During clock skew scheduling,
the arrival time of the clock signals is determined based on the topology of a
synchronous logic circuit. The clock tree topology is generated based on target clock
arrival times. The clock tree layout is produced during the embedding step.

Methods for electrical circuit analysis are reviewed in Chapter 5. Modified nodal
analysis (MNA) based on the Laplacian matrix of a circuit graph is the standard
method for analyzing electrical networks. Due to the large size of modern VLSI
networks, different techniques for accelerating MNA are presented, such as domain
decomposition, geometric multigrid, and hierarchical matrix. Alternative methods
unrelated to MNA also exist, such as random walks and infinite mesh graph models.

A graph theoretic approach to modeling power networks in VLSI circuits and
systems is presented in Chapter 6. Due to the large size of the power grids within
modern ICs, an infinite lattice graph model can be used to evaluate IR drops. The
nodes of the infinite lattice graph represent the vias, and the edges represent the
horizontal and vertical interconnects connecting adjacent vias. The infinite grid
model however exhibits poor accuracy near the boundaries of the grid. A novel
image method, introduced in this chapter, restores the accuracy of the infinite lattice
model near the corners and boundaries of the grid, reducing the worst case error
from 40% to 4% [71].

This graph-based image method is extended to the analysis of finite rectangular
grids in Chapter 7. Based on the infinity mirror technique, the IR drop is accurately
determined at arbitrary points within a lattice without considering the entire grid
[72]. The infinity mirror technique therefore greatly accelerates the IR drop analysis
process in large grids by exclusively determining the electric potential at a few nodes
of primary interest.

A general framework for distributing on-chip voltage regulators within a power
grid is presented in Chapter 8. Based on the infinity mirror technique, a compu-
tationally efficient voltage drop analysis algorithm is proposed. The runtime of
the analysis methodology does not depend upon the grid dimensions, enabling the
efficient analysis of arbitrarily large power grids. By supplementing discrete particle
swarm optimization with fast grid analysis, placement of the distributed on-chip
voltage regulators to minimize parasitic voltage drops is efficiently determined.
Practical scenarios, such as limited current capacity and restricted placement of the
regulators, are considered. The framework is validated on a set of industrial power
grid benchmark circuits.

Optimization of power delivery at the system level is the focus of Chapter 9.
A system-level power network is often modeled as a linear circuit consisting of

12 1 Introduction

only passive elements (e.g., resistors, inductors, and capacitors), and current and
voltage sources [75]. A simulation framework for linear electrical circuits based
on a state-space model is developed using a Laplacian matrix of a circuit graph.
This method is particularly effective for the repetitious simulation of circuits with
a constant topology and perturbed parameters. A power network optimization tool
is described based on this framework which significantly improves power integrity
and lowers cost by adjusting the on-chip and off-chip decoupling capacitances.

The Smart Power ROUting Tool (SPROUT) for prototyping board-level power
networks is presented in Chapter 10. Based on certain layout characteristics,
such as physical design rules and the location of the terminals and obstacles, a
prototype layout of a board-level power network is synthesized. The layout of
a power rail is initially decomposed into small rectangular cells. Each cell is
converted into a node within an equivalent layout graph, and the adjacent cells
are connected by edges. The current density within the power rails is minimized
by evaluating the layout graph, reinforcing those regions with the greatest current
density. The layouts produced using SPROUT exhibit characteristics similar to
manually designed layouts. SPROUT can therefore be used to generate multiple
power network prototypes for efficient design exploration.

QuCTS – single flux Quantum Clock Tree Synthesis tool – is presented in
Chapter 11. Clocked gates and datapaths within a sequential circuit are represented,
respectively, by nodes and edges within a timing graph. The clock arrival time is
determined for each clocked gate within a single flux quantum circuit by optimizing
the timing graph. From the clock arrival times, a topological graph of a binary clock
tree is generated using clustering. The clock tree is embedded into a physical layout
using a proxy graph technique where the nodes and edges represent, respectively,
the location of the cells within the layout and the distance between these locations.

In Chapter 12, the conclusions and closing comments of this book are provided.
The research presented in this book is summarized. The significance of the research
discussed in this book is discussed from the perspective of theoretical graph theory
and practical VLSI design issues.

Chapter 2
Graph fundamentals

Before discussing graph theory in the context of VLSI, a review of graph theory is
necessary. Despite more than 250 years of development, the terminology of graph
theory is not completely standardized and many fundamental concepts have multiple
names. The terminology used in this chapter is largely based on books by J. A.
Bondy and U. S. R. Murty [76], and D. B. West [77], widely recognized as standard
sources in the research community.

A graph is fundamentally an ordered triple G = (VG,EG,ψG), where VG is a
set of nodes (vertices), EG is a set of edges (arcs), and ψG : EG → VG × VG is an
incidence function mapping each edge ei ∈ EG to a pair of nodes in VG,

ψG(e) = [u, v], (2.1)

where u, v ∈ V are the endpoints of e and are incident to (connected by) e.
Similarly, edge e is incident to nodes u and v. The sets VG and EG are frequently
referred to as, respectively, the node set and edge set of graph G. An example of a
graph is G1, as shown in Fig. 2.1a. The node set, edge set, and incidence function of
G1 are

V1 = {v1, v2, v3, v4, v5, v6}, (2.2)

E1 = {e1, e2, e3, e4, e5, e6, e7, e8} (2.3)

ψ1 : E1 → V1

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ψ1(e1) = [v1, v3], (2.4a)

ψ1(e2) = [v3, v3], (2.4b)

ψ1(e3) = [v3, v4], (2.4c)

ψ1(e4) = [v1, v5], (2.4d)

ψ1(e5) = [v3, v5], (2.4e)

ψ1(e6) = [v3, v6], (2.4f)

ψ1(e7) = [v3, v6], (2.4g)

ψ1(e8) = [v1, v6]. (2.4h)

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
R. Bairamkulov, E. G. Friedman, Graphs in VLSI,
https://doi.org/10.1007/978-3-031-11047-4_2

13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-11047-4_2&domain=pdf

 -2016 61494 a -2016 61494 a

https://doi.org/10.1007/978-3-031-11047-4_2

14 2 Graph fundamentals

In G1, nodes v3 and v4 are incident to edge e3, and e6 and e7 are edges incident
to nodes v3 and v6. Edges e1 and e2, incident to the same pair of nodes, are called
parallel or multiple. Multiplicity μ(u, v) of nodes u and v is the number of edges
connecting u and v. For example, edges e6 and e7 are parallel. The multiplicity of
nodes v3 and v6 is μ(v3, v6) = 2. Nodes connected by an edge are called neighbors
or adjacent, and the set of nodes connected to node v is called a neighborhood and
is denoted as N(v). The degree d(v) of node v is the size of the neighborhood of
the node, i.e., the number of edges incident to node v. For example, every node u

has degree d(u) = 3 in graph G2, see Fig. 2.1b. The neighborhood of node 0 is set
N(0) = {1, 10, 19}. A node with degree zero is called isolated (e.g., node v2 in G1).

An edge incident to two distinct nodes is called a link, while an edge connecting
a single node with itself is called a loop or self-loop. Edge e1 in G1 is incident to

v1

v3

v4

v6v5

v2

e1

e2 e3

e4 e5
e6 e7

e8

a) G1 b) G2

c) d)

Fig. 2.1 Examples of graphs. a) A generic graph with order six and size eight. v2 is an isolated
node with degree zero. Edge e1 is the link connecting two distinct nodes. Edge e2 is the loop
connecting node v3 with itself. e6 and e7 are parallel edges connecting the same pair of nodes, v3
and v6. b) Dodecahedral graph. The nodes and edges represent, respectively, the vertices and edges
of a regular dodecahedron (platonic solid). c) Directed graph with self-loops, and d) undirected
multigraph.

2.1 Graph categories 15

nodes v1 and v3 and is therefore a link. Edge e2 is an example of a loop connecting
node v3 with itself. The order of a graph G refers to the number of nodes within
graph G, i.e., the cardinality of node set |VG|. Similarly, the size of G is the number
of edges, i.e., the cardinality of edge set |EG|. Observe that

∑

v∈VG

deg(v) = 2|EG|, (2.5)

since two nodes exist for every edge. Since the number 2|EG| is even, the number
of edges with an odd degree in a graph is inevitably even. This consequence of
(2.5), called a handshaking lemma, was proven by Leonhard Euler in 1736 and is
considered the first proof in graph theory [78].

2.1 Graph categories

There are several fundamental graph categories in graph theory that significantly
affect the properties of a graph. A diagram classifying graphs into topological
categories is shown in Fig. 2.2. Based on the edge properties, each category of
graphs can be further subdivided into subcategories; namely, weighted graphs and
directed graphs. In this section, the basic properties of graphs within each of these
categories are described.

Hypergraph

Pseudograph Multigraph Graph with
loops Simple graph

Number
of nodes in

edges

Parallel
edges?

Loops?Loops?

Two Any
number

Yes No

NoYesNoYes

Fig. 2.2 Topological classification of a graph. A hypergraph is a superclass of graphs where the
edges can connect an arbitrary number of nodes. Only two nodes (not necessarily distinct) can be
connected with an edge in a graph. Depending on whether parallel edges and loops exist, a graph
can be classified as a pseudograph, multigraph, graph with loops, or simple graph.

16 2 Graph fundamentals

2.1.1 Hypergraph

A hypergraph is the superclass of a graph (i.e., every graph is a hypergraph, but
not every hypergraph is a graph). A hypergraph H = (VH ,EH ,ψH) is an ordered
triple, where VH is the node set, EH is the set of hyperedges, and

ψH : EH → P(VH) \ {∅} (2.6)

is the incidence function mapping each hyperedge e ∈ EH to a subset of nodes, and
P(VH) is the power set (set of all subsets) of node set VH .

In a hypergraph, an arbitrary (nonzero) subset of nodes Ve ⊆ VH can be
connected with a hyperedge e, as illustrated in Fig. 2.3. Hypergraphs are frequently
found in modeling “multi-adic” relationships, where the relationship is not limited
to only two objects [79]. In [80], for example, hypergraphs are used to model cellular
mobile communications systems, where hyperedges represent the interference
between cellular stations. Hypergraphs appear in the physical design of VLSI
circuits, where multiple nodes are connected [81], as illustrated in Fig. 2.4. Hyper-
graphs are widely used in computational biology [82, 83], telecommunications
[80, 84], image processing [85], and artificial intelligence [86].

a b c d

e f g h

i j k l

Fig. 2.3 A hypergraph with twelve nodes and six hyperedges, namely {a, b}, {b, c, f, h}, {d},
{e, i, j}, {f, g, h}, and {j, k, l}.

2.1 Graph categories 17

bb
cin s

cout

a A
C

D
EB

a)

cin

A

b

a C

D

s

cout

E

B

b)

Fig. 2.4 A logic circuit converted into a hypergraph. a) The initial circuit. Observe the wires
connecting more than two gates. b) Equivalent hypergraph. The nodes represent the gates and
terminals. Eight hyperedges exist within the hypergraph, representing the wires connecting the
gates.

2.1.2 Graphs with parallel edges

In a class of graphs, the edges are restricted to connecting only two nodes, not
necessarily distinct nodes. Depending upon the existence or absence of parallel
edges and self-loops, a graph can be a pseudograph, multigraph, simple graph, or
a graph with self-loops. The pseudograph class is the least restrictive, permitting
both parallel edges and loops. An example of a pseudograph is shown in Fig. 2.5a,
where node v5 contains two parallel loops, and two pairs of nodes are connected
with parallel edges, namely, [v2, v3], and [v4, v6]. Graph G1, shown in Fig. 2.1a, is
also a pseudograph, since loop e2 and parallel edges e6 and e7 are found in the graph.
Applications of pseudographs are used to model molecular structures of chemical
compounds [87] and artificial intelligence [88].

Depending upon the application, self-loops may not occur in a graph. For
example, self-loops frequently occur in finite state machines (FSM) [89], but are

18 2 Graph fundamentals

v1
v4

v6v5

v2 v3

a)

v1
v4

v6v5

v2 v3

b)

v1
v4

v6v5

v2 v3

c)

v1
v4

v6v5

v2 v3

d)

Fig. 2.5 Topological classes of a graph. a) A pseudograph with two pairs of parallel links, and
three loops, two loops of which are parallel loops. b) a multigraph with two pairs of parallel links,
c) a graph with three loops and no parallel edges, and d) a simple graph with no parallel edges and
no loops.

rarely encountered in modeling automotive traffic [90]. A pseudograph without
loops is commonly called a multigraph. The edges incident to the same pair of
nodes are called parallel or multiple edges. An example of a multigraph is shown
in Fig. 2.5b. Notably, the diagram of the Königsberg bridges [4], the first graph in
the history of graph theory, is a multigraph, since multiple bridges connect the same
pair of landmasses (see Figs. 1.1 and 2.6).

2.1.3 Graphs without parallel edges

Many applications do not permit multiple edges connecting the same nodes. Unlike
multigraphs, however, pseudographs without parallel edges have not been assigned
a common name. If no self-loops are permitted and any two edges are connected
with at most one edge, the graph is called a simple graph. For example, the graph
illustrated in Fig. 2.5d is simple, while the graph shown in Fig. 2.5c is not simple,
since several edges form loops. An edge connecting nodes u and v within a simple
graph can be unambiguously represented as a set of vertices {u, v}. A simple graph
is therefore often defined as an ordered pair G = (VG,EG), where EG ⊆ (VG

2

)
and

(
VG

2

)
is the set of unordered pairs of elements of VG. The maximum size of a simple

graph G is

2.1 Graph categories 19

Lomse

Altstadt/

Vorstadt

Kneiphof

-

-

Sc
hm

ie
de

-

Dom-

Holz-

Hoh
e-

Fig. 2.6 A multigraph representing the seven bridges of Königsberg [4]. Four landmasses,
represented by rectangles, are connected by seven bridges, represented by edges. Two pairs of
parallel edges are formed by bridges, Krämer and Schmiede, and Grüne and Kötten.

(|VG|
2

)

= |VG|(|VG| − 1)

2
. (2.7)

A simple graph with n nodes and a maximum number of edges is called a complete
graph Kn. In a complete graph, every edge is connected to all other edges. A variety
of examples of a complete graph is shown in Fig. 2.7.

2.1.4 Weighted graph

Graph systems modeling practical networks often require additional information
describing objects and connections. A weight w(e) of edge e is commonly used
to quantitatively characterize a connection between nodes. In electrical circuits, for
example, edge weights often represent a wire conductance. A graph with weighted
edges is called a weighted graph or, more specifically, an edge-weighted graph.

20 2 Graph fundamentals

a) K1 b) K2 c) K3

d) K4 e) K5 f) K6

g) K7 h) K8

Fig. 2.7 Complete graphs Kn for n ∈ [1, 8]. a) A trivial graph K1 with one node and no edges, b)
a line graph K2 with two nodes and one edge, c) a smallest cycle graph K3 with three nodes and
three edges, d) tetrahedral graph K4 with four nodes and six edges, e) K5 with five nodes and ten
edges, f) K6 with six nodes and 15 edges, g) K7 with seven nodes and 21 edges, and h) K8 with
seven nodes and 28 edges.

Recall that the degree d(v) of node v within an unweighted undirected graph
Gu = (Vu,Eu,ψu) is equal to the number of edges incident to a node. A similar
measure is defined for a weighted graph Gw = (Vw,Ew,ψw). The strength (or
weighted degree) of node u ∈ Vw is the sum of the weights of the edges incident to
u,

2.2 Inter-graph relationships 21

s(u) =
∑

e∈EG|u∈ψG(e)

w(e). (2.8)

Based on (2.8), an unweighted graph can be considered a weighted graph with all
degrees equal to 1. A simple edge-weighted graph G is often defined as an ordered
triple (VG,EG,w), where w : EG → R is the weight function assigning a weight
to each edge within a network. A node-weighted graph is a graph whose nodes
are assigned weights. Node-weighted graphs are less prevalent than edge-weighted
graphs but are encountered in medical imaging [91], layout synthesis [65], routing
in field programmable gate arrays (FPGA) [92], and cloud computing [93].

2.1.5 Directed graph

A graph whose edges are oriented is called a directed graph or digraph. An edge in a
digraph is often represented by an ordered pair (u, v) such that EG ⊆ VG×VG. Note
that (u, v) �= (v, u), since (u, v) and (v, u) are of opposite direction. An example
of a directed graph is Gd , as shown in Fig. 2.8a. An edge (u, v) is incident from
node u to node v. u and v are consecutive nodes and are called, respectively, the
tail and head of an edge (u, v). Observe that nodes c and h in Gd are consecutive,
since an edge is incident from c to h. u is a direct predecessor of v, and v is a direct
successor of u. Consecutive edges are a pair of edges e1 and e2 sharing node v such
that v is the head of e1 and the tail of e2. The number of edges incident to node u

(i.e., the number of edges for which node u is a head) is called an indegree din(u).
Similarly, outdegree dout (u) is the number of edges incident from u (i.e., the number
of edges for which node u is the tail). For example, the indegree of node g in Gd is
din(g) = 2, since two edges are incident to g, a link from node e and a loop. The
outdegree dout (g) = 1, since only a single loop is incident from node g. Observe
that

∑

v∈VG

din(v) =
∑

v∈VG

dout (v) = |EG|, (2.9)

since a tail exists for every head of an edge. The node with zero indegree is called
a source. Similarly, a node with zero outdegree is called a sink. In Fig. 2.8a, for
example, node c is a source, and node i is a sink.

2.2 Inter-graph relationships

A directed graph G is produced by orienting (assigning a direction) to each edge
of an undirected graph Gu. G is therefore called the orientation of Gu. Conversely,
Gu is called the underlying graph of G. Graphs Gd and Gu, depicted in Fig. 2.8,

22 2 Graph fundamentals

a) Gd b) Gu

Fig. 2.8 An example of a graph orientation and the underlying graph. a) Directed graph Gd , and
b) underlying graph Gu.

are examples of, respectively, an orientation and an underlying graph. Similar to
directed graphs, a multigraph with self-loops M can be converted into a simple
graph Gu by removing the loops and replacing multiple edges with a single edge.
For example, the simple graph shown in Fig. 2.5d is an underlying graph for the
graphs shown in Figs. 2.5a to 2.5c.

Simple graphs G and H are isomorphic if there exists a bijection,

f : VG → VH , (2.10)

such that

(u, v) ∈ EG ⇐⇒ (f (u), f (v)) ∈ EH . (2.11)

Map f is called isomorphism, and graphs G and H are called isomorphic, denoted
as G ∼= H . Consider graphs G and H depicted in Fig. 2.9. These graphs are
isomorphic since there exists an isomorphism f : VG → VH such that edge
(u, v) ∈ EG is mapped to edge (f (u), f (v)) ∈ EH . Note that the direction of
the edges is preserved in isomorphic directed graphs.

A graph H = (VH ,EH ,ψH) is called a subgraph of G = (VG,EG,ψG) if
VH ⊆ VG, EH ⊆ EG, and ψH (e) = ψG(e)∀e ∈ EH . Conversely, graph G is called
a supergraph of H . If edge set EH of a subgraph includes all edges where both
endpoints are in VH , i.e.,

EH = {e|ψH (e) ⊆ VH }, (2.12)

2.3 Graph exploration 23

1

432

5

a) G

c

a e

db

b) H

Fig. 2.9 Isomorphic graphs; a) G and b) H . Map f : [1 → a, . . . , 5 → e] is the isomorphism of
graphs G and H , since for any edge (u, v) ∈ EG, a unique edge (f (u), f (v)) ∈ EH exists. For
example, edge (4, 1) ∈ EG is mapped to edge (d, a) ∈ EH .

subgraph H is called an induced subgraph G[VH] or a subgraph induced by VH . An
induced subgraph is produced when a set of nodes Vr is removed from the node set
such that VH = VG \ Vr . The edges incident to the nodes in Vr are removed from
subgraph H .

2.3 Graph exploration

A sequence of alternating vertices and edges W = [v0, e1, v1, ..., ek, vk], where ei

is incident to vi−1 and vi for i ∈ [1 . . . k], is called a walk. k denotes the number of
edges within a walk and is called the length of a walk. The first node v0 and the last
node vk in a walk are called, respectively, the origin and terminus. In a simple graph,
a walk can be uniquely determined by the node sequence [v0, v1, . . . , vk−1, vk]. A
walk is called a trail if no edge occurs more than once. A trail is called a simple path
if all of the nodes within a trail are distinct. Examples of a walk, trail, and path are
depicted in Fig. 2.10a. Walk W2 does not contain repeated edges, and is, therefore, a
trail. Walk W3 does not contain repeated nodes, and is therefore a path. A trail whose
origin and terminus are the same node is called a circuit. A cycle is a type of circuit
where no node occurs twice, not counting the origin. A cycle traversing an entire
node set is called a Hamiltonian cycle. Example circuits are shown in Fig. 2.10b.
Circuit W4 is not a cycle, since node O occurs twice during the traversal (the origin
is not counted).

Nodes u and v are connected if there exists a path from u to v. A graph where
any pair of nodes is connected is called a connected graph. Conversely, a graph is

24 2 Graph fundamentals

Fig. 2.10 Examples of walks
within a graph. a) The generic
walk W1 =
YpOoUvT vUyBzE is
shown with wavy arrows.
Nodes Y and E are,
respectively, the origin and
terminus of W1. Node U and
edge v are repeated twice
during the walk. Walk
W2 = WaIbNcNdD is the
trail (solid thick lines), since
none of the edges is repeated.
Walk W3 = SkArV wE is a
path, since none of the nodes
is repeated. Observe that path
W3 is also a trail. b) Walk
W4 = OeDdNf OgRhF iO

is a circuit since the origin
and terminus of W4 is the
same node (O). Walk W5 =
SjInT uHxEwV rAkS is a
cycle since W5 is a circuit
with no repeated nodes.

a
b

d e
g

i

h

j

m

k

l

f

n

o

p

q

w

s

t
u

v

r x

y

z

c

A

W

S

I

H

V E

B

YU
T

N

D

O

R

F

a)

A

W

S

I

H

V E

B

YU
T

N

D

O

R

F

a
b

d e
g

i

h

j

m

k

l

f

n

o

p

q

w

s

t
u

v

r x

y

z

c

b)

disconnected if a pair of disconnected nodes exists within the node set. The node
set VG of a disconnected graph G can be partitioned into multiple disjoint subsets
V1, V2, . . . , Vn such that for i, j ∈ [1, n], nodes u ∈ Vi and v ∈ Vj are connected
if i = j and disconnected otherwise. Subgraphs G[V1],G[V2], . . . ,G[Vn] induced
by these sets are called connected components.

2.5 Directed acyclic graph 25

Fig. 2.11 A bipartite graph
consisting of sets A and B.
All edges include one
endpoint in A and another
endpoint in B. None of the
edges connects the nodes
within the same partition.

A B

2.4 Bipartite graph

Graph G is called bipartite if the node set VG can be split into two disjoint subsets
A ∩ B = ∅, A ⊂ VG and B ⊂ VG, A ∪ B = VG, such that any edge has endpoints
in both A and B, i.e., (u, v) ∈ EG, u ∈ A, and v ∈ B. Sets A and B are called
bipartitions of graph G, as depicted in Fig. 2.11. No nodes within the same partition
are adjacent in bipartite graphs. Consider graphs G and H shown in Figs. 2.12a
and 2.12b. Graph G is called a Knight’s graph for a 4 × 4 chessboard, where the
nodes represent squares on a chessboard and the edges represent the legal moves of a
knight. Graph G is bipartite, since the knight’s move always connects a black square
with a white square, as illustrated in Fig. 2.12c. In fact, the graph shown in Fig. 2.11
is isomorphic to G, and sets A and B correspond to white and black squares on a
4×4 chessboard. Graph H is called a king’s graph for a 4×4 chessboard, where the
edges represent the legal moves of a king, as shown in Fig. 2.12d. The king’s graph
is not bipartite. Consider the cycle [a, b, c]. Any partition will contain edge {a, b},
{b, c}, or {a, c} connecting nodes within the same partition. In general, a graph is
bipartite if and only if no odd length cycle exists within the graph.

2.5 Directed acyclic graph

A graph G is called a directed acyclic graph (DAG) if no directed cycles exist within
G. Consider directed graphs G1 and G2, as shown in Fig. 2.13a. Graph G1 contains
two directed cycles, namely, [a, b, d, c] and [e, c, d], and is therefore not a DAG.
Reversing the edge (d, c) in graph G1 produces graph G2, as shown in Fig. 2.13b.
No directed cycles exist within G2, hence G2 is a DAG. If a path from node u to

26 2 Graph fundamentals

a) G, the knight’s graph b) H, the king’s graph

c) Knight’s legal moves d) King’s legal moves

Fig. 2.12 Examples of bipartite and non-bipartite graphs. a) Knight’s graph. The nodes and edges
represent, respectively, the chessboard squares and valid knight’s moves. b) King’s graph. The
edges represent valid king’s moves within the chessboard. c) Valid moves of a knight, and d) valid
moves of a king.

node v exists in a DAG, u is an ancestor of v and v is a descendant of u. In G2, for
example, node d is a descendant of a and e, while every node except g is an ancestor
of g.

The primary feature of a DAG is the existence of a mapping f : VG →
[1, . . . , |VG|], where

(u, v) ∈ EG ⇐⇒ f (u) < f (v). (2.13)

2.6 Tree 27

a

b

d

e g

f

c

a) G1

a

b

d

e g

f

c

b) G2

Fig. 2.13 Directed graphs with and without directed cycles. a) Directed graph G1 with cycles
[a, b, d, c] and [e, c, d], and b) directed acyclic graph (DAG) G2.

Fig. 2.14 Topological
orderings of DAG G2 (see
Fig. 2.13b). In topological
ordering, any ancestor of
node u in a DAG appears
before u, while the
descendants of u appear after
u.

Topological ordering
1 2 3 4 5 6 7
e f a c b d g
e a f b c d g
a b e f c d g
a e b c d f g

Mapping f is called a topological sorting or topological ordering of graph G.
Topological ordering is generally not unique [94]. Any of the topological orderings
of G2 shown in Fig. 2.14 satisfy (2.13). DAGs naturally occur in systems that
prohibit cyclic relationships, including combinatorial logic [95], artificial neural
networks [96], task scheduling [97], and the analysis of influences in social networks
[98].

2.6 Tree

A connected undirected simple graph with no cycles is called a tree T = (VT ,ET).
The number of edges within a tree is always |ET | = |VT |−1. A variety of examples
of a tree is shown in Fig. 2.15. Any two nodes within a tree are connected by a
unique path. Conversely, if more than one path exists between a pair of nodes, the
graph is not a tree. A forest is a simple graph whose connected components are trees.
Removing any single edge from a tree produces a forest (a disconnected graph with
no cycles). Adding an edge {u, v} to a tree produces a cycle containing this edge.

28 2 Graph fundamentals

A rooted tree is the orientation of a tree, where one node is designated as the root,
and the edges are directed from the root. A rooted tree T is illustrated in Fig. 2.16.
Observe that the direction of each edge is uniquely determined by the root, since
only a single path exists between a root and an arbitrary node. Several terms specific
to a rooted tree exist to describe the relationship between nodes in a rooted tree.
Node u is called a parent or predecessor of node v, and node v is called a child or
successor of node u if there exists an edge (u, v) ∈ ET . In T , a is the parent of
c, and h is a child of d. Any node in VT except the root has a single parent, i.e.,
the indegree of any non-root node is 1. Nodes v1 and v2 are called siblings if these
nodes, v1 and v2, have the same parent. For example, d and e are siblings since
both of these nodes have the same parent b. Node u is a leaf if u has no children,
otherwise u is called an internal node. T has six leaves, namely, g, h, i, j , k, and l.

Node u is called an ancestor of v, and node v is called a descendant of u if there
exists a path connecting u to v. The number of ancestors of node v is called the level
of v. Nodes b and d in T are both ancestors of node h and are both descendants of
node a. The level of a node u in a rooted tree denotes the distance from the root to u

and is equal to the number of ancestors of u. The root node is level 0. The maximum
level of any node in VT is called the height h of a tree. The height h(T) of T is three,
since the maximum level of a leaf in T is three. If the level of the leaves is either
h − 1 or h, the tree is called balanced. T is balanced since the minimum level of a

Fig. 2.15 Eleven possible non-isomorphic trees with seven nodes.

2.7 Common problems in graph theory 29

b

d

h i

e

j k

c

f

l

g

aLevel 0 (root)

Level 1

Level 2

Level 3

Fig. 2.16 An example of a complete balanced rooted tree with height h = 3. a is the root node.
All edges are oriented away from the root.

leaf in T is two. If the maximum outdegree of a node within a rooted tree is m, the
tree is called m-ary. A full m-ary tree is a tree whose internal nodes all have either 0
or m children. A complete m-ary tree is a balanced tree whose internal levels are all
filled. The leaves in a complete m-ary tree are arranged to ensure that the leftmost
node is filled first. T is a binary tree since the maximum number of children at any
node is two. T is not full but complete, since all internal levels of T (levels 0 to 2)
are filled, and the leaves within the last layer are arranged from left to right.

2.7 Common problems in graph theory

Graph theory is found in many practical applications in mathematics, physics,
chemistry, and engineering. Different kinds of relationships between objects can
be represented with nodes and edges. In telecommunication network models, for
example, the edges represent physical routing channels, such as wired or wireless
media. In graph-based register allocation, the edges represent the relationship
between the data stored in the registers. Many of these problems, such as a Steiner
minimum tree, exhibit high computational complexity [99], making the solution of
these problems impractical if the graph size is sufficiently large.

Heuristic methods are commonly used to partially overcome this limitation.
With heuristics, a solution to a computationally complex problem is approximated
using a simpler method. For example, the shortest path between two nodes within a

30 2 Graph fundamentals

s

t

a)

s

t

b)

Fig. 2.17 Example of heuristics in graph pathfinding. a) Path finding in a grid graph. To determine
the shortest path, the Euclidean distance from the target node is used as a heuristic. The shortest
path between nodes s and t is efficiently determined by traversing only five edges. b) With the
same heuristic, a suboptimal path is found due to the presence of an obstacle.

graph can be efficiently approximated using a heuristic, the distance to a target (see
Fig. 2.17a). The use of heuristics, however, does not guarantee the optimal solution,
as illustrated in Figs. 2.17b. Efficient and accurate heuristics are therefore a highly
important objective to produce high quality solutions in practical time.

Several fundamental problems in graph theory are discussed in this section,
namely, pathfinding, spanning tree construction, and graph coloring. Solutions of
these problems are adapted to a wide range of practical applications. Pathfinding
algorithms, for example, are often used to determine the fastest route through a
communications network. In addition, the basic algorithms discussed here often
form a basis for more complex algorithms. For example, a routing algorithm for
wireless networks, described in [80], combines graph coloring and pathfinding
algorithms. In [66], the pathfinding algorithms are used to determine the shortest
balanced path between a splitter and clocked gate. Pathfinding algorithms are
discussed in Subsection 2.7.1. Spanning trees and Steiner trees are introduced in
Subsection 2.7.2. Graph coloring is described in Subsection 2.7.3. Topological
sorting is described in Subsection 2.7.4.

2.7 Common problems in graph theory 31

2.7.1 Pathfinding

Finding paths within a network is one of the oldest problems in graph theory. The
first work in graph theory, Euler’s solution of Seven Bridges of Königsberg, is, to
a great extent, a path finding problem. Graph traversal is the task of visiting every
node within a node set and is widely used in path finding. Traversal algorithms are
discussed in this subsection.

2.7.1.1 Depth-first search

The problem of finding a shortest path within a graph is commonly encountered in
many applications, ranging from transportation networks to interconnect synthesis
in microelectronic systems [100–102]. A depth-first search (DFS) is the oldest
algorithm for path finding within a graph [103]. Application of the algorithm on an
example graph is illustrated in Fig. 2.18a. An arbitrary node u is initially selected as
a source and all other vertices within the graph are marked as not discovered. During
each iteration, the DFS algorithm advances to the next node v selected among the
undiscovered neighbors of current node u. If all neighbors of a current node are
discovered, the algorithm returns to the predecessor node.

DFS was first published in the 19th century by Charles Pierre Trémaux [104].
A computer version of DFS was described by Tarjan in 1972 [105]. A stack data
structure is commonly used in DFS [106]. The stack is a Last-In, First-Out (LIFO)
structure [107]. The datum placed into a stack earliest is removed last. Any datum
placed into a stack is placed on top of the other data. This operation is called push
and is illustrated in the first two columns of Fig. 2.19. Similarly, retrieval of only the
latest datum is possible, using a pop operation. A stack-based DFS is illustrated in
Fig. 2.18b. The stack initially consists of only the root node. During each iteration,
an unvisited neighbor of the top node is added to the stack. If all of the neighbors are
visited, the top node is removed from the stack. In a finite connected graph, DFS is
guaranteed to find a path from the source to an arbitrary node in O(|V | + |E|) time
[105]. The maximum worst case size of a stack is |V |. The path, however, is not
guaranteed to be the shortest path. Furthermore, if the graph is infinite, DFS may
fail to find a path even if the path exists [108].

2.7.1.2 Breadth-first search

Breadth-first search (BFS) was first published in 1959 by Edward F. Moore as a
method for finding the shortest path out of a maze [109]. BFS is a fundamental
algorithm for shortest path discovery within an unweighted graph. Those nodes
closest to the source node are traversed first, ensuring that the first discovered path is
the shortest path. A queue, another fundamental data structure, is commonly used in
BFS. A queue is commonly referred to as a First In, First Out (FIFO) data structure,

32 2 Graph fundamentals

e

a

f

d

g

h i

c

b

1

2

34

6 5

7

8 9

a)

Stack Order of visiting
a a
a b a b
a b c a b c
a b c d a b c d
a b c a b c d
a b c e a b c d e
a b c e f a b c d e f
a b c e a b c d e f
a b c a b c d e f
a b a b c d e f
a a b c d e f
a g a b c d e f g
a g h a b c d e f g h
a g a b c d e f g h
a g i a b c d e f g h i
a g a b c d e f g h i
a a b c d e f g h i

b)

Fig. 2.18 An example of Depth-First Search (DFS). a) The traversed graph. The numbers indicate
the order of traversal. The thick solid and thin dashed lines denote the traversed and non-traversed
edges. b) DFS using a stack data structure. Unvisited neighbors of the top (rightmost) node in the
stack are traversed. The new nodes are placed at the top of the stack (right), i.e., the neighborhood
of the nodes added last are traversed first. Once all of the neighbors of a node are visited, the node
is removed from the stack. The algorithm is terminated after the last entry is removed.

Stack operations
Push Push Pop Push Push Pop Pop Pop

c
b b b b

a a a a a a a

Fig. 2.19 Basic stack operations. An element is placed on top of the stack by using a push
operation. The top element is removed from the stack by using a pop operation. This data structure
is commonly called Last-In, First-Out (LIFO), where the last added element is removed first.

where the oldest entries are removed first [107]. Two queue operations are important
in a BFS, namely, enqueue and dequeue. The entries are placed into a queue
using the enqueue operation. A new entry becomes the latest (leftmost) in the
queue, as illustrated in the first two columns in Fig. 2.20. Using the dequeue
operation, the oldest entry within the queue can be removed while returning the
value of the entry. A version of BFS using a queue is shown in Fig. 2.21b. The source
node is initially pushed into the queue, and all nodes except the source node are

2.7 Common problems in graph theory 33

Queue operations
E E D E E D D D

b
a b c c

a b b c d d d

Fig. 2.20 Basic queue operations. An element is placed at the end of the queue with the enqueue
operation, denoted here as E. The first (top) element is removed from the stack with the dequeue
operation, denoted here as D. This data structure is commonly called First-In, First-Out (FIFO),
where the last added element is removed last.

marked as unvisited. During each iteration, unvisited neighbors of the oldest node in
the queue are pushed into the queue and marked as visited. Once all neighbors of the
oldest node are marked, the node is removed from the queue. If a path to a specific
target node is required, the algorithm continues until the target node is found. In
an unweighted connected graph, a single-source shortest path, i.e., the shortest path
from the source node to all other nodes, can be discovered using BFS. This output
is commonly called a shortest path tree, as illustrated in Fig. 2.21a. While finding
the single source shortest path, the algorithm continues until the queue is empty,
indicating that all nodes within the connected component of a graph are marked as
visited.

The major advantage of BFS over DFS is the guaranteed discovery of a shortest
path from the root to any other node in an unweighted graph [107]. Using BFS,
if node v is located farther from the source node than node u, node v cannot be
discovered before node u. For example, the length of the path from a to d is two
when discovered using DFS (see Fig. 2.18a), and one when discovered using BFS
(see Fig. 2.21a). Application of the queue algorithm to finding the shortest path
within a finite graph requires at most O(|V | + |E|) time [107], since every node
and edge are checked while the size of the queue is at most |V |. Weighted graphs,
however, require more advanced methods for shortest path discovery. Consider, for
example, the graph shown in Fig. 2.22a. Using BFS, the shortest path from a to d is
[a, d] with total weight 9. A shorter path [a, b, c, d] is however available with total
weight 8. The Bellman-Ford [110–112] and Dijkstra’s [113] algorithms are two of
the oldest algorithms for finding the shortest path in a weighted graph.

2.7.1.3 Dijkstra’s algorithm

The Dijkstra’s algorithm can be viewed as a greedy expansion process, where
the paths with the least cost are expanded. The algorithm was developed in 1956
by Edsger W. Dijkstra to identify the shortest path between two nodes within a
weighted graph [113]. The algorithm is often extended to finding the single source

34 2 Graph fundamentals

e

a

f

d

g

h i

c

b

1

2

3

4

5

76

89

a)

QQueue Order of visiting
a a
b a a b
d b a a b d
g d b a a b d g
g d b a b d g c
c g d b a b d g c
c g d a b d g c
c g a b d g c
h c g a b d g c h
i h c g a b d g c h i
i h c a b d g c h i
e i h c a b d g c h i e
f e i h c a b d g c h i e f
f e i h a b d g c h i e f
f e i a b d g c h i e f
f e a b d g c h i e f
f a b d g c h i e f

b)

Fig. 2.21 An example of Breadth-First Search (BFS). a) The traversed graph. The numbers
indicate the order of traversal. The thick solid and thin dashed lines denote the traversed and
non-traversed edges. b) BFS using a queue data structure (First-In, First-Out, FIFO). Unvisited
neighbors of the rightmost node in the queue are traversed. New nodes are placed at the (left) end
of the queue. Once all of the neighbors of a node are visited, the node is removed from the queue.
The algorithm is terminated after the last entry is removed.

shortest path. Each node u within a graph (except the source node) is assigned two
attributes; namely, tentative cost and predecessor [114]. The tentative cost specifies
the smallest known cost to reach node u starting from the source. The predecessor
specifies node v preceding node u along the shortest known path.

An example illustrating the Dijkstra’s algorithm is shown in Fig. 2.22b. An
arbitrary source node s is initially selected as current node u. The set of unvisited
nodes is set to V \ {s}. The cost of reaching s is set to zero, while the cost
of reaching the other nodes is initially set to infinity. During each iteration, the
unvisited neighbors of current node u are explored. If the cost of reaching node
v ∈ N(u) from current node u is smaller than the smallest known cost cv of reaching
node v, the cost is updated,

cv ← min (cv, cu + wuv), (2.14)

where cu is the cost of reaching current node u (cost attribute), and wuv is the weight
of an edge connecting u and v. If cost cv is updated, the predecessor attribute of node
v is changed to u, indicating that the shortest path from s to v is composed of the
shortest path from s to u followed by a transition from u to v. The shortest path is
determined by reconstructing the path from the target node using the predecessor

2.7 Common problems in graph theory 35

F
ig
.2

.2
2

A
n

ex
am

pl
e

of
th

e
D

ijk
st

ra
’s

al
go

ri
th

m
.a

)
T

he
tr

av
er

se
d

gr
ap

h.
T

he
nu

m
be

rs
in

di
ca

te
th

e
ed

ge
w

ei
gh

ts
.b

)
O

rd
er

of
tr

av
er

sa
l.

D
ur

in
g

ea
ch

ite
ra

tio
n,

th
e

ne
ig

hb
or

ho
od

of
a

cu
rr

en
t

no
de

is
ex

pl
or

ed
.I

f
a

sh
or

te
r

pa
th

is
de

te
rm

in
ed

,t
he

co
st

an
d

pr
ed

ec
es

so
r

of
a

no
de

ar
e

up
da

te
d,

as
sh

ow
n

in
lig

ht
gr

ay
in

th
e

ta
bl

e.
T

he
no

de
w

ith
th

e
sm

al
le

st
co

st
is

se
le

ct
ed

as
th

e
cu

rr
en

tn
od

e,
an

d
th

e
co

st
of

th
is

no
de

is
no

tc
ha

ng
ed

in
su

bs
eq

ue
nt

ite
ra

tio
ns

.

36 2 Graph fundamentals

attribute. An unvisited node with the smallest tentative cost is selected as the current
node and is marked as visited.

The performance of the Dijkstra’s algorithm greatly depends upon the implemen-
tation. The original Dijkstra’s algorithm requires time (|V |2) to find the shortest path
to every node within a graph. Note that (|V |2) is also the worst case complexity for
finding the shortest path to a single target. Using specialized data structures, such as
heaps and priority queues, the algorithm can be accelerated to O((|V |+|E|) log |V |)
[115] and O(|E| + |V | log |V |) [116].

2.7.1.4 Bellman-Ford

A major limitation of Dijkstra’s algorithm is the inapplicability to directed graphs
with negative-weight edges. Consider the example depicted in Fig. 2.23. The
shortest path to node c estimated by the Dijkstra’s algorithm is [a, b, c] with cost
6. A shorter path [a, d, c], however, exists with cost 0. The Bellman-Ford (BF)
algorithm, developed independently by Shimbel in 1954 [110], Ford in 1956 [111],
and Bellman in 1958 [112], utilizes an alternative approach that enables the analysis
of graphs with negative edge weights.

The primary output of the BF algorithm is the shortest path to every node within
a graph. An example of the BF algorithm is illustrated in Fig. 2.24. Similar to the
Dijkstra’s algorithm, nodes are assigned two attributes, namely cost and predecessor.
A zero cost is assigned to the source node, while other nodes are assigned an infinite
cost. During each iteration, the neighborhood of each node is evaluated. If a shorter
path is identified, the cost and predecessor are updated by (2.14). The algorithm
terminates if no improvement in cost for any of the nodes is achieved during an
iteration. At most, |V |−1 iterations are required using the BF algorithm to determine
the shortest path within a graph, where |E| edges are traversed during each iteration.
The time complexity of the BF algorithm is therefore O(|V ||E|) [107].

The BF algorithm successfully handles directed graphs with negative edge
weights. Observe that the distinct nodes along a walk are not explicitly required
in the BF algorithm. This limitation is exposed if the BF algorithm is applied to a
graph with negative cycles, i.e., those cycles whose sum of weights is negative. If a
graph has a negative cycle, a shortest path does not exist, since the cost of a walk
can be made arbitrarily small by traveling along the negative cycle.

To mitigate this limitation, an additional iteration is incorporated into the BF
algorithm to identify the negative cycles. In a graph without negative cycles, the
shortest path is identified in at most |V | − 1 iterations. In the absence of negative
cycles, none of the paths is reduced during the |V |th iteration. Detecting a change in
the cost at this stage therefore indicates the presence of a negative cycle. Consider
the example shown in Fig. 2.25. The sum of weights along path [b, c, d] is negative.
A change in cost during the fourth iteration indicates the presence of a negative
cycle. Finding the shortest path (i.e., no repeat nodes) in a graph with negative cycles
is an NP-hard problem [117], equivalent to finding the longest path in a graph.

2.7 Common problems in graph theory 37

F
ig
.2

.2
3

A
n

ex
am

pl
e

of
an

in
co

rr
ec

tr
es

ul
tb

y
th

e
D

ijk
st

ra
’s

al
go

ri
th

m
in

a
gr

ap
h

w
ith

ne
ga

tiv
e

ed
ge

s.
a)

T
he

tr
av

er
se

d
gr

ap
h.

T
he

nu
m

be
rs

in
di

ca
te

th
e

ed
ge

w
ei

gh
t.

b)
O

rd
er

of
tr

av
er

sa
l.

T
he

fir
st

th
re

e
ite

ra
tio

ns
of

th
e

al
go

ri
th

m
.I

n
th

e
th

ir
d

ite
ra

tio
n,

th
e

D
ijk

st
ra

’s
al

go
ri

th
m

de
te

rm
in

es
an

in
co

rr
ec

ts
ho

rt
es

tp
at

h
to

no
de

c
vi

a
no

de
b

w
ith

co
st

6.
T

he
no

de
c

ca
n

ho
w

ev
er

be
re

ac
he

d
w

ith
co

st
0

by
tr

av
el

in
g

vi
a

no
de

d
.

38 2 Graph fundamentals

F
ig
.2

.2
4

A
n

ex
am

pl
e

of
th

e
B

el
lm

an
-F

or
d

al
go

ri
th

m
ap

pl
ie

d
to

th
e

gr
ap

h
de

pi
ct

ed
in

Fi
g.

2.
23

.D
ur

in
g

ea
ch

ite
ra

tio
n,

ea
ch

ed
ge

is
ev

al
ua

te
d

to
up

da
te

th
e

pr
ed

ec
es

so
r

an
d

co
st

of
re

ac
hi

ng
th

e
he

ad
of

th
e

ed
ge

.I
f

no
co

st
is

up
da

te
d

du
ri

ng
an

ite
ra

tio
n,

th
e

al
go

ri
th

m
is

te
rm

in
at

ed
.

2.7 Common problems in graph theory 39

ba c

d

1 -3

1 1

a)

Iteration Edge Weight

a b c d
Pred Cost Pred Cost Pred Cost Pred Cost

0 None 0 ? ? ?

1

ab 1 None 0 a 1 ? ?
bc -3 None 0 a 1 b -2 ?
cd 1 None 0 a 1 b -2 c -1
db 1 None 0 d 0 b -2 c -1

2

ab 1 None 0 d 0 b -2 c -1
bc -3 None 0 d 0 b -3 c -1
cd 1 None 0 d 0 b -3 c -2
db 1 None 0 d -1 b -3 c -2

3

ab 1 None 0 d -1 b -3 c -2
bc -3 None 0 d -1 b -4 c -2
cd 1 None 0 d -1 b -4 c -3
db 1 None 0 d -2 b -4 c -3

4
ab 1 None 0 d -2 b -4 c -3
bc -3 None 0 d -2 b -5 c -3

b)

Fig. 2.25 The Bellman-Ford algorithm applied to a graph with a negative cycle. a) A graph with
a negative cycle. The sum of weights along the path [b, c, d] is −1. b) The BF algorithm. The
maximum expected number of iterations is |V | − 1 = 3. An update of the cost during the fourth
iteration indicates the presence of a negative cycle which triggers the termination of an algorithm.

2.7.1.5 A* (A-star) algorithm

The Dijkstra’s and Bellman-Ford algorithms exclusively rely on weight and con-
nectivity information. In practical graphs, additional information is often available
that can assist in finding the shortest path. Consider a routing problem within a two-
dimensional space, as illustrated in Fig. 2.26a. The grid graph is used to model the
layout space. If the path is determined using the Dijkstra’s algorithm, more than
95% of the nodes are traversed, as shown in Fig. 2.26b. By incorporating location

40 2 Graph fundamentals

S

T

a) b) c)

Fig. 2.26 Finding a path within a two-dimensional layout. a) Initial layout modeled as a grid
graph. b) Path finding using the Dijkstra’s algorithm. The hollow nodes denote traversed nodes.
The numbers indicate the distance from the source. c) Path finding using the A* algorithm. The
Euclidean distance from the target is used to determine the direction for traversal. Significantly
fewer nodes are therefore traversed using the A* algorithm.

information, the path between the source and the target nodes can be more efficiently
determined.

Best-first search (also known as informed search [118]) is the family of algo-
rithms that complement graph information with heuristics that assist the algorithms
in determining the most promising direction of traversal. The A* algorithm is
considered an extension of the Dijkstra’s algorithm. In the Dijkstra’s algorithm,
those nodes that can be reached with the least cost are expanded. Node u with the
smallest distance from source cu is used as the next node. In the A* algorithm, an
additional guiding heuristic hu is incorporated into the analysis process. The next
node for traversal is selected based on the smallest combined score cu+hu. Consider
the traversal shown in Fig. 2.26c. The Euclidean distance from the target is used as
a heuristic. Those nodes closer to the target are more likely to be explored, finding
the shortest path faster while exploring fewer nodes.

2.7.2 Spanning tree

A spanning tree of a simple graph G = (VG,EG) is a subgraph T = (VT =
VG,ET ⊆ EG), containing all nodes of G while containing no cycles. Many
spanning trees can be generated for the same graph. 16 spanning trees can, for

2.7 Common problems in graph theory 41

Fig. 2.27 All 16 possible spanning trees for a complete graph K4.

example, be generated for a complete graph with four vertices K4, as shown in
Fig. 2.27. The minimum spanning tree (MST) is the spanning tree whose sum of
edge weights is minimum. An example of a MST Tm is illustrated in Fig. 2.28.
Observe that the sum of edge weights in T is larger than in Tm. MST are found in
a wide range of modern engineering problems, including wireless communications
networks [119, 120], image classification [121], object recognition [122], and VLSI
routing [123]. Efficient algorithms have been developed for determining a MST.
Three classic spanning tree algorithms are discussed in this subsection.

42 2 Graph fundamentals

e

a

f

d

g

h i

c

b9

13

6 23

8 2

4

5

a)

e

a

f

d

g

h i

c

b9

13

6 23

8 2

4

5

b)

e

a

f

d

g

h i

c

b
9

6 23

8 2

4

5

3 1

c)

Fig. 2.28 Minimum spanning tree (MST) of a weighted graph. a) Original graph. The numbers
indicate the edge weights. b) Corresponding MST. The bold lines denote the edges included within
a MST. c) A set of external edges Eext

s (solid edges) for terminals S = {a, g}. The edges in Eext
s

connect a and g with other nodes. The edge emin(G, S) = {a, b} is the minimum-weight external
edge with weight 1.

2.7.2.1 Borůvka’s algorithm

Algorithms for generating a MST have been rigorously researched during the 20th

century. The oldest recorded algorithm for finding the MST, Borůvka’s algorithm,
was developed in 1926 by Otakar Borůvka [124, 125] and later rediscovered by
Choquet in 1938 [126], Florek et al. in 1951 [127], and Sollin in 1965 [128].
Suppose set S ⊂ VG is a proper subset of node set of a simple graph G. Define
the set of external edges Eext

s connecting the nodes in S with the nodes outside S,
i.e.,

Eext
s = {{u, v}|u ∈ S, v �∈ S, {u, v} ∈ EG}. (2.15)

The minimum-weight external edge emin(G, S) is

emin(G, S) = {u, v}|{u, v} ∈ Eext
s , w({u, v}) ≤ w({w, z})∀{w, z}Eext

s , (2.16)

where w({u, v}) is the weight of an edge {u, v}. A set S and minimum-weight exter-
nal edge are illustrated in Fig. 2.28c. The primary principle behind the Borůvka’s
algorithm is the observation that for each subset of nodes S ⊂ VG, a minimum-
weight external edge e is contained in a MST T , i.e., e ∈ ET . Suppose that the

2.7 Common problems in graph theory 43

15

2

3

4

5

6

7 8

9

1011

1312

14

c

a

d

b

e

h

f

i

g

j

k l

116

a)

15

2

3

4

5

6

7 8

9

1011

1213

14

c

a

d

b

e

h

f

i

g

j

k l

116

b)

15

2

3

4

5

6

7 8

9

1011

1213

14

c

a

d

b

e

h

f

i

g

j

k l

116

c)

Fig. 2.29 The Borůvka’s algorithm for finding a MST. a) Initial graph. Each node is considered
a component. b) Graph components after the first iteration. Three components are determined. c)
Final MST.

contrary is true and a MST T1 does not contain edge e but contains a different edge
e1 ∈ ET . By adding edge e to the MST, a cycle containing both e and e1 is created
within the MST. By deleting edge e1, a new tree T2 is obtained whose sum of edge
weights is smaller than the sum of edge weights in T1. T1 is therefore not a MST,
leading to a contradiction. A MST therefore always contains a minimum-weight
external edge for each subset of a node set.

The algorithmic procedure is illustrated in Fig. 2.29. An edgeless forest F =
(VF = VG,EF = ∅) is created from the node set of graph G = (VG,EG). A set of
connected components within F is initially

C = {{v}|v ∈ VG}. (2.17)

The minimum-weight external edge is determined for each connected component,
producing a set of edges A = {emin(S)|S ∈ C, } that is added to the edge set
EF . The set of connected components within forest F is updated, and the process is
repeated until F is connected. The Borůvka’s algorithm requires log |V | iterations to
complete, since the number of connected components is at least halved during each
iteration. Determining the minimum-weight external edge can be achieved in linear
time. The Borůvka’s algorithm therefore exhibits a worst case time complexity of
O(|E| log |V |).

2.7.2.2 Prim’s algorithm

The second oldest MST algorithm was discovered by Jarnik [129] in 1929 and
later rediscovered in the 1950’s by Kruskal, Prim, Loberman, and Weinberger, and
Dijkstra [125]. Similar to the Borůvka’s algorithm, the Prim’s algorithm relies on
finding the minimum-weight external edge. The algorithm starts by creating a graph
T = (VT = {u}, ET = ∅) containing an arbitrary node u ∈ VG and no edges.

44 2 Graph fundamentals

Fig. 2.30 Progress of the
Prim’s algorithm applied to
the graph shown in Fig.
2.29a. Node a is used as the
initial component. The
minimum-weight external
edge is used to determine
which node is added to the
component.

Iteration Component Min edge

1 a ah

2 ah fh

3 ahf ch

4 achf fg

5 achfg dg

6 acdhfg ab

7 abcdhfg be

8 abcdehfg ej

9 abcdehfgj ij

10 abcdehfgij fk

11 abcdehfgijk kl

Result abcdehfgijkl

During each iteration, the minimum-weight external edge e = emin(G, VT) of VT

within graph G is determined. Edge e and node v �∈ VT adjacent to e are added,
respectively, to ET and VT . This procedure is repeated until VT = VG, indicating
completion of the MST. The progress of the Prim’s algorithm applied to the graph
shown in Fig. 2.29a is shown in Fig. 2.30. The runtime of the Prim’s algorithm
depends upon the implementation and graph characteristics. By using an adjacency
matrix, the runtime is O(|V |2). For sparse graphs where the size of the graph is
proportional to the order, the computational complexity is reduced by applying a
binary heap data structure, yielding a runtime of O(|E| log |V |) [130].

2.7.2.3 Kruskal’s algorithm

The existence of the minimum-weight external edge for any subset of nodes within
a MST implies that an edge with the smallest weight is within a MST. A MST can

2.7 Common problems in graph theory 45

Fig. 2.31 Progress of the
Kruskal’s algorithm applied
to the graph shown in Fig.
2.29a. The MST is
constructed by iteratively
adding edges with minimum
weight while avoiding cycles.
The column Min edge lists
the edges with minimum
weight added to the MST.
The edges that could not be
added to the MST so as not to
create cycles are listed in
column Skipped.

Iteration VF Min edge Skipped

1 abcdefghijkl ac

2 abcdefghijkl ah

3 abcdefghijkl ab

4 abcdefghijkl hk ch

5 abcdefghijkl fk

6 abcdefghijkl fg

7 abcdefghijkl gi

8 abcdefghijkl df ik

9 abcdefghijkl ij fh, dg, bg

10 abcdefghijkl ej

11 abcdefghijkl kl bj, be

therefore be constructed by iteratively adding edges with the smallest weight while
avoiding cycles. This process is the essence of the Kruskal’s algorithm developed by
Kruskal in 1956 [131]. Application of the Kruskal’s algorithm to the graph shown
in Fig. 2.29a is illustrated in Fig. 2.31. The edge set EG is initially sorted from the
smallest weight to the largest weight, producing an ordered sequence P . Similar
to the Borůvka’s algorithm, an empty forest graph F = (VF = VG,EF = ∅) is
created. During each iteration, an edge e ∈ P with the smallest weight is considered.
If adding e to EF does not create a cycle, an edge is added to the edge set EF . Edge e

is removed from P and the process repeats until forest F is connected. The runtime
of the Kruskal’s algorithm is dominated by the edge sorting process that is typically
completed in O(|E| log |E|) time.

2.7.2.4 Advanced MST Algorithms

Borivka’s, Prim’s, and Kruskal’s algorithms belong to the class of greedy algo-
rithms, where a locally optimal decision is made during each iteration [132]. Unlike
NP-hard problems, an optimal MST can be generated using a greedy approach
[132]. Further development of the MST theory has produced algorithms that run

46 2 Graph fundamentals

in nearly linear time. In 1987, Fredman and Tarjan augmented Prim’s algorithm by
limiting the size of a tree generated by the Prim’s algorithm [116]. A subset of nodes
S ⊂ VG is initially selected. The Prim’s algorithm is run from each node n ∈ S

until the size of a subtree exceeds a threshold k or the tree joins another subtree.
Each subtree is contracted into a single node, and the process repeats until all of the
subtrees are connected. The contracted subtrees are expanded, yielding the MST.
Fredman and Tarjan showed that each iteration runs in O(|E| + |V | log k) time. By
judiciously choosing the threshold k, the number of iterations can be minimized
to O(log∗ |V |), where log∗ |V | is an iterated logarithm, the number of times a
logarithm function should be applied to produce a result less than or equal to 1. The
iterated logarithm is an extremely slowly increasing function recursively defined as

log∗(x) ≡
{

0, if x ≤ 1, (2.18a)

1 + log∗(log x), otherwise, (2.18b)

where x is an arbitrary real positive number. For example, log∗(x) = 2 for x ∈
[16, 3, 814, 279] (x ∈ [�ee� ,

⌊
eee⌋]), while log∗(x) ≤ 4 for x ≤

⌊
eeee
⌋

≈ 2.33 ×
101,656,520.

Further developments in subgraph contraction has yielded an even faster algo-
rithm, proposed by Chazelle [133]. In this algorithm, the graph is initially decom-
posed into a disjoint set of contractible subgraphs, i.e., those subgraphs whose
intersection with the MST is a connected tree, as illustrated in Fig. 2.32. A MST
is found for each contractible subgraph, and the graph is reduced by convert-
ing each subgraph into a single node. This recursive procedure completes in
O(|E|α(|E|, |V |)) time, where α(m, n) is the inverse Ackermann function [134],
increasing at a slower rate than the iterated logarithm. Using randomized methods,
an expected linear time algorithm was developed in 1995 by Karger et al. [135],
approaching the theoretical lower limit O(|E|) for finding a MST.

2.7.2.5 Steiner tree

A MST connects the entire node set VG of graph G. Many practical applications,
however, connect only a subset of nodes, called terminals S ⊆ VG. A Steiner
Minimum Tree (SMT) is a connected subgraph tree T = (VT ,ET ⊆ EG) with
minimum weight whose node set contains all terminals, i.e., S ⊆ VT ⊆ VG. An
example of SMT is illustrated in Fig. 2.33. Observe that in addition to the terminals,
a SMT can contain additional nodes to minimize the total weight of the edges. The
non-terminal nodes within a SMT are commonly called Steiner nodes. Despite the
similarity between the MST and SMT problems, the complexity of MST and SMT
is drastically different. The MST can be determined in nearly linear time [133, 135].
No polynomial time algorithm exists for finding a SMT within a target graph unless
P = NP [99].

2.7 Common problems in graph theory 47

c

a

d

b

e

h

f

i

g

j

k l

4

1

2

3

5

6

78

9

12

10

11 13

14

15

16

17

18

19

20

a)

c

a

d

b

e

fhkl

i

g

j

1

2

3

5

6

7

11 13

14

15

16

17

8

10

b)

c

a

d

h

f

i

beg

j

k l

4

1

2

3 5

78

9

12

10

11

15

18

19

6

16

20

13

c)

Fig. 2.32 Example of contractible subgraph. a) Initial graph. Edges belonging to MST are
depicted with solid lines, and the remaining edges are depicted with dotted lines. Two subgraphs,
G1 and G2, are considered in this example with node sets, respectively, V1 = f, h, k, l and
V2 = b, e, g. b) Contraction of subgraph G1. Those edges whose endpoints are both in V1 are
discarded. The nodes in V1 are combined into a single node. Edges incident to nodes in V1
are incident to the combined node f hkl after contraction. The tree structure is retained after
contraction. Subgraph G1 is therefore contractible. c) Contraction of subgraph G2. Cycles within
a MST are produced during the contraction (e.g., (beg, i, j)). Subgraph G2 is therefore not
contractible.

a) b)

Fig. 2.33 Example of a Steiner minimum tree (SMT). a) Initial graph. All edges have equal
weight. The solid circles denote the terminal nodes. b) The SMT utilizes two Steiner nodes. The
bold lines denote the edges belonging to a SMT.

A SMT can however be approximated using a MST. Consider a complete graph
GK = (VG,EK), where weight w(e) of edge e ∈ EK denotes the shortest path
between the endpoints of e within graph G. Graph GK is called the metric closure
of G [136]. GK [S] is a subgraph of GK induced by the set of terminals S, and is
illustrated in Fig. 2.34. A MST of Gc[VT] can be converted into a Steiner tree Tapx

of G. The sum of weights of this Steiner tree T apx = (V
apx
T , E

apx
T) is shown to be

no greater than [117]

∑

e∈E
apx
T

w(e) = 2

(

1 − 1

|S|
) ∑

e∈ET

w(e), (2.19)

48 2 Graph fundamentals

{d,e}

{d,e}

{d,e}

{d
,e}

a c

f h

{d} {e}

a)

{d,e}a c

f h

{d} {e}

b)

a c

f h

d e

c)

Fig. 2.34 Construction of a Steiner Minimum tree (SMT) by metric closure of the graph. a)
Subgraph of the metric closure of the graph shown in Fig. 2.33a induced by the set of terminals
S = {a, c, f, h}. The nodes along a shortest path are shown in curly brackets. b) The MST of the
metric closure. c) SMT constructed from the MST. Note that the algorithm is an approximation of
the SMT and does not guarantee optimality.

i.e., the total weight of edges within T apx is at most two times greater than the sum
of the edge weights of a SMT. This upper bound was improved to (1 + ln 3

2) ≈ 1.55
by Robins and Zelikovsky [137]. By applying linear programming, Byrka et al.
approximated a SMT in polynomial time, yielding an expected total edge weight of
ln 4 ≈ 1.39 of the SMT [138].

Many practical applications of the Steiner tree occur outside the graph domain.
The purpose of the Euclidean Steiner tree problem is to connect a set of points using
lines within the Euclidean space such that the total length of the lines is minimum.
An example of the Euclidean Steiner tree is shown in Fig. 2.35b. An early version of
this problem dates back to 1643 when the French mathematician Pierre de Fermat
posed a question: given three points {A,B,C} on a plane, find the fourth point
D that minimizes the sum of distances from D to A, B, and C [139, 140]. The
earliest published solution to this problem is attributed to Evangelista Torricelli
in 1644 [141]. Jarnik and Kossler [139] are regarded as the first mathematicians
who formulated the modern version of the Euclidean Steiner tree problem in 1934:
find the shortest network connecting n points in a plane. Melzak is regarded as the
author of the first algorithm for constructing a Euclidean Steiner tree [142]. In the
Melzak’s algorithm, a pair of points is iteratively replaced with an equivalent single
point, thereby reducing the n-point problem to n − 1 points. The complexity of
the algorithm is however exponential, making the Melzak’s algorithm impractical
for large networks. Garey, Graham, and Johnson demonstrated in 1977 that the
problem belongs to the class of NP-hard problems [143]. In 1966, Hanan studied
a Rectilinear Steiner Minimum Tree (RSMT) problem, where the set of points is
connected using orthogonal lines [144]. Hanan showed that the optimal solution
is contained within the grid created by drawing the horizontal and vertical lines
through the target points, subsequently called a Hanan grid, as illustrated in
Fig. 2.35c. The RSMT problem is of particular interest in VLSI routing, where
rectilinear interconnects are typically used [145].

2.7 Common problems in graph theory 49

a) b) c)

Fig. 2.35 Construction of a SMT within a planar space. a) Initial arrangement of points. b)
Euclidean SMT. c) Manhattan SMT constructed using a Hanan grid.

Interest in the RSMT problem at the end of the 20th century was driven in
no small part by the significant focus placed on VLSI routing automation [146].
One of the oldest methods for approximating a RSMT is based on constructing
a MST within a Hanan grid, followed by improvements using heuristics [147]. A
greedy approach for improving a spanning tree is 1-Steiner point insertion [148].
A 1-Steiner point is defined as a point whose addition to the node set reduces the
length of the MST. Insertion of a 1-Steiner point is illustrated in Fig. 2.36. Observe
that by adding three 1-Steiner points, the total length of the MST is significantly
reduced. An iterative 1-Steiner, proposed by Kahng and Robins [149], achieved
11% improvement in wire length as compared to the MST in O(n3) time. An edge-
based heuristic, proposed by Borah, Owens, and Irwin [150], achieves a similar
improvement of a MST length in O(n2) time.

Further developments in Steiner trees include adaptation of Steiner trees to
practical problems. Two broad classes of Steiner tree algorithms in VLSI include
the Length-Restricted Steiner Minimum Tree (LRSMT) [151] and the Obstacle-
Avoiding Steiner Minimum Tree (OASMT) [152]. In [123], for example, the
Bounded Radius Spanning Tree is proposed to limit the parasitic impedance
and Elmore delay [153] of the corresponding wire. The primary motivation for
the LRSMT approximation algorithms is to limit the parasitic impedance of the
resulting wires. The length of the resulting tree can often be larger than the optimal
Steiner tree, as illustrated in Fig. 2.37 [123]. In OASMT, a practical layout is
considered where, due to congestion, parts of the layout are unavailable for routing
[154, 155]. Extensions to non-rectilinear Steiner trees have been presented to further
reduce the total wirelength [156, 157]. Extension to three-dimensional routing is
currently being explored [158–160].

2.7.3 Graph coloring

Coloring is one of the fundamental problems in graph theory. The problem
originates from the classic Four Color theorem, first posed by Francis Guthrie in

50 2 Graph fundamentals

a) b)

Fig. 2.36 Insertion of a 1-Steiner point. a) Minimum spanning tree. Solid circles denote terminals.
b) Steiner tree after addition of a 1-Steiner point (hollow circle). The total length of a tree is reduced
by 17.3%.

a) b)

Fig. 2.37 Length-Restricted Steiner Minimum Tree (LRSMT) construction. a) Minimum length
tree. The distance from the main terminal node (hollow circle) to other terminals is unbalanced. b)
LRSMT. The difference in distance from the main terminal node is reduced.

1852 [161] who noticed that only four colors are sufficient for coloring a map of
English counties (see Fig. 2.38.):

“if a figure be anyhow divided, and the compartments differently coloured, so that figures
with any portion of common boundary line are differently coloured–four colours may be
wanted, but not more [162].”

In 1852, this theorem was brought to the attention of Augustus De Morgan
[162], who recognized the complexity of the problem despite the simplicity of
the formulation. Widespread attention to the theorem occurred in 1878 when
Arthur Cayley made a query to the London Mathematical Society and the Royal
Geographical Society about this problem [162]. The graph-theoretic equivalent of
the four color theorem is attributed to Tait [163], who, in 1880, suggested replacing

2.7 Common problems in graph theory 51

a) b)

Fig. 2.38 Four color theorem originated in the middle of the 19th century when Francis Guthrie
noted that only four colors are sufficient when coloring the map of England. a) Map of contiguous
English counties colored using four colors, and b) an equivalent graph. The nodes represent the
counties, and the edges connect adjacent regions.

districts with points, and connecting the points whose corresponding districts share
a boundary. In 1890, Heawood proved a five color theorem, a weaker version of
the problem [164]. The proof of the original theorem however required almost a
century from Cayley’s original query. In 1977, Kenneth Appel and Wolfgang Haken
published the proof of the four color theorem where the theorem is reduced to 1,834
configurations that were verified by a computer [165, 166].

The four coloring theorem sparked the field of graph coloring. In the process
of node coloring, the nodes of a graph are assigned labels, such that no two nodes
incident to the same edge share the same color. Formally, graph coloring is a map,

A : V → C, (2.20)

such that

A(u) �= A(v), ⇐⇒ {u, v} ∈ EG, (2.21)

where C = {c1, c2, ..., ck} is a set of colors. A chromatic number χ(G) is the
minimum number of colors |C| required to color graph G. A graph whose chromatic
number is χ(G) = k is often called k-chromatic, and k-colorable if k ≥ χ(G).

Different variations of graph coloring problems exist that find applications in
engineering. The purpose of equitable graph coloring is the assignment of colors to
nodes [c1, c2, ..., ck] of a graph, such that for any pair of colors {ci, cj }, the number

52 2 Graph fundamentals

of nodes colored with color ci and cj differs by at most one [167]. An example
of equitable graph coloring is shown in Fig. 2.39b. The smallest number of colors
required for equitable coloring is called the equitable chromatic number χ=(G).
Important applications of equitable coloring include parallel computing and wireless
sensor networks [168, 169]. In edge coloring, the primary object of coloring is the
edges, and the goal is to assign colors to the edges such that no two adjacent edges
have the same color, as illustrated in Fig. 2.39c. The minimum number of colors
required for edge coloring is called the chromatic index or edge chromatic number
χ ′(G). In 1964, Vizing proved that the chromatic index of any simple graph G is
either Δ(G) or Δ(G) + 1, where Δ(G) is the maximum degree of any vertex in
a graph [170]. These graphs with χ ′(G) = Δ(G) and χ ′(G) = Δ(G) + 1 are
called, respectively, type 1 and type 2 graphs and are illustrated in Fig. 2.40. More
generally, according to the generalized Vizing theorem [171], the chromatic index
of a connected multigraph is bound by

χ ′(G) ≤ min(Δ(G) + μ(G)), (2.22)

where μ(G) is the maximum multiplicity within the graph. Edge coloring is found
in error correction [172], link scheduling in sensor networks [173], and scheduling
of communications [174]. In fractional coloring, the nodes of a graph are assigned
sets of colors. The adjacent nodes are required to have no colors in common, as
depicted in Fig. 2.39d. Fractional coloring can be found in resource allocation and
deadlock resolution in distributed systems [175].

2.7.4 Topological sorting

Many applications of a DAG require finding a topological ordering of a graph. Two
classical algorithms for topological sorting are the Kahn’s algorithm [176], and DFS
sorting [177]. Those nodes with zero indegree are placed into a list L, as a queue or
stack. Depending upon the data structure, the topological sorting may differ. Both
structures, however, produce a valid topological sorting of a DAG. During each
iteration, node u is removed from L and placed into the final order. The indegree
of the successors of node u is decremented (reduced by 1). Successors of u whose
indegree is decremented to zero are placed in L. The process repeats until the list is
empty.

Consider the example DAG shown in Fig. 2.41a. The topological sorting process
using a stack-based version of the Kahn’s algorithm is shown in Fig. 2.41b, and the
result is illustrated in Fig. 2.41c. Note that all of the edges in Fig. 2.41c are directed
rightward, indicating the correctness of the ordering. The process of the queue-based
Kahn’s algorithm and the resulting ordering are shown, respectively, in Figs. 2.41d
and 2.41e. Observe that a queue and stack produce different orderings. Both of the
orderings are valid and satisfy (2.13). The total number of iterations of the Kahn’s
algorithm is |VG|, since every node is processed. A total of |EG| indegree decrement

2.7 Common problems in graph theory 53

a) b)

c) d)

Fig. 2.39 Coloring types. a) Regular coloring, b) equitable coloring, c) edge coloring, and d)
fractional coloring.

operations are performed during the algorithm. The complexity of the algorithm is
therefore linear, O(|VG| + |EG|). In a DAG, all of the nodes within the node set are
processed before the list is empty. In the presence of cycles, however, not all nodes
are processed. Consider the example depicted in Figs. 2.42a and 2.42b. After the first
iteration, a is removed from the list. The list is empty, but none of the unprocessed
nodes can be enqueued. The algorithm therefore terminates prematurely, indicating
the presence of a cycle.

An alternative method for topological sorting is DFS traversal, as described in
Subsection 2.7.1. Recall that DFS traversal utilizes a stack. Topological sorting
using DFS is illustrated in Figs. 2.43. Observe that if u is the ancestor of v, node
u is placed into the stack before node v. Since the stack is a LIFO data structure,
node v is removed from the stack before node u. By recording the order of the node
removal process, a reverse topological sorting is obtained. Starting DFS from any
node produces a valid topological sort. Suppose an arbitrary node u is selected as
the source. All of the nodes reachable from u are traversed during the DFS until the

54 2 Graph fundamentals

a)

b)

Fig. 2.40 Edge coloring classes. a) Class one graphs. The chromatic index of these graphs is equal
to Δ, the maximum degree of any node within a graph. b) Class two graphs. The chromatic index
of these graphs is Δ + 1.

stack is empty. DFS is repeated from another unvisited node v until all of the nodes
are marked as visited. In Fig. 2.43d, for example, the first DFS traversal from node d

leaves nodes a, b, c, e, and h unmarked. None of these nodes is a descendant of d. A
valid ordering can therefore be produced by repeating DFS from any of these nodes.
The complexity of the DFS algorithm is O(|VG| + |EG|), similar to the Kahn’s
algorithm. Unlike the Kahn’s algorithm, however, cycle detection is not inherent
to DFS and requires keeping track of the nodes within the stack. For example, the
nodes can be marked during pushing into the stack and unmarked during popping
from the stack. The cycle can be detected if a marked node (i.e., a node already
stored in the stack) is encountered. Consider the example shown in Fig. 2.42. During
the fifth iteration, node b should be added to the stack. Node b is, however, already
stored within the stack, indicating the presence of a cycle containing b and d.

2.8 Summary 55

c e h

b d g

a f

i

a)

Iteration Stack Order
Indegree

a b c d e f g h i
1 a b c 0 0 0 3 1 2 2 1 3
2 a b e c 0 0 0 2 0 2 1 1 3
3 a b h e 0 0 0 2 0 2 1 0 3
4 a b h 0 0 0 2 0 2 1 0 2
5 a b 0 0 0 1 0 2 1 0 2
6 d a 0 0 0 0 0 1 1 0 2
7 f g d 0 0 0 0 0 0 0 0 2
8 f g 0 0 0 0 0 0 0 0 1
9 i f 0 0 0 0 0 0 0 0 0
10 i 0 0 0 0 0 0 0 0 0

b)

Iteration Queue Order
Indegree

a b c d e f g h i
1 a b c 0 0 0 3 1 2 2 1 3
2 e a b c 0 0 0 2 0 2 1 1 3
3 e a b 0 0 0 1 0 2 1 1 3
4 d e a 0 0 0 0 0 1 1 1 3
5 h d e 0 0 0 0 0 1 1 0 3
6 f g h d 0 0 0 0 0 0 0 0 3
7 f g h 0 0 0 0 0 0 0 0 2
8 f g 0 0 0 0 0 0 0 0 1
9 i f 0 0 0 0 0 0 0 0 0
10 i 0 0 0 0 0 0 0 0 0

c)

c e h b a d g f i

d)

c b a e d h g f i

e)

Fig. 2.41 Topological ordering using the Kahn’s algorithm. a) An example DAG. b) Stack-based
Kahn’s algorithm. During each iteration, nodes with zero indegree are placed into the stack. The
top node u is removed from the stack, and the indegree of the successors is decremented. The
process repeats until the stack is empty. c) Queue-based Kahn’s algorithm. The process is identical
to the stack-based Kahn’s algorithm except the order of processing the zero-degree nodes. d) Result
of the stack-based Kahn’s algorithm, and e) result of the queue-based Kahn’s algorithm.

Checking the membership of an element requires a more advanced data structure
as compared to a stack, potentially degrading the computational performance of the
algorithm.

2.8 Summary

Basic graph terminology is revisited in this chapter. Based on the existence or
absence of parallel edges and loops, a graph belongs to a class of pseudographs,
multigraphs, graphs with loops, or simple graphs. Based on the edge orientation,
a graph is classified as directed or undirected. Additional information can be

56 2 Graph fundamentals

a b

dc
a)

Stack Order
Indegree
a b c d

a 0 2 1 1
a 0 1 1 1

b)

Stack

d
c c

b b b
a a a a

Removed

c)

Fig. 2.42 Topological sorting applied to a connected graph with a directed cycle. a) Connected
graph with cycle [b, c, d, b]. b) The stack-based Kahn’s algorithm. After removing node a from the
stack, none of the indegrees is decremented to zero. The algorithm terminates before processing all
of the nodes, indicating the presence of a cycle. An identical result is achieved with the queue-based
Kahn’s algorithm. c) DFS based sorting. No inherent cycle detection exists in DFS. The nodes
within the stack (i.e., added but not yet removed) are marked. If a marked node is encountered
during DFS, the cycle exists within the graph. In this example, upon reaching node d, node b is
detected. Since node b is marked (i.e., within the stack), a cycle containing b and d exists within
the graph.

c e h

b d g

a f

i

a)

Stack

i
f f f g h

d d d d d d d e e e
a a a a a a a a a b c c c c c

Removed i f g d a b h e c

b)

c e h b a d g f i

c)

Stack i
f f f g e

d d d d d d d b h c c c a
Removed i f g d b h e c a

d)

e h ba d g f ic

e)

Fig. 2.43 Topological ordering using DFS. a) An example DAG. b) DFS starting from nodes a,
b, and c, and c) the resulting ordering. The ordering is obtained by reversing the order of removal
from the stack. This ordering is coincidentally identical to the ordering obtained using the queue-
based Kahn’s algorithm. d) DFS starting from nodes d, b, h, c, and a, and e) the resulting ordering.
Note that a valid ordering is obtained despite starting from nodes with nonzero indegree.

2.8 Summary 57

embedded into the nodes and edges, such as edge weights and node attributes. Trees,
bipartite graphs, and directed acyclic graphs are frequently encountered in practical
applications and are each described in this chapter. Classical graph-based problems
are presented, including pathfinding, spanning and Steiner tree construction, graph
coloring, and topological sorting. The algorithms discussed in this section provide
a rigorous framework for the design and analysis of a large variety of practical
systems. VLSI is an important application of graph theory. The application of graph
theory to VLSI circuits and systems is discussed in the following chapter.

Chapter 3
Graphs in VLSI circuits and systems

The history of engineering is characterized by the gradual increase in the complexity
of systems. The birth and development of Very Large Scale Integration (VLSI) has
followed a similar path. Early computing systems, while containing thousands of
elements, were relatively simple in complexity, permitting ad hoc, often manual,
design practices which required only a small group of people. For example, Z1, the
first relay computer, was built in 1938 by Konrad Zuse and several of his fellow
students in a living room of an apartment [17]. In contrast, modern VLSI systems
consist of many billions of devices, employ a rigorous approach to the design
process, and require collaboration of many hundreds to thousands of people with
expertise ranging from material physics to software engineering.

These complex systems cannot be efficiently designed or even fully compre-
hended by a single human individual. Abstraction is a powerful tool for managing
the complexity of sophisticated systems, where the fine details of a structure are
omitted to enable the design process at higher levels of abstraction [75, 178].
From a cognitive perspective, abstraction is a process of compressing information
[179]. Complicated objects and phenomena are reduced into a more manageable
size, facilitating design and analysis at a higher level. In developing complex
systems, abstraction is repeatedly applied, separating the design process into
multiple abstraction layers. Systems employing layered abstraction are not limited
to engineering and are often encountered in all types of endeavors requiring large
scale collaboration. A government, for example, is a multilayer system [180]. Issues
managed nationally, such as currency, military, and foreign affairs, influence an
entire country. Information is typically processed in an aggregate form, focusing on
trends rather than details. Policies at the national layer constitute a framework for
governments at the lower layers. While a significant overlap often exists between
the functions of national and regional governments, such as taxation and justice,
the focus of regional governments is relatively narrow. Decisions and policies
are however more nuanced, since a more precise understanding is possible at the
regional layer. For example, while the U.S. constitution contains approximately

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
R. Bairamkulov, E. G. Friedman, Graphs in VLSI,
https://doi.org/10.1007/978-3-031-11047-4_3

59

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-11047-4_3&domain=pdf

 -2016 61494 a -2016 61494 a

https://doi.org/10.1007/978-3-031-11047-4_3

60 3 Graphs in VLSI

4,400 words, constitutions in the 50 U.S. States are, on average, 34,000 words long
[181]. Lower layer governing structures (e.g., municipal or county governments)
often exist to oversee local affairs such as public facilities, housing, school systems,
and emergency services.

In engineering, layered abstraction is utilized, for example, in software engi-
neering [182], Internet Protocol Suite [183], artificial intelligence [184], and VLSI
[185]. Dividing a design problem into multiple separate levels brings three major
advantages to the development process.

1. Focus. Each abstraction layer is concentrated on a clearly defined set of design
objectives. The characteristics of the other abstraction layers are assumed reliable
and immutable. The design process therefore assumes correct functionality
within the other abstraction layers.

2. Simplification. Complex systems contain an excessive number of parameters
that complicate the design and analysis process. By applying layers of abstrac-
tion, redundant information is compressed or discarded. Only the most relevant
parameters are retained, greatly accelerating the system development process.

3. Generalization. Solutions within a particular layer do not typically rely on
specific characteristics of the other layers. These solutions can therefore be
generalized and applied to a wide range of systems.

The process of developing VLSI circuits and systems is largely hierarchical,
as illustrated in Fig. 3.1. Four abstraction layers are identified, namely, register
transfer, logic, circuit, and layout. Additional layers beyond the scope of VLSI
exist that encompass software engineering and semiconductor device and materials
development. In this context, VLSI can be viewed as a link connecting materials and
systems. A product development flow of a general VLSI system is shown in Fig. 3.2
[186]. The integrated circuit design process is essentially a series of transformations
from the highest abstraction layer (behavioral description) to the lowest abstraction
layer (physical layout).

Graph theory plays an important role in facilitating these transformations. By
applying a graph representation, a system is significantly simplified while retaining
essential information. The importance of graph theory as a method for abstracting
the VLSI design process is discussed in Section 3.1. Four layers of the VLSI design
process are identified. At the register transfer layer, graphs facilitate the analysis of
data flow within an IC, as described in Section 3.2. A graph-based analysis at the
gate layer is introduced in Section 3.3. In Section 3.4, application of graph theory
to circuit analysis is presented. Design issues at the physical layer are primarily
resolved using graph-based methods, as described in Section 3.5.

3.1 Graphs as a VLSI abstraction tool

From the most general perspective, an integrated circuit is a network of several
on-chip systems, multiple power grids, thousands of functional modules, billions

3.1 Graphs as a VLSI abstraction tool 61

Gate layer

Circuit layer

Physical
layer

Register
transfer layer

CL CL

bb
cin s

cout

a

a

b

a^b

VDD

VSS

Fig. 3.1 Design hierarchy in VLSI. At the register transfer layer, these macroblocks are trans-
formed into a network of memory blocks connected by wires and combinatorial logic. At the logic
layer, a gate-level representation of the system is the primary focus. The transistors within the
logic gates are the focus of the circuit layer. At the physical layer, the circuits are transformed into
a physical layout.

of registers, and many tens of billions of transistors. Graphs are highly effective
in managing the hierarchical design of these complex VLSI circuits and systems.
A graph representation of a system can be adjusted to suit the requirements of a
particular abstraction layer.

Early electronic systems before the 1970’s, composed of hundred of transistors,
were designed at the gate and physical layers [187]. The relative simplicity of
these early electronic systems supported an ad hoc design process, permitted a
lack of standardization, and allowed the design process to focus at lower levels
of abstraction. The increase in the complexity of microelectronic systems has,
however, significantly increased the workload. Manual drawing of IC layouts, for

62 3 Graphs in VLSI

Fig. 3.2 General design flow
for a digital VLSI system
[186]. A high-level
description of a VLSI system
is gradually converted into
more detailed formats. A
register transfer level model
is initially created. The RTL
models are converted into a
logic gate-level netlist. The
layout is generated during the
physical synthesis and layout
processes.

System requirements

High-level synthesis

Register
transfer level
(RTL) model

RTL synthesis

Gate-level
netlist

Physical synthesis

Physical layout

example, demanded a considerable amount of effort. In one estimate, 1,100 labor
hours were required to complete a mask for a ‘truly large’ array of the time (800
to 1,000 elements) [39]. Furthermore, verification of a logic unit with 6,000 active
elements was reported as manually intractable, exhibiting an unacceptably high 1%
error rate [39].

The complexity of a manual IC design effort motivated the adoption of higher
abstraction layers into the design process. For example, a methodology based on
standard cells was presented in 1968 to accelerate the design process and improve
reliability [39]. A 77% gain in labor productivity was reported (from 1,100 to
250 labor hours) at the cost of 10% to 20% larger on-chip area. By the early
1970’s, the standard cell-based design process was widely adopted in the large
scale integration (LSI) industry. Design with standard cells allowed the application

3.2 Register transfer level 63

of abstract graph theoretic techniques to IC design problems. Planar routing is
one of the earliest applications of graph theory in automating the microelectronic
system design process. IC wire routing algorithms, such as channel routing [188]
and intercellular wiring [189–191], incorporated graph-based algorithms. With the
advent of design methodologies based on standard cells and macroblocks, circuit
partitioning algorithms were developed. Heuristic graph cut algorithms, such as the
classic Kernighan-Lin algorithm [40], were integrated into the automated layout
process. Other notable early applications of graph theory in LSI/VLSI include
delay testing [192], system-level verification [193], and task scheduling [194]. In
the upcoming sections, applications of graph theory to VLSI are reviewed. In
Section 3.2, register allocation, task scheduling, and synchronization at the register
transfer layer are presented. Logic optimization at the gate layer is reviewed in
Section 3.3. Several applications of graph theory at the circuit and physical layers
are presented, respectively, in Sections 3.4 and 3.5.

3.2 Register transfer level

At the register transfer level (RTL), a VLSI circuit is expressed as a network
of interconnected blocks, as illustrated in Fig. 3.3. These blocks consist of many
primitive blocks that perform a particular function. At the RTL, the functional
behavior of a block is the primary focus, while the internal structure of the functional
block is rarely considered. The integrated system development process is drastically

Counter

In1
In2

Out1
Out2
Out3

In
Out1
Out2

In1

In2
In3

Out1
Out2
Out3

Out

FB

In In1

In2

OutData

Clock

Out

Fig. 3.3 Example of a VLSI system from an RTL perspective. The system consists of multiple
interconnected functional blocks. The data flow within the system is synchronized by a common
clock signal.

64 3 Graphs in VLSI

accelerated by utilizing RTL techniques [185, 187]. RTL design is therefore an
integral part of any VLSI system development effort [195]. Adoption of the RTL
design paradigm was, however, a gradual process. An early version of a register
transfer language for describing the high-level structure of a hardware system was
first presented in 1962 [196].

A higher level design paradigm was further advanced with the advent of modular
design, as proposed in the seminal paper by W. A. Clark and colleagues in
1967 [197–199]. Compound devices, such as adders, registers, control devices,
and memory units, were merged into standard ‘macromodules.’ In Clark’s vision,
an ‘electronically-naive’ designer could create an arbitrarily complex computer
from these macromodules. Many of the features of modern RTL design processes
were described. For example, two groups of macromodules were identified. The
‘processing network’ provides transfer, storage, and transformation of data, while
the sequencing network ensures the correct flow of data. This prescient vision gained
significant support in both the academic and industrial communities. In [200], for
example, a 500 fold reduction in hardware due to macromodular systems was
estimated. Similar systems, such as Register Transfer Modules [201] and Computer
Modules [202], have been proposed. Register Transfer Modules were used in the
design of the PDP-16 minicomputer by Digital Equipment Corporation [203].

By the early 1980’s, VLSI systems were primarily designed at the RTL [204].
Verification gradually transitioned to RTL, replacing logic level simulation [205].
Hardware description languages, such as the Very High Speed Integrated Circuit
(VHSIC) Hardware Description Language (VHDL) and Verilog Hardware Descrip-
tion Language (Verilog HDL), were quickly adopted in the 1980’s for describing and
verifying VLSI circuits and systems [206, 207]. Methodologies for creating an RTL
description of a system based on a behavioral description were developed [208, 209].
In this section, three major topics in the RTL design process are discussed; namely,
register allocation, task scheduling, and synchronization.

3.2.1 Register allocation

Before the rise of programmable computing systems, all computing machines were
capable of only a small set of predetermined operations [210]. For example, the
arithmometer patented and manufactured in the 19th century by Thomas de Colmar
[211] was limited to only four operations, addition, subtraction, multiplication,
and division. The arithmometer could however not be reprogrammed to process
text input or to perform symbolic calculations. With the advent of programmable
computers, the von Neumann computer architecture became highly popular (and
remains today as the standard computer architecture) [212]. The basic structure of
this architecture is shown in Fig. 3.4 and consists of three main components; random
access memory (RAM), a central processing unit (CPU), and input/output (I/O)
interfaces. The computer program and data are stored in the memory. The control
unit of the CPU determines the sequence of operations and necessary operands and

3.2 Register transfer level 65

Input-output
interface

CPU

Control unit ALU

Memory

Data Instructions

B
U
S

Fig. 3.4 The Von Neumann architecture is a reprogrammable architecture initially developed for
early programmable computers. The architecture consists of a CPU, memory, and input-output
interface. The memory stores data and instructions. The shared data and instruction bus provides
communication between the CPU and memory.

fetches the operands from the memory. The ALU performs the arithmetic and logic
operations as instructed by the control unit of the CPU. The output of the ALU is
sent to the memory or to an output interface, such as a monitor.

The reduced instruction set computer (RISC) architecture, prevalent in modern
computing systems, is largely based on the original von Neumann architecture
[213]. A significant modification has however been made to the communication
between the RAM and CPU. The delay of an ALU in early computing systems, such
as the EDVAC, which was completed in 1949, was comparable to the latency of the
memory access time [213]. With the development of faster ALUs, memory access
time has become the primary bottleneck, severely limiting performance. To reduce
the memory access time, a hierarchical memory structure was developed which
remains in use today in modern computing systems [214]. The size and latency of
the memory hierarchy in a typical desktop computer are listed in Table 3.1. The
fastest memory type is the on-chip registers that require negligible access time.
These registers are located within the CPU, in close proximity to the ALU and
control units, to ensure minimal latency. Due to space constraints, however, the
number of these registers is limited. A modern CPU typically contains between
32 and 64 registers [215, 216].

In computer engineering, a variable is a reference to a specific value – a datum
stored within the memory. During a variable definition, a certain value is linked
to a symbolic name. An example of a variable definition is illustrated in Fig. 3.5a.
The symbolic name x is associated with the value 2016. The primary purpose of
the registers is the temporary storage of the variables in proximity of a CPU. In
Fig. 3.5b, for example, the variable x is stored in register R1. If, during execution of

66 3 Graphs in VLSI

Table 3.1 Typical capacity
and latency (in 2019) at
different levels of the
memory hierarchy [217].

Memory type Latency Size

CPU Registers 300 ps 2 KB

L1 Cache 1 ns 64 KB

L2 Cache 3 to 10 ns 256 KB

L3 Cache 10 to 20 ns 8 MB

Memory 50 to 100 ns 32 GB

Storage 50 to 100 μs 256 GB

x = 2016

Symbolic
name

Value

a)

R1 2016

Register
address

b)

Fig. 3.5 Variables in computer engineering. a) Variable definition. The value 2016 is linked to the
symbolic name x. b) The value 2016 is stored in register R1 after register allocation. Operations
involving variable x will access R1.

a program, all of the registers are occupied, additional variables cannot be stored
within a register without displacing existing variables. This situation is called a
register spill [218] and results in a variable being stored in a lower tier memory.
Memory at the lower tiers is located at a greater distance from the CPU, producing
greater latency during reading and writing. Avoiding a register spill significantly
enhances performance by reducing the memory latency.

Register allocation is an important process assigning program variables to the
registers [217]. Consider a set of instructions, as shown in Fig. 3.6a. The operations
on variable x are completed before the operations on variable y commence. The
register occupied by x should therefore be vacated for use by variable y. A variable
is called live during the period between the variable definition until the last use of
the variable. The range of program lines during which a variable is live is called
a live range. The live ranges of variables x and y, as depicted in Fig. 3.6a, do not
overlap. The program shown in Fig. 3.6a therefore requires only one register despite
operating with two variables.

Consider the program shown in Fig. 3.6b. The live range of the variable a
overlaps with the live ranges of b and c. Different registers are therefore necessary
to store variables a and b since the live ranges of these variables overlap. The
conflict between the live ranges can be modeled as an interference graph. The
interference graph for the program shown in Fig. 3.6b is shown in Fig. 3.6c, where
the nodes represent variables, and the edges represent interference between the
respective live ranges. Any two variables connected with an edge in an interference
graph cannot use the same register during the course of a program. Allocation of
registers to variables can be represented as a graph coloring problem [219, 220].

3.2 Register transfer level 67

...
x 1
x x * 2
...
y 2
y y / 2
y y + 1
...

x

y

a)

...
a 1
b a + 1
a a + b
...
c 2
c a + c
...

b

c

a

b)

a

b

c

c)

Fig. 3.6 Live ranges used for register allocation within a computer program. a) Non-overlapping
live ranges. Variables x and y can share the same register. b) Overlapping live ranges. Variable c
can be assigned to the register of variable b, but not a, since the live ranges of a and c overlap.
c) Coloring of the interference graph for case (b). Register allocation can be viewed as a graph
coloring problem [219, 220], where the live ranges are represented by nodes and the interference
is represented by edges.

Recall from Subsection 2.7.3 that the purpose of graph coloring is to label (color)
each node to ensure no adjacent nodes share the same label. In the context of register
allocation, the nodes represent variables and the color of the nodes represents the
registers.

The problem of graph coloring is NP-hard [10] and therefore requires heuristic
methods to approach a near optimal solution. Several classes of graphs can however
be colored in subexponential time. Bipartite graphs, for example, can be colored
in linear time using two colors (see Fig. 3.7). Many heuristic algorithms have been
proposed to determine a near optimal coloring of a general graph in polynomial
time. A simple approach to graph coloring is a greedy algorithm completed in linear
time [221]. Suppose the colors for coloring are [c1, c2, ...], and the graph is traversed
in an arbitrary order. A minimum available color is assigned to a node, i.e., if the
node can be colored with ci or cj , the color ci is chosen if i < j . Node ordering
is crucial for reducing the number of colors used by an algorithm. For example,
greedy coloring in the order shown in Fig. 3.7a requires only two colors, while the
order shown in Fig. 3.7b requires |V |/2 colors.

Chaitin’s coloring algorithm is the first coloring algorithm applied to the register
allocation problem [219]. The algorithm modifies the greedy coloring by providing
a coloring order. The number of colors k is initially chosen for coloring. Those
nodes with degree less than k are removed from the graph, and the order of removal
is recorded. If no node with degree less than k exists, the corresponding variable can
be spilled, i.e., moved to the cache or memory. After all of the nodes are removed,
the graph is colored in the reverse order of removal, i.e., those nodes removed first
are colored last.

Register allocation has undergone significant advances since 1981. Register
allocation in modern computing systems utilizes advanced coloring algorithms
combined with non-graph theoretic algorithms, such as linear scan [222]. The

68 3 Graphs in VLSI

2 3

6 7

4

8

1

5
a)

3 5

4 6

7

8

1

2
b)

Fig. 3.7 Greedy coloring of a bipartite graph. a) Optimal coloring order requiring only two colors.
b) Suboptimal coloring requiring four colors

complexity and performance of coloring algorithms have also been improved.
Advanced coloring algorithms perform coloring in O(log(n)) time or faster [223–
226], producing fast and efficient register allocation.

3.2.2 Task scheduling

Many processes inside and outside engineering require a strict order of operations.
Consider, for example, the process of preparing a salad. Vegetables first need to
be washed. Some of the vegetables require peeling, followed by slicing. After the
vegetables are mixed in a bowl, a dressing is poured over the salad. Observe that a
strict order of precedence exists throughout this process, e.g., mixing occurs only
after slicing.

In VLSI systems, most operations depend upon the result of previous operations.
Similar to the salad preparation process, certain operations cannot be started before
the preceding operation is completed. Task scheduling is the process of determining
an order of execution such that a target metric, such as latency or throughput, is
minimized. The set of tasks within a process can be represented in graphical form.

3.2 Register transfer level 69

Wash
tomatoes

Wash
lettuce

Wash
carrots

Slice
tomatoes

Peel
carrots

Slice
carrots

Mix in
a bowl

Pour
dressing

Fig. 3.8 Task graph for salad preparation. Directed edges establish a task precedence. The shaded
region represents a critical path, the longest chain of dependent tasks.

Fig. 3.9 Example of a
circular task dependence.
Task B awaits completion of
task A, Task C awaits
completion of task B, and
task A awaits completion of
task C. None of the tasks can
therefore start, producing a
deadlock.

A

CB

A directed graph describing the salad preparation process is shown in Fig. 3.8. The
nodes in the graph represent the tasks, and the edge directions establish the task
precedence. If nodes i and j within a task graph are connected with edge i → j ,
task j cannot be started before task i is completed. Observe that no directed cycles
exist within a task graph. To illustrate the inadmissibility of cycles within a task
graph, consider a task schedule that contains a cycle, as illustrated in Fig. 3.9. In
cycle ABC, task B waits for the result of task A, task C waits for the result of
task B, and task A waits for the result of task C. No task can commence, since
a cyclic dependence exists, producing a deadlock. A functional task graph is a
directed acyclic graph (DAG), previously introduced in Section 2.5. The task graph
establishes a strict precedence between tasks, prohibiting cyclic dependencies.

The objective of the task scheduling process is to establish the order of execution
while respecting any precedence constraints. This task is equivalent to a topological
sorting of a task graph G(V,E) – a process of finding an ordered sequence of
vertices of G such that node v ∈ V appears only after the appearance of all of

70 3 Graphs in VLSI

1 2 3 4 5 6 7 8

Wash
tomatoes

Wash
lettuce

Wash
carrots

Slice
tomatoes

Peel
carrots

Slice
carrots

Mix in
a bowl

Pour
dressing

a)

1 2 3 4 5 6 7 8

Wash
tomatoes

Wash
lettuce

Wash
carrots

Slice
tomatoes

Peel
carrots

Slice
carrots

Mix in
a bowl

Pour
dressing

b)

Fig. 3.10 Topological sort of the task graph shown in Fig. 3.9. Both of the schedules in (a) and
(b) are valid, since the sequence number of each task is greater than the sequence number of the
preceding tasks.

the predecessors [227]. Recall from Subsection 2.7.4 that many valid topological
orders may exist for a particular DAG. For example, the salad preparation process
can follow either sequence shown in Figs. 3.10a and 3.10b. Both of these sequences
satisfy the precedence constraints.

Many modern VLSI systems support parallel execution of processes. A task
graph can therefore be partitioned to split the workload among multiple processors.
The gain in performance due to operating multiple processors depends upon the task
schedule [97]. An inefficient task schedule underutilizes the available processing
resources. In the salad preparation example, parallel processing is analogous to
multiple chefs preparing a single dish. Suppose two chefs are preparing a salad, and
each task requires one time unit. An example task schedule for two chefs is depicted
in Fig. 3.11a. A 25% speedup is achieved by parallel execution, requiring six time
units. The tasks are however partitioned suboptimally. Consider the partition shown
in Fig. 3.11b. The execution time is reduced to five time units by adjusting the task
schedule. Observe that the process execution time cannot be further reduced by
adding another chef to the process. A lower limit on process execution time exists
that prevents a process from being completed even if the number of processors is
unlimited. The longest sequence of tasks is called a critical path and is shaded in
Fig. 3.8. The length of the critical path determines the minimum time required to
complete the process.

Different variations of the scheduling problem exist. In the simplest case,
the tasks require the same time on each of the processors. Practically, the time
required to complete a task may vary. Furthermore, many practical systems are
heterogeneous, where a specific processor performs faster or slower on a particular

3.2 Register transfer level 71

Chef 1

Chef 2

1 2 3 4 5 6

Wash
lettuce

Wash
carrots

Wash
tomatoes

Slice
tomatoes

Peel
carrots

Slice
carrots

Mix in
a bowl

Pour
dressing

Wash
lettuce

a)

Chef 1

Chef 2

1 2 3 4 5 6

Wash
carrots

Wash
lettuce

Wash
tomatoes

Slice
tomatoes

Peel
carrots

Slice
carrots

Mix in
a bowl

Pour
dressing

b)

Fig. 3.11 Task scheduling with two chefs. Each task requires one time unit. a) Suboptimal task
scheduling. Chef 2 is idle for two time units. b) Optimal task scheduling, requiring one fewer time
unit. The execution time cannot be further optimized, since the execution time is equal to the length
of the critical path.

task. Communication costs further complicate the scheduling process. If an isolated
sequence of tasks is performed on a single processor A, no communication between
the processors is needed. If however a preceding task is performed by a different
processor B, the result of the computation must be delivered to processor A.
The communication time is typically not negligible and can significantly degrade
the performance. The problem of parallel task scheduling is NP-hard. Different
optimization algorithms have been proposed in the literature to approximate
optimal task allocation among several processors [228]. Two classic algorithms for
task scheduling in heterogeneous systems are Heterogeneous-Earliest-Finish-Time
(HEFT) and Critical-Path-on-a-Processor (CPOP) [229]. In HEFT, the task graph is
traversed in reverse order, inserting the tasks into a schedule to minimize the total
execution time. In CPOP, the task graph is traversed in forward order. The tasks
along a critical path are assigned to a single processor to minimize communication
costs, while other tasks are scheduled to minimize the task completion time. Both of
these algorithms exhibit complexity O(|E||V |), where |E| is the number of edges
in a task graph and |V | is the number of processors [97].

72 3 Graphs in VLSI

3.2.3 Synchronization

Most modern high performance VLSI systems require synchronization to ensure
the data flow is temporally correct. A clock signal is a periodic signal establishing
a temporal reference for the memory elements within a synchronous VLSI system
(such as a flip flop or latch). During the design of a sequential logic system, the
clock signal is typically assumed to simultaneously arrive at each gate, providing
the global time reference. Within a clock period, a local combinatorial logic block
retrieves the data from the input registers, completes the local logical function, and
delivers the processed data to the output registers. In practical systems, however, the
clock signal travels over long distances (e.g., possibly across the entire IC) and the
propagation speed is finite. The delivery of the clock signal to all memory units is
therefore not simultaneous, producing clock skew sif [230, 231],

sif = ti − tf , (3.1)

where ti and tf are the delay from the clock source to, respectively, register Ri and
Rf [230]. An example of a system exhibiting clock skew is illustrated in Fig. 3.12.
If the clock signal travels in the direction opposite to the data flow within the data
path, as illustrated in Fig. 3.13a, the clock skew is called positive [230, 232]. Positive
clock skew reduces the effective clock period of a data path,

T
eff
CP = TCP − sif , (3.2)

where TCP and T
eff
CP denote, respectively, the actual and effective clock periods. The

datum should therefore be processed faster to be delivered to register Rf before the
clock signal of the next period arrives at Rf . If the datum is not delivered, register
Rf captures incomplete or an incorrect datum, producing a clock period violation
(zero clocking). Conversely, if the clock signal travels in the direction of a data path,
as illustrated in Fig. 3.13b, the clock skew is called negative [230, 232]. Negative
clock skew increases the effective clock period of a data path by providing additional
time for the datum to be processed by the combinatorial logic. A different condition
may however occur. If the combinatorial logic completes the function before the
clock signal of the same period arrives at the next register, the datum stored in the
register can be destroyed, while the incorrect datum propagates through the system.
This issue is called a race condition or double clocking [230, 232, 233].

A significant design focus has been to minimize clock skew [178, 186, 230, 234,
235]. Different clock distribution topologies have been proposed in the literature
[232]. An H-tree, for example, is an example of a balanced clock tree that equalizes
the delay between the source and all of the endpoints within a network [236].
A geometrically balanced clock tree synthesis methodology is proposed in [235].
Mesh and grid clock distribution networks provide a low impedance path between
the leaves of the clock tree, reducing the difference between the clock arrival
time at the registers [232]. Clock skew minimization strategies, however, require

3.2 Register transfer level 73

Fig. 3.12 A sequential
system exhibiting clock skew.
The clock signal is generated
at the clock source and travels
through the clock tree toward
registers Ri and Rf . The
delay from the clock source
to registers Ri and Rf are,
respectively, ti and tf .

Cif

Clock
source

ti tf

Ri Rf

CifRi Rf

sij
a)

CifRi Rf

sij
b)

Fig. 3.13 Data and clock flow for positive and negative skew. a) Positive clock skew. The clock
signal travels in the direction opposite to the flow of data. The effective clock period is reduced.
This configuration is immune to race conditions. b) Negative clock skew. The clock signal travels
in the same direction as the datum. The effective clock period is increased. Race conditions may
occur if the data signal arrives at Rf before arrival of the clock signal within the same clock period.

significant overhead and cannot completely suppress clock skew [66]. Furthermore,
minimization of clock skew does not ensure correct functionality of a synchronous
system [231, 237].

In the 1990’s, an alternative perspective towards clock skew optimization was
developed [238–241]. Clock skew scheduling was presented as an alternative to
zero skew design techniques. Rather than eliminating clock skew, the arrival time
of a clock signal is deliberately controlled to ensure correct functionality while
improving the performance of a synchronous system. The primary tool in clock
skew scheduling is a timing graph, as illustrated in Figs. 3.14. The nodes of a timing
graph represent synchronous elements, such as flip flops or clocked logic gates. The
edges represent data paths connecting sequentially-adjacent registers [230] which
may also contain combinatorial logic. Each edge is assigned two attributes which
indicate the maximum and minimum propagation delay of a data signal through the
corresponding data path.

74 3 Graphs in VLSI

R1 R2

R4R3

C1 C2

C3

R5

C4 R6

C5 R7

a)

1 2

3 4 6

5 7C1 C2 C5

C1,C5

C1,C5

C1 C5
C2,C3

C4C3

b)

Fig. 3.14 Graphical model of a synchronous system. a) Register transfer level representation of
a synchronous system. b) Timing graph. The nodes represent sequential logic elements, and the
edges represent combinatorial logic.

A permissible range of clock skew [237, 239] is the minimum and maximum
clock skew between sequentially-adjacent registers, defined as

PRif ≡ [lif , uif], (3.3)

where lif and uif denote, respectively, the lower and upper bounds on the clock
skew. To ensure correct functionality of a synchronous system, the clock skew
of each data path should be maintained within the permissible range. Linear and
quadratic programming algorithms have been proposed to achieve an acceptable
clock skew schedule [231, 233, 239]. A more complete description of clock skew
scheduling is provided in Chapter 4.

3.3 Gate layer

A gate layer representation of a digital IC consists of interconnected combinatorial
logic gates, performing Boolean operations, as illustrated in Fig. 3.15a. A logic
circuit can be described by a directed graph where the nodes and edges represent,

3.3 Gate layer 75

bb
cin

s

cout

a

a)

a

b

cin

XOR XOR

AND

AND

XOR

s

cout

b)

Fig. 3.15 Example of a half adder. a) Logic circuit. b) Equivalent directed graph. The nodes denote
the gates, and the edges denote the connection between the gates. Observe that the fan-in and fan-
out of the gates are equal to, respectively, the indegree and outdegree of the corresponding node in
a directed graph.

respectively, the gates and connections between the gates, as depicted in Fig. 3.15b.
The fan-out of a gate within a graph is equal to the outdegree of the corresponding
node within the directed graph. Similarly, the fan-in of a gate is equal to the indegree
of the corresponding node. Signals at the logic layer exhibit only two binary values;
namely, low (typically, logical 0 or false) and high (typically, logical 1 or true).
The binary signals exhibit a high tolerance to signal uncertainty by employing wide
noise margins, as shown in Fig. 3.16 [242]. Communication and storage of the
digital data are therefore significantly simplified. By abstracting from continuous
analog levels to binary logical signals, Boolean algebra can be applied to the design
of digital systems.

Verification is an important step in the development of logic circuits that
ensures the correct functionality of a digital system. Fundamental issues in formal
verification at the gate layer include model checking, equivalence checking, and
Boolean satisfiability. Model checking is an important issue in system design. The
state space of a logic system is exhaustively searched to verify the correspondence
of a particular function to a target specification [243, 244]. A primary issue in VLSI
logic design is to verify whether a particular design satisfies the target requirements
[245]. Formal equivalence checking is a form of model checking with the objective
to verify whether two logic systems produce the same logic function [246]. The
objective of the Boolean satisfiability (SAT) problem is to determine whether there

76 3 Graphs in VLSI

Fig. 3.16 Noise margins in
digital circuits. The voltage in
a digital circuit ranges from
VSS to VDD . The signals in
digital circuits are often
treated as binary numbers.
Any voltage within NML or
NMH is treated, respectively,
as logical 0 or logical 1. Indeterminate

Logical
LOW

Logical
HIGH

NML

NMH

VDD

VSS

exists a sequence of inputs that causes a given system to produce a logical one (1)
[208, 246]. By using graph-based methods, the verification process can be simplified
to graph partitioning, path finding, and graph reduction [208].

A primitive building block at the gate layer is a logic gate. Examples of
logic gates are illustrated in Fig. 3.17a. Multiple logic gates can be combined to
form a logic circuit performing a particular Boolean function, as exemplified in
Fig. 3.17b. Modern integrated circuits contain millions to many billions of logic
gates, producing highly complex logical networks. The complexity of logic circuits
in modern digital systems requires advanced techniques not only for verifying but
also to represent a Boolean function. The most basic representation is the truth
table, as illustrated in Fig. 3.18. Each row represents an output corresponding to
a sequence of inputs. The truth table is a canonical description of a Boolean
function. A canonical representation uniquely characterizes a Boolean expression.
For example, expressions (a + b)c and ac + bc are described differently but the
truth tables are identical, indicating that these functions are equivalent. A tabular
format is only suitable for a small number of input variables since the number of
rows doubles with each new variable (grows exponentially with the number of input
variables). More efficient graph-based Boolean function representations exist. In
this section, two of the most widely used methods are reviewed, namely, Ordered
Binary Decision Diagrams and And-Inverter Graphs.

3.3.1 Ordered binary decision diagram

An Ordered Binary Decision Diagram (OBDD) is a directed acyclic graph (DAG)
representing a Boolean function [95]. The nodes are divided into two groups.
Non-terminal nodes represent the variables of a Boolean expression. Each non-
terminal node x has two children, high(x) and low(x). Terminal (or leaf) nodes

3.3 Gate layer 77

aa 0 1

y 1 0
a

a
b a+b)

a
b a! b)

a
b y=a+b

a
b y=a! b

a
b

a
b y=ab

a 0 0 1 1
b 0 1 0 1
y 0 0 0 1
a 0 0 1 1
b 0 1 0 1
y 0 1 1 1
a 0 0 1 1
b 0 1 0 1

y 0 1 1 0
a 0 0 1 1
b 0 1 0 1
y 1 1 1 0
a 0 0 1 1
b 0 1 0 1
y 1 0 0 0
a 0 0 1 1
b 0 1 0 1
y 1 0 0 1

a)

a
b

c y

a 0 0 0 0 1 1 1 1
b 0 0 1 1 0 0 1 1
c 0 1 0 1 0 1 0 1

y 0 0 1 0 0 0 0 0

b)

Fig. 3.17 Examples of logic gates. a) A list of primitive one and two input logic gates and truth
tables. b) An example of a logic circuit composed of multiple logic gates and the associated truth
table.

have a value of 0 or 1, representing the result of a logical function. To evaluate a
Boolean function, an OBDD is traversed starting from the root. The traversed path
is determined by the operands of the function. If a Boolean operand x has value 1,
the traversal continues along the edge high(x), otherwise low(x) is traversed. For
example, suppose an expression a(b + c) is evaluated for [a, b, c] = [0, 1, 0] using
the OBDD shown in Fig. 3.19a. Due to the chosen variable ordering, the root vertex
is a. Since a = 0, the edge low(a) is traversed. Next, b = 1, and the traversal
continues along the path high(b). Finally, c = 0, and the path continues with
low(c), terminating at 0.

The size of an OBDD can be reduced by applying a set of reduction techniques.
Formally, two rules govern the reduction process.

• If both of the outgoing edges of node u are directed towards the same node v,
node u can be removed. The incoming edges of node u can point directly to node
v.

78 3 Graphs in VLSI

Fig. 3.18 Truth table for
function f = a(b + c).

a b c f
0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 0
1 0 0 0
1 0 1 1
1 1 0 1
1 1 1 1

f = a (b + c)

• If nodes u and v correspond to the same variable and the subtrees are identical,
node v can be removed. The incoming edges of node v are redirected to u.

Using these two rules, an OBDD can be transformed into a Reduced OBDD
(ROBDD). Observe, for example, that if a = 0, the value of b and c does not affect
the result of the expression. Edge low(a) is therefore connected directly to node
0, as illustrated in Fig. 3.19b. Similarly, if b = 1, the value of node c is irrelevant.
Edge high(b) is therefore connected to node 1. Finally, identical nodes are merged,
yielding the OBDD depicted in Fig. 3.19c.

Using OBDD, the satisfiability problem is reduced to finding a path terminating
at node 1 [95]. An OBDD is not a canonical representation of a Boolean function,
necessitating additional processing for equivalence checking. An ROBDD, however,
is a canonical representation, since the ROBDD is unique for a given function
and variable order. The major issue pertaining to ROBDDs is the dependence on
the variable ordering. Compare the two ROBDDs for function a(b + c) shown in
Figs. 3.19c and 3.19d. Changing the variable order reduces the number of edges by
50% and the number of non-terminal nodes by 25%. Finding an appropriate variable

3.3 Gate layer 79

0 0 0 0

c c

b

0 1 1 1

c c

b

a

a)

0 0 1 1 1

c c

b

a

b)

c

b

a

10

c)

0

c

a a

b

1

d)

Fig. 3.19 Ordered Binary Decision Diagrams (OBDD) for a Boolean function f = a(b + c) and
variable order (a, b, c). a) Original OBDD. The solid and dashed edges leaving edge x represent,
respectively, paths high(x) and low(x). b) OBDD after eliminating nodes b and c for the case
a = 0. c) Reduced OBDD (ROBDD). d) Inefficient ROBDD due to suboptimal variable order
(b, a, c).

order is critical since the worst case size of a ROBDD grows exponentially with the
number of variables [208].

3.3.2 And-inverter graph

Another graph-based representation of a Boolean function is the And-Inverter Graph
(AIG). There are three types of nodes in an AIG, namely, primary inputs, AND
nodes, and primary outputs. Primary inputs represent the operands of a Boolean
function and have zero indegree. Similarly, primary outputs denote the result of a
Boolean function, and therefore have zero outdegree. The inner nodes within an
AIG represent a two input AND gate. Edges within an AIG can be non-inverting
or inverting. A signal traveling through an edge is unaltered in the former case and
inverted in the latter case. Examples of Boolean functions modeled as an AIG are
shown in Fig. 3.20.

80 3 Graphs in VLSI

a b c
a)

cba
b)

Fig. 3.20 Conversion of a Boolean circuit into an And-Inverter graph (AIG). a) Original circuit.
b) Equivalent AIG.

The primary advantage of an AIG is scalability. The size of an AIG grows linearly
with the size of a circuit as compared to a ROBDD whose worst case growth rate
is exponential [247]. An AIG, however, is not a canonical format for representing
a Boolean function. Both of the AIGs shown in Fig. 3.21, for example, represent
the same Boolean function. To mitigate this issue, a structural hashing technique is
presented in [248–250]. A functionally reduced AIG (FRAIG), proposed in [247],
applies structural hashing to produce a ‘semi-canonical’ AIG where no two nodes
execute the same function. A FRAIG is however not canonical, since two different
FRAIGs can execute the same function.

Despite the non-canonicity complicating the structural analysis, the efficiency of
an AIG makes this structure preferable for many applications. In tree balancing, for
example, the maximum number of levels within an AIG is reduced, thereby decreas-
ing the delay of a critical path [251]. An AIG-based path balancing methodology is
proposed in [252] for deep pipelines, yielding a considerable reduction in area and
static power. Despite non-canonicity, the AIGs interact well with simulation-based
techniques, producing highly efficient solutions for SAT problems [253]. Using the
miter technique [254], the equivalence check problem can be presented as a SAT
problem, as illustrated in Fig. 3.22. To verify the equivalence of two logic circuits,
the output of the two circuits is connected to the inputs of an XOR gate. If no
combination of inputs produces a logical 1 in the miter circuit, the circuits are
equivalent.

3.4 Circuit layer 81

Fig. 3.21 Identical Boolean
functions can be represented
differently using an AIG. a)
ab + bc, and b) b(a + c).
Both (a) and (b) describe the
same function.

ab+bc

cba

a)

cb

a

(+)a cb

b)

Fig. 3.22 Miter technique
for checking the equivalence
of two AIGs. The AIGs are
connected to a XOR gate.
The SAT problem is solved
for this structure. If any input
configuration produces output
1, the AIGs are not
equivalent.

AIG
1

AIG
2

3.4 Circuit layer

By far the most common application of graph theory in VLSI is the analysis of
electrical circuits. Graph-based analysis of electrical circuits was conceived in 1845
by Gustav Robert Kirchhoff, then a 21 year old physics student at the University
of Königsberg [255]. In [256], he postulated two fundamental laws of electrical
circuits, commonly known as Kirchhoff’s current law (KCL) and Kirchhoff’s
voltage law (KVL). To determine the cycle basis, i.e., the number of independent
cycles within a circuit, he inadvertently used the concept of a spanning tree and
showed that

|E| = μ + |V | − 1, (3.4)

82 3 Graphs in VLSI

where μ is the number of independent cycles. Kirchhoff’s laws have been used
beyond electrical circuits and were widely used by Henri Poincaré in algebraic
topology. Henri Poincaré’s matrix-based approach introduced an incidence matrix –
an important concept in circuit theory [257]. The works of Kirchhoff and Poincaré
laid the foundation for Modified Nodal Analysis, the circuit analysis method that,
with modifications, is widely used today in modern circuit simulation [64].

3.4.1 Laplacian matrix of a circuit graph

A matrix is a common approach for describing the properties of a graph. A
fundamental description of a graph is an incidence matrix. Consider the circuit
depicted in Fig. 3.23a. An equivalent graph is created by replacing each resistor with
an edge, as illustrated in Fig. 3.23b. The incidence matrix Y for a loopless simple
graph G is a |V | × |E| matrix that encodes the connectivity within a graph. For an
undirected graph G(V,E), an element y ∈ Y , corresponding to edge e and node v,
is defined as

yve ≡
{ 1, if e is incident to v, (3.5a)

0, otherwise. (3.5b)

The incidence matrix for the circuit shown in Fig. 3.23a is

Y =

e1 e2 e3 e4 e5
⎡

⎢
⎣

⎤

⎥
⎦

1 0 0 1 0 n1
1 1 1 0 0 n2
0 1 0 0 1 n3
0 0 1 1 1 n4

. (3.6)

Since each edge in G is connected to exactly two nodes, the number of nonzero
entries in each column is two.

A directed graph Gd(V,Ed) is an orientation of the underlying circuit graph
G (see Subsection 2.1.5) produced by arbitrarily choosing the direction of current
within a circuit. The direction of the edges in Ed corresponds to the assumed direc-
tion of current between the nodes. An example of a directed graph, corresponding
to the circuit shown in Fig. 3.23a, is depicted in Fig. 3.23c. The incidence matrix Yd

for a loopless directed graph Gd is a |V | × |Ed | matrix whose element yd ∈ Yd ,
corresponding to edge e and node v, is defined as

yve ≡

⎧
⎪⎨

⎪⎩

1, if e leaves v, (3.7a)

−1, if e enters v, (3.7b)

0, otherwise. (3.7c)

3.4 Circuit layer 83

n4

n2

n3

e1 e2

e3

e4 e5

n1

i

a)

n1

n2

n3

n4

e1 e2
e3

e4 e5

b)

n1

n2

n3

n4

e1 e2
e3

e4 e5

c)

Fig. 3.23 Graph model of an electrical circuit. a) A resistive circuit with four nodes, five resistors,
and a current source, b) equivalent undirected graph model, and c) equivalent directed graph model,
where the direction of the edges indicates the assumed direction of current.

The incidence matrix for the circuit shown in Fig. 3.23c is

Yd =

e1 e2 e3 e4 e5
⎡

⎢
⎣

⎤

⎥
⎦

1 0 0 −1 0 n1
−1 1 1 0 0 n2
0 −1 0 0 −1 n3
0 0 −1 1 1 n4

. (3.8)

Observe that the sum of each column in Yd is zero, since each edge leaves and enters
exactly one node. A reduced incidence matrix Y

g
d is obtained by assigning one node

as reference (ground), removing the corresponding row from Yd . By grounding node
n4, the reduced incidence matrix Y

g
d becomes

Y
g
d =

e1 e2 e3 e4 e5
[]1 0 0 −1 0 n1
−1 1 1 0 0 n2
0 −1 0 0 −1 n3

. (3.9)

The reduced incidence matrix of a directed graph is a basis of the classic Kirchhoff’s
Laws [258]. Kirchhoff’s Current Law in matrix form is

Y
g
d J + Q = 0|V |, (3.10)

where J ∈ R
|Ed |×1 is the vector of current through each branch within a network,

Q ∈ R
(|V |−1)×1 is the vector of external current injection, and 0n is the zero column

vector with length n. Similarly, Kirchhoff’s Voltage Law is

W(Y
g
d)T = Vg, (3.11)

84 3 Graphs in VLSI

where W ∈ R
|Eg |×1 is the vector of voltage drops across the branches of Gd , and

Vg ∈ R
(|V |−1)×1 is the vector of node potentials relative to the reference node.

The adjacency matrix is a different representation of a graph. For an undirected
loopless simple graph G, the adjacency matrix A is a |V |× |V | matrix with an entry
defined as

aij ≡
{

1, if there exists an edge connecting i and j (3.12a)

0, if i = j. (3.12b)

Note that since the graph contains no self-loops, the diagonal elements of A are
all zero. In graphs corresponding to practical circuits, any node is adjacent to only
a few neighbors, producing a sparse adjacency matrix. When stored in computer
memory, the adjacency matrix is often represented as an adjacency list, requiring
approximately O(|V | + |E|) space within memory, as compared to O(|V |2) space
required by a full adjacency matrix.

Practical graphs in VLSI are characterized by weights which represent the
conductance of the edge. The weighted adjacency matrix is therefore generalized
as Aw where

aw
ij ≡
{

gij , if i �= j (3.13a)

0, if i = j, (3.13b)

where gij is the conductance of the edge connecting i and j . The adjacency matrix
for the circuit shown in Fig. 3.23a is

Aw =

n1 n2 n3 n4
⎡

⎢
⎣

⎤

⎥
⎦

0 g1 0 g4 n1
g1 0 g2 g3 n2
0 g2 0 g5 n3
g4 g3 g5 0 n4

. (3.14)

The sum of the entries along a given row of an adjacency matrix produces the
degree of the corresponding node. Degree matrix D is a |V | × |V | diagonal matrix
with entry dij defined as

dij ≡
{

d(ni), if i = j (3.15a)

0, otherwise. (3.15b)

The degree matrix of the circuit shown in Fig. 3.23a is

3.4 Circuit layer 85

D =

n1 n2 n3 n4
⎡

⎢
⎣

⎤

⎥
⎦

g1 + g4 0 0 0 n1
0 g1 + g2 + g3 0 0 n2
0 0 g2 + g5 0 n3
0 0 0 g3 + g4 + g5 n4

. (3.16)

Observe that the sum of the entries in each row of Aw is equal to the diagonal entry
in D.

Subtracting the adjacency matrix from the degree matrix produces the conduc-
tance matrix (or weighted Laplacian matrix) L [259], an important matrix in circuit
theory,

L = D − A. (3.17)

Entry lij within L is

lij =
{

d(ni), if i = j (3.18a)

−gij , otherwise. (3.18b)

The conductance matrix can be derived from the incidence matrix,

L = YDYT . (3.19)

The Laplacian matrix of the circuit shown in Fig. 3.23a is

L =

n1 n2 n3 n4
⎡

⎢
⎣

⎤

⎥
⎦

g1 + g4 −g1 0 −g4 n1
−g1 g1 + g2 + g3 −g2 −g3 n2

0 −g2 g2 + g5 −g5 n3
−g4 −g3 −g5 g3 + g4 + g5 n4

. (3.20)

The conductance matrix is the critical matrix in circuit graph analysis, widely
used in virtually all modern circuit simulation tools. Important insights are based on
the conductance matrix, such as the effective resistance [71]. Suppose a unit current
is injected into node i and drawn from node j . The electric potentials within the
circuit satisfy

L v = ei − ej , (3.21)

where v ∈ R
|V | ei is a vector with the ith entry equal to 1 and all other entries equal

to zero. The effective resistance between the ith node and j th node is

86 3 Graphs in VLSI

22V
11

1

3A

20V

21V

a)

102V
11

1

3A

100V

101V

b)

Fig. 3.24 Valid solutions for (3.21). In both (a) and (b), the potential at the nodes of the circuit
satisfies (3.21).

Rij = vi − vj . (3.22)

Observe that the sum of each column and each row in L is zero. Any row in L

can therefore be expressed as the linear combination of the other rows within L. The
matrix L is therefore singular (non-invertible). Determining the potential at each
vertex of G is therefore not possible with the conductance matrix. Infinitely many
solutions satisfy (3.21). For example, both of the solutions depicted in Figs. 3.24a
and 3.24b satisfy (3.21). Practical circuit analysis requires at least one reference
(ground) node. By designating a particular node as a reference, the potential at
this node is assumed zero. The voltage across the edges in graph G is often called
a potential difference, since these voltages represent not an absolute potential but
rather a difference in potential between a target node and ground. Mathematically,
Lg is a grounded conductance matrix derived from L by deleting the gth row and
column from L. Equation (3.21) is therefore modified as

LgVg = ei − ej , (3.23)

where g �∈ {i, j} and Vg ∈ R
|V |−1 are the vector of node voltages with the row and

column for the ground node removed. In a connected graph without self-loops, Lg

is invertible, since the rows in Lg are linearly independent. The voltages within the
circuit are

Vg = L−1
g (ei − ej). (3.24)

This expression can be extended to determine the voltage at each node within a
circuit in response to an arbitrarily injected current Q ∈ R

(|V |−1),

V g = L−1
g Q, (3.25)

3.5 Physical layer 87

where each entry in Q is the current injected into the corresponding node. The
entries in Q are negative if the current is sourced from the node.

The weighted Laplacian matrix was widely used in early computer simulation
tools, such as CANCER [260] and BIAS [261]; and remains an important part of
modern circuit analysis tools, particularly, SPICE [50]. The detailed description of
circuit analysis process is presented in chapter 5, where a variety of techniques based
on graph theory are discussed.

3.5 Physical layer

The physical layer is the lowest abstraction layer in VLSI. A circuit representation
of a system is converted into a layout, as illustrated in Fig. 3.25. Procedures at the
physical layer directly inform the physical nature of an integrated circuit. Many
of the parameters neglected at the higher abstraction layers are important at the
physical layer. The physical IC dimensions, wire pitch, and number of layers,

Fig. 3.25 Simplified flow
diagram of physical design of
a VLSI system. A circuit is
initially partitioned into
multiple blocks. The
constraints on the location of
the functional blocks is
determined during the
floorplanning stage. During
the placement stage, the exact
location of each block is
determined. The layout of the
wires connecting the blocks is
synthesized during the
routing stage.

Partitioning

Floorplanning

Placement

Routing

Fabrication

88 3 Graphs in VLSI

for example, are rarely considered at higher layers of abstraction, but are crucial
during the physical layer design process. Similar to the gate layer, physical layer
design has undergone significant advancements over the past decades. The layout
of early integrated systems was manually designed, permitting local fine tuning of
the physical parameters [187]. Before 1979, more than 40% of the overall labor
hours was typically dedicated to the physical design process [262]. Layout synthesis
became the first target of design automation [145]. According to an estimate in
[262], with the rise of powerful computer-aided design tools, layout synthesis
contributes only 14% to the total number of labor hours spent during the IC design
process.

Automated VLSI system design at the physical layer consists of four major
subproblems; namely, partitioning, floorplanning, placement, and routing [263].
System partitioning is the process of splitting a VLSI system into smaller parts.
The separated parts can be independently processed, reducing an intractably large
system design effort into several manageable parts. Floorplanning is the process
of assigning the shape and location of each partition. The external connections of
each partition are assigned to a specific location to facilitate the interconnect routing
process deeper within the layout process. The location and orientation of each circuit
block, such as the gates and standard cells, are determined during the placement
stage. The circuit blocks are connected using interconnects synthesized during the
routing step.

Since the input to the physical layer is a network of transistors, graph theory is
highly applicable to the physical layer design process. Physical design automation
tools widely use graph algorithms. System partitioning, for example, can be viewed
as finding a minimum cut of a transistor network to minimize the number of external
connections. In the upcoming sections, graph-based algorithms for partitioning,
floorplanning, placement, and routing are discussed.

3.5.1 Partitioning

Partitioning is an important operation, preparing a system for the subsequent
floorplanning, placement, and routing steps. In modern high performance VLSI
systems, the layout cannot be directly synthesized due to the enormous number
of circuit elements and connections. An integrated system is therefore decomposed
into multiple smaller parts to simplify the placement and routing process [264].
The performance of the decomposed system may vary significantly depending
upon the quality of the partitioning process. Splitting highly interconnected parts
of a system may degrade performance and increase cost due to the longer wire
lengths and greater delays. The primary objective of the partitioning process is
therefore decomposing a circuit into multiple partitions to minimize the number
of connections between partitions.

Partitioning was one of the first targets of design automation in integrated circuits
and systems [265]. The primary motivation for partitioning, however, was not design

3.5 Physical layer 89

simplification but rather increasing the ratio between the number of gates and pins
to reduce the number of wire bonds to the off-chip discrete components [266]. One
of the first examples of partitioning in the IC design process is the Large Integrated
Monolithic Army Computer (LIMAC) in 1971 [267]. By proper partitioning, the
number of inter-module pins was reduced by 50%. Early partitioning, however, was
manual, limiting the size of the circuit being partitioned.

By representing a network of transistors as a graph, minimum cut algorithms
can be applied to the partitioning process. The objective of the minimum cut of a
graph G(V,E) is to split vertex set V into two disjoint nonempty sets V1 and V2
to minimize a target metric. The minimum-cut problem is often called bisection or
bipartition [268]. The edge set is split into sets of internal edges E1 and E2, and cut
set E1,2. The internal edges connect the nodes belonging to the same partition, while
the edges in a cut set connect nodes from different partitions. A common metric in
the partitioning process is the cut size |E1,2| or the total weight of the cut edges,

∑

e∈E1,2

w(e), (3.26)

where w(e) is the weight of edge e.
Different variations of the minimum cut problem exist. In a minimum k-cut, the

vertex set of a graph is divided into k disjoint sets. Certain nodes within a circuit
graph may be placed within different partitions. In a minimum k-cut, the vertex set
of a graph is divided into k disjoint sets. The hypergraph minimum-cut problem is
an important extension of the regular minimum-cut problem, where multi-terminal
nets of an integrated circuit are partitioned [269].

Efficient heuristic algorithms have been proposed to accelerate the partitioning
process. The Kernighan-Lin (KL) algorithm [40] is considered the first partitioning
algorithm applied to the design of integrated systems. In the KL algorithm, an
unweighted graph G(V,E) is bisected to equalize the size of the partitions. The
algorithm starts by arbitrarily splitting node set V of a graph into two equal sets, A

and B. During each iteration, a pair of nodes, a ∈ A and b ∈ B, is chosen to ensure
that swapping these nodes (i.e., placing a in B and b in A) achieves the smallest cut
size. To efficiently identify the pair of nodes yielding the maximum reduction in cut
size, a swapping gain metric is used. Suppose Ia is the number of neighbors of a

within set A, and Ea is the number of neighbors of a within set B. Similarly, Ib and
Eb denote the number of neighbors of b, respectively, in B and A. The difference
between the number of external and internal connections of node a is

Da = Ea + Ia, (3.27)

which is similar for node b. The swapping gain Gab is a measure of the reduction in
the number of edges between A and B after swapping a and b, and is

Gab = Da + Db − 2cab, (3.28)

90 3 Graphs in VLSI

a

b

c

d

e

f

g

h

G a b c d
e -2 -2 -2 0
f 1 -1 -1 3
g 0 -2 -2 -2
h 1 -2 -1 -1

G E I D
a 2 1 1
b 1 2 -1
c 1 2 -1
d 2 1 1
e 1 2 -1
f 3 1 2
g 1 2 -1
h 1 1 0

Cut size = 6

a)

G a b c
e -2 -2 0
g -4 -6 -4
h -3 -5 -3

G E I D
a 1 2 -1
b 0 3 -3
c 1 2 -1
e 2 1 1
g 0 3 -3
h 0 2 -2

a

b

c d

e

f
g

h

Cut size = 3

b)

G E I D
a 0 3 -3
b 1 2 -1
g 1 2 -1
h 0 2 -2

G a b
g -4 -2
h -5 -3

a

b c d

e

f

g

h

Cut size = 3

c)

G c
g -1

G E I D
a 1 2 -1
h 1 1 0

a b

c

d

e

f

g

h

Cut size = 5

d)

a

b

c

d

e

f

g
h

Cut size = 6

e)

Fig. 3.26 Kernighan-Lin algorithm to partition a graph with eight nodes. a) Initial partition. The
size of the partitions is equal, as required by the algorithm. In the left table, the number of external
connections, number of internal connections, and the difference is calculated based on (3.27) and
shown in, respectively, columns E, I , and D. In the right table, (3.28) is used to calculate the
swapping gain for each pair of nodes. b) The partition after the first swap. The cut size is reduced to
3. Note that the swapped nodes are locked (shaded) and cannot be transferred to another partition.
c) Partition after the second swap. The cut size is unchanged due to zero swapping gain during the
swap. d) Partition after the third swap. The cut size is increased to five since the gain of swapping
b and g is negative. Only two nodes are left, hence calculating the swapping gain is unnecessary
but shown here for demonstrational purposes. e) Final partition.

where cab = 1 if an edge connecting a and b exists and 0 otherwise. With this
metric, the gain due to node swapping is calculated for every pair of nodes, and
the pair with the largest gain is swapped. The swapped nodes are locked and can
no longer be moved during subsequent iterations. The swapping process continues
until all of the nodes have been locked. The cut size after each iteration is recorded.
The partition with the smallest cut set is the output of the partitioning algorithm.

An example of the KL algorithm applied to a graph with eight nodes is shown in
Fig. 3.26. The initial partitioning is chosen arbitrarily and is depicted in Fig. 3.26a.
Based on (3.27), the difference is initially calculated, as shown in the left table in
Fig. 3.26a. The swapping gain is calculated based on (3.28) for each pair of vertices.
The highest gain is Gce = 3, indicating that by swapping nodes c and e, the cut size
is reduced by 3. Nodes c and e are swapped and are therefore not considered for
swapping until the end of the algorithm. The subsequent swaps are illustrated in
Figs. 3.26b to 3.26e. The partitions with the smallest cut size after the first swap are
determined after the first and second swaps.

Different enhancements to the KL algorithm have been proposed, such as an
extension to include weighted graphs and unequally sized partitions [263]. The
node swapping technique is generalized in the Fiduccia-Mattheyses (FM) algorithm
to include hypergraphs and unequal partitions [270]. Unlike the KL algorithm,
only a single node is transferred between partitions during each iteration. In

3.5 Physical layer 91

addition, the size of the partitions is not maintained constant but rather bounded.
No node can be removed or added to a partition if the size of a partition is equal,
respectively, to the lower or upper bound. The FM algorithm became the basis for
many subsequent partitioning algorithms that drastically improved performance.
The ‘foresight’ method for bipartitioning was proposed by Krishnamurthy [271]
to predict the cut size beyond the next iteration. In 1986, Sanchis [272] generalized
this method for an arbitrary number of partitions. Gradient descent optimization is
applied to the FM algorithm in [273], achieving a 40 to 50% reduction in cut size
as compared to the state-of-the-art. A notable development in partitioning is the
advent of multilevel clustering. In the METIS package [274], the target graph is first
coarsened into a small network (on the order of hundreds of nodes). Partitioning is
performed on the coarsened graph. The graph is iteratively uncoarsened, providing
local corrections after each iteration. Genetic optimization has been applied to
the partitioning problem in [275], improving performance and runtime. Recent
developments incorporate advanced global optimization algorithms into the graph
partitioning process. Examples include ant colony optimization [276] and particle
swarm optimization [277].

3.5.2 Floorplanning

Floorplanning is the process of determining the shape and arrangement of the
macro-blocks within a layout [263, 264]. Preliminary layout information not only
aids in the subsequent placement process, but also provides valuable high-level
information such as the die dimensions and location of the inputs and outputs. Each
circuit partition is arranged into a rectangular block. The entire circuit constitutes a
set of n rectangular blocks M = {m1, . . . , mn}. The core problem in floorplanning
is therefore rectangular packing (RP), the optimization problem of arranging a set
of rectangles within a constrained region [278]. Two metrics are typically used to
measure the quality of a floorplan [263, 279]. The first metric is the area efficiency
ηA(F) of a floorplan F ,

ηA(F) = A�(F)
∑

mi∈M

A(mi)
, (3.29)

where A�(F) is the area of the smallest rectangle enclosing a floorplan, and
A�(mi) is the area of block mi . The second metric is the estimated total wirelength.
Precise wirelengths are not available until the routing process is completed. A
connectivity matrix C ∈ R

n×n is often used to estimate the total wirelength, where
element cij denotes the degree of connectivity between blocks mi and mj [263].
The wirelength metric L(F) of a floorplan F is therefore

92 3 Graphs in VLSI

L(F) =
∑

mi,mj ∈M

cij dM(mi,mj), (3.30)

where dM(mi,mj) denotes the Manhattan distance between the center point of
blocks mi and mj , often referred to as Half-Perimeter WireLength (HWPL) [280].
A weighted sum of these metrics is often used as an objective function Q(F),

Q(F) = wηA(F) + (1 − w)
L(F)

L∗ , (3.31)

where w ∈ [0, 1] denotes the weight parameter which indicates the relative
importance of the metrics, and L∗ is a wirelength normalization parameter.

The floorplanning problem is highly complex and requires significant compu-
tational time even for a small number of blocks [278]. A graph-based floorplan
representation, such as a constraint graph, is often used to simplify the represen-
tation of a floorplan [263, 281] (see Figs. 3.27a to 3.27c). Vertical and horizontal
constraint graphs encode the relative position of the blocks, such as “block d should
be placed to the right of block a.” By considering these constraint graphs, infeasible
constraints can be identified and a feasible solution can be determined.

More recent works often use a directed tree floorplan representation such as an
O-tree [282] and B∗-tree [283]. Both of these tree representations can be used to
unambiguously represent a floorplan. Based on the O-tree, a floorplan is constructed
by performing a depth-first search (DFS) traversal. The root node represents the left
boundary of a layout. Non-root nodes correspond to the circuit blocks placed tightly
to the right boundary of the parent block. Child nodes of a parent are ordered from
the bottom to the top. A floorplan corresponding to the O-tree can be reconstructed
by using a depth-first search (DFS) traversal within a constraint graph, as illustrated
in Fig. 3.28a. The B∗-tree is a binary directed tree. The root node within a B∗-
tree corresponds to the left-bottom corner block within a layout. Two children of
node vi within the B∗-tree are right (vi) and top(vi), denoting the circuit blocks
located, respectively, on the right and top sides of a block (see Fig. 3.28b). With
these tree structures, a floorplan can be unambiguously specified using only a
single graph, accelerating the floorplanning process. Recent developments apply
global optimization to a tree representation of a floorplan. In [279], for example,
evolutionary optimization is applied to an O-tree to minimize the combined area-
wirelength metric, as described in (3.31).

3.5.3 Placement

Placement is the process of determining the precise location of the many circuit
blocks within a physical layout. Similar to floorplanning, the objective of the
placement process is to determine the location of the circuit blocks while complying
with the physical design rules and minimizing a target metric. The placement

3.5 Physical layer 93

a

b
c

d

g

f
i

e h

a)

a
d

b g

c f

e

i

h

b)

a d h

e

b

f

g i

c

c)

Fig. 3.27 Horizontal and vertical constraint graphs. a) Floorplan of an integrated system par-
titioned into nine modules. b) Horizontal constraint graph (HCG). An edge (i, j) in the HCG
indicates that block i is located to the left of block j . b) Vertical constraint graph (VCG). An edge
(i, j) in the VCG indicates that block i is located above block j .

process is however performed at the finer level, determining the position of smaller
circuit blocks. The target metrics are also different. Total area and wirelength
are typically considered during the floorplanning process. Standard metrics in
placement include total wirelength, routing congestion, timing criticality, and power
[263, 280].

Similar to floorplanning, a weighted sum of interconnect lengths can be used to
prioritize the length of the important interconnects, such as the critical paths. A net
often connects several terminals, necessitating the use of hypergraphs. A common
method for estimating the length of an interconnect connecting the terminals of a
hyperedge is a spanning tree, discussed in Subsection 2.7.2. A rectilinear spanning

94 3 Graphs in VLSI

a

d

b g

c f

e

i

h

a)

b

a

f

g

c

i e d

h

b)

Fig. 3.28 Tree-based representation of the floorplan shown in Fig. 3.27a. a) An O-tree constructed
by performing a depth-first search traversal of a vertical constraint graph. b) B∗-tree – a binary tree
representation of a floorplan. The root node corresponds to the node at the left-bottom corner of
the floorplan. The left successor of a node in the B∗-tree corresponds to a block on the right side,
while the right successor corresponds to a block on the top side.

tree [131] and rectilinear Steiner tree [263] are widely used in placement to
estimate the interconnect length. A Hanan grid [144], constructed by drawing
horizontal and vertical lines through the target points, can efficiently approximate
a minimum rectilinear Steiner tree [284], as illustrated in Fig. 3.29. In addition
to the total wirelength, the length of the individual nets can be constrained. A
timing driven placement procedure prioritizes the timing performance of a system.
Synchronization completed at the RTL is often used to specify constraints on the
length of certain wires [285, 286]. Routing congestion describes the relative ease of
routing in the subsequent routing stage. Congestion maps are often used during the
placement process to identify those regions where the routing is complicated and to
adjust the placement to ease any congestion. Graph methods, such as Steiner tree
synthesis and traversal algorithms, are frequently used to estimate the congestion
[280]. For example, an A∗ traversal is used in [287] to accurately and efficiently
estimate the routing paths within the placement.

3.5 Physical layer 95

a) b)

c) d)

Fig. 3.29 Approximation of a minimum rectilinear Steiner tree based on a Hanan-grid. a) Initial
block placement. The dots indicate the routing terminals. b) The Hanan grid is constructed by
drawing lines through the terminal points. c) Based on a Hanan grid, a rectilinear minimum Steiner
tree is approximated [284]. d) Final layout.

3.5.4 Routing

Interconnect routing is the final step in the physical layer design process in which
the placed components are connected with wires. Similar to other physical layer pro-
cedures, the complexity of the routing process requires significant restrictions and
simplifications to manage the computational complexity. Most routing problems,
for example, restrict the wires to orthogonal (Manhattan) directions (also because
non-perpendicular wires are difficult to manufacture) [288]. The spacing between
the wires is often discretized, further reducing the solution space [289].

96 3 Graphs in VLSI

The history of VLSI routing can be traced to 1961, when Lee [41] proposed
an algorithm for wire routing within a grid layout. The Lee’s maze router is
a modification of a classic breadth-first search (BFS) algorithm introduced in
Subsection 2.7.1.2. Furthermore, the algorithm has been generalized to find the
route in special cases, such as minimizing inter-wire crossings and avoiding bends
when crossing wires. The Lee’s algorithm has linear complexity with the number
of nodes within a graph. The major issue in the Lee’s maze router, as shown in
Fig. 3.30a, is the excessively large number of traversed nodes. A∗ search [290],
discussed in Section 2.7.1.5, aims to minimize the search space by incorporating
additional information, such as the physical location, into the routing process. The
search space is therefore traversed more efficiently, as illustrated in Fig. 3.30b.

Comparison of planar routing algorithms. (a) Traversal during the Lee’s maze
routing algorithm. The initial and target positions are denoted with S and T. The
numbers indicate the first digit of the distance from the source. Due to exhaustive
traversal, the entire layout is almost traversed until the target is found. (b) In the A∗
algorithm, the Euclidean distance is considered during the routing process. Fewer
nodes are traversed as compared to maze routing.

Modern routing is a hierarchical process consisting of both global routing and
detailed routing [263]. The coarse and detailed connections between circuit blocks
are determined. In global routing, the layout is represented as a set of routing
regions. The routing space is often represented in graph form, such as a channel
connectivity graph or a switchbox connectivity graph, as illustrated in Fig. 3.31
[263]. Shortest path and minimum spanning tree algorithms are frequently used in
routing to determine the shortest connection between two or more terminals [263]
within these connectivity graphs.

In detailed routing, fine grain interconnect synthesis based on global routing
is evaluated. The primary issue in detailed routing is wire congestion, since the
number of nets competing for the same routing resources can be large. Detailed
routing techniques are typically designed for two routing layers to permit the
inter-wire crossing prohibited within a single layer. A common type of routing is
channel routing [291, 292], where wires connect terminals on opposite sides of
a routing channel, as illustrated in Fig. 3.32a. Channel routing is often aided by
vertical and horizontal constraint graphs. The nodes in a vertical constraint graph
(VCG) correspond to routing terminals. A directed edge (i, j) indicates that the
terminal of node i is located directly above the terminal of node j . An example of
a VCG is shown in Fig. 3.32d. Constructing a horizontal constraint graph (HCG) is
similar to constructing an interference graph during the register allocation process
(see Subsection 3.2.1). Horizontal ranges are determined for each of the routing
terminals, as illustrated in Fig 3.32b. The nodes represent the routing nets. The edges
connect two nodes within the HCG if the horizontal range of the corresponding nets
overlap, as depicted in Fig. 3.32c.

3.6 Summary 97

a) 6 5 4 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7

5 4 3 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8

4 3 2 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 T

3 2 1 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8

2 1 0 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8

1 0 9 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8

0 9 8 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8

9 8 7 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7

8 7 6 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6

7 6 5 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5

6 5 4 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4

5 4 3 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3

4 3 2 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2

3 2 1 S 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

4 3 2 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2

5 4 3 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3

b)

T

6 7

4 5

2 3

0 1

8 9

6 7

4 5

2 3

0 1

8 9

S 1 2 3 4 5 6 7

Fig. 3.30 Comparison of planar routing algorithms. (a) Traversal during the Lee’s maze routing
algorithm. The initial and target positions are denoted with S and T. The numbers indicate the
first digit of the distance from the source. Due to exhaustive traversal, the entire layout is almost
traversed until the target is found. (b) In the A∗ algorithm, the Euclidean distance is considered
during the routing process. Fewer nodes are traversed as compared to maze routing.

3.6 Summary

Early computing systems were sufficiently uncomplicated to be manually designed
by several people. No systematic design process was necessary. The complexity of
modern integrated systems, however, requires cooperation and close interactions
among many people and a variety of advanced design tools and algorithms.
Abstraction is a technique to decompose the design process into multiple, fairly
independent layers. This layered design process greatly reduces the amount of

98 3 Graphs in VLSI

a)

a

e f g

h i j

b

d

c
k

l m

a

b

c

d

e f g

h i j
k

l m

b)
a b c

d f he g

i j k

l nm

a cb

d hf

l n

e g

i j k

m

c)

Fig. 3.31 Graph representation of a layout floorplan. a) Original floorplan, b) channel connectivity
graph, and c) switchbox connectivity graph.

3.6 Summary 99

a)

a
b

c
d

e
f

b)

a

db

ec

f
c)

aa

db

ec

f
d)

Fig. 3.32 Constraint graphs for channel routing of six nets. a) Arrangement of nets. The terminals
are located on opposite sides of the channel. b) Net ranges for generating a horizontal constraint
graph. A net range stretches between the leftmost terminal and rightmost terminal of a particular
net. c) Horizontal constraint graph, and d) vertical constraint graph.

information that is simultaneously considered. Solutions at a particular abstraction
layer depend less on the other abstraction layers and thus can be generalized, greatly
enhancing the design process.

The design of VLSI systems can be divided into four abstraction layers, namely,
register transfer, gate, circuit, and physical. At each abstraction layer, a VLSI
system can be represented as a network. At the RTL, the system is viewed as
interconnected registers and combinatorial logic blocks. By representing the RTL
system as a timing graph, clock skew scheduling can be performed to synchronize
the data flow within the network. At the gate layer, each register and logic block
are decomposed into a network of logic gates. Logic circuits are represented and
processed using graph-based OBDD and AIG to efficiently verify the functionality
of a logic network. At the circuit layer, the logic circuits are viewed as a network
of transistors. Electrical circuits are often represented as weighted graphs where
the weight of the edges represents the conductance of a corresponding wire. A
matrix representation of a graph enables the analysis of the voltages and currents
at any node within an electrical circuit. At the physical layer, the network of gates
and circuit blocks is embedded into a physical layout. Graph-based algorithms are
widely utilized to convert a circuit into a layout. Circuit partitioning uses k-cut

100 3 Graphs in VLSI

algorithms to decompose a digital system into multiple parts for more efficient
processing. Tree structures are widely used in floorplanning, including O-tree and
B-tree topologies. Path finding and minimum Steiner tree algorithms are often
applied to determine the optimal interconnect routes. The flexibility of graphs
combined with the inherent network structure of VLSI systems enables the use of
graphs as a primary method to model and optimize a wide range of design issues
across multiple abstraction layers in VLSI circuits and systems.

Chapter 4
Synchronization in VLSI

During the past decades, VLSI systems have undergone significant increases in
computational performance, driven primarily by three factors, technology scal-
ing, advances in circuit design, and evolution of computer architectures. Due to
technology scaling, the switching delay of the transistors is significantly reduced,
accelerating the combinatorial logic speed of the IC’s. Furthermore, greater numbers
of devices can be placed within the IC, providing much larger computational
resources and fewer chip-to-chip constraints. Circuit design techniques have also
significantly advanced, greatly elevating the performance of VLSI systems. For
example, carry lookahead adders, such as Kogge-Stone Adder [293] and Brent-
Kung Adder [294], enabled the addition of two n-bit numbers in O

(
log2 (n)

)
time,

replacing the ripple carry adder which exhibits linear time complexity (see Fig. 4.1).
Examples of computational speedup due to advances in computer architecture
include instruction pipelining, branch prediction, and multicore processors. While
accelerating the computational speed of integrated circuits, these factors have
significantly increased the complexity of VLSI systems. A wide range of supporting
infrastructural circuitry is necessary to ensure correct functionality while improving
the performance of VLSI systems. This support circuitry may include power and
ground distribution networks, signal buffers, thermal sensors, task schedulers, and
self-test circuitry.

The clock distribution network is one of the primary infrastructural circuits in
VLSI systems, distributing a periodic waveform to synchronize the data flow within
a synchronous system [230]. The computational performance of a synchronous
IC largely depends upon the clock distribution network. If the clock signal is not
delivered at the required time, the data propagates through the logic network in an
incorrect order, producing erroneous results. Precise delivery of the clock signal is
therefore a vital part of any synchronous VLSI system.

The movement of data within a circuit is synchronized by a clock signal
delivered to each register. The clock distribution network is the backbone of any
synchronous VLSI system, distributing this periodic electronic signal to every

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
R. Bairamkulov, E. G. Friedman, Graphs in VLSI,
https://doi.org/10.1007/978-3-031-11047-4_4

101

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-11047-4_4&domain=pdf

 -2016 61494 a -2016 61494
a

https://doi.org/10.1007/978-3-031-11047-4_4

102 4 Synchronization in VLSI

FA0 FA1

x0 y0 x1 y1

(LSB)

s0 s1

c0 c1 FA2

x2 y2

s2

c2 FA3

x3 y3

s3

c3 FA4 FA5

x4 y4 x5 y5

s4 s5

c4 c5 FA6

x6 y6

s6

c6 FA7

x7 y7

(MSB)

s7

c7

8 steps

a)

PG PG

x0 y0 x1 y1

PG

x2 y2

PG

x3 y3

PG PG

x4 y4 x5 y5

PG

x6 y6

PG

x7 y7

PG PG PG PG PG PG PG

PG PG PG PG PG PG

PG PG PG PG

s0 s1 s2 s3 s4 s5 s6 s7

4 steps

b)

Fig. 4.1 Adder circuits. a) Eight bit ripple carry adder exhibiting linear complexity. Eight steps are
required to perform the computation. b) Eight bit Kogge-Stone adder [295] exhibiting logarithmic
complexity. Four steps are required to complete the operation.

synchronous element. Several features distinguish the clock distribution network
from other VLSI subsystems [232]. The clock signal typically has the highest on-
chip frequency and determines the maximum data processing speed. The network is
also the longest on-chip signal driving a highly capacitive system, traveling across
a circuit block or often across the entire IC. The clock network also exhibits the
largest on-chip fanout, since all of the synchronous elements require a clock signal.

4 Synchronization in VLSI 103

Synchronization presents a significant challenge in the sequential circuit design
process ever since the inception of digital computing. For example, the Z1,
the earliest programmable binary computer, built in 1938, suffered from poor
synchronization due to mechanical stress in the device components [296]. The
advent of fully electronic machines, such as the ENIAC in 1945 [19], eliminated
the issue of mechanical stress, gradually enhancing the reliability of computers.

The architecture of early computer systems was relatively simple for clock
networks despite being designed using ad hoc approaches. The rapid increase in
circuit complexity exposed the need for a more systematic approach to the design
of synchronous systems. Seminal studies of synchronous circuit architectures were
presented in the 1950’s, primarily by David A. Huffman, Edward F. Moore, and
George H. Mealy [62, 297]. Unlike combinatorial (static) circuits, the output of the
switching circuits, described in [297], depends not only upon the inputs, but also
on the present state of the system. A graph theoretic basis for sequential circuits,
described in [298, 299], further advanced the design of sequential circuits. These
models enabled powerful graph-based techniques, such as a signal transition matrix
and graph reduction methodologies [299, 300]. Subsequent developments in the
synchronous circuit design process drastically increased the speed of computers,
alongside advancements in other areas of computer development such as logic
design [301, 302] and programming [303]. In 1945, the ENIAC operated at 100
kHz [304]. The ILLIAC IV, completed in 1966, operated at 25 MHz, performing a
billion floating point operations per second [305].

Mealy or Moore finite state machines were sufficiently accurate for those
systems where the delay of the signal lines is significantly smaller than the clock
period. Soon, however, higher clock frequencies exposed certain practical issues
in synchronous systems. Path delays became comparable to the clock period and
therefore required special consideration to ensure correct operation. Electrical
circuit analysis, such as Modified Nodal Analysis (MNA), can be used to analyze the
timing of these sequential logic systems. Circuit-level techniques however exhibit
poor scalability, requiring prohibitive runtime for the analysis of large systems
[306]. Graph-based static timing analysis (STA) has therefore been developed
to evaluate system timing without requiring electrical simulation. The program
evaluation and review technique (PERT), developed by the United States Navy
in 1958 [307], is regarded as the first tool to perform STA of integrated circuits.
Interestingly, PERT was originally a project management tool for managing the flow
of the Polaris nuclear missile program [308]. The technique was adopted for STA of
logic systems in 1965 [309].

Unequal path delays within a clock distribution network can produce clock
skew – different arrival times of the clock signal between sequentially-adjacent
registers [230]. Clock skew is a significant performance and reliability issue in
synchronous systems. In 1965, the issue of clock skew was first mentioned in
the literature [310–312], where the authors noted the existence of inhomogeneous
clock arrival times in synchronous circuits. In [311], one of the earliest analyses
of the bounds on a clock period was presented, where system performance was
noted as limited by clock skew, logic and interconnect delay, and propagation delay

104 4 Synchronization in VLSI

uncertainty. In 1969, Cotten first presented an analysis of the clock period in a
multistage pipeline while considering clock skew [313]. Increasing the clock period,
however, remained the primary method for managing clock skew, ignoring clock
skew induced race conditions which are independent of clock frequency [230]. The
operating frequency of the ILLIAC IV, for example, was limited to 5 MHz due to,
in no small part, system clock skew. Similar discussions are reported in [314, 315].

The severity of the effect of clock skew affects the clocking architectures.
Constraining the design was the primary strategy to minimize clock skew in early
computers. For example, in [316], the propagation delay of all of the data paths
are (nearly) equalized, and the clock pulse generator is placed at the physical
center of the computer. With the clock signal distributed radially, the effects of
clock skew are mitigated by removing all possibilities of race conditions [316].
The concept of delay equalization within a clock network was developed into a
symmetric H-tree topology, introduced in [317]. Ensuring zero clock skew, however,
requires significant on-chip resources. A less stringent, globally asynchronous,
locally synchronous (GALS) clocking paradigm was introduced in 1984 [318].
By splitting an integrated circuit into separate clock regions, the delay from a
clock source to each register is reduced, typically producing less clock skew. The
transfer of data among the separate clock domains is established by an asynchronous
communication protocol [319].

In the 1980’s, several graph-based EDA tools emerged that consider nonzero
path delays. For example, in [320], a data path delay analysis tool is presented. If
the clock skew of the target system exceeded a specified value, the user is warned.
In 1984, a critical path weighting methodology for on-chip layout optimization
is described [321]. The data path and clock delay are analyzed and the layout is
accordingly adjusted. Other notable timing analysis tools include Crystal [322],
CELTIC [323], and SCALD [234]. All of these STA tools were developed during the
early 1980’s, allowed VLSI circuits of growing complexity to be efficiently verified
for static timing violations.

Since the discovery of clock skew, clock skew has been viewed as a deleterious
effect that required containment. Elimination of clock skew is, however, not
necessary for the correct functionality of a synchronous system. Since 1989 [238],
design techniques incorporating nonzero clock skew have been explored. A timing
verification algorithm is presented in [324], where the delay of the clock signal is
considered. Clock skew optimization, i.e., intentional adjustment of clock skew to
improve the delay characteristics of a synchronous system, is discussed in [231–
233, 325–327]. Algorithms for synthesizing the clock tree layout are presented
in [235, 328]. An important role in these techniques is played by graph theory,
introduced into clock distribution network design and analysis during the 1990’s
[237, 240, 329–332]. In this chapter, graph-based methods for the design of clock
distribution networks are described. An overview of graph-based timing analysis is
presented in Section 4.1. Clock skew scheduling is discussed in Section 4.2. Clock
tree layout synthesis is discussed in Section 4.3.

4.1 Graph-based timing analysis 105

4.1 Graph-based timing analysis

A synchronous circuit is a sequential logic system where the data flow is coordinated
by a clock signal. Unlike combinatorial circuits, where data processing starts
immediately after arrival of an input signal, sequential circuits store data in memory
units. Examples of typical memory elements in CMOS are flip flops and latches. In
flip flops, the release of a datum is triggered by a rising or falling edge of the clock
signal (edge sensitive), whereas in latches, the level of the clock signal triggers the
release of the datum. The arrival of the clock signal at a memory element initiates
a new clock period for a data path. The released datum propagates through the
combinatorial logic subcircuit toward the next memory unit, where the datum is
stored until the arrival of the next clock signal.

A sequential circuit consists of four primary components:

1. Registers that store intermediate data and release the data upon the arrival of a
clock signal. The two primary types of registers are flip flops and latches where
each element releases the stored datum upon sensing, respectively, an edge and
level of the clock signal.

2. Clock generator circuit, such as a phase locked loop (PLL) [333] utilizing a
voltage controlled oscillator (VCO) to produce a clock signal, as illustrated in
Fig. 4.2.

3. Clock distribution network – an interconnect network connecting the clock
generator to the registers. Due to the nonideal characteristics of the network,
the clock signal is delivered with a delay that varies depending upon the location
of the registers.

4. Combinatorial logic that performs the computation.

Fig. 4.2 Structure of a phase locked loop (PLL). a) A low frequency oscillator generates a
reference periodic signal [334]. This signal exhibits low variations in response to environmental
conditions, such as the temperature. b) A high frequency voltage controlled oscillator (VCO), such
as a relaxation oscillator [335] or Pierce oscillator [336], generates a high frequency signal. The
output of the VCO exhibits high sensitivity to parameter variations. c) The frequency of the VCO
output is downscaled by a frequency divider. d) The phase detector compares the phase of signal c

to the phase of the reference oscillator. e) The change in average phase difference is converted into
the input voltage of the VCO, thereby maintaining a constant high frequency at the PLL output.

106 4 Synchronization in VLSI

i fCombinatorial
logic

Clock
generator

ci cf

D QDQ

Fig. 4.3 Local data path. The datum enters at input D of register i and is stored until the clock
signal ci arrives at register i at time ti . The datum is released from terminal Q and propagates
through the combinatorial logic toward input D of register f . The datum is stored until the clock
signal cf arrives at register f at time tf . The datum captured during the previous clock period is
released at terminal Q of register f .

A circuit model of a sequential circuit is shown in Fig. 4.3. An input datum enters
the sequential circuit and is stored in a register. Upon arrival of the clock signal, the
datum is released and the signal propagates through combinatorial logic until the
signal arrives at the next register. The process continues with each new clock signal
received by the registers. Note that the delay of the clock signal to the different
registers is not necessarily uniform.

4.1.1 Timing constraints in synchronous systems

A datum is initially stored in register i until the clock signal triggers the release of
the datum. For example, the clock signal arrives at register i at time t = 0 and the
released datum propagates through the combinatorial logic circuit. At time t = di,f ,
the datum arrives at register f and is stored until the clock signal arrives at register
f . For the purpose of clock skew scheduling, the sequential circuit model can be
simplified into a directed multigraph G with self-loops, as shown in Fig. 4.4. The
nodes of G represent the registers, and the edges represent the combinatorial logic
within the data paths. Maximum and minimum delays are assigned to edges within
the graph, representing lower and upper bounds on the propagation delay.

4.1 Graph-based timing analysis 107

CLa e fCL

b cCL dCL

g hCL CL

a)

a

c d

e f g

hb

b)

Fig. 4.4 Conversion of a sequential logic circuit into a timing graph. The clock distribution
network is not shown for clarity. a) Sequential logic circuit, and b) equivalent multigraph. CL
stands for combinatorial logic.

4.1.1.1 Local timing constraints

The constraints described in this section consider only sequentially-adjacent reg-
isters and are therefore referred to as local timing constraints [239]. Consider a
properly functioning local data path consisting of initial register i, combinatorial
logic, and final register f , as shown in Fig. 4.3. At time t in, the nth clock signal
arrives at register i. The input of register i remains constant for at least δi

h, the hold
time of register i. The hold time is the minimum time after arrival of the clock signal
during which the register input is maintained constant to ensure correct transfer of
the datum between the input and output of the register. After the clock-to-output
delay t iC−Q of register i, the datum stored in register i is released and propagates
through the combinatorial logic. After propagating through the combinatorial logic
path, the datum arrives at register f . Upon arrival, the datum awaits the clock signal
of period (n + 1) for at least δ

f
s , the setup time of register f . The setup time is the

minimum time before the arrival of the clock signal during which the register input
is maintained constant to ensure correct transfer of data. At time t

f

n+1, the clock

signal of the next period (n + 1) arrives at register f . After delay t
f
C−Q, the datum

is released to the next combinatorial logic block.

108 4 Synchronization in VLSI

Two major timing hazards exist in synchronous systems. These hazards are
produced by a datum arriving at register f either too early or too late with respect to
the clock signal. If the datum fails to complete the data path (i, f) before the arrival
of the (n + 1)th clock signal at register f , a setup time violation is produced. To
avoid this hazard, the datum should propagate through the combinatorial subcircuit
at least δ

f
s before the arrival of the next clock signal at register f ,

t in + Di,f ≤ t
f

n+1 − δ
f
s , (4.1)

where Di,f is the maximum propagation delay of the local data path from i to f ,
including the clock-to-output delay t iC−Q. Since

t
f

n+1 = t
f
n + TCP , (4.2)

where TCP is the clock period of the synchronous system, (4.1) becomes

si,f ≤ TCP − Di,f − δ
f
s , (4.3)

where si,f is the clock skew of the local data path (i, f),

si,f = t in − t
f
n . (4.4)

A positive clock skew indicates that the clock signal arrives at register i after
arriving at register f . Conversely, a negative clock skew indicates that the clock
signal arrives at register i before arriving at register f . Constraint (4.3) determines
the upper bound ui,f on the clock skew of data path (i, f),

ui,f = TCP − Di,f − δ
f
s . (4.5)

A clock skew greater than ui,f produces zero clocking (or a setup time violation)
[233] – a data hazard preventing the correct transfer of the datum to the next
combinatorial data path.

Alternatively, if the datum arrives at register f too early, the transfer of the
preceding datum from the input to the output of f is disrupted. The combinatorial
circuit should therefore be completed at least δ

f
h after the nth clock signal arrives at

f ,

t in + di,f ≥ t
f
n + δ

f
h . (4.6)

The clock skew is therefore bound by

si,f ≥ −di,f + δ
f
h , (4.7)

4.1 Graph-based timing analysis 109

Double
clocking

Zero
clocking Permissible range

smin smax

Fig. 4.5 Permissible range of clock skew [smin, smax] for a local data path. A clock skew smaller
than smin produces a race condition (double clocking), whereas a clock skew greater than smax

produces a clock period violation (zero clocking). To ensure correct functionality, the clock skew
should be within the permissible range.

where di,f is the minimum propagation delay of the local data path from i to f ,
including the clock-to-output delay t iC−Q. The lower bound li,f on clock skew is
therefore

li,f = −di,f + δ
f
h . (4.8)

A clock skew less than li,f produces double clocking (or a hold time violation)
[233] – a data hazard, where incorrect data is transferred to the next combinatorial
data path. Note that the lower bound on clock skew does not depend upon the clock
period.

The permissible range (PR) of clock skew PRi,f = [li,f , ui,f] is the range of
clock skew that ensures correct functionality of a data path (i, f) [239]. This concept
is illustrated in Fig. 4.5. Exceeding the lower bound produces a race condition [233];
the datum stored in f is not released in time and is overwritten by the output of i, as
illustrated in Figs. 4.6a to 4.6c. Exceeding the upper bound produces zero clocking,
where the clock signal arrives at register f before the datum passes through the
combinatorial logic, as shown in Fig. 4.6e. Correct timing of a local data path is
ensured when the clock skew is within the permissible range [237], as shown in
Fig. 4.6d.

Data path delay uncertainty greatly affects the timing characteristics of a
synchronous system. Observe from (4.3) and (4.7), that increasing the data skew
— the difference between the maximum and minimum data propagation delay —
narrows the PR of a data path,

ui,f − li,f = TCP − δ
f
s − δ

f
h − DSi,f , (4.9)

where DSi,f = Di,f −di,f is the data skew of data path (i, f). Since the width of a
PR cannot be negative, the minimum feasible clock period for a single data path is

T min
CP = δ

f
s + δ

f
h + DSi,f . (4.10)

110 4 Synchronization in VLSI

szc TCP++szc

Clock period
violationCLKf

0
CLKi

Df

sdc

Race
condition

sdc TCP

CLKf

sv

Valid
functionality

TCP+sv
CLKf

TCP

a)

b)

c)

d)

e)

Fig. 4.6 Functionality of a local data path shown in 4.3 for different clock skews. a) Clock signal
at initial register. b) Arrival of datum at final register. c) Clock skew sdc < smin, producing a race
condition (double clocking). The datum arrives at register f before the clock signal of the same
period arrives at register f . d) A valid clock skew sv , where smin ≤ sv ≤ smax . e) Clock skew
szc > smax , producing a clock period violation (zero clocking). The datum arrives at register f

after the clock signal of the next period arrives at register f .

The clock period cannot be further reduced with clock skew scheduling. Expression
(4.10) is however not the only constraint on the clock period. Global clock period
constraints also exist, as discussed in the upcoming section.

4.1.1.2 Global timing constraints

Equations (4.5) and (4.8) describe the PR for sequentially-adjacent registers.
Satisfying the local timing constraints is necessary but does not guarantee correct
functionality of a synchronous system. Global timing constraints also exist that
require non-adjacent registers to be considered. Two topologies within a graph
influence the synchronization process – reconvergent global data paths and logic
cycles [231]. To better understand the effects of these topologies on synchronization,
it is necessary to review the effects of a serial connection of registers on the PR.

4.1 Graph-based timing analysis 111

Serial data path.

The clock skew within a synchronous system shares many properties with voltage
within an electrical circuit. For example, the clock skew describes the difference
in arrival time of a clock signal, while voltage describes the difference in electric
potential. Another example of the similarity of these two concepts is the addition of
skew (voltage) along a path within an underlying graph. Consider three sequentially-
adjacent registers, R1, R2, and R3. The clock skew s1,3 between R1 and R3 is

s1,3 = s1,2 + s2,3. (4.11)

More generally, the clock skew between registers R1 and Rn connected by path
p = {r1, . . . , rn} is the sum of the clock skews along the path p [230],

s1,n =
n−1∑

i=1

si,i+1. (4.12)

The upper (up) and lower (lp) bounds on clock skew are therefore a sum of the
bounds of each local data path along path p,

up = nTCP −
∑

(i→f)∈p

[
δ
f
s + Di,f

]
, (4.13)

lp = −
∑

(i→f)∈p

[− δi
h + di,f

]
. (4.14)

The resulting PR is wider than the PR of each local data path in p. The PR of the
non-adjacent registers is therefore rarely discussed in the literature, since the PR
of a sequentially-adjacent local data path is more restrictive. In reconvergent data
paths and logic cycles, however, the PR of the non-adjacent registers affects the
synchronization process.

Reconvergent (parallel) paths.

Systems with parallel paths are common in logic circuits. A generalized example
of this topology is shown in Fig. 4.7a. Registers d and c represent, respectively,
divergent and convergent registers. Those paths with the smallest and greatest prop-
agation delay are referred to, respectively, as the short and long path. Reconvergent
paths shrink the PR of the data path and impose constraints on the minimum clock
period [231],

T
d,c
CP = DL − dS + δs

c + δh
c

|m − n + 1| , (4.15)

112 4 Synchronization in VLSI

am
c

a1

d
bnb1

a)

c2 cn-1 cnc1k

b)

Fig. 4.7 Examples of global data path constraints in sequential circuits. a) Reconvergent path with
long path [d, a1, . . . , an, c] and short path [d, b1, . . . , bm, c], and b) cyclic path [i, c1, . . . , cn, i].

where Dd,c is the maximum delay of the long path with m registers, and dd,c is the
minimum delay of the short path with n registers.

Furthermore, the topology of a reconvergent path limits the clock skew between
divergent and convergent registers. Satisfying the PR for one of the parallel paths is
not sufficient to ensure correct operation, since the PR for a different parallel path
may be violated. The equivalent PR for a reconvergent path (d � c) is therefore the
intersection of the PR for each parallel path p,

ld,c = max
p∈(d�c)

(l
p
d,c) (4.16)

ud,c = min
p∈(d�c)

(u
p
d,c). (4.17)

Special consideration is required to analyze parallel paths with feedback. The
clock skew between any two registers exhibits antisymmetry, i.e., clock skew in a
feedback path is the negative of the clock skew of the forward data path [230],

si,j = −sj,i . (4.18)

The PR of a feedback path is therefore

lj,i = −ui,j (4.19)

uj,i = −li,j . (4.20)

Therefore, if feedback (c � d) exists in a reconvergent path, the clock skew
bounds are converted into the equivalent PR of path (d � c) before determining the

4.1 Graph-based timing analysis 113

intersection of the PR,

ld,c = max

(

max
p∈(d�c)

(
l
p
d,c

)
,− min

p∈(c�d)

(
u

p
c,d

))

(4.21)

ud,c = min

(

min
p∈(d�c)

(
u

p
d,c

)
,− max

p∈(c�d)

(
l
p
c,d

))

. (4.22)

Cyclic data paths.

An example of a sequential circuit containing cycle (k � k) with n nodes is shown
in Fig. 4.7b. The datum enters register k, returning to the same register in n cycles.
The cycle traversal is completed in time nTCP , limiting the clock period to the
average propagation delay of the datapath [231],

T kk
CP = 1

n

∑

(i,j)∈(k�k)

(Di,j + δs
j). (4.23)

To determine the lower bound on the clock period, all reconvergent paths and
cycle paths need to be determined. To find all reconvergent paths, all simple paths
between each divergent and convergent register also need to be determined. A
simple path between two vertices can be found in linear time [337]. A common
algorithm for finding all cycles within a graph is proposed by Johnson [338],
where the search is completed in O((|V | + |E|)(c + 1)) time, where c is the
number of cycles. The number of cycles and reconvergent paths within a graph can
however be prohibitively large, up to n! in a complete graph. Although this number
is significantly smaller in practical graphs, this requirement limits the maximum
size of a circuit for which the permissible range can be accurately determined. An
effective method for controlling the size of a circuit is the GALS design paradigm
[339]. By decomposing the circuits into separate clock domains, the permissible
range can be efficiently determined within each partition.

4.1.1.3 Constraint graph

For timing graph G = (VG,EG), clock skew constraints (4.7) and (4.3) produce
2|EG| inequalities that describe the PR of each data path. These constraints can be
transformed into a system of inequalities,

[
YT

d

−YT
d

]

t −
[

U

−L

]

≤ 02|EG|, (4.24)

114 4 Synchronization in VLSI

where 0n is n×1 zero vector, t is the vector of clock arrival times, Yd is the directed
incidence matrix of a timing graph G, and U ∈ R

|EG| and L ∈ R
|EG| are vectors

describing, respectively, the upper bound ui,f and lower bound li,f on the clock
skew for each data path (i, f). The system expressed by (4.24) is the system of
difference constraints [107],

Ax ≤ b, (4.25)

where A is the coefficient matrix whose rows contain one 1 and one −1, x is the
vector of variables, and b is the vector of constraints. These systems consist of
inequalities of the form,

xi − xj ≤ bi,j . (4.26)

A system of difference constraints can be efficiently described using a constraint
graph [107]. Fundamentally, a constraint graph is a directed graph Gc = (V ∪
{v0}, E ∪ E0). Set V is a set of variables in x. An edge (i, j) ∈ E connects two
nodes if there exists the inequality,

xj − xi ≤ bj,i . (4.27)

The weight of edge (i, j) is bj,i . An additional node v0 is added to the node set.
Edges in set E0 have zero weight and connect v0 to each node in V .

In the context of synchronization, this general definition can be transformed into
a more specific definition of a timing constraint graph. The timing constraint graph
GC = (VG ∪ {v0}, E0 ∪ El ∪ Eu, el, eu) is derived from the timing graph G and
depicts the minimum and maximum clock skew constraints for each data path [331].
The node set of a constraint graph is identical to the node set of a timing graph G

with an added node v0. The set El is a copy of the edge set of the timing graph.
The weight function eL : El → R associates each edge within El with the double
clocking constraint (4.7),

el(i, f) = −li,f = di,f − δ
f
h . (4.28)

Set Eu is comprised of the reversed edges of EG,

Eu ≡ {(f, i)|(i, f) ∈ EG}. (4.29)

The function eu : Eu → R associates each edge within set Eu with the zero clocking
constraint (4.3),

eu(i, f) = uf,i = TCP − Df,i − δi
s . (4.30)

To illustrate the construction of the timing constraint graph, consider the
sequential circuit depicted in Fig. 4.8a. Four inequalities describe the zero clocking

4.1 Graph-based timing analysis 115

a

b[4, 9]

d

[5, 10]

c[8, 12] [6, 9]

a)

a

b

c

d
4 5

8 6

v0

TCP 9 TCP 10

TCP 12 TCP 9

b)

a

b

c

d

3

4

4

5

6

8

3

6

v0

c)

Fig. 4.8 Example of a constraint graph, a) Initial circuit with four registers. The numbers in the
square brackets denote the maximum and minimum propagation delay in arbitrary time units (tu).
b) Constraint graph. The solid edges belong to set Eu and denote the setup time constraint. Observe
that the weight of these edges is a function of the clock period TCP . The dashed edges belong to set
El and denote the hold time constraint. The dotted edges denote the zero weight edges connecting
v0 with all other nodes. c) Constraint graph for TCP = 6 tu. Observe that zero cycle [a, b, d, c, a]
is produced, indicating that no further reduction in clock period is possible without modifying the
data paths.

116 4 Synchronization in VLSI

constraints (ignoring the setup and hold time),

ta − tb ≥ −4 ⇒ tb − ta ≤ 4, (4.31)

ta − tc ≥ −8 ⇒ tc − ta ≤ 8, (4.32)

tb − td ≥ −5 ⇒ td − tb ≤ 5, (4.33)

tc − td ≥ −6 ⇒ td − tc ≤ 6. (4.34)

These equations form the edge set El = {(a, b), (a, c), (b, d), (c, d)}. The weight
of these edges are

el(a, b) = 4, (4.35)

el(a, c) = 8, (4.36)

el(b, d) = 5, (4.37)

el(c, d) = 6. (4.38)

Another four inequalities describe the zero clocking constraint,

ta − tb ≤ TCP − 9, (4.39)

ta − tc ≤ TCP − 12, (4.40)

tb − td ≤ TCP − 10, (4.41)

tc − td ≤ TCP − 9. (4.42)

These equations form the edge set Eu = {(b, a), (c, a), (d, b), (d, c)}. The weight
of these edges is

eu(b, a) = TCP − 9, (4.43)

eu(c, a) = TCP − 12, (4.44)

eu(d, b) = TCP − 10, (4.45)

eu(d, c) = TCP − 9. (4.46)

A set of zero weight edges E0 connecting v0 with each node is added to the graph.
The resulting constraint graph is depicted in Fig. 4.8b.

A feasible solution to a system of difference equations can be found by finding
shortest path from node v0 to each of the nodes within the constraint graph [107].
Consider the constraint graph for TCP = 6 tu, depicted in Fig. 4.8c. The shortest
paths to each node within the graph are

ta = −9, (4.47)

4.2 Clock skew scheduling 117

tb = −5, (4.48)

tc = −3, (4.49)

td = 0. (4.50)

The permissible range of each data path is

PRa,b = [−4,−3], (4.51)

PRa,c = [−8,−6], (4.52)

PRb,d = [−5,−4], (4.53)

PRc,d = [−6,−3]. (4.54)

The clock skew in each local data path is within the corresponding PR. Recall from
Subsection 2.7.1, that if a negative cycle exists within a graph, a shortest path does
not exist since the cost of a traversal can be made arbitrarily small by repeatedly
traversing the negative cycle. As demonstrated in [107], a feasible solution to (4.24)
only exists if no negative cycle exists within the constraint graph. A negative
cycle can be detected using the Bellman-Ford algorithm [331], as discussed in
Subsection 2.7.1.4.

Note that the upper bound on clock skew is a function of the clock period. A
minimum clock period T min

CP therefore exists that satisfies (4.24) while producing
a zero weight cycle [331]. Observe that cycle [a, b, d, c, a] has zero weight in the
constraint graph depicted in Fig. 4.8c. A clock period of 6 tu is therefore minimum
for the specific circuit and cannot be further reduced without modifying the data
paths. Using the delay insertion method, discussed in Subsection 4.2.2, a smaller
clock period can be produced by adding delay to selected data paths.

4.2 Clock skew scheduling

Clock skew scheduling is the process of determining the individual clock skew
for each local data path to enhance the characteristics of a system of sequential
logic. Three primary quality metrics of a sequential logic circuit exist, robustness,
performance, and power dissipation. All of these metrics can be enhanced with clock
skew scheduling.

4.2.1 Robustness

Improved reliability of a synchronous system against timing violations is a major
advantage of clock skew scheduling. To illustrate the importance of clock skew

118 4 Synchronization in VLSI

a bCL1
12

0 0

CL2
4 c

0

T = 12

a)

0 4 8 12 16 20 24

Idle

Clock a

Clock b

Clock c

Data

b)

Fig. 4.9 An illustrative example of a system with three flip flops exhibiting zero clock skew. For
simplicity, the internal register delays, namely, clock-to-output delay, setup time, and hold time,
are neglected. a) Topology of the system. CL and T refer, respectively, to the combinatorial logic
and clock period. The numbers indicate delays in time units (tu). b) Data flow within the system. At
time t = 0, a datum is released from flip flop a to CL1. After completing CL1, the datum reaches
flip flop b. The clock signal triggers the release of the data into CL2. After 4 tu, the datum reaches
flip flop c and is stored in flip flop c for 8 tu.

scheduling, consider a data path consisting of three registers, a, b, and c, and two
combinatorial logic blocks, CL1 and CL2, as illustrated in Fig. 4.9a. The clock
period T is 12 time units (tu), barely sufficient for completing the CL1. Observe,
however, that the CL2 is completed in only 4 tu. An idle time tidle = 8 tu therefore
exists during which a datum is stored in register c until it is released after the clock
signal arrives at register c, as depicted in Fig. 4.9b. Assuming the setup time, clock to
output time, and hold time of the registers are negligible, the PR of (a, b) and (b, c)

are, respectively, [−12, 0] tu and [−4, 8] tu. Observe that a zero clock skew requires
data path (a, b) to operate at the edge of the PR. In a practical system, the actual
arrival time of the clock signal may be different from the predicted arrival time due
to parameter variations, such as manufacturing defects, temperature fluctuations,
and electromagnetic interference. The clock skew between registers a and b may

4.2 Clock skew scheduling 119

therefore become positive, shifting the clock skew beyond the PR. Alternatively,
the delay of CL1 can exceed 12 tu, thus failing to deliver the datum to register
b before the arrival of the clock signal. To mitigate this issue, the clock period
can be increased to accommodate variations in propagation delay. The speed of a
synchronous system is however reduced.

With clock skew scheduling, the 8 tu of idle time in (b, c) can be exploited to
increase the time allocated for CL1. Consider the topology shown in Fig. 4.10a.
The clock arrives at register b delayed by 4 tu, producing clock skews,
sa,b = −4 tu and sb,c = 4 tu. The skew sa,b is now farther from the edge of
the PR. The time allocated for CL1 is increased to T − sa,b = 16 tu, while the time
allocated for CL2 is reduced to T − sb,c = 8 tu. The idle time of CL2 in the zero
skew example is effectively split between CL1 and CL2. Clock skew scheduling
is therefore often called “cycle stealing,” since part of the cycle is stolen from the
fast path (b, c) and is given to the slow path (a, b) [324, 340]. Process variations,
affecting the propagation delay of CL1, are therefore less likely to produce a timing
violation. The improved tolerance to process variations may greatly increase the
manufacturing yield of an integrated circuit [231]. Note that since the clock period
is unchanged, the overall system performance is unaffected.

The primary objective of robustness driven clock skew scheduling is shifting the
clock skew towards the center of the PR [239]. A deviation of the clock skew from
the center of the PR is

f (s) = ||s − s∗||, (4.55)

where s ∈ R
|E| is the vector of clock skew for each local data path, and each

entry in s∗ ∈ R
|E| is at the center of the PR for the corresponding data path. By

minimizing (f (s))2, the clock skew can be chosen to maximize the robustness of
the synchronous system.

Several constraints exist that prevent an arbitrary adjustment of s. The clock skew
of each data path is limited by the PR, as described by (4.5) and (4.8). The clock
skew between the terminal registers of a circuit module is often set to zero [231],

si,j = 0∀i, j ∈ BI/O, (4.56)

where BI/O is the set of those registers within a module connected to the I/O
terminals. The primary motivation for this constraint is easier synchronization of
the module with the rest of the IC [230].

Cyclic paths within the timing graph prevent shifting the clock skew of each
datapath towards the center of the PR. The sum of the clock skews along cyclic path
(k � k) is zero due to the linear dependence among the clock skews [231],

∑

(i�j)∈(k�k)

si,j = 0. (4.57)

The number of cycles within the graph can be prohibitively large. For example, the
number of cycles in a complete directed graph of degree n is

120 4 Synchronization in VLSI

a bCL1
12

0 4

CL2
4 c

0

T = 12

a)

0 4 8 12 16 20 24

Idle

Clock a

Clock b

Clock c

Data Idle

b)

Fig. 4.10 A system exploiting clock skew to enhance robustness. a) Topology of the system.
The clock signal arriving to register b is delayed by 4 tu. b) Data flow within the system. After
completing CL1, the datum reaches flip flop b at time 12 tu and is stored for 4 tu in register b.
Similarly, after completing CL2, the datum is stored for 4 tu in register c.

n−1∑

i=1

(
n

n − i + 1

)

(n − i)!. (4.58)

Only a subset of cycles is however necessary to consider, as depicted in Fig. 4.4.
Three cycles (excluding the self-loop at node f) are present in the system, namely
[dgf eabcd], [dghd], and [dhgf eabcd], forming three linear equations,

sd,g + sg,f + sf,e + se,a + sa,b + sb,c + sc,d = 0 (4.59)

sd,g + sg,h + sh,d = 0 (4.60)

sd,h + sh,g + sg,f + sf,e + se,a + sa,b + sb,c + sc,d = 0. (4.61)

Equation (4.61) can be expressed as the sum of (4.59) and (4.60), and therefore does
not impose additional constraints on the clock skew within a system. Observe the

4.2 Clock skew scheduling 121

a

c d

e f g

hb

Fig. 4.11 Determining the cycle basis of a sequential circuit based on a spanning tree. Three
cycles are present in the circuit, abcdgf ea, dhgd , and abcdhgf ea. The spanning tree separates
the edges into two groups, basis edges (solid line) belonging to the spanning tree, and chords (dash
line), the remaining nodes. Each of the chords (hg and fg) corresponds to an independent cycle
(respectively, abcdgf ea and dhgd), forming a cycle basis of the graph. The cycle abcdhgf ea

can be expressed as a combination of independent cycles and is therefore not included in the cycle
basis.

similarity of (4.57) with Kirchhoff’s voltage law, where the sum of the voltage drops
along the cycle is zero.

A cycle basis – minimum subset of linearly independent cycles – is sufficient
to analyze the clock skew constraints induced by cycles within a graph. The cycle
basis for graph G is shown in Fig. 4.11. To determine the cycle basis, a spanning
tree algorithm is used. An arbitrary node is initially selected as the root. The graph
is traversed while ignoring the direction of the edges (i.e., traversal in the opposite
direction of an edge is allowed), skipping the visited nodes until all of the vertices
are traversed. Many algorithms for traversal exist [341], including fundamental
breadth-first search (BFS) [111] and depth-first search (DFS) [342]. Edges within
and outside the resulting tree are referred to, respectively, as basis and chord edges.
Each chord corresponds to a distinct independent cycle. The number of basis edges
is nb = |V | − 1. The number of chords (and independent cycles) is therefore

nc = |E| − |V | + 1. (4.62)

The cycle basis is efficiently expressed as the circuit connectivity matrix B ∈
R

(nc×|E|). By arbitrarily choosing the direction of each cycle, an entry for edge e

within cycle c is

bc,e =

⎧
⎪⎨

⎪⎩

1, if e follows c, (4.63a)

−1, if e opposes c, (4.63b)

0, if e does not belong to c. (4.63c)

For example, the clock skew constraint due to data path cycles for the system shown
in Fig. 4.4 is

122 4 Synchronization in VLSI

⎡

⎣
1 1 1 1 0 −1 −1 −1 0
0 0 0 1 −1 0 0 0 1
1 1 1 0 1 −1 −1 −1 −1

⎤

⎦

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

sa,b

sb,c

sc,d

sd,g

sd,h

sa,e

se,f

sf,g

sg,h

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

= 0. (4.64)

Clock skew scheduling to maximize the robustness of the sequential system can
therefore be expressed as a quadratic programming problem,

Minimize

||s − s ∗ ||2, (4.65)

subject to

Bs = 0 (4.66)

li,f ≤ si,f ≤ ui,f ∀(i, f) ∈ EG. (4.67)

Constraint (4.67) maintains the clock skew of each data path within the PR. The
optimized clock skew schedule is converted into a schedule of clock arrival times
TCD by choosing the reference node, similar to the process of choosing a ground
potential in the analysis of electrical circuits.

The main feature of the quadratic programming problem (4.67) is minimization
of the cumulative squared distance between the clock skew and the center of the PR
[241]. Sensitivity to timing variations however typically varies among data paths.
Furthermore, process parameter variations limit the ability to precisely estimate the
maximum Di,j and minimum di,j delays of a data path (i, j). Bounds on delays,
di,j and Di,j , can therefore be statistically modeled, respectively, as d̃i,j and D̃i,j ,
where the tilde denotes a random variable. The bounds on clock skew, (4.3) and
(4.7), are therefore random variables and can be expressed as

ũi,f = TCP − D̃i,f − δ
f
s , (4.68)

l̃i,f = −d̃i,f + δ
f
h . (4.69)

The probability of producing a clock skew outside the PR is P(l̃i,f ≤ si,f ≤
ũi,f). With this formulation, the probability of a timing violation can be explicitly
considered during the optimization process. Several algorithms exist that utilize
this formulation to minimize the probability of a timing violation. In [343], the

4.2 Clock skew scheduling 123

propagation delay of each data path is modeled as a Gaussian random variable.
The accuracy of the delay estimates is improved by eliminating false paths [344],
i.e., logic paths that are never traversed (sensitized) by a data signal. The clock
skew scheduling algorithm in [343] minimizes the maximum probability of a timing
failure among all data paths, achieving up to a 53% improvement in yield. The
accuracy of Gaussian statistical modeling in timing analysis may however suffer
due to a variety of issues such as the topological and spatial correlation between the
device parameters and nonlinear delay models [345]. The algorithm described in
[343] is generalized in [346] to support arbitrary probability distributions; achieving,
on average, an improvement of 17.7% over [343].

4.2.2 Performance

Clock skew within the system shown in Fig. 4.10 is adjusted to reduce the likelihood
of a timing violation. Both of the data paths exhibit an idle time of 4 tu. If the
likelihood of process variations is relatively low, the system performance can be
enhanced by increasing the clock frequency by reducing the idle time. Consider the
example illustrated in Fig. 4.12. The clock period of the system can be reduced by
4 tu, eliminating the idle time. The throughput of the system is increased by 50% by
reducing the clock period by 4 tu, from T = 12 tu to T = 8 tu.

Although clock skew scheduling reduces the clock period below the critical path
delay, the PR of all of the data paths is narrowed. A lower bound on the clock period
therefore exists that prevents an arbitrary increase in the clock frequency. Recall
that a feasible clock skew schedule exists if the corresponding constraint graph does
not contain a positive cycle. The minimum clock period is found by finding a clock
period that produces a zero weight directed cycle in the constraint graph [107, 331].
An example of a constraint graph for the data path depicted in Fig. 4.10 is shown in
Fig. 4.10. A zero weight cycle (i, f, i) is produced when TCP = 5 tu. After finding
the minimum clock period, a feasible clock schedule can be produced by solving a
set of linear inequalities (4.24).

Although the zero weight cycle within a constraint graph yields a minimum
clock period for a specific circuit, further reduction in the clock period is possible
by modifying the data paths with an intentional delay [231, 347]. To illustrate this
effect, consider the data path shown in Fig. 4.13a. Two data paths, CL1 and CL2,
connect two registers, i and f . The minimum and maximum delay of the paths is,
respectively, [d1,D1] = [4, 10] tu and [d2,D2] = [8, 14] tu. Assuming the internal
register delays are negligible, the minimum clock period satisfying (4.5) and (4.8)
is 10 tu, achieved by inducing negative clock skew si,f = −4 tu, as illustrated in
Fig. 4.13b. Suppose a delay element of 4 tu is intentionally inserted into data path
CL1, yielding delay [d ′

1,D
′
1] = [8, 14]. The minimum achievable clock period with

the modified topology is 6 tu, produced by creating a negative clock skew si,f = −8
tu, as depicted in Figs. 4.13c and 4.13d. Observe that the delay of data path CL1 is

124 4 Synchronization in VLSI

a bCL1
12

0 4

CL2
4 c

0

T = 8

a)

0 4 8 12 16 20 24

Clock a

Clock b

Clock c

Data

b)

Fig. 4.12 System exploiting clock skew to enhance performance. a) Topology of the system. The
clock signal arriving at register b is delayed by 4 tu, similar to the topology shown in Fig. 4.10a.
The clock period T is reduced to 8 tu. b) Data flow within the system. The idle time within the
system is eliminated to enhance the system speed.

aligned with the delay of data path CL2. The total delay uncertainty is therefore
reduced, reducing the minimum clock period [231].

Different algorithms are proposed in the literature that support delay insertion to
reduce a clock period. A constraint graph can be used to determine whether a circuit
may benefit from delay insertion. Recall that the edge set of a constraint graph
consists of edges denoting the setup time constraint Eu and hold time constraint El .
According to [348], if a zero weight cycle at T 1

CP contains an edge (i, j) ∈ El , there
exists a delay insertion strategy achieving a smaller clock period where T 2

CP < T 1
CP .

A counterexample is however shown in Fig. 4.14. A 3 tu delay is inserted in data path
(a, b), achieving a clock period of 5 tu. Further reductions in the clock period are
not possible since the maximum delay uncertainty within the circuit is 5 tu. No zero
weight cycle can however be found without the hold time constraint edges. This
algorithm in [348] does not consider clock period limitations due to reconvergent
paths, as discussed in Subsection 4.1.1. This limitation is overcome in [349] where
the clock period is minimized along with the inserted delay.

4.2 Clock skew scheduling 125

i f

CL1

T=10

[4,10]

[8,14]

0 4CL2

a)

0 2 4 6 8 10 12 14 16 18 20

Clock i

CL1

CL2

Clock f

b)

i f

T=6

[4,10]

[8,14]

[4,4]

0 8

CL1

CL2

a)

+4 tu

Clock i

CL1

CL2

Clock f

0 2 4 6 8 10 12 14 16 18 20

b)

Fig. 4.13 Illustrative example of performance enhancement due to delay insertion. a) Two parallel
data paths between registers i and f . The numbers in the brackets denote the minimum and
maximum delay of the data paths. b) Timing diagram of data and clock signals in circuit (a).
The minimum clock period is 10 tu. c) An additional 4 tu delay is inserted into data path CL1. d)
Timing diagram of data and clock signals in circuit (c). The minimum clock period is reduced to 6
tu by reducing the delay uncertainty.

4.2.2.1 Wave pipelining

Several issues pertaining to clock period minimization exist. Observe that the
propagation delay of the data paths depicted in Fig. 4.13c is greater than the clock
period. A second datum is therefore released before the first datum is completely
processed. This phenomenon is called wave pipelining and is depicted in Fig. 4.15
[350]. Observe that multiple data travel at different stages within the same data
path. Unlike traditional synchronous systems where the data signals are temporally
separated, the signals are spatially separated within a wave pipelined data path.
To reduce the clock period below the propagation delay, a combinatorial circuit
should propagate multiple data [351]. Data skew — the difference between the
maximum and minimum propagation delay — is an important factor affecting
the performance of wave pipelined systems. Similar to clock skew that limits
the maximum clock frequency, the data skew determines the maximum rate of
wave pipelining (and, hence, the clock frequency), as illustrated in Fig. 4.16.
Another important consideration during the delay insertion process is the cost of
the additional delay elements. The clock skew scheduling algorithm proposed in
[347] minimizes not only the clock period but also the number of inserted delay
elements.

126 4 Synchronization in VLSI

a

b[4+3, 9+3]

d

[5, 10]

c[8, 12] [6, 9]

a)

a

b

c

d

7

7

5

5

7

8

4

6

v0

b)

Fig. 4.14 Counterexample illustrating minimization of clock period with delay insertion where
the zero weight cycles contain edges belonging to El . a) Circuit with inserted delay (from Fig.
4.8). A delay of 3 tu is inserted into data path (a, b). b) The constraint graph for TCP = 5 tu. Due
to delay uncertainty Db,d − db,d = 5 tu, reducing the clock period below 5 tu produces a timing
violation. Zero weight cycles [a, b, a] and [b, d, b] however both contain edges from set El .

4.2.3 Power

Clock skew scheduling is a technique to adjust the arrival time of the clock signals
at the registers [233]. This technique is extended with the delay insertion method
discussed in the previous section. The propagation delay of the data paths is
intentionally increased to raise the clock frequency. Adjustment of the propagation
delay along the data and clock paths can also reduce the power consumption of a
synchronous system [352, 353].

Two dominant sources of power dissipation in modern IC’s are switching activity
and leakage current [232]. Certain design parameters affect the power dissipation of
an IC. The dynamic power dissipated by a switching circuit is [354]

Pdyn = αCLV 2
DDf, (4.70)

4.2 Clock skew scheduling 127

i f

TCP

[di,j , Di,j]

si,f 0

a)

Clock f

Clock i

0

Logic
depth

di,j Di,j TCP

b)

Clock f

Clock i

0

Logic
depth

di,j Di,jTCP

c)

Fig. 4.15 Timing diagrams of conventional pipelining and wave pipelining. a) Example data path.
b) Propagation of data during conventional pipelining. The triangular curves depict the minimum
and maximum propagation delay of the datum. Only a single datum is processed during a clock
period. c) Propagation of data during wave pipelining. Multiple data are processed during a clock
period. Observe that the clock period is smaller than the propagation delay of the data path.

where CL is the load capacitance, VDD is the supply voltage, f is the clock
frequency, and α is the activity factor representing the probability of switching
during a cycle. Note that α = 1 for a clock signal since switching occurs during

128 4 Synchronization in VLSI

Clock f

Clock i

0

Logic
depth

di,j Di,jTCP

a)

Clock f

Clock i

0

Logic
depth

di,j Di,jTCP

b)

Clock f

Clock i

0

Logic
depth

di,j Di,jTCP

DSi,j

c)

Fig. 4.16 Effect of data skew on maximum rate of pipelining in an example data path, shown in
Fig. 4.15a. a) Correct data flow at high clock frequency and small data skew. b) Data flow at high
clock frequency and large data skew. The diagonal cross hatched pattern illustrates data collisions.
c) Correct data flow achieved by lowering the clock frequency.

every clock period. The load capacitance CL is typically comprised of the gate
capacitance and interconnect capacitance. Assuming the interconnect capacitance
of the local interconnects is negligible, the dynamic power is proportional to the
area WL of the transistors,

4.2 Clock skew scheduling 129

Pdyn ∝ αWLV 2
DDf. (4.71)

Two major types of leakage current in modern IC’s are subthreshold leakage current
and gate leakage current [232]. The subthreshold leakage power Psubth is dissipated
due to a small current from the source and drain of a transistor when the device is in
the cutoff state. Psubth is a function of device dimensions and voltage [232],

Psubth ∝ W

L
e−Vth/VT , (4.72)

where

VT = kBT

q
(4.73)

is the thermal voltage, kB is the Boltzmann constant, T is the temperature, and q

is the electric charge of an electron (elementary charge). Gate leakage power Pgl is
dissipated by the electrons tunneling through the gate oxide, producing a leakage
current. Pgl is proportional to the total gate area [355],

Pgl ∝ WL. (4.74)

Other factors affecting the leakage current are technology or environmental param-
eters not directly controlled during the IC design process, such as the doping
concentration, carrier mobility, ambient temperature, and dielectric permittivity and
thickness.

Expressions (4.71), (4.72), and (4.74) indicate that to reduce power dissipation,
the supply voltage and transistor width should be reduced while the threshold
voltage should be increased. These modifications however directly degrade the
speed of the logic circuitry [356]. A tradeoff therefore exists between power
dissipation and propagation delay. Observe, however, that reducing the speed of
the combinatorial logic affects the overall speed of a synchronous system only if
the combinatorial logic is a part of a critical path. Consider the example system
shown in Fig. 4.13a. Since data path b is a critical path, slowing data path b requires
increasing the clock period, degrading the overall system speed. In contrast, the
speed of data path a can be reduced without affecting the clock period.

Different methods exist that modify one or several components of (4.71), (4.72),
and (4.74) thereby reducing the power dissipation. In a multiple supply voltage
technique [357], the non-critical paths within a combinatorial circuit are driven by
a smaller supply voltage. The transistors in CL2, shown in Fig. 4.10, can therefore
be connected to a smaller voltage, V low

DD < V
high
DD . Lowering the supply voltage

is highly effective in alleviating dynamic power due to the quadratic relationship
between the supply voltage and dynamic power (see (4.71)). Producing different
supply voltages within a circuit however requires voltage converters [358, 359] or
additional power distribution networks [75]. Multiple threshold voltage technique

130 4 Synchronization in VLSI

often accompanies a multiple supply voltage technique [360, 361]. By increasing
the threshold voltage along a non-critical path, the subthreshold leakage power of a
circuit can be drastically reduced, at the cost of greater delay. Gate sizing is another
approach [362], trading speed for power consumption. By reducing the width of
a transistor, the propagation delay is increased while the leakage and switching
currents are reduced.

Consider the data path shown in Fig. 4.9. Local data path (b, c) is a non-critical
path exhibiting idle time, since the propagation delay is smaller than the clock
period. The speed and power consumption of (b, c) can therefore be reduced without
affecting the overall performance of the circuit. The majority of the data paths in a
practical synchronous system are non-critical, with more than 65% of the data paths
at least twice faster than the slowest paths [352]. This feature of practical systems
indicates the significant potential for reducing power dissipation in integrated
systems. Furthermore, the propagation delay of a clock signal (affecting the clock
skew) can be adjusted by gate sizing, further reducing the power consumption.

A power-aware clock skew scheduling algorithm is presented in [363]. The idle
time of each data path is initially calculated. The size and threshold voltage of the
transistors along each data path exhibiting an idle time is adjusted to reduce the
power consumption of the circuit, while maintaining a constant system-level clock
frequency. The algorithm specifically targets leakage power, achieving, on average,
an 18.8% reduction. The dynamic power is likely also lowered due to the smaller
capacitive load of the circuit. An algorithm for minimizing the power dissipated by
a sequential system based on changing the supply voltage is presented in [364]. A
discrete set of supply voltages is considered available. The associated delays are
precomputed for each gate to obtain a function P̄e : R → R, mapping the delay
of a gate to a dissipated power. Power optimization can therefore be performed
by optimizing the delay of the data paths. The solution is discretized to adapt the
solution to a set of available supply voltages. An average of 9% reduction in power
is achieved in the benchmark circuits.

Several limitations exist that limit the reduction in power consumption by voltage
and frequency scaling. First, the additional delay �Di,j introduced into the data path
(i, j) by downsizing or voltage scaling should not exceed the idle time available
within the data path,

TCP − si,j ≥ Di,j + �Di,j + δs. (4.75)

Another limitation is the accuracy of the delay models. Due to supply and
threshold voltage variations combined with parameter variations, precise control
of the additional delay of the data paths is extremely difficult to manage [365].
Delay uncertainty should therefore be considered during the optimization process.
Furthermore, the switching process in CMOS dissipates short-circuit power [352]
due to current flowing from the power supply to ground while both the pull-up
and pull-down networks operate in the conducting state. The short-circuit power
increases with a smaller load capacitance, lower threshold voltage, greater switching
time, and higher supply voltage [232]. Decreasing the size of the logic gates reduces

4.3 Clock tree synthesis 131

the load capacitance and switching speed, significantly increasing the short-circuit
power. Any power savings from downsizing the gates is therefore reduced if the
short-circuit power is not considered during the sizing process.

4.3 Clock tree synthesis

Many topologies to enhance clock distribution networks have been discussed in the
literature. Symmetric tree structures, such as an H-tree [236], equalize the distance
traversed by the clock signal to each register, effectively producing zero clock skew
(see Fig. 4.17). The regular structure of the tree however limits the application of
a symmetric clock tree to highly regular layouts[366]. A modification of the H-
tree is introduced in [235], where the shape of the clock tree is deformed while the
distance traveled by the clock signal to each of the registers is maintained equal
(see Fig. 4.17). Additional on-chip resources are however required to equalize the
delay of the clock signal to different registers. The most prominent non-tree type
of clock distribution network is a mesh topology [232], depicted in Fig. 4.17. The
mesh structure provides a low impedance path to the clock sinks, thereby equalizing
the delay from the clock source to each clock sink [367]. This structure, however,
consumes large on-chip area and metal resources as compared to a tree topology.

The objective of these topologies is to minimize or eliminate any clock skew
within a circuit. However, as discussed in the previous section, zero skew systems
typically exhibit suboptimal performance and require significant on-chip resources
or additional circuitry to minimize the clock skew. With useful clock skew, the
overhead of the clock distribution network can be significantly reduced [239, 328].
The clock skew scheduling process specifies the time of arrival of a clock signal to
each register within a network. To fully utilize a set of optimal clock arrival times, a
clock distribution network satisfying the prescribed clock arrival time schedule TCD
is necessary.

A buffered asymmetric tree topology is highly suitable for clock distribution
networks due to the flexibility of the layout, control of the arrival times, and smaller
area overhead [368]. The clock tree synthesis process typically consists of two
steps - topological and embedding [328]. The objective of the topological step is
an abstract representation of the clock tree that achieves the clock arrival time
at the registers while lowering the area overhead, such as wire length and buffer
insertion. This abstract representation is converted into a physical layout during
the embedding step. The layout parameters, such as the length and width of the
interconnects, are tuned to distribute the clock signal to the specific on-chip location
of the registers.

132 4 Synchronization in VLSI

a)

3

3

3

3

3

3

3

2

2

2

32

1

1

0

b)

R
R

R

R
R

R

R

R

c)

Fig. 4.17 Example of clock tree topologies that minimize clock skew. a) Symmetric H-tree, b)
Delay-matched tree. The propagation delay of the clock signal from the clock source to each sink
is equalized, producing zero clock skew. c) Mesh clock distribution network. The interconnects are
placed between the leaves of the tree to provide a low impedance path between the leaves of the
clock tree, reducing the clock skew.

4.3.1 Clock tree topology

A circuit model of a buffered tree-based clock distribution network, commonly
referred to as clock tree, is shown in Fig. 4.18a. The connection among the buffers
and registers constitute a directed tree graph. The unique root buffer B0 is connected
to a clock generator. The internal nodes of the clock tree correspond to the
buffers amplifying the clock signal to mitigate attenuation and noise. Each register
corresponds to a leaf within a clock tree. The number of leaves within the clock tree
is therefore equal to the number of registers within the circuit.

4.3 Clock tree synthesis 133

i1 i2

j1 j2j1 j2
a)

j1 j2 j3 j4

i1 i2 bi

bj
b)

Fig. 4.18 Buffered clock tree topology for a sequential circuit with six registers. a) Circuit
representation. The interconnect impedance is modeled as a distributed impedance, and b) graph
representation. The registers and buffers are represented by, respectively, filled and empty circles.

134 4 Synchronization in VLSI

One of the earliest works discussing the fundamental features of a clock tree are
[368] and [240]. An equivalent graph model T = (VB ∪ V,EB) of a clock tree is
utilized for the analysis of clock trees, where VB is the set of buffers (internal nodes),
V is the set of registers (leaf nodes), and EB is the set of branches (edges) within the
clock tree. This model is illustrated in Fig. 4.18b. The leaf nodes (i.e., nodes without
successors) are represented by filled circles, while the hollow circles represent buffer
nodes. The arrival time of the clock signal to a register i is the sum of all buffer
and interconnect delays along the path Pi from the clock source to i. Any pair of
registers (i, j) is connected to the clock source via a common path P ∗

i,j . The unique

paths, P i
i,j and P

j
i,j , connect the corresponding register to the common path P ∗

i,j , as
illustrated in Fig. 4.19. Paths Pi = [a, b, c, e, g, i] and Pj = [a, b, d, f, h, j] share

the section P ∗
i,j = [a, b], while sections P i

i,j = [c, e, g, i] and P
j
i,j = [d, f, h, j]

are unique to the corresponding registers. The arrival time of the clock signal to each
register is therefore

ti = PD(P ∗
i,j) + PD(P i

i,j), (4.76)

tj = PD(P ∗
i,j) + PD(P

j
i,j), (4.77)

where PD is the propagation delay. The primary challenge of the buffered clock
tree is realizing the clock skew determined during the scheduling process. The clock
skew si,j between registers (i, j) is the difference in arrival time of the clock signal
from the clock source to each of the leaves,

si,j = PD(P i
i,j) − PD(P

j
i,j). (4.78)

Expression (4.78) indicates that the clock skew between the registers is only
controlled by the difference in the propagation delay of those portions of the clock
tree unique to both registers. Observe that only the difference in the propagation
delay affects the clock skew. Delaying the clock signal delivery to each gate by
an equal amount (e.g., by downsizing buffers within P ∗

i,j) produces an identical
clock skew among the registers. This phenomenon is analogous to the relationship
between voltages within an electrical circuit – the voltage at every node can be
increased by a constant amount without affecting the circuit behavior, as shown in
Fig. 3.24. Clock tree topological synthesis is therefore the problem of finding an
abstract representation of a clock tree and the delay of each branch in EB to achieve
the required relative arrival time of the clock signal TCD.

Many clock tree topologies can satisfy a given schedule of clock arrival times.
Clock topology synthesis is often viewed as an optimization problem. Topological
optimization of the clock tree is presented in [240]. The branching depth bi of node
i is the number of buffers connecting the clock source to the node. Assuming the
delay of a buffer is �b and the interconnect delay is negligible, the delay between
the clock generator and an arbitrary node i is bi�b. In this case, the clock skew

4.3 Clock tree synthesis 135

i j

{{
Pj
i,jPi

i,j

P*i,j
{

a

b

c d

e f

g h

Fig. 4.19 Shared and unique paths within a clock tree. The clock signal travels from the root of
the clock tree to registers i and j , traversing path P ∗

i,j = [a, b]. The signal bifurcates at buffer b,

producing paths P i
i,j = [c, e, g, i] and P

j
i,j = [d, f, h, j] that are unique for, respectively, i and j .

The difference in the clock arrival time of i and j is the difference in the propagation delay of P i
i,j

and P
j
i,j , and does not depend on P ∗

i,j .

between registers i and f is only the difference in the depth of the register within
the clock tree,

si,f = (bi − bf)�b. (4.79)

Substituting (4.79) into (4.3) and (4.7) yields

si,f = (bi − bf)�b ≥ −di,f (4.80)

si,f = (bi − bf)�b ≤ TCP − Di,f . (4.81)

By varying the depth parameters bi and bf , the clock skew in an abstract tree can
approximate the skew in the clock skew schedule. The clock tree topology can
therefore be viewed as a mixed-integer programming problem that ensures that the
difference in the buffer delay satisfies the clock skew schedule.

Topology generation [240] assumes no information is available regarding the
location of the registers. The quality of the clock tree topology is however greatly
influenced by the location of the sinks. Incorporating the location information into
the synthesis process can therefore significantly enhance the quality of the topology.

136 4 Synchronization in VLSI

Furthermore, the total interconnect length of the clock tree can be minimized by
considering the location of the registers. A clock tree with a smaller length occupies
less area, saving metal resources and relieving global routing congestion [369]. By
reducing the length of the interconnect within the clock tree, the resistance and
capacitance of the network are reduced, dissipating less power within the tree [232].

Two primary approaches based on the location are discussed in the literature;
namely, bottom-up and top-down [370]. Bottom-up clock tree topology algorithms
generally start with an empty forest graph F = (V ,∅) with |V | subtrees. Sets VB

and EB are initially empty. During each iteration, new node v is introduced into
the node set and the roots of two or more subtrees are connected to v, merging
into a new subtree, as illustrated in Fig. 4.20. This process continues until all of the
registers and buffers are replaced by a single root buffer.

Many zero skew clock tree synthesis tools utilize a bottom-up approach for
producing a clock tree topology. In one of the earliest works on zero clock skew
trees [371], a subtree is produced by connecting a pair of points by a wire segment. A
point on the wire segment equalizing path delay from the clock source to the leaves
is chosen as the root of the subtree, as illustrated in Fig. 4.17b. The wire segments are
connected with each other while maintaining the minimum clock skew. The process
repeats until all of the wires are connected into a single tree. A balanced binary
tree topology is generated from n = 2k register locations, where k ∈ N, since each
node has exactly two children and all registers within a tree are on the same level.
Different heuristics can be applied to choose the pairs of points to be connected,
such as finding the closest pairs of points or creating a Hamiltonian cycle through
the points. Application of the algorithm to an arbitrary number of registers (i.e.,
n �= 2k , k ∈ N) is not discussed here.

A different bottom-up technique is presented in [372]. The register located
farthest from the clock source is initially connected. The clock tree is next extended
to connect an additional register. This process repeats until all of the registers are
connected to the clock tree. Unlike [371], this procedure can handle an arbitrary
number of registers. Further improvements in the clock tree topology are presented
in [373, 374]. A nearest neighbor graph is produced from a set of register locations,
as shown in Fig. 4.21. Edge (p, q) indicates that the point q is the closest neighbor
for node p. The weight of each edge is the distance between the endpoints. During
each iteration, edge e = (v1, v2) with the smallest weight is chosen. Edge e and
endpoints are contracted into a single node v. The process repeats until all of the
edges are contracted.

An important extension to zero skew topology generation techniques is presented
in [375], where the clock tree is generated for the prescribed skew, e.g., the skew
determined during the clock skew scheduling process. Unlike purely spatial tech-
niques which choose the closest nodes during topology synthesis, the unequal clock
arrival times prescribed by a clock skew schedule require additional consideration.
Consider four registers, a, b, c, and d, arbitrarily placed within a layout. Suppose
four registers, a, b, c, and d, arbitrarily placed within a layout have the following
relationship among the arrival times,

4.3 Clock tree synthesis 137

Fig. 4.20 Bottom-up construction of clock tree topology. a) The individual registers are initially
grouped into several groups. For each group, a new internal node is added to the tree. The nodes
within each group become children of the corresponding parent node. b) Similar to registers, groups
are merged into larger groups, producing a new parent node for each group. c) The tree is completed
after all of the groups are merged into a single group and the root node is added.

ta � tb � tc � td . (4.82)

The clock tree generated while only considering the location of the registers would
deliver the clock signal to node d too early. Additional delay along the clock path
to nodes a, b, and c is therefore required, as illustrated in Fig. 4.22a. The delay can
be provided using delay elements or wire snaking. Both of these options however
require additional on-chip resources. An alternative clock tree topology is shown in
Fig. 4.22b. The delay from the clock source to node d is smaller than the delay to
nodes a, b, and c. This topology better matches the prescribed clock arrival time

138 4 Synchronization in VLSI

d
g

c f

e
ba

5
5

7

5
5

3

3

ba dc fe g

a)

ba dc fe g

h

h

7

j

8

i

i

j

g

8

7

b)

ba dc fe g

k l

h i j

12

k

l

12

c)

m

ba dc fe g

k l

h i j

m

d)

Fig. 4.21 Clock tree topological synthesis based on a nearest neighbor (NN) graph [373]. The
abstract clock tree topology is shown above the NN graph. If an edge (p, q) exists within the
NN graph, the distance between p and q is smaller than the distance between p and any other
node within the NN graph. a) Initial clock tree topology and NN graph. The tree is initially a
forest of |V | singular trees. b) Edges (a, b), (c, d), and (e, f) have been contracted, producing,
respectively, nodes h, i, and j . The position of the new nodes ensures minimum clock skew
between the registers. Those registers located closest to each other become siblings within the
clock tree. c) Edges (h, i) and (g, j) are contracted, producing, respectively, parent nodes k and l.
d) Edge (k, l) is contracted into node m. The only remaining node m becomes the root of the clock
tree, completing the topological synthesis process.

than a balanced topology, requiring fewer delay elements and less wire snaking. In
[375], the cost of merging is based on both the position and clock arrival times. 69%
fewer buffers and 60% less interconnect are required, on average, after minimizing
the merging cost during the clock tree topological synthesis process.

An alternative to a bottom-up approach is a top-down method, where the clock
tree is generated by repeatedly splitting the set of registers into clusters (see
Chapter 11). Each cluster is recursively divided until the clusters contain a single

4.3 Clock tree synthesis 139

ba dc

g

e f

b

a

d

c

e fg

a)

b

a

d

c

ba dc

f

e

g

e

f

g

b)

Fig. 4.22 Reduction in clock distribution overhead by modifying the topology. a) Balanced clock
tree topology matches the length from the clock source to the registers. b) Imbalanced clock tree
topology intentionally delaying the arrival of the clock signal to specific registers.

register. This process effectively partitions circuit graph G into multiple parts, as
described in Subsection 3.5.1 and illustrated in Fig. 4.23.

The method of means and medians is one of the oldest top-down techniques
for topological synthesis [376]. The set of register locations is recursively split
into clusters based on the location. This method however requires a greater total
wirelength as compared to bottom-up techniques. A similar technique is presented
in [377], where the load capacitance of the registers within a cluster is considered
when partitioning the registers. The difference in the total load capacitance of the
registers within each subset is minimized, thereby producing a smaller difference in
delay.

A top-down clock tree synthesis algorithm utilizing useful skew is described in
[370]. The precise clock arrival times are assumed unknown, but the PR of each data
path is determined from the circuit topology. The clock tree topology is generated by
recursively bipartitioning a cluster S into two subclusters, S1 and S2. The clock skew
between sequentially-adjacent registers is minimized during the clustering process
by employing the following heuristic,

W1,2 = a
PR1,2

N1→2 + N2→1
+ b|N1→2 − N2→1|, (4.83)

where N1→2 (N2→1) refer to the number of data paths starting in S1 (S2) and ending
in S2 (S1), a and b are the weight parameters, and PR1,2 is the intersection of the
PR of all edges connecting S1 and S2,

140 4 Synchronization in VLSI

a b c d e f g h

a b

dc

e f

hg

m n
m n

o

a)

a b c d e f g h

i j k l

a b

dc

e f

hg

i k

j l

m n

o

b)

a b c d e f g h

i j k l

a b

dc

e f

hg

m n

o

c)

Fig. 4.23 Top-down clock tree topological synthesis process. a) The process commences with
assigning root node (o). The set of nodes is initially split into several subsets. Each subset is
associated with a child of the root node. b) Subsets are further divided into smaller subsets, and a
child node corresponding to a subset is added to the tree. c) The tree is completed after all of the
sets are reduced to the individual registers. These registers become the leaves of the tree.

PR1,2 ≡
⋃

∀(i,j)∈EG,i∈S1,j∈S2

PRi,j . (4.84)

By maximizing heuristic (4.83), the set of registers is recursively split into smaller
clusters, producing a clock tree.

Top-down clustering for a prescribed clock skew schedule is described in
[66] (see Chapter 11). Each register within the layout is described using a triple
(x, y,wt), where x and y describe the position of the register, t is the clock arrival
time, and w is the weight parameter characterizing the importance of the clock
signal. During the tree topological synthesis process, the registers are recursively

4.3 Clock tree synthesis 141

clustered based on the location and arrival times. Clustering with a smaller w

produces trees which prioritize the location over the arrival time, while a larger
w minimizes the difference in arrival times within the clusters.

4.3.2 Clock tree embedding

The abstract clock tree topology T = (VB∪V,EB) described in the previous section
specifies the interconnections among the clock generators, buffers, and registers.
The exact position and wiring are determined during the embedding stage. Early
efforts on clock tree synthesis were based solely on minimizing the amount of
metal resources utilizing such techniques as minimum spanning trees and Steiner
minimum trees [376]. With the increase in clock frequency, however, clock skew has
became the primary performance limitation. After development of the H-tree [236],
considerable research effort has been devoted to zero skew clock tree synthesis.
This problem is significantly more restrictive than producing a clock network that
satisfies the upper bound (4.3), and lower bound (4.7), on clock skew. Later works
which describe clock tree synthesis permit a bounded clock skew [378] or utilize
useful skew [328]. Clock trees for a prescribed clock skew schedule have also been
explored [66, 375], such as described in Chapter 11.

4.3.3 Method of means and medians

One of the earliest works on asymmetric zero skew clock trees is described in [376],
where the difference in the distance from the clock source is reduced by the method
of means and medians. In each set of points, {(x1, y1), . . . , (xn, yn)},∈ S, the clock
signal is routed from the clock source towards the center of mass (xc, yc) of the
registers within the cluster,

xc =
∑n

i=1

xi

, (4.85)

yc =
∑n

i=1

yi

. (4.86)

The set of points is split into two subsets based on the location, and the clock
distribution network is extended to the center of mass of each subset. This process
is repeated until the individual nets are connected to the clock tree, as illustrated in
Fig. 4.24. With this technique, clock skew is reduced to below 200 ps, at the time
constituting approximately 20% of the typical clock period (at frequency of about
one gigahertz).

142 4 Synchronization in VLSI

a)

b)

c)

Fig. 4.24 Clock tree synthesis using method of means and medians [376]. a) Eight registers are
split into two equal sets based on the x-coordinate. b) Each set is further divided into a pair of
smaller sets. c) Final clock tree.

4.3 Clock tree synthesis 143

a

b
trra

trrbmsu

ta,u
tb,u

a)

a

b

c

d

trru

msw

trrv
u

v

tu,w

tv,w

b)

Fig. 4.25 Deferred merge embedding for clock tree synthesis. a) Tilted rectangular regions (TRR)
for two registers. The signal routed from a merging segment has an equal delay to both of the cells.
b) The segments are merged in subsequent stages based on TRR until the root buffer is reached.

4.3.4 Deferred merge embedding

Further reductions in skew have been achieved by applying the deferred merge
embedding (DME) algorithm that has become the standard approach for producing
zero skew clock trees [329]. In the original formulation of DME, the propagation
delay of an interconnect is assumed directly proportional to the length [329]. With
this assumption, the goal of DME is to produce a clock tree that equalizes the
length of the wire from the clock source to each of the clock sinks. The registers
are processed in a bottom-up order, starting with the registers at the lowest level
of a tree. Assuming the interconnects follow a Manhattan geometry and the delay is
proportional to the wire length, a tilted square region around each register exists. All
points on the boundary of this region are equally delayed from the register. Points
located at the intersection of two regions produce a merging segment – a diagonal
line whose points have the same delay from each register. Consider merging segment
msu between registers a and b, as illustrated in Fig. 4.25a. Delays ta,u and tb,u from
the merging segment to the respective registers are equal, i.e., ta,u = tb,u.

During early iterations of DME, a set M1 = {m1
1, . . . , m

2n
1 } of 2n merging

segments is produced from 4n registers. Similar to registers, for each distance d, a
tilted rectangular region exists around each merging segment. During a subsequent
iteration, a set of n new merging segments M2 = {m1

2, . . . , m
n
2} is produced from

2n previous merging segments, as illustrated in Fig. 4.25b. This process repeats
until a binary tree of merging segments is produced. During the second part of
the algorithm, the exact locations are determined in a top-down order. The merging
points of each merging segment are selected to ensure the minimum total wirelength,
thereby producing a clock tree.

144 4 Synchronization in VLSI

4.3.5 Elmore delay

The DME methodology produces a tree whose leaves are located equidistantly
from the root. The propagation delay from the clock source to the registers is
however not likely to be precisely equal due to the relative inaccuracy of the
delay model. Furthermore, the original DME formulation does not consider buffers
within the clock tree. An accurate estimate of the propagation delay is therefore
required to lower clock skew uncertainty. Advanced delay models of buffered
trees, such as the Penfield-Rubinstein model [379] or Sakurai model [380], require
significant computational resources. Furthermore, achieving perfect accuracy is
practically impossible due to a wide range of factors, such as environmental and
process parameters variations [381], electromagnetic interference [382], signaling
and power noise [383–385], and interaction with repeaters [386]. A commonly
accepted tradeoff between the accuracy of the delay within a buffered clock tree
is exemplified by the Elmore delay model [153].The Elmore delay from an internal
node u to a descendant node v is [373, 377, 387]

tu,v =
∑

e∈u�v

re(
ce

2
+ Cv), (4.87)

where Cv is the total capacitance of the subtree rooted at node v, recursively defined
as

Cv =

⎧
⎪⎨

⎪⎩

CLv , if v is the leaf node (4.88a)

cv +
∑

(v,w)∈EB

cv,w + Cw, if v is the internal node, (4.88b)

and re and ce denote, respectively, the interconnect resistance and interconnect
capacitance of edge e. A generalization of DME to buffered RC trees based on the
Elmore delay model [153] is proposed in [377, 387]. A more accurate delay model
based on π interconnect model is used in [374, 388], achieving further reductions
in clock skew and wirelength.

4.3.6 Bounded skew tree

Producing zero skew requires additional interconnect for balancing the path lengths.
The zero skew requirement is however excessively strict since only two fundamental
constraints, namely, (4.7) and (4.3) need to be satisfied. A bounded skew tree
(BST) is proposed in [389, 390], where a zero skew constraint is replaced with a
global nonzero skew constraint smax . Due to the range of available clock skews, the
merging segments produced during the zero skew routing process are transformed
into octilinear merging regions. Consider merging region mru between registers

4.3 Clock tree synthesis 145

a

bmru

b,ua,u

a)

a

b

c

d

mru

mrw

mrv

b,u max

u,w v,w

b)

Fig. 4.26 Merging regions during bounded skew tree synthesis. a) Merging region mru due to two
registers. tu,a and tu,b, denote the propagation delay of a clock signal from mru to the respective
register. tu,a and tu,b differ by no more than smax . b) Regions are merged in subsequent stages,
minimizing the interconnect length while maintaining the skew below smax .

a and b, as illustrated in Figs. 4.26a and 4.26b. The propagation delay from the
merging region mru to registers a and b differs by no more than smax , and the length
of interconnect connecting a, b, and mru is minimized in a Manhattan geometry,

ta,u − tb,u ≤ smax. (4.89)

The octilinear regions offer additional flexibility in clock tree construction, enabling
a significant reduction in wirelength. In [391], the bounded skew is expressed as
upper and lower bounds on the length of the interconnect connecting a register with
the clock source. Notably, the total wirelength produced by these bounded skew
tree algorithms approaches the total wirelength of a Steiner minimal tree as the
skew bound increases [390]. Practical considerations for bounded skew clock tree
synthesis are discussed in [378], including unequal propagation speed of a signal on
a different layer and obstacles within the layout. Further improvements in bounded
skew clock tree synthesis are reported in [392], where dynamic programming is
applied to find the optimal merging point within the merging regions.

4.3.7 Useful skew tree

The primary limitation of the BST algorithm is the use of a global bound on
clock skew. Within a sequential circuit, however, the PR of each data path is
typically different. The global skew bound used in BST algorithms is effectively
an intersection of all PR within a system [328], excessively restricting the layout of
the clock tree. The DME methodology has been extended to produce a clock tree
which exploits useful clock skew. The earliest work on producing layouts utilizing
useful skew is presented in [370]. Negative clock skew [393] is imposed on certain

146 4 Synchronization in VLSI

data path by adjusting the length of the interconnects and sizing the buffers and logic
gates. Up to a 22% reduction in power is achieved, primarily due to downsizing the
logic gates enabled by negative clock skew.

The UST algorithm produces a tree operating with a feasible clock skew sched-
ule. This schedule is, however, likely suboptimal since no clock skew scheduling is
performed during the synthesis process. This limitation is overcome in [375], where
a prescribed clock skew schedule is synthesized. The clock tree topology is chosen
to increase the propagation delay to those registers with the latest clock arrival time.
The delay of the clock signal is controlled by inserting buffers within the clock tree
and by wire snaking. A 60% reduction in wirelength has been reported with 69%
fewer buffers.

A crucial assumption in DME is arbitrary placement of the merging segments. In
certain practical systems, placing the wire intersection within the merging segments
is not feasible due to manufacturing constraints. This limitation is overcome in the
QuCTS algorithm [66], where the intersection of the interconnects is constrained
to a discrete set of points. Similar to [375], a clock skew schedule is first produced
to determine the optimal clock frequency while maximizing robustness. A more
complete description of QuCTS is provided in Chapter 11.

4.4 Summary

Most modern high performance integrated systems are synchronous, employing
a clock signal to synchronize the flow of data within an IC. The clock signal
has the largest fanout and operates at the highest frequency in an IC. Along with
power and ground, the clock signal is distributed using the largest on-chip network.
Sophisticated graph-based methods for the design and analysis of clock distribution
networks have been developed.

Due to the finite propagation speed of a signal within an interconnect, simulta-
neously delivering the clock signal to each gate is a complicated task. Clock skew
therefore exists within each data path. The clock skew imposes timing constraints
on clock signal delivery, such as zero clocking, double clocking, and minimum
clock period, as discussed in Subsection 4.1.1. Timing graphs and constraint graphs
efficiently represent these constraints, enabling powerful graph algorithms, such
as cycle bases or spanning trees, to be used during the clock distribution network
synthesis process.

During the clock skew scheduling process, introduced in Section 4.2, the clock
arrival time of each register is adjusted to ensure the local timing constraints
are satisfied. Different system characteristics can be enhanced with clock skew
scheduling. The robustness of a system with respect to process and environmental
parameter variations (and, therefore, the manufacturing yield) can be improved by
shifting the clock skew towards the center of the permissible range of each local
data path. By exploiting the idle time within each local data path, the system clock
frequency can be increased, thereby enhancing the performance. The non-critical

4.4 Summary 147

paths identified during the scheduling process can be intentionally slowed thereby
reducing power dissipation with no effect on overall system performance.

The schedule of clock arrival times determined with clock skew scheduling is
realized by constricting a buffered clock tree. During the topological clock tree
synthesis process, an abstract structure of the tree is determined, as described in
Section 4.3. Different approaches to constructing an abstract clock tree exist, such
as recursive top-down bipartitioning or bottom-up merging based on location. The
resulting abstract clock tree undergoes the clock tree embedding process, where
the layout of a clock tree is determined. Common clock tree embedding methods
include method of means and medians (MMM) and deferred merge embedding
(DME).

Chapter 5
Circuit analysis

High level design of VLSI systems assumes correct functionality of the underlying
electrical circuits. Digital systems, for example, utilize clearly distinguishable
binary signals. At lower abstraction layers, however, the electrical signals behave
similar to analog signals. The electrical waveforms therefore satisfy stringent
requirements, such as propagation delay, slew rate, and power dissipation, to satisfy
signal integrity requirements. To evaluate these waveforms, circuit level analysis
of VLSI systems is necessary. Due to the significant increase in the speed and
complexity of integrated systems, accurate and computationally efficient circuit
analysis has gained critical importance over the past decades.

Since the establishment of a mathematical structure for circuit theory in 1827
by G. S. Ohm [394], different methods for circuit analysis have been reported in
the literature. A graph theoretic basis for circuit analysis was described in 1847 by
G. R. Kirchhoff [256] by postulating two laws governing the current and voltage
relationship within an arbitrary electrical circuit. By the late 19th century, the theory
of transient and alternating current was developed, incorporating the concepts of
capacitance and inductance into the circuit analysis process [395]. Nonlinear circuit
theory emerged in the early 20th century, driven by the advent of nonlinear devices,
particularly vacuum tubes [396].

Entering the era of integration, the need for accurate analysis of complex systems
motivated the development of circuit simulation tools. Tensor analysis of electrical
circuits, pioneered in 1934 by G. Kron [397], was a crucial precursor of early
circuit simulators. The Transistor Analysis Program (TAP), developed in 1959
[398], is considered the earliest circuit simulation program [399]. Based on TAP,
more advanced simulation tools were developed, including NET1 in 1963 [400] and
SCEPTRE in 1967 [401], capable of handling a wide range of circuits, including
both passive and nonlinear components. Important advancements in numerical
integration, driven primarily by H. Shichman [402, 403], were vital in creating
CIRcuit analysis PACkage (CIRPAC) [403] which exhibited an order of magnitude
speedup as compared to other simulators of the time.

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
R. Bairamkulov, E. G. Friedman, Graphs in VLSI,
https://doi.org/10.1007/978-3-031-11047-4_5

149

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-11047-4_5&domain=pdf

 -2016 61494 a -2016 61494 a

https://doi.org/10.1007/978-3-031-11047-4_5

150 5 Circuit analysis

Fig. 5.1 An example of AC
analysis of a low pass filter
using SLIC [261]. a) Target
circuit, and b) SLIC code.
Resistor R1, inductor L1, and
capacitor C1 are described on
lines 4 to 6. Note the
similarity with SPICE syntax.
The TEMP statement specifies
the operating temperature of
the circuit. The GAIN
statement specifies the output
(03 and 00) and input (01
and 00) ports and the type of
analysis (e.g., AC voltage
transfer function). The range
of frequencies is 0.1 to 100
MHz with ten points per
decade, as specified in the
FREQ statement on line 3.
The input is terminated with
the END statement.

01 02 03R1 L1

C1

+

-

+

-

Vin Vout

a)

1. TEMP 300.0
2. GAIN 01 00 03 00 V/V AC
3. FREQ 10 0.1 100
4. R1 01 02 10.0
5. L1 02 03 200.0E-12
6. C1 03 00 10.0E-12
7. END

b)

The application of sparse matrix analysis to circuit simulation was a crucial
advancement in the Advanced STatistical Analysis Program (ASTAP), developed in
IBM in 1971 [404], significantly reducing memory requirements. Variable time step
integration further improved accuracy and runtime by increasing or reducing the
time resolution if the rate of change in the parameters is, respectively, high or low
[404]. Other notable circuit simulators of the early 1970’s include Computer Analy-
sis of Nonlinear Circuits, Excluding Radiation (CANCER) [260], and Simulator for
Linear Integrated Circuits (SLIC) [261], which utilized advanced linear algebraic
methods for linearization, numerical stability, and accuracy control. An important
feature of CANCER and SLIC was the user friendly input description language
that contributed to the widespread adoption of these tools in both the industrial and
academic communities. An example of a circuit described in the SLIC language is
shown in Fig. 5.1. Note the similarity with current circuit simulation tools. Since an
electrical circuit is fundamentally a graph, only connectivity information is required
to describe a circuit, enabling efficient textual representation of the system.

The popularity of CANCER in the academic community motivated the devel-
opment in 1973 of the open source Simulation Program with Integrated Circuit
Emphasis, commonly known today as SPICE [399]. The second version of SPICE,
released in 1975 [50], became the worldwide standard for circuit simulation. The
success of SPICE2 can be largely attributed to the applicability of the tool to a wide
range of linear and nonlinear circuits. This crucial feature of SPICE2 is achieved
by utilizing modified nodal analysis (MNA), a robust method for numerical circuit
analysis [405].

5.1 Modified nodal analysis 151

5.1 Modified nodal analysis

First presented in 1975 [64], MNA is a versatile method for analyzing linear circuits.
The impedances, current sources, voltage sources, and nonlinear devices within a
circuit are described in matrix form. If the conductance of each wire, voltage of each
voltage source, and current of each current source is known, the potential difference
across each edge (i.e., a circuit element, such as a resistor or current source) can be
determined.

Suppose a circuit is represented by a directed multigraph G = (V ,E), the
direction of the edges is arbitrary chosen, and the edge set is composed of five
subsets,

E = Ev ∪ Ei ∪ Er ∪ Ec ∪ El, (5.1)

each representing, respectively, independent voltage sources, independent current
sources, resistors, capacitors, and inductors. Recall from Subsection 3.4.1 that Yd is
the incidence matrix of a directed graph where an entry is

yn,e =

⎧
⎪⎨

⎪⎩

1, if the positive terminal of element e connected to node n (5.2a)

−1, if the negative terminal of element e connected to node n (5.2b)

0, otherwise. (5.2c)

The elements within the network can be ordered such that

Yd = [Yv Yi Yr Yc Yl

]
, (5.3)

v =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

vv

vi

vr

vc

vl

⎤

⎥
⎥
⎥
⎥
⎥
⎦

, (5.4)

i =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

iv
ii
ir
ic
il

⎤

⎥
⎥
⎥
⎥
⎥
⎦

, (5.5)

where v ∈ R
|E| and i ∈ R

|E| are vectors of, respectively, the voltage across
and current through the corresponding element, and subscripts v, i, r , c, and
l indicate the type of circuit element, respectively, the independent voltage and
current sources, resistors, capacitors, and inductors. The elements of ii ∈ R

|Ei |

152 5 Circuit analysis

represent the current through the independent current sources and are known a
priori. The remaining current and voltage vectors are related via the following
relationships [406],

ir = Gvr , (5.6)

ic = C d

dt
vc, (5.7)

vl = L d

dt
il , (5.8)

where G ∈ R
|Er |×|Er | and C ∈ R

|Ec|×|Ec| are diagonal matrices representing,
respectively, the conductance and capacitance of the respective elements, and L ∈
R

|El |×|El | is the inductance matrix representing the self- and mutual inductance
within a circuit. Note that L is a diagonal matrix if the mutual inductances are
ignored.

The primary equation governing the static analysis of circuits without dependent
sources can be formulated as

[
G Yv

YT
v 0

]

e = Yi ii , (5.9)

where e ∈ R
|V | is the vector of voltage at each node, and G = YgGYT

g is the
conductance matrix of a resistive network.

By constructing and solving (5.9), the steady state voltage at each node can be
determined. Practical VLSI circuits however contain circuit elements that display
transient behavior. These elements include linear primitives, such as capacitors and
inductors, and nonlinear elements, such as transistors and memristors. To model
the behavior of these elements, numerical differentiation is applied. Each transient
element is replaced by an equivalent circuit element called a companion model that
includes resistors and independent sources. For example, the transient current iC(t)

through a capacitor as a function of time t is

iC(t) = C
dvC(t)

dt
, (5.10)

where C is the capacitance and vC is the voltage across the capacitor. Discretization
by the Backward Euler method yields

iC(tk) = C

h
vC(tk) − C

h
vC(tk−1), (5.11)

5.1 Modified nodal analysis 153

where tk−1 and tk are consecutive discrete time instants, and h is the time step. This
expression is equivalent to

iC(tk) = geqvC(tk) + ieq , (5.12)

where geq is the equivalent instantaneous conductance of the capacitor,

geq = C

h
, (5.13)

and ieq is the equivalent current source across the capacitor,

ieq = −C

h
vC(tk−1). (5.14)

During transient analysis, a capacitor is replaced by an equivalent companion model,
as shown in Fig. 5.2a. During each time step, the transient parameters within the
model are adjusted, modeling the instantaneous behavior of the element.

C

v−

v+

ieq =
C

h
vk−1
+ − vk−1

−
)

vk−1
+

vk−1
−

ik

geq =
C

h

a)

b)

Fig. 5.2 Companion models for transient analysis of circuits. a) Capacitor model, and b)
independent voltage source model

154 5 Circuit analysis

In matrix form, the companion models transform (5.9) into

[
A Yv

YT
v 0

]

x +
⎡

⎣
C 0 0
0 L 0
0 0 0

⎤

⎦
d

dt
x =
[
Yi ii
0

]

, (5.15)

or, in a more compact form,

G̃x + C̃ẋ = b (5.16)

where

A =
[

G Yl

−YT
l 0

]

, (5.17)

x =
⎡

⎣
e
il
iv

⎤

⎦ , (5.18)

and C = YcCYT
c is the capacitance matrix [406].

Discretizing (5.15) yields

(

G̃ + 2

h
C̃

)

xk = bk + bk−1 − xk−1
(

G̃ − 2

h
C̃

)

, (5.19)

where k is the iteration number. Equation (5.19) is a system of linear equations.
MNA-based transient analysis therefore requires an iterative solution of a system of
linear matrix equations for each time step.

The primary advantage of MNA is versatility. Any linear circuit can be analyzed
with MNA. To analyze nonlinear devices within a circuit, such as transistors,
memristors, and magnetic tunnel junctions, linearized models are used [407, 408].
These models approximate the device behavior around a specific operating point.
The computational and memory complexity of MNA is however of great concern.
The runtime to solve a linear equation grows superlinearly with the number of
nodes, requiring significant computational time for large systems, as in VLSI
systems [145]. Furthermore, matrices G̃ and C̃ lose the symmetric positive definite
(SPD) property in the presence of independent voltage sources. Efficient algorithms
suited for SPD matrices, such as Cholesky factorization [409] or conjugate gradient
method [410], can therefore no longer be used to solve (5.15), requiring more
expensive algorithms such as LU factorization [411].

To preserve the SPD property, those circuit elements producing the voltage
source and additional nodes within the network can be transformed using a Norton
equivalent circuit to eliminate the voltage source and any associated rows and
columns. An example of a Norton equivalent of an independent voltage source

5.2 Iterative numerical methods 155

connected in series with a resistor is shown in Fig. 5.2b [412]. By eliminating the
independent voltage sources, (5.15) becomes

[
G Yl

−YT
l 0

]

e +
[
C 0
0 L

]
d

dt
e = Yi ii , (5.20)

yielding the SPD matrix
(
G̃ + 2

h
C̃
)

in (5.19) [406].

Despite restoring the SPD property, the analysis of large circuits requires
significant computational resources. Direct linear matrix solvers place excessive
demand on the memory during computations of extremely large networks. Alter-
native methods have been introduced to circumvent the superlinear complexity
of the circuit analysis process. For example, a significant structural similarity
exists between linear electrical circuits and finite element discretization of partial
differential equations (PDE). Methods for accelerated solution of PDEs are therefore
often applicable to the analysis of linear circuits. Many approaches utilize graph
theory to accelerate the analysis process. A variety of techniques for fast circuit
analysis is described in the upcoming sections.

5.2 Iterative numerical methods

Both DC and transient forms of MNA can be represented as a standard system of
linear equations [65],

Ax = b, (5.21)

where x is the vector representing the voltage at each node and the current through
each voltage source within a network, and b is the vector of the current being
injected and the voltage sources. Network models of modern ICs are prohibitively
large, disallowing the use of direct solution methods such as LU factorization or
Cholesky factorization [411]. Iterative solvers, such as the conjugate gradient (CG)
method [410] or generalized minimal residual method (GMRES) [413], should
therefore be used to circumvent this limitation.

Reformulating (5.21) yields

b − Ax = 0. (5.22)

If vector x is replaced by vector x′, (5.21) becomes

b − Ax′ = r, (5.23)

156 5 Circuit analysis

where r is called a residual. Observe that the norm of the residual ||r|| becomes
smaller if x′ is close to x. Iterative linear equation solvers attempt to minimize ||r||
by iteratively adjusting vector x′, thereby closely approximating the exact solution x.

Classic iterative algorithms are stationary methods [414] that represent a system
of equations as

xk = Bxk−1 − c, (5.24)

where xk is the approximation of the solution after the kth iteration, and matrix
B and vector c depend upon the chosen iterative method. Note that matrix B and
vector c remain invariant during the iterative process, hence the methods are called
stationary [415]. Classical stationary methods operate by splitting matrix A into two
matrices [415],

A = M − N. (5.25)

The kth iteration of these methods is

xk = M−1
(
Nxk−1 − b

)
. (5.26)

Common iterative methods suggest different methods for splitting matrix A [416],

M =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

D, Jacobi method (5.27a)

D − E, Forward Gauss-Seidel method (5.27b)

D − F, Backward Gauss-Seidel method (5.27c)

1

ω
D − E, Successive OverRelaxation (SOR) method, (5.27d)

where ω is the relaxation parameter, E and F are, respectively, the strictly lower
and strictly upper triangular parts of A, and D is the diagonal part of A.

Advanced iterative methods are typically not stationary, i.e., the terms of (5.24)
are not maintained constant. The CG method [410] is one of the most common
non-stationary iterative method for solving systems of the form described by (5.21)
when matrix A is symmetric positive definite (SPD). The algorithm is based upon
the observation that the exact solution x minimizes a convex function,

f (x) = 1

2
xT Ax − bT x. (5.28)

The solution of (5.21) is determined by minimizing f (x) via gradient descent [417].
The gradient of function f (x) is

∇f (x) = Ax − b. (5.29)

5.2 Iterative numerical methods 157

The solution is found by iteratively shifting f (x) in the direction of steepest descent,

xk+1 = xk−1 − αk
(
Axk−1 − b

)
, (5.30)

or, alternatively,

xk = xk−1 + αkrk−1, (5.31)

where αk is the step size during iteration k.
A limitation of the CG method is the limited applicability of the algorithm,

since only SPD matrices are considered. Furthermore, the upper bound on the
number of CG iterations before converging is equal to the size of the matrix,
impractical for large systems. A large variety of solvers is proposed that partially
or fully overcome these limitations, including the BIConjugate Gradient (BICG),
BIConjugate Gradient STABilized (BICGSTAB), MINimal RESidual (MINRES),
and Generalized Minimal RESidual methods (GMRES) [418].

Preconditioning is often used to accelerate the convergence of the iterative
methods. During preconditioning, a linear matrix equation is transformed into

Ãx̃ = b̃ (5.32)

where

Ã = M−1
1 AM−1

2 , (5.33)

x̃ = M2x, (5.34)

b̃ = M−1
1 b, (5.35)

and M = M1M2 is a nonsingular matrix called a preconditioner [418]. After
solving (5.32), (5.34) is solved to determine x. Proper choice of the preconditioner
accelerates the convergence of the iterative solvers, ensuring that determining M

and solving (5.32) and (5.34) are more efficient than solving the original system.
The computational cost of producing the preconditioner should however be small
since the difficulty in producing matrix M negates the computational benefits.

Matrix M , described in (5.25), and (5.27a) to (5.27d) can be used as a
preconditioner during the circuit analysis process [416]. Several features make
methods (5.27a) to (5.27d) attractive. Systems involving matrix M are relatively
easy to solve, since M is either diagonal or triangular. Systems produced in practical
VLSI systems are sparse diagonally dominant matrices. The diagonal elements of a
Laplacian matrix of an underlying graph are typically larger than the non-diagonal
elements. The number of nodes of an underlying circuit graph is proportional to the

158 5 Circuit analysis

number of edges, since most nodes are only connected to the immediate neighbors.
Systems composed of sparse diagonally dominant matrices are well suited for
preconditioning using split matrices, significantly accelerating the convergence
process [418].

Other popular preconditioning approaches exist that include incomplete factor-
ization and approximate inverse. Incomplete LU (ILU) factorization, for example,
is based on approximating A ≈ L̃Ũ [416], where L̃ and Ũ are sparse upper and
lower triangular matrices, yielding a preconditioned system,

L̃−1AŨ−1(Ũx) = L̃−1b. (5.36)

Incomplete Cholesky decomposition is a similar procedure restricted to positive
definite matrices where the sparse approximation A ≈ RT R is determined. The
SParse Approximate Inverse (SPAI) [419] preconditioner exhibits performance
superior to incomplete factorization methods [420] when applied to diagonally
dominant problems.

The iterative methods and preconditioners described in this section are con-
sidered general purpose, effectively handling a wide range of problems while
significantly reducing the memory requirements. Superior performance can however
be achieved by applying advanced analysis methods, exploiting special features
of practical circuit graphs, such as sparsity, smoothness, and graph partitioning.
The upcoming subsections describe enhancements to MNA-based circuit analysis,
including domain decomposition, multigrids, and hierarchical matrices.

5.2.1 Domain decomposition

Due to the superlinear complexity of linear system solvers, the divide-and-conquer
approach [421] can be effective in tackling these problems. Two advantages make
divide-and-conquer algorithms particularly attractive for circuit analysis. If solving
a problem requires O (np) time, where n is the problem size and p > 1,
decomposing the problem into m sequentially solved parts yields a runtime of

O
(

np

mp−1

)
, assuming negligible computational overhead. Due to the superlinear

complexity of linear system solvers, i.e., p > 1, this approach can be effective
in reducing the computational burden. Furthermore, these m parts can be processed
in parallel, further reducing the runtime.

Domain decomposition (DD) is one of the most successful divide-and-conquer
strategies for circuit analysis. The main principle of the DD technique is partitioning
a circuit graph G = (V ,E) into multiple subgraphs Gi = (Vi, Ei), i ∈ {1, . . . , m}
and a subgraph of interface nodes G0 = (V0, E0). An illustrative example is
shown in Fig. 5.3. Observe that the interface nodes do not belong to any subgraph,
and no node belongs to more than one partition. Note that this limitation not
only prohibits conduction between the subgraphs, but also forbids capacitive and

5.2 Iterative numerical methods 159

Fig. 5.3 Domain
decomposition process within
a grid. a) A large mesh is
divided into m = pq

subdomains {�1, . . . , �pq }
(gray nodes) and interfaces
(black nodes). b)
Connectivity within domain i

is described by matrix Ai ,
while connections with the
interface are described in Ei

and Fi . A� encodes the
connectivity within the
interface. The dimensions of
A� are typically smaller than
the dimensions of Ai .

1 2

p++1 p+2

p

2p

q(p 1)+2 pqq(p 1)+1

a)

A1 0

0 A2 0

0

Apq00

E2

E1

Epq

AFpqF2F1

b)

160 5 Circuit analysis

inductive coupling between subdomains. The standard linear equation of (5.21) can
therefore be represented as an “arrowhead matrix” [422],

⎡

⎢
⎢
⎢
⎢
⎢
⎣

A1 0 . . . 0 E1

0 A2 . . . 0 E2
...

...
. . .

...
...

0 0 . . . Am Em

F1 F2 . . . Fm A0

⎤

⎥
⎥
⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎢
⎢
⎣

x1

x2
...

xm

x0

⎤

⎥
⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎢
⎣

b1

b2
...

bm

b0

⎤

⎥
⎥
⎥
⎥
⎥
⎦

, (5.37)

where Ai represents the connectivity within subgraph Gi , Ei and Fi represent the
connectivity between Gi and interface G0, A0 represents the connectivity among
the interface nodes, xi denotes the unknown voltages and currents within Gi , and bi

is the vector of current and voltage sources connected to Gi . Equation (5.37) can be
split into two parts,

Ax + Ex0 = b, (5.38)

Fx + A0x0 = b0, (5.39)

where A is a block diagonal matrix produced from subgraph matrices Ai , and F , E,
x, and b are produced by concatenating Fi , Ei , xi , and bi . Solving (5.38) for x and
substituting into (5.39) yields

x = A−1(b − Ex0), (5.40)

(A0 − FA−1E)x0 = b0 − FA−1b. (5.41)

To solve (5.41), P = A−1E and q = A−1b are determined. Due to the block
diagonal structure of A, these equations can be decomposed into m independent
equations,

Pi = A−1
i Ei, (5.42)

and

qi = A−1
i bi . (5.43)

Matrix P and vector q are substituted into (5.41), yielding

(A0 − FP)x0 = b0 − Fq. (5.44)

5.2 Iterative numerical methods 161

Since the size of the interface set |V0| is typically much smaller than the size of any
subgraph |Vi |, (5.44) requires relatively small computational resources. Equation
(5.40) is transformed into

x = q − Px0. (5.45)

Similar to (5.42) and (5.43), (5.45) can be decomposed into m independent systems,

xi = qi − Pix0. (5.46)

Due to the mutual independence of these expressions, (5.42), (5.43), and (5.46) can
be solved in parallel. Furthermore, due to the small dimensions (i.e., relatively few
interface nodes), the total runtime to solve m systems is smaller than the runtime to
solve the original system, yielding additional performance improvement.

One of the earliest applications of domain decomposition in circuit analysis
is discussed in [423]. A DRAM system composed of 130,000 transistors was
successfully analyzed using 27 connected workstations operating in parallel. On-
chip power delivery system analysis using domain decomposition is proposed
in [422]. Domain decomposition combined with direct LU factorization of the
subdomains achieved the maximum performance in case studies, completing a DC
analysis of a ten million node system in 450 seconds.

The major advantage of domain decomposition is parallelization. Increasing
the number of subdomains however increases the size of the interface graph G0,
potentially negating any performance gains. Overlapping domain decomposition
modifies the original non-overlapping technique by allowing partitions to overlap
[424], as illustrated in Fig. 5.4. The combined analysis of overlapping domains is
based on the Schwarz method [425] and is used in [426] to complete the analysis of
a power grid with 192 million nodes in five minutes while utilizing 1,200 processors
operating in parallel.

5.2.2 H-matrix

Another divide-and-conquer approach to circuit analysis is the application of the
hierarchical matrix (H-matrix) technique. Assume the target graph G = (V ,E) is
described by a nodal analysis matrix A. The method commences with hierarchical
clustering of the entries within matrix A, yielding cluster tree T , as illustrated in
Fig. 5.5d. The first step of top-down clustering [427] splits matrix A into multiple
submatrices,

A =
⎡

⎢
⎣

A1,1 . . . A1,m

...
. . .

...

Am,1 . . . Am,m

⎤

⎥
⎦ . (5.47)

162 5 Circuit analysis

1

2

3

m

a)

A1

A2

A3

Am

b)

Fig. 5.4 Overlapping domain decomposition technique. a) Overlapping domains within the mesh.
The black dots represent shared nodes. b) Resulting MNA matrix with overlapping sections
corresponding to shared nodes.

Blocks Ai,j ∈ R
p×q become the children of the root node of cluster tree T . The

diagonal blocks Ai,i , i ∈ {1, . . . , m} are typically full rank matrices, while the off
diagonal blocks are rank deficient. If rank ki,j of block Ai,j is smaller than the
specified threshold kmin, the matrix can be efficiently factorized as the product of
two small matrices,

Ai,j = MNT , (5.48)

where M ∈ R
p×k , N ∈ R

q×k , and k � p, q. Any block within T is split if the size
of the block is greater than the specified minimum size mmin and if the rank of the
matrix is greater than kmin. Otherwise, the block is not split and is stored in factored
form.

The main purpose of an H-matrix is a cluster tree representation of matrix
A. The resulting block matrix is illustrated in Fig. 5.5c. Those leaves stored in
factored form require relatively low processing runtime. These features enable an
efficient approximation of the LU factorization and inverse of matrix A, yielding
significant improvement in runtime and memory. For example, the complexity
of LU factorization is reduced from O

(
n3
)

to O
(
n (log n)2). Partial element

equivalent circuit analysis of a power supply layout is presented in [428], achieving
up to four orders of magnitude speedup and up to a 50 fold reduction in memory
requirements. The compatibility of the H-matrix with finite element analysis

5.2 Iterative numerical methods 163

0

1

2

3

a)

0

1

2

3

1

2

0

1

2

3

b)

0

1

2

3

0

1

2

3

0

1

2

3

0

1

2

3

1

2

0

1

2

3

0

1

2

3

0

1

2

3

0

1

2

3

c)

10 32

root

0

10 32

1

10 32

2

10 32

3

10 32

0

10 32

1

10 32

2

10 32

3

10 32

d)

1

2

0

1 3

0 2

3

1

2

1

2

1

2

1

2

3

1

2

3

1

2

e)

Fig. 5.5 Construction of an H-matrix of a sparse matrix describing a circuit with 256 nodes and
471 edges. The black dots represent the sparsity pattern of the original matrix. a) The original
matrix is divided into four submatrices. b) Submatrices 1 and 2 are significantly rank deficient
and are therefore not divided. Submatrices 0 and 3 are further split into four submatrices. c) H-
matrix after the third iteration. d) Cluster tree T after three iterations. e) Final H-matrix after five
iterations. The densest regions along the diagonal are split until the minimum submatrix size is
achieved.

enables efficient fine grained thermal analysis of a three-dimensional IC with more
than a million discrete points [429].

164 5 Circuit analysis

5.2.3 Multigrid methods

The earliest works on multigrids date back to the 1960’s when R. P. Fedorenko
suggested doubling the mesh spacing to solve the Poisson’s equation [430]. This
approach allowed an approximate solution of a coarse grid to be efficiently
determined. The coarse grid solution is subsequently mapped onto the original grid,
providing a good initial point for solving the original grid. An order of magnitude
reduction in the number of iterations was reported when using a coarser grid [430].
The method, applied in [430], was subsequently formalized in the 1970’s by A.
Brandt [431] and W. Hackbusch [432].

Three cornerstone operations constitute the multigrid method, namely smooth-
ing, restriction, and prolongation. Fundamentally, smoothing is the partial appli-
cation of an iterative solver, as described in Section 5.2. Several iterations of
an iterative solver significantly reduce the residual error, thereby shifting the
approximate solution closer to the exact solution. Consider, for example, a one-
dimensional Poisson’s equation,

f ′′(x) = sin(x), (5.49)

with boundary conditions f (0) = f (1) = 0. The problem is discretized using the
trapezoidal rule,

f (x + h) − 2f (x) + f (x − h)

h2
= sin(x), (5.50)

where h is the discretization step. In matrix form, the equation becomes

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0 0 0 . . . 0 0 0 0
−1 2 −1 0 . . . 0 0 0 0
0 −1 2 −1 . . . 0 0 0 0
...

...
...

...
. . .

...
...

...
...

0 0 0 0 . . . 0 −1 2 −1
0 0 0 0 . . . 0 0 0 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

x =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

sin(0)

sin(h)

sin(2h)
...

sin(1 − h)

sin(1)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (5.51)

The system is solved using the Loose GMRES (LMGRES) method [433]. Con-
vergence of the algorithm is depicted in Fig. 5.6. Observe that any difference
between the adjacent points is quickly reduced, i.e., the high frequency errors are
significantly dampened during each iteration.

Eliminating low frequency errors however requires significantly longer runtime.
To overcome this issue, a restriction step is performed to coarsen the domain of
the system. The frequency of the error is therefore effectively increased, permitting
efficient elimination by smoothing. Formally, restriction of function f : E → F is
function f |A : A → F , where A ⊂ E and f (x) = f |A(x)∀x ∈ A. In the context of
multigrids, this operation is effectively coarsening, reducing the number of points

5.2 Iterative numerical methods 165

Initial guess
Iteration 1
Iteration 20
Final Result

Fig. 5.6 Convergence of Poisson’s equation using LMGRES method. The one-dimensional space
is discretized using 1,001 points. The initial guess is a vector of random numbers. After the first
iteration, the high frequency components of the initial vector are significantly reduced, producing
a smoother curve. To eliminate the remaining low frequency components, additional iterations are
necessary. In this example, the solution is achieved after 62 iterations.

within the grid. Suppose the grid is described as a graph G0 = (V0, E0), and
function v : V → R maps each node to the node voltage. The goal of the coarsening
operation is a reduced version of an initial grid G1 = (V1 ⊂ V0, E1), where the
voltage within the original system v0(n) is equal to the voltage within coarse system
v1(n) at any node n ∈ V1. To recover the original solution from the approximate
coarse solution, a prolongation operation is performed. Using interpolation, the
solution of a coarse grid is mapped onto a fine grid. The resulting vector is typically
a close approximation of a solution requiring few iterations to converge.

A single restriction procedure is often insufficient for significant acceleration.
The restriction process is therefore repeatedly applied to further reduce the size of
the mesh. Multiple prolongation operations are therefore necessary to recover the
original grid. These procedures are formalized in cycles where a system undergoes
a series of restrictions, prolongations, and smoothing. The most common cycles
are V-cycle, W-cycle, and F-cycle [434], as illustrated in Fig. 5.7. These techniques
tradeoff robustness with computational speed. The V-cycle is typically faster than
the other cycle types but may fail to converge to a correct result. In contrast, the
F-cycle requires more operations but is highly robust and accurate.

166 5 Circuit analysis

Fig. 5.7 Multigrid cycles. a) V-cycle, b) W-cycle, and c) F-cycle. ‘S’, ‘R’, and ‘P’ denote,
respectively, the smoothing, restriction, and prolongation operations. At the coarsest level, a system
is typically solved using an exact solver. This operation is denoted by ‘E.’

One of the earliest applications of geometric multigrids to VLSI systems is
described in [435]. A relatively straightforward application of geometric multigrids
in [435] yields a 300 fold improvement in runtime with a peak error of over 20%.
Geometric multigrids are highly suitable for analyzing regular physical layouts,
supporting the efficient analysis of circuits with tens of millions of nodes [436].

The theoretical computational complexity of the geometric multigrid is O(|V |)
[437], an attractive feature in the analysis of large systems. A major limitation
of geometric multigrids is reliance on the structural regularity of the problem
domain. The algebraic multigrid (AMG) is an important generalization of geometric
multigrids where no structural information is required for restriction and prolon-
gation. One of the earliest applications of AMG to circuit analysis is proposed in
[438], where a 16 to 20 fold improvement in runtime is achieved. Another notable
result is PowerRush, an AMG-based DC and transient simulator exhibiting linear
complexity [439, 440]. Up to nine levels of grid reduction are reported in [439],
completing the analysis in 169 seconds after reducing a circuit with 38 million
nodes to 264 nodes. The efficiency of AMG simulation enables large scale circuit
optimization. For example, in [441], decoupling capacitor allocation is performed
using AMG, optimizing circuits with up to a million nodes.

5.3 Non-MNA techniques 167

Restriction, smoothing, and prolongation are highly parallelizable due to the
small number of steps with few dependencies [442]. These features enable GPU-
based geometric multigrid acceleration of the circuit analysis process, achieving up
to two orders of magnitude speedup [442, 443].

5.3 Non-MNA techniques

MNA and associated enhancements enable the efficient analysis of a wide range
of complex circuits. Alternative techniques however exist that avoid MNA-based
equations, often yielding superior performance as compared to MNA-based meth-
ods. Three techniques are presented in this section, namely, scattering parameters,
random walks, and lattice graph analysis.

5.3.1 Scattering parameters

The detailed structure of an IC component is often unknown. This situation
frequently occurs in two cases. If the components of the integrated system are
supplied by a third party vendor, the internal structure of the components is treated
as intellectual property (IP) and is typically not described or is purposely obfuscated
[444, 445]. The structure of a component can also be highly complex, complicating
the construction of a distributed model [75]. A scattering parameter (S parameter)
model is often utilized in these cases, characterizing the frequency response of
a circuit to input stimuli without revealing the internal structure (a black box).
Examples of an S parameter model with two and n ports are depicted in Fig. 5.8.
Parameters ak and bk correspond to normalized power waves [446],

ak = 1

2gk

(Vk + IkZk) , (5.52)

bk = 1

2gk

(
Vk − IkZ

∗
k

)
, (5.53)

where Zk is the reference impedance at port k. Z∗
k denotes the complex conjugate

of Zk and

gk = √|�(Zk)|. (5.54)

By measuring the response bm of a circuit at port m in response to a unit power
wave at port k, scattering parameter sk,m is

168 5 Circuit analysis

a1

b 1

Port 1

a2

b 2

Port 2
Two-port
network

b1 = s1,1a1 + s1,2a2
b2 = s2,1a1 + s2,2a2

a)

a1

b 1

Port 1

an

bn

Port n

Multiport
network

⎡
⎢⎣
b1
...
bn

⎤
⎥⎦ =

⎡
⎢⎣
s1,1 . . . s1,n
...

sn,1 . . . sn,n

⎤
⎥⎦

⎡
⎢⎣
a1
...
an

⎤
⎥⎦

b)

Fig. 5.8 Scattering parameter (S parameter) model of a component. a) Two port network, and b)
multiport network. The component is treated as a black box with no knowledge of the internal
structure, as opposed to a grey or white box utilizing, respectively, partial or complete structural
information [447]. By applying stimuli at different ports of the components, the response of the
system at each port is determined. The relationship between an excitation at port i and the response
at port j is described by S parameters.

sk,m = bm

ak

. (5.55)

In a multiport network, scattering parameter matrix S is produced that describes the
relationship among the signals at different ports,

⎡

⎢
⎢
⎢
⎣

b1

b2
...

bn

⎤

⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎣

s1,1 s1,2 . . . s1,n

s2,1 s2,2 . . . s2,n

...
...

. . .
...

sn,1 sn,2 . . . sn,n

⎤

⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎣

a1

a2
...

an

⎤

⎥
⎥
⎥
⎦

. (5.56)

Note that any scattering parameter is a function of frequency. Measurements should
therefore be performed at different frequencies to evaluate the response over the
entire bandwidth of interest.

A major advantage of the S parameter model is the applicability of the model
to an arbitrary system. The S parameter model requires no information describing
the internal structure of the system. Furthermore, based on an S parameter matrix,
other electromagnetic characteristics of a system can be determined [446]. Based
on open circuit impedance (Z) parameters, for example, crucial parameters can be
determined such as the self- and mutual inductances within a network [332].

Z = G−1
0 (I − S)−1 (SZ0 − Z∗

0

)
G0, (5.57)

5.3 Non-MNA techniques 169

where I is the identity matrix,

G0 =

⎡

⎢
⎢
⎢
⎣

g1 0 . . . 0
0 g2 . . . 0
...

...
. . .

...

0 0 . . . gn

⎤

⎥
⎥
⎥
⎦

, (5.58)

and

Z0 =

⎡

⎢
⎢
⎢
⎣

Z1 0 . . . 0
0 Z2 . . . 0
...

...
. . .

...

0 0 . . . Zn

⎤

⎥
⎥
⎥
⎦

. (5.59)

Other parameters widely used during the design of analog circuits, such as Y ,
ABCD, or h parameters [446], can also be derived from the S parameters.

5.3.2 Random walks

A random walk is a stochastic process that describes a succession of steps of an
object within a mathematical space [448]. A classic example of a random walk is a
random walk along a one-dimensional integer axis, as illustrated in Fig. 5.9a. The
particle is initially at position 0 and, every time step, the particle moves in a random
direction. Different types of space and probability distributions of the transitions
in a random walk exist, such as a discrete two-dimensional space, continuous
two-dimensional space with a variable step length (such as Lévy Flight [449]),
or a biased, continuous walk in three-dimensional space (see Figs. 5.9b to 5.9d).
Common issues relating to a random walk include the expected distance of an object
from the source after n steps, probability of a return to the origin after n steps, and
probability of reaching a before reaching b, where a and b are arbitrary points within
the space.

Manifestations of a random walk in physical systems have been studied before
this term was first coined. In 1880, Lord Rayleigh studied the amplitude of
oscillations due to multiple strings vibrating at the same frequency with a random
phase [450]. This problem is analogous to a random walk on a one-dimensional axis.
The erratic movement of dust particles, what will later be called Brownian motion,
was discovered as early as 1784 by the Dutch scientist, J. Ingen-Housz [451]. A
formal study of random walks has been applied to different physical phenomena,
including diffusion in molecular physics [452], genetic drift in genetics [453], and
measuring certain features of the World Wide Web [454, 455].

170 5 Circuit analysis

Fig. 5.9 Examples of a random walk. a) Discrete time one-dimensional random walk on an integer
axis. b) Three unbiased random walks within a two-dimensional integer grid. c) Unbiased random
walk within a continuous two-dimensional space. The direction of the step is uniformly random.
The step size follows a Cauchy distribution. This type of random walk is commonly referred
to as Lévy Flight [449]. d) Biased random walk within a three-dimensional integer space. The
probability of a transition toward +∞ is greater than the probability of a transition toward −∞
along the x, y, and z axes.

One of the most extensively studied spaces of a random walk is a graph, where
a particle moves towards the neighboring vertex at each time step. The probability
of moving from vertex a toward vertex b is proportional to the weight of the edge
(a, b). The analogy between a random walk and an electrical network was studied
by C. St. J. A. Nash-Williams in [456]. The random walk equivalent of the effective
resistance between a and b is the commute time between nodes a and b, i.e., the
expected number of steps in a random walk starting at a, visiting b, and returning
to a (see Fig. 5.10). The conductance of a resistor is equivalent to the weight of
an edge within a network. The probability of a transition along a specific edge is
proportional to the weight of that edge. A particle moving in a random walk is
therefore less likely to transition along a high resistance edge (or path).

The analogy between electrical circuits and random walks can be exploited in
the analysis of electrical circuits. Different simulation tools based on random walks
have been explored in the literature. By performing a random walk experiment

5.3 Non-MNA techniques 171

a b

1 A

1 4

2

12 2 2

a)

a b
1 1/4

1/2

11/2 1/2 1/
2

b)

Fig. 5.10 Effective resistance between arbitrary nodes a and b is equivalent to the expected
number of steps for a random walk to visit node b while starting and returning to node a, a)
electrical circuit, and b) equivalent graph. The probability of transitioning towards a neighboring
node is proportional to the conductance of the corresponding edge.

multiple times, the average number of steps converges towards the commute time
which corresponds to the effective resistance. The earliest application of a random
walk to linear circuit analysis is described in [70]. A major advantage highlighted
in [70] is the linear relationship between circuit size and computational complexity.
Different circuit simulation tools have been described in the literature, achieving
a significant speedup as compared to conventional circuit analyses [70, 457–459].
Another aspect is the locality of the random walk. If the target nodes are located
close to each other within a network, the random walk is more likely to terminate
while exploring only a small portion of the network. This result is highly desirable
when studying system perturbations, since only the affected portion of the system is
analyzed. This advantage is exploited in [460] in the analysis of incremental changes
in power grids.

A major issue pertaining to random walk-based simulation tools is the number
of random walk experiments required to achieve a sufficiently small error. The error
ε of a random walk is inversely proportional to the square root of the number of
experiments M ,

ε ∝ 1√
M

. (5.60)

To reduce the error by 50%, the number of experiments should be increased four
fold. To overcome this issues, the ’importance sampling’ technique is introduced
in [461], significantly improving the speed of convergence. Another challenge of
random walk-based tools is the possibility of excessively long walks, negating any
computational speedup [70]. This issue can be eliminated by limiting the length of
the random walk. The accuracy of the solution is however degraded by limiting the
length.

Random walks are found in a wide variety of VLSI applications. A sensitivity
analysis of VLSI power networks [462], for example, is a notable application, where
the critical parameters affecting a power grid are evaluated. Matrix preconditioning
based on random walks is described in [463], significantly accelerating the circuit

172 5 Circuit analysis

analysis process. Other notable applications of random walks in VLSI include
modeling of thermal behavior [464], decoupling capacitor placement [465], and
electromigration analysis [466].

5.3.3 Lattice graph

Due to the large scale of VLSI systems, the physical structures are often highly
regular, composed of millions to billions of identical elements distributed within
a system. The on-chip power grid is a prominent example of a regular structure
composed of two or more layers of identical interconnects. An example of a power
grid is shown in Fig. 5.11a. Grids are highly reliable due to the many redundant
paths. The number of paths connecting two corners of a grid is [467]

(
x + y

x

)

= (x + y)!
x!y! , (5.61)

where x and y are, respectively, the horizontal and vertical dimensions of a grid. The
number of paths in (5.61) grows superlinearly with x and y, yielding a high degree
of redundancy even in relatively small grids. The failure of a single or multiple
wire segments can be tolerated since the remaining wires provide the necessary
connections. Additional benefits of a grid include shielding and decoupling that
reduce parasitic capacitive and inductive coupling in global clock and data lines
[468]. A grid structured power network can be modeled as a two-dimensional
resistive lattice, as shown in Fig. 5.11b [469]. Depending upon the metal pitch and
die size, the dimensions of a grid can vary from hundreds to tens of thousands of
segments [72]. The large dimensions enable the use of infinite mesh methods for
analyzing grid structured power networks.

Multidimensional mesh structures assuming infinite mesh dimensions have been
extensively studied in the literature. In 1936, W. H. McCrea studied the following
problem [470],

“In a rectangular lattice, at every time instant a point P moves from one lattice point to
one of the neighboring points. Each adjacent point has equal probability of being selected.
Determine the probability that the particular boundary point is ultimately reached.”

Variations of this problem on different two- and three-dimensional lattices were
solved by W. H. McCrea and F. J. W. Whipple in 1940 [471], where different finite
and infinite rectangular lattices are analyzed. A notable result is an expression for
the average flow of particles between the source and target points within an infinite
two-dimensional lattice,

G(x, y) = 2

π

∫ π

0

1 − cos(λy) exp(−μ|x|)
sinh(μ)

dλ, (5.62)

5.3 Non-MNA techniques 173

a) b)

Fig. 5.11 On-chip power grid. a) Layout of power (dark grey) and ground (light grey) distribution
networks, and b) power distribution network modeled as a resistive lattice.

where cos(λ)+ cosh(μ) = 2, and x and y denote the number of resistors separating
the source and target points in, respectively, the horizontal and vertical direction.

The link between random walk and circuit theory was not widely recognized in
the 1940’s. An electrical formulation of the problem solved by W. H. McCrea and
F. J. W. Whipple in [471] is

Determine the effective resistance between two arbitrary points (x0, y0) and (x, y) within
a two dimensional grid of resistors with resistance r (see Fig. 5.11b)

An easier problem of determining the effective resistance between adjacent
nodes in an infinite resistive lattice was solved in 1949 [472] based on the principles
of symmetry and superposition. Suppose current 4i is injected at an arbitrary node
a, as illustrated in Fig. 5.12a. Due to symmetry, the current through each of the
four adjacent branches is i. Now withdraw current 4i from neighboring node b.
The current though each adjacent branch is also i, as shown in Fig. 5.12b. By
superimposing these solutions, the current through a resistor connecting a and b

is 2i, as illustrated in Fig. 5.12c. The effective resistance is found by equating the
voltage drop across resistor ab with the voltage drop across the effective resistance
of the grid,

4iReff = 2ir, (5.63)

yielding

Reff = r

2
. (5.64)

174 5 Circuit analysis

4i

i

i
i

i
a b

a)

i

i
i

i

4i

a b

b)

4i

2ia b

c)

Fig. 5.12 Superposition applied to determine the effective resistance between adjacent nodes a

and b in an infinite two-dimensional resistive lattice. a) Current 4i is injected into node a. Due to
symmetry, the current through each adjacent resistor is i, flowing away from node a. b) Current
4i is drawn from node b. Due to symmetry, the current through each adjacent resistor is i, flowing
towards node b. c) Superposition of current injection and withdrawal. The current through resistor
ab is 2i.

Despite the relative simplicity of the problem for adjacent nodes, the general
problem requires advanced mathematical methods. Different alternative solutions to
the problem of determining the effective resistance within a grid have been presented
in the literature [472] in the context of operational calculus [473], discrete analytic
functions [474], partial differential equations [475–477], random walks [471, 478],
and lattice Green’s function [479]. Notable examples include the expressions by A.
Stöhr [475],

R(x, y) = − 1

2π

∞∫

0

[(

1 − t

ζ

)x+y (

1 − t

ζ 3

)x−y

(1 − ζ t)−x+y
(

1 − ζ 3t
)−x−y

]
dt

t
, (5.65)

ζ = e
2πi

8 , (5.66)

and

R(x, y) = − 1

π

π∫

0

[
λ − √

λ2 − 1
]y

cos xθ
√

λ2 − 1
dθ, (5.67)

λ = 2 − cos θ, (5.68)

F. Spitzer [478],

R(x, y) = 1

8π2

π∫

−π

π∫

−π

1 − cos (xα + yβ)

1 − 1
2 (cos α + cos β)

dα dβ, (5.69)

5.3 Non-MNA techniques 175

B. van der Pol [473],

R(x, y) = 1

2π

∞∫

0

[

1 −
(

t + i

t − i

)x+y (
t − 1

t + 1

)|x−y|]
dt

t
, (5.70)

and W. H. McCrea and F. J. W. Whipple [471], later rediscovered by G. Venezian
[476] and J. Cserti [479],

R(x, y) = 1

π

π∫

0

1 − e−xμ cos yλ

sinh μ
dβ, (5.71)

cosh μ + cos λ = 2. (5.72)

Expressions (5.65) to (5.71) describe uniform resistive lattices. Many practical
VLSI grids are anisotropic, i.e., the resistance along the horizontal dimension is
not the same as the resistance along the vertical dimension. An expression for the
resistance within an infinite anisotropic resistive grid is presented in [469],

R(x, y, k) = kr

π

∫ π

0

2 − e−|x|α cos yβ

sinh α
dβ, (5.73)

where k is the ratio of the horizontal resistance to the vertical resistance, and

k + 1 = k cos β + cosh α. (5.74)

This result has significant value for the analysis of power grids. To determine the
equivalent resistance within an M × N grid using MNA, a solution of the linear
equation of size MN × MN is necessary, requiring prohibitive computational time.
In contrast, the effective resistance between two nodes within a grid can be found
in constant time, assuming these nodes are sufficiently far from the grid boundaries.
A linear complexity, IR voltage drop analysis algorithm is introduced in [480].
The contribution of the voltage sources and current loads to IR voltage drops is
evaluated separately based on the effective resistance computed in constant time.
The solutions are superimposed to determine the total IR voltage drop within a
circuit. The solution is further accelerated by observing that the IR voltage drop
contribution of distant voltage sources and loads is negligible. By restricting the
analysis to the vicinity of a node, the runtime can be drastically reduced while
maintaining the error below 0.5%.

176 5 Circuit analysis

5.4 Summary

Due to the stringent performance requirements of modern VLSI systems, the
demand for accurate circuit analysis has drastically increased over the past decades.
The immense complexity of modern VLSI systems however makes standard circuit
analysis based on MNA impractical. A wide range of algorithms have been proposed
to reduce the runtime of the circuit analysis process while maintaining sufficient
accuracy. The most prominent techniques are described in this chapter.

Domain decomposition methods split a circuit into multiple independent
domains, thereby reducing the computational complexity and enabling paral-
lelization. In the H-matrix representation, the sparsity of practical matrices is
exploited to produce a cluster tree, enabling efficient algorithms with less memory
requirements and lower computational complexity. Using multigrid techniques, a
solution is initially approximated using a coarse version of the system. The solution
is subsequently determined after interpolation and smoothing operations.

Alternative circuit analysis techniques attempt to accelerate the circuit analysis
process by avoiding costly MNA-based analysis. A complex or obfuscated circuit
can be represented by a multiport network model, efficiently described by S

parameters. In random walk-based methods, the voltage within a grid is determined
statistically, yielding linear computational complexity at a fixed accuracy. The
infinite lattice model can often be used to analyze large grids, often encountered
in on-chip power distribution systems.

Common circuit analysis methods are discussed in this chapter. These methods
enhance traditional MNA processes or follow alternative approaches. Despite
the immense potential, few of these techniques are used in mainstream circuit
analysis methodologies. Further research is required to improve the versatility and
performance of the advanced circuit analysis techniques discussed in this chapter.
For example, a significant limitation of infinite lattice analysis is poor accuracy
near the boundaries of the grid. This limitation is overcome by applying the
image method [71] and infinity mirror technique [72], described, respectively, in
Chapters 6 and 7.

Chapter 6
Effective resistance of truncated infinite
mesh structures

A mesh structure is an important topology for modeling a variety of physical and
mathematical phenomena. The structure consists of regularly placed nodes within a
multidimensional space and connected with resistors to adjacent nodes. Despite the
theoretical nature of an infinite mesh structure, a variety of practical examples exist,
where the size and regularity support the assumption of an infinite grid. For example,
the resistance of a large uniform conducting sheet can be modeled as a resistive grid
[65, 145, 476], enabling the use of an infinite resistive grid to model, for example,
substrate noise [72, 481]. A mesh structure is prevalent in modern integrated circuits,
particularly in power and ground distribution networks [381] and clock distribution
networks [66]. The power and ground delivery networks typically consist of layered
perpendicular metal interconnects [72, 232]. A typical on-chip delivery network
structure is shown in Fig.6.1a. During the analysis process, power supply and ground
networks are typically analyzed separately [75], as shown in Fig.6.1b. The resulting
grid can be modeled as a resistive mesh, as shown in Fig.6.1c.

Analysis of power delivery noise in power grids is an important problem in
VLSI systems. Conventional nodal analysis tools typically exhibit superlinear
computational complexity, resulting in significant simulation time. An alternative
approach for the analysis of power delivery grid circuits is proposed in [480].
To simplify the analysis, the resistive mesh is reduced to an equivalent effective
resistance where the grid is assumed to be infinitely large. The primary benefit of
this approach is significantly lower complexity, independent of grid size. The main
drawback, however, is higher error in proximity of the grid boundaries due to the
assumption of an infinite grid.

This chapter aims to bridge this gap. The effective resistance of a large resistive
grid near the edges and corners is modeled as a truncated infinite mesh. In this
chapter, the infinite mesh truncated along a single dimension is called a half-plane
mesh (Fig. 6.2a), while an infinite mesh truncated along two orthogonal dimensions
is called a quarter-plane mesh (Fig. 6.2b).

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
R. Bairamkulov, E. G. Friedman, Graphs in VLSI,
https://doi.org/10.1007/978-3-031-11047-4_6

177

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-11047-4_6&domain=pdf

 -2016 61494 a -2016 61494
a

https://doi.org/10.1007/978-3-031-11047-4_6

178 6 Effective resistance of truncated infinite mesh structures

a) b) c)

Fig. 6.1 Two layer power and ground network mesh modeling process. a) Original view of two-
layer mesh. The light and dark gray segments are connected to, respectively, power and ground.
b) A simplified model with the ground mesh removed. c) Equivalent resistive mesh of the power
network.

a) b) c)

Fig. 6.2 Portions of two-dimensional infinite resistive structures. a) Portion of fully infinite mesh
near the origin. b) Portion of half-plane mesh near the edge. c) Portion of quarter-plane mesh near
the corner.

By utilizing the image and superposition methods, exact integral and approx-
imate closed-form expressions for half- and quarter-plane meshes are presented.
A brief historical review of the infinite resistive mesh analysis is presented in
Section 6.1. The electric potential in an infinite mesh is studied in Section 6.2. The
image method for electric circuits and a derivation of the exact integral equations are
described in Section 6.3, followed by a derivation of the closed-form expressions in
Section 6.4. The accuracy of the results is discussed in Section 6.5. The findings are
summarized in Section 6.6.

6.1 Historical perspective

Determining the effective resistance between two nodes of an infinite resistive mesh,
also known as a Liebman mesh [482], is a classical problem. The objective is to
determine an effective two-port resistance given a two-dimensional network with
identical resistors between adjacent nodes, as shown in Figs. 6.2a and 6.2b.

6.2 Electric potential in an infinite mesh 179

The problem has been studied from a variety of perspectives. An intuitive
solution for determining the effective resistance between adjacent nodes within a
mesh is described in [482, 483], where superposition of the current sources and
symmetry are used to determine the voltage between adjacent nodes. The first
general solution for this problem was published in 1940 [471], where the probability
of reaching a specific node within a lattice during a random walk is determined, a
process closely related to finding the effective resistance within a grid [484]. A
solution, specific to electrical circuits, was published in 1950 [473], where a two-
dimensional elliptic wave partial differential equation is applied to an infinite lattice.
Several later works have been published describing alternative methods to solve this
problem, including Fourier Transform [476, 477], Green’s function [479] and graph
theory [485].

Several extensions and variations of solutions to this problem have been pub-
lished. In [477, 479], the problem is solved for a multi-dimensional grid, and
triangular and hexagonal infinite lattices. Regular and semi-regular polyhedric
structures as well as multi-dimensional cubes are described in [486], and an infinite
cylindrical grid is considered in [487]. More practical considerations are included
in [469], where a solution for an infinite grid with unequal horizontal and vertical
resistances is provided.

Despite the problem being well studied, little attention has been devoted to the
effects of truncations on the effective resistance. One version for determining the
effective resistance in an infinite mesh is provided in [485],

Reff (x, y) = 1

πi

∫ π

0

1 − ex cos−1(2−cos(α)) cos(yα)
√

1 − (2 − cos(α))2
dα. (6.1)

The accuracy of (6.1) is compared with numerical analysis of a large resistive
mesh. The relative error of the effective resistance near the edges and corners is
shown, respectively, in Figs. 6.3 and 6.4. Due to the assumptions of symmetry and
regularity, the effective resistance is more accurately evaluated near the center of
the grid, where the effect of the boundaries is less significant. Near the edges and
corners, however, the error of (6.1) can reach 40%, limiting the applicability of the
integral expression.

6.2 Electric potential in an infinite mesh

The solution proposed in this chapter is based on modifying the methods described
in [469, 485]. An alternative Green’s function-based approach is presented in
Appendix A. Consider a fully infinite anisotropic resistive mesh. Let the horizontal
and vertical resistances be, respectively, rx = r and ry = kr . Assign coordinates
to each node, inject current I into node (x0, y0), and let the current exit at a node
infinitely far from the injection node. Denote the potential at node (x, y) due to

180 6 Effective resistance of truncated infinite mesh structures

0 25 50
-50

-40

-30

-20

-10

0

10

20

30

40

50

15

20

25

25

30

30

35

35

40

40

a)
0 25 50

-50

-40

-30

-20

-10

0

10

20

30

40

50

1

1

2

2

5

5
10

10

15

15

20

20
b)

0 25 50
-50

-40

-30

-20

-10

0

10

20

30

40

50

1

2

2

5

5

10

10

15

15

20

20

c)

Fig. 6.3 Relative error (in per cent) of the effective resistance expression of an infinite grid (6.1)
[485] within the proximity of the grid edge. The actual resistance is determined using a nodal
analysis between node (x0, 0) and node (x, y) for a) x0 = 0, b) x0 = 10, and c) x0 = 25. The grid
dimensions are 101 × 201. The point (x0, 0) is indicated by the ×-mark.

0 25 50
0

10

20

30

40

50

35

40

45

45

47.5

47
.5

50

50

a)
0 25 50

0

10

20

30

40

50

1

5

10

10

15

15

25

25

b)
0 25 50

0

10

20

30

40

50

0.1

20

10

10

5

5

5

5

10

1
1

c)

Fig. 6.4 Relative error (in per cent) of the effective resistance expression of an infinite grid (6.1)
[485] within the proximity of the grid corner. The actual resistance is determined using a nodal
analysis between node (x0, y0) and node (x, y) for a) x0 = y0 = 0, b) x0 = y0 = 10, and c)
x0 = y0 = 25. The grid dimensions are 101 × 101. The point (x0, y0) is indicated by the ×-mark.

current I injected at (x0, y0) as φx0,y0(x, y). Three important properties of this
potential exist. First, if the current source is moved by distance (a, b), the potential
distribution across the grid is also moved by the same distance,

φx0,y0(x, y) = φx0+a,y0+b(x + a, y + b). (6.2)

6.2 Electric potential in an infinite mesh 181

Fig. 6.5 Current injection into an infinite resistive mesh

Another important property is symmetry, i.e., the current source and probe coordi-
nates can be swapped,

φx0,y0(x, y) = φx0,y(x, y0) = φx,y(x0, y0) = φx,y(x0, y0). (6.3)

From these properties, note that

φx0,y0(x, y) = φ−x0,y0(−x, y) = φ−x0,−y0(−x,−y) = φx0,−y0(x,−y). (6.4)

To evaluate the effective resistance Reff between nodes (x0, y0) and (x, y), the
two current sources can be superimposed, as shown in Fig. 6.5. Knowing the voltage
drop between these nodes allows the effective resistance to be determined,

R∞ = Vx0,y0 − Vx,y

I
, (6.5)

where Vx0,y0 and Vx,y are the voltage, respectively, at (x0, y0) and (x, y). Vx0,y0 and
Vx,y , in turn, can be expressed as the superposition of the potentials due to multiple
current sources,

Vx0,y0 = φx0,y0(x0, y0) − φx,y(x0, y0), (6.6)

Vx,y = φx0,y0(x, y) − φx,y(x, y). (6.7)

182 6 Effective resistance of truncated infinite mesh structures

Based on (6.2) to (6.7), the resistance between two arbitrary nodes is

R∞ = 2
(
φ(0, 0) − φ(x − x0, y − y0)

)

I
, (6.8)

where, for brevity, φ(x, y) = φ0,0(x, y).

6.3 Electric potential within a truncated infinite mesh

The solution proposed in this chapter is based on modeling the mesh truncation
using image current sources. The image theorem is a powerful technique widely
used in electrostatics to determine the effects of surfaces on an electric field
distribution. A similar technique can be utilized to determine the electric potential
due to the current source near the mesh truncation. The validity of the image method
for a truncated mesh is established in Appendix B using the uniqueness theorem. In
Subsection 6.3.1, the potentials of a fully infinite grid determined in Section 6.2 are
superimposed to model the behavior of a truncated grid. In Subsection 6.3.2, the
integral expression for the effective resistance in a half-plane and quarter-plane grid
is presented.

6.3.1 Modeling truncation with image

Consider the case where an infinite grid of resistors is truncated at x = 0, removing
all of the nodes with negative coordinates, as shown in Fig. 6.2. The assumption of
symmetry along the x-axis becomes invalid, making the solutions reported in [471]
to [479] inapplicable for a truncated mesh.

To circumvent this limitation, truncation can be replaced with another topology
modification which satisfies the boundary conditions, (B.1) and (B.2). The truncated
mesh structures are modeled as a fully infinite mesh with boundary conditions. The
condition for the half-place mesh is

φ(0, y) − φ(−1, y) = 0, (6.9)

i.e., the current flowing through the grid edge is zero. Similarly, a quarter-plane
mesh is modeled as a fully infinite mesh with the following boundary conditions,

φ(0, y) − φ(−1, y) = 0, (6.10)

φ(x, 0) − φ(x,−1) = 0. (6.11)

6.3 Electric potential within a truncated infinite mesh 183

Fig. 6.6 Image method to model truncation in a half-plane mesh. The dashed line illustrates
the boundary between the real and image half-planes. Two image sources are introduced in the
negative-x plane to model the effect of truncation, ensuring zero effective current across the
boundary.

The image technique accomplishes this task. In the following subsections,
expressions for the effective resistance in terms of potentials are derived.

6.3.1.1 Half-plane mesh

Consider the circuit topology shown in Fig. 6.6 with ground placed infinitely
distant. The positive-x side of the grid remains the same as the truncated grid. The
symmetric negative-x side, however, maintains zero voltage between nodes (0, y)

and (−1, y), thereby modeling the effect of the grid edge by satisfying the boundary
condition (6.9).

A derivation of the effective resistance starts with (6.5). To model the truncation,
two image current sources are introduced, as shown in Fig. 6.6. Unlike a fully
infinite mesh, the voltage at nodes (x0, y0) and (x, y) within a half-plane mesh is
the sum of the potential due to four current sources,

Vx0,y0 = φx0,y0(x0, y0) − φx,y(x0, y0) + φ−x0−1,y0(x0, y0) − φ−x−1,y(x0, y0),

(6.12)

Vx,y = φx0,y0(x, y) − φx,y(x, y) + φ−x0−1,y0(x, y) − φ−x−1,y(x, y). (6.13)

184 6 Effective resistance of truncated infinite mesh structures

Simplifying (6.2) to (6.4),

Vx0,y0 = φ(0, 0)−φ(x−x0, y−y0)+φ(2x0+1, 0)−φ(x+x0+1, y−y0), (6.14)

Vx,y = φ(x−x0, y−y0)−φ(0, 0)+φ(x+x0+1, y−y0)−φ(2x+1, 0). (6.15)

Combining (6.14) and (6.15) with (6.5) yields

Rhalf I = 2φ(0, 0) − 2φ(x − x0, y − y0) + φ(2x0 + 1, 0) − 2φ(x + x0 + 1, y − y0) + φ(2x + 1, 0).

(6.16)

6.3.1.2 Quarter-plane mesh

Consider the case shown in Fig. 6.2, where an infinite mesh is truncated along the
x- and y-axes. Similar to the half-plane case, this topology can be modeled by
introducing six image current sources, as shown in Fig. 6.7, thereby satisfying the
boundary conditions in (6.10)-(6.11). The resulting voltages at (x0, y0) and (x, y)

are the sum of the potentials due to eight current sources, which, after simplification,
yields

Vx0,y0 = φ(0, 0) + φ(2x0 + 1, 0) + φ(0, 2y0 + 1) + φ(2x0 + 1, 2y0 + 1)−
φ(x − x0, y − y0) − φ(x + x0 + 1, y − y0) − φ(x − x0, y + y0 + 1) − φ(x + x0 + 1, y + y0 + 1),

(6.17)

Vx,y = φ(x − x0, y − y0) + φ(x + x0 + 1, y − y0) + φ(x − x0, y + y0 + 1)+
φ(x + x0 + 1, y + y0 + 1) − φ(0, 0) − φ(2x + 1, 0) − φ(0, 2y + 1) − φ(2x + 1, 2y + 1).

(6.18)

The effective resistance is, therefore,

Rqt.I = 2φ(0, 0) + φ(2x0 + 1, 0) + φ(0, 2y0 + 1) + φ(2x0 + 1, 2y0 + 1)+
φ(2x + 1, 0) + φ(0, 2y + 1) + φ(2x + 1, 2y + 1) − 2φ(x − x0, y − y0)−

2φ(x + x0 + 1, y − y0) − 2φ(x − x0, y + y0 + 1) − 2φ(x + x0 + 1, y + y0 + 1).

(6.19)

Expressions (6.16) and (6.19) describe, respectively, the effective resistance in a
half-plane mesh and a quarter plane mesh. By adding the electric potentials at certain
nodes due to the current injected at (0, 0), the effective resistance can be determined.
Derivation of the electric potential is presented in the upcoming subsection.

6.3 Electric potential within a truncated infinite mesh 185

Fig. 6.7 Image method to model truncation in a quarter-plane mesh. The dashed lines illustrate
the boundary between the real and image portions of the circuit. Six image sources are introduced
in three quadrants of an infinite plane to model the effect of the truncations, ensuring zero effective
current across the boundaries.

6.3.2 Integral expressions for effective resistance

The integral expression for the effective resistance in an anisotropic infinite grid is
determined in [469, 477] and is

R∞ = kr

π

∫ π

0

1 − e−|x−x0|α cos(|y − y0|β)

sinh(α)
dβ, (6.20)

where

α = cosh−1(1 + k − k cos(β)). (6.21)

�k(x, y) is defined as

186 6 Effective resistance of truncated infinite mesh structures

�k ≡ k

2π

∫ π

0

1 − e−|x|α cos(yβ)

sinh(α)
dβ. (6.22)

The potential within an infinite grid (6.8) is described as

φ(x − x0, y − y0) = φ(0, 0) − rI�k(x − x0, y − y0). (6.23)

Expression (6.16), therefore, reduces to

Rhalf
r

=2�k(x−x0, y−y0)+2�k(x+x0+1, y−y0)−�k(2x0+1, 0)−�k(2x+1, 0).

(6.24)

Note that due to symmetry along the y-axis, the effective resistance of a half-plane
mesh depends upon (y − y0) and not on y and y0 separately. In contrast, both x and
x0 are necessary due to the symmetry broken by the truncation.

The exact value of (6.24) for the special case of x0 = 0, k = 1 is listed
in Table 6.1. Note that due to truncation, the effective resistance in the x and y

directions is not equal, with the resistance along the y-axis increasing at a higher
rate. A similar trend is observed for x0 > 0. The effective resistance is evaluated
using (6.24) for x0 = {0, 5, 10}, x ∈ [0, 25], y ∈ [−25, 25], and k = 1. The results
are shown in Fig. 6.8. Note that the effective resistance to those nodes near the edge
of the mesh is higher. Intuitively, this behavior can be explained by the more difficult
access to the points along the edges. While the nodes located along the x-axis (x, 0)

receive current from all four sides, the nodes located along the y-axis (0, y) are
more difficult to reach due to there being only three sides.

Table 6.1 Exact normalized resistance between (0, y0) and (x, y) in a half-plane resistive grid
with y ∈ [−3, 3], x ∈ [0, 3], and rh = ry = r . The numerical values are within the square
brackets.

|y − y0|
x 0 1 2 3

0 0
[0.000]

8
π − 2
[0.546]

856
3π − 90
[0.824]

128224
15π − 2720
[0.998]

1
2
π

[0.637]

18
π − 5
[0.730]

998
3π − 105
[0.891]

131854
15π − 2797
[1.029]

2 1
[1.000]

56
3π − 5
[0.942]

952
3π − 100
[1.010]

130208
15π − 2762
[1.100]

3 4− 26
3π

[1.241]

86
3π − 8
[1.125]

4766
15π − 100
[1.138]

43514
5π − 2769
[1.187]

6.3 Electric potential within a truncated infinite mesh 187

0 0.5 1 1.5 2 2.5 3 3.5

0 5 10 15 20 25
-25

-20

-15

-10

-5

0

5

10

15

20

25
2.2

2.2 2.1

2.1

2

2

1.9

1.9

1.9

1.8

1.8

1.8

1.
7

1.7

1.6

1.6

1.
5

1.4

1.3

1.2

1

a)
0 5 10 15 20 25

-25

-20

-15

-10

-5

0

5

10

15

20

25

1.8
1.9

1.
9 1.8

1.7

1.7

1.6

1.6

1.4

1.5

1.51.4

1.4

1.
3

1.3

1.2

1

0.7

b)
0 5 10 15 20 25

-25

-20

-15

-10

-5

0

5

10

15

20

25

1.8

1.
8

1.7

1.7

1.6

1.6

1.5

1.5

1.4

1.4

1.3

1.3

1.2

1.2

1

0.7

c)

Fig. 6.8 Effective resistance of a half-plane mesh with k = 1 between (x0, 0) and (x, y) for
x ∈ [0, 25] and y ∈ [−25, 25]. a) x0 = 0, b) x0 = 5, and c) x0 = 10

For the quarter-plane mesh, combining (6.22) with (6.19) yields

Rqt.
r

= 2�k(x−x0, y−y0) + 2�k(x+x0+1, y−y0)+2�k(x−x0, y+y0+1)+
2�k(x+x0+1, y+y0+1)−�k(2x0+1, 0) − �k(0, 2y0+1)

−�k(2x0+1, 2y0+1)−�k(2x+1, 0) − �k(0, 2y+1) − �k(2x+1, 2y+1).

(6.25)

Note that due to the broken symmetry in both the x and y directions, the coordinates
of both (x0, y0) and (x, y) are necessary to determine the effective resistance.

A numerical evaluation of (6.25) for k = 1 is shown in Fig. 6.9. As compared
to the edges, the effective resistance increases more rapidly near the corner. This
trend can be explained using the same intuition: the corner node can be accessed
from only two sides unlike the other nodes, which can be accessed from three or
four sides. Less current can therefore flow through the node at the same voltage,
resulting in a higher effective resistance.

188 6 Effective resistance of truncated infinite mesh structures

0 0.5 1 1.5 2 2.5 3 3.5

0 10 20 30 40 50
0

10

20

30

40

50

3.5

3

3.
25

3.5

3.
5

3.25

3

1.5

3.25

3

2.75

2.5

2.252

a)
0 10 20 30 40 50

0

10

20

30

40

50

1.75

2.25
2.

25

2

2

2

1.
75

1

1.75

1.5

1.
5

1.
25

1.25

b)
0 10 20 30 40 50

0

10

20

30

40

50

1.5

1

1

1.25

1.25

1.
5

1.5

2

1.5

1.75

2

1.
75

1.75

2

c)

Fig. 6.9 Effective resistance of a quarter-plane mesh with k = 1 between (x0, y0) and (x, y) for
x ∈ [0, 50] and y ∈ [−50, 50]. a) x0 = y0 = 0, b) x0 = y0 = 10, and c) x0 = y0 = 25

6.4 Closed-form approximation

The exact resistance for a half- and quarter-plane mesh is determined from,
respectively, (6.24) and (6.25). For practical purposes, however, an approximate,
computationally efficient expression is desirable. A closed-form expression for the
integral solution is therefore presented in this section. The derivation is performed in
two steps. First, the integral expression for the potential at an arbitrary node within a
grid is approximated. The total resistance of a truncated grid is next evaluated using
an approximate potential expression.

The derivation of a closed-form expression for the effective resistance is per-
formed in two steps adapted from [476]. First, the integral expression �k(x, y) is
decomposed as

�k(x, y) = J1 + J2 + J3, (6.26)

where

J1 =
√

k

2π
�
[
E1

(
π
(
x
√

k + iy
))

+ ln
(
π
(
x
√

k + iy
))

+ γ
]
, (6.27)

J2 = k

2π

∫ π

0

(
e−xβ

√
k

β
√

k
− e−xα

sinh (α)

)

cos(yβ)dβ, (6.28)

J3 = k

2π

∫ π

0

(
1

sinh(α)
− 1

β
√

k

)

dβ, (6.29)

6.4 Closed-form approximation 189

E1(z) =
∫ ∞

z

e−t

t
dt, (6.30)

and γ ≈ 0.5772 is the Euler–Mascheroni constant. The first integral J1 can be
determined numerically using the exponential integral function E1(z), available in
most popular engineering packages, including SciPy [488] and MATLAB [489]. For
large values of x and y, the integral J1 reduces to

J1 ≈
√

k

4π

[
ln
(
x2 + ky2

)
+ 2 ln (π) + 2γ

]
. (6.31)

To analyze the second integral, note that for small β, sinh(α) ≈ β and, for large
values of β, the numerator of the integral vanishes for large β with values x and y

above 10. This term is, therefore, neglected in the closed-form expression.
The third integral is a function of a single variable k and is approximated as a

fourth degree polynomial,

J3 ≈
4∑

i=0

aik
i, (6.32)

where the coefficients of the expression are listed in Table 6.2. The final closed-form
expression for �k(x, y) is, therefore,

�∗
k(x, y) =

√
k

4π

[
ln
(
x2 + ky2

)
+ 2 ln (π) + 2γ

]
+

4∑

i=0

aik
i . (6.33)

With a closed-form expression for �(x, y), the effective resistance of a half-
plane resistive mesh is

Rhalf
r

≈ 2�∗
k(x − x0, y − y0) + 2�∗

k(x + x0 + 1, y − y0) − �∗
k(2x0 + 1, 0)

− �∗
k(2x + 1, 0). (6.34)

Table 6.2 Coefficients for
the polynomial
approximation of J3 (6.32).

i 1 ≤ k ≤ 5 5 ≤ k ≤ 50

0 4.748 × 10−2 2.559 × 10−2

1 −5.989 × 10−2 −3.356 × 10−2

2 8.153 × 10−4 −1.078 × 10−2

3 −1.274 × 10−5 2.260 × 10−3

4 9.092 × 10−8 −1.669 × 10−4

190 6 Effective resistance of truncated infinite mesh structures

Similarly, for the quarter-plane mesh,

Rqt.
r

≈ 2�∗
k(x−x0, y−y0) + 2�∗

k(x+x0+1, y−y0) + 2�∗
k(x − x0, y+y0+1)+

2�∗
k(x+x0 + 1, y+y0+1) − �∗

k(2x0+1, 0) − �∗
k(0, 2y0+1)

−�∗
k(2x0+1, 2y0+1) − �∗

k(2x + 1, 0) − �∗
k(0, 2y + 1) − �∗

k(2x + 1, 2y + 1).

(6.35)

6.5 Model evaluation

The primary contribution of this chapter is the accurate and fast estimation of the
IR drop between nodes located close to a grid edge. To evaluate the applicability
of the model, in Subsection 6.5.1, the accuracy of the exact expressions (6.24) and
(6.25), closed-form expressions (6.34) and (6.35), and nodal analysis is compared.
In Subsection 6.5.2, the computational speed of the model is examined.

6.5.1 Accuracy evaluation

The relationship between the relative error and the position of the probed nodes is
shown in Figs. 6.10 and 6.11. Note that a larger error is produced when the resistance
is evaluated between nearby nodes and with nodes along the y-axis. A peak error of
4.77% is produced when the resistance is evaluated between the adjacent nodes. For
a large distance between (x0, 0) and (x, y), the relative error approaches zero.

Note from Fig. 6.3 that a large error is induced if the expression for a fully infinite
grid is used to estimate the voltage drop near the edge of a finite mesh. A drastic
increase in accuracy is observed when using (6.24) or (6.34). The error of (6.24)
and (6.34) as compared to the resistance evaluated through a nodal analysis on a
101 × 201 mesh is shown in Fig. 6.12. As compared to (6.1), the error in (6.24)
and (6.34) is below 3% along the edge. A considerably larger error is produced by
(6.34) as compared to (6.24) when one of the nodes is at the grid edge and another
node is in close proximity. In addition, the error is significantly increased when the
effective resistance is evaluated using closed-form expression (6.34) between nodes
within close proximity. Note that the closed-form expression is derived with the
assumption of large separation between the target nodes, which leads to larger error.
In other cases, the accuracy of (6.24) and (6.34) is approximately equal. Likewise, a
significant increase in accuracy is achieved with (6.25) or (6.35), as is evident from
Fig. 6.13. Near the corner and edges, the error is below 2%.

6.5 Model evaluation 191

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

0 10 20
X

-25

-20

-15

-10

-5

0

5

10

15

20

25

Y

a)

0 10 20
X

-25

-20

-15

-10

-5

0

5

10

15

20

25

Y

b)

0 10 20
X

-25

-20

-15

-10

-5

0

5

10

15

20

25

Y
c)

Fig. 6.10 Relative error (in per cent) of (6.34) as compared to (6.24) with respect to x and y for
k = 1 and a) x0 = 0,b) x0 = 5, and c) x0 = 10.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

0 5 10 15 20 25
X

0

5

10

15

20

25

Y

a)

0 5 10 15 20 25
X

0

5

10

15

20

25

Y

b)

0 5 10 15 20 25
X

0

5

10

15

20

25

Y

c)

Fig. 6.11 Relative error (in per cent) of (6.35) as compared to (6.25) with respect to x and y for
k = 1 and a) x0 = y0 = 0,b) x0 = y0 = 5, and c) x0 = y0 = 10.

6.5.2 Computational speed

The speedup of the analysis and simulation process is an important contribution of
this chapter. Recall from Chapter 5 that the conventional method for determining the
effective resistance is modified nodal analysis, where a linear system of equations is
analyzed [65, 490],

192 6 Effective resistance of truncated infinite mesh structures

0.5

0.5 0.5
0.5

0.50.50.5

1

1 1

111

2 2

222

0 20 40
X

-50

-40

-30

-20

-10

0

10

20

30

40

50
Y

0.
5

0.5

0.5
0.5

1 1

11

1

1
1

1
1

1

2

2

2

2
2

2

2
2

2

5

5

0 20 40
X

-50

-40

-30

-20

-10

0

10

20

30

40

50

Y
0.5

0.5

0.5
0.5

0.5

0.5
0.5

0.5

1

1

1

11

1
1

1

1

1
1

2
2

2

2
2

2

2

2

2

2
5

5

0 20 40
X

-50

-40

-30

-20

-10

0

10

20

30

40

50

Y

0.01
0.01

0.1
0.1

0.10.1

0.5 0.5
0.5

0.50.5

1 1
1

111

2 2

222

0 20 40
X

-50

-40

-30

-20

-10

0

10

20

30

40

50

Y

a)

0.5

0.5

1

1

1

1

2

22

2

2
2

2
2

2

5

5

0 20 40
X

-50

-40

-30

-20

-10

0

10

20

30

40

50

Y

b)

0.5
0.5

0.5

0.5

0.5

0.5

1

1

1

1
1

1

1

2
2

2
2

2

2
2

25

5

0 20 40
X

-50

-40

-30

-20

-10

0

10

20

30

40

50

Y

c)

Fig. 6.12 Relative error (in per cent) of (6.24) (top row) and (6.34) (bottom row) as compared
to the resistance determined using a nodal analysis between node (x0, 0) and node (x, y) for a)
x0 = 0, b) x0 = 10, and c) x0 = 25. The grid dimensions are 101 × 201. The point (x0, 0) is
indicated by the ×-mark.

Reff = 1 diag(H)T + diag(H)1T − 2H, (6.36)

where H ∈ R
(MN−1)×(MN−1) is the inverse of the reduced conductance matrix,

1 ∈ R
(MN−1) is the vector with all entries equal to 1, and diag(A) is the diagonal of

matrix A. The advantage of this method is the effective resistance between any pair
of nodes in a circuit is evaluated. If the resistance between only a small subset of

6.5 Model evaluation 193

0.
00
1

0.0
01 0.

01
0.0

1

0.01

0.
1

0.
1

0.1

0.1

0.
2

0.2

0.
3

0.3

0 10 20 30 40 50
X

0

5

10

15

20

25

30

35

40

45

50

Y

0.0
01 0.

00
10.0

1

0.01

0.
01

0.05

0.0
5

0.
05

0.
05

0.1

0.1

0.
1

0.1
5

0.
15

0.15

0.15

0.2

0.2

0.
2

0.25

0.
25

0.3

0.
3

0.5

0.
5

0 10 20 30 40 50
X

0

5

10

15

20

25

30

35

40

45

50

Y

0.0
02

0.
00
2

0.01

0.0
1

0.
01

0.05

0.05

0.
05

0.1

0.1

0.
1

0.2

0.2

0.
2

0.
2

0.3

0.
3

0.4

4.0

0.5

0.
5

0.6

0.
6

0 10 20 30 40 50
X

0

5

10

15

20

25

30

35

40

45

50

Y

0.1

0.
1

0.
1

0.1

0.1

0.
2

0.2

0.3

0.
3

0 10 20 30 40 50
X

0

5

10

15

20

25

30

35

40

45

50

Y

a)

0.5

0.
5

0.40.3

0.
3

0.4

0.4

0.2

0.
2

0.1

0.
1

0.05

0.
05

0 10 20 30 40 50
X

0

5

10

15

20

25

30

35

40

45

50
Y

b)

0.6

0.6

0.
6

0.5

0.
5

0.4

0.
4

0.2

0.
2

0.
3

0.3
0.1

0.
1

0.05

0.
05

0 10 20 30 40 50
X

0

5

10

15

20

25

30

35

40

45

50

Y
c)

Fig. 6.13 Relative error (in per cent) of (6.25) (top row) and (6.35) (bottom row) as compared
to the resistance determined using a nodal analysis between node (x0, y0) and node (x, y) for a)
x0 = y0 = 0, b) x0 = y0 = 10, and c) x0 = y0 = 25. The grid dimensions are 101 × 101. The
point (x0, y0) is indicated by the ×-mark.

nodes is needed, however, this approach is highly inefficient. Assuming the pitch of
the top metal layer is 2 μm for a 45 nm technology node [491], the grid size of the
power delivery network in a 4 cm2 die size is on the order of 104 × 104. The nodal
analysis of this matrix requires the solution of a 108 × 108 linear system, resulting
in significant analysis time. The computational time tnodal required to determine
the effective resistance in a nonuniform grid using nodal analysis is therefore a
superlinear function of the dimensions of the grid,

tnodal = t1(MN)c, (6.37)

where M and N are dimensions of the grid, t1 is a proportionality constant, and c

is the degree of the solver complexity, typically larger than one. Importantly, the
method allows the effective resistance between all pairs of nodes to be determined.

In contrast, the method proposed in this chapter does not require solving a system
of linear expressions. The time required to determine the effective resistance using
the proposed method does not depend on the grid dimensions. The method proposed
here has constant complexity where the total computational time timage is

timage = t2n, (6.38)

194 6 Effective resistance of truncated infinite mesh structures

Table 6.3 Computational speedup for determining the effective resistance between a pair of nodes
in an M × N grid.

Speedup (exact) Speedup (closed-form)

Grid Size tnodal Rhalf Rqrt Rhalf Rqrt

102 × 102 1.252 ms 1.375 0.296 11.47 8.888

103 × 102 9.646 ms 11.51 1.936 227.3 80.12

103 × 103 60.32 ms 53.83 5.739 1278 712.6

104 × 103 462.4 ms 536.2 43.61 9062 5621

104 × 104 10.85 s 7216 517.0 232148 135018

where n is the number of target node pairs for which the effective resistance is
required, and t2 is the time required to compute the effective resistance for a single
pair of nodes using (6.24), (6.25), (6.34), or (6.35). The proposed approach is
justified, therefore, when the subset of nodes of interest is sufficiently smaller than
the total grid size.

A comparison of the computational speed is provided in Table 6.3. The algo-
rithms are implemented in Python using the Numpy and Scipy packages [488]
on an eight core 3.40 GHz Intel Core i7-6700 machine with 24 GB RAM. The
nodal analysis has been performed using the Scipy sparse matrix solver [488]. Note
the rapid increase in speedup with grid size. For the exact integral equations, the
speedup reaches three to four orders of magnitude in a 104 × 104 grid. Larger
speedup is achieved with the closed-form expressions, exhibiting six orders of
magnitude improvement in computational time in a 104 × 104 grid. Simulation of
grids larger than 104 × 104 is not possible using the Scipy sparse matrix solver due
to limited memory.

6.6 Conclusions

Image and superposition methods are utilized to investigate truncated infinite
anisotropic mesh structures. Exact integral and closed-form expressions for the
effective resistance are presented. A closed-form expression offers a computation-
ally efficient method for evaluating the effective resistance, which can be beneficial
in several VLSI circuit applications such as resistive noise analysis, placement of
decoupling capacitors, and substrate noise models. Significant speedup is achieved
using the proposed expressions, reaching six orders of magnitude with the closed-
form expressions. The proposed framework can be utilized in a variety of VLSI
oriented applications, including circuit optimization, analysis, and synthesis.

Chapter 7
Effective resistance of finite grids

A rectangular mesh is a common structure in science and engineering. In engi-
neering, a rectangular mesh is used to model on-chip power and ground networks
and silicon substrates, as well as electrically and thermally conductive media.
Applications specific to very large scale integration (VLSI) circuits include digital
logic, memory, and power and ground distribution networks [467]. In modern VLSI
systems, large grid sizes are common. Conventional numerical analysis techniques
to solve a large system of linear equations result in prohibitive computational time.

The effective resistance is an important characteristic of these grid structures.
Applications include static power and ground network analysis [480, 492], power
network synthesis [65, 145], decoupling capacitor allocation [493–495], RC delay
optimization [386, 490], electrically and thermally conductive media [481, 496], and
certain graph characteristics, such as coverage and commute times [497]. From the
perspective of circuit analysis, the effective resistance can be utilized to significantly
reduce the computational complexity of the grid analysis process [480].

The effective resistance of an infinite resistive lattice is a classical problem in
circuit theory [498]. The objective is to determine an equivalent resistance between
two arbitrary points within an infinite two-dimensional grid of resistors. The
effective resistance between two adjacent points within a two-dimensional isotropic
mesh has been determined using symmetry and superposition [482]. In the case
of non-adjacent nodes, however, more advanced methods are required. At least six
different solutions have been developed since 1940 for this problem, random walk
theory [471], elliptic integrals [473], Fourier transforms [476, 477, 485] and Green’s
function [479]. The problem has been extended to a variety of infinite structures,
such as hypercubes [477, 479, 484], triangles [477, 479], hexagons [477, 479], tori
and cylinders [487], and anisotropic rectangular lattices [469].

Expressions describing an infinite grid exhibit good agreement with nodal
analysis if the effective resistance is measured between nodes located far from the
boundary of the grid. Prohibitively large error can however be produced when the
resistance is measured between nodes located close to the grid boundaries [71].

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
R. Bairamkulov, E. G. Friedman, Graphs in VLSI,
https://doi.org/10.1007/978-3-031-11047-4_7

195

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-11047-4_7&domain=pdf

 -2016 61494 a -2016 61494 a

https://doi.org/10.1007/978-3-031-11047-4_7

196 7 Effective resistance of finite grids

a) b) c)

Fig. 7.1 Effective resistance and relative error of a 25 × 51 isotropic grid between node (0, 0)

and (x, y). a) Evaluation using nodal analysis, b) evaluation using the half-plane mesh equation
[71], and c) error (in per cent) of (b) relative to (a).

Despite the well studied nature of this problem, less attention has been devoted to
the analysis of truncated and finite rectangular grids.

Different finite regular structures have been investigated in the literature, includ-
ing generalized linear chains [499] and circulant graphs [500]. Truncation along
one and two dimensions has been analyzed in previous work using the circuit-level
image technique [71]. While the expressions described in [71] are in good agreement
with nodal analysis if the resistance is within close proximity of a single boundary or
corner, these expressions become inaccurate if the resistance is measured between
terminals located at opposite boundaries and corners. The double-sum expressions
for the effective resistance in the various grid structures have previously been
described in [501]. The computational complexity of these expressions, however,
increases linearly with the number of nodes. In this chapter, the infinity mirror
technique extends the image method to finite structures. With this technique, the
effective resistance is determined with high accuracy in a finite rectangular grid
of arbitrary size with potential extension to cubic and hypercubic topologies. The
computational complexity of the proposed expressions does not depend on the grid
size and number of nodes.

To illustrate the relevance of the infinity mirror technique, consider a 25 × 51
uniform resistive grid. The effective resistance is determined between the node on
the left boundary and all other nodes using nodal analysis (Fig. 7.1a) and the half-
plane mesh equation (Fig. 7.1b) [71]. The relative error is shown in Fig. 7.1c. While
the error is low close to the left boundary, the error may exceed 15% if the half-plane
equation is used to evaluate the resistance at the opposite boundary of the grid.

7.1 Infinity mirror technique 197

This chapter is organized as follows. In Section 7.1, the infinity mirror technique
is reviewed, which extends the image method described in [71] to finite structures.
The effective resistance in grids with finite dimensions is also presented. In Sec-
tion 7.2, these expressions are modified to enhance the efficiency while maintaining
accuracy below 1%. Application of the infinity mirror technique to practical
problems is presented in Section 7.3 using three case studies. Computational
speedup of up to five orders of magnitude is demonstrated for certain scenarios.
Summary comments are provided in Section 7.4.

7.1 Infinity mirror technique

The effective resistance between two points within a mesh is determined using
the method adapted from [476]. Consider a two-dimensional resistive mesh, as
illustrated in Fig. 7.2. Pick two nodes, (x0, y0) and (x, y), at a finite distance
between each other with ground infinitely far. Connect the current source injecting
current I into (x0, y0). The resulting potential at (x0, y0) and (x, y) due to the
current source at (x0, y0) is, respectively, φx0,y0(x0, y0) and φx0,y0(x, y). Remove
the current source at (x0, y0) and inject current −I into (x, y). The resulting
potential at (x0, y0) and (x, y) is, respectively, −φx,y(x0, y0) and −φx,y(x, y). The
effective resistance can be determined by superimposing these solutions,

Reff = V (x0, y0) − V (x, y)

I
, (7.1)

(x0, y0)

(x, y)

Fig. 7.2 Infinite two-dimensional grid.

198 7 Effective resistance of finite grids

where V (x0, y0) and V (x, y) are the effective voltage at, respectively, (x0, y0) and
(x, y) due to all current sources within the grid. V (x0, y0) and V (x, y) can be
expressed, respectively, as the superposition of potentials due to each individual
current source,

V (x0, y0) = φx0,y0(x0, y0) − φx,y(x0, y0), (7.2)

V (x, y) = φx0,y0(x, y) − φx,y(x, y). (7.3)

The problem of determining the effective resistance within a grid reduces to finding
the electric potential caused by the injected current. A similar approach is applicable
to truncated grids. As in the case of a fully infinite mesh, the effective resistance
in a truncated mesh structure is determined from (7.1). The voltages, V (x0, y0)

and V (x, y), however, change to consider the effects of the boundaries modeled
as image current sources.

The image method for an infinite grid was introduced in [71] and applied to half-
and quarter-plane mesh structures. The resulting effective resistance expressions
exhibit good agreement with the resistance of a large grid near a boundary or
a corner, where the effects of opposite boundaries can be neglected. If however
the effects of the opposite boundaries are significant; for example, if the effective
resistance is measured between the opposite corners of a finite rectangular mesh,
these expressions are no longer accurate. Efficient methods for determining the
effective resistance in a grid where at least one dimension is finite are presented
in this section. In Subsection 7.1.1, an expression is presented for an infinite strip, a
mesh which is finite in one dimension and unbounded in another dimension (y ∈ Z).
This result is utilized in Subsection 7.1.2 to determine the effective resistance within
a semi-infinite strip, an infinite strip truncated along the infinite dimension (y ∈ N0).
An expression for a finite mesh is presented in Subsection 7.1.3. Generalization of
the method to higher dimensions is provided in Subsection 7.1.4

7.1.1 Infinite strip

Consider the circuit shown in Fig. 7.3a, where a resistive grid is bounded between 0
and (wx − 1) in the x-dimension and is unbounded in the y-dimension. The number
of nodes in a row along the x-dimension is wx and is described here as the width of
the grid. The bounds of the strip obstruct the current from flowing between the node
pairs, {(−1, y), (0, y)} and {(wx − 1, y), (wx, y)}.

To provide a solution for an infinite strip, symmetry needs to be restored.
Following the approach outlined in [71], the current through the {(−1, y), (0, y)}
resistor within an infinite resistive grid can be eliminated by applying the image
of the strip, as shown in Fig. 7.3b. The image current sources produce a symmetric
potential within the strip that equalizes the potential at (−1, y) and (0, y), resulting

7.1 Infinity mirror technique 199

xw xx ww

ww w wxx x x

a) b)

c)

Fig. 7.3 Infinity mirror method applied to an infinite resistive strip of width wx . a) Original
resistive strip, b) first iteration of image method, and c) infinity mirror technique. In each case,
the potential distribution is preserved for 0 ≤ x ≤ wx .

in zero current flowing between the pair of nodes. The width of the strip is therefore
doubled, while maintaining the potential distribution within the strip. By iteratively
repeating the image process for the left and right boundaries, the topology shown
in Fig. 7.3c is produced. Intuitively, the topology is similar to placing an object
between two parallel mirrors, leading to infinite images of the object.

The resulting voltage at (x0, y0) and (x, y) can be described, respectively, as

Vx0,y0 =
∑

i∈Z

(
φi0(0, 0)+φi0(2x0+1, 0)−φi0(x−x0, y−y0)−φi0(x+x0+1, y−y0)

)
,

(7.4)

200 7 Effective resistance of finite grids

Vx,y =
∑

i∈Z

(−φi0(0, 0)−φi0(2x+1, 0)+φi0(x−x0, y−y0)+φi0(x+x0+1, y−y0)
)
,

(7.5)
where φij (x, y) ≡ φ(x + 2iwx, y + 2jwy). The effective resistance is determined
from the difference between the voltage at (x0, y0) and (x, y),

Rwx,∞I =
∑

i∈Z

(
2φi0(0, 0) + φi0(2x0 + 1, 0) + φi0(2x + 1, 0)

−2φi0(x − x0, y − y0) − 2φi0(x + x0 + 1, y − y0)
)
. (7.6)

From the effective resistance of a fully infinite mesh [71],

Rwx,∞
r

=
∑

i∈Z

(
2�k

i0(x − x0, y − y0) + 2�k
i0(x + x0 + 1, y − y0)

−2�k
i0(0, 0) − �k

i0(2x0 + 1, 0) − �k
i0(2x + 1, 0), (7.7)

where r and kr are the resistance of a single resistor in, respectively, the x- and
y-dimensions, and

�k
ij ≡ �k(x + 2iwx, y + 2jwy) (7.8)

�k(x, y) ≡ k

2π

∫ π

0

1 − e−|x|α cos
(
yβ
)

sinh(α)
dβ, (7.9)

α = cosh−1(1 + k − k cos(β)). (7.10)

The contour of (7.7) is shown in Fig. 7.4. Note that the effective resistance
increases close to the boundaries of the strip, similar to the half- and quarter-plane
meshes [71] due to the limited accessibility of the nodes near the boundaries. This
behavior is consistent with the Monotonicity Law where the effective resistance
increases with the removal of branches [484, 502]. Also note that the effective
resistance evaluated from the middle of the strip (x0 = wx−1

2 for wx = 2n + 1, n ∈
N0) is symmetric with respect to x = x0 and y = y0 (see Fig. 7.4c).

7.1.2 Semi-infinite strip

Consider the case where the infinite strip is truncated, bounding the strip between
0 and infinity along the y-dimension (see Fig. 7.5a). The effective resistance in this
case is determined by applying an image of the infinite strip along x = 0, as shown
in Fig. 7.5b.

7.1 Infinity mirror technique 201

a) b) c)

Fig. 7.4 Effective resistance of an infinite strip of width wx = 25 between point (x0, y0) and
(x, y) for k = 1, a) x0 = y0 = 0, b) x0 = y0 = 5, and c) x0 = y0 = 12. The point (x0, y0) is
indicated by an ×.

Rwx,∞/2

r
=
∑

n∈Z

(
2�k

i0(x − x0, y − y0) + 2�k
i0(x + x0 + 1, y + y0 + 1)

+2�k
i0(x − x0, y + y0 + 1) + 2�k

i0(x + x0 + 1, y − y0) − 2�k
i0(0, 0)

−�k
i0(2x0 + 1, 0) − �k

i0(2x + 1, 0) − �k
i0(0, 2y0 + 1)

−�k
i0(0, 2y + 1) − �k

i0(2x0 + 1, 2y0 + 1) − �k
i0(2x + 1, 2y + 1)

)
. (7.11)

A contour of (7.11) is shown in Fig. 7.6. As compared to Fig. 7.4, the effective
resistance increases at a higher rate, particularly in the x-direction due to the
truncation at y = 0. Note that the effective resistance evaluated at the middle of
the semi-infinite strip is symmetric along the x-dimension, similar to the infinite
strip.

7.1.3 Finite mesh

Consider the case where a semi-infinite strip is truncated at y = wy −1, resulting in
a wx × wy finite mesh. The effective resistance can be determined by applying the
infinity mirror technique in two dimensions, as shown in Fig. 7.7. This topology can
be modeled using the infinite mirror technique twice, along the x- and y-directions,

202 7 Effective resistance of finite grids

wxwx wx

Fig. 7.5 Infinity mirror technique applied to a semi-infinite resistive strip of width wx . Original
semi-infinite strip is shaded. The potential distribution is preserved for 0 ≤ x ≤ wx and y ∈ N0.

a) b) c)

Fig. 7.6 Effective resistance of a semi-infinite strip of width wx = 25 between point (x0, y0) and
(x, y) for k = 1, a) x0 = y0 = 0, b) x0 = y0 = 5, and c) x0 = y0 = 12. The point (x0, y0) is
indicated by an ×.

7.1 Infinity mirror technique 203

wxwx wx
w
y

w
y

w
y

Fig. 7.7 Infinity mirror technique applied to a finite wx × wy resistive mesh. Original mesh is
shaded. The potential distribution is preserved for 0 ≤ x ≤ wx and 0 ≤ y ≤ wy .

Rwx,wy =
∑

i∈Z

∑

j∈Z

(
2�k

ij (x − x0, y − y0) + 2�k
ij (x − x0, y + y0 + 1)

+2�k
ij (x + x0 + 1, y + y0 + 1) + 2�k

ij (x + x0 + 1, y − y0)

−�k
ij (2x0 + 1, 0) − �k

ij (2x0 + 1, 2y0 + 1) − �k
ij (0, 2y0 + 1))

204 7 Effective resistance of finite grids

a) b) c)

Fig. 7.8 Effective resistance of a finite grid between (x0, y0) and (x, y) within a wx ×wy grid for
k = 1, a) x0 = y0 = 0, wx = wy = 25, b) x0 = 0, y0 = 12, wx = wy = 25, c) x0 = y0 = 12,
wx = wy = 25, d) x0 = y0 = 0, wx = 25, wy = 51, e) x0 = 0, y0 = 12, wx = 25, wy = 51, and
f) x0 = 12, y0 = 25, wx = 25, wy = 51. The point (x0, y0) is indicated with an ×.

−�k
ij (2x + 1, 0) − �k

ij (2x + 1, 2y + 1) − �k
ij (0, 2y + 1) − 2�k

ij (0, 0)
)
.

(7.12)

The resulting resistance in a 25 × 25 and 25 × 51 grid is shown in Fig. 7.8.
Several important features can be observed. Note that in the y-direction, the effective
resistance increases at a higher rate in the 25 × 25 grid (Figs. 7.8a to c) as compared
to the 25 × 51 grid (Figs. 7.8d to f). Also note that a uniform grid exhibits a high
degree of symmetry.

To illustrate the infinity mirror technique on a practical circuit, consider the
extreme case of the 2 × 2 nonuniform resistive network shown in Fig. 7.9. The
effective resistance between nodes (0, 0) and (1, 0) is, by Ohm’s law, 0.833 ohms.
Iteratively evaluating the summands of (7.12) around n = k = 0 efficiently
converges to the actual resistance, as listed in Table 7.1. Note that the summands
of |n|, |k| ≥ 3 do not exceed 0.001, indicating that only a small number of images
around the origin needs to be considered.

7.1 Infinity mirror technique 205

Fig. 7.9 2 × 2 resistive grid.
The resistance is measured
between nodes (0, 0) and
(1, 0)

Table 7.1 Summands of (7.12) for (x0, y0) = (0, 0) and (x, y) = (0, 1) in a 2 × 2 resistive grid.

n

k
-3 -2 -1 0 1 2 3

-3 0.000 0.000 0.000 0.000 0.000 0.000 0.000

-2 0.000 0.000 0.001 0.000 −0.001 −0.001 0.000

-1 0.000 0.000 0.003 0.004 −0.005 −0.001 0.000

0 −0.001 −0.002 −0.013 0.794 0.044 0.005 0.001

1 0.000 0.000 0.003 0.010 −0.009 −0.001 0.000

2 0.000 0.001 0.001 0.000 −0.001 −0.001 0.000

3 0.000 0.000 0.000 0.000 0.000 0.000 0.000

7.1.4 Generalization to higher dimensions

The proposed technique can be extended to higher dimensions to evaluate the
resistance of a multidimensional finite grid. Consider an n-dimensional finite grid
with dimensions w = [w1, w2, . . . , wn]. The resistance is evaluated between source
node xs = [x1

s , x2
s , . . . , xn

s

]
and target node xt = [x1

t , x2
t , . . . , xn

t

]
. Applying the

image technique in each dimension of the grid yields the 2n source nodes around
the origin,

206 7 Effective resistance of finite grids

Xs =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

x1
s , x2

s , . . . xn
s

x1
s , x2

s , . . . −xn
s − 1

...
...

. . .
...

x1
s , −x2

s − 1, . . . xn
s

−x1
s − 1, x2

s , . . . xn
s

...
...

. . .
...

−x1
s − 1, −x2

s − 1, . . . −xn
s − 1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

. (7.13)

Similarly, for the target node,

Xt =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

x1
t , x2

t , . . . xn
t

x1
t , x2

t , . . . −xn
t − 1

...
...

. . .
...

x1
t , −x2

t − 1, . . . xn
t

−x1
t − 1, x2

t , . . . xn
t

...
...

. . .
...

−x1
t − 1, −x2

t − 1, . . . −xn
t − 1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

. (7.14)

Nodes in Xs and Xt are order sources since these nodes are closest to the origin.
The higher order sources arise from translating the nodes in sets Xs and Xt along
each dimension, yielding countably infinite sets,

Xim
s = {x + 2w ◦ a; x ∈ Xs, a ∈ Z

n}, (7.15)

Xim
t = {x + 2w ◦ a; x ∈ Xt, a ∈ Z

n}, (7.16)

where w ◦ a denotes the Hadamard (element-wise) vector product of vectors w and
a. The potential difference between nodes xs and xt is

V =
∑

x∈Xim
s

(φ(x − xs) − φ(x − xt)) +
∑

x∈Xim
t

(φ(x − xt) − φ(x − xs)). (7.17)

Assume the effective resistance of an n-dimensional infinite grid is �(k,w)(x), where
k is the ratio of the unit resistance along each dimension to the unit resistance along
the first dimension. The effective resistance of a finite mesh can be described as

Reff
r

=
∑

x∈Xim
s

(�(k,w)(x − xs) − �(k,w)(x − xt)) +
∑

x∈Xim
t

(�(k,w)(x − xt) − �(k,w)(x − xs)).

(7.18)

7.2 Simplification of the effective resistance expressions 207

7.2 Simplification of the effective resistance expressions

Although the effective resistance is accurately determined with (7.7), (7.11),
and (7.12), more computationally efficient equations are desirable. An efficient
approximation of (7.9) is described in [71],

�̂k(x, y) =
√

k

4π

[
ln
(
x2 + ky2

)
+ 2 ln(π) + γ

]+
4∑

i=0

aik
i, (7.19)

where γ ≈ 0.5772 is the Euler–Mascheroni constant [471], and the coefficients ai

of the expression are listed in Table 7.2.
The error of (7.19) as compared to (7.9) is shown in Fig. 7.10. Note that the error

is reduced to zero for large x and y. At small values of x and y, the error dramatically
increases, significantly affecting the accuracy of the effective resistance. To alleviate
this issue, the following function is proposed,

�k
ij (x, y) = �k(x + 2iwx, y + 2jwy) (7.20)

�k(x, y) =
{

�k(x, y), if ε(x, y) > 10−2 (7.21a)

�̂k(x, y), otherwise; (7.21b)

where ε(x, y) is the relative error of (7.19) as compared to (7.9). Since �k(x, y)

only needs to be evaluated for a small subset of nodes where the error of (7.19) is
large, the evaluation of �k(x, y) can be replaced with a look-up table, providing an
effective tradeoff between computational speed and accuracy.

Evaluation of the effective resistance in a finite mesh requires computing a
double-infinite sum. The series in (7.12), however, quickly converges to 0. Using
additional terms results in higher accuracy while requiring greater computational
time. It is of interest to determine the optimal number of terms in series (7.12) to
achieve acceptable accuracy in minimum time. Consider the following approximate
equation for the effective resistance of a finite mesh,

Table 7.2 Coefficients for
the polynomial
approximation of J3 (7.19)
[71].

i 1 ≤ k ≤ 5 5 ≤ k ≤ 50

0 4.748 × 10−2 2.559 × 10−2

1 −5.989 × 10−2 −3.356 × 10−2

2 8.153 × 10−4 −1.078 × 10−2

3 −1.274 × 10−5 2.260 × 10−3

4 9.092 × 10−8 −1.669 × 10−4

208 7 Effective resistance of finite grids

Fig. 7.10 Relative error ε between (7.9) and (7.19) for 0 ≤ x ≤ 10, 0 ≤ y ≤ 25, and 1 ≤ k ≤ 30.
a) Maximum error, and b) average error.

RN,M
wx,wy

=
N∑

i=-N

M∑

j=-M

(
2�k

ij (x − x0, y − y0) + 2�k
ij (x − x0, y + y0 + 1)

+2�k
ij (x + x0 + 1, y + y0 + 1) + 2�k

ij (x + x0 + 1, y − y0) − �k
ij (2x0 + 1, 0) − �k

ij (2x0 + 1, 2y0 + 1)

−�k
ij (0, 2y0 + 1)) − �k

ij (2x + 1, 0) − �k
ij (2x + 1, 2y + 1) − �k

ij (0, 2y + 1) − 2�k
ij (0, 0)

)
, (7.22)

where N,M ∈ N0 are the number of iterations required to evaluate the effective
resistance of a finite mesh. The accuracy of (7.22) is evaluated for an 11 × 11,

7.3 Case studies 209

Fig. 7.11 Relative error of normalized effective resistance between (0, 0) and (x, y) determined
from (7.22) for N = M ∈ [0, 5] as compared to a nodal analysis within a mesh with size a) 11×11,
b) 25 × 25, and c) 51 × 51.

25 × 25, and 51 × 51 grid. The relative error of (7.22) is illustrated in Fig. 7.11.
Observe that in all cases setting N = K = 4 is sufficient to achieve 0.3% accuracy.
Note that due to the low error of (7.21) for small x and y, the error is smaller if the
effective resistance is evaluated between nearby nodes.

7.3 Case studies

The primary contribution of this chapter is the efficient estimation of the effective
resistance of a finite grid of arbitrary size, exhibiting constant complexity. The
proposed framework is particularly suitable for circuit analysis techniques based on
an effective resistance [480, 492]. In this section, three applications of the proposed
framework are presented. In Subsection 7.3.1, the method accelerating the nodal
analysis of a grid is presented. In Subsection 7.3.2, the method is applied to the
analysis of a capacitive touch screen. In Subsection 7.3.3, a three-dimensional
analysis of resistive substrate noise is described.

7.3.1 Mesh reduction based on effective resistance

The nodal analysis can be significantly accelerated by applying these effective
resistance techniques if the grid dimensions are large and the number of nodes of
interest are small. Consider a large grid � with dimensions Nx × Ny . Define the
nodes of interest as a set,

210 7 Effective resistance of finite grids

S ≡ Sv ∪ Si ∪ So, (7.23)

where Sv and Si are subsets of nodes connected to, respectively, the voltage sources
and current sources, and So is a subset of other nodes of interest. If the number of
nodes of interest |S| = n is much smaller than the total number of nodes within the
network |�| = N , the effective resistance technique can significantly accelerate the
analysis of IR drops within a grid. The entire network � can be reduced to a smaller
network �S by preserving the pairwise effective conductance. The conductance
matrix G ∈ R

n×n of this reduced network is [490, 499]

G† = −1

2

(
RS − 1

n

(
1n,nRS + RS1n,n

)+ 1

n2 1n,1RS11,n

)
, (7.24)

where G† denotes the Moore-Penrose pseudoinverse of matrix G, RS ∈ R
n×n
≥0 is

the matrix of the effective resistance between each pair of nodes in S, and 1a,b is an
a×b matrix with all entries equal to one. After the conductance matrix is recovered,
the reduced network can be evaluated by solving the linear system,

[
G B

BT 0

] [
V

I

]

=
[
J

F

]

, (7.25)

where V and I are, respectively, the node voltages and currents through the voltage
sources. B, J , and F encode the current and voltage sources.

The speed of (7.24) and (7.25) for estimating the effective resistance within a
mesh is compared to nodal analysis using the Numpy and Scipy Python packages
[488] on an eight core 3.40 GHz Intel Core i7-6700 machine with 24 GB RAM.
The comparison is depicted in Fig. 7.12. Nodal analysis in circuits larger than
107 nodes could not be performed due to insufficient memory. Note that while
the computational time of the nodal analysis process scales with grid size N , the
computational time of the infinity mirror technique scales with the number of nodes
of interest n. The bottom-right corner of the plot in Fig. 7.12a is the area where
the grid size is large and the number of nodes of interest is small. The infinity
mirror technique provides the largest speedup in this situation. In Fig. 7.12b, the
relationship between the speedup due to (7.24) and (7.25) and the fraction of nodes
of interest is presented. The results suggest that the framework provides significant
computational speedup if finding the voltage at only 0.23% of nodes is required
(i.e., one in 430 nodes). For example, in a 103 × 104 grid, determining the voltage
at 1, 000 nodes using nodal analysis would require 3, 430 seconds. Applying (7.24)
and (7.25) results in a 17 fold speedup, requiring only 196 seconds to complete.
If the number of nodes of interest is reduced to 100, the speedup reaches 1, 400,
completing in 2.37 seconds.

7.3 Case studies 211

Fig. 7.12 Comparison of (7.24) and (7.25) to nodal analysis for 10 < n < 200 and 104 < N <

107. (a) Computational time (in seconds) to calculate the voltage at n nodes of interest in a grid
with N nodes. The black line indicates n and N for which both techniques exhibit approximately
equal time. (b) Speedup due to the use of (7.24) as compared to a pure nodal analysis as a function
of n

N
.

7.3.2 Resistive noise in capacitive touch screen

A possible application of the infinity mirror technique is the analysis of conductive
media. An example of a conductive medium is a capacitive screen. The typical
structure of a capacitive touch screen is shown in Fig. 7.13a [503]. An important
component of the touch screen panel is the display cathode electrode providing a
reference voltage for the screen. Resistive noise in the electrode layer of the display
cathode may affect the accuracy of the touch recognition process. The accuracy of
the touch sensor can therefore be enhanced by considering resistive noise during
the sensor design process. An accurate estimate of the resistance typically requires
significant computational time due to the finite element method extraction process
often utilized for this task. The analysis can however be vastly accelerated by
applying the infinity mirror technique to the equivalent model of the panel shown
in Fig. 7.13b [503]. The method of mesh reduction presented in Subsection 7.3.1 is
utilized to accelerate this analysis process.

The results for the effective resistance evaluation for trace resistances of 0.1
� and 100 � are shown, respectively, in Figs. 7.13c and 7.13d. The results are
consistent with the Q3D extraction described in [503], significantly reducing the

212 7 Effective resistance of finite grids

a) b)

c) d)

Fig. 7.13 Estimation of the effective resistance in a touch screen panel. a) Structure of the panel,
b) equivalent circuit model, c) effective resistance with a 0.1 ohm trace resistance, and d) effective
resistance with a 100 ohm trace resistance

analysis time while maintaining the high accuracy of the effective resistance
estimation.

7.3.3 Resistive substrate noise

A three-dimensional mesh is widely utilized to model conductive media, including
thermal paths and substrate noise. Substrate noise is a common issue in mixed-
signal VLSI circuits [504]. While several advanced techniques for mitigation of
substrate coupling exist, including guard rings and silicon-on-insulator technology
[505], these techniques may significantly complicate the fabrication process. It is
therefore necessary to estimate the magnitude of the substrate noise. The application
of a three-dimensional network to substrate noise analysis is presented in this case
study.

A frequent scenario in mixed-signal circuits is noise coupling between a digital
aggressor and an analog victim. An equivalent circuit model of a mixed-signal
circuit is shown in Fig. 7.14. The current I in the digital circuit would ideally flow

7.3 Case studies 213

a) b)

gate

drain source
substrate
contact

substrate
contact

digital
ground

analog
ground

global
ground

Fig. 7.14 Resistive substrate coupling mechanism in a mixed-signal complementary metal-oxide-
semiconductor (CMOS) circuit. The substrate ground contacts for the analog and digital grounds
are connected to the global ground through, respectively, the analog and digital ground distribution
networks. (a) Side view of the substrate, and (b) equivalent circuit model of the noise injection
process.

into the digital ground. With substrate coupling, however, a sizable current flows
into the analog ground, affecting the performance of the sensitive analog circuits.

The voltage vga at the analog ground terminal is

vga = IRgaRgd

Rgd + Rs + Rga

, (7.26)

where Rgd and Rga are, respectively, the resistance of the digital and analog ground
distribution networks, and Rs is the substrate resistance. Note that if the substrate
resistance is large, the analog ground voltage converges to zero while reducing the
substrate resistance, increasing the analog ground voltage.

The infinity mirror technique can be used to evaluate the effective resistance
between substrate contacts. Consider a uniform three-dimensional grid with unit
resistance rs , infinite x-y dimensions, and finite z-dimension wz. The analog and
digital substrate contacts are represented by two terminals on the top surface of the
grid separated by an (x, y, 0) vector. Applying (7.18) yields

Rs = 2rs
∑

p∈Z
�00p(x, y, 0) + �00p(x, y, 1) − �00p(0, 0, 0) − �00p(0, 0, 1),

(7.27)
where

�ijp(x, y, z) = �(x + 2wxi, y + 2wyj, z + 2wzp). (7.28)

Expression (7.27) is applied to (7.26) to determine the minimum distance between
analog ground terminals. The parameters are listed in Table 7.3. The resulting
ground voltage is shown in Fig. 7.15. If the spacing is small, the substrate noise
is significantly lower with increasing separation. After 20 μm, however, the space
does not have a significant effect on the coupling noise. Note again that the analysis
time is significantly reduced by avoiding a costly nodal analysis process [232].

214 7 Effective resistance of finite grids

Table 7.3 Parameters for substrate noise evaluation.

Parameter Symbol Value

Analog ground network resistance Rga 25 �

Digital ground network resistance Rgd 25 �

Unit cell resistance rs 1 �

Digital circuit current I 25 mA

Separation along y-dimension y 0

Grid z-dimension parameter wz 10

Cell dimensions dx,dy,dz 1 μm

Fig. 7.15 Analog ground voltage as a function of the distance between the digital and analog
ground terminals

The resistance measurement for each separation is completed on average in 2.76
seconds. A nodal analysis of a three-dimensional substrate with a size of 200 μm ×
200 μm × 10 μm requires approximately 30.2 seconds, consistent with Fig. 7.12,
indicating an approximate tenfold speedup.

7.4 Conclusions

An infinity mirror technique is proposed here that maps a rectangular resistive grid
structure with finite dimensions into an infinite grid. Extending the contributions in
[71], where semi-infinite structures are considered, the methodology described here
is applicable to those structures where one or both dimensions are finite. In addition,

7.4 Conclusions 215

the framework is extended to higher dimensional topologies, evaluating the effective
resistance in finite structures with three and more dimensions. The proposed
expressions exhibit high accuracy and outperform the nodal analysis method in
terms of computational speed. Using the infinity mirror technique, the effective
resistance between two points in an anisotropic finite mesh can be determined within
1% accuracy. Several orders of magnitude speedup in IR drop analysis in large grids
is achieved in case studies by utilizing closed-form expressions for the effective
resistance. The most significant reduction in computational time is achieved in those
cases where only a small fraction of nodes needs to be evaluated. These results can
be beneficial to a variety of applications, including power grid and substrate analysis
in VLSI circuits, estimation of commute times in random walks, and the analysis of
isotropic and anisotropic conductive media [499–501, 506–509].

Chapter 8
Placement of on-chip distributed voltage
regulators

The primary objective of a VLSI power delivery system is to supply and maintain
a nearly constant (i.e., low ripple) voltage across the load circuitry. Additional
objectives include dissipating less power while limiting the current density to
reduce the likelihood of electromigration. Different techniques have been proposed
to accomplish these tasks, including multiple voltage domains [361], on-chip
decoupling capacitors [493], and on-chip voltage regulation [381].

In a conventional VLSI system, a power management IC (PMIC), also known as
a voltage regulator module (VRM), is placed at the board level and supplies multiple
voltages to different on-chip voltage domains [145, 232], as illustrated in Fig. 8.1a.
The primary limitation of this approach is the large physical distance between
the off-chip regulator and the many billions of on-chip loads. The interconnect
and I/O pins connecting the off-chip voltage converter with the load circuitry
exhibit a high parasitic resistance and inductance, producing significant power noise
[65]. The supply voltage is often increased to compensate for the voltage drop
caused by the parasitic impedance of the power network [510] (see Fig. 8.1a),
degrading the overall energy efficiency of the system. Furthermore, the parasitic
impedance between the converter and load circuitry slows the load regulation
process. Considerable variations in supply voltage can be experienced by the load
circuitry, potentially violating the noise margins of the many signals.

Heterogeneous voltage regulation [511] is a recent advancement in power
delivery systems. The power efficient voltage converters within a PMIC are
supplemented by area efficient on-chip regulators, as shown in Fig. 8.1b. The
on-chip converters are placed in close proximity to the load devices. Since the
physical distance and impedance between the on-chip regulator and device are
small, this configuration provides superior power quality despite load dependent
current fluctuations.

Increasing the number and enhancing the placement of the on-chip voltage
regulators may greatly improve overall power integrity as compared to a single
regulator, since the distance between the regulator and the load is much smaller.

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
R. Bairamkulov, E. G. Friedman, Graphs in VLSI,
https://doi.org/10.1007/978-3-031-11047-4_8

217

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-11047-4_8&domain=pdf

 -2016 61494 a -2016 61494 a

https://doi.org/10.1007/978-3-031-11047-4_8

218 8 Placement of on-chip distributed voltage regulators

V1

V2

V2

VGND

PMIC
Distance to regulator

t

V

t

V

a)

Distance to regulator

V1

V2

V2

VGND

PMIC

t

V

t

V

b)

Fig. 8.1 Overview of power delivery systems. a) Conventional power delivery system. The voltage
converter within a power management IC (PMIC) provides multiple supply voltages to several
power delivery systems. These networks are connected to the functional circuitry via dedicated
power networks. Due to the significant distance to the regulators, fluctuations in the load current
degrade the quality of the power supply. b) Heterogeneous power delivery system with on-chip
voltage regulators. The on-chip regulators are placed near the load devices. A stable voltage is
more effectively supplied to the functional circuits.

Multiple regulators however may occupy significant on-chip area. The number
of voltage regulators is therefore limited. The regulators should therefore be
judiciously distributed within an IC to enhance the power quality.

Most works discussing regulator distribution approach this problem from a
purely electrical perspective, focusing on the stability, power efficiency, and thermal
behavior of the on-chip voltage regulation system [512–516]. Placement in the
context of power delivery is however discussed in several works. The distribution of
the power supply input/output (I/O) pads using mixed integer linear programming
is discussed in [517]. Based on a predefined set of I/O pad locations, a subset
of locations is chosen to minimize the voltage drop within a power network. A
framework for power supply and decoupling capacitor distribution is proposed in
[495]. Based on a closed-form expression for the effective resistance within a two

8.1 On-chip voltage regulation 219

layer mesh [469], the location of the decoupling capacitors is chosen to reduce the
response time while lowering the voltage drop within the network.

Based on [469], a novel voltage regulator distribution algorithm is presented
in this chapter. Similar to the optimization process described in Chapter 9 [75],
the distribution is formulated as an optimization problem, where the voltage drops
due to the parasitic impedances within the power network are minimized. With
the infinity mirror technique (see Chapter 7 [72]), a several orders of magnitude
improvement in the speed of the power network analysis process is achieved
while maintaining high accuracy. The physical and electrical constraints of the
voltage regulators, such as current capacity and electromigration, are supported
by the algorithm. Based on this algorithm, the position of the voltage regulators
is efficiently determined using particle swarm optimization [518]. In case studies,
regulators are distributed in less than two minutes on a Linux workstation powered
by a dual core 2.3 GHz Intel Core i5 processor with 16 GB of RAM, achieving
a significant reduction in voltage drop as compared to a uniform distribution of
regulators.

The rest of the chapter is organized as follows. In Section 8.1, the basic principles
of on-chip voltage regulation are described. A computationally efficient model of
an on-chip power network is discussed in Section 8.2. To improve the runtime of
the optimization process, load clustering is performed, as described in Section 8.3.
The problem setup for register placement optimization is reviewed in Section 8.4.
Several case studies are described in Section 8.5, followed by the conclusions in
Section 8.6.

8.1 On-chip voltage regulation

Unlike traditional voltage regulation schemes, where the voltage converter is placed
far from the load devices, the proposed on-chip voltage regulation methodology
places the voltage regulators closer to the load [381, 519]. Two major advantages
of distributed on-chip power regulation exist. Multiple voltage domains can be
supported using distributed on-chip voltage regulators [520]. Localized control of
the power flow within a VLSI system is therefore possible, enabling fine grain
dynamic voltage scaling [521] and power gating [522]. Furthermore, the shorter
distance between the regulator and the load circuitry greatly enhances the commu-
nication speed, allowing the regulator to quickly react to changes in the workload.
Similar to decoupling capacitors that exhibit high efficiency when placed near the
load circuitry [493], placing the regulators near the point-of-load (POL) drastically
improves the power quality. Due to input regulation and load regulation, the voltage
regulators distributed within an IC separate the power network into two loosely
dependent parts, as illustrated in Fig. 8.2. The load circuitry is effectively shielded
from fluctuations in the input voltage, while fluctuations in current demand are
quickly accommodated by the regulator. The power noise is therefore significantly
suppressed, improving the overall power integrity of the system.

220 8 Placement of on-chip distributed voltage regulators

Integrated circuit

+

Board and packagePMIC I/O On-chip VR

Reduced distance
to regulator

+

Fig. 8.2 On-chip voltage regulators effectively split a power network into independent parts. The
off-chip part connects the PMIC to the regulators, while the on-chip part connects the regulators to
the load circuitry.

Table 8.1 Comparison of
major types of on-chip
converters

Converter type SMPS SC Linear

Power efficiency High Medium Low

Regulation quality High Low High

Physical area Large Medium Small

+

Vin

+

Vout

a)

++

Vin

+

Vout

b)

+

Vout

+

Vin Vref

+
+

c)

Fig. 8.3 Common on-chip voltage regulators. a) Switching mode power supply (SMPS), b)
switched capacitor (SC), and c) low dropout (LDO) linear voltage regulator.

Three major classes of integrated voltage regulators exist; namely, switching
mode power supply (SMPS), switched capacitor, and linear [381]. Essential prop-
erties of these regulators are summarized in Table 8.1. An SMPS converter is a
power efficient converter that operates by energizing the LC branch during the
charging phase, transferring the stored energy to the load during the discharge phase
[358, 385]. A SMPS buck converter is shown in Fig. 8.3a. The output voltage is
efficiently controlled by adjusting the duty cycle, i.e., the relative duration of the
charge and discharge phases. SMPS converters exhibit superior power efficiency and
voltage regulation but require large area to accommodate the inductor and capacitor.

Switched capacitor (SC) converters do not require inductors, as shown in
Fig. 8.3b. SC converters are therefore more area efficient than SMPS converters.
Similar to SMPS converters, the voltage conversion process is accomplished by
switching. Since the primary mechanism of conversion is to transfer charge between
capacitors, the power efficiency is degraded due to the phenomenon of charge

8.2 Model of power network 221

sharing [232]. Furthermore, the output voltage is highly sensitive to the load current,
reducing the regulation quality of the SC converters.

Superior regulation is achieved by linear regulators which regulate the voltage
by the principle of voltage division, as illustrated in Fig. 8.3c. The output voltage
is produced by inducing a resistive voltage drop within a variable resistance. A low
dropout (LDO) regulator is the most common type of linear regulator, where the
resistance of a pass transistor is controlled by an error amplifier. Due to the power
dissipated by the variable resistor, linear regulators exhibit poor power efficiency
bounded by the ratio of the output voltage to the input voltage [232]. LDO regulators
however have gained significant popularity in modern high performance systems
due to the small area and fast voltage regulation.

On-chip regulators typically exhibit nonlinear behavior and require significant
computational time for analysis. For the purpose of optimization, however, the
accurate behavior of a regulator is less important. The regulator model should rather
exhibit high fidelity, i.e., track the general behavior of the target metric rather than
accurately estimate the metric. Assuming the input regulation and load regulation
are sufficiently fast, a regulator can be modeled as a constant voltage source. Despite
the poor accuracy of this model, the model exhibits high fidelity, appropriate for
the optimization process (high computational efficiency rather than accuracy). To
demonstrate the fidelity of modeling a regulator with a voltage source, consider
the relationship between the position of a regulator and the maximum voltage
drop within a grid, as shown in Fig. 8.4. Two models of a voltage regulator are
considered; namely, a SPICE-level transient LDO model and a constant voltage
source. Observe the poor accuracy of the voltage source-based model shown in
Fig. 8.4c, exhibiting significant deviation from the SPICE-level model. Both of the
functions however exhibit similar behavior (see Figs. 8.4a and 8.4b), increasing and
decreasing within the same regions, and achieving the minimum at position (6, 3).
The constant voltage source model of a regulator therefore exhibits high fidelity,
supporting the use of this model within the algorithm which distributes the on-chip
regulators within a grid.

8.2 Model of power network

Many VLSI systems utilize global power grids spanning large portions of the
physical area of an IC. These grids consist of two or more layers of orthogonal
interconnects connected by vias, as illustrated in Fig. 8.5a. The advantages of this
topology include ease of design, robustness, and low impedance, as compared to
routed power networks [232]. Due to the regularity and symmetry of a power grid,
the power network can be modeled as a resistive mesh, as depicted in Fig. 8.5b. Due
to the size of the mesh, an infinite two-dimensional model of the grid can be used
to analyze this network. This approach supports the use of closed-form expressions
for the effective resistance between two nodes within an infinite grid [469],

222 8 Placement of on-chip distributed voltage regulators

R(x) = 2r�k(x), (8.1)

where x = (x, y),

�k(x) =
√

k

4π

[
ln
(
x2 + ky2

)
+ 2 ln (π) + 2γ

]
+ J (k). (8.2)

r and x (kr and y) are, respectively, the resistance and physical distance between
the nodes in the horizontal (vertical) dimension, and J (k) is a polynomial function
of k. Due to the finite size, however, this model exhibits a significant error near the
boundaries of the grid. This issue is overcome in [71, 72] where the boundaries of
the grid are modeled with image current sources. With this approach, the effective

0.76

a) b) c)

0.78

0.80

0.82

0.84

0.86

0.65

0.70

0.75

0.80

0.85

0.90

0.000

0.002

0.004

0.006

0.008

Fig. 8.4 Relationship between minimum voltage within a 20 × 20 grid and the location of the
voltage regulators. The minimum voltage is obtained from an analysis of a power grid. The LDO
is modeled as a) an operational amplifier driving a pass transistor, and b) a constant voltage source.
Note that the same optimum location is obtained for each model. c) The relative error of the
constant voltage source model of a regulator based on normalized voltages.

a) b)

Fig. 8.5 On-chip power grid. a) Layout of power (dark grey) and ground (light grey) distribution
networks, and b) power distribution network modeled as a resistive mesh.

8.2 Model of power network 223

resistance can be determined in O(NxNy) time, where Nx and Ny denote the
number of images, respectively, in the x and y dimensions. To maintain the error
of this method below 1% for a 100 × 100 grid, only three images are sufficient
[72]. Fewer images are required in practical power networks due to the significantly
larger grid size. Observe that the analysis runtime does not depend upon the size
of the mesh. Based on this feature, an efficient power grid analysis algorithm is
presented in Subsection 8.2.1 to efficiently determine the minimum voltage within
a grid.

Although practical power networks are typically grid structured, significant devi-
ations, such as missing vias or variable interconnect pitch, do exist. Furthermore, a
global mesh may span more than two layers, complicating the two layer model.
To analyze practical grids, a power network should be converted into an equivalent
resistive mesh while preventing excessive deviations from the original grid.

To simplify the structure of the network, a 3-D to 2-D grid regularization
technique is proposed in [523]. By ignoring the via impedance, multiple grid layers
are initially collapsed into a single layer based on location information. The 2-
D network is mapped into a two-dimensional grid with a fixed pitch, yielding a
resistive mesh with a fixed pitch. An analysis of the resulting grid exhibits an error
of less than 1% as compared to SPICE.

A similar approach is followed in this chapter. By examining each benchmark
circuit, a dominant wire pitch and resistance are observed. Consider, for example,
the ibmpg4 power network [524]. The dominant resistivity and pitch of all of the
interconnects in the x dimension are, respectively, 48 units and 35 milliohms per
unit length, as depicted in Figs. 8.6a and 8.6b. Similarly, the dominant pitch in the y

direction is 24 units with a resistivity of 32.5 microohms per unit length, as shown
in Figs. 8.6c and 8.6d. The resulting simplified grid has dimensions w = (284, 571)

and k = 2.15. The parameters of a simplified grid for each benchmark circuit are
listed in Table 8.2.

8.2.1 Fast grid analysis

The primary objective of the voltage regulator distribution process is to deliver a
stable voltage to the functional circuitry. To minimize the maximum voltage drop
within a power grid, minimizing the voltage drop at the loads is sufficient. Standard
circuit analysis techniques based on MNA typically analyze the entire network, even
if the voltage at only a single node is of interest. An efficient grid analysis algorithm
based on the infinity mirror technique is a faster alternative where the voltage is only
determined at specific locations. This analysis technique is based on the approach
described in [480]; however, the effective resistance is not explicitly evaluated.
Rather, the potential induced by the supply and load currents is determined.

Let � = (x(�), I (�)) be a load located at position x(�) and drawing current I (�)

from a resistive grid of size w = (wx,wy). The set L = �p|p ∈ [1, . . . , n] is a set

224 8 Placement of on-chip distributed voltage regulators

3050 10 15 20 25
Horizontal resistivity, milliohms

35

104

105

103

102

100 20 30 40
Horizontal pitch, normalized

50

105

104

103

102

101

104

105

3050 10 15 20 25
Vertical resistivity, milliohms Vertical pitch, normalized

a) b)

c) d)

10 20 300 40 50 60 70

105

104

103

102

101

100

Fig. 8.6 Frequency of resistivity and pitch for the ibmpg1 benchmark circuit. a) Resistivity, and
b) pitch along the x dimension. c) Resistivity, and d) pitch along the y dimension. The equivalent
grid is constructed based on the dominant resistivity and pitch within the network.

Table 8.2 Parameters of the equivalent grids used to model the ibmpg benchmark circuits [524]

Pitch Resistivity, m� Dimensions
x y x y x y

ibmpg1 2,062 33 5.714 0.635 10 629

ibmpg2 48 72 4.000 16.25 169 113

ibmpg3 864 1,296 0.714 2.407 354 236

ibmpg4 48 24 35.00 32.50 284 571

ibmpg5 82 12 10.00 21.67 129 882

ibmpg6 280 280 0.286 0.464 3,630 3,644

of all loads within the network. Based on the infinity mirror technique, the finite
grid is converted into an infinite two-dimensional resistive lattice, as illustrated in
Fig. 7.7. The images of each load �p ∈ L are described by a set of loads,

8.2 Model of power network 225

�∗
p = {
(
x(i,j)
p , Ip

)
|i ∈ [−Nx, . . . , Nx] , j ∈ [−Ny, . . . , Ny

]}, (8.3)

where, for brevity, x(i,j)
p = x

(
�
(i,j)
p

)
=
(
xi
p, y

j
p

)
, Ip = I

(
�p

)
, and

xi
p =
{

wxi + xp, if i is even, (8.4a)

wx(i + 1) − xp − 1, if i is odd, (8.4b)

y
j
p =
{

wyj + yp, if j is even, (8.5a)

wy(j + 1) − yp − 1, if j is odd. (8.5b)

L∗ is the set of all loads within an infinite grid, including the mirrored loads,

L∗ =
n⋃

p=1

�∗
p. (8.6)

The electric potential at node u = (xu, yu) in response to a unit load �̂ = (x, 1))

with respect to a ground node at infinity is

φ(u, x) =
∑

�̂∈�̂∗
�k(u − x(�̂)). (8.7)

By selecting arbitrary ground node g, the voltage at node u becomes

vg(u, x) = φ(u, x) − φ(g, x). (8.8)

Due to the principle of superposition, the voltage at node u is the weighted sum of
the potentials caused by each current source within a grid,

V g(u) =
∑

�p∈L
Ipvg(u, xp). (8.9)

If a grid contains only current sources, the voltage at any node within a grid can
be determined using (8.9). The power network however includes voltage regulators
that maintain a constant voltage by changing the current supplied to the network.
Any voltage source can therefore be transformed into a current source supplying
equivalent current into a network.

Finding the current injected by each voltage source requires additional process-
ing. Suppose m voltage regulators are connected to a network. The set of voltage
regulators within the network is

S = {sq |q ∈ [1, . . . , m]}, (8.10)

226 8 Placement of on-chip distributed voltage regulators

where

sq = (xq, Iq

)
. (8.11)

The target voltage at each node xq, q ∈ [1, . . . , m] is known a priori, producing a
vector v(S) ∈ R

m of target voltages,

v(S) = [V1, . . . , Vm]T . (8.12)

To determine the current injected by each voltage regulator, an arbitrary node g
is initially designated as ground. Without loss of generality, suppose g = xm,
producing set Sg = S \ sm. The target voltages are therefore adjusted, yielding
a vector vg(S) ∈ R

m−1,

vg(S) = [V g
1 , . . . , V

g
m−1

]T
, (8.13)

where

V g
q = Vq − Vm. (8.14)

The voltage V
g
r is determined by superimposing the effect of the supply and load

currents,

V g
r =

m∑

q=1

I (sq)vg(sr , sq) +
n∑

p=1

I (�p)vg(sr , �p), (8.15)

where, for brevity,

vg
(
sr , sq
) = vg

(
x (sr) , x

(
sq
))

, (8.16)

vg
(
sr , �p

) = vg
(
x (sr) , x

(
�p

))
. (8.17)

Reformulating (8.15) in matrix form yields

⎡

⎢
⎣

vg(s1, s1) . . . vg(sm, s1)
...

. . .
...

vg(s1, sm−1) . . . vg(sm, sm−1)

⎤

⎥
⎦

⎡

⎢
⎣

I (s1)
...

I (sm−1)

⎤

⎥
⎦

= vg(S) −
⎡

⎢
⎣

vg(�1, s1) . . . vg(�n, s1)
...

. . .
...

vg(�1, sm−1) . . . vg(�n, sm−1)

⎤

⎥
⎦

⎡

⎢
⎣

I (�1)
...

I (�n)

⎤

⎥
⎦

(8.18)

8.2 Model of power network 227

or, equivalently,

�g(S,Sg)i(S) = vg(S) − �g(L,Sg)i(L). (8.19)

The system described by (8.19) is underdetermined with m − 1 equations and m

unknowns. To obtain the remaining equation, note that the total current drawn by
the loads is equal to the total current injected by the voltage regulators,

11,mi(S) + 11,ni(L) = 0, (8.20)

where 1a,b is an a × b matrix with all entries equal to 1. The current i(S) supplied
by the voltage regulators can therefore be determined by solving a system of linear
equations,

[
�g(S,Sg)

11,m

]

i(S) =
[
vg(S)

0

]

−
[
�g(L,Sg)

11,n

]

i(L). (8.21)

By combining L and S , the set of current injections I = L ∪ S is obtained. The
voltage at each load is therefore

vg (L) = �g(I,L)i(I) + Vm1||I||,1. (8.22)

8.2.2 Limited regulator current

The amount of current reliably delivered by a linear regulator is a strong function of
the regulator area [511]. LDO regulators with wider power transistors can supply
more current to the loads. Since on-chip regulators occupy silicon layer, other
circuitry may constrain the placement and size of the regulator. The maximum
current supplied by an LDO is therefore limited by the size of the regulator.
Furthermore, even if the size of the regulator is unlimited, electromigration [525]
limits the maximum current density that can be produced by a regulator. The current
capacity of a regulator is therefore limited.

To consider this limitation during the optimization process, the fast grid analysis
algorithm described in Subsection 8.2.1 is extended to support the limited current
capacity of a regulator. Let Imax : S → R be a function mapping each regulator s to
the maximum current Imax(s) that s can supply. Note that the total capacity of the
regulators should be equal to or exceed the current demand of the circuit,

11,mimax ≥ i(L), (8.23)

where imax is a vector describing the current capacity of each regulator,

imax = [Imax(s1), . . . , Imax(sm)]T . (8.24)

228 8 Placement of on-chip distributed voltage regulators

Suppose, after solving (8.21), the estimated current of subset S∗ ⊂ S exceeds
the corresponding maximum current. Vector i(S) therefore does not realistically
represent the current supplied by each regulator. This result however indicates that
the regulators in S∗ operate at maximum capacity, i.e., I (si) = Imax(si)∀si ∈ S∗.
Since the current supplied by these regulators is known, these nodes can be treated
as loads. Transferring S∗ into L yields

S1 ← S \ S∗ (8.25)

and

L1 ← L ∪ S∗. (8.26)

Note that a different ground node g should be selected if g ∈ S∗. The system of
(8.21) is transformed into

[
�g(S1,Sg

1)

11,||S1||

]

i(S1) =
[
vg(S1)

0

]

−
[
�g(L1,Sg

1)

11,||L1||

]

i(L1). (8.27)

If no current i(S1) exceeds the current limit, the process is completed and the voltage
at any node can be determined. Otherwise, the process is repeated until all of the
regulator currents satisfy the constraints.

8.3 Load clustering

The functional circuits within an IC are typically distributed across the entire area of
the power network. A large number of load currents within each functional block is
therefore connected to the power grid. Since the runtime of the proposed method
increases with the number of loads, individually considering each load incurs a
significant computational penalty. Recall however from Chapter 5 that a power grid
is a smooth system, i.e., a small variation in position correlates with a small variation
in voltage [438]. Multiple loads can therefore be merged into a single load if located
sufficiently close to each other.

At the global level, this procedure is accomplished by clustering, where the
number of loads can be reduced by several orders of magnitude while exhibiting
minimal effect on the voltage within the grid. To illustrate this effect, consider the
example shown in Fig. 8.7 where the current sources are randomly distributed within
a network. The voltage within the grid is depicted in Fig. 8.7a. After clustering the
current sources, the number of loads is reduced by tenfold. The voltage within a
network with clustered loads is shown in Figs. 8.7b to 8.7h. Observe that the average
voltage within a grid is relatively unchanged since the total current within the grid
remains constant. The maximum voltage drop however increases since the load is
concentrated within a smaller area. The relationship between the number of clusters

8.4 Optimization setup 229

N=2,601 Vmin=0.219

a) b) c) d)

e) f) g) h)

Vavg=0.280 N=256 Vmin=0.219 Vavg=0.280 N=128 Vmin=0.218 Vavg=0.280 N=64 Vmin=0.213 Vavg=0.279

N=32 Vmin=0.208 Vavg=0.279 N=16 Vmin=0.196 Vavg=0.278 N=8 Vmin=0.161 Vavg=0.269 N=4 Vmin=0.097 Vavg=0.264

Fig. 8.7 Effect of clustering the load current on the accuracy of the power grid analysis process.
a) Original 51×51 power grid with 2, 601 loads. Each node is connected to a random load current.
Loads within the grid are split into b) 256, c) 128, d) 64, e) 32, f) 16, g) 8, and h) 4 clusters. N
denotes the number of clusters, and Vmin and Vavg denote, respectively, the minimum and average
voltage within the grid. The minimum voltage is not significantly affected until the number of loads
is reduced below 16, i.e., 0.6% of the total number of loads. Observe that the average voltage does
not significantly change.

and the minimum voltage is shown in Fig. 8.8. The number of clusters is therefore a
tradeoff between accuracy and runtime. Note however that the goal of the proposed
framework is to optimize the position of the voltage regulators. A minor penalty in
accuracy can therefore be tolerated if the effect on the optimization result is small.

8.4 Optimization setup

Constrained global optimization is applied in this chapter to determine the optimal
location of the regulators. The voltage drop caused by the parasitic impedances
within the power network is expressed as a function of the position of the voltage
regulators,

vdrop(S) = − min (vg(L))|S , (8.28)

where the right hand side denotes the maximum voltage drop as a function of
S . During the optimization process, however, an objective function is evaluated
hundreds of times before achieving convergence. To use (8.28) as the objective

230 8 Placement of on-chip distributed voltage regulators

Fig. 8.8 Minimum and average voltage within a 51 × 51 grid during clustering. A two orders of
magnitude reduction in the number of loads is possible with only a minor effect on the accuracy of
the estimates of the minimum voltage.

function, the runtime vdrop(S) should be small. Function (8.28) can be evaluated
using modified nodal analysis [64]. Due to the size of modern integrated systems,
power network models are extremely large, containing many millions to billions of
nodes. Conventional MNA-based analysis of power grids is therefore not suitable
for optimizing the position of the regulators. In contrast, using the proposed fast
grid analysis method, the voltage within a grid can be determined in O (n (m + n))

time, where m and n denote the number of, respectively, voltage regulators and
loads. Note that the proposed method does not depend upon the size of the mesh.
Arbitrarily large grids can therefore be analyzed with this method. The voltage for a
subset of nodes is determined in milliseconds, many orders of magnitude faster than
state-of-the-art MNA-based algorithms.

The optimization problem is therefore described as

Minimize : vdrop(S) (8.29)

subject to :

x(s) ∈ A∀s ∈ S, (8.30)

i(S) ≤ imax, (8.31)

8.5 Case studies 231

where A is the set of whitespace nodes, i.e., unoccupied positions available for
placing voltage regulators. Since the regulators occupy silicon layer, congested
regions cannot be used to place the regulators. Constraint (8.30) restricts the position
of the voltage regulators within a grid to those regions capable of accommodating
the regulators. Due to physical limitations, the regulators cannot provide arbitrarily
large currents. An upper bound on the current therefore exists for each regulator and
is expressed by constraint (8.31).

Since the convexity of objective function (8.29) is unknown, a global opti-
mization algorithm is required, such as basin hopping [526], evolutionary [527],
or swarm intelligence algorithms [518]. The discrete particle swarm optimization
algorithm [518] is used in the case studies described in Section 8.5.

8.5 Case studies

The analysis and optimization algorithms are implemented in Python and applied to
IBM power grid benchmarks [524]. The algorithms are run on a Linux workstation
powered by a dual core 2.3 GHz Intel Core i5 processor with 16 GB of RAM.
Three optimization scenarios are considered. In the first case study, the voltage
regulators are distributed within the entire grid without restricting the placement
and maximum current supplied by the regulators, as described in Subsection 8.5.1.
In Subsection 8.5.2, a second case study is considered, where the regulators are
placed within specific whitespace regions. In the final case study, as described in
Subsection 8.5.3, the maximum current of the regulators is restricted.

8.5.1 Unrestricted placement – case study one

In this case study, no constraints on the maximum current are placed on the location
of the voltage regulators. The number of clusters is set to 100 while the number of
voltage regulators is varied from 10 to 50. The results are summarized in Table 8.3.
Consistent with expectations, more regulators provide superior regulation, raising
the minimum voltage of the system. Observe that the runtime of the optimization
process does not increase with grid size, but increases with the number of regulators.
The voltage within the ibmpg4 benchmark is depicted in Fig. 8.9. Since the load
current is uniformly spread throughout the grid, the regulators are also uniformly
spread throughout the integrated circuit. Observe that the benefit of additional
regulators diminishes with increasing number of regulators.

232 8 Placement of on-chip distributed voltage regulators

Table 8.3 Summary of the distribution of voltage regulators within the ibmpg benchmark
circuits for case studies one and three. The results of case two greatly depend upon the particular
geometry of the restricted placement and are therefore omitted from this table.

Case one Case three

Number of
regulators

Voltage
drop, V Runtime, s

Voltage
drop, V Runtime, s

ibmpg1 10 9.25 37.2 11.02 76.2

20 4.52 135.2 8.53 119.1

30 3.59 136.5 7.04 167.1

40 4.42 242.0 7.22 251.2

50 1.82 587.2 5.26 621.8
ibmpg2 10 10.35 35.1 10.33 59.9

20 8.07 414.9 7.86 180.0

30 6.93 575.4 6.39 154.7

40 6.46 337.5 7.16 409.8

50 6.59 420.8 5.93 468.2
ibmpg3 10 9.48 34.1 9.56 30.9

20 6.17 242.2 5.94 183.4

30 4.70 203.4 5.27 160.1

40 4.15 360.6 3.79 460.2

50 4.22 233.2 3.48 308.4
ibmpg4 10 0.23 50.4 0.33 45.8

20 0.14 123.1 0.12 253.2

30 0.10 484.2 0.09 338.0

40 0.08 304.9 0.11 414.7

50 0.06 438.1 0.05 465.0
ibmpg5 10 0.41 73.5 0.36 68.4

20 0.20 209.8 0.33 162.5

30 0.10 274.3 0.17 592.7

40 0.08 224.6 0.16 989.9

50 0.10 427.6 0.14 811.6
ibmpg6 10 2.63 107.0 2.36 60.9

20 1.36 451.0 1.37 318.8

30 0.99 187.7 0.95 313.6

40 0.72 239.8 0.77 640.4

50 0.61 309.6 0.73 913.6

8.5 Case studies 233

Fig. 8.9 Voltage after distributing a) 10, b) 20, c) 30, d) 40, and e) 50 voltage regulators within
the ibmpg4 benchmark circuit. Note that the voltage drop decreases with additional voltage
regulators.

8.5.2 Restricted placement – case study two

The congested areas within each benchmark circuit are manually selected. The
restricted regions within the ibmpg4 benchmark circuit are depicted in Fig. 8.10.
The voltage regulators are prevented from being placed into these areas by adding
a penalty (or cost) to the objective function for each regulator placed within
a restricted area. The resulting distribution of voltage regulators is shown in
Fig. 8.11. This restriction produces larger voltage drops within the network, since
the regulators cannot be necessarily placed near the hot spots, i.e., regions exhibiting
high current demand. The degradation of the voltage drops however depends upon
the location and size of the blockages and loads. A system with spatial constraints
located near large load currents will likely exhibit greater power noise.

8.5.3 Restricted current – case study three

In this case study, the maximum current supplied by a voltage regulator s is set as

Imax(s) = 1.2 × 11,ni(L)

m
. (8.32)

234 8 Placement of on-chip distributed voltage regulators

Fig. 8.10 Layout of wires within the ibmpg4 benchmark circuit. Those regions where the
placement of the voltage regulators is prohibited are denoted by the shaded rectangles.

The total current supplied by the regulators is therefore 20% higher than the total
current demand of the circuit. The results of the placement process are shown in
Fig. 8.12. Observe that the regulators are more uniformly spread within the layout.
Multiple voltage regulators placed in close proximity provide less current since
each regulator sources current to fewer loads. A higher current demand is therefore
experienced by the remaining regulators, potentially causing these regulators to
operate at maximum capacity. Inadequate current supplied by these regulators
degrades the voltage within the grid, incentivizing the optimization algorithm to
spread the clustered regulators throughout the IC. The voltage drop and runtime are
listed in Table 8.3. Note that the computational runtime of the algorithm is greater
due to the additional processing to consider the limited current of the regulators.

8.5 Case studies 235

Fig. 8.11 Voltage after distributing a) 10, b) 20, c) 30, d) 40, and e) 50 voltage regulators within
the ibmpg4 benchmark circuit. The regulators are not placed outside the restricted zones depicted
in Fig. 8.10. The voltage drop is approximately 10% greater than in the unrestricted case study.

Fig. 8.12 Voltage after distributing a) 10, b) 20, c) 30, d) 40, and e) 50 voltage regulators within
the ibmpg4 benchmark circuit. The regulator current is restricted according to (8.32). The voltage
drop is approximately 24% greater than in the unrestricted case study.

236 8 Placement of on-chip distributed voltage regulators

8.6 Conclusions

To tackle stringent power quality and efficiency requirements of modern VLSI
complexity systems, heterogeneous power regulation is necessary, incorporating
both off-chip as well as on-chip point-of-load voltage converters. The number of
voltage regulators is however limited due to area constraints. The on-chip regulators
should therefore be strategically placed to maximize the system-wide power quality.
A novel voltage regulator allocation algorithm is presented in this chapter. The on-
chip power network transforms a power grid into a resistive mesh. The number
of loads is reduced by applying clustering. With the proposed fast grid analysis
method, the on-chip power distribution system is efficiently analyzed, enabling
the position of the distributed voltage regulators to be optimally determined. The
proposed algorithm does not depend upon the size of the grid, enabling the efficient
analysis of large scale power networks. In three case studies, the voltage regulators
are distributed within industrial power grid benchmark circuits, minimizing the
parasitic voltage drop given a fixed number of on-chip voltage regulators.

Chapter 9
Exploratory methodology for power
delivery

Power delivery is pivotal to the performance of modern integrated systems [381].
Violating limitations in power delivery such as load voltage drop, thermal char-
acteristics, and power dissipation, may cause a variety of issues, such as circuit
malfunction or overheating. Due to the high level of complexity in modern systems,
it is difficult to monitor power delivery characteristics throughout the system
development process [65]. This approach adds risks to the entire development flow.
Unsatisfied power quality constraints at later stages of the design process may
require unacceptable time and resources.

One strategy for reducing the burden of modifying the power network is
overdesign, such as using additional interconnections and pins for power or larger
and more numerous decoupling capacitors. This strategy increases cost and allocates
less metal and pin resources for signaling, and less area for the functional circuitry
[528]. In addition, external factors, such as cooling power or cost, shift the resulting
system even farther from the optimal objective.

Numerous works on power delivery optimization at varying levels of abstraction
exist in the literature. On-chip voltage regulation is discussed in [359, 495, 511, 529].
In [511], a framework for combining switching and linear regulators within a single
system is presented that combines high efficiency linear regulators with superior
regulation characteristics in switching converters. Power management has been
deeply investigated from an architectural perspective. The work of [530] presents
a framework for system-wide dynamic voltage scaling with thermal considerations
that improves overconstrained circuits based on worst case scenarios. In [531],
the GradualSleep strategy has been proposed to minimize on-chip static energy
dissipation. More recent works describe paradigms suitable for modern circuit-
level power management solutions. A system-level framework for optimizing
decoupling capacitor and parasitic inductance is proposed in [145, 532]. A system-
level power management system is described in [533], where the electrical and
thermal characteristics are monitored to make appropriate adaptations, such as

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
R. Bairamkulov, E. G. Friedman, Graphs in VLSI,
https://doi.org/10.1007/978-3-031-11047-4_9

237

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-11047-4_9&domain=pdf

 -2016 61494 a -2016 61494
a

https://doi.org/10.1007/978-3-031-11047-4_9

238 9 Exploratory methodology for power delivery

dynamic voltage and frequency scaling (DVFS) based on system temperature and
workload.

Despite the maturity of the field, power delivery in VLSI systems is rarely
approached from a constrained optimization perspective. In [534], quadratic pro-
gramming methods are exploited to reduce the impedance profile of the power
delivery network at frequencies of interest by sacrificing the impedance at less
relevant frequencies. More recent work [535] utilizes differential evolutionary
optimization to suggest the impedance profile of a physical structure. A significant
omission in the literature is the almost exclusive focus on optimizing the electrical
parameters, only indirectly addressing external metrics such as power and cost.
Constrained global optimization provides a natural framework for design explo-
ration of power delivery systems. The primary strength of the proposed technique
is flexibility, allowing different design objectives and constraints to be considered
including thermal and cost parameters. The subsequent sections provide a deeper
insight into this proposed methodology. In Section 9.1, the necessary components of
the proposed framework are described. Two case studies are presented in Section 9.2
to demonstrate the validity and discuss the strengths and limitations of the proposed
approach The chapter is concluded by a summary in Section 9.3.

9.1 Optimization framework

The standard design process in the absence of power network design exploration is
shown in Fig. 9.1 [536]. Due to the lack of preliminary information, power delivery
network analysis is performed during the placement and routing stage [536]. If the
circuit does not comply with power quality and voltage drop objectives, the power
network is changed or resynthesized. The verification and redesign processes repeat
until the resulting power network satisfies the required specifications. Due to the
significant time required to evaluate and refine the power delivery network at the
system level, multiple design iterations at later stages of the development process
are highly undesirable, as these changes may cause delays on the order of days.

To mitigate potential losses, the number of power network redesigns needs to
be minimized, preferably to zero. Power delivery exploration can provide valuable
guidelines for power network synthesis, bringing the resulting system close to the
optimal state. Two important characteristics of the early design stages are worth
noting. First, the lack of accurate electrical data creates a high degree of uncertainty
in the power network development process. The assumptions made at this stage are
crucial. Second, before the primary design parameters are fixed, a high degree of
flexibility exists. For example, the number of voltage domains may significantly
affect the efficiency of the system at the expense of additional metal resources or
increased power noise. Exploiting these tradeoffs is crucial to unlocking the full
potential of the overall power delivery system.

9.1 Optimization framework 239

Fig. 9.1 Conventional IC
development process [536]

The proposed power delivery exploration process is illustrated in Fig. 9.2. The
process is general and varies greatly with different inputs. The process starts
with the analysis of the design specifications. A model of the power network
is used to estimate the electrical metrics. Non-electrical metrics of interest are
also identified and certain design flexibilities are identified. After the required
components are characterized, the functions are passed to optimization algorithms.
The result of the optimization process is a set of design guidelines that ensure
proper operation without excessive overdesign. A more detailed explanation of the
proposed exploration process is provided in the following subsections.

9.1.1 Specification of the electrical design requirements

A model of the power delivery network consists of four components: topology,
voltage sources, load currents, and impedances. The topology reflects the relative
placement of the elements within the netlist, supporting a comprehensive circuit
analysis process. Technology information, such as the number of metal layers
or interconnect conductivity, and design specifications, such as the interconnect
dimensions, determine the parameters of the power network model [384]. One
of the simplest and most widespread power network models is the hierarchical

240 9 Exploratory methodology for power delivery

Fig. 9.2 Proposed power network optimization process

model shown in Fig. 9.3 [381], composed of cascaded lumped sections consisting
of series RL segments, representing the interconnects and solder bumps, interleaved
with parallel RLC segments, representing the decoupling capacitors, with an
equivalent series resistance and inductance. More advanced topologies are necessary
to evaluate the information from lower abstraction levels, such as the on-chip mesh
[71, 72]. However, due to the lack of topology information during the early design
phase, the development of a more accurate circuit model of a power network is a
complex task.

The voltage source represents an idealized on-board regulator. For simplicity,
a constant voltage supply is assumed. The main source of power consumption is
modeled as a current source, representing the current delivered to the functional
blocks, on-chip regulators, and leakage current. A current profile is necessary to
evaluate the reliability of the network. Functional block information is used to
model the profile of the load current [537]. Alternatively, the current profile may
be modeled as a constant average current with a worst case current pulse [536].

9.1 Optimization framework 241

Vs CPCB CPkg CDie

Rs,PCB Ls,PCB Rs,Pkg Ls,Pkg Rs,Die Ls,Pkg

Rp,PCB

Lp,PCB

Rp,Pkg

Lp,Pkg

Rp,Die

Lp,Die

PCB Package Die

ILoad

Fig. 9.3 Simplified model of power delivery network for optimization purposes

Once the power network model is determined, the design goals and technology
limitations are converted into a functional form. For example, any limitations on
voltage drop can be represented as

Vdrop = min(VLoad(t))

Vs

, (9.1)

where VLoad(t) is the load voltage and Vs is the supply voltage. The power
distribution efficiency, in turn, is

η = PLoad

Pin

, (9.2)

where PLoad and Pin are, respectively, the power dissipated by the current source
and the total dissipated power. These specifications are necessary to convert the
metrics of interest into the optimization functions.

9.1.2 Specification of non-electrical design requirements

In this chapter, non-electrical parameters are described as the system characteristics
that are not directly inferred from the circuit model of the power network. These
nonelectrical parameters include the on-chip temperature, manufacturing cost of
the components, and area of the circuit elements. An externally supplied model is
required to link the nonelectrical metrics and electric performance of the system. For
example, if the mean time to failure (MTTF) is of concern, optimizing MTTF would
place an upper limit on the current density and temperature, as shown in [538],

242 9 Exploratory methodology for power delivery

MTTF = K

jn
exp
(Ea

kT

)
, (9.3)

where K and n are material and process constants, Ea is the activation energy, k is
the Boltzmann constant, T is the temperature, and j is the current density. Based on
the analysis process, such as the individual currents, combined with external data,
such as the wire dimensions, the current density in all of the elements is estimated
to minimize this metric given the constraints.

9.1.3 Combination of electrical and nonelectrical metrics

The final form of the optimization function is

xopt = min (f (x)) , subject to c(x) ≤ 0, (9.4)

where x and xopt are variables and correspond to the optimal parameter vectors,
f (x) is the function being optimized, and c(x) is a set of constraint functions. The
power delivery exploration process is formulated as in (9.4) to allow the application
of constrained optimization algorithms.

The electrical analysis process needs to provide sufficient information to allow
the nonelectrical metrics to be evaluated. The comprehensive optimization function
requires an expression of the external metrics in terms of the variable parameters,
electrical metrics, or both. For example, with adaption of [539], the MTTF of the
interconnect segment can be approximated in terms of the interconnect dimensions
and current,

MTTF = K1W
nHn

In
rms

exp
(K2W

2H 2

I 2
rms

)
, (9.5)

where W and H are, respectively, the interconnect width and thickness, Irms

is the RMS current through the segment, and K1, K2, and n are process and
material related constants. Electrical metrics, such as the RMS current through
the segment, are evaluated from simulations of the power network. The variable
parameters determine the characteristics of the power network model. For example,
the dimensional parameters can be used to determine the impedance of the circuit
elements. The formulated metrics are combined to create the objective function and
set of constraints.

If multiple design objectives exist, a weighted sum of each objective is used to
minimize each objective. The resulting formulation is shown in (9.6) to (9.9), where
Vs is the supply voltage, W and H are, respectively, the top level interconnect width
and thickness, w1 and w2 are weight parameters, Aint (x) is the total area of the metal
expended for the interconnect, and Vdrop,max and ηmin are design constraints on,
respectively, the voltage droop and efficiency. The objective function is the weighted

9.1 Optimization framework 243

sum of the MTTF and cost, minimizing both metrics. To be satisfied, both c1(x) and
c2(x) need to be greater than or equal to 0, ensuring that the droop is not larger than
Vdrop,max and the efficiency is not less than ηmin.

x = [Vs,W,H] , (9.6)

f (x) = w1

MTTF(x)
+ w2Aint (x), (9.7)

c1(x) = Vdrop(x) − Vdrop,max, (9.8)

c2(x) = ηmin − η(x). (9.9)

9.1.4 Circuit simulation procedure

During the optimization process, the circuit parameters are varied and the cor-
responding electrical parameters are evaluated. An efficient circuit simulator is
the cornerstone of this procedure as the quality and timeliness depend upon the
speed and accuracy of the simulator. Two simulation methods are utilized. The first
method is commercial HSPICE [540] which requires a special interface with the
programming language. The primary advantage of this approach is the versatility
of the simulator. With the variety of available models, a wide range of circuits can
be simulated and, therefore, optimized. The disadvantage of this approach is the
communication overhead between the programming language and HSPICE which
dramatically increases the simulation time.

Another approach is a custom Laplace transform-based simulator, requiring
no interface with the programming language. The Laplace transform is widely
used for simulation and optimization of linear circuits and systems [541, 542].
The primary advantage of this approach is the higher speed of the simulation
due to the lack of communication with an external language and application-
specific code optimization. A significant limitation is the narrow applicability of
the method - only linear systems can be simulated using this approach due to the
Laplace transform. A variety of methods exist, however, to extend the Laplace
transform to nonlinear circuits. In [541], the switching transistors are replaced
with lumped RC elements. A piecewise-linear model is another common approach
for applying Laplace transforms to nonlinear systems. This method is particularly
compatible with sequential switching [543, 544]. A modification of the Laplace
Transform applicable to a certain class of nonlinear systems is introduced in [545].
Incorporating this method into the proposed framework may significantly extend the
applicability of the proposed tool.

244 9 Exploratory methodology for power delivery

Fig. 9.4 Proposed Laplace
transform-based optimization
process

The proposed optimizer is applied to a model of a power network, which typically
consists of passive RL-RLC branches [381]. The active devices, such as a voltage
regulator or load transistors, are replaced with equivalent linear models to offset
the error due to the assumption of linearity, which enables the use of a Laplace
transform-based optimizer. In cases where the power network model is nonlinear
(e.g., a power gated network), typically slower, numerical simulation tools can be
utilized, such as HSPICE [540] or Verilog-AMS [546]. The choice between an active
and passive power network model, therefore, becomes a tradeoff between accuracy
and computational speed.

The Laplace transform-based process is shown in Fig. 9.4. The circuit elements
are represented in the s domain. The fixed parameters are expressed numeri-
cally, while the variables are represented as symbolic variables. For instance,
the impedance of a capacitor with a variable capacitance, fixed equivalent series
resistance of 1 m�, and fixed equivalent series inductance of 10 pH can be
presented as

9.1 Optimization framework 245

Zc = 1m� + 10pH × s + 1

Cs
, (9.10)

where the capacitance C is shown as a symbolic variable, Zc is the equivalent
impedance of the capacitor, and s is the Laplace domain parameter.

After the circuit elements are expressed in the Laplace domain, a modified
nodal analysis is applied. The circuit is modeled in terms of six input matrices,
representing connections and parameter values, as shown in [64]

[
Y B
C D

] [
V
I

]

=
[
J
F

]

, (9.11)

where V and I are, respectively, the node voltages and currents through the voltage
sources, Y is the matrix of nodal admittances, while B, C, D, J, and F encode current
and voltage sources, including controlled sources. The constructed matrix equation
is solved for [V, I]T .

The resulting vector represents the node voltages and source currents in terms of
symbolic parameters in the Laplace domain. Dividing the resulting vectors by the
source produces the transfer function, as shown in

H(s) = bns
n + ... + b0

amsm + ... + a0
. (9.12)

The coefficients of the transfer function are expressed as a function of the variable
parameters,

bi = fi,num(x), (9.13)

ai = fi,den(x). (9.14)

While the aforementioned procedure is computationally expensive, requiring a
solution of the symbolic matrix system, the process only needs to be performed
once for a particular circuit topology. Modifications of the variable parameters only
change the value of the coefficients, bn...b0 an...a0, while the symbolic representa-
tion remains intact. The speedup due to the proposed simulator is, therefore, largely
dependent upon the number of iterations N during the optimization process. The
speedup is estimated as

Speedup = tn
tsetup

N
+ tL

, (9.15)

where tn and tL are the time per iteration using, respectively, numerical analysis
and the Laplace transform-based simulator, and tsetup is the time required to
determine the transfer function (9.12). Note that typically tsetup > tn > tL, thus

246 9 Exploratory methodology for power delivery

the speedup converges to a positive value with large N , while approaching zero with
small N . Since most optimization procedures require a large number of iterations
to determine the global minimum, the creation of a symbolic transfer function
represents a negligible fraction of the total computational time.

To simulate the transfer functions and extract the numeric data, the coefficients
of the transfer functions of interest are calculated and converted into a state
space model. A variety of efficient state space model simulation packages are
available, such as LAPACK [547] and LTITR [548]. The input waveform and
state space model are passed to the simulators to calculate the output waveform.
This approach achieves significant speedup as compared to conventional, purely
numerical algorithms. Applying a state-space model, the output waveform can be
determined without solving the matrix equation during each time step. Conversion
of a circuit into a matrix form is performed only once, greatly reducing the
computational overhead. With the large number of circuit simulations during the
optimization process, significant optimization speedup is achieved, as described in
Section 9.2.

9.2 Case studies

Two practical case studies are presented in this section. Allocation of area for
decoupling capacitors within a single rail system is analyzed in Subsection 9.2.1.
The cost of decoupling capacitor placement is minimized while satisfying power
consumption and the voltage droop constraints. The framework is then applied to a
multi-rail system to determine the optimal number of voltage domains as described
in Subsection 9.2.2.

9.2.1 Single rail system

A typical power network represented by serially cascaded RL branches and parallel
RLC branches is shown in Fig. 9.5. A three-level power network including the PCB,
package, and die levels is considered here. The series resistance and inductance of
the power network are assumed fixed. The on-die parallel inductance is neglected
assuming point-of-load on-die decoupling capacitors with small inductance [511].
The profile of the load current has been adapted from [536] and shown in Fig. 9.6(a).
The load current profile models the fluctuations of the workload during system
operation. The supply voltage is used as a design variable to explore the effects
of supply voltage on system performance. Other controllable parameters are the
number and magnitude of the decoupling capacitors within the PCB, package, and
die levels. Minimization of the decoupling capacitor placement cost is the primary
objective of this case study, subject to power consumption, power quality, and
frequency requirements.

9.2 Case studies 247

5V

5m 100pH

5m

5µF

50pH

2m 25pH

3m

50nF

5pH

1m 5pH

1m

5nF
ILoad

PCB Package Die

Fig. 9.5 Model of 1-D power delivery network with initial parameters

9.2.1.1 Optimization setup

The cost of each system level (PCB, package, die) is assumed to be a function of
the physical area which is affected by the area of the decoupling capacitors. The
decoupling capacitor placement cost Qdie is

Qdie = wdieAdie, (9.16)

where Adie is the area of the on-chip decoupling capacitor and wdie is the cost of
the unit on-die area. The total cost of the decoupling capacitors is therefore

Q = 1

ε0

∑

i∈S

wiCidi

εi

, (9.17)

where S is the set of levels in the system (e.g., PCB, package, and die), ε0 is the
permittivity of free space, Ci is the parallel plate capacitance at level i, and di and
εi are, respectively, the insulator thickness and relative permittivity at level i.

The oxide thickness and dielectric constant are described in [549–551]; however,
the cost per area is not as clear. Based on the review of publicly available cost
information [552–556], the cost per unit area of a package is approximately 3 to 6
times greater than the cost of unit PCB area, and approximately 3 to 10 times lower
than the cost of unit die area. To simplify the cost estimate, the cost per unit area of
a PCB is normalized to 1, the package area cost is assumed to be 4.5, and the cost
per unit on-die area is assumed to be 20.25, 4.5 times greater than the cost per unit
area of the package. The normalized cost estimates used in this case study are listed
in Table 9.1.

Note the important tradeoffs that affect the optimization process [381]. A
higher supply voltage enhances the speed but significantly increases the power

248 9 Exploratory methodology for power delivery

Fig. 9.6 Waveform of power network, a) load current adapted from [536], and b) load voltage
with initial and optimized parameters

Table 9.1 Parameters of decoupling capacitor cost

Parameter Die Package PCB

Cost per unit area, normalized 20.25 4.5 1

Insulator thickness 0.9 nm [549] 12 μm [550] 250 μm [551]

Insulator permittivity 3.9 [549] 4.6 [550] 4.5 [551]

consumption. Insertion of parallel decoupling capacitances is a powerful technique
for reducing ripple currents since the high frequency components of the current
bypass the load. Larger decoupling capacitors, however, require significant on-chip
area, leading to greater system cost.

9.2 Case studies 249

The target constraint metrics are power consumption, power quality, and speed.
The power consumption is directly measured through simulation, and the corre-
sponding constraint function is

c1(x) = P − Pmax, (9.18)

where c1(x) is the initial constraint function, P is the measured power, and Pmax

is the upper bound on the power consumption. Since the constraint function is
negative, (9.18) ensures that the power dissipation does not exceed the maximum
allowable power level.

For frequency, the constraint is

tp,CP ≤ Tmin, (9.19)

where tp,CP is the propagation delay of the critical path and Tmin is the lower
bound on the clock period. Evaluation of this metric, however, is computationally
expensive and requires identification of the critical paths and extensive parameter
extraction. This level of precision is typically not available during the early stages
of the design process. In this case, accuracy is sacrificed for higher computational
efficiency. The load voltage is, therefore, used as the speed metric,

c2(x) = Vmin − min(Vload(t)), (9.20)

where VL(t) is the instantaneous voltage at the load, and Vmin is the minimum
voltage to maintain reliable high speed operation.

The third design constraint is power quality, described as voltage fluctuations,
and is formulated as

c3(x) = max(Vload(t)) − min(Vload(t))

Vrail

− �Vmax, (9.21)

where Vrail is the supply voltage, and �Vmax is the maximum allowed fluctuation.
The optimization constraints are listed in columns two and three of Table 9.2.

9.2.1.2 Optimization results

The Interior Point Algorithm, part of MATLAB Optimization Toolbox [557] and
HSPICE [540], is used in this case study. The optimization functions, circuit
parameters, and external parameters are inputs to the optimization algorithm. The
optimization procedure has been run on an Intel Core i7-6700 3.40 GHz 8-core
computer using different initial conditions to avoid any local minima. The initial
parameters that produce the lowest cost under specified constraints are listed in
column four of Table 9.2.

250 9 Exploratory methodology for power delivery

Table 9.2 Optimization constraints, with initial and optimal parameters

Lower Upper Initial Optimized
bound bound value value

Supply voltage 1.4 volts 10.0 volts 5.0 volts 3.09 volts

PCB decap 25.0 nF 10.0 μF 5.00 μF 2.71 μF

Package decap 50.0 pF 100 nF 50.0 nF 9.77 nF

Die decap 2.00 pF 10.0 nF 5.00 nF 9.32 nF

Minimum load voltage 1.40 volts — 2.96 volts 2.94 volts

Power dissipation — 10.0 watts 10.6 watts 6.51 watts

Load voltage — 10.0% 19.3% 9.07%

Normalized cost — — 0.317 0.270

The optimization process is completed in 28 seconds, requiring 66 function
evaluations to converge. The load voltage waveforms are shown in Fig. 9.6(b). The
power network initially exhibits an underdamped response, resulting in relatively
large droops and overshoots. After optimization, the voltage fluctuations are reduced
in the optimized power network by choosing an appropriate decoupling capacitor.
The reduction in the load voltage fluctuations allows the supply voltage to be scaled
since fluctuations are less likely to drop below the minimum allowed level. Reducing
the supply voltage, in turn, leads to lower power dissipation.

The optimization results are listed in column five of Table 9.2. As compared to
the initial suboptimal parameters, the cost has decreased by almost 15% from 0.317
to 0.270. The initial parameters do not satisfy the power dissipation and load voltage
constraints. A 38.6% reduction in power consumption is achieved, from 10.6 watts
to 6.51 watts. Most of the reduction in power originates from the reduced supply
voltage, from 5 volts to 3.09 volts. In addition, a 53% decrease in fluctuations is
achieved, from 19.3% to 9.07%. As a result, the optimized parameters satisfy the
target requirements, including the power and voltage constraints.

9.2.2 Multiple rail system

The problem of choosing the optimal number of rails is an important power delivery
exploration issue. Utilizing several voltage domains may bring considerable savings
in terms of power, while achieving performance goals [361]. At early stages of
the design process, planning the circuit topology is problematic since the resulting
power delivery characteristics are difficult to estimate in advance. In particular, it
is unclear whether the power network is sufficiently conductive to satisfy voltage
droop requirements. Separation of the low voltage circuitry from the rest of the
IC is an attractive option to reduce power consumption due to the quadratic

9.2 Case studies 251

Table 9.3 Voltage domain specifications of power delivery network adapted from [558]

Power
Rail #

Voltage, V Current, mA Peak slew
Functionnetwork max min max min rate, A/μs

A A1-4 1.42 0.97 5,830 416 1,000 CPU core

A5 1.20 0.99 3,150 225 500 GPU

A6 1.33 1.00 10 1 500 USB

A7 1.93 1.67 10 1 500 GPS

A8 1.93 1.72 30 1 500 DSP

A9 1.93 1.67 10 1 500 Camera

A10 1.93 1.67 10 1 500 Audio

A11 1.93 1.67 1,500 58 500 LTE+WiFi

A12 1.55 1.00 3,150 225 500 Memory
B B1-4 1.42 0.97 5,830 416 1,000 CPU core

B5 1.20 1.00 3,160 226 * GPU+USB

B6 1.93 1.67 1,500 58 500 LTE+WiFi

B7 1.93 1.72 60 4 * GPS+DSP+
Camera+Audio

B8 1.55 1.00 3,150 225 500 Memory
C C1 1.42 1.00 26,470 1,889 * CPU+Memory

C2 1.20 1.00 3,160 226 * GPU+USB

C3 1.93 1.72 1,560 62 * GPS+DSP+Camera
+Audio+LTE+WiFi

relationship between power consumption and operating voltage. The scaled voltage
is, however, less robust to sudden load current fluctuations, possibly violating droop
requirements, allowing the device to malfunction. Moreover, utilizing separate
power networks requires less metal resources for each rail, resulting in a power
delivery network exhibiting higher impedance.

To investigate this problem, three power networks are considered, twelve rail (A),
eight rail (B), and three rail (C) systems. The impedance characteristics of these
networks are based on [558] and assume the power network topology shown in
Fig. 9.3. The rail specifications are listed in Table 9.3. The maximum and minimum
voltages represent the range of allowed values of the voltage. The model of the load
current is a worst case triangular current waveform [532].

In system B, the rails with the closest voltage levels are merged to minimize
energy losses due to the voltage conversion process. Rail A5 is merged with rail A6
to produce rail B5, and rails A7 through A10 are merged into rail B7, resulting in
the eight rail system B. Further, rails B1 to B4 and B8 are merged, while rail B6 is
merged with rail B7 to produce the three rail system C. The variables are the voltage
supply of each rail, as well as the decoupling capacitance at each level of each rail.

252 9 Exploratory methodology for power delivery

For simplicity, the power rails are assumed to be mutually isolated, allowing each
rail to be evaluated separately.

The objective of the design exploration process is to determine the set of rails
that delivers the lowest possible cost of decoupling capacitance area. The objective
function of the multiple rail system is adapted from (9.17),

Q = 1

ε0

∑

j∈D

∑

i∈Sj

wiCidi

εi

, (9.22)

where D is the set of rails (voltage domains), and Sj is the set of layers of the power
network (printed circuit board (PCB), package, or die) within the rail j .

Moving the decoupling capacitance farther from the load makes the system
more vulnerable to inductive noise [493], limiting the cost benefits of a small
on-chip capacitance. The greater fluctuations in the load voltage result in a need
for a higher voltage supply to offset the potential voltage droops, resulting in
higher power consumption. In addition, the inductive system response may result
in significant overshoots [354] that may damage the transistors. For each rail in
D, the aforementioned tradeoffs are expressed as constraint functions, as shown in
(9.23) to (9.25),

c1(Vs, CPCB,CPkg, CDie) = Vload,min − min(Vload(t)), (9.23)

c2(Vs, CPCB,CPkg, CDie) = max(Vload(t)) − Vload,max, (9.24)

c3(Vs, CPCB,CPkg, CDie) = Ptotal − Pmax, (9.25)

where Vload(t) is the waveform of the load voltage, Vload,min and Vload,max

are, respectively, the minimum and maximum bounds on the load voltage, and
Powertotal and Powermax are, respectively, the total power consumption and upper
limit on the consumed power. The constraint functions place strict requirements
on the quality of the power rails. If the voltage waveform violates the constraint
functions, the objective function (or cost) is severely penalized, invalidating the
result.

The power network model used in this case study does not include any nonlinear
elements. A Laplace transform-based simulator has therefore been chosen. Particle
swarm optimization is chosen as the optimization algorithm due to the robustness
and efficiency characteristics of this algorithm. The optimization procedure is run on
an eight core 3.40 GHz Intel Core i7-6700 machine. The results for 23 separate rail
configurations are obtained in 26 minutes, with an average time of 67 seconds per
rail. The results of the optimization are shown in Fig. 9.7. Note that the lowest value
of the objective function is achieved with eight rails. In the eight rail and twelve
rail scenarios, certain rails (e.g., rails seven to eleven in the twelve rail scenario) do

9.2 Case studies 253

Fig. 9.7 Decoupling capacitor placement for three power delivery networks

not require decoupling capacitors due to the low load currents and high tolerance to
variations.

To evaluate the benefits of the Laplace Transform optimization process, a
similar optimization is performed using HSPICE [540]. The optimization results are
identical to those results obtained from the Laplace transform optimization process
due to the absence of nonlinear elements in the model. The total computational time,
however, is 265 minutes, ten times greater than the Laplace simulator.

Distribution of the decoupling capacitor costs across the voltage domains
normalized to the least expensive system is shown in Fig. 9.7. Certain patterns
can be inferred. Comparing the eight and twelve rail systems, allocation of metal
resources for separate power rails is unjustified from a cost perspective. The higher
contribution of the CPU cores (A1 to A4) in the twelve rail network indicates that
voltage fluctuations in this network are greater due to less metal resources allocated
to each CPU rail, as compared to the eight rail system. The combination of rails
A5 and A6 allocates more metal resources for both networks, resulting in reduced
decoupling capacitor cost in combined rail B5.

As compared to the three rail system, where rails B1 to B4 and B8 (CPU
cores and memory) are merged into a single voltage domain, the three rail system
requires a large decoupling capacitance for the combined rail C2. The reason for the
increased decoupling capacitance is the poor compatibility between voltage ranges.
While rails B1 to B4 require a range of 0.97 to 1.42 volts, rail B8 has a range of
1.00 to 1.55 volts. The combined rail, therefore, needs to satisfy both ranges and is
effectively shrunk to 1.00 to 1.42 volts, placing greater limitations on the voltage
fluctuations. The narrow voltage range is compensated by placing a larger on-chip
decoupling capacitance, increasing the overall cost of the power network.

A conventional power network design process may require a series of late design
backtracking iterations to satisfy target noise performance requirements [559, 560].
Assuming that the post-floorplan power network model requires time tsim for
simulation and tcorrect for hotspot correction, and N iterations are required to reach
the acceptable characteristics, the total time for the power integrity analysis process
without early exploration is

254 9 Exploratory methodology for power delivery

tnoEE = (N − 1)tsim + Ntcorrect , (9.26)

where, typically, tsim and tcorrect are on the order of hours and days, and N

typically ranges between two and ten iterations. Alternatively, early power delivery
exploration requires time texp, which may require several hours to complete. An
expected result of the power delivery exploration process is a significant reduction
in the number of iterations. Assuming the updated number of iterations is Nnew, the
total time for the power integrity analysis process is

tEE = texp + (Nnew − 1)tsim + Nnewtcorrect . (9.27)

The savings in time due to the early power integrity analysis process is

tnoEE − tEE = (N − Nnew)(tsim + tcorrect) − texp, (9.28)

therefore, to ensure that the power delivery exploration is justified from the
perspective of computational time, the following condition must be satisfied:

(N − Nnew)(tsim + tcorrect) > texp. (9.29)

Note that typically tsim + tcorrect > texp, therefore, to justify early design
exploration, it is sufficient to reduce the number of post-floorplan backtracking
iterations, i.e., Nnew < N .

The proposed early power delivery exploration framework may reduce the
number of costly iterations by providing an estimate of the optimal parameters
at an earlier phase of the development process, shrinking both time and labor.
The non-electrical parameters, such as area and cost, are combined with the
electrical parameters to produce a system with minimum cost while satisfying target
performance metrics. This approach provides useful information for early system
exploration, allowing more effective design decisions to be made.

Several limitations of the proposed framework exist. First, the computational
time largely depends upon the circuit simulator. Therefore, optimization of more
complex circuits with a larger number of nodes may require significant computa-
tional time. A Laplace transform-based simulator is proposed for optimization of
linear circuits. The speedup due to the Laplace transform-based simulator, however,
largely depends upon the number of iterations during the optimization process.
Second, a function for the metrics of interest needs to be determined to conduct
the power delivery exploration process. Practical assumptions, therefore, need to be
made to achieve useful results. An issue of premature convergence exists, resulting
in the optimization converging to a local minimum rather than a global minimum
[527]. It is, therefore, necessary to ensure that the design space is thoroughly
explored, for example, by increasing population sizes (evolutionary algorithms),
mutation and migration rates (genetic algorithm), swarm velocities and inertia
(particle swarm), and the initial temperature and frequency of reheating (simulated
annealing).

9.3 Conclusions 255

9.3 Conclusions

A versatile methodology for power delivery design exploration is described in
this chapter. The primary strength of the framework is applicability to a wide
range of objectives and constraints, including external, non-electrical parameters.
The procedure supports the application of robust, general purpose algorithms to
solve power delivery problems. A fast, optimization oriented Laplace transform-
based simulator is described. Limitations of the proposed framework include
the dependence on the computational time of the circuit simulator, the need for
optimization functions during the preliminary design stages, and careful tuning of
the optimization algorithms. The effectiveness of the framework is demonstrated
by a case study, where the appropriate power delivery network is chosen among
existing options.

Chapter 10
SPROUT - Smart Power ROUting Tool
for board-level exploration and
prototyping

Modern high performance VLSI systems require stable power [384]. Voltage
scaling combined with shrinking interconnect dimensions and increasing current
consumption result in significant power noise, degrading power integrity [561]. Fast
transition times significantly broaden the spectrum of the power noise [66]. Different
strategies are employed at the die, package, and board levels to mitigate this power
noise. The board-level power delivery network is a crucial component of the power
delivery system, connecting the power management integrated circuit (PMIC) with
the die or package. Careful design of the board level power delivery system is crucial
for connecting the power management IC with the package or die as well as the on-
board decoupling capacitors.

The flow of the power delivery design process for printed circuit boards (PCB)
is illustrated in Fig. 10.1. The quality and cost of the PCB is governed by a set of
system-level parameters, such as the location and model of the components, and
the number and thickness of the metal layers. These parameters affect the floorplan
and placement of the components. After the location of the components is known,
the power management IC is connected to the target ball grid array and decoupling
capacitors. If the impedance profile of the resulting layout does not satisfy the target
requirements, the layout is iteratively adjusted. These adjustments range from minor
changes to the routed shape to altering the entire floorplan. Several iterations are
often necessary to comply with the target impedance requirements [562].

The influence of the system parameters on power integrity and cost is quali-
tatively well understood. For example, adding decoupling capacitors would likely
reduce the inductive noise while adding cost [75, 510]. Quantifying these effects
prior to floorplanning and routing is however difficult. Due to the lack of information
at early stages of the system design process, the system level parameters are
often arbitrarily chosen. These power delivery systems may fail to satisfy target
impedance requirements, leading to a costly redesign process. Early exploration of
the design space may eliminate or decrease the number of layout adjustments at
later stages of the design process.

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
R. Bairamkulov, E. G. Friedman, Graphs in VLSI,
https://doi.org/10.1007/978-3-031-11047-4_10

257

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-11047-4_10&domain=pdf

 -2016 61494 a -2016 61494 a

https://doi.org/10.1007/978-3-031-11047-4_10

258 10 SPROUT - Smart Power ROUting Tool for board-level exploration...

Fig. 10.1 Conventional design flow for power delivery networks for printed circuit boards.

The objective of the proposed Smart Power ROUTing algorithm for printed
circuit boards (SPROUT) is to produce a prototype of the power network based on
a target set of design parameters (see Fig. 10.2). The resulting layout is suitable for
impedance extraction. Therefore, the impedance of the layout based on the target set
of design parameters may be efficiently and automatically evaluated. This capability
supports a more rigorous evaluation of the design space and better exploration
of design tradeoffs, such as cost and performance. An informed choice of design
parameters early in the development process reduces the likelihood of not satisfying
the target impedance. In addition, the layout prototype may guide the final layout,
further accelerating the development process.

Unlike automated signal routing, which is extensively studied in the literature,
the automated synthesis of board-level power nets has received minimal attention
[65]. Most works in the literature focus on the analysis of existing power deliv-
ery networks. For example, in [468, 563–565], fast methods for estimating the

10 SPROUT - Smart Power ROUting Tool for board-level exploration... 259

Fig. 10.2 Proposed prototyping flow for printed circuit boards using SPROUT. The PCB layout
parameters are the inputs to SPROUT that produce a prototype of the power network. The parasitic
impedance of the prototype is estimated. This process is repeated for different sets of system-level
parameters. The power, performance, and cost of each prototype is evaluated and compared to
other prototypes to determine the most favorable system parameters.

impedance of board-level power networks are described. In [566], a simplified
circuit model is described to evaluate inductive power noise. An accurate PCB
analysis methodology is proposed in [567] where the finite difference model is
integrated with SPICE. Methods for enhancing electromagnetic compatibility and
power integrity are discussed in [493, 568–571].

SPROUT is the first automated power network prototyping algorithm for PCBs.
The remaining portion of this chapter is organized as follows. In Section 10.1, the
power routing algorithm is described. The algorithm is validated using industrial
case studies in Section 10.2. Some conclusions are provided in Section 10.3.
A modification of SPROUT to support multilayer routing is presented in the
Appendix C.

260 10 SPROUT - Smart Power ROUting Tool for board-level exploration...

10.1 SPROUT algorithm

A typical board-level layout consists of several metal layers, each separated by a
dielectric layer. The connections between the layers are provided by vias. SPROUT
uses layer information, design rules, and placement data to produce an initial
layout. The objective of the algorithm is to generate a shape connecting the
power management IC with the target ball grid array (BGA) balls and decoupling
capacitors while complying with the design rules and minimizing the impedance
between the terminals. Note that the resulting prototype is not the final topology
but a prototype used to estimate the effects of the design parameters on system
performance.

Similar to many signal routing algorithms, SPROUT works in the graph domain,
permitting the exploitation of powerful graph-based algorithms. An overview of the
proposed algorithm is shown in Fig. 10.3. The space available for routing is initially
determined from the input layout, as described in Subsection 10.1.1. This layout is
converted into a graph and the initial seed connection is established between the
terminals as described in, respectively, Subsections 10.1.2 and 10.1.3. SmartGrow

Fig. 10.3 Overview of SPROUT algorithm. The available space An is converted into an equivalent
graph �n. The subgraph seed �s

n is generated by SPROUT and expanded using the SmartGrow
algorithm described in Subsection 10.1.4. After achieving the target area, the nodes in �s

n are
rearranged using the SmartRefine algorithm to enhance the electrical characteristics. The final
subgraph is converted into a physical layout.

10.1 SPROUT algorithm 261

Fig. 10.4 One VSS (vertical hatch), two VDD (horizontal hatch) via pads (dark), and buffers (light).
a) Initial layout. b) The connection to the VDD vias is invalid since the buffer around the VDD

connection overlaps the VSS via, and the VDD connection overlaps the VSS via buffer. c) Example
of valid routing. Neither the VDD nor the VSS buffer intersects the vias or connections of a different
net. Note that the VDD connection can be placed in the buffer around the VDD vias because both
the via and connection belong to the same net.

and SmartRefine algorithms are introduced in, respectively, Subsections 10.1.4
and 10.1.5. Using these algorithms, the impedance between the terminals is
iteratively reduced by adding and rearranging the nodes. A subgraph reheating
technique, inspired by simulated annealing, is proposed in Subsection 10.1.6 where
the size of the graph is temporarily increased to reduce the probability of a
suboptimal graph impedance. In Subsection 10.1.7, the placement of the resulting
graph into the original layout is described. The complexity of SPROUT is discussed
in Subsection 10.1.8.

10.1.1 Available routing space

An assessment of the available space commences with processing the input informa-
tion. Each element of the layout is converted into a polygon with four parameters,
layer, net, geometry, and buffer. To understand each component, consider three vias
placed on the top layer of a PCB (see Fig. 10.4a). The via pads are converted into
polygons. Assuming the vias are placed on layer 1, the layer parameter of the
corresponding polygons is 1. Each capacitor pad is assigned a net, namely VDD

and VSS . The geometry of each pad is expressed as an ordered set of coordinates.
To decrease the likelihood or minimize the effect of manufacturing defects such as
unintended shorts, spurs, underetches, and electromagnetic interference [572], each
geometry is assigned a buffer. This buffer ensures polygons from different nets are
properly spaced. To illustrate the buffering process, consider the example shown
in Figs. 10.4b and 10.4c. Contact between the two VDD vias is not possible using
a straight interconnect segment because this segment intersects the buffer of the
VSS via, and the via intersects the buffer of the interconnect. The bent interconnect
segment shown in Fig. 10.4c produces a valid connection since the geometries do
not intersect the buffers of the other nets. Note that it is legal for a VDD polygon to
cross a VDD buffer because these polygons belong to the same net.

262 10 SPROUT - Smart Power ROUting Tool for board-level exploration...

Fig. 10.5 Available space (shaded) for V1 in two layouts. a) Layout (left) where routing from the
pad on the left to four vias is possible, as evident from the connected available space (right). b)
Layout (left) where connecting a pad with a via is not possible within a single layer due to the
disjoint available space (right).

The entire design space U is initially viewed as available for routing. The
available space An for a particular net n is determined by removing buffers of the
other nets from the design space.

An = U \
⋃

nj �=n

bj . (10.1)

Polygon removal is achieved by utilizing efficient polygon clipping algorithms
[573, 574] that require negligible time, as discussed in Subsection 10.1.8. After
removal, the available space on each layer may become disjoint, leaving no valid
path between terminals on the same layer, as illustrated in Fig. 10.5. In this case,
routing is accomplished using multiple layers. Based on the algorithm described in
Appendix C, the multilayer routing problem is decomposed into several single layer
routing problems.

10.1.2 Equivalent graph

Once the available space of the layout is determined, it is converted into an
equivalent graph �n. The available space An is divided into tiles an. Using a bijective
map,

f : An ↔ �n, (10.2)

each tile an becomes a node γn within the graph. This mapping is recorded and
used in the last stage of the algorithm to convert each node back into a tile. The

10.1 SPROUT algorithm 263

Fig. 10.6 Conversion of the available space for net V2 into an equivalent graph. a) The available
space is split into unit cells. Cells with irregular shapes are shaded. b) Equivalent graph. The tiles
overlapping vias are treated as a single node. Nodes are not generated in prohibited areas.

A B C
a)

A B C
b)

Fig. 10.7 Conversion of irregularly shaped tiles into equivalent graph. a) Tiles A and B have a
twice wider contact than tiles B and C, and b) nodes A and B have double conductance as compared
to nodes B and C.

dimensions �x and �y of the tiles are set in advance and affect the performance
of the algorithm, as described in Subsection 10.1.8. Finer tiling produces smoother
shapes and a smaller resistance at the cost of additional runtime. Due to the irregular
shape of the available space, tiles near the boundaries may be irregular in shape, as
shown in Fig. 10.6.

The adjacent vertices in the equivalent graph are connected with edges, pro-
ducing a mesh structure [71, 72]. To mimic the electrical behavior of the rail,
the weight of the edges is proportional to the conductance between adjacent
tiles. An accurate estimate of the resistance between arbitrary shapes requires
computationally expensive methods, such as the finite element method [575]. For
routing, however, a more efficient heuristic is proposed. The conductance of each
edge is proportional to the width of the contact between two corresponding tiles.
For example, the conductance between tiles A and B in Fig. 10.7 is twice larger than
the conductance between tiles B and C due to the wider contact.

264 10 SPROUT - Smart Power ROUting Tool for board-level exploration...

Algorithm 1 Convert available space An into equivalent graph �n using tiles of size
(�x,�y)

1: procedure SPACETOGRAPH(An,�x,�y)
2: Vn ← ∅

3: En ← ∅

4: [xmin, xmax, ymin, ymax] ← bounds(An)

5: nx ← ⌊ xmax−xmin

�x

⌋

6: ny ←
⌊

ymax−ymin

�y

⌋

7: for i = 0, 1, 2, . . . , nx do
8: xi

min ← x + i�x, xi
max ← x + (i + 1)�x

9: for j = 0, 1, 2, . . . , ny do
10: y

j
min ← y + j�y, y

j
max ← y + (j + 1)�y

11: boxi,j ← rectangle({xi
min, y

j
min}, {xi

max, y
j
max})

12: celli,j ← boxi,j ∩ An

13: if celli,j �= ∅ then
14: Add celli,j to Vn

15: overlapy = celli,j ∩ celli,j−1
16: if overlapy �= ∅ then

17: Add {celli,j ,celli,j−1,
length(overlapy)

�x
} to En

18: overlapx = celli,j ∩ celli−1,j

19: if celli,j ∩ celli−1,j �= ∅ then
20: Add {celli,j ,celli−1,j ,

length(overlapx)
�y

} to En

21: return �n = (Vn,En)

10.1.3 Seed subgraph

Once the available space is converted into the equivalent graph �n, the power
routing problem is transformed into finding the subgraph �s

n ∈ �n connecting the
terminal nodes such that the resistance between terminals is minimized. The order
of the subgraph |V s

n | is limited by the preset area constraint Amax . In SPROUT,
the routing process commences with determining the initial connection between
the source and target terminals. The location of the source and target terminals is
supplied externally as a set Tn = {t1

n, . . . , tkn}. Efficient routing algorithms exist
to determine the shortest path, such as Dijkstra [576] and Bellman-Ford [195].
This seed subgraph is iteratively improved using SmartGrow and SmartRefine
algorithms, as described in, respectively, Subsections 10.1.4 and 10.1.5.

To generate the seed subgraph, the shortest path is determined for each pair of
nodes, as shown in Fig. 10.8a. The resulting subgraph can be directly passed to
the SmartGrow algorithm. To accelerate convergence, however, the nodes located
within the boundary of the seed are added to the subgraph, producing a subgraph
without voids, as illustrated in Fig. 10.8b.

10.1 SPROUT algorithm 265

Fig. 10.8 Example of graph-based routing process among three terminals. a) Initial seed subgraph,
b) voidless subgraph after filling the internal voids, c) initial stage of subgraph growth, and d) final
stage of subgraph growth. Areas with large current are reinforced with new nodes. e) Initial stage
of the refinement process. Areas with small current, specifically those nodes near the terminals,
are replaced by nodes in the areas of current crowding, i.e., closer to the obstacles. f) Final stage
of the refinement process. The reduction in impedance is negligible, triggering termination of the
algorithm.

Algorithm 2 Set of terminal polygons Tn to identify the corresponding nodes in �n

and the adjacent terminal nodes
1: procedure IDENTIFYTERMINALS(�n, Tn = t1, . . . , tk)
2: � = {θ1, . . . , θk}
3: for i = 0, 1, 2, . . . , k do
4: for each vertex v ∈ Vn do
5: if v ∩ ti �= ∅ then
6: Add v to θi

7: identify nodes in θi

8: return �n = (Vn,En),�

10.1.4 Growth stage

The seed subgraph typically exhibits high resistance. The impedance of the sub-
graph can be improved by increasing the order |V s

n | of the subgraph. To identify
those parts of the subgraph that benefit most from reinforcement, a node current

266 10 SPROUT - Smart Power ROUting Tool for board-level exploration...

metric is introduced here. Those regions within the subgraph with the highest
node current metric indicate a high current density. Additional nodes would likely
produce a significant reduction in the impedance. In contrast, those regions with a
smaller node current would produce a negligible reduction in impedance, resulting
in suboptimal allocation of metal resources. These low current density regions are
therefore left unchanged.

Algorithm 3 Generate voidless seed subgraph Γ s
n = (V s

n ∈ Vn,E
s
n ∈ En) such that

terminals in set Θn ∈ Vn are connected.
1: procedure SEED(Γn,Θn = {θ1, . . . , θk})
2: V s

n ← ∅

3: for each node θi in Θn do
4: paths ← shortestpath(Γn, θi, {θi + 1, . . . , θk})
5: Add paths to V s

n and Es
n

6: poly ← exterior(
⋃

(V s
n))

7: for each node v in Vn do
8: if v ∩ poly �= ∅ then
9: Add v to V s

n

10: Add edges adjacent to v to Es
n

11: return Γ s
n = (V s

n , Es
n)

The node current metric is evaluated in three stages. The current is initially
injected into each pair of terminals. The magnitude of the current is proportional to
the expected current carried by the connection. For example, those pairs of terminals
with large current, e.g., between the PMIC and the BGA balls, are injected with
larger current as opposed to those pairs requiring relatively smaller current, such
as connections between BGA balls. This current injection process is expressed as
a current injection matrix, E ∈ R(|�S |−1)×npairs . Each column of E corresponds to
a node within the subgraph. All entries in E are zero except the two nodes where
current i is injected. The value of these currents is, respectively, +i and −i. The
voltage distribution for each current injection is determined using nodal analysis,

V = L−1E, (10.3)

where L is a grounded Laplacian matrix. The current J within each edge is
determined by multiplying the voltage matrix V by the weighted directed incidence
matrix B of subgraph �s

n,

J = BV = BL−1E. (10.4)

The total current carried by an edge is the sum of the absolute value of the current
for each pair of terminals. The node current is the sum of the total current in the

10.1 SPROUT algorithm 267

adjacent edges. Thus, the nodes adjacent to the edges carrying large current exhibit
a large node current.

Algorithm 4 Evaluate the current metric for each node in subgraph Γ s
n and set of

terminals Θ ∈ Γ s
n .

1: procedure NODECURRENT(Γ s
n ,Θ)

2: N = |Γ s
n |

3: [Θ]2 = {θ ′ ⊆ Θ | |θ ′| = 2}
4: Npairs ← |[Θ]2|
5: L ← Laplacian matrix of Γ s

n

6: E ∈ R
(N−1)×Npairs

7: for each pair (s, t) in [Θ]2, i = 1, 2, . . . , Npairs do
8: Es,i ← 1
9: Et,i ← −1

10: solve(LV = E)
11: J ∈ R

N

12: for p ∈ Γ s
n do

13: Jp ←∑Npairs

i=1

∑
j∈N(Γ s

n ,i) gpj |Vi − Vj |
14: return J

Algorithm 5 Given available space graph Γn, seed subgraph Γ s
n , and set of terminals

Θ ∈ Γ s
n , add k nodes from Γn to Γ s

n to reduce the impedance of the subgraph.

1: procedure SMARTGROW(Γn, Γ
s
n ,Θ, k)

2: V c
n ← Vn \ V s

n

3: [Θ]2 = {θ ′ ⊆ Θ | |θ ′| = 2}
4: Npairs ← |[Θ]2|
5: J ← NODECURRENT(Γ s

n ,Θ)

6: J c ∈ R
|V c

n |
7: for p ∈ V c

n do
8: J c

p ←∑j∈N(Γn,p),j∈Γ s
n

Jj |
9: for i = 1, 2, . . . , k do

10: m ← {c | Jc = max(J)}
11: V s

n ← V s
n ∪ m

12: J ← J \ m

13: Γ s
n ← Gn[V s

n]
14: return Γ s

n

The boundary of subgraph �s
n is defined as C, a set of nodes in �n adjacent

but not belonging to �s
n. The nodes in C adjacent to the nodes in �s

n with the
highest current are added to the subgraph along with the corresponding edges.

268 10 SPROUT - Smart Power ROUting Tool for board-level exploration...

Algorithm 6 Given available space graph �n, subgraph �s
n, and set of terminals

� ∈ �s
n, replace k nodes in �s

n by k nodes from �n to reduce the impedance of the
subgraph.

1: procedure SMARTREFINE(�n, �
s
n,�, k)

2: J ← NODECURRENT(�s
n,�)

3: for i = 1, 2, . . . , k do
4: m ← {c | Jc = min(J)}
5: V s

n ← V s
n \ m

6: J ← J \ m

7: �s
n ← SMARTGROW(�n, �n[V s

n],�, k)

8: return �s
n

This process is iteratively repeated until the area limit Amax is reached. Therefore,
regions with high current are reinforced whereas those areas with smaller current
are left unchanged, maximizing the reduction in resistance per unit of added metal.
To illustrate this process, an example seed subgraph is shown in Fig. 10.8b. Brighter
nodes correspond to nodes with high current, whereas the darker nodes represent
nodes with small current. In the next iteration, brighter zones are reinforced, leading
to a reduction in the impedance in that region (see Fig. 10.8c). Further iterations
reinforce the brightest zones, increasing the conductance until the target area is
reached (see Fig. 10.8d).

10.1.5 Refinement stage

Due to the area constraint, the growth process cannot continue indefinitely. Further
lowering of the subgraph impedance is however possible without increasing the
area using the SmartRefine procedure described in algorithm 6. The areas with the
largest and smallest current are identified using the node current metric described
in the previous section. The nodes conducting the smallest current are removed
without exhibiting a significant effect on the impedance. Using the vacated metal,
those regions carrying large current are reinforced, further reducing the subgraph
impedance. This process is illustrated in Figs. 10.8d to 10.8f. The nodes behind the
terminals in Fig. 10.8d carry smaller current than the rest of the subgraph. These
nodes are removed and replaced by the nodes near the blockages with greater node
current.

The SmartRefine process can be viewed as moving nodes from quiescent zones to
hot spots. The number of nodes removed per iteration is a design variable. Removing
additional nodes each iteration would initially converge faster. At later stages of
the refinement process, however, the subgraph is close to being locally optimal;
excessive movement would possibly increase the impedance. Moving fewer nodes
at later stages of the refinement process would therefore yield a lower impedance.

10.1 SPROUT algorithm 269

10.1.6 Subgraph reheating

The graph-based power routing problem can be viewed as an optimization problem,

Minimize : R(�s
n,�n) s.t. : A(�n) ≤ Amax. (10.5)

From an optimization perspective, the SmartGrow and SmartRefine procedures are a
form of gradient descent. The resistance of the subgraph is the objective function and
the node current metric is a proxy metric for the gradient of the objective function.
These algorithms are, therefore, a form of local optimization where the result is not
guaranteed to be a global minimum. To mitigate this issue, the subgraph reheating
technique is presented in this section, inspired by the simulated annealing algorithm
[577] where the objective function can temporarily increase to explore the design
space.

The reheating process consists of two operations, dilation and erosion, inspired
by image processing operations. Initially, the subgraph is dilated beyond the area
constraint by adding nodes adjacent to the subgraph. After completing the dilation
operation, the erosion process commences. Using the node current metric, those
nodes with the smallest current are removed from the subgraph, eliminating the
redundant nodes while reinforcing the hot spots. The number of dilation iterations
determine the extent to which the search space is explored. Additional iterations
would explore a wider space while requiring greater runtime for the subsequent
erosion process.

10.1.7 Back conversion

Once the reheating process is complete, the resulting subgraph is converted back
into a polygon. Recall that each node within the graph �n is associated with a tile
within the available space. The subgraph �s

n therefore corresponds to a polygon
comprised of multiple merged tiles. A typical PCB consists of several nets. Thus, it
is crucial to remove the routed polygon from the available space of other nets.

10.1.8 Algorithm runtime analysis

The runtime of the algorithm depends upon a multitude of parameters including the
number of terminals, grain size, and size of the available physical space. The first
stage of the algorithm is the available space. Modern polygon clipping algorithms
exhibit linear complexity with the number of vertices [578]. The PCB layout
may contain more than many hundred thousands of vertices [579]. An early PCB
prototype, however, contains much fewer vertices, due to the fewer polygons and

270 10 SPROUT - Smart Power ROUting Tool for board-level exploration...

simpler geometry. In the case studies presented in Section 10.2, fewer than 10,000
vertices are processed, requiring up to 50 seconds for six power rails.

The complexity of the Dijkstra shortest path algorithm is O((|Vn| +
|En|) log |Vn|), where Vn and En are sets of, respectively, nodes and edges of
�n. Due to the rectangular tiling of the available space, the number of edges is
approximately twice larger than the number of vertices, yielding

O((|Vn| + 2|Vn|) log |Vn|) = O(|Vn| log |Vn|). (10.6)

The complexity can be improved by employing alternative algorithms such as A-
star [580], which utilizes the location of the nodes to accelerate the search process.
The complexity of the Dijkstra algorithm, however, is smaller than the complexity
of subsequent stages, namely SmartGrow and SmartRefine. In the case studies,
finding the shortest path between all pairs of nodes requires negligible time. Thus,
accelerating the shortest path algorithm yields only a marginal improvement in
computational performance.

The SmartGrow and SmartRefine algorithms both require computation of the
voltages within the graph. These processes require the node current metric to
be iteratively computed, requiring a solution of the matrix equation. This step is
the main bottleneck of the algorithm, requiring up to 90% of the total runtime.
Using sparse linear equation solvers, the complexity of solving a linear equation
is O(|V |q) where q ∈ [1.5, 3] is the scaling exponent which equals 1.5 in the best
case and 3.0 in the worst case [581]. Both SmartGrow and SmartRefine solve a
single linear equation per iteration. Thus, the runtime for SmartGrow stage Tg is

Tg = cg

kg−1∑

i=0

(
|V s

n | − i�V)
)q

, (10.7)

where kg is the number of growth iterations, �V is the number of nodes added
per iteration, and cg is the proportionality coefficient. The number of iterations kg

during the growth stage is approximately

kg ≈ Amax

�A
, (10.8)

where Amax is the area of the resulting polygon, and �A is the area added to sub-
graph during each iteration of SmartGrow. Similarly, the runtime for SmartRefine
stage Tr is

Tr = crkr |V s
n |q, (10.9)

where cr is the proportionality coefficient.
The reheating process exhibits a complexity similar to SmartGrow and SmartRe-

fine. The dilation process requires negligible time as compared to the erosion

10.1 SPROUT algorithm 271

process which requires the node current metric to be evaluated. The runtime Te

required to apply erosion to a dilated subgraph is

Te = ce

ke−1∑

i=0

(
cd |V s

n | − i�V)
)q

, (10.10)

where cd |V s
n | is the number of nodes after the dilation process, ce is the proportion-

ality coefficient, �V is the reduction in order of the subgraph per iteration, and ke

is the number of erosion iterations,

ke =
⌈ |V |d − |V s

n |
�V

⌉

. (10.11)

The back conversion process reconstructs a set of polygons from the resulting
subgraph. The polygons corresponding to each node are iteratively merged using
the union operation, exhibiting O(N log N) complexity for N vertices. In the worst
case, the number of vertices grows linearly with each converted node, yielding a
worst case complexity O(|V s

n |(|V s
n | − 1)) = O(|V s

n |2). Practically, however, the
union of multiple tiles often yields the same number of vertices. For example, the
union of tiles A and B, shown in Fig. 10.7, has the same number of vertices as tile
B. The complexity of the back conversion process is therefore between O(|V s

n |) and
O(|V s

n |2).
Greater complexity occurs when the node current metric is evaluated, namely,

during the SmartGrow, SmartRefine, and erosion procedures. Combining (10.7),
(10.9), and (10.10) yields a complexity of approximately

O((
Amax

�A
+ kr + ke)|V s

n |q). (10.12)

The number of nodes |V s
n | is approximately

|V s
n | ≈ Amax

�x�y
. (10.13)

The complexity is therefore

O
(Amax

�A
+ kr + ke

)(Amax

�x�y

)q
. (10.14)

Therefore, to reduce the computational time, the tile size and incremental increase
in area during the growth stage should be increased, while the number of refinement
and erosion iterations should be reduced.

272 10 SPROUT - Smart Power ROUting Tool for board-level exploration...

10.2 Validation of case study

Three practical case studies are presented in this section to demonstrate the validity
of the proposed tool. In the first case, as described in Subsection 10.2.1, the
layout for a portion of the PCB between the PMIC and the two groups of vias is
synthesized. In the second case, as described in Subsection 10.2.2, the connections
among the PMIC, capacitor, and a congested group of vias are established for the
six nets. An example of PCB resource planning using SPROUT is described in
Subsection 10.2.3

10.2.1 Two rail system

A part of an eight layer PCB for an industrial wireless application is shown in
Fig. 10.9a. The PMIC is placed at the bottom layer and provides power to the two
power rails, VDD1 and VDD2, and the corresponding BGA balls at the top layer. The
power rails connect the PMIC inductor to the group of BGA vias on the penultimate
(seventh) layer. Dedicated ground planes are placed in layers two, six, and eight.

The manually generated layout is shown in Fig. 10.9b, and the synthesized
layout using SPROUT is shown in Fig. 10.9c. Note the regular geometries utilized
primarily in the manual layout whereas the automatically generated layout exhibits
greater diversity in the shape of the geometries. The impedance of the layouts is
extracted using a commercial parasitic extraction tool and compared in Table 10.1.
The two layouts (manual and synthesized) exhibit similar impedance characteristics.
The difference in resistance does not exceed 3.1%. The inductance of the VDD1 rail
is reduced by 12% by using SPROUT, whereas the inductance of the VDD2 rail is
increased by 1.47%.

10.2.2 Six rail system

In this case study, SPROUT is applied to a congested BGA arrangement, as shown in
Fig. 10.10a. 612 BGA (six power supply nets and 306 BGA for ground) are located
at the top layer, and two PMICs are located in the bottom layer of a ten layer PCB.
Each PMIC regulates the current for the three voltage domains. Layers four, six, and
eight are used for ground routing and the power rails are routed on the ninth layer.

The power supply rails are routed and compared to the manual layout. The
resulting topologies are shown in Figs. 10.10b and 10.10c. Note the visual similarity
between the layouts. The DC resistance and loop inductance of each rail are listed
in Table 10.2. The loop inductance of the rails generated by SPROUT are 1 to 4%
smaller than the manual layout while the difference in DC resistance is below 11%.

10.2 Validation of case study 273

Fig. 10.9 Automated power routing using SPROUT and manual routing. a) Initial layout with
blockage (diagonal hatch), and two rails, VDD1 (dark horizontal hatch) and VDD2 (light vertical
hatch). A single PMIC supplies power to the rails using two inductors at bottom layer 8. The
inductors are connected to routing layer 7 using a via. Any blockage is shaded with a diagonal
pattern. b) Manually routed layout. c) Layout synthesized using SPROUT

The six rail PCB layout is synthesized in approximately 11 minutes using an
Intel Core i7-67003.40 GHz eight core computer. Although the manual layout time
varies with expertise and software, the typical time for manual layout is significantly

274 10 SPROUT - Smart Power ROUting Tool for board-level exploration...

Table 10.1 Comparison of normalized impedance between SPROUT and manual routing for the
two rail system shown in Fig. 10.9

Net Manual SPROUT

Normalized inductance VDD1 100 87.5

@ 25 MHz (picohenrys) VDD2 136 138

Normalized DC VDD1 10.0 10.1

resistance (milliohms) VDD2 12.7 13.1

greater than the time required by SPROUT. Furthermore, after setup, SPROUT does
not require active human involvement, providing additional reduction in time and
labor.

10.2.3 Area/impedance tradeoff

With the ability to efficiently prototype and evaluate a power network, design
tradeoffs can be extensively explored. In this case study, the relationship between
the area and impedance is investigated in an industrial PCB. Modem, CPU, and
DSP power supply nets are routed within a ten layer board containing 86 BGA,
as illustrated in Fig. 10.11a. To determine the effects of additional metal area on the
parasitic impedance, nine PCB layout prototypes are generated using SPROUT. The
area of the power rails in each prototype is summarized in Table 10.3. The current
demand of each rail is uniformly distributed within the ball grid array. The modem
and CPU are provided with, respectively, two and five decoupling capacitors.

With greater area, the impedance is reduced while increasing the cost of the
PCB. To explore this tradeoff, nine layouts with different area for the power
rails are generated using SPROUT. The examples of these layouts are shown in
Figs. 10.11b to 10.11d. Note that with smaller area, the BGA are connected while
leaving large voids to satisfy the target area. In contrast, the larger area produces
congestion due to a lack of space. The relationship between area allocated to
each rail and the impedance is shown in Figs. 10.12a and 10.12b. The resistance
of the rails is significantly reduced with additional area. The rate of reduction,
however, diminishes with larger area. The inductance of the DSP rail exhibits similar
behavior. The inductance of the modem and CPU rails is, however, not significantly
reduced due to the decoupling capacitors.

The peak voltage drop is shown in Fig. 10.12c. Despite the greater inductance, the
voltage drop in the DSP power rail is significantly smaller due to the smaller load
current. In contrast, the voltage drop in the modem and CPU rails is significantly
larger due to the greater load current and current slew rate. Note that the voltage
drop in the modem does not significantly decrease with an area of 27.5 units. The
blockages likely prevent adding metal to those regions with a high current density,

10.2 Validation of case study 275

a)
b)

c)

F
ig
.1

0.
10

C
om

pa
ri

so
n

be
tw

ee
n

th
e

au
to

m
at

ed
po

w
er

ro
ut

ed
la

yo
ut

us
in

g
SP

R
O

U
T

an
d

m
an

ua
lly

ro
ut

ed
la

yo
ut

.a
)

B
G

A
pl

ac
em

en
t.

T
he

nu
m

be
rs

in
di

ca
te

th
e

ne
t

of
th

e
vi

as
;

vi
as

w
ith

ou
t

nu
m

be
r

ar
e

gr
ou

nd
vi

as
.b

)
L

ay
ou

t
sy

nt
he

si
ze

d
us

in
g

SP
R

O
U

T
an

d
c)

m
an

ua
l

la
yo

ut
.T

he
ro

ut
in

g
la

ye
r

is
fil

le
d

w
ith

gr
ou

nd
m

et
al

sh
ow

n
w

ith
di

ag
on

al
ha

tc
h.

276 10 SPROUT - Smart Power ROUting Tool for board-level exploration...

Table 10.2 Comparison of normalized impedance between SPROUT and manual routing for
the six rail system shown in Fig. 10.10

Net Manual SPROUT

Normalized inductance V1 133 131

@ 25 MHz (picohenrys) V2 103 99

V3 131 127

V4 161 155

V5 152 150

V6 116 114

Normalized DC V1 15.0 16.8

resistance (milliohms) V2 8.4 9.1

V3 13.0 14.2

V4 18.4 18.2

V5 18.5 18.9

V6 9.2 9.2

impeding any reduction in voltage drop. A similar trend is observed in the CPU rail.
Beyond 22.5 units, the linear reduction in the voltage drop with area significantly
slows, requiring additional metal to produce a similar gain in conductance.

10.3 Conclusions

The power network design process at the board level is highly influenced by system-
level parameters such as the BGA pattern, layer specifications, and placement
of the individual components. Changing a floorplan if a target impedance is not
satisfied significantly degrades the speed of the development process. To increase
the likelihood of satisfying target design objectives, system-level parameters are
evaluated to determine appropriate tradeoffs among power, performance, and
design time. To accelerate this evaluation process, SPROUT, an automated routing
algorithm for power network exploration and prototyping, is introduced here. Based
on the node current metric introduced in this chapter, a layout of a power network
suitable for impedance extraction is automatically synthesized.

The primary contribution of SPROUT is automation of layout prototypes,
enhancing exploration of the design space. As compared to manual layouts,
automated synthesis requires similar time for PCB prototyping without human
involvement, providing significant savings in both time and labor. The impedance
of the generated layout is similar to a manual layout, achieving less than a 4%
difference in the two case studies. Due to automation, a large number of layout
prototypes can be analyzed. By providing greater insight into the layout at early

10.3 Conclusions 277

a) b)

c) d)

Fig. 10.11 Layout generated using SPROUT for three rails, modem (top left), CPU (center), and
DSP module (bottom right), for varying metal area. a) Initial BGA arrangement. The numbers
within circles indicate the nets. Vias for ground net are solid black. The size of vias is intentionally
exaggerated to show nets b) amodem = 17.5, aCPU = 17.5, aDSP = 3.12, c) amodem = 25.0,
aCPU = 25.0, aDSP = 5.00, and d) amodem = 32.5, aCPU = 32.5, aDSP = 6.88. Area is
normalized.

stages of the design process, system parameters can be accurately determined,
reducing the likelihood of not satisfying target impedance objectives. The tool is
demonstrated on two industrial applications.

In addition, the area/impedance tradeoff is explored for a three rail PCB layout.
The trends revealed in this case study reveal the potential of automated exploration.
SPROUT enables fast PCB prototyping and provides valuable information on design
tradeoffs. For example, increasing the area of the modem rail beyond 27.5 units is
not likely to yield a lower impedance.

278 10 SPROUT - Smart Power ROUting Tool for board-level exploration...

Table 10.3 Target area of
the test layouts for exploring
area impedance tradeoffs

Layout # Modem CPU DSP

1 15 15 2.5

2 17.5 17.5 3.125

3 20 20 3.75

4 22.5 22.5 4.375

5 25 25 5

6 27.5 27.5 5.625

7 30 30 6.25

8 32.5 32.5 6.875

9 35 35 7.5

10.3 Conclusions 279

Fig. 10.12 Parasitic
impedance of PCB rails as a
function of area. a) Effective
resistance, b) effective
inductance, and c) maximum
transient voltage drop.

Modem
CPU
DSP

2

4

6

8

10
a)

b)

c)

0
0 5 10 15 20 25 30 35

Area, normalized

R
es

is
ta

nc
e,

 n
or

m
al

iz
ed

450

400

350

300

250

200

150

100

50

0

In
du

ct
an

ce
, n

or
m

al
iz

ed

0 5 10 15 20 25 30 35
Area, normalized

Modem
CPU
DSP

0.10

0.15

0.20

0.05

0.00

D
ro

op
, p

er
 c

en
t

Modem
CPU
DSP

0 5 10 15 20 25 30 35

Area, normalized

Chapter 11
QuCTS – single flux Quantum Clock Tree
Synthesis

Rapid single flux quantum (RSFQ) technology offers a range of advantages as
compared to CMOS. Several orders of magnitude greater operating frequency and
three orders of magnitude lower power are among the most prominent advantages of
RSFQ. Substantial progress has been made in the field of superconductive electron-
ics in the past decades. SFQ manufacturing technology is capable of accommodating
over 6,000 Josephson junctions (JJ) per mm2 [582]. An 8 bit superconductive
microprocessor operating at a frequency of 80 gigahertz has been successfully
fabricated [583]. Ongoing advancements in electronic design automation for RSFQ
circuits are expected to enable the large scale integration of superconductive digital
systems [584, 585].

Beyond the necessity for cryogenic operation below approximately 4K and the
relatively low density on-chip integration as compared to CMOS, the design of a
robust on-chip clock distribution network remains a significant challenge in RSFQ
systems [586]. The fundamental properties of RSFQ technology are described
in the seminal work of Likharev and Semenov [587]. Unlike traditional CMOS,
where the information is represented with a high or low DC voltage level, short
quantized voltage pulses are utilized in RSFQ. A logical high or low is represented
by, respectively, the presence or absence of a single flux quantum (SFQ) pulse
within a certain time interval. Most logic gates in RSFQ are therefore sequential,
such as AND and OR gates that are combinatorial in CMOS. This structure
drastically increases the pipeline depth as compared to CMOS, complicating the
clock network design process. The complexity of the clock distribution network is
further exacerbated by the interconnect structures in RSFQ systems [588]. Unlike
CMOS, where the connections are established with a simple wire [72], RSFQ
interconnect is either a passive transmission line (PTL) requiring a driver, receiver,
and impedance matching [589, 590], or an active Josephson transmission line (JTL)
requiring bias current for each Josephson junction. Finally, most RSFQ gates have
a fanout of one. A splitter gate is used to generate two (or more) SFQ pulses from
an input signal [588, 591].

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
R. Bairamkulov, E. G. Friedman, Graphs in VLSI,
https://doi.org/10.1007/978-3-031-11047-4_11

281

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-11047-4_11&domain=pdf

 -2016 61494 a -2016 61494 a

https://doi.org/10.1007/978-3-031-11047-4_11

282 11 QuCTS – single flux Quantum Clock Tree Synthesis

Different approaches to clocking in RSFQ circuits have been reported in the
literature. Clockless self-timed systems have been proposed [592–595]. An effective
operating frequency of 20 gigahertz has been demonstrated while eliminating the
overhead of the clock distribution network. Self-timed circuits, however, remain
vulnerable to timing violations, exhibit unpredictable performance due to sensitivity
to logic delays, and require handshaking circuitry that requires significant area
[596].

Hierarchical chains of homogeneous clover-leaves clocking (HC)2LC are
described in [597]. The primary advantage of this structure is robustness since
the clock period of the system adapts to the slowest hierarchical chain. Another
advantage is the elimination of race condition hazards due to forced counter-
clocking [586, 597]. The primary drawback is reduced clock speed since the worst
case path determines the clock period of the entire system. Another drawback of
this method is underutilization of clock skew as an additional degree of design
freedom. Requiring counter-clocking increases the setup time constraints which
limit the minimum clock period [586].

A minimum skew clock tree synthesis algorithm for SFQ circuits is proposed
in [598]. The algorithm incorporates the CMOS-based deferred merge embedding
(DME) algorithm [392] to generate a zero skew clock tree. Due to the non-negligible
dimensions of the splitters, the clock tree generated by DME typically violates
RSFQ design rules. A legalization step is therefore proposed [598] to correct the
layout at the cost of introducing small skew into the clock tree. Minimizing the
clock skew, however, results in a suboptimal clock frequency [231], and does not
guarantee correct functionality [599]. Furthermore, nonzero clock skew in data
paths can improve the performance and robustness of the synchronous system
[239]. With clock skew scheduling, the delay slack in fast data paths is exploited
to decrease the effective delay of the critical paths, thereby increasing the maximum
attainable operating frequency [230, 231, 233, 238, 600].

While clock skew may provide significant gains in performance and robustness,
it is often overlooked in existing RSFQ clocking approaches. To bridge this gap,
QuCTS, a single flux Quantum Clock Tree Synthesis algorithm, is introduced. In
the clock skew scheduling stage, the arrival time of each clocked gate is based on
the algorithm adapted from [231, 241]. In the clock tree synthesis stage, a clock
tree layout is generated based on the gate placement information, design rules, and
schedule of clock arrival times from the clock scheduling stage. With QuCTS, the
number of delay elements and the total wirelength are reduced while satisfying the
timing requirements of each clocked gate.

This chapter is organized as follows. In Section 11.1, the clock skew scheduling
algorithm is presented. The binary clock tree synthesis process is described in
Section 11.2, followed by the delay equilibration process presented in Section 11.3.
The performance of the algorithm is evaluated in the case study and benchmark
circuits presented in Section 11.4, followed by the conclusions in Section 11.5.

11.1 Clock skew scheduling 283

11.1 Clock skew scheduling

Clock skew scheduling is a powerful technique to maximize the speed and
robustness of a synchronous system [231, 233, 238]. Despite the potential benefits
of useful clock skew, it is however often viewed as a parasitic effect requiring
minimization [601, 602]. In addition, achieving zero clock skew is quite difficult
due to process and environmental variations as well as electromagnetic interference
that permeate not only CMOS but also RSFQ circuits [586, 597, 603].

The first stage of QuCTS, presented in this section, mitigates this issue by
adapting clock skew scheduling within the RSFQ circuit design process. QuCTS
operates in four stages. The sequential circuit topology, described in Verilog, is
initially converted into a timing graph. The minimum clock period is determined
by evaluating the delay and delay uncertainty of each data path. The permissible
range (PR) of each data path is a function of the clock skew in sequentially-adjacent
registers [230, 239, 599]. The clock skew schedule is generated using a quadratic
programming algorithm that maximizes the robustness of the circuit to parameter
variations [231, 241]. The clock skew schedule is converted into a schedule of clock
arrival times that is passed to the clock tree synthesis algorithm.

11.1.1 Timing graph

The first step in the clock skew scheduling process is conversion of the circuit topol-
ogy into a directed timing graph G = (V ,E, dmin : E → R, dmax : E → R), where
V is the set of nodes, E is the set of edges, and dmin and Dmax are, respectively,
the minimum and maximum delay of an edge in E. A typical sequential circuit
consists of inputs, outputs, clocked gates, non-clocked gates, and interconnects. For
brevity, the clocked and non-clocked gates are referred to as, respectively, registers
and gates. Each edge (i, j) ∈ E represents a combinatorial data path pij from a
source to target register. The range of delays dij = [dmin

ij ,Dmax
ij] of an edge (i, j)

within a graph is the sum of the delays along a data path,

dij =
∑

k∈pij

(d
gate
k + dint

k), (11.1)

where dint
k denotes the range of delay of the interconnect between gate k and the next

gate, and d
gate
k denotes the range of the input-to-output delay of gate k or a clock-

to-output delay of register k. The gate and register delays are supplied externally as
input data.

The inputs and outputs of a sequential circuit are often described in Verilog as
floating signal nets. This structure is not supported in a graph where the edges
require both source and target nodes. Furthermore, it is often desired that the clock
skew between the input and output nodes of a circuit is zero [231]. A dummy I/O

284 11 QuCTS – single flux Quantum Clock Tree Synthesis

Fig. 11.1 Processing of inputs and outputs of a logic circuit in a timing graph. a) An initial system
with inputs x1, . . . , xm and outputs y1, . . . , yn. Note that the input and output edges (signal nets
in Verilog) typically have one floating terminal. b) Timing graph representation of the input and
output edges in QuCTS. The floating terminals of the input and output edges are connected to a
dummy I/O node. This node acts as a tail (source) of all input edges and a head (target) of all output
edges. The I/O node eliminates any clock skew between the circuit terminals.

node is therefore added to the timing graph, as illustrated in Fig. 11.1. The I/O node
is the tail (source) of each input edge and the head (target) of each output edge.
The dummy node is treated as a standard node during the clock skew scheduling
process. Since a node cannot have a non-zero clock skew with itself, zero clock
skew is ensured among the circuit inputs and outputs.

11.1.2 Minimum clock period

In the zero clock skew approach, the minimum clock period is determined by the
delay of the critical paths. In a non-zero clock skew system, however, finding the
minimum clock period requires a significantly more sophisticated process. The
minimum clock period is determined by the cycles and reconvergent paths within
the timing graph [231], as shown in, respectively, Figs. 11.2a and 11.2b.

An example of a sequential circuit containing cycle pii with n nodes is shown in
Fig. 11.2a. To ensure correct operation of the circuit including this cycle, the clock
period cannot be smaller than

T i = 1

n

∑

(j)∈pii

(Dmax
j,j+1 + δs

j+1), (11.2)

where δs
j+1 is the setup time of the gate following gate j . The clock skew within the

cycle is fixed at zero, since, as described in Section 4.1.1.2, a register cannot have a
non-zero clock skew with itself [230]. Equation (11.2) therefore requires the average
propagation delay of a data path within a cycle to not be greater than the clock
period. Finding the minimum clock period requires determining the cycles within

11.1 Clock skew scheduling 285

Fig. 11.2 Constraints of the minimum clock period within a sequential circuit. a) Cycle path with
n registers starting with node i. The dotted arrows represent the connection to external circuitry. b)
Reconvergent path between registers d and c.

the timing graph G. The computational complexity of finding all cycles within a
graph is O((|V | + |E|)(nc + 1)), where nc is the number of cycles within a graph.

The reconvergent paths are distinct sequential paths that begin at the same
divergent register d and end at the same convergent register c. Optimization of
these reconvergent paths includes delay insertion, i.e., intentionally adding delay
to specific data paths to align the arrival time of the signals, thereby reducing the
minimum clock period. Consider the example illustrated in Fig. 11.2b. The short
path (s1, . . . , sn) with n nodes has the smallest propagation delay, and the long path
(l1, . . . , lm) with m nodes has the largest propagation delay. The minimum clock
period T dc due to the reconvergent paths between nodes d and c is

T dc = Dl − Ds + δs
c + δh

c

|m − n + 1| , (11.3)

where Dl and Ds are, respectively, the maximum propagation delay of pl and
minimum propagation delay of ps , and δs

c and δh
c are, respectively, the setup and hold

time of the convergent register c. While delay padding may reduce the minimum
clock period, this method requires finding all reconvergent paths within graph G.
The complexity of finding a single simple path in a directed graph is O(|V | + |E|)
[337]. The number of simple paths can however be prohibitively large, up to |V |! in
a fully connected graph. Depending upon the complexity, an integrated circuit may

286 11 QuCTS – single flux Quantum Clock Tree Synthesis

contain hundreds of thousands of nodes, leading to an exorbitant number of simple
paths. Delay insertion is therefore not practical for large circuits. An alternative
approach, adapted from [604], is utilized in the algorithm presented here. The
minimum clock period is determined by the delay uncertainty of the edges,

T min
ij = max

(ij)∈E
(Dmax

ij − dmin
ij + δs

j + δh
i), (11.4)

where δh
i is the hold time of register i.

The minimum clock period of the overall system is

Tmin = max

(

max
(i,j)∈E

(Dmax
ij − dmin

ij + δs
j + δh

i), max
i∈V

(T i)

)

. (11.5)

This minimum clock period determines the target clock period in the clock skew
scheduling process, as described in Subsection 11.1.3. Note that although setting
the clock period to Tmin maximizes the performance of the system, a higher clock
period can be chosen to improve other metrics, such as robustness to parameter
variations [239, 599].

11.1.3 Clock skew optimization

Once the minimum clock period is determined, clock skew optimization is per-
formed in two steps. The permissible range (PR) [237, 239, 599] of the clock skew
for each path is used to form an objective function. The basis cycles are determined
within the graph to form a constraint function. The clock skew schedule is optimized
for robustness to parameter variations.

The permissible range is the range of clock skew between sequentially-adjacent
registers i and j that satisfy the setup and hold constraints of a circuit [230, 237],
defined as

PRij =
[
−dmin

ij + δh
i , TCP − Dmax

ij − δs
j

]
, (11.6)

where TCP is the target clock period. In vector form, the upper and lower bound
of the permissible range for every combinational data path is expressed as vectors
smin, smax ∈ R

|E|. To maximize the robustness of the system, the clock skew of
each data path is maintained at the center s∗ of the PR,

s∗ = 1

2
(smin+smax

). (11.7)

Clock skew deviations arising from parameter variations are therefore less likely to
cause a setup or hold time violation. Note however that due to timing constraints,

11.1 Clock skew scheduling 287

such as cycles, maintaining the clock skew at the center of the PR is often not
possible [239]. The scheduling process therefore sets each target clock skew as close
to the center of the PR while satisfying the local timing constraints.

Let s ∈ R
|E| be the vector of clock skews for each local data path. The clock

skew scheduling optimization problem is expressed as

Minimize :
s

||s − s∗||2 (11.8)

subject to

si
min ≤ si ≤ si

max∀i ∈ N, i ≤ |E|, (11.9)

Bs = 0, (11.10)

where si
min, si, and si

max are the ith element of, respectively, smin, s, and smax;

0 ∈ R
|E| is the zero vector; and B ∈ R

(|E|−|V |+1)×|E| is the circuit connectivity
matrix of graph G [231]. With (11.8), the clock skew of each data path is placed
as close to the center of the permissible range as possible [230, 239]. Expression
(11.9) requires the clock skew of each data path to be within the permissible range.
Expression (11.10) requires the clock skew within a cycle to be zero. Each row bi

in B represents an independent cycle in G. The entry bij is equal to 1 or −1 if the
edge, respectively, follows or opposes the direction of the cycle, and 0 if the edge
does not belong to the cycle. An efficient solution of this problem can be achieved
with quadratic programming (QP) in O(|V |3) time [241].

Once the final clock skew schedule is generated, a schedule of clock arrival times
is produced. An arbitrary node x is marked as a reference node with a clock arrival
time of 0. The clock arrival time at each register is determined using the fundamental
equation of clock skew [230],

tskew = τi − τf , (11.11)

where τi and τf are, respectively, the clock arrival time at the initial and final register
of a local data path. The arrival time τp of the register p preceding register x is

τp = spx + τx, (11.12)

where spx is the clock skew of the edge (p, x) determined from the optimization
process. Similarly, the arrival time τs of the successor s of register x is

τs = τx − sxs, (11.13)

288 11 QuCTS – single flux Quantum Clock Tree Synthesis

where spx is the clock skew of the edge (x, s). The process is repeated until the
arrival time at each register is determined. The resulting schedule of arrival times is
passed to the clock tree synthesis algorithm, as described in Section 11.2.

11.2 Clock tree synthesis

Once the clock arrival time of each logic gate is determined, the objective is
to generate a clock network that satisfies these arrival times. A single external
clock source is assumed in QuCTS. To distribute the clock signal from a single
source to multiple sinks, a tree structure is utilized [368] due to area efficiency and
adaptability of this structure as compared to symmetric H-tree or mesh topologies
[232, 367]. Due to the limited fanout of RSFQ gates, splitters are required to
distribute the clock signal to the many gates within a circuit. Standard splitters
provide a fanout of two. Non-standard splitters with a higher fanout exist, although
the bias margins are significantly degraded as compared to standard splitters
[588, 591]. A binary clock tree is therefore assumed in QuCTS.

To distribute the clock signal to N gates, N − 1 splitters are required, forming a
directed binary tree,

T = (VT ,ET), (11.14)

VT = VSPL ∪ Vsink, (11.15)

where Vsink is the set of clock sinks (logic gates), and VSPL is the set of splitters.
The leaf nodes within T (i.e., nodes with zero fanout) correspond to the clock
sinks. Other nodes correspond to splitters and have a fanout of two. The root node
corresponds to the hierarchically topmost splitter, as shown in Fig. 11.3. The clock
signal initially arrives at the root node within the clock tree and passes to the splitters
corresponding to child nodes 0 and 1. At each successive node of tree T , the clock
signal is split into multiple signals that eventually arrive at each sink within a cluster.
The arrival time of the clock signal is set by the delay from the clock signal source
(root node) to the clock sink. This delay is comprised of splitter delays, interconnect
delay, and any intentional delay. By varying these components, the arrival time of the
signal can be controlled to satisfy the timing requirements of each clock sink. The
objective of the clock tree synthesis process in RSFQ is to produce a binary clock
tree that delivers the clock signal at a precise time with minimum interconnect and
junction area.

The first step in the clock tree synthesis process is to produce a binary tree.
A common approach in binary tree synthesis is clustering [605], as illustrated in
Fig. 11.3. Each gate is represented as a point in a two- or three-dimensional space.
The location of each gate is represented by an X and Y coordinate, and the weighted
clock signal wT serves as a third dimension. The importance of the clock arrival
time is controlled by the weight parameter w. A greater weight groups gates that

11.2 Clock tree synthesis 289

Fig. 11.3 Binary clock tree generation based on clustering. a) Hierarchical clustering of the gates
based on location. All of the gates are initially within a single top level cluster c (top row). The
gates are split into two clusters, c0 and c1 (middle row), which, in turn, are further divided into
smaller clusters (bottom row), until the clusters contain only a single clock sink. b) Binary clock
tree T with each node representing a splitter. The top level cluster corresponds to the root splitter
sr . Gates within c0 and c1 receive the clock signal from the two branches of the root splitter sr . s0
and s1 are added to the binary clock tree as successors of the root splitter sr to distribute the SFQ
clock pulse from sr to the corresponding clusters. The s00 and s01 (s10 and s11) splitters therefore
become the successors of splitter s0 (s1) to distribute the clock pulse to, respectively, c00 and c01
(c10 and c11). Similarly, each successive clustering step adds two new successor splitters to the
corresponding preceding node, resulting in a binary clock tree.

are not physically close but have a similar arrival time. In contrast, a smaller weight
groups gates by physical proximity, disregarding any difference in arrival times. The
gates are split into two clusters using a clustering algorithm, such as K-Means [606]
and BIRCH [607]. The choice of clustering algorithm has a minor effect on the
clock tree topology, affecting fewer than 1% of the clusters.

A binary clock tree is a rooted directed tree, where each node corresponds to a
splitter. The topmost (root) splitter sr ∈ T receives a clock pulse from the external
clock source. The SFQ pulse at each clock sink is delivered through the parent
splitter. After the first clustering step, the gates are split into two groups, c0 and c1.
The two SFQ output pulses of sr are delivered to clusters c0 and c1 via corresponding

290 11 QuCTS – single flux Quantum Clock Tree Synthesis

splitters s0 and s1. The SFQ pulse at each clock sink within c0 (c1) is delivered
through splitter s0 (s1), as shown in Fig. 11.3. Each cluster is iteratively split into a
pair of subclusters until the size of the cluster is a single gate. A splitter is assigned
to each nonsingular cluster, hierarchically distributing the clock signal to the clock
sinks.

11.3 Delay equilibration

The binary tree generation process described in the previous section is a guideline
for establishing the hierarchy of the gates. The actual connections are determined
by a routing algorithm. To illustrate this process, consider the two gates shown in
Fig. 11.4a. Connecting a splitter to gates via the shortest path is not suitable since a
precise arrival time needs to be satisfied. The delay from the splitter to both gates
determines the arrival time of the splitter. Delay equilibration is therefore required to
satisfy the arrival time at each gate. A splitter can be placed closer to the gate with an
earlier arrival time, thereby delivering the SFQ clock pulse earlier (see Fig. 11.4b).
Practically, however, the splitter placement is not arbitrary but limited by physical

Fig. 11.4 Example of delay equilibration process. Two gates, A and B, require a clock pulse to
arrive at, respectively, 25 and 15 time units. The clock signal initially arrives at the splitter, where
two SFQ pulses for each gate are generated. a) An example of an invalid topology. While the delay
requirement of B is satisfied, A receives the SFQ pulse too early, producing a timing violation. b)
Strategic placement of the splitter closer to B reduces the delay from the splitter to B and increases
the delay from the splitter to A. c) The wire connecting the splitter to A is intentionally lengthened
to increase the delay. d) The delay element is placed between the splitter and A, thereby increasing
the delay of the path.

11.3 Delay equilibration 291

layout constraints. In addition, if the difference in arrival time is large, the splitter
placement may be insufficient to balance the arrival time of the clock signals.

In CMOS, a variety of techniques are available to adjust the wire delay, including
wire snaking, wire sizing, dummy wire insertion, and active delay elements
[375, 608, 609]. In RSFQ, passive transmission lines require impedance matching,
complicating the wire sizing and dummy wire insertion process. The wire snaking
technique, illustrated in Fig. 11.4c, is suitable for RSFQ, albeit requiring significant
area for a modest increase in delay. A significantly larger delay with a relatively
small area can be achieved with active delay elements. A JTL can be used as a
delay element by controlling the bias current of the Josephson junctions [588]. JTLs,
however, require dedicated space within the device layer. JTLs are therefore more
suitable for providing large delays while PTL-based wire snaking can be used to
tune the path delay.

Delay equilibration of a pair of gates requires the precise location of each gate.
Since only the position of the clock sinks is initially known, the algorithm generates
the clock tree layout in a reverse breadth first search order. The gates are processed
in pairs, starting from the farthermost leaves (sinks) of the tree.

The embedding of the clock tree into the layout is accomplished in three steps.
In the coarse embedding step presented in Subsection 11.3.1, the location of the
splitter, JTL delay elements, and initial PTL routing for every pair of nodes in
a binary tree is determined. The local portion of the layout is converted into a
proxy graph where the potential location of the splitters and JTLs is determined.
The graph is evaluated to determine the location and delay of the splitters and
JTLs, satisfying the arrival time of the clock signal with minimum interconnect,
as described in Subsection 11.3.2. Based on the location of the splitters, JTLs, and
blockages, the layout is converted into a Hanan grid [144]. The approximate PTL
layout is determined using a shortest path algorithm, such as the A-star shortest
path algorithm [580]. The precise routing of the interconnect is determined during
the fine routing stage, as described in Subsection 11.3.3. The delay of the wires
is finely adjusted with wire snaking to satisfy the precise requirement of the clock
arrival times.

11.3.1 Coarse routing

The coarse routing process for a pair of nodes A and B commences with identifying
the cell location for the splitters and JTLs. The layout regions available for the JTLs
and splitters are provided to QuCTS as a user input. Based on the cell dimensions
and spacing information, these layout regions are converted into a set of points P

describing a potential position of a cell (see Fig. 11.5).
Delay equilibrium can be achieved with wire snaking or delay insertion [375,

609]. Large delays with wire snaking however require prohibitively large area and
increase the likelihood of routing congestion. Delay elements, in contrast, typically
produce large delays, rendering them unsuitable if the delay difference is small. To

292 11 QuCTS – single flux Quantum Clock Tree Synthesis

Fig. 11.5 (continued)

11.3 Delay equilibration 293

estimate the appropriate number of delay elements, a heuristic based on the delay
difference nDE is used,

nDE = k

⌊ |τA − τB |
tDE

⌋

, (11.16)

where tDE is the delay of the element, τA and τB are the required arrival time
of the clock signal at, respectively, A and B, and k is an exploration parameter.
To explore the layout space, additional gate cells are considered by setting the
exploration parameter k above 1. A larger k produces a longer runtime at the cost of
superior layout exploration. A good exploration-performance tradeoff is empirically
achieved with k ∈ [1.5, 2]. According to (11.16), larger arrival time differences
require additional delay elements. Note that nDE provides an estimate of the number
of elements. For example, fewer delay elements can be used if the elements are
located far from the shortest path.

Those cells located close to the line connecting the nodes A and B form a subset
of cells PAB ⊂ P suitable for routing. These gate cells combined with gates A and
B form the set of proxy graph vertices Vp = {A,B} ∪ Vg . Each pair of nodes in Vp

except {A,B} is connected with an edge. The weight of each edge is the Manhattan
distance between the terminals. The edge weights therefore represent the length of
the shortest rectilinear PTL connecting two points within a layout. For a proxy graph
with nDE +2 nodes (two gates and nDE gate cells), a total of 1

2 (nDE +2)(nDE +1)

edge weights is determined. The resulting undirected proxy graph is

Gp = (Vp,Ep,w : Ep → R),

Vp = {A,B} ∪ Vg,

Ep = {{a, b} ∈ V 2
p |a �= b ∧ {a, b} �= {A,B}},

w(a, b) = |xa − xb| + |ya − yb|,

(11.17)

where xa and ya are, respectively, x and y coordinates of node a. Note that the
edge {A,B} is explicitly excluded from the proxy graph since this proxy path

�
Fig. 11.5 Example of delay equilibration between gates A and B. τi is the arrival time of gate i. a)
Initial layout. The empty circles represent vacant gate cells. b) Discovery of gate cells in proximity
of the line connecting the two gates. The darker areas are closer to the line and are included in the
proxy graph. c) Proxy graph containing six discovered gate cells and gates A and B. The thickness
of the edges represents the closeness of the two nodes within a layout. d) A candidate proxy path
A−5−6−B is discovered in a proxy graph. e) The candidate proxy path transferred to the layout.
wij is the delay of the path between nodes i and j , and di is the delay of the element at cell i. The
splitter is therefore placed at node 6. The delay from the splitter to A relative to τA is smaller than
the delay from the splitter to B relative to τB . The arrival time of the splitter is therefore based on
the arrival time of B. Additional delay is required along the path to node A. f) Using wire snaking,
additional delay is introduced along the path from the splitter to A. The arrival time is satisfied for
both A and B.

294 11 QuCTS – single flux Quantum Clock Tree Synthesis

does not include a necessary gate cell for a splitter. The paths between A and B

model the connections in the layout. In this chapter, these paths are referred to as
proxy paths. To determine the shortest proxy paths, the k-shortest path algorithm,
described in [610], is used. This algorithm finds all loopless paths from source to
target in increasing order of edge weight. By utilizing this algorithm, the proxy paths
requiring the least interconnect resources are identified in the proxy graph.

Four crucial assumptions are made when producing the proxy graph Gp:

1. Each gate is equipped with a passive transmission line transmitter and receiver
[611]. Including the PTL driver and receiver within each gate reduces the
complexity of the routing process and enables a linear relationship between the
length and delay of an interconnect [611].

2. The placement of splitters and delay elements is limited to certain areas of the
layout. This assumption is consistent with a typical RSFQ IC layout where the
placement of the cells is limited to narrow regions, such as the cell rows [612–
614]. Only those nodes within the dedicated regions have a connection to the
vacant gate cells. Other nodes are not connected to the device layer, preventing
placement of the devices within prohibited zones. QuCTS can however handle
arbitrary cell placement regions.

3. The size of the splitters and delay elements is assumed similar [615] and cells do
not overlap. These assumptions simplify the placement of the splitters and delay
elements, accelerating the clock tree synthesis process.

4. The orientation and pin configuration of the cells are assumed flexible, allowing
the splitters and JTL elements to be arbitrarily oriented to satisfy routing needs.

The paths within a proxy graph model the connections in the layout. A shorter
path corresponds to a PTL connection with a smaller interconnect length. To
determine the shortest proxy paths, the k-shortest path algorithm, described in [610],
is used. This algorithm finds all loopless paths from source to target in increasing
order of edge weight. By utilizing this algorithm, the proxy paths requiring the least
interconnect resources are identified.

11.3.2 Analysis of proxy path delay

If the proxy path contains more than one gate cell, the splitter placement is
determined by the delay analysis described in this subsection. For example, consider
the path A − g5 − g6 − B shown in Fig. 11.5d. Placing a splitter at g5 requires the
SFQ clock pulse to arrive at the splitter at

τSPL|g5 = τA − wA,5 − dSPL, (11.18)

where dSPL is the splitter delay. The resulting clock arrival time at node B is

tB = τSPL|g5 + dSPL + w5,6 + d6 + w6,B � τB, (11.19)

11.3 Delay equilibration 295

where di is the delay of the element placed at node gi , and wi,j for brevity
is equivalent to w(gi, gj). The resulting arrival time is significantly later than
the required arrival time. Correcting this discrepancy with wire snaking requires
significant area. If the splitter is instead placed at cell g6, the SFQ clock pulse arrives
at

τSPL|g6 = τA − wA,5 − d5 − w5,6 − dSPL, (11.20)

yielding a clock arrival time at B,

tB = τSPL|g6 + dSPL + w6,B ≈ τB. (11.21)

The discrepancy in arrival time is minimized and can be corrected with less area
overhead using wire snaking.

To generalize this algorithm, consider the path A − g1 − · · · − gm − B with one
splitter and m − 1 delay elements. Placing a splitter at cell gk produces two paths,

qA(gk) = (A, g1, . . . , gk−1, SPL), (11.22)

qB(gk) = (SPL, gk, gk+1, . . . , gm, B). (11.23)

The delay of each path is the sum of the splitter delay dSPL, interconnect delay, and
intentional delay,

d(qA(gk)) = WA,k + SA,k + dSPL, (11.24)

d(qB(gk)) = WB,k + SB,k + dSPL, (11.25)

where

WA,k = wA,1 + ... + wk−1,k, (11.26)

WB,k = wk,k+1 + ... + wm,B, (11.27)

SA,k =∑k−1
i=1 di, (11.28)

SB,k =∑m
i=k+1 di . (11.29)

Note that d(gk) is replaced with dSPL.
To satisfy the arrival time at gate A, the SFQ clock pulse is required to arrive at

the splitter at time

τSPL|gk
= τA − WA,k − SA,k − dSPL. (11.30)

The resulting arrival time at gate B is

tB = τA − WA,k − SA,k + WB,k + SB,k. (11.31)

296 11 QuCTS – single flux Quantum Clock Tree Synthesis

If the required arrival time at B is τB , the resulting mismatch in the clock arrival
time is

�(gk) = τA − τB − WA,k + WB,k − SA,k + SB,k. (11.32)

To minimize this mismatch, the splitter placement and delay of the delay elements
are adjusted to minimize |�(gk)|. Ideally, �(gk) = 0, yielding

τA − τB = WA,k + SA,k − WB,k − SB,k. (11.33)

Practically, however, a tolerance level |�(gk)| < ε is set by the user that allows the
proxy paths to be reasonably close to the target arrival time.

The intentional delay can be varied by choosing different delays from the set
of possible delays, D = d1, d2, ..., dn|di < dj∀1 < i < j < n. The number of
delay elements on each side of the splitter is, respectively, k − 1 and m − k. The
total number of possible splitter locations is m, yielding a total number of delay
combinations,

N =
n∑

k=1

(
k + n − 2

k − 1

)(
m − k + n − 1

m − k

)

. (11.34)

To reduce the number of iterations, note that the gate with an earlier arrival time
typically does not require a delay element. By varying the delay of the elements
along the paths, the target arrival time can be achieved. In addition, a splitter is
placed closer to the gate with a later arrival time, creating an unnecessary delay
imbalance, requiring greater area. By restricting the splitter placement to k ≤ 2, i.e.,
no more than two nodes from the node with a later arrival time, the total number of
combinations is reduced to

N =
(

m + n − 2

m − 1

)

+ n

(
m + n − 3

m − 2

)

. (11.35)

For m = 10 and n = 5, (11.35) yields 3,190 delay element combinations, as
opposed to 48,620 by (11.34).

Many proxy paths are generated for further processing. Those proxy paths
exhibiting a delay imbalance within a tolerance level are sorted by the number of
delay elements and total interconnect length. The path tuning algorithm processes
the least expensive paths first, yielding a significant savings in area.

11.3.3 Fine routing

In the fine routing stage, the proxy path selected in the previous section is converted
into a layout. To determine a feasible placement for the interconnect, the routing is

11.3 Delay equilibration 297

A

B

a)

A

B

dd

b)

A

B

c)

Fig. 11.6 Single iteration of the aura snaking process. a) Initial wire segment surrounded by
vacant cells and blockages. b) Aura points generated within distance d from the wire. Two points
near node A (filled) are selected for snaking. Note that the aura point is not generated within the
blockage. c) The final extended segment.

based on a Hanan grid widely used in VLSI routing [616]. Hanan grid H(S) is the
set of points produced by drawing horizontal and vertical lines through each point in
S. In QuCTS, the set of points for the Hanan grid consists of clocked gates, splitters,
and JTL delay elements from the proxy graph, as well as bounds on the blockages,
as illustrated in Fig. 11.5e. A graph GH(S) is based on points in H(S). Two nodes in
GH(S) are connected if the corresponding points are adjacent along any of the lines
within the Hanan grid H(S) and no blockage exists between the nodes. The weight
of an edge is related to the propagation delay of the clock signal along the straight
interconnect segment connecting the terminals of the edge.

The delay of the path generated in a Hanan grid graph is typically different from
the estimate based on a proxy path. To adjust the delay and satisfy the arrival time
requirements, the wire length is increased using wire snaking. A novel snaking
method – aura snaking – is proposed here to increase the wire length, as illustrated
in Fig. 11.6. The set of points Q within distance d from the interconnect segment
is initially identified (see Fig. 11.6b). The set Q is referred to as an aura of the
interconnect segment. The proximity metric of a point q ∈ Q to other cells is
defined as

pq ≡
∑

p∈PAB q

1

|| $pq||s , (11.36)

where $pq is the vector connecting points p and q, and ||vpq ||s is the s-norm of
$pq. A point located closer to other cells has greater value of the proximity metric

and can create congestion. Adjacent aura points with the smallest proximity metric
are therefore chosen for snaking to minimize the likelihood of congestion. The
aura points are evaluated for an intersection with blockages using polygon analysis
algorithms, ensuring the feasibility of the wire snaking. Once the aura points are
selected, the wire segment adjacent to the aura points is replaced with the snaking
segment, as depicted in Fig. 11.6c. The interconnect is therefore extended by 2d,
increasing the wire delay by

298 11 QuCTS – single flux Quantum Clock Tree Synthesis

δt = 2d

v
, (11.37)

where v is the speed of the RSFQ pulse propagation within a PTL.
During each iteration, the delay of the path is increased by �t until the mismatch

is smaller than 2d
v

. In the final iteration, the aura distance is reduced to

d∗ = v|tA − tB |
2

, (11.38)

where tA and tB denote the delay of the paths from the splitter to the corresponding
gates. The last snaking operation therefore increases the delay of the extended path
by exactly |tA − tB |, resulting in precise satisfaction of the clock arrival time.

Once a valid route for a pair of nodes is determined, several operations are
necessary before the next pair is processed [65, 145]. The splitter, delay elements,
and interconnect are placed into the layout. The corresponding points in PAB are
removed from the set P , preventing placement of additional gates in these locations.
Interconnect is added to the blockages to ensure there is no intersection with any
subsequent wires. The process described in this section is repeated for each pair
of nodes within the circuit, thereby determining the position of the N − 1 splitters
within a circuit with N clock sinks.

11.4 Case study

The validity of QuCTS is verified with the AMD2901 CPU Verilog model and the
corresponding layout. 1,050 clocked gates are distributed within a 225 mm2 IC.
The maximum and minimum delay of each gate is known. The circuit topology is
represented as a Verilog netlist. The PTL driver and receiver are embedded within
each gate and splitter. The dimensions of each gate is 40 μm × 40 μm. Two
layers of interconnect are dedicated to the clock distribution network. The vertical
interconnects are placed in layer M2, and the horizontal interconnects are placed in
layer M3. The gates are located in layer M5 and connected to layer M3 with vias.
The interconnect pitch is 20 μm. The RSFQ pulse propagation speed in layers M2
and M3 is 6.25 μm/ps. The vertical connections between layers are established by
the vias [72] and produce negligible delay.

The clock skew schedule is generated for a 154 ps clock period in less than one
minute. The clock network layout is generated in 52.5 minutes and is shown in
Fig. 11.7. A total of 2,290 gates are placed in the layout, 1,049 splitters and 1,241
delay elements. The total wire length is 1,027 mm occupying an area of 5.134 mm2.
9,862 vias are placed between layers M2 and M3, and 6,676 vias are placed between
layers M3 and M5. The maximum difference between the required and actual arrival
times is 1.6 picoseconds.

11.4 Case study 299

Fig. 11.7 Clock tree layout of AMD2901 synthesized with QuCTS.

The proposed tool has also been applied to a set of ISCAS’89 [617] and
ITC’99 [618] benchmark circuits with high gate count. The cell placement for the
benchmarks is generated with Synopsys IC design compiler [619]. The results are
listed in Table 11.1. Note that the number of delay elements is linearly correlated
with the number of clocked gates. For all six benchmarks, an average of 1.3 delay
elements per splitter is required for the clock tree. This trend is explained by the
clustering method used in QuCTS. Since the clock arrival time is considered during
the routing process, gates with a similar arrival time are grouped together, resulting
in a small delay imbalance, fewer delay elements, and less wire snaking. Despite
the AMD2901 being composed of fewer gates than the S13207, the total wirelength
is significantly larger. This trend is explained by the more compact placement of the
cells in the S13207 as compared to the practical layout of AMD2901.

300 11 QuCTS – single flux Quantum Clock Tree Synthesis

Table 11.1 Performance of QuCTS applied to AMD2901, ITC’99, and ISCAS’89 benchmark
circuits with high gate count.

Clocked Delay Total Runtime,

Circuit gates elements wirelength, mm minutes

AMD2901 1,049 1,241 1,027 53

ISCAS’89 S13207 1,636 2,405 272 73

ITC’99 B14 6,365 5,762 905 212

ISCAS’89 S38417 11,796 11,367 1,002 393

ISCAS’89 S35932 14,914 15,814 6,656 372

ITC’99 B18 45,710 71,090 31,736 2,309

11.5 Conclusions

Advances in RSFQ electronics over the past decades have enabled the develop-
ment of sophisticated superconductive systems. Design methodologies and related
algorithms and techniques targeting the large scale integration of RSFQ circuits
are essential for managing the increasing complexity of superconductive systems.
Elevating the performance of large scale superconductive systems requires a
significant advancement in existing design capabilities, particularly the synchronous
clock distribution network.

QuCTS — single flux Quantum Clock Tree Synthesis — is described in this
chapter. This tool is the first clock tree synthesis capability for RSFQ circuits
that also utilizes useful clock skew. Using quadratic programming, the clock skew
schedule is optimized for robustness to parameter variations and converted into
a schedule of clock arrival times. A binary clock tree is generated by recursive
clustering of the clock sinks based on the physical location and, optionally, the
clock arrival times. Splitters and delay elements are placed within the layout, and the
paths are tuned to satisfy the schedule of arrival times. The tool is validated using
the AMD2901 four bit microprocessor as well as ITC’99 and ISCAS’89 benchmark
circuits. By exploring different topologies, QuCTS minimizes the number of delay
elements and interconnect length. The clock arrival time schedule is precisely
satisfied by using wire snaking.

Chapter 12
Conclusions

From its inception, the history of VLSI is characterized by the rapid rise in sophis-
tication of integrated systems. Together with technology scaling and advancements
in circuits and architecture, electronic design automation has greatly enhanced the
complexity of VLSI systems, increasing the computational capabilities of humanity
to unprecedented levels. Diverse technical expertise is required to produce modern
high performance ICs, ranging from materials to software engineering. To facilitate
collaboration among disparate fields, the VLSI system design process is divided
into multiple abstraction layers. This approach concentrates the design effort on a
specific level of an integrated system while assuming proper functionality at other
abstraction layers.

A graph is a mathematical structure naturally suited for managing the complexity
of large scale VLSI systems. By representing a complex system as an abstract
network, the design effort can be concentrated on the key features of a system
while discarding any extraneous information. Fewer details are considered, focusing
on the key features of a system. Applications of graph theory are ubiquitous at
every abstraction layer. At the register transfer layer, register allocation is often
accomplished by graph coloring, minimizing communication between the CPU
and memory. Ordered binary decision diagrams and AND-inverter graphs enable
efficient graph-based processing of logic circuits. Graph-based techniques, such as
random walks and network flow theory, facilitate the circuit analysis process of
VLSI systems. Physical design is greatly enhanced by applying graph optimization
algorithms to circuit partitioning, floorplanning, placement, and routing.

The complexity of modern VLSI systems necessitates the use of supporting
infrastructural circuitry. Power, ground, and clock distribution networks are critical
parts of an integrated system that ensure correct functionality and high levels of
performance. A significant portion of the design resources is allocated to these
supporting networks, such as dedicated on-chip layers and I/O pins.

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
R. Bairamkulov, E. G. Friedman, Graphs in VLSI,
https://doi.org/10.1007/978-3-031-11047-4_12

301

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-11047-4_12&domain=pdf

 -2016 61494 a -2016 61494 a

https://doi.org/10.1007/978-3-031-11047-4_12

302 12 Conclusions

Maintaining correct functionality requires a nearly constant supply voltage
despite highly volatile loads. Power delivery is a crucial part of a VLSI system,
connecting the functional circuitry with an external power supply. Three major
issues exist within the realm of power network design; namely, analysis, exploration,
and synthesis. Graph theoretic methods for tackling these problems are presented in
this book.

Analysis of the power delivery system requires an accurate estimate of the
on-chip electrical characteristics. Conventional, general purpose analysis methods,
such as modified nodal analysis and partial element equivalent circuit, enable
accurate analysis of the behavior of power networks. The analysis of power
delivery systems in modern integrated systems uses traditional methods; however,
prohibitive computational time is required. Alternative graph-based approaches for
circuit analysis have been developed. Domain decomposition, for example, utilizes
graph cut algorithms to split a large circuit into multiple independent subcircuits
to accelerate and parallelize the analysis of power grids. Geometric and algebraic
multigrid techniques initially approximate a solution using a coarsened version
of a grid. The final solution is subsequently determined by a smoothing process.
Random walk-based methods exploit the duality between random walks in graphs
and electrical circuits to evaluate the electrical behavior in linear time.

The size and regularity of power grids enable the use of compact models based
on infinite grids. The advantage of an infinite grid model is the ability to estimate the
effective resistance in constant time, i.e. the analysis runtime does not depend upon
the size of the grid. This feature drastically accelerates the analysis of large power
networks. The accuracy of an infinite grid model however significantly decreases
near the boundaries of the grid. The image method is proposed to extend the infinite
grid model to truncated infinite meshes, thereby maintaining the accuracy of the
infinite grid model near the boundaries of the grid. The infinity mirror technique
further extends the application of the infinite grid model to finite grids, greatly
increasing the accuracy of the analysis. For a grid with ten billion nodes, a six orders
of magnitude speedup with no degradation in accuracy is achieved as compared to
modified nodal analysis.

Power network analysis is crucial for verifying the functionality of an IC.
Precise analysis of an integrated system is only possible at the final stages of the
design process when accurate system characteristics are known. Power integrity
violations at these stages however require a massive system redesign, greatly
increasing the design effort and time to market. To reduce the risk of violations
and subsequent modification of the power network, system parameters, such as
the number and characteristics of the voltage domains and decoupling capacitors,
should be judiciously selected. The objective of power delivery exploration is to
determine the electrical characteristics of an integrated system based on certain
design parameters. With power delivery exploration, the effects of the design
parameters on system performance can be determined, allowing informed decisions
at early stages of the design process.

A versatile circuit level framework for power delivery exploration is presented.
Based on certain design parameters, such as the total area of the decoupling

12 Conclusions 303

capacitors or the number of voltage domains, a model of the power network can be
generated. By analyzing this model, the effects of the electrical and non-electrical
parameters on system performance can be evaluated. This framework is enhanced
by constrained optimization, achieving a 15% reduction in decoupling capacitance
and 38.6% reduction in power in an industrial case study.

While electrical modeling facilitates the development of power networks, further
information can be extracted by considering the layout characteristics. Exploration
of the physical power network is accomplished using SPROUT – the Smart Power
ROUTing tool for prototyping board-level power networks. Based on the layout
characteristics, such as the pattern of the ball grid array or the location of the
decoupling capacitors, a prototype layout of the power network is generated. The
electrical characteristics of a synthesized prototype are in close agreement with
manually designed layouts. The effects of the physical design parameters on the
electrical performance of a system can therefore be efficiently estimated during early
stages of the design process.

Conventional power delivery networks utilize a single, board-level converter to
generate and regulate on-chip supply voltages. Due to the large distance from the
load, this method is sensitive to power noise due to fluctuations in load currents.
In contrast, modern distributed power delivery systems utilize multiple on-chip
converters placed near the load circuitry, effectively reducing the distance to the
point-of-load. The number of on-chip regulators is however limited due to area
constraints. A framework for placing on-chip voltage regulators is presented to
minimize the voltage drop within the on-chip network with the fewest regulators.
Using the fast grid analysis algorithm based on the infinity mirror technique, the
computational runtime significantly accelerated, supporting grid-based power net-
works of arbitrary size. Practical scenarios related to the regulators are considered,
such as restricted positions and limited current.

Since most high performance VLSI systems are synchronous, the clock distri-
bution network is a vital part of the modern IC development process. The clock
network is synthesized in three steps. The arrival time of the clock signal at each
synchronous element is determined during clock skew scheduling. An abstract
structure of a clock tree is determined during topological clock tree synthesis.
A physical layout is produced during clock tree embedding. The position of the
synchronous elements and wire lengths are adjusted to satisfy the required arrival
times of the clock signal. Graph-based techniques are widely used during these
processes, including cycle basis, spanning tree, Steiner minimal tree, and graph
optimization.

The feature size of transistors in modern technology nodes is approaching atomic
scales. Challenges in scaling of CMOS manufacturing technologies have motivated
the development of alternative IC technologies and logic families. Rapid single flux
quantum (RSFQ) is an emerging cryogenic superconductive technology promising
a several orders of magnitude increase in speed and reduction in power as compared
to CMOS. Several challenges however exist that prevent the widespread adoption
of this technology. Most individual RSFQ logic gates require a clock signal,
while a splitter gate is required to provide multiple fanout. Furthermore, special

304 12 Conclusions

transmission lines are required for signaling. Due to these limitations, algorithms
for synchronization of CMOS circuits need to be revised to support RSFQ circuits.
QuCTS, an algorithm for clock distribution network synthesis in RSFQ circuits, is
presented in this book. After producing a schedule of clock arrival times, a clock
tree topology is determined by utilizing clustering algorithms. The location of the
splitters is determined using the novel proxy graph technique, and the transmission
lines are routed using a Hanan grid graph.

Graph theory plays an important role in facilitating the development of VLSI
systems by providing powerful algorithms for design, analysis, and optimization.
The relationship between graph theory and VLSI is however not unidirectional.
While the applications of graph theory in VLSI greatly facilitate advancements in
the VLSI system design process, diverse VLSI applications, in turn, motivate the
development of novel graph algorithms. A virtuous cycle of theory and application
therefore exists, advancing both graph theory and more powerful VLSI systems.
The application side of this loop is explored in this book. The addressed issues
highlight the vast potential of applying graph theory to the design of integrated
systems, achieving orders of magnitude improvements in power, performance, and
functionality. Exploring further applications of graph theory will likely bring enor-
mous benefits to VLSI systems integration, greatly expanding the computational
capabilities of humankind.

Appendix A
Green’s function for a truncated grid

It is of interest to determine the lattice Green’s function (LGF) for a truncated
infinite mesh. The LGF is the response of a lattice to a unit perturbation at the
origin,

�rG(x, y) = δ(x, y); x, y ∈ Z, (A.1)

where G(x, y) is the LGF, �r is the discrete differential operator, and δ(x, y) is
the Kronecker delta function, which is unity at the origin and zero elsewhere. The
electrical form of (A.1) is obtained by applying KCL,

�rφ(x, y) = rI0δ(x, y); x, y ∈ Z, (A.2)

where

φ(x, y) = rI0G(x, y) (A.3)

is the potential distribution within the grid in response to a current I0 injected at the
origin. Combining (6.8) and (A.3) results in

Reff = 2r (G (0, 0) − G(x − x0, y − y0)) , (A.4)

which is consistent with [479]. From [469], the LGF for an anisotropic infinite grid
is

G(x, y) = k

2π

∫ π

0

e−|x|α cos yβ

sinh α
dβ. (A.5)

To determine the LGF for a half-plane mesh, the following equation,

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
R. Bairamkulov, E. G. Friedman, Graphs in VLSI,
https://doi.org/10.1007/978-3-031-11047-4

305

 -2016 61494 a -2016 61494
a

https://doi.org/10.1007/978-3-031-11047-4

306 A Green’s function for a truncated grid

�rφhalf (x, y) = rI0δ(x, y); x ∈ N0, y ∈ Z, (A.6)

is solved by the image method. Expression (A.6) is transformed into

�rφhalf (x, y) = rI0(δ(x, y) + δ(−x − 1, y)); x ∈ N0, y ∈ Z. (A.7)

Due to the linearity of �r ,

�rφhalf (x, y) = �rφ(x, y) + �rφ(−x − 1, y); x ∈ N0, y ∈ Z. (A.8)

By the uniqueness theorem,

φhalf (x, y) = φ(x, y) + φ(−x − 1, y); x ∈ N0, y ∈ Z. (A.9)

Using (6.22),

φ(x, y) = φ0 − rI0�k(x, y); x, y ∈ Z, (A.10)

φ0 = kI0r

2π

∫ π

0

dβ

sinh α
. (A.11)

Expression (A.9) reduces to

φhalf (x, y) = 2φ0 − rI0(�k(x, y) + �k(−x − 1, y)); x ∈ N0, y ∈ Z. (A.12)

Based on (A.3), LGF for half-plane mesh is

Ghalf (x, y) = 2φ0

rI0
− �k(x, y) − �k(−x − 1, y); x ∈ N0, y ∈ Z. (A.13)

Following similar steps for the quarter-plane mesh yields

φqt.(x, y) = 4φ0 − rI0(�k(x, y) + �k(−x − 1, y) + �k(x,−y − 1) + �k(−x − 1,−y − 1));
x, y ∈ N0, (A.14)

and

Gqt.(x, y) = 4φ0

rI0
− �k(x, y) − �k(−x − 1, y) − �k(x,−y − 1) − �k(−x − 1,−y − 1));

x, y ∈ N0, (A.15)

The effective resistance is determined in each case using (6.8).

Appendix B
Uniqueness based on boundary
conditions

To demonstrate the validity of the method for a truncated mesh, it is proved here that
the potentials within the circuit are uniquely determined by the boundary conditions.
Thus, it is sufficient to maintain the same boundary conditions while modifying the
topology to ensure the same electric potentials within a grid.

Consider the circuit shown in Fig. 6.2a. Boundary conditions φb(x, y) are
imposed on a set of nodes (x, y) ∈ Sv . The arbitrary node (xg, yg) is connected
to ground. The resulting boundary conditions of the system can be expressed as

φ(x, y) = φb(x, y), at (x, y) ∈ Sv, (B.1)

φ(xg, yg) = 0. (B.2)

Suppose current Iin(x, y) is injected at specific nodes (x, y) ∈ Si such that

I (x, y) =
{

Iin(x, y), at (x, y) ∈ Si , (B.3a)

0 otherwise. (B.3b)

The uniqueness theorem states that the conditions described in (B.1) to (B.2)
are sufficient to uniquely determine the potential φ(x, y) due to injected current
I (x, y). To prove this statement, assume this statement is incorrect and two distinct
distributions of potentials exist that satisfy the boundary conditions:

φ1(x, y) �= φ2(x, y). (B.4)

Applying Kirchhoff’s current law yields

I (x, y) = 4φ1(x, y) − φ1(x − 1, y) − φ1(x + 1, y) − φ1(x, y − 1) − φ1(x, y + 1),

(B.5)

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
R. Bairamkulov, E. G. Friedman, Graphs in VLSI,
https://doi.org/10.1007/978-3-031-11047-4

307

 -2016 61494 a -2016 61494 a

https://doi.org/10.1007/978-3-031-11047-4

308 B Uniqueness based on boundary conditions

I (x, y) = 4φ2(x, y) − φ2(x − 1, y) − φ2(x + 1, y) − φ2(x, y − 1) − φ2(x, y + 1).

(B.6)
Suppose that φ3(x, y) is also a potential distribution such that

φ3(x, y) = φ1(x, y) − φ2(x, y). (B.7)

From (B.5) and (B.6),

0 = 4φ3(x, y)−φ3(x−1, y)−φ3(x+1, y)−φ3(x, y−1)−φ3(x, y+1). (B.8)

Expression (B.8) indicates that φ3(x, y) is the potential distribution within a circuit
without current injection. No currents, therefore, flow through the resistors and
φ3(x, y) is constant. Note that

φ3(x1, y1) = φ1(x1, y1) − φ2(x1, y1) = 0. (B.9)

Therefore, since φ3(x, y) is constant,

φ3(x, y) = φ3(x1, y1) = 0, (B.10)

φ1(x, y) = φ2(x, y), (B.11)

which contradicts (B.4), indicating that the conditions described in (B.1) to (B.2)
uniquely determine the potential distribution in an infinite grid due to current
injection I (x, y).

Appendix C
Multilayer routing algorithm

If a routing path between terminals is not possible in a single layer due to the space
being disjoint, a routing path can be allocated utilizing vias to connect the different
layers. The routing process is decomposed into two parts. The layers through which
a routing path are possible are initially determined. Due to the relatively high cost
of the vias [620], the number of interlayer connections is also minimized. After
placement of the vias, the routing process is decomposed into several single layer
routing steps.

To determine the layers connecting the terminals, the routing process, described
in Algorithm 7, is utilized. The available space for each layer is determined using
Algorithm 1 (see Fig. C.1a). The available space within each layer is converted
into an equivalent two-dimensional graph. The vertical edges connect the vertices
within the adjacent layers through a via. This process produces a three-dimensional
graph �3D

n , as shown in Fig. C.1b. The vertical edges are assigned a higher cost, as
compared to those edges within the same layer, to model the higher cost of the via.

Once a three-dimensional graph �3D
n is generated, the shortest path between

nodes in �n is determined using a shortest path algorithm, such as Dijkstra [576] or
Bellman-Ford [195]. After placing vias, the routing process is separately performed
on each layer, from source to via, between vias, and from via to target. Those vias
utilized during the routing process between nodes in �n become a terminal on the
respective layer (see Fig. C.1c). The multilayer routing process is thereby split into
several two-dimensional routing steps.

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
R. Bairamkulov, E. G. Friedman, Graphs in VLSI,
https://doi.org/10.1007/978-3-031-11047-4

309

 -2016 61494 a -2016 61494
a

https://doi.org/10.1007/978-3-031-11047-4

310 C Multilayer routing algorithm

Algorithm 7 Determine least expensive multilayer path between nodes.

1: procedure MULTILAYER({A1
n, A

2
n, ..., A

L
n }, {Tn = t

l1
1 , . . . , t

lk
k }, rvia, wvia)

2: Γ 3D
n = (V 3D

n = ∅,E3D
n = ∅)

3: for l = 1, 2, . . . , L do
4: Γ l

n = (V l
n, E

l
n) ← space2graph(Al

n,Δx = Δy = rvia)

5: for each terminal t
li
i in Tn do

6: if li = l then
7: Γ l

n,Θl ← identifyT erminals(Γ l
n, t

li
i)

8: V 3D
n ← V 3D

n ∪ V l
n

9: E3D
n ← E3D

n ∪ El
n

10: for each vertex v in Γ l
n do

11: if node vl−1 exists then
12: E3D

n ← E3D
n ∪ {vl, vl−1, w = wvia}

paths ← shortestpath(Γn, θi, {θi + 1, . . . , θk})
13: for e = {vi, vj } in paths do
14: Θi ← vi

15: Θj ← vj

16: return Θ = Θ1,Θ2, ..., ΘL

C Multilayer routing algorithm 311

Layer 1 S T

Layer 2

Layer 3

Layer 4

Layer 5

a)

Layer 1

Layer 2

Layer 3

Layer 4

Layer 5

S T

b)

Layer 1 t S T

Layer 2 s t

Layer 3

Layer 4 s t

Layer 5

c)

Fig. C.1 Cross-sectional view of the multilayer routing process. Prohibited areas are filled with a
diagonal pattern. a) Available space is determined at each layer. Routing between the source (S) and
target (T) is not possible within a single layer. b) Equivalent graph showing potential via locations.
c) Via placement. The routing process is decomposed into three single layer routing steps between
the local source s and target t

References

[1] S. F. Kennedy, D. J. Albers, G. L. Alexanderson, D. Dumbaugh, F. A. Faris, D. B.
Haunsperger, and P. Zorn, A Century of Advancing Mathematics, The Mathematical
Association of America, 2015.

[2] P. S. Rudman, How Mathematics Happened: the First 50,000 Years, Prometheus Books,
2009.

[3] B. Hopkins, Resources for Teaching Discrete Mathematics: Classroom Projects, History
Modules, and Articles, Mathematical Association of America, 2009.

[4] L. Euler, “Solutio Problematis ad Geometriam Situs Pertinentis,” Commentarii Academiae
Scientiarum Petropolitanae, pp. 128–140, 1736.

[5] N. Biggs, E. K. Lloyd, and R. J. Wilson, Graph Theory, 1736-1936, Oxford University
Press, 1986.

[6] A. Cayley, “On the Theory of the Analytical Forms Called Trees,” The London, Edinburgh,
and Dublin Philosophical Magazine and Journal of Science, Vol. 13, No. 85, pp. 172–176,
March 1857.

[7] E. Frankland, Lecture Notes for Chemical Students: Embracing Mineral and Organic
Chemistry, J. Van Voorst, 1866.

[8] J. J. Sylvester, “Chemistry and Algebra,” Nature, Vol. 17, No. 432, pp. 284–284, February
1878.

[9] J. L. Moreno and H. H. Jennings, “Statistics of Social Configurations,” Sociometry, Vol. 1,
No. 3/4, pp. 342–374, April 1938.

[10] M. R. Garey and D. S. Johnson, “The Complexity of Near-Optimal Graph Coloring,”
Journal of the ACM, Vol. 23, No. 1, pp. 43–49, January 1976.

[11] B. W. Kernighan, Some Graph Partitioning Problems Related to Program Segmentation.,
Ph.D. Thesis, Princeton University, 1969.

[12] J. S. Kilby, “Turning Potential into Realities: the Invention of the Integrated Circuit, Nobel
Lecture,” ChemPhysChem, Vol. 2, No. 8–9, pp. 482–489, September 2001.

[13] K. G. Beauchamp, History of Telegraphy, Second Edition, Institution of Engineering and
Technology, 2001.

[14] S. Hemour and K. Wu, “Radio-Frequency Rectifier for Electromagnetic Energy Harvesting:
Development Path and Future Outlook,” Proceedings of the IEEE, Vol. 102, No. 11, pp.
1667–1691, November 2014.

[15] Digi-Key Electronics, Omron Electronics G2R-1A-AC240, [Online]. Available: https://
www.digikey.com/en/products/detail/omron-electronics-inc-emc-div/G2R-1A-AC240/
368714 [Accessed: June 24, 2021].

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
R. Bairamkulov, E. G. Friedman, Graphs in VLSI,
https://doi.org/10.1007/978-3-031-11047-4

313

 32220 52696 a 32220 52696
a

https://www.digikey.com/en/products/detail/omron-electronics-inc-emc-div/G2R-1A-AC240/368714
https://www.digikey.com/en/products/detail/omron-electronics-inc-emc-div/G2R-1A-AC240/368714
https://www.digikey.com/en/products/detail/omron-electronics-inc-emc-div/G2R-1A-AC240/368714

 -2016 61494 a -2016 61494 a

https://doi.org/10.1007/978-3-031-11047-4

314 References

[16] Digi-Key Electronics, Solen Électronique SI-12AX7B, [Online]. Available: https://www.
digikey.com/en/products/detail/solen/SI-12AX7B/10489816 [Accessed: June 24, 2021].

[17] P. E. Ceruzzi, “The Early Computers of Konrad Zuse, 1935 to 1945,” Annals of the History
of Computing, Vol. 3, No. 3, pp. 241–262, September 1981.

[18] H. H. Aiken and G. M. Hopper, “The Automatic Sequence Controlled Calculator – I,”
Electrical Engineering, Vol. 65, No. 8–9, pp. 384–391, September 1946.

[19] W. B. Fritz, “ENIAC – a Problem Solver,” IEEE Annals of the History of Computing, Vol.
16, No. 1, pp. 25–45, March 1994.

[20] L. Hoddeson, “The Discovery of the Point-Contact Transistor,” Historical Studies in the
Physical Sciences, Vol. 12, No. 1, pp. 41–76, January 1981.

[21] P. R. Morris, A History of the World Semiconductor Industry, Peter Peregnius, 1990.
[22] A. E. Anderson, “Transistors in Switching Circuits,” Proceedings of the IRE, Vol. 40, No.

11, pp. 1541–1558, November 1952.
[23] J. H. Felker, “Regenerative Amplifier for Digital Computer Applications,” Proceedings of

the IRE, Vol. 40, No. 11, pp. 1584–1596, November 1952.
[24] J. H. Felker, “Performance of TRADIC Transistor Digital Computer,” Proceedings of the

Eastern Joint Computer Conference: Design and Application of Small Digital Computers,
pp. 46–49, December 1954.

[25] S. H. Lavington, Early British Computers: the Story of Vintage Computers and the People
Who Built Them, Manchester University Press, 1980.

[26] T. Kilburn, R. Grimsdale, and D. Webb, “A Transistor Digital Computer with a Magnetic-
Drum Store,” Proceedings of the IEE-Part B: Radio and Electronic Engineering, Vol. 103,
No. 3S, pp. 390–406, March 1956.

[27] L. C. Brown, “Flyable TRADIC: the First Airborne Transistorized Digital Computer,” IEEE
Annals of the History of Computing, Vol. 21, No. 4, pp. 55–61, December 1999.

[28] R. Herman, “Transistor Storage and Logic Circuits for Binary Data Processing,” Proceed-
ings of the IEE-Part B: Electronic and Communication Engineering, Vol. 106, No. 16S, pp.
663–674, May 1959.

[29] P. Cooper, “The U.S. Army Signal Corps’ “Dick Tracy” Transistor Wrist Radio (1953),”
Proceedings of the IEEE, Vol. 86, No. 1, pp. 163–169, January 1998.

[30] D. Burman, L. Fey, and D. Ingram, “Transistor Feedback Amplifiers in Carrier Telephony
Systems,” Proceedings of the IEE-Part B: Electronic and Communication Engineering, Vol.
106, No. 16S, pp. 587–595, May 1959.

[31] J. S. Kilby, “Invention of the Integrated Circuit,” IEEE Transactions on Electron Devices,
Vol. 23, No. 7, pp. 648–654, July 1976.

[32] W. F. Brinkman, D. E. Haggan, and W. W. Troutman, “A History of the Invention of the
Transistor and Where It Will Lead Us,” IEEE Journal of Solid-State Circuits, Vol. 32, No.
12, pp. 1858–1865, December 1997.

[33] K. Manchester, C. Sibley, and G. Alton, “Doping of Silicon by Ion Implantation,” Nuclear
Instruments and Methods, Vol. 38, pp. 169–174, December 1965.

[34] R. W. Bower and R. Dill, “Insulated Gate Field Effect Transistors Fabricated using the Gate
as Source-Drain Mask,” Proceedings of the IEEE International Electron Devices Meeting,
pp. 102–104, October 1966.

[35] R. W. Bower, H. Dill, K. Aubuchon, and S. Thompson, “MOS Field Effect Transistors
Formed by Gate Masked Ion Implantation,” IEEE Transactions on Electron Devices, Vol.
15, No. 10, pp. 757–761, October 1968.

[36] C.-T. Sah, “Evolution of the MOS Transistor – from Conception to VLSI,” Proceedings of
the IEEE, Vol. 76, No. 10, pp. 1280–1326, October 1988.

[37] R. K. Booher, “MOS GP Computer,” Proceedings of the Fall Joint Computer Conference,
Part I, pp. 877–889, December 1968.

[38] A. G. Vacroux, “Microcomputers,” Scientific American, Vol. 232, No. 5, pp. 32–41, May
1975.

[39] C. F. O’Donnell, “Engineering for Systems using Large Scale Integration,” Proceedings of
the Fall Joint Computer Conference, Vol. 1, pp. 867–876, December 1968.

 30008 -276 a 30008 -276 a

https://www.digikey.com/en/products/detail/solen/SI-12AX7B/10489816
https://www.digikey.com/en/products/detail/solen/SI-12AX7B/10489816

References 315

[40] B. W. Kernighan and S. Lin, “An Efficient Heuristic Procedure for Partitioning Graphs,”
The Bell System Technical Journal, Vol. 49, No. 2, pp. 291–307, February 1970.

[41] C. Y. Lee, “An Algorithm for Path Connections and its Applications,” IRE Transactions on
Electronic Computers, Vol. EC-10, No. 3, pp. 346–365, September 1961.

[42] C. Smith, The ZX Spectrum ULA: How to Design a Microcomputer, ZX Design & Media,
2010.

[43] C. W. Beardsley, “Computer Aids for IC Design, Artwork, and Mask Generation,” IEEE
Spectrum, Vol. 8, No. 9, pp. 63–79, September 1971.

[44] W. Holt, “Computer Aided Design and New Manufacturing Methods for Electronic
Materials,” Materials & Design, Vol. 6, No. 1, pp. 42–45, March 1985.

[45] W. R. DeHaan, “The Bell Telephone Laboratories Automatic Graphic Schematic Drawing
Program,” Proceedings of the SHARE Design Automation Project, pp. 4.1 – 4.25, June 1966.

[46] C. Alaimo, “A Graphics Aided Drafting System (GRAD),” Proceedings of the ACM/IEEE
Design Automation Conference, p. 4.1–4.23, January 1967.

[47] H. N. Lerman, “MADS - a Machine Aided Drafting System,” Proceedings of the SHARE
Design Automation Project, p. 10.1–10.31, January 1966.

[48] M. R. Davis and T. O. Ellis, “The RAND Tablet: a Man-Machine Graphical Communication
Device,” Proceedings of the Fall Joint Computer Conference, Part I, pp. 325–331, October
1964.

[49] P. LaCour, A. J. Reich, K. H. Nakagawa, S. F. Schulze, and L. Grodd, “New Stream
Format: Progress Report on Containing Data Size Explosion,” Proceedings of the Design
and Process Integration for Microelectronic Manufacturing, Vol. 5042, pp. 214–221, July
2003.

[50] L. W. Nagel, “SPICE2: a Computer Program to Simulate Semiconductor Circuits,”
Memorandum No. ERL-M520, University of California, Berkeley, May 1975.

[51] W. Engl and D. Mlynski, “Topological Synthesis Procedure for Circuit Integration,”
Proceedings of the IEEE International Solid-State Circuits Conference, pp. 138–139,
February 1969.

[52] E. Trischler, “An Integrated Design for Testability and Automatic Test Pattern Generation
System: an Overview,” Proceedings of the ACM/IEEE Design Automation Conference, pp.
209–215, June 1984.

[53] T. H. Bruggere and E. Hollomon, “Tools for Computer-Aided Engineering,” IEEE Computer
Graphics and Applications, Vol. 3, No. 9, pp. 48–53, December 1983.

[54] C. Sechen and A. Sangiovanni-Vincentelli, “The Timberwolf Placement and Routing
Package,” IEEE Journal of Solid-State Circuits, Vol. 20, No. 2, pp. 510–522, April 1985.

[55] E. G. Friedman, “Feedback in Silicon Compilers,” IEEE Circuits and Devices Magazine,
Vol. 1, No. 3, pp. 15–20, May 1985.

[56] B. M. Pangrle and D. D. Gajski, “Design Tools for Intelligent Silicon Compilation,” IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems, Vol. 6, No. 6,
pp. 1098–1112, November 1987.

[57] A. M. Prabhu, “Management Issues in EDA,” Proceedings of the ACM/IEEE Design
Automation Conference, pp. 41–47, June 1994.

[58] S. Schulz, G. Hinckley, G. Spirakis, K. Vahtra, J. Darringer, J. G. Janac, and H. Jones, “What
Drives EDA Innovation?,” Proceedings of the ACM/IEEE Design Automation Conference,
pp. 790–791, June 2001.

[59] I. Bahar, A. K. Jones, S. Katkoori, P. H. Madden, D. Marculescu, and I. L. Markov,
“‘Scaling’ the Impact of EDA Education: Preliminary Findings from the CCC Workshop
Series on Extreme Scale Design Automation,” Proceedings of the IEEE International
Conference on Microelectronic Systems Education, pp. 64–67, June 2013.

[60] T. Rabuske, “Polymath: a Platform for Rapid Application Development of Modular EDA
Tools,” Proceedings of the IEEE International Symposium on Circuits and Systems, pp. 1–5,
October 2020.

[61] L.-T. Wang, Y.-W. Chang, and K.-T. T. Cheng, Electronic Design Automation: Synthesis,
Verification, and Test, Morgan Kaufmann, 2009.

316 References

[62] G. H. Mealy, “A Method for Synthesizing Sequential Circuits,” The Bell System Technical
Journal, Vol. 34, No. 5, pp. 1045–1079, September 1955.

[63] E. F. Moore, “Gedanken-Experiments on Sequential Machines,” Automata Studies.(AM-34),
Volume 34, pp. 129–154. April 1956.

[64] C. Ho, A. Ruehli, and P. Brennan, “The Modified Nodal Approach to Network Analysis,”
IEEE Transactions on Circuits and Systems, Vol. 22, No. 6, pp. 504–509, June 1975.

[65] R. Bairamkulov, A. Roy, M. Nagarajan, V. Srinivas, and E. G. Friedman, “SPROUT - Smart
Power ROUting Tool for Board-Level Exploration and Prototyping,” Proceedings of the
ACM/IEEE Design Automation Conference, pp. 283–288, December 2021.

[66] R. Bairamkulov, T. Jabbari, E.G. Friedman, “QuCTS-single-flux quantum clock tree syn-
thesis”. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems
41(10), 3346–3358 (October 2022)

[67] C. Ababei, Y. Feng, B. Goplen, H. Mogal, T. Zhang, K. Bazargan, and S. Sapatnekar,
“Placement and Routing in 3D Integrated Circuits,” IEEE Design & Test of Computers,
Vol. 22, No. 6, pp. 520–531, December 2005.

[68] M. Rostami, F. Koushanfar, and R. Karri, “A Primer on Hardware Security: Models,
Methods, and Metrics,” Proceedings of the IEEE, Vol. 102, No. 8, pp. 1283–1295, August
2014.

[69] M. Fyrbiak, S. Wallat, S. Reinhard, N. Bissantz, and C. Paar, “Graph Similarity and its
Applications to Hardware Security,” IEEE Transactions on Computers, Vol. 69, No. 4, pp.
505–519, April 2019.

[70] H. Qian, S. R. Nassif, and S. S. Sapatnekar, “Random Walks in a Supply Network,”
Proceedings of the ACM/IEEE Design Automation Conference, pp. 93–98, June 2003.

[71] R. Bairamkulov and E. G. Friedman, “Effective Resistance of Two-Dimensional Truncated
Infinite Mesh Structures,” IEEE Transactions on Circuits and Systems I: Regular Papers,
Vol. 66, No. 11, pp. 4368–4376, November 2019.

[72] R. Bairamkulov and E. G. Friedman, “Effective Resistance of Finite Two-Dimensional Grids
based on Infinity Mirror Technique,” IEEE Transactions on Circuits and Systems I: Regular
Papers, Vol. 67, No. 9, pp. 3224–3233, September 2020.

[73] T. Lei and S. Kumar, “A Two-Step Genetic Algorithm for Mapping Task Graphs to a
Network on Chip Architecture,” Proceedings of the Euromicro Symposium on Digital System
Design, pp. 180–187, September 2003.

[74] A. E. Kiasari, Z. Lu, and A. Jantsch, “An Analytical Latency Model for Networks-on-Chip,”
IEEE Transactions on Very Large Scale Integration (VLSI) Systems, Vol. 21, No. 1, pp. 113–
123, January 2013.

[75] R. Bairamkulov, K. Xu, M. Popovich, J. S. Ochoa, V. Srinivas, and E. G. Friedman, “Power
Delivery Exploration Methodology based on Constrained Optimization,” IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems, Vol. 39, No. 9, pp. 1916–
1924, September 2020.

[76] J. A. Bondy and U. S. R. Murty, Graph Theory with Applications, Vol. 290, Macmillan
London, 1976.

[77] D. B. West, Introduction to Graph Theory, Prentice Hall, 2001.
[78] R. J. Wilson, “What is a Graph?,” International Journal of Mathematical Education in

Science and Technology, Vol. 3, No. 2, pp. 107–115, June 1972.
[79] X. Ouvrard, J. M. Le Goff, and S. Marchand-Maillet, “On Adjacency and e-Adjacency in

General Hypergraphs: Towards a New e-Adjacency Tensor,” Electronic Notes in Discrete
Mathematics, Vol. 70, pp. 71–76, December 2018.

[80] S. Sarkar and K. N. Sivarajan, “Hypergraph Models for Cellular Mobile Communication
Systems,” IEEE Transactions on Vehicular Technology, Vol. 47, No. 2, pp. 460–471, May
1998.

[81] T. F. Gonzalez, Handbook of Approximation Algorithms and Metaheuristics: Contemporary
and Emerging Applications, Vol. 2, CRC Press, 2018.

[82] S. Klamt, U.-U. Haus, and F. Theis, “Hypergraphs and Cellular Networks,” PLoS
Computational Biology, Vol. 5, No. 5, pp. 1–6, May 2009.

References 317

[83] D. J. Galas, N. A. Sakhanenko, A. Skupin, and T. Ignac, “Describing the Complexity of
Systems: Multivariable Set Complexity and the Information Basis of Systems Biology,”
Journal of Computational Biology, Vol. 21, No. 2, pp. 118–140, February 2014.

[84] H. Zhang, L. Song, and Z. Han, “Radio Resource Allocation for Device-to-Device
Underlay Communication using Hypergraph Theory,” IEEE Transactions on Wireless
Communications, Vol. 15, No. 7, pp. 4852–4861, July 2016.

[85] J. Yu, D. Tao, and M. Wang, “Adaptive Hypergraph Learning and its Application in Image
Classification,” IEEE Transactions on Image Processing, Vol. 21, No. 7, pp. 3262–3272,
July 2012.

[86] L. Li and T. Li, “News Recommendation via Hypergraph Learning: Encapsulation of User
Behavior and News Content,” Proceedings of the ACM International Conference on Web
Search and Data Mining, pp. 305–314, February 2013.

[87] Y. M. Ponce, “Total and Local Quadratic Indices of the Molecular Pseudograph’s
Atom Adjacency Matrix: Applications to the Prediction of Physical Properties of Organic
Compounds,” Molecules, Vol. 8, No. 9, pp. 687–726, August 2003.

[88] H. Yang, Y. Gu, J. Zhu, K. Hu, and X. Zhang, “PGCN-TCA: Pseudo Graph Convolutional
Network with Temporal and Channel-Wise Attention for Skeleton-Based Action Recogni-
tion,” IEEE Access, Vol. 8, pp. 10040–10047, January 2020.

[89] M. Borowczak and R. Vemuri, “S* FSM: a Paradigm Shift for Attack Resistant FSM
Designs and Encodings,” Proceedings of the ASE/IEEE International Conference on
Biomedical Computing, pp. 96–100, December 2012.

[90] Y. Sun, X. Yu, R. Bie, and H. Song, “Discovering Time-Dependent Shortest Path on Traffic
Graph for Drivers Towards Green Driving,” Journal of Network and Computer Applications,
Vol. 83, pp. 204–212, April 2017.

[91] X. Xu, M. Niemeijer, Q. Song, M. Sonka, M. K. Garvin, J. M. Reinhardt, and M. D.
Abramoff, “Vessel Boundary Delineation on Fundus Images using Graph-Based Approach,”
IEEE Transactions on Medical Imaging, Vol. 30, No. 6, pp. 1184–1191, June 2011.

[92] Y. Sun, T.-C. Wang, C. Wong, and C. Liu, “Routing for Symmetric FPGAs and FPICs,”
Proceedings of the IEEE/ACM International Conference on Computer-Aided Design, pp.
486–490, January 1993.

[93] W. Shi and B. Hong, “Resource Allocation with a Budget Constraint for Computing
Independent Tasks in the Cloud,” Proceedings of the IEEE International Conference on
Cloud Computing Technology and Science, pp. 327–334, December 2010.

[94] D. E. Knuth and J. L. Szwarcfiter, “A Structured Program to Generate All Topological
Sorting Arrangements,” Information Processing Letters, Vol. 2, No. 6, pp. 153–157,
February 1974.

[95] R. E. Bryant, “Graph-Based Algorithms for Boolean Function Manipulation,” IEEE
Transactions on Computers, Vol. C-35, No. 8, pp. 677–691, August 1986.

[96] F. Scarselli, M. Gori, A. C. Tsoi, M. Hagenbuchner, and G. Monfardini, “The Graph Neural
Network Model,” IEEE Transactions on Neural Networks, Vol. 20, No. 1, pp. 61–80, January
2009.

[97] H. Topcuoglu, S. Hariri, and M.-Y. Wu, “Performance-Effective and Low-Complexity Task
Scheduling for Heterogeneous Computing,” IEEE Transactions on Parallel and Distributed
Systems, Vol. 13, No. 3, pp. 260–274, March 2002.

[98] W. Chen, Y. Yuan, and L. Zhang, “Scalable Influence Maximization in Social Networks
under the Linear Threshold Model,” Proceedings of the IEEE International Conference on
Data Mining, pp. 88–97, December 2010.

[99] W. Shi and C. Su, “The Rectilinear Steiner Arborescence Problem is NP-Complete,”
Proceedings of the ACM-SIAM Symposium on Discrete Algorithms, pp. 780–787, February
2000.

[100] A. Artmeier, J. Haselmayr, M. Leucker, and M. Sachenbacher, “The Shortest Path Problem
Revisited: Optimal Routing for Electric Vehicles,” Proceedings of the Conference on
Artificial Intelligence, pp. 309–316, September 2010.

318 References

[101] S. E. Dreyfus, “An Appraisal of Some Shortest-Path Algorithms,” Operations Research,
Vol. 17, No. 3, pp. 395–412, June 1969.

[102] T. J. Moser, “Shortest Path Calculation of Seismic Rays,” Geophysics, Vol. 56, No. 1, pp.
59–67, January 1991.

[103] H. de Fraysseix, P. O. de Mendez, and P. Rosenstiehl, “Trémaux Trees and Planarity,”
International Journal of Foundations of Computer Science, Vol. 17, No. 5, pp. 1017–1029,
April 2006.

[104] É. Lucas, Récréations Mathématiques, Vol. 2, Gauthier-Villars, 1883.
[105] R. Tarjan, “Depth-First Search and Linear Graph Algorithms,” SIAM Journal on Computing,

Vol. 1, No. 2, pp. 146–160, June 1972.
[106] V. N. Rao and V. Kumar, “Parallel Depth First Search. Part I. Implementation,” International

Journal of Parallel Programming, Vol. 16, No. 6, pp. 479–499, December 1987.
[107] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction to Algorithms, MIT

Press, 2009.
[108] R. E. Korf, “Depth-First Iterative-Deepening: An Optimal Admissible Tree Search,”

Artificial Intelligence, Vol. 27, No. 1, pp. 97–109, September 1985.
[109] E. F. Moore, “The Shortest Path through a Maze,” Proceedings of the International

Symposium on Switching Theory, pp. 285–292, April 1959.
[110] A. Shimbel, “Structure in Communication Nets,” Proceedings of the Symposium on

Information Networks, pp. 119–203, April 1954.
[111] L. R. Ford Jr, Network Flow Theory, RAND Corporation, Santa Monica, California, 1956.
[112] R. Bellman, “On a Routing Problem,” Quarterly of Applied Mathematics, Vol. 16, No. 1,

pp. 87–90, April 1958.
[113] E. W. Dijkstra, “A Note on Two Problems in Connexion with Graphs,” Numerische

Mathematik, Vol. 1, No. 1, pp. 269–271, December 1959.
[114] R. K. Ahuja, K. Mehlhorn, J. Orlin, and R. E. Tarjan, “Faster Algorithms for the Shortest

Path Problem,” Journal of the ACM, Vol. 37, No. 2, pp. 213–223, April 1990.
[115] D. B. Johnson, “Efficient Algorithms for Shortest Paths in Sparse Networks,” Journal of the

ACM, Vol. 24, No. 1, pp. 1–13, January 1977.
[116] M. L. Fredman and R. E. Tarjan, “Fibonacci Heaps and their Uses in Improved Network

Optimization Algorithms,” Journal of the ACM, Vol. 34, No. 3, pp. 596–615, July 1987.
[117] S. Hougardy, “The Floyd–Warshall Algorithm on Graphs with Negative Cycles,” Informa-

tion Processing Letters, Vol. 110, No. 8–9, pp. 279–281, April 2010.
[118] R. Dechter and J. Pearl, “Generalized Best-First Search Strategies and the Optimality of

A*,” Journal of the ACM, Vol. 32, No. 3, pp. 505–536, July 1985.
[119] N. Li, J. C. Hou, and L. Sha, “Design and Analysis of an MST-Based Topology Control

Algorithm,” IEEE Transactions on Wireless Communications, Vol. 4, No. 3, pp. 1195–1206,
April 2005.

[120] D. Li, X. Jia, and H. Liu, “Energy Efficient Broadcast Routing in Static Ad Hoc Wireless
Networks,” IEEE Transactions on Mobile Computing, Vol. 3, No. 2, pp. 144–151, June
2004.

[121] Y. Tarabalka, J. Chanussot, and J. A. Benediktsson, “Segmentation and Classification of
Hyperspectral Images using Minimum Spanning Forest Grown from Automatically Selected
Markers,” IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), Vol.
40, No. 5, pp. 1267–1279, October 2009.

[122] W.-C. Tu, S. He, Q. Yang, and S.-Y. Chien, “Real-Time Salient Object Detection with a
Minimum Spanning Tree,” Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pp. 2334–2342, June 2016.

[123] J. Cong, A. B. Kahng, G. Robins, M. Sarrafzadeh, and C.-K. Wong, “Provably Good
Performance-Driven Global Routing,” IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, Vol. 11, No. 6, pp. 739–752, May 1992.

[124] O. Borůvka, “O Jistém Problému Minimálním,” Práce Moravské Přírodovědecké
Společnosti, Vol. 3, No. 3, pp. 37–58, January 1926.

References 319

[125] R. L. Graham and P. Hell, “On the History of the Minimum Spanning Tree Problem,” Annals
of the History of Computing, Vol. 7, No. 1, pp. 43–57, March 1985.

[126] G. Choquet, “’Etude de Certains R’eseaux de Routes,” Comptes Rendus Hebdomadaires
des S’eances de L’Acad’emie des Sciences, Vol. 206, pp. 310–313, July 1938.

[127] K. Florek, J. Łukaszewicz, J. Perkal, H. Steinhaus, and S. Zubrzycki, “Sur la Liaison et la
Division des Points d’un Ensemble Fini,” Colloquium Mathematicum, Vol. 2, No. 3–4, pp.
282–285, 1951.

[128] G. Zhou and M. Gen, “A Note on Genetic Algorithms for Degree-Constrained Spanning
Tree Problems,” Networks: an International Journal, Vol. 30, No. 2, pp. 91–95, December
1997.

[129] V. Jarník, “O Jistém Problému Minimálním. (z Dopisu Panu O. Borůvkovi),” Práce
Moravské Přírodovědecké Společnosti, Vol. 6, No. 4, pp. 57–63, February 1930.

[130] B. M. Moret and H. D. Shapiro, “An Empirical Analysis of Algorithms for Constructing a
Minimum Spanning Tree,” Proceedings of the Workshop on Algorithms and Data Structures,
pp. 400–411, August 1991.

[131] J. B. Kruskal, “On the Shortest Spanning Subtree of a Graph and the Traveling Salesman
Problem,” Proceedings of the American Mathematical Society, Vol. 7, No. 1, pp. 48–50,
February 1956.

[132] F. Glover, D. Klingman, R. Krishnan, and R. Padman, “An In-Depth Empirical Investigation
of Non-Greedy Approaches for the Minimum Spanning Tree Problem,” European Journal
of Operational Research, Vol. 56, No. 3, pp. 343–356, February 1992.

[133] B. Chazelle, “A Minimum Spanning Tree Algorithm with Inverse-Ackermann Type
Complexity,” Journal of the ACM, Vol. 47, No. 6, pp. 1028–1047, November 2000.

[134] S. Pettie, “An Inverse-Ackermann Style Lower Bound for the Online Minimum Spanning
Tree Verification Problem,” Proceedings of the IEEE Symposium on Foundations of
Computer Science, pp. 155–163, November 2002.

[135] D. R. Karger, P. N. Klein, and R. E. Tarjan, “A Randomized Linear-Time Algorithm to Find
Minimum Spanning Trees,” Journal of the ACM, Vol. 42, No. 2, pp. 321–328, March 1995.

[136] J. Byrka, F. Grandoni, T. Rothvoß, and L. Sanita, “An Improved LP-Based Approximation
for Steiner Tree,” Proceedings of the ACM Symposium on Theory of Computing, pp. 583–
592, June 2010.

[137] G. Robins and A. Zelikovsky, “Tighter Bounds for Graph Steiner Tree Approximation,”
SIAM Journal on Discrete Mathematics, Vol. 19, No. 1, pp. 122–134, May 2005.

[138] J. Byrka, F. Grandoni, T. Rothvoß, and L. Sanità, “Steiner Tree Approximation via Iterative
Randomized Rounding,” Journal of the ACM, Vol. 60, No. 1, pp. 1–33, February 2013.

[139] M. Brazil, R. L. Graham, D. A. Thomas, and M. Zachariasen, “On the History of the
Euclidean Steiner Tree Problem,” Archive for History of Exact Sciences, Vol. 68, No. 3,
pp. 327–354, May 2014.

[140] R. Wilson and J. J. Watkins, Combinatorics: Ancient & Modern, Oxford University Press,
2013.

[141] J. Krarup and S. Vajda, “On Torricelli’s Geometrical Solution to a Problem of Fermat,” IMA
Journal of Management Mathematics, Vol. 8, No. 3, pp. 215–224, July 1997.

[142] D. Du, P. M. Pardalos, and R. Graham, Handbook of Combinatorial Optimization, Vol. 4,
Springer-Verlag, 1998.

[143] M. R. Garey, R. L. Graham, and D. S. Johnson, “The Complexity of Computing Steiner
Minimal Trees,” SIAM Journal on Applied Mathematics, Vol. 32, No. 4, pp. 835–859, June
1977.

[144] M. Hanan, “On Steiner’s Problem with Rectilinear Distance,” SIAM Journal on Applied
Mathematics, Vol. 14, No. 2, pp. 255–265, March 1966.

[145] R. Bairamkulov, A. Roy, M. Nagarajan, V. Srinivas, and E. G. Friedman, “SPROUT -
smart power routing tool for board-level exploration and prototyping,” IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems, Vol. 41, No. 7, pp. 2263–
2275, July 2022

320 References

[146] F. K. Hwang, D. S. Richards, and P. Winter, The Steiner Tree Problem, Vol. 53, Annals of
Discrete Mathematics. Elsevier, 1992.

[147] J. M. Smith, Algorithms for Generalized Steiner Network (GSN) Problems, Ph.D. Thesis,
University of Illinois at Urbana-Champaign, August 1978.

[148] G. Georgakopoulos and C. H. Papadimitriou, “The 1-Steiner Tree Problem,” Journal of
Algorithms, Vol. 8, No. 1, pp. 122–130, March 1987.

[149] A. B. Kahng and G. Robins, “A New Class of Steiner Trees Heuristics with Good Per-
formance: the Iterated 1-Steiner-Approach.,” Proceedings of the IEEE/ACM International
Conference on Computer-Aided Design, pp. 428–431, November 1990.

[150] M. Borah, R. M. Owens, and M. J. Irwin, “An Edge-Based Heuristic for Steiner Routing,”
IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, Vol. 13,
No. 12, pp. 1563–1568, December 1994.

[151] M. Müller-Hannemann and S. Peyer, “Approximation of Rectilinear Steiner Trees with
Length Restrictions on Obstacles,” Proceedings of the Workshop on Algorithms and Data
Structures, pp. 207–218, August 2003.

[152] H. Tang, G. Liu, X. Chen, and N. Xiong, “A Survey on Steiner Tree Construction and Global
Routing for VLSI Design,” IEEE Access, Vol. 8, pp. 68593–68622, April 2020.

[153] W. C. Elmore, “The Transient Response of Damped Linear Networks with Particular Regard
to Wideband Amplifiers,” Journal of Applied Physics, Vol. 19, No. 1, pp. 55–63, January
1948.

[154] G. Ajwani, C. Chu, and W.-K. Mak, “FOARS: FLUTE based Obstacle-Avoiding Rectilinear
Steiner Tree Construction,” IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, Vol. 30, No. 2, pp. 194–204, February 2011.

[155] Y. Hu, T. Jing, X. Hong, Z. Feng, X. Hu, and G. Yan, “An-OARSMan: Obstacle-Avoiding
Routing Tree Construction with Good Length Performance,” Proceedings of the ACM/IEEE
Asia and South Pacific Design Automation Conference, pp. 7–12, January 2005.

[156] C. Chiang and C.-S. Chiang, “Octilinear Steiner Tree Construction,” Proceedings of the
IEEE Midwest Symposium on Circuits and Systems, pp. I–603 – I–606, August 2002.

[157] G. Liu, G. Chen, and W. Guo, “DPSO based Octagonal Steiner Tree Algorithm for VLSI
Routing,” Proceedings of the IEEE International Conference on Advanced Computational
Intelligence, pp. 383–387, October 2012.

[158] Y. Kanemoto, R. Sugawara, and M. Ohmura, “A Genetic Algorithm for the Rectilinear
Steiner Tree in 3-D VLSI Layout Design,” Proceedings of the IEEE Midwest Symposium on
Circuits and Systems, Vol. 1, pp. I–465, July 2004.

[159] S. Tayu and S. Ueno, “On the Complexity of Three-Dimensional Channel Routing,”
Proceedings of the IEEE International Symposium on Circuits and Systems, pp. 3399–3402,
May 2007.

[160] J.-T. Yan, Z.-W. Chen, and D.-H. Hu, “Timing-Driven Steiner Tree Construction for Three-
Dimensional ICs,” Proceedings of the Joint International IEEE Northeast Workshop on
Circuits and Systems and TAISA Conference, pp. 335–338, June 2008.

[161] P. Maritz and S. Mouton, “Francis Guthrie: a Colourful Life,” The Mathematical
Intelligencer, Vol. 34, No. 3, pp. 67–75, July 2012.

[162] D. A. MacKenzie, Mechanizing Proof: Computing, Risk, and Trust, MIT Press, 2001.
[163] P. G. Tait, “On the Colouring of Maps,” Proceedings of the Royal Society of Edinburgh, Vol.

10, pp. 501–503, November 1880.
[164] P. J. Heawood, “Map Color Theorems,” Quarterly Journal of Mathematics, Vol. 24, pp.

332–338, December 1890.
[165] K. A. Appel and W. Haken, “Every Planar Map is Four Colorable. I. Discharging,” Illinois

Journal of Mathematics, Vol. 21, pp. 429–490, September 1977.
[166] K. A. Appel, W. Haken, and J. Koch, “Every Planar Map is Four Colorable. II. Reducibility,”

Illinois Journal of Mathematics, Vol. 21, pp. 491–567, September 1977.
[167] P. Formanowicz and K. Tanaś, “A Survey of Graph Coloring – its Types, Methods and

Applications,” Foundations of Computing and Decision Sciences, Vol. 37, No. 3, pp. 223–
238, October 2012.

References 321

[168] H. Lu, M. Halappanavar, D. Chavarría-Miranda, A. H. Gebremedhin, A. Panyala, and
A. Kalyanaraman, “Algorithms for Balanced Graph Colorings with Applications in Parallel
Computing,” IEEE Transactions on Parallel and Distributed Systems, Vol. 28, No. 5, pp.
1240–1256, May 2017.

[169] S. A. Taleb, H. Slimani, and M. E. Khanouche, “A Routing Approach based on (N, p)-
Equitable b-Coloring of Graphs for Wireless Sensor Networks,” Proceedings of the IEEE
International Conference on Smart Communications in Network Technologies, pp. 90–95,
October 2018.

[170] V. G. Vizing, “On Evaluation of the Chromatic Class of a p-Graph,” Discrete Analysis:
Compilation of the Scientific Works, Vol. 3, pp. 25–30, 1964.

[171] V. G. Vizing, “The Chromatic Class of a Multigraph,” Cybernetics, Vol. 1, No. 3, pp. 32–41,
May 1965.

[172] G. Raeisi and M. Gholami, “Edge Coloring of Graphs with Applications in Coding Theory,”
China Communications, Vol. 18, No. 1, pp. 181–195, January 2021.

[173] S. Gandham, M. Dawande, and R. Prakash, “Link Scheduling in Sensor Networks:
Distributed Edge Coloring Revisited,” Proceedings of the Joint Conference of the IEEE
Computer and Communications Societies., Vol. 4, pp. 2492–2501, March 2005.

[174] H. Li, P. Shenoy, and K. Ramamritham, “Scheduling Communication in Real-Time
Sensor Applications,” Proceedings of the IEEE Real-Time and Embedded Technology and
Applications Symposium, pp. 10–18, May 2004.

[175] B. Awerbuch and Y. Azar, “Local Optimization of Global Objectives: Competitive
Distributed Deadlock Resolution and Resource Allocation,” Proceedings of the IEEE
Symposium on Foundations of Computer Science, pp. 240–249, November 1994.

[176] A. B. Kahn, “Topological Sorting of Large Networks,” Communications of the ACM, Vol.
5, No. 11, pp. 558–562, November 1962.

[177] J. Barnat, L. Brim, and P. Ročkai, “Parallel Partial Order Reduction with Topological Sort
Proviso,” Proceedings of the IEEE International Conference on Software Engineering and
Formal Methods, pp. 222–231, September 2010.

[178] C. Mead and L. Conway, Introduction to VLSI Systems, Addison-Wesley, 1980.
[179] E. Gray and D. Tall, “Abstraction as a Natural Process of Mental Compression,”

Mathematics Education Research Journal, Vol. 19, No. 2, pp. 23–40, September 2007.
[180] C. Panara and M. R. Varney, Local Government in Europe: the ‘Fourth Level’ in the EU

Multi-Layered System of Governance, Routledge, 2013.
[181] Council of State Governments, The Book of the States, Council of State Governments, 2019.
[182] Y. Wang, Software Engineering Foundations: a Software Science Perspective, CRC Press,

2007.
[183] B. Leiner, R. Cole, J. Postel, and D. Mills, “The DARPA Internet Protocol Suite,” IEEE

Communications Magazine, Vol. 23, No. 3, pp. 29–34, March 1985.
[184] Y. LeCun, Y. Bengio, and G. Hinton, “Deep Learning,” Nature, Vol. 521, No. 7553, pp.

436–444, May 2015.
[185] N. H. E. Weste and K. Eshraghian, Principles of CMOS VLSI Design: a Systems Perspective,

Addison-Wesley Publishing, 1985.
[186] M.-B. Lin, Introduction to VLSI Systems: a Logic, Circuit, and System Perspective, CRC

Press, 2011.
[187] C. H. Sequin, “Managing VLSI Complexity: an Outlook,” Proceedings of the IEEE, Vol.

71, No. 1, pp. 149–166, January 1983.
[188] A. Hashimoto and J. Stevens, “Wire Routing by Optimizing Channel Assignment within

Large Apertures,” Proceedings of the ACM/IEEE Design Automation Conference, pp. 155–
169, June 1971.

[189] D. W. Hightower, “A Solution to Line-Routing Problems on the Continuous Plane,”
Proceedings of the ACM/IEEE Design Automation Conference, pp. 1–24, January 1969.

[190] K. Mikami, “A Computer Program for Optimal Routing of Printed Circuit Connectors,”
Proceedings of the IFIPS, pp. 1475–1478, November 1968.

322 References

[191] R. B. Hitchcock, “Cellular Wiring and the Cellular Modeling Technique,” Proceedings of
the ACM/IEEE Design Automation Conference, pp. 25–41, January 1969.

[192] J. D. Lesser and J. J. Shedletsky, “An Experimental Delay Test Generator for LSI Logic,”
IEEE Computer Architecture Letters, Vol. 29, No. 3, pp. 235–248, March 1980.

[193] Y. Crouzet and C. Landrault, “Design of Self-Checking MOS-LSI Circuits: Application to a
Four-Bit Microprocessor,” IEEE Transactions on Computers, Vol. C-29, No. 6, pp. 532–537,
June 1980.

[194] A. J. Carlan, State-of-the-Art Assessment of Testing and Testability of Custom LSI/VLSI
Circuits, Vol. 2, Aerospace Corporation, El Segundo, California, 1982.

[195] S. H. Gerez, Algorithms for VLSI Design Automation, Wiley, 1998.
[196] T. C. Bartee, I. L. Lebow, and I. S. Reed, Theory and Design of Digital Machines, McGraw-

Hill, 1962.
[197] W. A. Clark, “Macromodular Computer Systems,” Proceedings of the Spring Joint

Computer Conference, pp. 335–336, April 1967.
[198] S. M. Ornstein, M. J. Stucki, and W. A. Clark, “A Functional Description of Macromodules,”

Proceedings of the Spring Joint Computer Conference, pp. 337–355, April 1967.
[199] M. J. Stucki, S. M. Ornstein, and W. A. Clark, “Logical Design of Macromodules,”

Proceedings of the Spring Joint Computer Conference, pp. 357–364, April 1967.
[200] J. R. Cox Jr., “Economy of Scale and Specialization in Large Computing Systems,”

Computer Design, Vol. 77, No. 11, pp. 77–80, November 1968.
[201] C. G. Bell and J. Grason, “The Register Transfer Module Design Concept,” Computer

Design, Vol. 10, No. 5, pp. 87–94, May 1971.
[202] S. H. Fuller, D. P. Siewiorek, and R. J. Swan, “Computer Modules: an Architecture for

Large Digital Modules,” ACM SIGARCH Computer Architecture News, Vol. 2, No. 4, pp.
231–237, December 1973.

[203] J. Grason, C. G. Bell, and J. Eggert, “The Commercialization of Register Transfer Modules,”
Computer, Vol. 6, No. 10, pp. 23–28, October 1973.

[204] D. E. Thomas, E. D. Lagnese, R. A. Walker, J. V. Rajan, R. L. Blackburn, and J. A. Nestor,
Algorithmic and Register-Transfer Level Synthesis: the System Architect’s Workbench,
Springer Science & Business Media, 1989.

[205] A. K. Bose, “Progress in VLSI Design Automation,” Proceedings of the European Solid-
State Circuits Conference, pp. 103–104, September 1984.

[206] A. Dewey, “VHSIC Hardware Description (VHDL) Development Program,” Proceedings
of the ACM/IEEE Design Automation Conference, pp. 625–628, June 1983.

[207] C.-L. Huang and S. Y. H. Su, “Approaches for Computer-Aided Logic/System Design using
Hardware Description Language,” Proceedings of the International Computer Symposium,
pp. 772–790, December 1980.

[208] G. De Micheli, Synthesis and Optimization of Digital Circuits, McGraw-Hill Higher
Education, 1994.

[209] D. D. Gajski, S. Abdi, A. Gerstlauer, and G. Schirner, Embedded System Design: Modeling,
Synthesis and Verification, Springer Science & Business Media, 2009.

[210] M. R. Zargham, Computer Architecture: Single and Parallel Systems, Prentice-Hall, 1996.
[211] P. Gray, “On the Arithmometer of M. Thomas (de Colmar), and its Application to the

Construction of Life Contingency Tables,” Journal of the Institute of Actuaries and
Assurance Magazine, Vol. 17, No. 4, pp. 249–266, October 1873.

[212] J. von Neumann, “First Draft of a Report on the EDVAC,” IEEE Annals of the History of
Computing, Vol. 15, No. 4, pp. 27–75, April 1993.

[213] R. Nair, “Evolution of Memory Architecture,” Proceedings of the IEEE, Vol. 103, No. 8,
pp. 1331–1345, August 2015.

[214] D. Comer, Essentials of Computer Architecture, CRC Press, 2017.
[215] V. Herdt, D. Große, P. Pieper, and R. Drechsler, “RISC-V based Virtual Prototype:

an Extensible and Configurable Platform for the System-Level,” Journal of Systems
Architecture, Vol. 109, pp. 101756, October 2020.

References 323

[216] A. Waterman and K. Asanović, The RISC-V Instruction Set Manual, Volume I: User-Level
ISA, RISC-V Foundation, 2019.

[217] J. L. Hennessy and D. A. Patterson, Computer Architecture: a Quantitative Approach,
Elsevier, 2011.

[218] P. Briggs, K. D. Cooper, and L. Torczon, “Improvements to Graph Coloring Register
Allocation,” ACM Transactions on Programming Languages and Systems, Vol. 16, No.
3, pp. 428–455, May 1994.

[219] G. J. Chaitin, “Register Allocation and Spilling via Graph Coloring,” ACM SIGPLAN
Notices, Vol. 17, No. 6, pp. 98–101, June 1982.

[220] D. Watson, A Practical Approach to Compiler Construction, Springer, 2017.
[221] D. J. A. Welsh and M. B. Powell, “An Upper Bound for the Chromatic Number of a Graph

and its Application to Timetabling Problems,” The Computer Journal, Vol. 10, No. 1, pp.
85–86, January 1967.

[222] M. Poletto and V. Sarkar, “Linear Scan Register Allocation,” ACM Transactions on
Programming Languages and Systems, Vol. 21, No. 5, pp. 895–913, September 1999.

[223] J. Schneider and R. Wattenhofer, “A New Technique for Distributed Symmetry Breaking,”
Proceedings of the ACM SIGACT-SIGOPS Symposium on Principles of Distributed Com-
puting, pp. 257–266, July 2010.

[224] F. Kuhn, “Weak Graph Colorings: Distributed Algorithms and Applications,” Proceedings of
the Symposium on Parallelism in Algorithms and Architectures, pp. 138–144, August 2009.

[225] N. Alon, L. Babai, and A. Itai, “A Fast and Simple Randomized Parallel Algorithm for the
Maximal Independent Set Problem,” Journal of Algorithms, Vol. 7, No. 4, pp. 567–583,
December 1986.

[226] M. Luby, “A Simple Parallel Algorithm for the Maximal Independent Set Problem,” SIAM
Journal on Computing, Vol. 15, No. 4, pp. 1036–1053, November 1986.

[227] M. Rigo, Advanced Graph Theory and Combinatorics, John Wiley & Sons, 2016.
[228] A. Y. Zomaya and Y.-C. Lee, Energy-Efficient Distributed Computing Systems, Wiley, 2012.
[229] P. Marwedel, Embedded System Design: Embedded Systems, Foundations of Cyber-Physical

Systems, and the Internet of Things, Springer Nature, 2021.
[230] E. G. Friedman, “Clock Distribution Networks in Synchronous Digital Integrated Circuits,”

Proceedings of the IEEE, Vol. 89, No. 5, pp. 665–692, May 2001.
[231] I. S. Kourtev, B. Taskin, and E. G. Friedman, Timing Optimization through Clock Skew

Scheduling, Springer Science & Business Media, 2008.
[232] E. Salman and E. G. Friedman, High Performance Integrated Circuit Design, McGraw-Hill

Professional, 2012.
[233] J. P. Fishburn, “Clock Skew Optimization,” IEEE Transactions on Computers, Vol. 39, No.

7, pp. 945–951, July 1990.
[234] T. M. McWilliams, “Verification of Timing Constraints on Large Digital Systems,”

Proceedings of the ACM/IEEE Design Automation Conference, pp. 139–147, November
1980.

[235] T.-H. Chao, Y.-C. Hsu, J.-M. Ho, and A. B. Kahng, “Zero Skew Clock Routing with
Minimum Wirelength,” IEEE Transactions on Circuits and Systems II: Analog and Digital
Signal Processing, Vol. 39, No. 11, pp. 799–814, September 1992.

[236] H. B. Bakoglu, “A Symmetric Clock Distribution Tree and Optimized High-Speed
Interconnections for Reduced Clock Skew in ULSI & WSI Circuits,” Proceedings of the
IEEE International Conference on Computer Design: VLSI in Computers, pp. 118–122,
October 1986.

[237] J. L. Neves and E. G. Friedman, “Design Methodology for Synthesizing Clock Distribution
Networks Exploiting Nonzero Localized Clock Skew,” IEEE Transactions on Very Large
Scale Integration (VLSI) Systems, Vol. 4, No. 2, pp. 286–291, June 1996.

[238] E. G. Friedman, Performance Limitations in Synchronous Digital Systems, Ph.D. Thesis,
University of California, Irvine, 1989.

[239] J. L. Neves and E. G. Friedman, “Optimal Clock Skew Scheduling Tolerant to Process
Variations,” Proceedings of the ACM/IEEE Design Automation Conference, pp. 623–628,
June 1996.

324 References

[240] I. S. Kourtev and E. G. Friedman, “Simultaneous Clock Scheduling and Buffered Clock
Tree Synthesis,” Proceedings of the IEEE International Symposium on Circuits and Systems,
Vol. 3, pp. 1812–1815, June 1997.

[241] I. S. Kourtev and E. G. Friedman, “Clock Skew Scheduling for Improved Reliability
via Quadratic Programming,” Proceedings of the IEEE/ACM International Conference on
Computer-Aided Design, pp. 239–243, November 1999.

[242] A. V. Mezhiba and E. G. Friedman, Power Distribution Networks in High Speed Integrated
Circuits, Springer Science & Business Media, 2004.

[243] J.-P. Queille and J. Sifakis, “Specification and Verification of Concurrent Systems in
CESAR,” Proceedings of the International Symposium on Programming, pp. 337–351, April
1982.

[244] E. M. Clarke and E. A. Emerson II, “Design and Synthesis of Synchronization Skeletons
using Branching Time Temporal Logic,” Proceedings of the Logics of Programs Workshop,
pp. 52–71, May 1982.

[245] K. L. McMillan, Symbolic Model Checking, Springer, 1993.
[246] D. K. Pradhan and I. G. Harris, Practical Design Verification, Cambridge University Press,

2009.
[247] A. Mishchenko, S. Chatterjee, R. Jiang, and R. K. Brayton, FRAIGs: a Unifying

Representation for Logic Synthesis and Verification, University of California, Berkeley,
2005.

[248] M. K. Ganai and A. Kuehlmann, “On-the-Fly Compression of Logical Circuits,” Proceed-
ings of the International Workshop on Logic Synthesis, pp. 1–7, June 2000.

[249] A. Kuehlmann, V. Paruthi, F. Krohm, and M. K. Ganai, “Robust Boolean Reasoning
for Equivalence Checking and Functional Property Verification,” IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, Vol. 21, No. 12, pp. 1377–1394,
December 2002.

[250] A. Kuehlmann and F. Krohm, “Equivalence Checking using Cuts and Heaps,” Proceedings
of the ACM/IEEE Design Automation Conference, pp. 263–268, June 1997.

[251] A. C. Ling, J. Zhu, and S. D. Brown, “Delay Driven AIG Restructuring using Slack Budget
Management,” Proceedings of the ACM Great Lakes Symposium on VLSI, pp. 163–166,
May 2008.

[252] G. Pasandi and M. Pedram, “A Dynamic Programming-Based, Path Balancing Technology
Mapping Algorithm Targeting Area Minimization,” Proceedings of the IEEE/ACM Interna-
tional Conference on Computer-Aided Design, pp. 1–8, November 2019.

[253] A. Mishchenko, J. S. Zhang, S. Sinha, J. R. Burch, R. Brayton, and M. Chrzanowska-Jeske,
“Using Simulation and Satisfiability to Compute Flexibilities in Boolean Networks,” IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems, Vol. 25, No. 5,
pp. 743–755, May 2006.

[254] M. Backes, J. M. Matos, R. Ribas, and A. Reis, “Reviewing AIG Equivalence Checking
Approaches,” Proceedings of the ACMMicroelectronics Student Forum, pp. 1–4, September
2014.

[255] K. T. S. Oldham, The Doctrine of Description: Gustav Kirchhoff, Classical Physics, and the
“Purpose of all Science” in 19th-Century Germany, Ph.D. Thesis, University of California,
Berkeley, 2008.

[256] G. R. Kirchhoff, “Ueber die Auflösung der Gleichungen, auf welche man bei der
Untersuchung der linearen Vertheilung galvanischer Ströme geführt wird,” Annalen der
Physik, Vol. 148, No. 12, pp. 497–508, October 1847.

[257] P. Appell and J. Drach, Oeuvres de Henri Poincaré Tome I, Gauthier-Villars, 1928.
[258] C. A. Desoer and E. S. Kuh, Basic Circuit Theory, McGraw-Hill, 1969.
[259] R. Merris, “Laplacian Matrices of Graphs: a Survey,” Linear Algebra and its Applications,

Vol. 197–198, pp. 143–176, February 1994.
[260] L. Nagel and R. Rohrer, “Computer Analysis of Nonlinear Circuits, Excluding Radiation

(CANCER),” IEEE Journal of Solid-State Circuits, Vol. 6, No. 4, pp. 166–182, August 1971.

References 325

[261] W. J. McCalla and W. G. Howard, “BIAS-3-A Program for the Nonlinear D.C. Analysis of
Bipolar Transistor Circuits,” IEEE Journal of Solid-State Circuits, Vol. 6, No. 1, pp. 14–19,
February 1971.

[262] A. Hemani, “Charting the EDA Roadmap,” IEEE Circuits and Devices Magazine, Vol. 20,
No. 6, pp. 5–10, December 2004.

[263] A. B. Kahng, J. Lienig, I. L. Markov, and J. Hu, VLSI Physical Design: from Graph
Partitioning to Timing Closure, Springer Science & Business Media, 2011.

[264] T. Lengauer, Combinatorial Algorithms for Integrated Circuit Layout, Springer Science &
Business Media, 2012.

[265] C. J. Alpert, D. P. Mehta, and S. S. Sapatnekar, Handbook of Algorithms for Physical Design
Automation, CRC Press, 2008.

[266] N. Cserhalmi, O. Lowenschuss, and B. Scheff, “Efficient Partitioning for the Batch-
Fabricated Fourth Generation Computer,” Proceedings of the Fall Joint Computer
Conference, Vol. 1, pp. 857–865, December 1968.

[267] H. Beelitz, H. Miiller, R. Linhardt, and R. Sidnam, “Partitioning for Large-Scale Integra-
tion,” Proceedings of the IEEE International Solid-State Circuits Conference, Vol. 10, pp.
50–51, February 1967.

[268] M. Armbruster, M. Fügenschuh, C. Helmberg, and A. Martin, “A Comparative Study
of Linear and Semidefinite Branch-and-Cut Methods for Solving the Minimum Graph
Bisection Problem,” Integer Programming and Combinatorial Optimization, pp. 112–124,
May 2008.

[269] G. Karypis, R. Aggarwal, V. Kumar, and S. Shekhar, “Multilevel Hypergraph Partitioning:
Applications in VLSI Domain,” IEEE Transactions on Very Large Scale Integration (VLSI)
Systems, Vol. 7, No. 1, pp. 69–79, March 1999.

[270] C. M. Fiduccia and R. M. Mattheyses, “A Linear-Time Heuristic for Improving Network
Partitions,” Proceedings of the ACM/IEEE Design Automation Conference, pp. 175–181,
June 1982.

[271] B. Krishnamurthy, “An Improved Min-Cut Algorithm for Partitioning VLSI Networks,”
IEEE Transactions on Computers, Vol. C-33, No. 5, pp. 438–446, May 1984.

[272] L. A. Sanchis, “Multiple-Way Network Partitioning,” IEEE Transactions on Computers,
Vol. 38, No. 1, pp. 62–81, January 1989.

[273] L.-T. Liu, M.-T. Kuo, S.-C. Huang, and C.-K. Cheng, “A Gradient Method on the Initial
Partition of Fiduccia-Mattheyses Algorithm,” Proceedings of the IEEE/ACM International
Conference on Computer-Aided Design, pp. 229–234, November 1995.

[274] G. Karypis and V. Kumar, METIS – Unstructured Graph Partitioning and Sparse Matrix
Ordering System, Version 2.0, University of Minnesota, Minneapolis, Minnesota, 1995.

[275] C. J. Alpert, L. W. Hagen, and A. B. Kahng, “A Hybrid Multilevel/Genetic Approach for
Circuit Partitioning,” Proceedings of the IEEE Asia Pacific Conference on Circuits and
Systems, pp. 298–301, November 1996.

[276] G. Wang, W. Gong, and R. Kastner, “Application Partitioning on Programmable Platforms
using the Ant Colony Optimization,” Journal of Embedded Computing, Vol. 2, No. 1, pp.
119–136, September 2006.

[277] M. Abdelhalim, A. Salama, and S.-D. Habib, “Hardware Software Partitioning using Particle
Swarm Optimization Technique,” Proceedings of the International Workshop on System on
Chip for Real Time Applications, pp. 189–194, December 2006.

[278] H. Murata, K. Fujiyoshi, S. Nakatake, and Y. Kajitani, “Rectangle-Packing-Based Module
Placement,” Proceedings of the IEEE/ACM International Conference on Computer-Aided
Design, pp. 472–479, November 1995.

[279] M. Tang and X. Yao, “A Memetic Algorithm for VLSI Floorplanning,” IEEE Transactions
on Systems, Man, and Cybernetics, Part B (Cybernetics), Vol. 37, No. 1, pp. 62–69, January
2007.

[280] I. L. Markov, J. Hu, and M.-C. Kim, “Progress and Challenges in VLSI Placement
Research,” Proceedings of the IEEE, Vol. 103, No. 11, pp. 1985–2003, November 2015.

326 References

[281] X. Hong, Sheqin D., Gang H., Y. Cai, C.-K. Cheng, and J. Gu, “Corner Block List
Representation and its Application to Floorplan Optimization,” IEEE Transactions on
Circuits and Systems II: Express Briefs, Vol. 51, No. 5, pp. 228–233, May 2004.

[282] P.-N. Guo, C.-K. Cheng, and T. Yoshimura, “An O-Tree Representation of Non-Slicing
Floorplan and its Applications,” Proceedings of the ACM/IEEE Design Automation
Conference, pp. 268–273, June 1999.

[283] F. Mao, N. Xu, and Y. Ma, “Hybrid Algorithm for Floorplanning using B∗-Tree Repre-
sentation,” Proceedings of the IEEE International Symposium on Intelligent Information
Technology Application, Vol. 3, pp. 228–231, November 2009.

[284] C. Chu and Y.-C. Wong, “FLUTE: Fast Lookup Table based Rectilinear Steiner Minimal
Tree Algorithm for VLSI Design,” IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, Vol. 27, No. 1, pp. 70–83, January 2008.

[285] R. H. J. M. Otten and R. K. Brayton, “Performance Planning,” Integration, the VLSI Journal,
Vol. 29, No. 1, pp. 1–24, March 2000.

[286] H. Ren, D. Z. Pan, C. J. Alpert, G.-J. Nam, and P. Villarrubia, “Hippocrates: First-Do-No-
Harm Detailed Placement,” Proceedings of the ACM/IEEE Asia and South Pacific Design
Automation Conference, pp. 141–146, January 2007.

[287] J. Westra and P. Groeneveld, “Is Probabilistic Congestion Estimation Worthwhile?,”
Proceedings of the ACM International Workshop on System Level Interconnect Prediction,
pp. 99–106, April 2005.

[288] C.-K. Koh and P. H. Madden, “Manhattan or Non-Manhattan? a Study of Alternative VLSI
Routing Architectures,” Proceedings of the ACM Great Lakes Symposium on VLSI, pp.
47–52, March 2000.

[289] M. Pathak and S. K. Lim, “Performance and Thermal-Aware Steiner Routing for 3-D
Stacked ICs,” IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems, Vol. 28, No. 9, pp. 1373–1386, September 2009.

[290] N. J. Nilsson, The Quest for Artificial Intelligence, Cambridge University Press, 2009.
[291] T. Yoshimura and E. S. Kuh, “Efficient Algorithms for Channel Routing,” IEEE

Transactions on Computer-Aided Design of Integrated Circuits and Systems, Vol. 1, No.
1, pp. 25–35, January 1982.

[292] T. G. Szymanski, “Dogleg Channel Routing is NP-Complete,” IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, Vol. 4, No. 1, pp. 31–41,
January 1985.

[293] P. M. Kogge and H. S. Stone, “A Parallel Algorithm for the Efficient Solution of a General
Class of Recurrence Equations,” IEEE Transactions on Computers, Vol. C-22, No. 8, pp.
786–793, August 1973.

[294] R. P. Brent and H. T. Kung, “A Regular Layout for Parallel Adders,” IEEE Transactions on
Computers, Vol. C-31, No. 3, pp. 260–264, March 1982.

[295] A. E. Shapiro, F. Atallah, K. Kim, J. Jeong, J. Fischer, and E. G. Friedman, “Adaptive Power
Gating of 32-bit Kogge Stone Adder,” Integration, the VLSI Journal, Vol. 53, pp. 80–87,
March 2016.

[296] R. Rojas, “Konrad Zuse’s Legacy: the Architecture of the Z1 and Z3,” IEEE Annals of the
History of Computing, Vol. 19, No. 2, pp. 5–16, April/June 1997.

[297] D. A. Huffman, “The Synthesis of Sequential Switching Circuits,” Journal of the Franklin
Institute, Vol. 257, No. 4, pp. 275–303, March 1954.

[298] S. J. Mason, “Feedback Theory – Some Properties of Signal Flow Graphs,” Proceedings of
the IRE, Vol. 41, No. 9, pp. 1144–1156, September 1953.

[299] J. A. Brzozowski and E. J. McCluskey, “Signal Flow Graph Techniques for Sequential
Circuit State Diagrams,” IEEE Transactions on Electronic Computers, Vol. EC-12, No. 2,
pp. 67–76, April 1963.

[300] M. C. Paull and S. H. Unger, “Minimizing the Number of States in Incompletely Specified
Sequential Switching Functions,” IRE Transactions on Electronic Computers, Vol. EC-8,
No. 3, pp. 356–367, September 1959.

References 327

[301] B. Gilchrist, J. H. Pomerene, and S. Y. Wong, “Fast Carry Logic for Digital Computers,”
IRE Transactions on Electronic Computers, Vol. EC-4, No. 4, pp. 133–136, December 1955.

[302] J. Sklansky, “Conditional-Sum Addition Logic,” IRE Transactions on Electronic Computers,
Vol. EC-9, No. 2, pp. 226–231, June 1960.

[303] R. Bellman, The Theory of Dynamic Programming, RAND Corporation, Santa Monica,
California, 1954.

[304] T. Haigh, M. Priestley, and C. Rope, “Engineering ‘The Miracle of the ENIAC’:
Implementing the Modern Code Paradigm,” IEEE Annals of the History of Computing,
Vol. 36, No. 2, pp. 41–59, June 2014.

[305] G. H. Barnes, R. M. Brown, M. Kato, D. J. Kuck, D. L. Slotnick, and R. A. Stokes, “The
ILLIAC IV Computer,” IEEE Transactions on Computers, Vol. C-17, No. 8, pp. 746–757,
August 1968.

[306] J. Cortadella and S. S Sapatnekar, “Static Timing Analysis,” Electronic Design Automation
for IC Implementation, Circuit Design, and Process Technology: Circuit Design, and
Process Technology, pp. 133–154. January 2016.

[307] D. G. Malcolm, J. H. Roseboom, C. E. Clark, and W. Fazar, “Application of a Technique for
Research and Development Program Evaluation,” Operations Research, Vol. 7, No. 5, pp.
646–669, October 1959.

[308] M. Engwall, “PERT, Polaris, and the Realities of Project Execution,” International Journal
of Managing Projects in Business, pp. 595–616, September 2012.

[309] T. I. Kirkpatrick and N. R. Clark, “PERT as an Aid to Logic Design,” IBM Journal of
Research and Development, Vol. 10, No. 2, pp. 135–141, March 1966.

[310] L. W. Cotten, “Circuit Implementation of High-Speed Pipeline Systems,” Proceedings of
the Fall Joint Computer Conference, Vol. 1, pp. 489–504, November 1965.

[311] H. H. Loomis and M. R. McCoy, “A Theory of High-Speed Clocked Logic,” Proceedings
of the Symposium on Switching Circuit Theory and Logical Design, pp. 150–161, October
1965.

[312] W. H. Howe, “High-Speed Logic Circuit Considerations,” Proceedings of the Fall Joint
Computer Conference, Vol. 1, pp. 505–510, November 1965.

[313] L. W. Cotten, “Maximum-Rate Pipeline Systems,” Proceedings of the AFIPS Spring Joint
Computer Conference, pp. 581–586, May 1969.

[314] S. Harting and P. Verma, “Universal Time Frame: a New Network Feature for Delay
Minimization,” IEEE Transactions on Communications, Vol. 23, No. 11, pp. 1339–1342,
November 1975.

[315] S. D. Rosenbaum and J. T. Caves, “8192-Bit Block Addressable CCD Memory,” IEEE
Journal of Solid-State Circuits, Vol. 10, No. 5, pp. 273–280, October 1975.

[316] G. P. Hyatt and G. Ohlberg, “Electrically Alterable Digital Differential Analyzer,”
Proceedings of the Spring Joint Computer Conference, pp. 161–169, April 1968.

[317] S. Dhar, M. A. Franklin, and D. F. Wan, “Reduction of Clock Delays in VLSI Structures,”
Proceedings of the IEEE International Conference on Computer Design: VLSI in Comput-
ers, pp. 778–783, October 1984.

[318] J. W. Goodman, F. J. Leonberger, S.-Y. Kung, and R. A. Athale, “Optical Interconnections
for VLSI Systems,” Proceedings of the IEEE, Vol. 72, No. 7, pp. 850–866, July 1984.

[319] A. J. Martin and M. Nystrom, “Asynchronous Techniques for System-on-Chip Design,”
Proceedings of the IEEE, Vol. 94, No. 6, pp. 1089–1120, June 2006.

[320] L. C. Bening, T. A. Lane, C. R. Alexander, and J. E. Smith, “Developments in Logic Network
Path Delay Analysis,” Proceedings of the ACM/IEEE Design Automation Conference, pp.
605–615, June 1982.

[321] A. E. Dunlop, V. D. Agrawal, D. N. Deutsch, M. F. Jukl, P. Kozak, and M. Wiesel, “Chip
Layout Optimization using Critical Path Weighting,” Proceedings of the ACM/IEEE Design
Automation Conference, pp. 133–136, June 1984.

[322] J. K. Ousterhout, “Crystal: a Timing Analyzer for nMOS VLSI Circuits,” Proceedings of
the Caltech Conference on Very Large Scale Integration, pp. 57–69, March 1983.

328 References

[323] G. Martin, J. Berrie, T. Little, D. Mackay, J. McVean, D. Tomsett, and L. Weston, “An
Integrated LSI Design Aids System,” Microelectronics Journal, Vol. 12, No. 4, pp. 18–22,
July 1981.

[324] R.-S. Tsay and I. Lin, “Robin Hood: a System Timing Verifier for Multi-Phase Level-
Sensitive Clock Designs,” Proceedings of the IEEE International ASIC Conference and
Exhibit, pp. 516–519, September 1992.

[325] K. A. Sakallah, T. N. Mudge, and O. A. Olukotun, “CheckTc and minTc: Timing Verification
and Optimal Clocking of Synchronous Digital Circuits,” Proceedings of the IEEE/ACM
International Conference on Computer-Aided Design, pp. 552–555, November 1990.

[326] T. G. Szymanski, “Computing Optimal Clock Schedules,” Proceedings of the ACM/IEEE
Design Automation Conference, pp. 399–404, June 1992.

[327] J. Rosenfeld and E. G. Friedman, “Design Methodology for Global Resonant H-Tree Clock
Distribution Networks,” IEEE Transactions on Very Large Scale Integration (VLSI) Systems,
Vol. 15, No. 2, pp. 135–148, April 2007.

[328] C. A. Tsao and C. Koh, “UST/DME: a Clock Tree Router for General Skew Constraints,”
ACM Transactions on Design Automation of Electronic Systems, Vol. 7, No. 3, pp. 359–379,
July 2002.

[329] K. D. Boese and A. B. Kahng, “Zero-Skew Clock Routing Trees with Minimum
Wirelength,” Proceedings of the IEEE International ASIC Conference and Exhibit, pp. 17–
21, September 1992.

[330] N. Shenoy, R. K. Brayton, and Sangiovanni-Vincentelli A. L., “Graph Algorithms for
Clock Schedule Optimization,” Proceedings of the IEEE/ACM International Conference
on Computer-Aided Design, pp. 132–136, November 1992.

[331] R. B. Deokar and S. S. Sapatnekar, “A Graph-Theoretic Approach to Clock Skew
Optimization,” Proceedings of the IEEE International Symposium on Circuits and Systems,
Vol. 1, pp. 407–410, May 1994.

[332] C.-T. Tsai and W.-Y. Yip, “An Experimental Technique for Full Package Inductance Matrix
Characterization,” IEEE Transactions on Components, Packaging, and Manufacturing
Technology: Part B, Vol. 19, No. 2, pp. 338–343, May 1996.

[333] C.-H. Park and B. Kim, “A Low-Noise, 900-MHz VCO in 0.6-µm CMOS,” IEEE Journal
of Solid-State Circuits, Vol. 34, No. 5, pp. 586–591, May 1999.

[334] J. Lee and S. Cho, “A 10MHz 80μW 67 ppm/◦C CMOS Reference Clock Oscillator with
a Temperature Compensated Feedback Loop in 0.18μm CMOS,” Proceedings of the IEEE
Symposium on VLSI Circuits, pp. 226–227, June 2009.

[335] U. Denier, “Analysis and Design of an Ultralow-Power CMOS Relaxation Oscillator,” IEEE
Transactions on Circuits and Systems I: Regular Papers, Vol. 57, No. 8, pp. 1973–1982,
August 2010.

[336] J. T. Santos and R. G. Meyer, “A One-Pin Crystal Oscillator for VLSI Circuits,” IEEE
Journal of Solid-State Circuits, Vol. 19, No. 2, pp. 228–236, April 1984.

[337] R. Sedgewick, Algorithms in C, Part 5: Graph Algorithms, Third Edition, Addison-Wesley
Professional, 2001.

[338] D. B. Johnson, “Finding All the Elementary Circuits of a Directed Graph,” SIAM Journal
on Computing, Vol. 4, No. 1, pp. 77–84, March 1975.

[339] D. M. Chapiro, Globally Asynchronous Locally Synchronous Circuits, Ph.D. Thesis,
Stanford University, 1984.

[340] I. Lin, J. A. Ludwig, and K. Eng, “Analyzing Cycle Stealing on Synchronous Circuits with
Level-Sensitive Latches,” Proceedings of the ACM/IEEE Design Automation Conference,
pp. 393–398, June 1992.

[341] T.-Y. Cheung, “Graph Traversal Techniques and the Maximum Flow Problem in Distributed
Computation,” IEEE Transactions on Software Engineering, Vol. SE-9, No. 4, pp. 504–512,
July 1983.

[342] E. Korach and Z. Ostfeld, “DFS Tree Construction: Algorithms and Characterizations,”
Proceedings of the International Workshop on Graph-Theoretic Concepts in Computer
Science, pp. 87–106, June 1988.

References 329

[343] J.-L. Tsai, D. Baik, C. C.-P. Chen, and K. K. Saluja, “A Yield Improvement Methodology
using Pre- and Post-Silicon Statistical Clock Scheduling,” Proceedings of the IEEE/ACM
International Conference on Computer-Aided Design, pp. 611–618, November 2004.

[344] J.-J. Liou, A. Krstic, L.-C. Wang, and K.-T. Cheng, “False-Path-Aware Statistical Timing
Analysis and Efficient Path Selection for Delay Testing and Timing Validation,” Proceedings
of the ACM/IEEE Design Automation Conference, pp. 566–569, June 2002.

[345] D. Blaauw, K. Chopra, A. Srivastava, and L. Scheffer, “Statistical Timing Analysis: from
Basic Principles to State of the Art,” IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, Vol. 27, No. 4, pp. 589–607, April 2008.

[346] Y. Wang, W.-S. Luk, X. Zeng, J. Tao, C. Yan, J. Tong, W. Cai, and J. Ni, “Timing Yield
Driven Clock Skew Scheduling considering Non-Gaussian Distributions of Critical Path
Delays,” Proceedings of the ACM/IEEE Design Automation Conference, pp. 223–226, June
2008.

[347] S.-H. Huang, C.-H. Cheng, C.-M. Chang, and Y.-T. Nieh, “Clock Period Minimization with
Minimum Delay Insertion,” Proceedings of the ACM/IEEE Design Automation Conference,
pp. 970—-975, June 2007.

[348] S.-H. Huang and Y.-T. Nieh, “Clock Period Minimization of Non-Zero Clock Skew
Circuits,” Proceedings of the IEEE/ACM International Conference on Computer-Aided
Design, pp. 809–812, November 2003.

[349] B. Taskin and I. S. Kourtev, “Delay Insertion Method in Clock Skew Scheduling,” IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems, Vol. 25, No. 4,
pp. 651–663, April 2006.

[350] W. Burleson, M. Ciesielski, F. Klass, and W. Liu, “Wave-Pipelining: a Tutorial and Research
Survey,” IEEE Transactions on Very Large Scale Integration (VLSI) Systems, Vol. 6, No. 3,
pp. 464–474, September 1998.

[351] C. T. Gray, W. Liu, and R. K. Cavin, III, Wave Pipelining: Theory and CMOS Implementa-
tion, Springer Science & Business Media, 1994.

[352] D. Velenis, K. T. Tang, I. S. Kourtev, V. Adler, F. Baez, and E. G. Friedman, “Demon-
stration of Speed and Power Enhancements through Application of Nonzero Clock Skew
Scheduling,” Proceedings of the ACM/IEEE International Workshop on Timing Issues in the
Specification and Synthesis of Digital Systems, pp. 58–63, December 2000.

[353] D. Velenis, K. T. Tang, I. S. Kourtev, V. Adler, F. Baez, and E. G. Friedman, “Demonstration
of Speed and Power Enhancements on an Industrial Circuit through Application of Clock
Skew Scheduling,” Journal of Circuits, Systems, and Computers, Vol. 11, No. 03, pp. 231–
245, June 2002.

[354] M. El-Moursy and E. Friedman, “Power Characteristics of Inductive Interconnect,” IEEE
Transactions on Very Large Scale Integration (VLSI) Systems, Vol. 12, No. 12, pp. 1295–
1306, December 2004.

[355] K. M. Cao, W.-C. Lee, W. Liu, X. Jin, P. Su, S. K. H. Fung, J. X. An, B. Yu, and C. Hu,
“BSIM4 Gate Leakage Model Including Source-Drain Partition,” Proceedings of the IEEE
International Electron Devices Meeting, pp. 815–818, December 2000.

[356] S.-M. Kang and Y. Leblebici, CMOS Digital Integrated Circuits, McGraw-Hill Education,
2003.

[357] K. Usami, M. Igarashi, F. Minami, T. Ishikawa, M. Kanzawa, M. Ichida, and K. Nogami,
“Automated Low-Power Technique Exploiting Multiple Supply Voltages Applied to a Media
Processor,” IEEE Journal of Solid-State Circuits, Vol. 33, No. 3, pp. 463–472, March 1998.

[358] S. Köse, S. Tam, S. Pinzon, B. McDermott, and E. G. Friedman, “Active Filter-Based Hybrid
On-Chip DC–DC Converter for Point-of-Load Voltage Regulation,” IEEE Transactions on
Very Large Scale Integration (VLSI) Systems, Vol. 21, No. 4, pp. 680–691, April 2013.

[359] R. Bairamkulov and E. G. Friedman, “On-Chip Voltage Regulator Distribution,” Proceed-
ings of the IEEE International Conference on Computer-Aided Design, November 2022.

[360] V. Kursun and E. G. Friedman, “Low Swing Dual Threshold Voltage Domino Logic,”
Proceedings of the ACM Great Lakes Symposium on VLSI, pp. 47–52, April 2002.

330 References

[361] V. Kursun and E. G. Friedman, Multi-Voltage CMOS Circuit Design, John Wiley & Sons,
2006.

[362] O. Coudert, “Gate Sizing for Constrained Delay/Power/Area Optimization,” IEEE
Transactions on Very Large Scale Integration (VLSI) Systems, Vol. 5, No. 4, pp. 465–472,
December 1997.

[363] M. Ni and S. O. Memik, “Leakage Power-Aware Clock Skew Scheduling: Converting Stolen
Time into Leakage Power Reduction,” Proceedings of the ACM/IEEE Design Automation
Conference, pp. 610–613, June 2008.

[364] L. Li, J. Sun, Y. Lu, H. Zhou, and X. Zeng, “Low Power Discrete Voltage Assignment under
Clock Skew Scheduling,” Proceedings of the ACM/IEEE Asia and South Pacific Design
Automation Conference, pp. 515–520, January 2011.

[365] L. H. Chen, M. Marek-Sadowska, and F. Brewer, “Buffer Delay Change in the Presence
of Power and Ground Noise,” IEEE Transactions on Very Large Scale Integration (VLSI)
Systems, Vol. 11, No. 3, pp. 461–473, August 2003.

[366] V. F. Pavlidis, I. Savidis, and E. G. Friedman, “Clock Distribution Networks for 3-D
Integrated Circuits,” IEEE Custom Integrated Circuits Conference, pp. 651–654, September
2008.

[367] V. F. Pavlidis, I. Savidis, and E. G. Friedman, “Clock Distribution Networks in 3-D
Integrated Systems,” IEEE Transactions on Very Large Scale Integration (VLSI) Systems,
Vol. 19, No. 12, pp. 2256–2266, December 2011.

[368] J. L. Neves and E. G. Friedman, “Topological Design of Clock Distribution Networks based
on Non-Zero Clock Skew Specifications,” Proceedings of the IEEE Midwest Symposium on
Circuits and Systems, Vol. 1, pp. 468–471, August 1993.

[369] J. Cong, L. He, C.-K. Koh, and P. H. Madden, “Performance Optimization of VLSI
Interconnect Layout,” Integration, the VLSI Journal, Vol. 21, No. 1, pp. 1–94, November
1996.

[370] J. G. Xi and W. W.-M. Dai, “Useful-Skew Clock Routing with Gate Sizing for Low Power
Design,” Proceedings of the ACM/IEEE Design Automation Conference, pp. 383–388, June
1996.

[371] A. Kahng, J. Cong, and G. Robins, “High-Performance Clock Routing based on Recursive
Geometric Matching,” Proceedings of the ACM/IEEE Design Automation Conference, pp.
322–327, June 1991.

[372] W. Khan and N. Sherwani, “Zero Skew Clock Routing Algorithm for High Performance
ASIC Systems,” Proceedings of the IEEE International ASIC Conference and Exhibit, pp.
79–82, September 1993.

[373] M. Edahiro, “A Clustering-Based Optimization Algorithm in Zero-Skew Routings,”
Proceedings of the ACM/IEEE Design Automation Conference, pp. 612–616, July 1993.

[374] M. Edahiro, “An Efficient Zero-Skew Routing Algorithm,” Proceedings of the ACM/IEEE
Design Automation Conference, pp. 375–380, June 1994.

[375] R. Chaturvedi and J. Hu, “Buffered Clock Tree for High Quality IC Design,” Proceedings
of the IEEE International Symposium on Signals, Circuits and Systems, pp. 381–386, July
2004.

[376] M. A. B. Jackson, A. Srinivasan, and E. S. Kuh, “Clock Routing for High-Performance ICs,”
Proceedings of the ACM/IEEE Design Automation Conference, pp. 573–579, January 1990.

[377] T.-H. Chao, Y.-C. Hsu, and J.-M. Ho, “Zero Skew Clock Net Routing,” Proceedings of the
ACM/IEEE Design Automation Conference, pp. 518–523, June 1992.

[378] A. B. Kahng and C.-W. Albert Tsao, “More Practical Bounded-Skew Clock Routing,”
Proceedings of the ACM/IEEE Design Automation Conference, pp. 594–599, June 1997.

[379] P. Penfield, Jr. and J. Rubinstein, “Signal Delay in RC Tree Networks,” Proceedings of the
ACM/IEEE Design Automation Conference, pp. 613–617, June 1981.

[380] T. Sakurai, “Closed-Form Expressions for Interconnection Delay, Coupling, and Crosstalk
in VLSIs,” IEEE Transactions on Electron Devices, Vol. 40, No. 1, pp. 118–124, January
1993.

References 331

[381] I. Partin-Vaisband, R. Jakushokas, M. Popovich, A. V. Mezhiba, S. Köse, and E. G. Fried-
man, On-Chip Power Delivery and Management, Fourth Edition, Springer International
Publishing, 2016.

[382] K. Xu, B. Vaisband, G. Sizikov, X. Li, and E. G. Friedman, “Power Noise and Near-Field
EMI of High-Current System-in-Package with VR Top and Bottom Placements,” IEEE
Transactions on Components, Packaging and Manufacturing Technology, Vol. 9, No. 4, pp.
712–718, April 2019.

[383] J. Zhang and E. Friedman, “Crosstalk Modeling for Coupled RLC Interconnects with
Application to Shield Insertion,” IEEE Transactions on Very Large Scale Integration (VLSI)
Systems, Vol. 14, No. 6, pp. 641–646, June 2006.

[384] R. Bairamkulov, A. Roy, M. Nagarajan, V. Srinivas, and E. G. Friedman, “Graph-Based
Power Network Routing for Board-Level High Performance Systems,” Proceedings of the
IEEE International Symposium on Circuits and Systems, October 2020.

[385] R. Bairamkulov, A. Ruderman, and Y. L. Familiant, “Time Domain Optimization of Voltage
and Current THD for a Three-Phase Cascaded H-Bridge Inverter,” Proceedings of the IEEE
International Power Electronics and Motion Control Conference, September 2016.

[386] V. Adler and E. Friedman, “Uniform Repeater Insertion in RC Trees,” IEEE Transactions on
Circuits and Systems I: Fundamental Theory and Applications, Vol. 47, No. 10, pp. 1515–
1523, October 2000.

[387] R.-S. Tsay, “An Exact Zero-Skew Clock Routing Algorithm,” IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, Vol. 12, No. 2, pp. 242–249,
February 1993.

[388] M. Edahiro, “Delay Minimization for Zero-Skew Routing,” Proceedings of the IEEE/ACM
International Conference on Computer-Aided Design, pp. 563–566, November 1993.

[389] J. Cong and C.-K. Koh, “Minimum-Cost Bounded-Skew Clock Routing,” Proceedings of the
IEEE International Symposium on Circuits and Systems, Vol. 1, pp. 215–218, April 1995.

[390] D. J. H. Huang, A. B. Kahng, and C.-W. A. Tsao, “On the Bounded-Skew Clock and Steiner
Routing Problems,” Proceedings of the ACM/IEEE Design Automation Conference, pp.
508–513, June 1995.

[391] J. Oh, I. Pyo, and M. Pedram, “Constructing Minimal Spanning Trees with Lower and Upper
Bounded Path Delays,” Proceedings of the IEEE International Symposium on Circuits and
Systems, Vol. 4, pp. 416–419, April 1996.

[392] J. Cong, A. B. Kahng, C.-K. Koh, and C.-W. A. Tsao, “Bounded-Skew Clock and Steiner
Routing,” ACM Transactions on Design Automation of Electronic Systems, Vol. 3, No. 3,
pp. 341–388, July 1998.

[393] E. G Friedman, “Clock Distribution Design in VLSI Circuits – an Overview,” Proceedings
of the IEEE International Symposium on Circuits and Systems, pp. 1475–1478, May 1993.

[394] G. S. Ohm, Die galvanische Kette, mathematisch bearbeitet, Bei T. H. Reimann, Berlin,
1827.

[395] J. C. Maxwell, A Treatise on Electricity and Magnetism, Clarendon Press, 1873.
[396] J. R. Carson, “A Theoretical Study of the Three-Element Vacuum Tube,” Proceedings of the

Institute of Radio Engineers, Vol. 7, No. 2, pp. 187–200, April 1919.
[397] G. Kron, “Non-Riemannian Dynamics of Rotating Electrical Machinery,” Journal of

Mathematics and Physics, Vol. 13, No. 1–4, pp. 103–194, April 1934.
[398] F. H. Branin, “D-C and Transient Analysis of Networks using a Digital Computer,”

Proceedings of the SHARE Design Automation Workshop, p. 4.1–4.23, January 1964.
[399] D. O. Pederson, “A Historical Review of Circuit Simulation,” IEEE Transactions on Circuits

and Systems, Vol. 31, No. 1, pp. 103–111, January 1984.
[400] A. F. Malmberg and F. L. Cornwell, NET-1 Network Analysis Program, Los Alamos

Scientific Laboratory of the University of California, Los Alamos, New Mexico, 1963.
[401] H. W. Mathers, S. R. Sedore, and J. R. Sents, Automated Digital Computer Program for

Determining Responses of Electronic Circuits to Transient Nuclear Radiation (SCEPTRE),
IBM Federal Systems Division, Electronics Systems Center, Oswego, New York, 1967.

332 References

[402] H. Shichman, “Computation of DC Solutions for Bipolar Transistor Networks,” IEEE
Transactions on Circuit Theory, Vol. 16, No. 4, pp. 460–466, November 1969.

[403] H. Shichman, “Integration System of a Nonlinear Transient Network-Analysis Program,”
IEEE Transactions on Circuit Theory, Vol. 17, No. 3, pp. 378–386, August 1970.

[404] G. Hachtel, R. Brayton, and F. Gustavson, “The Sparse Tableau Approach to Network
Analysis and Design,” IEEE Transactions on Circuit Theory, Vol. 18, No. 1, pp. 101–113,
January 1971.

[405] A. R. Newton and D. O. Pederson, “Analysis Time, Accuracy and Memory Requirement
Tradeoffs in Spice2,” Proceedings of the IEEE Asilomar Conference on Circuits, Systems
and Computers, pp. 6–9, November 1977.

[406] T.-H. Chen, C. Luk, and C. C.-P. Chen, “INDUCTWISE: Inductance-Wise Interconnect
Simulator and Extractor,” IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, Vol. 22, No. 7, pp. 884–894, July 2003.

[407] A. B. Bhattacharyya, Compact MOSFET Models for VLSI Design, John Wiley & Sons
(Asia), 2009.

[408] Y. Zhang, X. Wang, Y. Li, and E. G. Friedman, “Memristive Model for Synaptic Circuits,”
IEEE Transactions on Circuits and Systems II: Express Briefs, Vol. 64, No. 7, pp. 767–771,
July 2017.

[409] C. A. Floudas and P. M. Pardalos, Encyclopedia of Optimization, Springer Science &
Business Media, 2008.

[410] M. R. Hestenes and E. Stiefel, “Methods of Conjugate Gradients for Solving Linear
Systems,” Journal of Research of the National Bureau of Standards, Vol. 49, No. 6, pp.
409–435, December 1952.

[411] A. Buttari, J. Langou, J. Kurzak, and J. Dongarra, “A Class of Parallel Tiled Linear Algebra
Algorithms for Multicore Architectures,” Parallel Computing, Vol. 35, No. 1, pp. 38–53,
January 2009.

[412] T.-H. Chen and C. C.-P. Chen, “Efficient Large-Scale Power Grid Analysis based on
Preconditioned Krylov-Subspace Iterative Methods,” Proceedings of the ACM/IEEE Design
Automation Conference, pp. 559–562, June 2001.

[413] Y. Saad and M. H. Schultz, “GMRES: a Generalized Minimal Residual Algorithm
for Solving Nonsymmetric Linear Systems,” SIAM Journal on Scientific and Statistical
Computing, Vol. 7, No. 3, pp. 856–869, July 1986.

[414] R. Barrett, M. Berry, T. F. Chan, J. Demmel, J. Donato, J. Dongarra, V. Eijkhout, R. Pozo,
C. Romine, and H. Van der Vorst, Templates for the Solution of Linear Systems: Building
Blocks for Iterative Methods, SIAM, 1994.

[415] Y. Saad, Iterative Methods for Sparse Linear Systems, Second Edition, PWS Publishing,
1996.

[416] D. S. Watkins, Fundamentals of Matrix Computations, Vol. 64, John Wiley & Sons, 2004.
[417] D. Mandic, “A Generalized Normalized Gradient Descent Algorithm,” IEEE Signal

Processing Letters, Vol. 11, No. 2, pp. 115–118, February 2004.
[418] C. F. Van Loan and G. Golub, Matrix Computations, The Johns Hopkins University Press,

1996.
[419] M. J. Grote and T. Huckle, “Parallel Preconditioning with Sparse Approximate Inverses,”

SIAM Journal on Scientific Computing, Vol. 18, No. 3, pp. 838–853, May 1997.
[420] M. Benzi and M. Tûma, “A Comparative Study of Sparse Approximate Inverse Precondi-

tioners,” Applied Numerical Mathematics, Vol. 30, No. 2, pp. 305–340, June 1999.
[421] W. Shi and F. Yu, “A Divide-and-Conquer Algorithm for 3-D Capacitance Extraction,” IEEE

Transactions on Computer-Aided Design of Integrated Circuits and Systems, Vol. 23, No. 8,
pp. 1157–1163, July 2004.

[422] K. Sun, Q. Zhou, K. Mohanram, and D. C. Sorensen, “Parallel Domain Decomposition
for Simulation of Large-Scale Power Grids,” Proceedings of the IEEE/ACM International
Conference on Computer-Aided Design, pp. 54–59, November 2007.

[423] U. Kleis, O. Wallat, U. Wever, and Q. Zheng, “Domain Decomposition Methods for Circuit
Simulation,” Proceedings of the Workshop on Parallel and Distributed Simulation, pp. 183–
186, July 1994.

References 333

[424] Y. Zhong and M. D. F. Wong, “Fast Block-Iterative Domain Decomposition Algorithm for
IR Drop Analysis in Large Power Grid,” Proceedings of the IEEE International Symposium
on Quality Electronic Design, pp. 277–283, March 2010.

[425] D. E. Keyes, A. Sameh, and V. Venkatakrishnan, Parallel Numerical Algorithms, Vol. 4,
Springer Science & Business Media, 2012.

[426] T. Yu, Z. Xiao, and M. D. F. Wong, “Efficient Parallel Power Grid Analysis via Additive
Schwarz Method,” Proceedings of the IEEE/ACM International Conference on Computer-
Aided Design, pp. 399–406, November 2012.

[427] S. Le Borne and L. Grasedyck, “H-Matrix Preconditioners in Convection-Dominated
Problems,” SIAM Journal on Matrix Analysis and Applications, Vol. 27, No. 4, pp. 1172–
1183, December 2006.

[428] M. L. Zitzmann, Fast and Efficient Methods for Circuit-Based Automotive EMC Simulation,
Ph.D. Thesis, University of Erlangen-Nuremberg, 2007.

[429] H.-B. Chen, Y.-C. Li, S. X.-D. Tan, X. Huang, H. Wang, and N. Wong, “H-Matrix-
Based Finite-Element-Based Thermal Analysis for 3D ICs,” ACM Transactions on Design
Automation of Electronic Systems, Vol. 20, No. 4, September 2015.

[430] R. P. Fedorenko, “A Relaxation Method for Solving Elliptic Difference Equations,” USSR
Computational Mathematics and Mathematical Physics, Vol. 1, No. 4, pp. 1092–1096,
September 1962.

[431] A. Brandt, “Multi-Level Adaptive Solutions to Boundary-Value Problems,” Mathematics of
Computation, Vol. 31, No. 138, pp. 333–390, April 1977.

[432] W. Hackbusch, “On the Multi-Grid Method Applied to Difference Equations,” Computing,
Vol. 20, No. 4, pp. 291–306, December 1978.

[433] A. H. Baker, E. R. Jessup, and T. Manteuffel, “A Technique for Accelerating the
Convergence of Restarted GMRES,” SIAM Journal on Matrix Analysis and Applications,
Vol. 26, No. 4, pp. 962–984, 2005.
;

[434] J. Mandel and S. V. Parter, “On the Multigrid F-Cycle,” Applied Mathematics and
Computation, Vol. 37, No. 1, pp. 19–36, May 1990.

[435] S. R. Nassif and J. N. Kozhaya, “Fast Power Grid Simulation,” Proceedings of the
ACM/IEEE Design Automation Conference, pp. 156–161, June 2000.

[436] S. Williams, D. D. Kalamkar, A. Singh, A. M. Deshpande, B. Van Straalen, M. Smelyanskiy,
A. Almgren, P. Dubey, J. Shalf, and L. Oliker, “Optimization of Geometric Multigrid for
Emerging Multi- and Manycore Processors,” Proceedings of the International Conference
on High Performance Computing, Networking, Storage and Analysis, pp. 1–11, November
2012.

[437] R. D. Falgout, An Introduction to Algebraic Multigrid, Lawrence Livermore National Lab,
Livermore, California, 2006.

[438] J. N. Kozhaya, S. R. Nassif, and F. N. Najm, “A Multigrid-Like Technique for Power
Grid Analysis,” IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems, Vol. 21, No. 10, pp. 1148–1160, October 2002.

[439] J. Yang, Z. Li, Y. Cai, and Q. Zhou, “PowerRush: a Linear Simulator for Power Grid,”
Proceedings of the IEEE/ACM International Conference on Computer-Aided Design, pp.
482–487, December 2011.

[440] J. Yang, Z. Li, Y. Cai, and Q. Zhou, “PowerRush: Efficient Transient Simulation for Power
Grid Analysis,” Proceedings of the IEEE/ACM International Conference on Computer-
Aided Design, pp. 653–659, November 2012.

[441] C. Zhuo, J. Hu, M. Zhao, and K. Chen, “Fast Decap Allocation based on Algebraic
Multigrid,” Proceedings of the IEEE/ACM International Conference on Computer-Aided
Design, pp. 107–111, November 2006.

[442] Z. Feng and P. Li, “Multigrid on GPU: Tackling Power Grid Analysis on Parallel SIMT
Platforms,” Proceedings of the IEEE/ACM International Conference on Computer-Aided
Design, pp. 647–654, November 2008.

[443] Z. Feng and Z. Zeng, “Parallel Multigrid Preconditioning on Graphics Processing Units
(GPUs) for Robust Power Grid Analysis,” Proceedings of the ACM/IEEEDesign Automation
Conference, pp. 661–666, June 2010.

334 References

[444] V. V. Rao and I. Savidis, “Parameter Biasing Obfuscation for Analog IP Protection,”
Proceedings of the IEEE International Symposium on Hardware Oriented Security and
Trust, pp. 161–161, May 2017.

[445] R. S. Chakraborty and S. Bhunia, “HARPOON: an Obfuscation-Based SoC Design
Methodology for Hardware Protection,” IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, Vol. 28, No. 10, pp. 1493–1502, October 2009.

[446] T. Reveyrand, “Multiport Conversions between S, Z, Y , h, ABCD, and T Parame-
ters,” Proceedings of the International Workshop on Integrated Nonlinear Microwave and
Millimetre-Wave Circuits, pp. 1–3, July 2018.

[447] D. Schreurs and J. Verspecht, “Large-Signal Modelling and Measuring Go Hand-in-Hand:
Accurate Alternatives to Indirect S-Parameter Methods,” International Journal of RF and
Microwave Computer-Aided Engineering, Vol. 10, No. 1, pp. 6–18, December 2000.

[448] G. F. Lawler and V. Limic, Random Walk: a Modern Introduction, Cambridge University
Press, 2010.

[449] B. B. Mandelbrot, The Fractal Geometry of Nature, W. H. Freeman, New York, 1982.
[450] Lord Rayleigh F. R. S., “XII. On the Resultant of a Large Number of Vibrations of the Same

Pitch and of Arbitrary Phase,” The London, Edinburgh, and Dublin Philosophical Magazine
and Journal of Science, Vol. 10, No. 60, pp. 73–78, August 1880.

[451] D. Abbott, B. R. Davis, N. J. Phillips, and K. Eshraghian, “Simple Derivation of the Thermal
Noise Formula using Window-Limited Fourier Transforms and Other Conundrums,” IEEE
Transactions on Education, Vol. 39, No. 1, pp. 1–13, February 1996.

[452] D. Ben-Avraham and S. Havlin, Diffusion and Reactions in Fractals and Disordered
Systems, Cambridge University Press, 2000.

[453] J. E. Neigel and J. C. Avise, “Application of a Random Walk Model to Geographic
Distributions of Animal Mitochondrial DNA Variation,” Genetics, Vol. 135, No. 4, pp.
1209–1220, December 1993.

[454] S. J. Hardiman and L. Katzir, “Estimating Clustering Coefficients and Size of Social
Networks via Random Walk,” Proceedings of the International Conference on World Wide
Web, pp. 539–550, May 2013.

[455] A. Dasgupta, G. Das, and H. Mannila, “A Random Walk Approach to Sampling Hidden
Databases,” Proceedings of the International Conference on Management of Data, pp. 629–
640, June 2007.

[456] C. St. J. A. Nash-Williams, “Random Walk and Electric Currents in Networks,” Mathe-
matical Proceedings of the Cambridge Philosophical Society, Vol. 55, pp. 181–194, April
1959.

[457] W. Guo, S. X.-D. Tan, Z. Luo, and X. Hong, “Partial Random Walk for Large Linear
Network Analysis,” Proceedings of the IEEE International Symposium on Circuits and
Systems, Vol. 5, pp. 173–176, May 2004.

[458] Z. Yu and M. D. F. Wong, “Fast Algorithms for IR Drop Analysis in Large Power Grid,”
Proceedings of the IEEE/ACM International Conference on Computer-Aided Design, pp.
351–357, November 2005.

[459] H. Qian, S. R. Nassif, and S. S. Sapatnekar, “Power Grid Analysis using Random Walks,”
IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, Vol. 24,
No. 8, pp. 1204–1224, August 2005.

[460] B. Boghrati and S. S. Sapatnekar, “Incremental Analysis of Power Grids using Backward
Random Walks,” ACM Transactions on Design Automation of Electronic Systems, Vol. 19,
No. 3, pp. 1–29, June 2014.

[461] T. Miyakawa, K. Yamanaga, H. Tsutsui, H. Ochi, and T. Sato, “Acceleration of Random-
Walk Based Linear Circuit Analysis using Importance Sampling,” Proceedings of the ACM
Great Lakes Symposium on VLSI, pp. 211–216, May 2011.

[462] P. Li, “Variational Analysis of Large Power Grids by Exploring Statistical Sampling
Sharing and Spatial Locality,” Proceedings of the IEEE/ACM International Conference on
Computer-Aided Design, pp. 645–651, November 2005.

References 335

[463] J. Wang, “Deterministic Random Walk Preconditioning for Power Grid Analysis,” Proceed-
ings of the IEEE/ACM International Conference on Computer-Aided Design, pp. 392–398,
November 2012.

[464] Y. Liang, W. Yu, and H. Qian, “A Hybrid Random Walk Algorithm for 3-D Thermal
Analysis of Integrated Circuits,” Proceedings of the ACM/IEEE Asia and South Pacific
Design Automation Conference, pp. 849–854, January 2014.

[465] Y. Cai, L. Kang, J. Shi, X. Hong, and S. X.-D. Tan, “Random Walk Guided Decap
Embedding for Power/Ground Network Optimization,” IEEE Transactions on Circuits and
Systems II: Express Briefs, Vol. 55, No. 1, pp. 36–40, January 2008.

[466] D.-A. Li, M. Marek-Sadowska, and S. R. Nassif, “T-VEMA: a Temperature- and Variation-
Aware Electromigration Power Grid Analysis Tool,” IEEE Transactions on Very Large Scale
Integration (VLSI) Systems, Vol. 23, No. 10, pp. 2327–2331, October 2015.

[467] A. Çiprut, Grids in Very Large Scale Integration Systems, Ph.D. Thesis, University of
Rochester, May 2019.

[468] A. V. Mezhiba and E. G. Friedman, “Inductive Properties of High-Performance Power
Distribution Grids,” IEEE Transactions on Very Large Scale Integration (VLSI) Systems,
Vol. 10, No. 6, pp. 762–776, December 2002.

[469] S. Köse and E. G. Friedman, “Effective Resistance of a Two Layer Mesh,” IEEE
Transactions on Circuits and Systems II: Express Briefs, Vol. 58, No. 11, pp. 739–743,
November 2011.

[470] W. H. McCrea, “A Problem on Random Paths,” The Mathematical Gazette, Vol. 20, No.
241, pp. 311–317, December 1936.

[471] W. H. McCrea and F. J. W. Whipple, “Random Paths in Two and Three Dimensions,”
Proceedings of the Royal Society of Edinburgh, Vol. 60, No. 3, pp. 281–298, January 1940.

[472] H. Flanders, “Infinite Networks: II–Resistance in an Infinite Grid,” Journal of Mathematical
Analysis and Applications, Vol. 40, No. 1, pp. 30–35, October 1972.

[473] B. van der Pol and H. Bremmer, Operational Calculus based on the Two-Sided Laplace
Integral, Cambridge University Press, 1950.

[474] R. J. Duffin, “Basic Properties of Discrete Analytic Functions,” Duke Mathematical Journal,
Vol. 23, No. 2, pp. 335–363, June 1956.

[475] A. Stöhr, “Über einige lineare partielle Differenzengleichungen mit konstanten Koeffizien-
ten,” Mathematische Nachrichten, Vol. 3, No. 6, pp. 330–357, September 1950.

[476] G. Venezian, “On the Resistance between Two Points on a Grid,” American Journal of
Physics, Vol. 62, No. 11, pp. 1000–1004, November 1994.

[477] D. Atkinson and F. J. Van Steenwijk, “Infinite Resistive Lattices,” American Journal of
Physics, Vol. 67, No. 6, pp. 486–492, June 1999.

[478] F. Spitzer, Principles of Random Walk, Vol. 34, Springer Science & Business Media, 2013.
[479] J. Cserti, “Application of the Lattice Green’s Function for Calculating the Resistance of an

Infinite Network of Resistors,” American Journal of Physics, Vol. 68, No. 10, pp. 896–906,
October 2000.

[480] S. Köse and E. G. Friedman, “Efficient Algorithms for Fast IR Drop Analysis Exploiting
Locality,” Integration, the VLSI Journal, Vol. 45, No. 2, pp. 149–161, March 2012.

[481] Y. Ogasahara, M. Hashimoto, T. Kanamoto, and T. Onoye, “Measurement of Supply Noise
Suppression by Substrate and Deep N-well in 90nm Process,” Proceedings of the IEEE
Asian Solid-State Circuits Conference, pp. 397–400, November 2008.

[482] R. E. Aitchison, “Resistance between Adjacent Points of Liebman Mesh,” American Journal
of Physics, Vol. 32, pp. 566–566, July 1964.

[483] E. M. Purcell, Electricity and Magnetism, McGraw-Hill, 1963.
[484] P. G. Doyle and J. L. Snell, Random Walks and Electric Networks, Vol. 22, Mathematical

Association of America, 1984.
[485] K. Brown, “Infinite Grid of Resistors,” Available at https://www.mathpages.com/home/

kmath668/kmath668.htm.
[486] J. T. Moody, Efficient Methods for Calculating Equivalent Resistance between Nodes of

a Highly Symmetric Resistor Network, Major Qualifying Project, Worcester Polytechnic
Institute, March 2013.

 21514 55041 a 21514 55041 a

https://www.mathpages.com/home/kmath668/kmath668.htm
https://www.mathpages.com/home/kmath668/kmath668.htm

336 References

[487] M. Jeng, “Random Walks and Effective Resistances on Toroidal and Cylindrical Grids,”
American Journal of Physics, Vol. 68, No. 1, pp. 37–40, January 2000.

[488] “SciPy: Reference Guide,” 2014, [Online; accessed April 15, 2019].
[489] MATLAB 2019a Documentation, MathWorks, February 2019.
[490] F. Dorfler and F. Bullo, “Kron Reduction of Graphs with Applications to Electrical

Networks,” IEEE Transactions on Circuits and Systems I: Regular Papers, Vol. 60, No.
1, pp. 150–163, January 2013.

[491] K. Chang, K. Acharya, S. Sinha, B. Cline, G. Yeric, and S. K. Lim, “Power Benefit
Study of Monolithic 3D IC at the 7nm Technology Node,” Proceedings of the IEEE/ACM
International Symposium on Low Power Electronics and Design, pp. 201–206, July 2015.

[492] E. Liu and E. Li, “Fast Voltage Drop Modeling of Power Grid with Application to Silicon
Interposer Analysis,” Proceedings of the IEEE Electronic Components and Technology
Conference, pp. 1109–1114, May 2013.

[493] M. Popovich, M. Sotman, A. Kolodny, and E. G. Friedman, “Effective Radii of On-
Chip Decoupling Capacitors,” IEEE Transactions on Very Large Scale Integration (VLSI)
Systems, Vol. 16, No. 7, pp. 894–907, July 2008.

[494] S. Zhao, K. Roy, and C.-K. Koh, “Decoupling Capacitance Allocation and its Application to
Power-Supply Noise-Aware Floorplanning,” IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems, Vol. 21, No. 1, pp. 81–92, January 2002.

[495] S. Köse and E. G. Friedman, “Distributed On-Chip Power Delivery,” IEEE Journal on
Emerging and Selected Topics in Circuits and Systems, Vol. 2, No. 4, pp. 704–713, December
2012.

[496] J. M. Kosterlitz and D. J. Thouless, “Ordering, Metastability and Phase Transitions in Two-
Dimensional Systems,” Journal of Physics C: Solid-State Physics, Vol. 6, No. 7, pp. 1181,
April 1973.

[497] A. K. Chandra, P. Raghavan, W. L. Ruzzo, R. Smolensky, and P. Tiwari, “The Electrical
Resistance of a Graph Captures its Commute and Cover Times,” Computational Complexity,
Vol. 6, No. 4, pp. 312–340, December 1996.

[498] A. H. Zemanian, “Infinite Electrical Networks: a Reprise,” IEEE Transactions on Circuits
and Systems, Vol. 35, No. 11, pp. 1346–1358, November 1988.

[499] A. Carmona, A. M. Encinas, and M. Mitjana, “Kirchhoff Index of Periodic Linear Chains,”
Journal of Mathematical Chemistry, Vol. 53, No. 5, pp. 1195–1206, May 2015.

[500] H. Zhang and Y. Yang, “Resistance Distance and Kirchhoff Index in Circulant Graphs,”
International Journal of Quantum Chemistry, Vol. 107, No. 2, pp. 330–339, November 2007.

[501] F.-Y. Wu, “Theory of Resistor Networks: the Two-Point Resistance,” Journal of Physics A:
Mathematical and General, Vol. 37, No. 26, pp. 6653–6673, July 2004.

[502] R. Jakushokas and E. G. Friedman, “Power Network Optimization based on Link Breaking
Methodology,” IEEE Transactions on Very Large Scale Integration (VLSI) Systems, Vol. 21,
No. 5, pp. 983–987, May 2013.

[503] C.-J. Lee, J. K. Park, S. Kim, and J.-H. Chun, “A Study on a Lattice Resistance Mesh
Model of Display Cathode Electrodes for Capacitive Touch Screen Panel Sensors,” Procedia
Engineering, Vol. 168, pp. 884 – 887, September 2016.

[504] W. Xu and E. G. Friedman, “Clock Feedthrough in CMOS Analog Transmission Gate
Switches,” IEEE International ASIC/SOC Conference, pp. 181–185, September 2002.

[505] R. M. Secareanu, S. Warner, S. Seabridge, C. Burke, J. Becerra, T. E. Watrobski, C. Morton,
W. Staub, T. Tellier, I. S. Kourtev, and E. G. Friedman, “Substrate Coupling in Digital
Circuits in Mixed-Signal Smart-Power Systems,” IEEE Transactions on Very Large Scale
Integration (VLSI) Systems, Vol. 12, No. 1, pp. 67–78, January 2004.

[506] J. Xie, Y. Jia, and M. Miao, “High Sensitivity Knitted Fabric Bi-Directional Pressure Sensor
based on Conductive Blended Yarn,” Smart Materials and Structures, Vol. 28, No. 3, pp.
035017, February 2019.

[507] J. Xie and H. Long, “Equivalent Resistance Calculation of Knitting Sensor under Strip
Biaxial Elongation,” Sensors and Actuators A: Physical, Vol. 220, pp. 118–125, December
2014.

References 337

[508] E. Bendito, A. Carmona, A. M. Encinas, and J. M. Gesto, “Characterization of Symmetric
M-Matrices as Resistive Inverses,” Linear Algebra and its Applications, Vol. 430, No. 4, pp.
1336–1349, February 2009.

[509] S. J. Kirkland and M. Neumann, “The M-matrix Group Generalized Inverse Problem for
Weighted Trees,” SIAM Journal on Matrix Analysis and Applications, Vol. 19, No. 1, pp.
226–234, January 1998.

[510] R. Bairamkulov, K. Xu, E. G. Friedman, M. Popovich, J. Ochoa, and V. Srinivas, “Versatile
Framework for Power Delivery Exploration,” Proceedings of the IEEE International
Symposium on Circuits and Systems, pp. 1–5, May 2018.

[511] I. Vaisband and E. G. Friedman, “Heterogeneous Methodology for Energy Efficient
Distribution of On-Chip Power Supplies,” IEEE Transactions on Power Electronics, Vol.
28, No. 9, pp. 4267–4280, September 2013.

[512] I. Vaisband, B. Price, S. Köse, Y. Kolla, E. G. Friedman, and J. Fischer, “Distributed LDO
Regulators in a 28 nm Power Delivery System,” Analog Integrated Circuits and Signal
Processing, Vol. 83, No. 3, pp. 295–309, June 2015.

[513] S. K. Khatamifard, L. Wang, W. Yu, S. Köse, and U. R. Karpuzcu, “ThermoGater:
Thermally-Aware On-Chip Voltage Regulation,” Proceedings of the ACM/IEEE Interna-
tional Symposium on Computer Architecture, pp. 120–132, December 2017.

[514] X. Zhan, J. Riad, P. Li, and E. Sánchez, “Design Space Exploration of Distributed On-Chip
Voltage Regulation under Stability Constraint,” IEEE Transactions on Very Large Scale
Integration (VLSI) Systems, Vol. 26, No. 8, pp. 1580–1584, August 2018.

[515] A. Çiprut and E. G. Friedman, “Stability of On-Chip Power Delivery Systems with Multiple
Low-Dropout Regulators,” IEEE Transactions on Very Large Scale Integration (VLSI)
Systems, Vol. 27, No. 8, pp. 1779–1789, August 2019.

[516] L. Wang, S. K. Khatamifard, U. R. Karpuzcu, and S. Köse, “Exploiting Algorithmic Noise
Tolerance for Scalable On-Chip Voltage Regulation,” IEEE Transactions on Very Large
Scale Integration (VLSI) Systems, Vol. 27, No. 1, pp. 229–242, January 2019.

[517] M. Zhao, Y. Fu, V. Zolotov, S. Sundareswaran, and R. Panda, “Optimal Placement of Power-
Supply Pads and Pins,” IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, Vol. 25, No. 1, pp. 144–154, January 2006.

[518] J. Kennedy and R. Eberhart, “Particle Swarm Optimization,” Proceedings of the IEEE
International Conference on Neural Networks, Vol. 4, pp. 1942–1948, November 1995.

[519] E. A. Burton, G. Schrom, F. Paillet, J. Douglas, W. J. Lambert, K. Radhakrishnan, and M. J.
Hill, “FIVR – Fully Integrated Voltage Regulators on 4Th Generation Intel Core SoCs,”
Proceedings of the IEEE Applied Power Electronics Conference and Exposition, pp. 432–
439, March 2014.

[520] B. Amelifard and M. Pedram, “Optimal Design of the Power-Delivery Network for
Multiple Voltage-Island System-on-Chips,” IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems, Vol. 28, No. 6, pp. 888–900, May 2009.

[521] W. Kim, M. S. Gupta, G.-Y. Wei, and D. Brooks, “System Level Analysis of Fast, Per-
Core DVFS using On-Chip Switching Regulators,” Proceedings of the IEEE International
Symposium on High Performance Computer Architecture, pp. 123–134, February 2008.

[522] O. A. Uzun and S. Köse, “Converter-Gating: A Power Efficient and Secure On-Chip Power
Delivery System,” IEEE Journal on Emerging and Selected Topics in Circuits and Systems,
Vol. 4, No. 2, pp. 169–179, June 2014.

[523] Z. Feng, Z. Zeng, and P. Li, “Parallel On-Chip Power Distribution Network Analysis on
Multi-Core-Multi-GPU Platforms,” IEEE Transactions on Very Large Scale Integration
(VLSI) Systems, Vol. 19, No. 10, pp. 1823–1836, October 2011.

[524] S. R. Nassif, “Power Grid Analysis Benchmarks,” Proceedings of the ACM/IEEE Asia and
South Pacific Design Automation Conference, pp. 376–381, March 2008.

[525] K. Wang and M. Marek-Sadowska, “On-Chip Power-Supply Network Optimization using
Multigrid-Based Technique,” IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, Vol. 24, No. 3, pp. 407–417, March 2005.

338 References

[526] D. J. Wales and J. P. Doye, “Global Optimization by Basin-Hopping and the Lowest Energy
Structures of Lennard-Jones Clusters Containing up to 110 Atoms,” The Journal of Physical
Chemistry A, Vol. 101, No. 28, pp. 5111–5116, July 1997.

[527] D. Pham and D. Karaboga, Intelligent Optimisation Techniques: Genetic Algorithms, Tabu
Search, Simulated Annealing and Neural Networks, Springer Science and Business Media,
2012.

[528] K. Xu, R. Patel, P. Raghavan, and E. G. Friedman, “Exploratory Design of On-Chip Power
Delivery for 14, 10, and 7 nm and Beyond FinFET ICs,” Integration, the VLSI Journal, Vol.
61, pp. 11–19, March 2018.

[529] M. Popovich, E. G. Friedman, R. M. Secareanu, and O. L. Hartin, “Efficient Placement
of Distributed On-Chip Decoupling Capacitors in Nanoscale ICs,” Proceedings of the
IEEE/ACM International Conference on Computer-Aided Design, pp. 811–816, November
2007.

[530] W. Liao, L. He, and K. M. Lepak, “Temperature and Supply Voltage-Aware Performance
and Power Modeling at Microarchitecture Level,” IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, Vol. 24, No. 7, pp. 1042–1053, July 2005.

[531] S. Dropsho, V. Kursun, D. H. Albonesi, S. Dwarkadas, and E. G. Friedman, “Managing
Static Leakage Energy in Microprocessor Functional Units,” Proceedings of the IEEE/ACM
International Symposium on Microarchitecture, pp. 321–332, February 2002.

[532] E. Salman, E. G Friedman, R. M. Secareanu, and O. L. Hartin, “Worst Case Power/Ground
Noise Estimation using an Equivalent Transition Time for Resonance,” IEEE Transactions
on Circuits and Systems I: Regular Papers, Vol. 56, No. 5, pp. 997–1004, May 2009.

[533] E. Rotem, A. Naveh, A. Ananthakrishnan, E. Weissmann, and D. Rajwan, “Power-
Management Architecture of the Intel Microarchitecture Code-Named Sandy Bridge,” IEEE
Micro, Vol. 32, No. 2, pp. 20–27, March 2012.

[534] A. E. Engin, “Efficient Sensitivity Calculations for Optimization of Power Delivery Network
Impedance,” IEEE Transactions on Electromagnetic Compatibility, Vol. 52, No. 2, pp. 332–
339, May 2010.

[535] A. Orlandi, “Differential Evolutionary Multiple-Objective Sequential Optimization of a
Power Delivery Network,” IEEE Transactions on Electromagnetic Compatibility, Vol. 60,
No. 3, pp. 754–760, June 2018.

[536] B. Ko, J. Kim, J. Ryoo, C. Hwang, J. Song, and S. W. Kim, “Simplified Chip Power
Modeling Methodology without Netlist Information in Early Stage of SoC Design Process,”
IEEE Transactions on Components, Packaging and Manufacturing Technology, Vol. 6, No.
10, pp. 1513–1521, October 2016.

[537] S. Köse, E. G. Friedman, R. M. Secareanu, and O. Hartin, “Current Profile of a Microcon-
troller to Determine Electromagnetic Emissions,” Proceedings of the IEEE International
Symposium on Circuits and Systems, pp. 2650–2653, May 2013.

[538] X. Huang, T. Yu, V. Sukharev, and S. X. D. Tan, “Physics-Based Electromigration
Assessment for Power Grid Networks,” Proceedings of the ACM/IEEE Design Automation
Conference, pp. 1–6, June 2014.

[539] P. Salome, C. Leroux, P. Crevel, and J. P. Chante, “Investigations on the Thermal Behavior of
Interconnects under ESD Transients using a Simplified Thermal RC Network,” Proceedings
of the Electrical Overstress / Electrostatic Discharge Symposium, pp. 187–198, October
1998.

[540] HSPICE Quick Reference, Synopsys, March 2017.
[541] H. Su, K. H. Gala, and S. S. Sapatnekar, “Analysis and Optimization of Structured

Power/Ground Networks,” IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, Vol. 22, No. 11, pp. 1533–1544, November 2003.

[542] A. J. Fleming, S. Behrens, and S. O. Reza Moheimani, “Optimization and Implementation
of Multimode Piezoelectric Shunt Damping Systems,” IEEE/ASME Transactions on
Mechatronics, Vol. 7, No. 1, pp. 87–94, March 2002.

References 339

[543] M. Rewienski and J. White, “A Trajectory Piecewise-Linear Approach to Model Order
Reduction and Fast Simulation of Nonlinear Circuits and Micromachined Devices,” IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems, Vol. 22, No. 2,
pp. 155–170, February 2003.

[544] P. Moreno and A. Ramirez, “Implementation of the Numerical Laplace Transform: a
Review,” IEEE Transactions on Power Delivery, Vol. 23, No. 4, pp. 2599–2609, October
2008.

[545] E. I. Verriest, “Linear Systems over the Perspective Field as a Class of Nonlinear Systems
for which a “Laplace” Transform can be Defined,” Proceedings of the IEEE International
Conference on Control and Automation, pp. 271–276, June 2016.

[546] Verilog-AMS Language Reference Manual Analog and Mixed-Signal Extensions to Verilog-
HDL, Accellera, June 2009.

[547] E. Anderson et al., LAPACK Users’ Guide, Society for Industrial and Applied Mathematics,
1999.

[548] MATLAB Control Systems Toolbox 10.3, MathWorks, Inc., March 2018.
[549] H. Iwai, “Future of Integrated Devices,” Proceedings of the International Workshop on

Junction Technology, p. 43, June 2015.
[550] J. Kim, “Power Integrity of SiP (System in Package),” IEEE Video Distinguished Lecturer

Program, August 2010.
[551] B. Archambeault, “Effective Power/Ground Plane Decoupling for PCB,” IEEE Video

Distinguished Lecturer Program, October 2007.
[552] Z. Or-Bach, “Moore’s Law Has Stopped at 28nm,” March 2014. [Online]. Available: http://

electroiq.com/blog/2014/03/moores-law-has-stopped-at-28nm/, [Accessed: 2018-01-25].
[553] E. Esteve, “Why SOI is the Future Technology of Semiconductor,” January

2014. [Online]. Available: https://www.semiwiki.com/forum/content/3077-why-soi-future-
technology-semiconductor.html, [Accessed: 2018-01-25].

[554] Anysilicon.com, “IC Package Price Estimator,” [Online]. Available: http://anysilicon.com/
package-price-estimator/, [Accessed: 2018-01-25].

[555] Pcbshopper.com, “A Price Comparison Site for Printed Circuit Boards,” [Online]. Available:
https://pcbshopper.com/, [Accessed: 2018-01-25].

[556] Pcbcart.com, “Printed Circuit Board Calculator,” [Online]. Available: https://www.pcbcart.
com/quote, [Accessed: 2018-01-25].

[557] Optimization Toolbox User’s Guide, MathWorks, Inc., September 2017.
[558] Qualcomm Snapdragon 600E Processor APQ8064E, Qualcomm Technologies, October

2017.
[559] M. S. Tanaka, M. Toyama, R. Mori, H. Nakashima, M. Haida, and I. Ooshima, “Early Stage

Chip/Package/Board Co-Design Techniques for System-on-Chip,” Proceedings of the IEEE
Conference on Electrical Performance of Electronic Packaging and Systems, pp. 21–24,
October 2011.

[560] T. Tseng, C. Lin, C. Lee, Y. Chou, and D. Kwai, “A Power Delivery Network (PDN)
Engineering Change Order (ECO) Approach for Repairing IR-Drop Failures after the
Routing Stage,” Proceedings of the IEEEDesign, Automation and Test in Europe Conference
and Exhibition, pp. 1–4, April 2014.

[561] K. Shringarpure, B. Zhao, L. Wei, B. Archambeault, A. Ruehli, M. Cracraft, M. Cocchini,
E. Wheeler, J. Fan, and J. Drewniak, “On Finding the Optimal Number of Decoupling
Capacitors by Minimizing the Equivalent Inductance of the PCB PDN,” Proceedings of the
IEEE International Symposium on Electromagnetic Compatibility, pp. 218–223, September
2014.

[562] C. M. Smutzer, C. K. White, C. R. Haider, and B. K. Gilbert, “Power Delivery Network
Pre-Layout Design Planning and Analysis through Automated Scripting,” Proceedings of
the IEEE Workshop on Signal and Power Integrity, pp. 1–4, June 2019.

[563] J. Mohamed, T. Michalka, S. Ozbayat, and G. R. Luevano, “PDN Design and Sensitivity
Analysis using Synthesized Models in DDR SI/PI Co-Simulations,” Proceedings of the IEEE
Electrical Design of Advanced Packaging and Systems Symposium, pp. 1–3, December 2018.

 32586 22940 a 32586 22940 a

http://electroiq.com/blog/2014/03/moores-law-has-stopped-at-28nm/
http://electroiq.com/blog/2014/03/moores-law-has-stopped-at-28nm/

 10531 26260 a 10531 26260
a

https://www.semiwiki.com/forum/content/3077-why-soi-future-technology-semiconductor.html
https://www.semiwiki.com/forum/content/3077-why-soi-future-technology-semiconductor.html

 26615 28474 a 26615
28474 a

http://anysilicon.com/package-price-estimator/
http://anysilicon.com/package-price-estimator/

 378 31795 a 378 31795
a

https://pcbshopper.com/

 27003 32902 a 27003
32902 a

https://www.pcbcart.com/quote
https://www.pcbcart.com/quote

340 References

[564] S. Yang, Y. S. Cao, H. Ma, J. Cho, A. E. Ruehli, J. L. Drewniak, and E. Li, “PCB
PDN Prelayout Library for Top-Layer Inductance and the Equivalent Model for Decoupling
Capacitors,” IEEE Transactions on Electromagnetic Compatibility, Vol. 60, No. 6, pp. 1898–
1906, August 2017.

[565] Y. S. Cao, T. Makharashvili, J. Cho, S. Bai, S. Connor, B. Archambeault, L. Jiang, A. E.
Ruehli, J. Fan, and J. L. Drewniak, “Inductance Extraction for PCB Prelayout Power
Integrity using PMSR Method,” IEEE Transactions on Electromagnetic Compatibility, Vol.
59, No. 4, pp. 1339–1346, August 2017.

[566] B. Zhao, C. Huang, K. Shringarpure, J. Fan, B. Archambeault, B. Achkir, S. Connor,
M. Cracraft, M. Cocchini, A. Ruehli, and J. Drewniak, “Analytical PDN Voltage Ripple
Calculation using Simplified Equivalent Circuit Model of PCB PDN,” Proceedings of
the IEEE Symposium on Electromagnetic Compatibility and Signal Integrity, pp. 133–138,
March 2015.

[567] S. Sun, D. Pommerenke, J. L. Drewniak, K. Xiao, S.-T. Chen, and T.-L. Wu, “Charac-
terizing Package/PCB PDN Interactions from a Full-Wave Finite-Difference Formulation,”
Proceedings of the IEEE International Symposium on Electromagnetic Compatibility, Vol. 2,
pp. 550–555, August 2006.

[568] B. Archambeault, M. Cocchini, G. Selli, J. Fan, J. L. Knighten, S. Connor, A. Orlandi, and
J. Drewniak, “Design Methodology for PDN Synthesis on Multilayer PCBs,” Proceedings
of the IEEE International Symposium on Electromagnetic Compatibility, pp. 1–6, August
2008.

[569] J. Fan, J. L. Drewniak, J. L. Knighten, N. W. Smith, A. Orlandi, T. P. Van Doren, T. H.
Hubing, and R. E. DuBroff, “Quantifying SMT Decoupling Capacitor Placement in
DC Power-Bus Design for Multilayer PCBs,” IEEE Transactions on Electromagnetic
Compatibility, Vol. 43, No. 4, pp. 588–599, August 2001.

[570] T.-L. Wu, H.-H. Chuang, and T.-K. Wang, “Overview of Power Integrity Solutions on
Package and PCB: Decoupling and EBG Isolation,” IEEE Transactions on Electromagnetic
Compatibility, Vol. 52, No. 2, pp. 346–356, July 2010.

[571] T. Hubing, “PCB EMC Design Guidelines: a Brief Annotated List,” Proceedings of the
IEEE Symposium on Electromagnetic Compatibility, pp. 34–36, August 2003.

[572] M. Moganti, F. Ercal, C. H. Dagli, and S. Tsunekawa, “Automatic PCB Inspection
Algorithms: a Survey,” Computer Vision and Image Understanding, Vol. 63, No. 2, pp.
287–313, March 1996.

[573] G. Greiner and K. Hormann, “Efficient Clipping of Arbitrary Polygons,” ACM Transactions
on Graphics, Vol. 17, No. 2, pp. 71–83, April 1998.

[574] B. R. Vatti, “A Generic Solution to Polygon Clipping,” Communications of the ACM, Vol.
35, No. 7, pp. 56–63, July 1992.

[575] I. Savidis and E. G. Friedman, “Electrical Modeling and Characterization of 3-D Vias,”
IEEE International Symposium on Circuits and Systems, pp. 784–787, May 2008.

[576] S. Peyer, D. Rautenbach, and J. Vygen, “A Generalization of Dijkstra’s Shortest Path
Algorithm with Applications to VLSI Routing,” Journal of Discrete Algorithms, Vol. 7,
No. 4, pp. 377–390, December 2009.

[577] P. J. van Laarhoven and E. H. Aarts, Simulated Annealing: Theory and Applications, Vol. 37,
Springer Science & Business Media, 2013.

[578] Y. K. Liu, X. Q. Wang, S. Z. Bao, M. Gomboši, and B. Žalik, “An Algorithm for
Polygon Clipping, and for Determining Polygon Intersections and Unions,” Computers and
Geosciences, Vol. 33, No. 5, pp. 589 – 598, May 2007.

[579] Z. Tang, J. Zhu, F. He, L. Feng, G. Yang, and G. Han, “Adaptive Polygon Simplification
basing on Delaunay Triangulation and its Application in High Speed PCBs and IC Packages
Simulation,” Proceedings of the IEEE International Conference on Microwave Technology
& Computational Electromagnetics, pp. 253–256, May 2011.

[580] W. Zeng and R. L. Church, “Finding Shortest Paths on Real Road Networks: the Case for
A-Star,” International Journal of Geographical Information Science, Vol. 23, No. 4, pp.
531–543, June 2009.

References 341

[581] A. George and E. Ng, “On the Complexity of Sparse QR and LU Factorization of Finite-
Element Matrices,” SIAM Journal on Scientific and Statistical Computing, Vol. 9, No. 5, pp.
849–861, September 1988.

[582] V. K. Semenov, Y. A. Polyakov, and S. K. Tolpygo, “New AC-Powered SFQ Digital
Circuits,” IEEE Transactions on Applied Superconductivity, Vol. 25, No. 3, pp. 1–7, June
2014.

[583] Y. Ando, R. Sato, M. Tanaka, K. Takagi, N. Takagi, and A. Fujimaki, “Design and
Demonstration of an 8-bit Bit-Serial RSFQ Microprocessor: CORE e4,” IEEE Transactions
on Applied Superconductivity, Vol. 26, No. 5, pp. 1–5, August 2016.

[584] K. Gaj, Q. P. Herr, V. Adler, A. Krasniewski, E. G. Friedman, and M. J Feldman, “Tools
for the Computer-Aided Design of Multigigahertz Superconducting Digital Circuits,” IEEE
Transactions on Applied Superconductivity, Vol. 9, No. 1, pp. 18–38, March 1999.

[585] C. J. Fourie, “Digital Superconducting Electronics Design Tools–Status and Roadmap,”
IEEE Transactions on Applied Superconductivity, Vol. 28, No. 5, pp. 1–12, August 2018.

[586] K. Gaj, E. G. Friedman, and M. J. Feldman, “Timing of Multi-Gigahertz Rapid Single Flux
Quantum Digital Circuits,” Journal of VLSI Signal Processing Systems for Signal, Image
and Video Technology, Vol. 16, No. 2, pp. 247–276, June 1997.

[587] K. K. Likharev and V. K. Semenov, “RSFQ Logic/Memory Family: a New Josephson-
Junction Technology for Sub-Terahertz-Clock-Frequency Digital Systems,” IEEE Transac-
tions on Applied Superconductivity, Vol. 1, No. 1, pp. 3–28, March 1991.

[588] T. Jabbari, G. Krylov, S. Whiteley, E. Mlinar, J. Kawa, and E. G. Friedman, “Interconnect
Routing for Large-Scale RSFQ Circuits,” IEEE Transactions on Applied Superconductivity,
Vol. 29, No. 5, pp. 1–5, August 2019.

[589] T. Jabbari, G. Krylov, S. Whiteley, J. Kawa, and E. G. Friedman, “Repeater Insertion in
SFQ Interconnect,” IEEE Transactions on Applied Superconductivity, Vol. 30, No. 8, pp.
1–8, December 2020.

[590] T. Jabbari and E. G. Friedman, “Global Interconnects in VLSI Complexity Single Flux
Quantum Systems,” Proceedings of the ACM/IEEE International Workshop on System-Level
Interconnect Problems and Pathfinding, November 2020.

[591] T. Jabbari, G. Krylov, J. Kawa, and E. G. Friedman, “Splitter Trees in Single Flux Quantum
Circuits,” IEEE Transactions on Applied Superconductivity, Vol. 31, No. 5, pp. 1–6, August
2021.

[592] Z. J. Deng, N. Yoshikawa, S. R. Whiteley, and T. Van Duzer, “Data-Driven Self-
Timed RSFQ Digital Integrated Circuit and System,” IEEE Transactions on Applied
Superconductivity, Vol. 7, No. 2, pp. 3634–3637, June 1997.

[593] H. R. Gerber, C. J. Fourie, W. J. Perold, and L. C. Muller, “Design of an Asynchronous
Microprocessor using RSFQ-AT,” IEEE Transactions on Applied Superconductivity, Vol.
17, No. 2, pp. 490–493, June 2007.

[594] T. V. Filippov, A. Sahu, A. F. Kirichenko, I. V. Vernik, M. Dorojevets, C. L. Ayala, and O. A.
Mukhanov, “20 GHz Operation of an Asynchronous Wave-Pipelined RSFQ Arithmetic-
Logic Unit,” Physics Procedia, Vol. 36, pp. 59–65, January 2012.

[595] Y. Nobumori, T. Nishigai, K. Nakamiya, N. Yoshikawa, A. Fujimaki, H. Terai, and
S. Yorozu, “Design and Implementation of a Fully Asynchronous SFQ Microprocessor:
SCRAM2,” IEEE Transactions on Applied Superconductivity, Vol. 17, No. 2, pp. 478–481,
June 2007.

[596] Z. J. Deng, N. Yoshikawa, J. A. Tierno, A. R. Whiteley, and T. Van Duzer, “Asynchronous
Circuits and Systems in Superconducting RSFQ Digital Technology,” Proceedings of
the IEEE International Symposium on Advanced Research in Asynchronous Circuits and
Systems, pp. 274–285, April 1998.

[597] R. N. Tadros and P. A. Beerel, “A Robust and Self-Adaptive Clocking Technique for RSFQ
Circuits – the Architecture,” Proceedings of the IEEE International Symposium on Circuits
and Systems, pp. 1–5, May 2018.

[598] S. N. Shahsavani and M. Pedram, “A Minimum-Skew Clock Tree Synthesis Algorithm for
Single Flux Quantum Logic Circuits,” IEEE Transactions on Applied Superconductivity,
Vol. 29, No. 8, pp. 1–13, December 2019.

342 References

[599] J. L. Neves and E. G. Friedman, “Buffered Clock Tree Synthesis with Non-Zero Clock Skew
Scheduling for Increased Tolerance to Process Parameter Variations,” Journal of VLSI Signal
Processing Systems for Signal, Image, and Video Technology, Vol. 16, No. 2, pp. 149–161,
June 1997.

[600] E. G. Friedman, “The Application of Localized Clock Distribution Design to Improving
the Performance of Retimed Sequential Circuits,” Proceedings of the IEEE Asia-Pacific
Conference on Circuits and Systems, pp. 12–17, December 1992.

[601] L. Xiao, Z. Xiao, Z. Qian, Y. Jiang, T. Huang, H. Tian, and E. F. Y. Young, “Local Clock
Skew Minimization using Blockage-Aware Mixed Tree-Mesh Clock Network,” Proceedings
of the IEEE/ACM International Conference on Computer-Aided Design, pp. 458–462,
November 2010.

[602] Y.-S. Su, W.-K. Hon, C.-C. Yang, S.-C. Chang, and Y.-J. Chang, “Value Assignment of
Adjustable Delay Buffers for Clock Skew Minimization in Multi-Voltage Mode Designs,”
Proceedings of the IEEE/ACM International Conference on Computer-Aided Design, pp.
535–538, November 2009.

[603] A. L. Pankratov and B. Spagnolo, “Suppression of Timing Errors in Short Overdamped
Josephson Junctions,” Physical Review Letters, Vol. 93, No. 17, pp. 177001, October 2004.

[604] C. Lin and H. Zhou, “Clock Skew Scheduling with Delay Padding for Prescribed Skew
Domains,” Proceedings of the ACM/IEEE Asia and South Pacific Design Automation
Conference, pp. 541–546, January 2007.

[605] K. Han, A. B. Kahng, and J. Li, “Optimal Generalized H-Tree Topology and Buffering for
High-Performance and Low-Power Clock Distribution,” IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, Vol. 39, No. 2, pp. 478–491, February
2020.

[606] T. Kanungo, D. M. Mount, N. S. Netanyahu, C. D. Piatko, R. Silverman, and A. Y. Wu, “An
Efficient k-Means Clustering Algorithm: Analysis and Implementation,” IEEE Transactions
on Pattern Analysis and Machine Intelligence, Vol. 24, No. 7, pp. 881–892, July 2002.

[607] T. Zhang, R. Ramakrishnan, and M. Livny, “BIRCH: an Efficient Data Clustering Method
for Very Large Databases,” ACM SIGMOD Record, Vol. 25, No. 2, pp. 103–114, June 1996.

[608] A. Balatsos, Clock Buffer IC with Dynamic Impedance Matching and Skew Compensation,
Ph.D. Thesis, University of Toronto, 1998.

[609] J.-L. Tsai, T.-H. Chen, and C. C.-P. Chen, “Zero Skew Clock-Tree Optimization with
Buffer Insertion/Sizing and Wire Sizing,” IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems, Vol. 23, No. 4, pp. 565–572, April 2004.

[610] J. Y. Yen, “Finding the k Shortest Loopless Paths in a Network,” Management Science, Vol.
17, No. 11, pp. 712–716, June 1971.

[611] M. Kou, P.-Y. Cheng, J. Zeng, T.-Y. Ho, K. Takagi, and H. Yao, “Splitter-Aware Multitermi-
nal Routing With Length-Matching Constraint for RSFQ Circuits,” IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, Vol. 40, No. 11, pp. 2251–2264,
November 2021.

[612] N. Kito, K. Takagi, and N. Takagi, “A Fast Wire-Routing Method and an Automatic Layout
Tool for RSFQ Digital Circuits considering Wire-Length Matching,” IEEE Transactions on
Applied Superconductivity, Vol. 28, No. 4, pp. 1–5, June 2018.

[613] S. N. Shahsavani, T. Lin, A. Shafaei, C. J. Fourie, and M. Pedram, “An Integrated Row-
Based Cell Placement and Interconnect Synthesis Tool for Large SFQ Logic Circuits,” IEEE
Transactions on Applied Superconductivity, Vol. 27, No. 4, pp. 1–8, June 2017.

[614] C. J. Fourie, C. L. Ayala, L. Schindler, T. Tanaka, and N. Yoshikawa, “Design and
Characterization of Track Routing Architecture for RSFQ and AQFP Circuits in a Multilayer
Process,” IEEE Transactions on Applied Superconductivity, Vol. 30, No. 6, pp. 1–9,
September 2020.

[615] R. S. Bakolo and C. J. Fourie, “Development of a RSFQ Cell Library for the University of
Stellenbosch,” Proceedings of the IEEE AFRICON, pp. 1–5, September 2011.

[616] M. Zachariasen, “A Catalog of Hanan Grid Problems,” Networks, Vol. 38, pp. 200–1,
September 2000.

References 343

[617] F. Brglez, D. Bryan, and K. Kozminski, “Combinational Profiles of Sequential Benchmark
Circuits,” Proceedings of the IEEE International Symposium on Circuits and Systems,,
Vol. 3, pp. 1929–1934, May 1989.

[618] S. Davidson, “ITC’99 Benchmark Circuits - Preliminary Results,” Proceedings of the IEEE
International Test Conference, pp. 1125–1125, September 1999.

[619] Design Compiler and IC Compiler Physical Guidance Technology Application Note,
Synopsys, Version G-2012.06, June 2012.

[620] Y. Xu, Y. Zhang, and C. Chu, “FastRoute 4.0: Global Router with Efficient Via Minimiza-
tion,” Proceedings of the ACM/IEEE Asia and South Pacific Design Automation Conference,
pp. 576–581, January 2009.

Index

A
A* algorithm, 39
Abstraction

circuit layer, 81
gate layer, 74
logic layer, 74
physical layer, 87
register transfer level (RTL), 63

Adjacency matrix, 84
Algebraic multigrid, 166
Algorithm

A* algorithm, 39
Bellman-Ford, 116
Bellman-Ford algorithm, 36, 39
Borůvka’s, 42
Chaitin’s, 67
Dijkstra’s algorithm, 33
Fiduccia-Mattheyses, 90
greedy, 67
Kahn’s, 52
Kernighan-Lin, 89
Kruskal’s, 44
Lee’s, 95
Prim’s, 43

And-inverter graph, 79
Anisotropic grid, 179
Arrowhead matrix, 158
Asynchronous clocking, 281

B
Balanced tree, 28
Bellman-Ford algorithm, 36, 39, 116
Best-first search, 39
Binary tree, 28, 288

Bipartite graph, 25
Boolean satisfiability, 75
Borůvka’s algorithm, 42, 43
Bounded skew tree, 144
Breadth-first search (BFS), 31
B∗-tree, 92

C
Canonical representation, 77
Canonicity, 77
Capacitance matrix, 151
Chaitin’s algorithm, 67
Channel connectivity graph, 96
Channel routing, 96
Chromatic index, 51
Chromatic number, 51
Circuit analysis

H-matrix, 161
multigrid, 164
parallelization, 161
static, 152
transient, 152

Circuit (traversal), 23
Clock distribution network, 72, 101
Clock generation, 105
Clock period minimization, 284
Clock period violation, 72, 108
Clock signal, 72, 101
Clock skew, 72, 103

minimization, 104
optimization, 73 see clock skew, scheduling
scheduling, 73, 104, 117–131, 283, 286

performance, 123
power, 126, 130
robustness, 117

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
R. Bairamkulov, E. G. Friedman, Graphs in VLSI,
https://doi.org/10.1007/978-3-031-11047-4

345

 -2016 61494 a -2016 61494
a

https://doi.org/10.1007/978-3-031-11047-4

346 Index

Clock tree, 131, 288
embedding, 141, 290
topology, 132

Clustering, 91, 228, 288
Coloring, 49, 66
Commute time, 170
Companion model, 152
Complete graph, 1, 19
Computer-aided design (CAD), 6
Conductance matrix, 85, 151
Conductive media, 211, 212
Conjugate gradient method, 156
Connected component, 23
Connected graph, 23
Consecutive nodes, 21
Constraint graph, 92, 96, 113, 116
Critical path, 70
Cycle, 23, 52, 68, 113

basis, 81, 121
Hamiltonian, 23
independent cycles, 81, 121
negative, 36, 116

Cyclic path, 113, 284

D
Deadlock, 68
Decoupling capacitor, 247
Deferred merge embedding (DME), 143
Degree, 14
Degree matrix, 84
Delay equilibration, 290, 296
Delay insertion, 123, 291, 296
Depth-first search (DFS), 31, 53
Detailed routing, 96
Dijkstra’s algorithm, 33
Directed acyclic graph (DAG), 25, 52, 76, 79
Directed graph, 21
Domain decomposition, 158
Double clocking, 72, 108
Dynamic power, 126

E
EDA market, 9
Edge

chromatic number, 51
coloring, 51
multiplicity, 51
weight, 19

Effective resistance, 173, 185, 191, 195
Effective resistance matrix, 191
Electromigration, 242
Electronic design automation (EDA), 8

Equitable coloring, 51
Equivalence checking, 75
Euclidean Steiner tree, 48
Eulerian circuit, 1
Eulerian trail, 1
Exploration, 238, 257

F
Fidelity, 221
Fiduccia-Mattheyses algorithm, 90
Finite grid, 201
Finite state machine (FSM), 10, 17, 103
First in, first out (FIFO), 31
Floorplanning, 91
Forest, 27
Four color theorem, 49
Full tree, 28
Functionally reduced and-inverter graph, 79

G
Gate sizing, 129
Geometric multigrid, 165
Globally asynchronous locally synchronous

(GALS), 104
Global routing, 96
Graph coloring, 49, 66
Graph definition, 13
Graph isomorphism, 22
Graph order, 15
Graph orientation, 21
Graph size, 15
Greedy coloring, 67
Grid regularization, 223

H
Half-perimeter wirelength, 91
Hamiltonian cycle, 23
Hanan grid, 93, 296
Handshaking lemma, 15
Head, 21
Heuristic, 29, 40, 48, 67, 89, 221, 263
Hold time, 107
H-tree, 72, 131
Hypergraph, 16

I
Image method, 182, 197, 198

half-plane, 183
quarter-plane, 184

Impedance parameters, 168

Index 347

Incidence function, 13
Incidence matrix, 82, 151
Incomplete factorization, 158
Indegree, 21
Independent cycles, 121
Induced subgraph, 22, 264
Inductance matrix, 151
Infinite grid, 172, 177, 179
Infinite strip, 198
Infinity mirror, 197, 221, 223
Isolated node, 14
Isomorphic graph, 22
Isomorphism, 22
Iterated logarithm, 45
Iterative circuit analysis, 155

K
Kahn’s algorithm, 52
Kernighan-Lin algorithm, 89
King’s graph, 25
Kirchhoff

current law, 81
voltage law, 81

Knight’s graph, 25
Kruskal’s algorithm, 44

L
Laplace transform, 243
Laplacian matrix, 10, 85
Last-in, first-out (LIFO), 31
Leakage power, 126
Lee’s algorithm, 95
Linear regulator, 221
Link, 14
Loop, 14, 17
Low dropout regulator, 221, 227

M
Manual design, 6, 61, 88, 272
Matrix

adjacency, 84
arrowhead, 158
capacitance, 151
conductance, 85, 151, 191
degree, 84
effective resistance, 191
incidence, 82, 151
inductance, 151
Laplacian, 10, 85, 191

Maze routing, 95
Mean time to failure, 242

Memory hierarchy, 65
Method of means and medians, 141
Metric closure, 46
Minimum cut, 89
Minimum spanning tree (MST), 40, 42–44
Model checking, 75
Modified nodal analysis (MNA), 10, 151, 245
Moore-Penrose pseudoinverse, 191
Multigraph, 18
Multigrid, 164
Multiple edges, 14, 17
Multiple supply voltage, 129, 250
Multiple threshold voltage, 129
Multiplicity, 14

N
Nearest neighbor graph, 136
Negative cycle, 36, 116
Neighbor, 14
Neighborhood, 14
Node coloring, 51
Node strength, 20, 265

O
Optimization, 229, 238, 249, 265, 287
Ordered binary decision diagram, 76
Origin, 23
O-tree, 92
Outdegree, 21

P
Parallel edges, 14, 17
Parallel execution, 70
Particle swarm optimization, 229
Partitioning, 88, 158
Path, 23
Pathfinding, 31
Permissible range, 73, 109, 286
Placement, 92, 218
Potential difference, 86
Power delivery, 217
Power distribution network, 246, 272
Power grid, 172, 177, 221
Power integrity, 249
Power management IC, 217
Power network synthesis, 238, 272
Power noise, 217, 249
PowerRush, 166
Preconditioning, 157

incomplete Cholesky, 158
incomplete LU, 158
sparse approximate inverse, 158

348 Index

Prescribed skew tree, 136, 146
Prototyping, 257, 260, 274
Proxy graph, 293
Pseudograph, 17
Pseudoinverse, 191

Q
Queue, 31

R
Race condition, 72, 108
Random walk, 169

commute time, 170
Reconvergent path, 111, 285
Rectangular packing, 91
Rectilinear Steiner minimum tree, 48
Reduced instruction set computer (RISC), 65
Reduced ordered binary decision diagram,

77
Register allocation, 64, 66
Relay, 3
Rooted tree, 27
Routing, 95, 257, 296

S
Scattering parameters, 167
Self-aligned gate, 5
Self-loop, 14, 17
Semi-infinite strip, 200
Setup time, 107
Seven Bridges of Königsberg, 1, 18, 31
Shortest path

A* algorithm, 39
Shortest path, 33, 116, 264

Bellman-Ford algorithm, 36, 39
Dijkstra’s algorithm, 33

Simple graph, 18
Simple path, 23
Single flux quantum, 281
Sink, 21
Source, 21
Spanning tree, 81
S-parameters, 167
Sparse approximate inverse, 158
SPICE, 7, 10, 150
SPROUT, 257
Stack, 31
Standard cell, 62, 64
Static timing analysis (STA), 103, 104
Stationary iterative methods, 156
1-Steiner point, 48

Strength, 20, 265
Subgraph, 22
Substrate noise, 212
Superconductivity, 281
Supergraph, 22
Superposition, 173, 198, 225
Switchbox connectivity graph, 96
Switched capacitor converter, 220
Switching mode power supply, 219
Symmetry, 173
Synchronization, 72, 101

T
Tail, 21
Task scheduling, 68
Terminus, 23
Timing graph, 73, 283
Topological ordering, 26, 52
Topological sorting, 26, 52, 69
Trail, 23
Traversal, 31
Tree, 2, 27

ancestor, 28
balanced, 28
binary, 28, 92, 288
child, 27
descendant, 28
directed, 288
Euclidean Steiner tree, 48
full, 28
leaf, 27
level, 28
m-ary, 28
minimum spanning tree (MST), 40, 42–46
predecessor, 27
rectilinear Steiner minimum tree, 48
root, 27
rooted, 92
sibling, 27
spanning tree, 40, 81
Steiner minimum tree (SMT), 46
successor, 27

Trivial graph, 20
Truncated grid, 182

U
Underlying graph, 21
Useful skew tree, 139, 145

V
Vacuum tube, 3

Index 349

Verilog, 64
VHDL, 64
Voltage regulation, 217, 219
von Neumann architecture, 64

W
Wave pipelining, 125

Weighted graph, 19
Wire snaking, 291, 294, 296

Z
Zero clocking, 72, 108
Zero skew tree, 136, 143
Z-parameters, 168

	Preface
	Acknowledgments
	Contents
	About the Authors
	1 Introduction
	1.1 Precursors of VLSI
	1.2 The rise of VLSI
	1.3 Outline of book

	2 Graph fundamentals
	2.1 Graph categories
	2.1.1 Hypergraph
	2.1.2 Graphs with parallel edges
	2.1.3 Graphs without parallel edges
	2.1.4 Weighted graph
	2.1.5 Directed graph

	2.2 Inter-graph relationships
	2.3 Graph exploration
	2.4 Bipartite graph
	2.5 Directed acyclic graph
	2.6 Tree
	2.7 Common problems in graph theory
	2.7.1 Pathfinding
	2.7.1.1 Depth-first search
	2.7.1.2 Breadth-first search
	2.7.1.3 Dijkstra's algorithm
	2.7.1.4 Bellman-Ford
	2.7.1.5 A* (A-star) algorithm

	2.7.2 Spanning tree
	2.7.2.1 Borůvka's algorithm
	2.7.2.2 Prim's algorithm
	2.7.2.3 Kruskal's algorithm
	2.7.2.4 Advanced MST Algorithms
	2.7.2.5 Steiner tree

	2.7.3 Graph coloring
	2.7.4 Topological sorting

	2.8 Summary

	3 Graphs in VLSI circuits and systems
	3.1 Graphs as a VLSI abstraction tool
	3.2 Register transfer level
	3.2.1 Register allocation
	3.2.2 Task scheduling
	3.2.3 Synchronization

	3.3 Gate layer
	3.3.1 Ordered binary decision diagram
	3.3.2 And-inverter graph

	3.4 Circuit layer
	3.4.1 Laplacian matrix of a circuit graph

	3.5 Physical layer
	3.5.1 Partitioning
	3.5.2 Floorplanning
	3.5.3 Placement
	3.5.4 Routing

	3.6 Summary

	4 Synchronization in VLSI
	4.1 Graph-based timing analysis
	4.1.1 Timing constraints in synchronous systems
	4.1.1.1 Local timing constraints
	4.1.1.2 Global timing constraints
	Serial data path.
	Reconvergent (parallel) paths.
	Cyclic data paths.
	4.1.1.3 Constraint graph

	4.2 Clock skew scheduling
	4.2.1 Robustness
	4.2.2 Performance
	4.2.2.1 Wave pipelining

	4.2.3 Power

	4.3 Clock tree synthesis
	4.3.1 Clock tree topology
	4.3.2 Clock tree embedding
	4.3.3 Method of means and medians
	4.3.4 Deferred merge embedding
	4.3.5 Elmore delay
	4.3.6 Bounded skew tree
	4.3.7 Useful skew tree

	4.4 Summary

	5 Circuit analysis
	5.1 Modified nodal analysis
	5.2 Iterative numerical methods
	5.2.1 Domain decomposition
	5.2.2 ps: [/EMC pdfmark [/Subtype /Span /ActualText (script upper H) /StPNE pdfmark [/StBMC pdfmarkHps: [/EMC pdfmark [/StPop pdfmark [/StBMC pdfmark-matrix
	5.2.3 Multigrid methods

	5.3 Non-MNA techniques
	5.3.1 Scattering parameters
	5.3.2 Random walks
	5.3.3 Lattice graph

	5.4 Summary

	6 Effective resistance of truncated infinite mesh structures
	6.1 Historical perspective
	6.2 Electric potential in an infinite mesh
	6.3 Electric potential within a truncated infinite mesh
	6.3.1 Modeling truncation with image
	6.3.1.1 Half-plane mesh
	6.3.1.2 Quarter-plane mesh

	6.3.2 Integral expressions for effective resistance

	6.4 Closed-form approximation
	6.5 Model evaluation
	6.5.1 Accuracy evaluation
	6.5.2 Computational speed

	6.6 Conclusions

	7 Effective resistance of finite grids
	7.1 Infinity mirror technique
	7.1.1 Infinite strip
	7.1.2 Semi-infinite strip
	7.1.3 Finite mesh
	7.1.4 Generalization to higher dimensions

	7.2 Simplification of the effective resistance expressions
	7.3 Case studies
	7.3.1 Mesh reduction based on effective resistance
	7.3.2 Resistive noise in capacitive touch screen
	7.3.3 Resistive substrate noise

	7.4 Conclusions

	8 Placement of on-chip distributed voltage regulators
	8.1 On-chip voltage regulation
	8.2 Model of power network
	8.2.1 Fast grid analysis
	8.2.2 Limited regulator current

	8.3 Load clustering
	8.4 Optimization setup
	8.5 Case studies
	8.5.1 Unrestricted placement – case study one
	8.5.2 Restricted placement – case study two
	8.5.3 Restricted current – case study three

	8.6 Conclusions

	9 Exploratory methodology for power delivery
	9.1 Optimization framework
	9.1.1 Specification of the electrical design requirements
	9.1.2 Specification of non-electrical design requirements
	9.1.3 Combination of electrical and nonelectrical metrics
	9.1.4 Circuit simulation procedure

	9.2 Case studies
	9.2.1 Single rail system
	9.2.1.1 Optimization setup
	9.2.1.2 Optimization results

	9.2.2 Multiple rail system

	9.3 Conclusions

	10 SPROUT - Smart Power ROUting Tool for board-level exploration and prototyping
	10.1 SPROUT algorithm
	10.1.1 Available routing space
	10.1.2 Equivalent graph
	10.1.3 Seed subgraph
	10.1.4 Growth stage
	10.1.5 Refinement stage
	10.1.6 Subgraph reheating
	10.1.7 Back conversion
	10.1.8 Algorithm runtime analysis

	10.2 Validation of case study
	10.2.1 Two rail system
	10.2.2 Six rail system
	10.2.3 Area/impedance tradeoff

	10.3 Conclusions

	11 QuCTS – single flux Quantum Clock Tree Synthesis
	11.1 Clock skew scheduling
	11.1.1 Timing graph
	11.1.2 Minimum clock period
	11.1.3 Clock skew optimization

	11.2 Clock tree synthesis
	11.3 Delay equilibration
	11.3.1 Coarse routing
	11.3.2 Analysis of proxy path delay
	11.3.3 Fine routing

	11.4 Case study
	11.5 Conclusions

	12 Conclusions
	A Green's function for a truncated grid
	B Uniqueness based on boundary conditions
	C Multilayer routing algorithm
	References
	Index

