
ALP: An Arabic Linguistic Pipeline

Abed Alhakim Freihat, Gábor Bella, Mourad Abbas, Hamdy Mubarak,
and Fausto Giunchiglia

Abstract This paper presents ALP, an entirely new linguistic pipeline for nat-
ural language processing of text in Modern Standard Arabic. In contrary to the
conventional pipeline architecture, we solve common NLP operations of word
segmentation, POS tagging, and named entity recognition as a single sequence
labeling task. Based on this single component, we also introduce a new lemmatizer
tool that combines machine-learning-based and dictionary-based approaches, the
latter providing increased accuracy, robustness, and flexibility to the former. In
addition, we present a base phrase chunking tool which is an essential tool in many
NLP operations. The presented pipeline configuration results in a faster operation
and is able to provide a solution to the challenges of processing Modern Standard
Arabic, such as the rich morphology, agglutinative aspects, and lexical ambiguity
due to the absence of short vowels.

1 Introduction

Natural language understanding tasks, such as information retrieval [1], word sense
disambiguation [2, 3], question answering [4], or semantic search [5], are usually
built on top of a set of basic NLP preprocessing operations. These operations are
supposed to bring text to a more canonical form with dictionary words (lemmas)
and named entities clearly identified. The precise solutions applied depend greatly
on the language; however, state-of-the-art approaches typically involve a pipeline

A. A. Freihat (�) · G. Bella · F. Giunchiglia
University of Trento, Trento, Italy
e-mail: abed.freihat@unitn.it; Gabor.Bella@unitn.it; fausto.giunchiglia@unitn.it

M. Abbas
High Council of Arabic Language, Algiers, Algeria

H. Mubarak
Hamad Bin Khalifa University, Ar-Rayyan, Qatar
e-mail: hmubarak@hbku.edu.qa

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
M. Abbas (ed.), Analysis and Application of Natural Language and Speech
Processing, Signals and Communication Technology,
https://doi.org/10.1007/978-3-031-11035-1_4

67

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-11035-1_4&domain=pdf

 885 49096 a 885 49096
a

mailto:abed.freihat@unitn.it

 9409 49096 a 9409 49096 a

mailto:Gabor.Bella@unitn.it

17986 49096 a 17986 49096 a

mailto:fausto.giunchiglia@unitn.it

 885 55738
a 885 55738 a

mailto:hmubarak@hbku.edu.qa

 -2016 61494 a -2016 61494 a

https://doi.org/10.1007/978-3-031-11035-1_4

68 A. A. Freihat et al.

of components, such as a part-of-speech tagger, a morphological analyzer, a
lemmatizer, and a named entity recognizer (NER). Compared to English, both
lemmatization and NER are harder for Arabic text: for the former because of the
inflectional complexity and ambiguity inherent to written language and for the latter
mainly because Arabic does not mark named entities by capitalization.

There has been extensive research on each of the tasks mentioned above. In
the case of Arabic POS tagging, the approaches are typically based on statistical
classifiers such as SVM [6, 7], sometimes combined with rule-based methods [8]
or with a morphological analyzer [9–11]. The idea of POS tagging applied to
unsegmented words has been investigated in [10] and in [12].

For NER, several solutions and tools have been reported. They can be classified
as rule-based systems such as the approach presented in [13], machine-learning-
based ones such as [14, 15], and hybrid systems such as [16]. The correlation
between NER and POS tagging is illustrated in [17].

For Arabic lemmatization, while several approaches were proposed, few tools
are actually available. Existing tools typically combine multiple techniques to
achieve efficient lemmatization. The Alkhalil lemmatizer [18] first applies morpho-
syntactic analysis to the input sentence in order to generate all potential word
surface forms. Then, among these, only one form is selected per word using a
technique based on hiddenMarkov models. The accuracy of the tool is reported to be
about 94%. Another lemmatizer is MADAMIRA [19] which relies on preliminary
morphological analysis on the input word that outputs a list of possible analyses. As
a second step, it predicts the correct lemma using language models. The accuracy
of the tool is 96.6%. The FARASA lemmatizer [20] uses a dictionary of words
and their diacritizations ordered according to their number of occurrences. The
accuracy reported for FARASA is 97.32%. Besides these tools, there are other
proposed approaches: for example, [21] proposes a pattern-based approach, while
[22] and [23] present rule-based solutions.

For Arabic chunking tools, the only available research on phrase chunking is
the work done by Mona Diab who introduced a chunking tool as a component of
MADAMIRA. The adopted approach and details about the tools are described in
[24]. The reported accuracy of the tools is 96.33%. In terms of overall NLP pipeline
architecture, most existing solutions perform the aforementioned tasks as a cascade
of several processing steps. For example, POS tagging in FARASA [20, 25] and in
MADAMIRA supposes that word segmentation has been done as a previous step.
Segmentation, in turn, relies on further preprocessing tasks such as morphological
analysis in MADAMIRA.

Likewise, NER and lemmatization are often implemented as separate down-
stream tasks that rely on the results of POS tagging, base phrase chunking, and
morphological analysis. In several Arabic pipelines in the literature [7], however,
upstream tasks such as POS tagging are implemented in a coarse-grained manner,
which amounts to delegating the resolution of certain cases of ambiguity to
downstream components. For example, by using single VERB and PART tags, the
POS tagger in [6] avoids challenging ambiguities in Arabic verbs and particles,
respectively. Consequently, an additional downstream component is needed for

ALP: An Arabic Linguistic Pipeline 69

morphological disambiguation, e.g., to find out whether
������ is an imperative

(
���	
� 	�	��/recognize), past (

	��	
� 	�	��/recognized), or present tense verb (
����	

��	��/you know or

she knows); whether the noun �
 ��� is singular (in which case it means withdrawal)

or plural (meaning clouds); or whether ��
�
� is an accusative (

	
��
�
�) or a subordinate

particle (
���
�
�).

Good-quality Arabic annotated corpora for machine learning are few and
far between. The Penn Arabic Treebank [26] is a non-free, half-a-million-word
annotated corpus destined for POS tagging and syntactic parsing, upon which a
large number of research results are based. The KALIMAT corpus,1 while freely
available, is a silver standard corpus on which a POS tagging accuracy of 96% was
reported [27].

In this paper, we present an entirely new linguistic pipeline for natural language
processing of text in Modern Standard Arabic. Our goal was to provide an open-
source tool that simultaneously maximizes accuracy, speed of execution, as well as
the resolution of difficult cases of ambiguity within the Arabic text. This way, NLP
tasks downstream of ALP are also expected to work in a more accurate and robust
manner as they need to deal with less amount of ambiguity.

One of the general design principles we used to achieve these goals was to
reduce the number of individual NLP components within the pipeline. Thus, ALP
consists of just two components: the first one is a preprocessor that performs word
segmentation, POS tagging, and named entity recognition as a single processing
task, without any other auxiliary processing tool [28]. The second component uses
these results to perform lemmatization [29].

In an effort to improve accuracy with respect to state-of-the-art tools, we decided
to implement a solution that is independent from implicit NLP design choices
embedded in the annotations of existing corpora. Thus, we hand-annotated an over
two-million-token corpus that forms the basis of ALP. The pipeline can be tested
online2 and is freely available for research upon request.

The rest of the paper is organized as follows: Sect. 2 presents the main cases of
lexical and morphological ambiguity in Arabic that ALP was designed to tackle.
Section 3 introduces the general architecture of ALP and its components. Section 4
provides details and the rationale behind the tag sets we used for annotation.
Section 5 presents the annotation methods we used for the two-million-token corpus.
Section 6 provides evaluation results on ALP, and Sect. 7 reflects on future work.

1 https://sourceforge.net/projects/kalimat/.
2 http://www.arabicnlp.pro/alp/.

 -1446 57047 a -1446 57047 a

https://sourceforge.net/projects/kalimat/

 -1446 58376 a -1446 58376 a

http://www.arabicnlp.pro/alp/

70 A. A. Freihat et al.

2 Ambiguity in Arabic

To illustrate the challenging cases that low-level NLP tasks such as word segmenta-
tion or lemmatization typically need to solve, in the following, we list some common
examples of lexical and morphological ambiguity in Arabic.

2.1 Ambiguity in Word Segmentation

Certain words can be segmented into morphemes in more than one valid way. In
such cases, the correct segmentation can only be determined in context. In Table 1,
we list some common examples of ambiguity that occur at the segmentation level.

2.2 Ambiguity in POS Tagging

While correct segmentation decreases the ambiguity in Arabic text, polysemy and
the lack of short vowels result in morphemes having multiple meanings with distinct
parts of speech. In Table 2, we show some examples of this kind.

Table 1 Ambiguity examples at the segmentation level

Ambiguity Example

Nouns vs conjunction+pronoun ����/weakness vs ����/and they (feminine)

Noun vs conjunction+verb ���/mud vs ���/and (he) solved

Noun vs conjunction+noun
�� ����/receipt vs �� ����/and (a) character

Noun vs singular noun+pronoun ���
 �
� !/two books (in genitive) vs ���
 �

� !/my book
Noun vs preposition+noun

���"#/sting vs ���"#/for capacity
Proper noun vs preposition+noun

���
 $����
 /a city in Iraq vs
���
 $����
 /with punishment

Proper noun vs conjunction+noun ������/a city in Algeria vs ������/and two cats

Proper noun vs definite article+noun %
 �
 # �/a city in Syria vs %
 �
 # �/the door
Noun vs interrogative particle+negation particle &#

�
�/pain vs &#

�
�/did I not

Adjective vs noun+pronoun ��'

�� ��
 /lateral vs ��'

�� ��
 /my side
Adjective vs preposition+noun

������()
 /nautical vs
������()
 /to freedom

Verb vs conjunction+pronoun *+ �,/(he) understood vs *+ �,/and they (masculine)

Verb vs conjunction+verb � �,�/saved vs � �,�/and (he) escaped

Verb vs verb+pronoun � � -.//we knew vs � � -.//(he) taught us
Verb vs interrogative particle+verb �! �0��

�
�/(I) remember vs �! �0��

�
�/do (you) remember

ALP: An Arabic Linguistic Pipeline 71

Table 2 Ambiguity examples at the POS tagging level

Ambiguity Example

Verb vs noun �1�/carried vs �1�/carrying
Verb vs comparative ���2�

�
�/overburdened vs ���2��/heavier

Verb vs adjective �34�/facilitate vs �34�/easy
Verb/noun vs particle &#/gathered vs &#/not
Verb vs number 5"�6/expanded vs 5"�6/nine
Verb vs proper noun ���.7/rose vs ���.7/Talat
Noun vs number 5
8/lion vs 5
8/seven
Noun vs proper noun ���"9��/philanthropy vs ���"9��/Ehsan
Adjective vs noun

�� �/$��/qualitative vs �� �/$��/quality
Adjective vs proper noun � �1�
 /nice vs � �1�
 /Jamil
Interrogative particle vs relative pronoun According to their position in the sentence

Particle ambiguity in ��
�
� ���

�
�/subordinating vs

	
��
�
�/accusative

Particle ambiguity in ����
�����/conditional vs

	
����/accusative
Particle ambiguity in &# �&#/negation vs 	&#	/interrogative
Particle ambiguity in �: �:/negation vs �:/interrogative

Even with correct segmentation and POS tagging, challenging cases of ambiguity
still remain on the level of fine-grained POS tags, mostly due to MSA words
overwhelmingly being written without diacritics. In the following, we list some
examples of ambiguity with which we deal on the fine-grained level.

2.2.1 Verb Ambiguities: Passive vs Active Voice

Many verbs in Arabic have the same form in the active or passive voice cases.
Verbs like �
�
��/reported or has been reported can be only through the context

disambiguated.

2.2.2 Verb Ambiguities: Past vs Present Tense

The same verb word form that denotes a verb in first-person singular present denotes
(another) verb in third-person singular masculine past. Consider, for example, the

verb �1�

�
� which can be

�
�1	

��

��
�/(I) illustrate can also be

	
�	1 ��

	�
�/(he) illustrated.

72 A. A. Freihat et al.

A third-person singular feminine present verb form denotes (another) verb in
third-person singular masculine past. Consider, for example, the verb �-�(�) which
can be �-	

��(
	�)/(she) carries can be also

	
� 	
-	�(

	�)/(he) sustained.

2.2.3 Verb Ambiguities: Imperative

The imperative verb form (second person singular masculine) can be read as a past
tense verb (third person singular masculine). For example, the verb

������ which may

be an imperative verb (
���	
� 	�	��/recognize) or a past tense verb (

	��	
� 	�	��/(he) recognized).
The imperative verb form (second person plural masculine) can be read as a past

tense verb (third person plural masculine). It can be also a present tense verb (third
person plural masculine). For example, the verb �$ �,���� which may be an imperative

verb (�$��, 	
� 	�	��/recognize), a past tense verb (�$��, 	
� 	�	��/(they) recognized), or a present

tense verb in cases like �$��,�	
��	�� ���

	
!/so that (you) know.

The imperative verb form (second person singular feminine) can be read as
a present tense verb (second person singular feminine), after some particles. For
example, the same form ��

�,���� can be an imperative verb (second person singular

feminine like in (��
�,	
	
� 	�	��/recognize) or a present tense verb (second person singular

feminine) after subordination particles such as in the case (��
�,	 �	

��	�� ���
	
!/so that you

know).

2.2.4 Noun Ambiguities: Singular vs Plural

In Arabic, there are several word forms that denote (different) singular and plural
nouns. For example, the word �
 ��� denotes the singular noun �

���	�/dragging and

the plural noun �

�����/clouds.

2.2.5 Noun Ambiguities: Dual vs Singular

The � accusative case ending in Arabic leads to dual singular ambiguity. For

example, the word form ��
 �� ! may be read as singular noun
;
�	�
 �

	� !	 /one book or dual

�	�
 �
	� !	 /two books (in genitive dual cases such as <$

�
. ��# � �	�
 �

	� !).

ALP: An Arabic Linguistic Pipeline 73

2.2.6 Noun Ambiguities: Dual vs Plural

Dual form nouns and masculine plural noun in general are ambiguous. For example,
the word ��=� � : �$: can be read as ���=�

	� :	 �$:/dual form or as ���=� � 	:	 �$:/masculine plural form.

2.2.7 Noun Ambiguities: Feminine vs Masculine Singular

There are cases in which the same word form denotes singular but with differ-
ent gender. For example, the word <0�, can be feminine < 	0	�,/foot or masculine

< 	0�,	/antiquity.

2.3 Ambiguity in Named Entity Recognition

Besides the ambiguity cases that we have presented in the previous section, we
present below two examples of ambiguity related to NER, referring the reader
to [30] for a more detailed treatise on the matter.

2.3.1 Inherent Ambiguity in Named Entities

It is possible for a word or a sequence of words to denote named entities that
belong to different classes. For example, ��>� 28�� denotes both a person and location.

It is also frequent that organizations and establishments are named after person
names. For example,

�� � � ��� # � <$.�.# �?# � 0
/ @.AB � ���:��
 /King Abdullah University

of Science and Technology.

2.3.2 Ellipses

Ellipses (omitting parts of nominal phrases and entity names) contribute to
the high ambiguity of natural languages. Considering the lack of orthographic
features in Arabic, ellipses increase the ambiguity. For example, a text about

C8$� AB � �D ��

�
E� �F
 # � �/The Mediterranean Seamentions it explicitly at the beginning

of the text. After that, it may omit �D ��

�
E� �F
 # �/the White Sea and refers to it by

C8$� AB �/the Mediterranean. This word is used mostly as an adjective (which means

the average), and there is no orthographic triggers that may disambiguate the entity
from the adjective token.

74 A. A. Freihat et al.

2.4 Ambiguity in Lemmatization

Lexical ambiguity is pervasive in conventional written Arabic due to the absence of
short vowels. For example, the past tense verb �%�GH could be vocalized as

��%��GH	
with the corresponding lemma 	I� 	�/become or as ;
�G	H with the corresponding lemma
	
�G	H/grit. Nouns can also be ambiguous: the word �
8 can be read as ��
 �8/ways or
�	
 	8/ears.

As choosing the correct lemma is ultimately a word sense disambiguation
problem, such cases put considerable stress on the quality of lemmatization. Tools
that are capable of outputting multiple solutions in an order of preference are in
this sense more robust as they potentially allow the disambiguation problem to be
delayed to subsequent syntactic or semantic processing steps.

2.5 Ambiguity in Phrase Chunking

Ambiguity in phrase chunking is related to ambiguity at POS tagging and
named entity recognition ambiguities. For example, the two tokens �
 � �0#� J$-�K
could be read in two different ways. The first can be read as one nominal
phrase J$-�K/Mahmud �
 � �0#�/Althahab (family name) in a sentence like

�
 � �0#� J$-�K ����
�
�I/I saw Mahmud Althahab. They can also be read as two separate

nominal phrases J$-�K/Mahmud �
 � �0#�/the gold as in the following sentence:

�
 � �0#� J$-�K L��
 /Mahmud sold the gold.

We have also the named entity boundary ambiguity problem. For example, the
two nouns 0-�K/Mohammed and J$-�K/Mahmud can constitute two different noun

sequences. While the sentence J$-�K 0-�K M
�
�I/Mohammed saw Mahmud contains

two nominal phrases, the sentence J$-�K 0-�K IJ� �///Mohammed Mahmud left con-

tains only one. We believe that solving this kind of ambiguity needs extending the
verb tags with the verb transitivity/intransitive information which is planned as a
future work.

3 Pipeline Architecture

The pipeline specific to our method is shown in Fig. 1 and is composed of the
following main steps:

ALP: An Arabic Linguistic Pipeline 75

Fig. 1 The high-level NLP pipeline architecture for lemmatization and chunking

1. Prepossessing: taking white-space tokenized Arabic text in input, we pre-
annotate the text through the following operations:

(a) POS and name tagging: tokens are annotated by a machine-learning-based
sequence labeler that outputs POS, named entity, and word segment tags.

(b) Word segmentation: using the POS output, cliticized words are segmented
into a proclitic, a base word, and an enclitic, making the subsequent
lemmatization step simpler.

2. Lemmatization: the segmented and pre-annotated text is fed into the following
lemmatizer components:

(a) Dictionary-based lemmatizer: words are lemmatized through dictionary
lookup.

(b) Machine-learning-based lemmatizer: words are lemmatized by a trained
machine learning lemmatizer.

(c) Fusion: the outputs of the two lemmatizers are combined into a single output.

3. Chunking: the input of the chunker is similar to the input of the lemmatizer. The
output is a list of base chunks.

The input of the annotator is expected to be UTF-8-encoded, white-space
tokenized but otherwise unannotated text in Modern Standard Arabic. We are also
supposing that sentences have been previously split by the usual sentence end
markers (“.”, “!”, “?”, “. . . ”) and newlines.

3.1 Preprocessing: POS, NER, and Word Segment Tagging

The first component of ALP is a single preprocessor component that tackles three
conventionally distinct NLP tasks: part-of-speech tagging, named entity tagging,
and word segmentation. The common underlying goal of these preprocessing
tasks is to reduce the ambiguity of words by extracting information from their
morphology and context. Consequently, our combined tagger uses a machine-
learning-based sequence labeling approach.

76 A. A. Freihat et al.

Performing the three operations in a single step presents several advantages:

• It is faster to execute than running several machine learning models in series.
• It is easier to reuse as part of a natural language understanding application.
• It does not suffer from the problem of cumulative errors that are inherent to

solutions that solve the same tasks in series.

3.1.1 POS Tagging

The training corpus of the ALP preprocessor was annotated with fine-grained POS
tags that, besides the high-level category, also provide number, gender, tense, and
other information (see Sect. 4.1 for details). This detailed output can be effectively
used by downstream components—such as the ALP lemmatizer—for solving a large
number of cases of lexical ambiguity due to missing vocalization. There remain,
however, some cases of word sense disambiguation that POS tagging alone cannot
deal with, such as transitive/ditransitive verb ambiguity. For example, verbs such as

&N/ (&N	
	//knew or 	&

	

N 	//taught) remain ambiguous according to our current annotation

tag set.

3.1.2 Named Entity Recognition

The ALP preprocessor does not mark named entities as nouns or proper nouns;
rather, it annotates them directly with named entity tags (see Sect. 4.3 for details).
This way the need for a separate NER component is avoided.

Based on the NER tags output by the ALP annotator, identifying the start and
end of a named entity is a trivial task. Then through subsequent word segmentation,
clitics can be removed from the entity and the canonical name obtained.

3.1.3 Word Segmentation

Word segmentation serves a double goal: to reduce the amount of distinct word
forms, resulting in smaller and more robust lemmatizers, and to reduce lexi-
cal ambiguity due to multiple possible interpretations. For example, segmenta-
tion reduces the number of possible word forms of the lemma &N�, from sev-

eral hundreds of cliticized nouns {&N�,, O� -.�,,O� -.���
 ,O� -.���
 �, &N��# �,. . .} to six forms

{&N�,, ���-.�,, �-.�,, ��=�-.�,,O� -.�,,<P�,
�
�} only. On the other hand, word segmentation reduces

the lexical ambiguity in cases such as
���"# which may be single word (sting) or a

cliticized word (for capacity).
The actual segmentation of words is executed based on the clitic tags provided

by the POS tagger. The input of the method is a word and its corresponding tag. The

ALP: An Arabic Linguistic Pipeline 77

Fig. 2 An example output of the word segmenter

output is a list of tokens that correspond to the PROCLITIC, the BASETAG, and
the ENCLITIC tags. Given that clitics are linguistically determined, segmentation
becomes a simple string splitting task. An example of the output of a segmentation
tool we implemented is shown in Fig. 2.

3.2 Lemmatization

Lemmatization returns the canonical (dictionary) forms of inflected words of a text.
As such, it is a frequent upstream processing step before any analysis of lexical
semantics (the meaning of words). For morphologically rich languages, lemmati-
zation is usually a complex task, e.g., due to the presence of irregular cases. In
Arabic, this includes broken plurals and irregular verbs. State-of-the-art lemmatizers
typically apply finite-state transducers and/or lemmatization dictionaries to such
cases, such as AraComLex [21] or the OpenNLP lemmatizer.3 For regular cases,
such as singular nouns and adjectives, regular plural nouns, and regular verbs,
lemmatization is reduced to a straightforward task of normalization that removes
inflectional prefixes and suffixes. For example, the verb form �$.-�()� is normalized

into the lemma �1�. In the case of singular and regular plural nouns, it is sufficient

to remove the plural suffixes and case endings. For example, the lemma of the dual
noun form ����0#� is 0#�.

The ALP lemmatizer operates over an input pre-annotated by previous prepro-
cessing steps, taking the segmented and POS-annotated text in input. It is built from
the following components:

1. A machine-learning-based lemmatizer: words are lemmatized by a supervised
classifier.

2. A dictionary-based lemmatizer: words are lemmatized through dictionary
lookup.

3. A fusion lemmatizer: the outputs of the two lemmatizer components above are
combined into a single output.

Both the learning-based and the dictionary-based lemmatizers were implemented
using the Apache OpenNLP toolkit.4

3 https://opennlp.apache.org/docs/1.8.4/manual/opennlp.html.
4 http://opennlp.apache.org/docs/1.9.0/manual/opennlp.html#tools.cli.lemmatizer.

 -1446 58376 a -1446 58376 a

https://opennlp.apache.org/docs/1.8.4/manual/opennlp.html

 -1446 59704 a -1446 59704 a

http://opennlp.apache.org/docs/1.9.0/manual/opennlp.html#tools.cli.lemmatizer

78 A. A. Freihat et al.

3.2.1 Learning-Based Lemmatizer

The principal component of our lemmatization approach is a machine-learning-
based classifier. It takes word segments and their corresponding POS tag in input,
also taking context (words and tags) into account. The learning-based approach is
justified by the inherent ambiguity of diacritic-free Arabic words whose meanings
are typically deduced, by humans and machines alike, from context. While the
preliminary POS tagging resolves a great deal of ambiguity, some cases still remain
such as the verb form ��$Q�� which may represent the verb ���R or the verb ��$!.

3.2.2 Dictionary-Based Lemmatizer

A downside of learning-based lemmatization is that more rare and exceptional

cases, such as
�� � 8

�
� (spears), may not be covered by its training corpus, which

leads to lemmatization mistakes. The addition of new cases requires the re-training
of the classifier. Another inconvenience is that classifiers—such as OpenNLP that
we used—typically commit on a single output result, which may or may not be
correct. In case of such ambiguity, from the full set of possible lemmas, further
NLP processing steps may be able to provide correct results based on, e.g., syntactic
or semantic analysis. In order to support these cases, we complement the learning-
based lemmatizer by a dictionary-based one. The dictionary lemmatizer can be run
independently, but we also provide a simple fusion method that combines the results
of the two lemmatizers as described below.

3.2.3 Fusion Lemmatizer

While the learning-based lemmatizer outputs for each word a single candidate
lemma, from the dictionary, multiple solutions could be retrieved even for a single
part of speech (e.g., the verb form &N"6� can be a verb form of the verb &N8 gave up

or &N8
�
� converted to Islam). The goal of the simple fusion component is to produce

a final result from these solutions. The final output is a list of one or more lemmas
in a decreasing order of confidence.

The idea underlying the fusion method is that we usually trust the dictionary to be
capable of providing a correct solution space (a small set of possible lemmas), while
we usually trust the classifier to return the most likely lemma from the previous set.
However, in the case of out-of-corpus words, the classifier may return incorrect
results extrapolated from similar examples, such as returning the lemma ��-3�S for
the word form ��-3 �4��. Thus, whenever a lemma is returned by the classifier that is

not included in the dictionary, it will still be included as a solution but with a lower
confidence.

ALP: An Arabic Linguistic Pipeline 79

Accordingly, our simple fusion method is as follows. We take as input the results
output by the two lemmatizers, namely, LDIC = {l1, . . . , ln} for the dictionary-
based one and LCL = {l} for the classifier-based one, and output LF, the fusion
result. We start by comparing the results of the two lemmatizers:

1. If |LDIC| = 1 and l1 = l, i.e., the outputs are identical, then the solution is trivial,
and we return either output and we are done: LF = {l}.

2. Otherwise, two further cases are distinguished:

(a) If l ∈ LDIC, that is, the dictionary contains the classification output, then
we prioritize the result of the classifier by making it first (i.e., the preferred
lemma): LF = {l, l1, . . . , ln}.

(b) Otherwise, we add the classifier result as the last element: LF =
{l1, . . . , ln, l}.

3.3 Base Chunker

Base chunker splits sentences into groups of base chunks. These chunks in turn
form sentence phrases or may be parts of sentence phrases. It operates over an
input pre-annotated by previous preprocessing steps, taking the segmented and POS-
annotated text in input. The output of the component is a list of chunks. These
chunks may be one of the following base phrases:

1. N
¯
ominal phrases: Base nominal phrases are the longest possible sequence

of adjacent words that constitute a phrase which does not contain coordi-
nations or relative clauses. The length of base nominal phrases may range
from one token to ten tokens or more. An example for such long phrases is
�%��
 ��> ��E ��:��#� �� � �� �AB

�
E� ��>6
 ��# � $ �T/ ��="6��-� �U��I �%$A �VI�� �� � : ��AB � <$ � # � / member

of the German General Association of Chronic Sleep Disorders Hartmut Rint-
mäster.

2. V
¯
erbal phrases: Verbal phrases are phrases that contain a verb, two verbs, and an

optional nominal phrase, prepositional phrase, or adverbial phrase complement.
The verb part of the phrase may be also preceded by a particle such as E in

the following example: �%�
U�����=# � ���0��� ��$#� ���� E/are still making arrangements.
Notice that the boundary of verbal phrases is implicit in case of the object
complement. This means only the verbal part of the phrase will be annotated
as a verbal phrase. The complement part will keep its original annotation.

3. P
¯
redicative adjective phrases: A predicate adjective is a predicate that follows a

nominal phrase. It may range from one to several adjectives such as the phrases
�
 8� � :/appropriate and �
 8� � : �=� �//inappropriate.

4. P
¯
repositional phrases: Prepositional phrases are phrases that contain a preposi-

tion followed by a nominal phrase such as
��80AB � ��

�,/at school.

80 A. A. Freihat et al.

5. A
¯
dverbial phrases: Adverbial phrases are modifiers that follow an adjective

like �0�
 in �0�
 � �1�
 or a verb such as � �/$
8
�
� in � �/$
8

�
� � �,�"6�/travels weekly.

In the case of verbs, it is not necessary that the adverb follows the verb
directly. It is possible to find intermediate phrases between the verb and its

modifiers. Consider, for example, the phrase � �/$
8
�
� �"�6� �, �W�� � �,�"6�/travels to

France weekly.

4 Annotation Schema

This section presents the tag set used for the preprocessing component of the
pipeline and the design choices behind it.

We annotated a single large training corpus with complex and fine-grained tags
that encode information with respect to part of speech, word segments, and named
entities. On a high level, the tag set is composed as follows:

<TAG> ::= <PREFIX> <BASETAG> <POSTFIX>
<BASETAG> ::= <POSTAG> | <NERTAG>
<PREFIX> ::= <PREFIX> | <PROCLITIC> "+" | ""
<POSTFIX> ::= <POSTFIX> | "+" <ENCLITIC> | ""

A tag is thus composed of a mandatory base tag and of zero or more
(i.e., optional) proclitics and enclitics concatenated with the “+” sign indicating
word segments. A base tag, in turn, is either a POS tag or a NER tag, but not
both (in other words, we do not annotate named entities by part of speech). For
example, the full tag of the word ��
 �� Q�
 � is a noun tag preceded by two proclitic

tags (conjunction and preposition) and followed by a pronoun enclitic tag. The
choice of our base and clitic tags was inspired by the coarse-grained tags used in
MADA 2.32 [7] and 3.0 [19], as well as by the more fine-grained tags used in the
Qur’an Corpus [31]. For compatibility with other NLP tools, mapping our tags to
MADA 2.32, MADA 3.0, and Stanford [32] or any other tag sets is straightforward.

In Fig. 3, we provide an example of a complete annotated sentence.

Fig. 3 An example of annotated sentence

ALP: An Arabic Linguistic Pipeline 81

4.1 Annotation of POS Tags

The POS tag set consists of 58 tags classified into 5 main categories:

<POSTAG> ::= <NOUN> | <ADJECTIVE> | <VERB> | <ADVERB>
| <PREPOSITION> | <PARTICLE>

Nouns The noun class has 13 tags as shown in Table 4. The first nine tags are
fine-grained annotations of common nouns that we classify according to their
number (singular, dual, or plural) and gender (masculine, feminine, or irregular).
We use the feature irregular to annotate the irregular plural nouns. As it is the
case in MADA, we consider quantifiers, numbers, and foreign words as special
noun classes. Following the Qur’an corpus, we consider pronouns, demonstrative
pronouns, and relative pronouns as special noun classes (Table 3).

Adjectives The adjective class has nine tags as described in Table 4. Similar to
nouns, the first seven tags are fine-grained annotations of adjectives that we classify
according to their number and gender. As it is the case in MADA, we consider
comparative adjectives and numerical adjectives as special adjective classes.

Verbs The verb class contains five tags as described in Table 4. The first four tags
are fine-grained annotations of verbs that we classify according to their passive
marking (active or passive) and tense (past or present). Annotating future tense in
Arabic is explained in the particle class. For imperative verbs, we use the tag IMPV.

Adverbs It is not clear in the modern Arabic linguistics community whether adverb
belongs to the Arabic part of speech system or not. In this study, we follow FARASA
andMADA in considering adverbs as a category of the Arabic part of speech system,
where we consider adverbs as predicate modifiers that we classify in three classes
as shown in Table 4.

Prepositions and Particles This class contains 28 preposition and particle tags
from the Qur’an corpus tag set that we list in Table 5.

Table 3 Clitic tags No. of clitics No. of tags Examples

0 78 SMN %
 �� !
1 163 C+PRSV 5� �����
2 105 C+PIN+PRO X ����,0�

�
��

3 12 C+FUT+PRSV+PRO �
 � Q �8�

82 A. A. Freihat et al.

Table 4 Noun, adjective, verb, and adverb tags

Tag Explanation Example

SMN Singular masculine noun %
 �� !, �
9
 , ��
 I
SFN Singular feminine noun

�X0���9
 , ������, , �� �U�

DMN Dual masculine noun ����
 �� ! , ��=��
 �� ! , ��
 �� ! , ���
 �

� !
DFN Dual feminine noun ���� ����, , ��=�� ����, , �� ����, , ��

�'����,
PMN Plural masculine noun ��$ �� �7$: , ��=� �� �7$: , $ �� �7$:, O�

�� �7$:
PFN Plural feminine noun �%� �� �7$: , �%�:�34� �� , �%E��, �%��
 �� !
PIN Plural irregular noun �
 � ! , M��, , �%� � �
 , Y��
 I
FWN Foreign noun ��=�." �U�
 , �����
 $: , %
 $� �
 E , I$��� � U�8
NQ Quantifiers 5 �1�
 , �R , �D��
 , M�

�
�

NM Numbers 0���, Z , ��� � 2� � , ��=� � 2� �
PRO Pronouns $�, �[, O� � , �+[
DM Demonstrative pronouns � �0� , ��� �0� , \E �$� , @.��
REL Relative pronouns M�

�0#�, ��
�'# � , ��� �0.# � , ��

���$.# �
SMAJ Singular masculine adjective � �1�
 , M� $�, , &'�.8
SFAJ Singular feminine adjective

��. �1�
 ,
����$�, , ��- �.8

DMAJ Dual masculine adjective ��P �1�
 , ��=�. �1�
 , P �1�
 , ��N �1
�

DFAJ Dual feminine adjective ��=�� . �1�
 , ���� ��$�, , ���� - �.8
PMAJ Plural masculine adjective ��=�. �1�
 , ��$ �. �1�
 , $. �1�
 , ��N �1

�

PFAJ Plural feminine adjective �%P �1�
 , �%���$�, , �%�- �.8
PIAJ Plural irregular adjective \���H�

� , \���$�,
�
� , �1�

AJCMP Comparative adjectives �1�

�
� , M$�,

�
� , &N8

�
�

AJNM Ordinal adjectives Y�
�
�, ��

���2� , 2�#�2�
PRSV Present verb (active) Y$���� , Y

�
�"6� , �-�()�

PSTV Past verb (active) Y��,, Y
�
�8 , �1�

PPRSV Present verb (passive) Y����� , Y
�
�"6� , �-�()�

PPSTV Past verb (passive) � ��,
�
� , �� 8 , �1�

IMPV Imperative verb ��, , Y
�
�8� , �1��

T Temporal adverb ���
� , � �� � �9
�
� , 0��

LC Location adverb
�]$ �, , ���(�) , 0��

AV Adverb � �:$�� , ���� �� , �:�A �V

ALP: An Arabic Linguistic Pipeline 83

Table 5 Preposition and
particle tags

Tag Explanation Example

D Definite article Y�
C Conjunctions �, �

�
� , ��

P Prepositions ��:, �W� , Y
Q Interrogative particles � �J�:, ��, �̂ �!
COND Conditional particles $#, � �J ��,

�����
NEG Negation particles &#, E, ��#
ACC Accusative particles ����, ��Q# , ��#
SUB Subordinate particles

���
�
�, ��!

FUT Future particles _8, ��$8
VOC Vocative particles ���, *[
ANS Answer particles *���, EPR
EXL Explanation particles M�

�
�, �:

�
�

EXP Exceptive particles M$8, �0/
EXC Exclamation particles �:, ���
RES Restriction particle E��
CERT Certainty particle 0�,
SUR Surprise particle � �J ��, �� �J��
EMPH Emphatic particle _#
PRP Purpose particle _#
RET Retraction particle ��

REM Resumption particles

��, �
INTG Interrogative particle

�
�

PREV Preventive particle �:
INC Inceptive particle E

�
�

IMPP Imperative particle Y
PR Prohibition particle E
ABB Abbreviation Ì$� !Ja J
PX Punctuation
, b

4.2 Annotation of Word Segments

We represent the morphology of words through complex tags that correspond to
their internal structure. As shown above, the structure of a complex tag is

[PROCLITIC+]∗ BASETAG [+ENCLITIC]∗

84 A. A. Freihat et al.

where BASETAG is one of the base POS tags; ENCLITIC, when present, stands for
one or two clitic tags at the end of the word; and PROCLITIC, when present, is the
combination of one to three tags out of a set of the proclitic tags at the beginning of
the word.

In our corpus, the number of distinct individual tags (including both simple and
complex tags) is 358, as shown in Table 3.

4.3 Annotation of Named Entities

The named entity tags output by the ALP preprocessor are shown below:

<NERTAG> ::= <POSITION> "-" <CLASS>
<POSITION> ::= "B" | "I"
<CLASS> ::= "PER" | "LOC" | "ORG" | "EVENT"| "MISC"

Following the conventions of CONLL-2003,5 the NER tags provide both the
class of the entity and its boundaries through indicating the positions of the tokens
composing it. B- stands for beginning, i.e., the first token of the entity, while I-
stands for internal, marking subsequent tokens of the same entity.

Our corpus currently distinguishes the most common types of named entities:
persons, locations, organizations, events, and others. We did not yet classify entity
classes such as date, time, currency, or measurement nor subclasses of organizations
(e.g., we do not differentiate between a football team and a university).

Thus, the total number of NER tags is 10 as shown in Table 6; however, as shown
earlier, NER tags can be further combined with clitic tags.

Table 6 Named entity tags

Tag Explanation Example

B-PER, I-PER Person �
 ��
(
�)_B-PER �c$ ���K_I-PER

B-LOC, I-LOC Location �F
 # �_B-LOC �D ��

�
E�_I-LOC C8$� AB �_I-LOC

B-ORG, I-ORG Organization %
 ��9_B-ORG ������d)�_I-ORG ��# �0�#��_I-ORG
B-EVENT, I-EVENT Event %
 ��d)�_B-EVENT �� �AB ��# �_I-EVENT �� � �� �2 # �_I-EVENT
B-MISC, I-MISC Misc %
 IJ_B-MISC

�� �� �
 � # �_I-MISC

5 http://www.cnts.ua.ac.be/conll2003/ner/annotation.txt.

 -1446 58376 a -1446 58376
a

http://www.cnts.ua.ac.be/conll2003/ner/annotation.txt

ALP: An Arabic Linguistic Pipeline 85

4.4 Annotation of Lemmas

The lemmatization dictionary is a text file with each tab-separated row containing a
word form, its POS tag, and the corresponding lemma and each column separated
by a tab character. In case of ambiguous word forms (i.e., a word form-POS tag pair
that has several lemmas), the corresponding lemmas are separated by “#” character:
for example, the lemmas of the word form I� ���� are I� �I#I� �I. An example of the

dictionary is shown in Fig. 4a.
The format of the annotated corpus for the learning-based lemmatizer is similar

to the dictionary. The only difference is that the entries are ordered according to
their original position in the sentence in the segmented corpus, in order to retain
context. An empty line indicates the end of a sentence. An example of the training
corpus is shown in Fig. 4b.

4.5 Annotation of Base Chunks

For example, the phrase ���$>#� ��
 �# �/the tall man in Fig. 5 is a base chunk, while

the phrase � �'
 AB � �]$ �, ���$>#� ��
 �# �/�the tall man on the building is not.

We use the following BIO annotation schema to annotate the base chunks:

Fig. 4 Examples of the contents of (a) the lemmatization dictionary and (b) the training corpus of
the classifier-based lemmatizer

Fig. 5 An example output of the base chunker

86 A. A. Freihat et al.

<PHRASE> ::= "-" <CLASS> (<I> "-" <CLASS)*
 ::= "B"
<I> ::= "I"
<CLASS> ::= "NP" | "VP" | "PP" | "ADJP"| "ADVP"

In the following, we describe the base chunks and their annotations:

• N
¯
ominal phrases: The annotation schema for basic nominal phrases is B-NP (I-

NP)∗. This can be one of the following basic noun phrase categories:

1. Pronouns: This category refers to separate pronouns such as$�/he or attached
object pronouns like X/him. Attached possessive pronouns like X/his are

genitive constructions as decribed below. Pronouns are annotated using the
tag B-NP.

2. Nouns: These refer to single-word nouns. They can be definite such %
 �� !/book
and indefinite like %
 �� Q#�/the book. We use the tag B-NP if the noun is

indefinite and the tag B-NP I-NP otherwise.
3. Nouns+possessive pronouns: This category refers to nouns followed by

attached possessive pronouns such as ���
 �
� !/my book. Such phrase is annotated

as B-NP I-NP.
4. Nouns+adjective modifiers: This category refers to nouns modified by one

or more adjectives. They can be definite nouns such as 0��0�
d)� %
 �� Q#�/the new
book and 0��0�
d)� ���
 �

� !/my new book or indefinite nouns like 0��0�
 %
 �� !/a new
book. The possible tag sequence here is (B-NP|(B-NP I-NP)) (I-NP)+.

5. Genitive nouns: Noun+possessive pronouns are special case of this category.
It includes also the other forms of genitive constructions. They can be
definite nouns such

��8I0AB � %
 �� !/The school book or indefinite nouns like
��8I0: %
 �� !/school book. The length of the noun sequence can be of course

more than two tokens such as
��8I0AB � &N�: %
 �� !/the school teacher book. We

use the tag sequence B-NP (I-NP)+ here.
6. Genitive nouns+adjective modifiers: This category contains possessive con-

structions modified by one or more adjectives. The phrases may be def-
inite such as 0��0�
d)� ��8I0AB � %
 �� !/the new school book or indefinite like

0��0�
 ��8I0: %
 �� !/a new school book. The used tag sequence here is B-NP

(I-NP) (I-NP)+.
7. Proper nouns: This category contains proper nouns such as 0-�K/Mohammed

or �?# � 0
/ ���
 0-�K/Mohammed bin Abdullah. The length of the sequence can

be in some cases very long.
8. Nouns+proper nouns+adjective modifiers B-NP (I-NP) (I-NP)+: This

category contains phrases such as ��K$F
 +# � �
 :���� %
 �> �9/Trump’s offensive

speech.

ALP: An Arabic Linguistic Pipeline 87

• P
¯
repositional phrases: Prepositional phrases begin with a preposition followed

by one of the basic nominal phrases. The only used tag here is B-PP.
• V

¯
erbal phrases: Verbal phrases consist of two parts—a verbal part that may be

followed by one of the basic nominal phrases. The sequence in the verbal part
may contain one token which the main verb such as &N���/learned, an auxiliary

verb followed by the phrase main verb such as &N�� �� ���R/was learning, negation
particle followed by the main verb such as &N�� �� &#/didn’t learn, or a negation

particle followed by an auxiliary verb and the main verb such as &N�� �� ��Q�� &#/was
not learning. The possible tag sequences are B-VP (NULL—I-VP—(I-VP I-
VP)).

• P
¯
redicative adjective phrases: Predicative constructions may be a predicative

adjective such as � �1�
 /beautiful or a negation particle followed by a predicative

adjective like � �1�
 �=� �//not beautiful. The possible tag sequences are B-ADJ

(NULL|I-ADJ | (I-ADJ I-ADJ)).
• A

¯
dverbial phrases: Adverbial constructions contain an adverb that modifies a ver-

bal or adjectival phrase. Examples for this category are �0�
 /very, � �/$
8
�
�/weekly,

or � �T���2�/personally. The used tag for adverbial phrase is B-ADV.

5 Corpus Annotation

This section presents the methods we used to annotate the more than two-million-
token corpus that is the fundament of ALP. We have chosen to develop an entirely
new corpus instead of relying on existing resources such as the Penn Arabic
Treebank [26] in order to be free both from licensing restrictions and from past
modeling choices. The main challenge of the annotation process, besides the corpus
size, was to cover and address as many cases of ambiguity (discussed in Sect. 2) as
possible.

The corpus was assembled from documents and text segments from a varied
set of online resources in Modern Standard Arabic, such as medical consultancy
web pages, Wikipedia, news portals, online novels, and social media, as shown in
Table 7. The diversity of sources serves the purpose of increasing the robustness
of the model with respect to changes in domain, genre, style, and orthography. For
consistency within the corpus and with the type of texts targeted by our annotator,
we removed all short vowels from the input corpora.

The current corpus consists of more than 130k annotated sentences with more
than 2 millions Arabic words and 200k punctuation marks (Table 8).

88 A. A. Freihat et al.

Table 7 Resources used in
the training corpus

Resource Proportion

Aljazeera online 30%

Arabic Wikipedia 20%

Novels 15%

Al-quds Al-Arabi newspaper 10%

Altibbi medical corpus 10%

IslamWeb 5%

Social networks (Facebook, Twitter) 5%

Other resources 5%

Table 8 Domains covered in the training corpus

No. of documents No. of tokens Domain Description

Archaeology 61 19745 Archaeological and fossil science

Articles 285 261264 Articles from news portals

Business 73 49937 (Online) Business and trading

Economy 159 61,954 Regional and international economy

Encyclopedia
locations

140 129553 Cities, villages, and countries

Encyclopedia persons 131 90601 Famous persons

Encyclopedia politics 53 52080 Political organizations and events

Environment 110 41506 Environment-related documents

Food recipes 11 4511 Food and cooking recipes

Literature 130 264354 Novels, short stories, proverbs

Medical 339 159,452 Human health-related documents

Medical answers 1 297608 Medical question answers from medical
portals

Miscellaneous 24 2190 Uncategorized documents

Miscellaneous news 985 276323 None political or military nature news

Nature 62 25044 Nature-related documents

News 1013 373884 Political and war news

Quran 1 2915 Verses from Quran

Science 196 73650 Science-related documents

Space 84 41629 Space-related documents

Sport 30 9398 Sport-related documents

Technology 77 24588 Technology-related documents

Theology 10 19576 Islamic theology articles

5.1 POS and Name Annotation Method

The annotation was performed semi-automatically in two major steps:

1. Annotation of a corpus large enough to train an initial machine learning model.

ALP: An Arabic Linguistic Pipeline 89

2. Iterative extension of the corpus. We add new sets of sentences tagged by the
current model after manual correction. Then, we retrain the model after each
iteration.

Step 1 was an iterative process. It was bootstrapped using a 200-sentence gold
standard seed corpus that was fully hand-annotated. The goal of each iteration was
to add a new set of 100 new sentences to the seed corpus, until about 15k sentences
were tagged. Each iteration consisted of the following steps:

1.a For each word in the untagged corpus that was already tagged in the seed
corpus, simply copy the tag from the tagged word (this of course can lead to
wrong tagging as the process does not take the context into account; we fix
such mistakes later).

1.b Find the 100 sentences with the highest number of tags obtained through
replacement in the previous step.

1.c Manually verify, correct, and complete the annotation of the sentences extracted
in step 1.b.

1.d Add the annotated and verified sentences to the seed corpus and repeat.

At the end of step 1, many rounds of manual verification were performed on the
annotated corpus.

In step 2, we extended the corpus in an iterative manner:

2.a Train an initial machine learning model from the annotated corpus.
2.b Use this model to label a new set of 100 sentences.
2.c Verify and correct the new annotations obtained.
2.d Add the newly annotated sentences to the annotated corpus and repeat.

For training the machine learning model, we used the POS tagger component
of the widely known OpenNLP tool with default features and parameters. The
annotation work was accomplished by two linguists, the annotator and a consultant
who was beside the design of the tag set active in corrections and consultations
especially in the first phase.

5.2 Lemma Annotation Method

In the following, we describe the method we used to build the lemmatization
dictionary and the annotations for the learning-based lemmatizer. Our starting point
was the POS corpus that we extended with lemma annotations.

5.2.1 Dictionary Lemmatizer

The dictionary was generated through the following steps:

90 A. A. Freihat et al.

Table 9 Plural classes

Class Possible word forms Example

SMN_PMN SMN,SFN,DMN, DFN, PFN, PMN ��: �$:: ��: �$:, �� � : �$:, ��� � : �$:, ���� � : �$:, �%� � : �$:, ��$� : �$:
SMN_PFN SMN,DMN,PFN \ ��9
 ��:,\ ��9
 ��, ���\ ��9
 ��, �%�\��9
 ��
SFN_PFN SFN,DFN,PFN

���
 �� !:, ���
 �� !, ��=�� �
 �� !, �%��
 �� !
SMN_PIN SMN,DMN,PIN &N/:,&N/, ���-./,<P/

�
�

SFN_PIN SFN,DFN,PIN
�X�G�

�
�:, �X�G�

�
�, ������G�

�
�,�G�

�
�

FWN_PFN FWN,DMN,PFN ��$�� �� ��.��:, ��$�� �� ��.��, ��� ��� �� ��.��, �%� ��$�� �� ��.��

1. Segmentation. The corpus was segmented as explained in the previous section.
The result of this step was generating a segmented corpus that contains more than
3.1 million segmented tokens.

2. POS tag-based classification. In this step, we classified the word forms
according to their POS tag.

3. Inherent feminine and adjectival feminine classification. In this step, we
classified the feminine nouns into inherent feminine and adjectival feminine

nouns. For example, the noun
�X�G�

�
�_SFN/family is inherent feminine, while the

noun
�X�=�8

�
�_SFN/prisoner is adjectival. This differentiation is important because

the lemma of adjectival nouns is the masculine singular form of the noun �=�8
�
�,

while there is no masculine singular lemma for
�X�=�8

�
�.

4. Plural type classification. In this step, we classified the singular and dual nouns
(after extracting their singular forms) according to their plural type into six
classes as shown in Table 9. This classification enables us to build the possible
word number-gender forms of a given lemma automatically. For example, the
class SMN_PMN has six different possible number-gender forms. On the other
hand, using the feminine classification lists in the previous step enabled us to
differentiate between the SMN_PFN and SFN_PFN. In the class SMN_PFN,
the lemma of a singular feminine noun (SFN) is the singular masculine noun
(SMN). In the class SFN_PFN, on the other hand, the lemma is the singular
feminine noun itself. The adjectives were classified into three classes. The first
class is similar to the class SMN_PMN which allows six different word forms.
The second class contains a seventh possible form which is the broken plural
adjective form. The third class contains PIAJ as a single possible plural form.
For example, ���: belongs to this class since it has two possible plural forms
������: and �X�+:.

5. Lemma extraction. This step is semi-automatic as follows:

(a) Manual. Assigning the lemmas to broken plural nouns and adjectives was
performed manually.

ALP: An Arabic Linguistic Pipeline 91

(b) Automatic. Based on the morphological features in the tags, it was possible
to extract lemmas for singular, dual, masculine plurals, feminine plurals
adjectives, and nouns. We also used rules to extract the verb lemmas such
as removing the affixes ��.

6. Lemma enrichment. Using the lemmas from the previous step, we have
enriched the corpus with new verbs, adjectives, and nouns. For example, if the
lemma of a plural noun or adjective was missing, we added it to the noun and
adjective lemma lists.

7. Dictionary generation. The files produced so far are as follows:

• Noun files. Three files for masculine, feminine, and foreign nouns. The
lemmas in these files were classified according to Table 9. There is a fourth
file that contains quantifiers, pronouns, adverbs, etc.

• Adjectives. Three files for adjectives, comparatives, and ordinal adjectives.
The lemmas in the adjective file are classified according to Table 9.

• Verbs. One file that contains all extracted verb lemmas.

Using these files, the dictionary was generated as follows:

(a) Noun and adjective generation. According to the plural class, the noun and
adjective forms were generated. The � case ending and changing �X to �% were

also considered in this step.
(b) Verb generation. For each verb in the verb lemma list, we automatically

generated the verb conjugations in present, past, and imperative cases. We
considered also accusative (%
 $T� : �� �,) and asserted verbs (<� ���
K �� �,).

(c) Dictionary building. Using the results from the previous step, we built the
dictionary as shown in Fig. 4b, where the lemmas of ambiguous surface
forms were concatenated into a single string using the # separator.

5.2.2 Machine Learning Lemmatizer

We used the segmented corpus from the previous section to build the lemmatization
corpus in the two steps below:

1. Lemma assignation. We used a dictionary lemmatizer to assign the word forms
to their corresponding lemmas. In case of prepositions, particles, and numbers,
the lemma of the word form was obtained through simple normalization. The
lemmas of named entities were the named entities themselves. If a word form
was ambiguous, all its possible lemmas were assigned.

2. Validation. We disambiguated the lemmas of the ambiguous word forms
manually.

The size of the generated corpus is 3,229,403 lines. The unique word forms after
discarding the digits are 59,049 as shown in Table 10.

92 A. A. Freihat et al.

Table 10 Distribution of
lemmas and unique word
forms by part of speech in the
corpus of the learning-based
lemmatizer

POS No. of lemmas No. of word forms

Noun 18,165 26,337

Adjective 6369 13,703

Verb 4258 19,009

Named entity 20,407 20,407

Particle 605 649

In a final step, we added all generated word forms and their corresponding
lemmas from the dictionary described in the previous section to the corpus. This
increased the size of the corpus to 3,890,737 lines.

5.3 Base Chunking Annotation Method

We used the segmented corpus from the previous section to build the chunking
corpus by using the BIO tags semi-automatically. The manual part of this process
was identifying the POS tag sequences that constitute a phrase chunk. The total
number of the identified sequences was 4298. Most of these sequences were nominal
phrase sequences, where the number of this group was 4250 sequence. In Table
11, we give examples for the identified noun sequences. The complete identified
POS tag sequences can be found on the project page on ResearchGate.6 In Table
12, we show the identified verb sequences. Table 13 contains predicative adjective
sequences. The prepositional and the adverbial groups contained one sequence only
which is the preposition or the adverb.

Using the identified sequences, we have built the corpus automatically. The size
of the current chunking corpus is more than three million tokens. Of course, we
do not claim that the identified sequences are exhaustive. There may be other non-
detected sequences in our corpus or other sequences that our corpus does not cover.

6 Evaluation

In this section, we present evaluation results, both on individual NLP tasks and
overall results pertaining to the ALP pipeline as a whole (the latter included within
the lemmatizer results).

6 https://www.researchgate.net/project/ALP-Arabic-Linguistic-Tool.

 -1446 58376 a -1446 58376 a

https://www.researchgate.net/project/ALP-Arabic-Linguistic-Tool

ALP: An Arabic Linguistic Pipeline 93

Table 11 Noun phrases Sequences

Length No. of sequences Sequences sample Sample phrase

1 21 D+SMN ��U�
 # �
2 351 D+SFN D+SFAJ

����0"�
d)� ��9��# �
3 1119 SMN PFN

D+DMN

����0.
 # � �%��,P/ ���� �����

4 1534 AJCMP PFN
SMN D+PFN

�%�R�G2e# � f��
(
�) �%�:$��: *�

�
�

5 861 PFN SMN PFN
D+PIN D+PIAJ

�X�2=�� AB � ��$��0#� �%���$� ": L� ����I� �%E�-� 9�

6 263 SMN PIN SFN
D+SMN D+SFAJ
D+SFAJ

��!��= 2"AB � ��.:� 2"#� �-�#� ��> �9 J$� �

�0 � �� � ��

7 68 SFN SMN PFN
SMN D+PFN
D+PFAJ D+PFAJ

�� �#�AB � �� �. � �� 2"�U# � �%� �� �I�$AB � J �0/�� �%�I�+: �1/ �� 28I�

8 14 SMN NQ PIN
SMN SFN SMN
D+PIN D+PIAJ

�� ��� ��0#� g���,
�
E� 5.�
 �� �.1/ � �34e�6 �]�7 �D��
 L�
 �� �

Table 12 Verbal phrase sequences

Length No. of sequences Sequence sample Sample phrase

1 5 PSTV 59
 I
�
�

2 14 PRSV PSTV �%I�
�
�
�
� ��$Q��

3 7 NEG PSTV PPRSV �
 Q����� �%�� �I �:

Table 13 Predicative adjective phrases Sequences

Length No. of sequences Sequence sample Sample phrase

1 9 DFAJ ��=�� :��
2 9 NEG SFAJ

�XI� �� �=� �/
3 7 SMAJ SMAJ SMAJ

�h�� 2": M� J�:I ��
�'�

6.1 Evaluation of POS Tagging

To evaluate the performance of the proposed solution, we trained a machine learning
model on the annotated corpus using the OpenNLP maximum entropy POS tagger
with default features and cutoff = 3. We did not apply any preliminary normalization
to the evaluation corpus. The evaluation corpus was taken from two sources: the
Aljazeera news portal and the Altibbi medical consultancy web portal. The text
contained 9990 tokens (9075 words and 915 punctuations). Manual validation of
the evaluation results was performed. The per-task accuracy figures are shown in
Table 14.

94 A. A. Freihat et al.

Table 14 Evaluation results
on the POS tagging and word
segmentation tasks

Error type Number of errors Accuracy

Segmentation 25 99.7%

Coarse-grained POS 131 98.7%

Fine-grained POS 206 97.9%

The segmentation error type refers to words that were not segmented correctly.
The coarse-grained POS error type refers to words that were correctly segmented
but the base POS tag was wrong. This also includes incorrect named entity POS
tags. Finally, the fine-grained POS error type means that the word segmentation and
the coarse-grained POS tag were correct but the fine-grained information within the
tag was incorrect in one of the following ways:

• For nouns and adjectives: number/gender error
• For verbs: tense error or passive/active voice error

In some cases, the tag included more than one type of error. For example, the�X�G�i:�_SFN tag (instead of C+SFAJ) includes both segmentation and POS tagging

errors and therefore was counted twice.
The evaluation data and the process to replicate the evaluation tests are available

online.7

6.2 Evaluation of NER

We evaluated the named entity recognition component separately. Our evaluation
corpus contained 674 named entity tags that denote 297 named entities (e.g.,�%��
 �I_B-PER ��$"�6��_I-PER is one named entity that contains two named entity

tags). The total number of true positives (correctly detected and classified named
entities) was 265 (89.2% precision). The number of false negatives (assigning a non-
named entity tag, partial tagging, named entity boundary error, or a wrong named
entity class applied) was 32 and the number of the false positives 15 (94.6% recall).
F1-Measure = 91.8%. In Table 15, we provide some examples of these errors.

6.3 Evaluation of Lemmatization and Base Chunking

For evaluating the lemmatizers, we used a corpus of a 46,018-token text, retrieved
and assembled from several news portals (such as Aljazeera news portal8 and Al-

7 http://www.arabicnlp.pro/alp/eval.zip.
8 http://www.aljazeera.net/.

 -1446 57047 a -1446 57047
a

http://www.arabicnlp.pro/alp/eval.zip

 -1446 58376 a -1446 58376
a

http://www.aljazeera.net/

ALP: An Arabic Linguistic Pipeline 95

Table 15 Examples of NER mistakes

Error type Example

Non-NER tag �0��I$ �� �,�_C+SMN instead of C+B-LOC

Partially tagged @ � �,�_SMN �-"U�
F
 U�8_I-PER instead of @ � �,�_C+B-PER
�-"U�
F
 U�8_I-PER

Boundary error
��!�G2�_SFN ������=
 �8_B-ORG �� �8�I��_I-ORG instead of

��!�G2�_SFN
������=
 �8_B-ORG �� �8�I��_D+SFAJ

Wrong classification ����� �/_B-LOC (in ����� �/ �/J�) instead of ����� �/_B-PER
False positive * �>�6_P+B-ORG �� �9
 ��$Q��

j
� � �_I-ORG instead of * �>�6_P+D+PIN

�� �9
 ��$Q��
j
� � �_D+PIAJ

quds Al-Arabi newspaper9). We excluded from the evaluation the categories of
tokens that cannot be lemmatized: 5853 punctuation tokens, 3829 tokens tagged
as named entities, 482 digit tokens, and 10 malformed tokens (i.e., containing

typos, such as
�h �,�$AB ��
 �� ��
 �I�

�
� instead of

�h �,�$AB ��
 �� ��
 �I�
�
�). Thus, the number of

tokens considered was 35,844. In order to have a clear idea of the efficiency of
the lemmatization pipeline, we evaluated it in a fine-grained manner, manually
classifying the mistakes according to the component involved. This allowed us
to compute a comprehensive accuracy for the entire pipeline as well as evaluate
individual components. The evaluation data files are available online.10

The fine-grained evaluation is summed up in Table 16.11 Nonexistent lemma
stands for cases where the POS tag and the segmentation were correct, yet the
classifier gave a wrong, non-linguistic result.Wrong disambiguation means that the
lemmatizer chose an existing but incorrect lemma for an ambiguous word form.

The accuracy measures reported in Table 17 were computed based on the results
in Table 16. On these, we make the following observations. The performance
of preprocessing (98.6%) represents an upper bound for the entire lemmatization
pipeline. In this perspective, the near-perfect results of the classifier (99.5% when
evaluated in isolation, 98.1% on the entire pipeline) are remarkable. We cross-
checked these results using the built-in cross-validation feature of OpenNLP
and obtained similar results (99.7%). The dictionary-based lemmatizer reached a
somewhat lower yet still very decent result (96.6% in isolation, 95.2% on the entire
pipeline), due to the 1207 OOV word forms. The fusion of the two lemmatizers,
finally, improved slightly on the classifier: of the 170 mistakes made by the classifier,
120 could be correctly lemmatized using the dictionary. Thus, the fusion method

9 http://www.alquds.co.uk/.
10 http://www.arabicnlp.pro/alp/lemmatizationEval.zip.
11 While, after tagging and segmentation, the number of (segmented) tokens rose to 62,694, we
computed our evaluation results based on the number of unsegmented tokens.

 -1446 54612 a -1446 54612
a

http://www.alquds.co.uk/

 -1088 55940 a -1088 55940 a

http://www.arabicnlp.pro/alp/lemmatizationEval.zip

96 A. A. Freihat et al.

Table 16 Types of mistakes committed by the learning-based lemmatizer and their proportions

Type of mistake Occurrences Example

POS tag (coarse-grained)
mistakes

199 k
K�=
 ��_SMN instead of k
K�=
 ��_PRSV

Morphological tag
(fine-grained) mistakes

201 <��!_SMN instead of <��!_PIN

Segmentation tag mistakes 103 � � �� �0 ��
�
�_PSTV instead of �% �0 ��

�
�_PSTV and � ��_PRO

Classifier mistakes: nonexistent
lemma

158 �0�
 instead of 0�
 � for ��0�
()�_PRSV

Classifier mistakes: wrong
disambiguation

12 ���R instead of ��$! for �$ ��$Q��_PRSV

Dictionary mistakes: missing
word form

1207 \�T �,��,,*/��J, ��> 28�R

Fusion mistakes 50 */��J, <� �$/, �� �= ��

Table 17 Accuracy values computed for various components of the lemmatization pipeline

Component Evaluation method Accuracy

Preprocessing All mistakes (POS, morphological, segmentation) 98.6%

Classifier-based lemmatizer In isolation 99.5%

Classifier-based lemmatizer In isolation, built-in OpenNLP cross-validation 99.7%

Classifier-based lemmatizer Entire pipeline 98.1%

Dictionary-based lemmatizer In isolation 96.6%

Dictionary-based lemmatizer Entire pipeline 95.2%

Fusion lemmatizer Entire pipeline 98.4%

reached a full-pipeline result of 98.4%, only a tiny bit worse than the performance of
preprocessing itself. We have used cross-validation method to evaluate the chunking
corpus. The evaluation result was 98.6%.

7 Conclusion and Future Work

This paper presented ALP, an Arabic linguistic pipeline that solves low-level
Arabic NLP tasks: POS tagging, word segmentation, named entity recognition, and
lemmatization. All of these tasks were performed using tools and resources derived
from a new 2.2-million-word corpus hand-annotated by the authors. Due to the
size of the corpus but also the annotation schemas and the overall pipeline design,
ALP manages to disambiguate a large proportion of cases of lexical ambiguity
and perform the tasks above with high accuracy. This increases the potential of
downstream language understanding tasks, some of which we are planning to
include in ALP in the future.

References 97

In particular, we are working on new Arabic components such as a vocalizer, a
phrase chunker, a dependency parser, or a multiword expression detector.

The trained models and corresponding tools are free for research purposes upon
request. We are also planning to release the annotated corpus itself in the near future.

We are also planning further improvements on the existing components, as
detailed below:

Fine Tuning While the tool reached very good results with default OpenNLP
features, we believe that they can still be improved by customizing the classifier
and the features or using another machine or deep learning algorithm such as CRF
and BiLSTM.

Noun Classification In the current tag set, we do not differentiate between gerunds
(I0TAB �) and other noun classes. For example, the noun �
 .�,/heart is tagged the same

as the gerund �
 .�,/overthrow.
Named Entity Classification The classification of named entities in our corpus

is still incomplete and coarse-grained. For example, ��=� �8�
�# �, ��
���AB

�
E� �
 � 2"#�,

and
�� ��
 ��#� �� ��.# � are not classified as named entities. We plan to introduce new

classes such as dates and currencies, as well as a finer-grained classification of
organizations.

Chunker Coverage Extension We are planning to extend the chunker to detect
sentence phrases without restriction. This will include detecting coordinated nomi-
nal phrases, verbal phrases, and relative clauses. We plan also to do more research
on the relation between adverbs and other phrases and find a way to connect the
modifying adverb to its modified phrase. On the other hand, we will also work
on extending the verb POS tags to differentiate between transitive and intransitive
verbs and study the effect of this new verb classification on proper name boundary
disambiguation.

Other Tools and Corpora We plan to use the same corpus and tag set to produce
annotations for other NLP tasks such as co-reference resolution and parsing.

References

1. Balakrishnan, V., Ethel, L.: Stemming and lemmatization: a comparison of retrieval perfor-
mances. Lect. Notes Soft. Eng. 2, 262–267 (2014)

2. Navigli, R.: Word sense disambiguation: a survey. ACM Comput. Surv. 41, 10:1–10:69 (2009).
http://doi.acm.org/10.1145/1459352.1459355

3. Bella, G., Zamboni, A., Giunchiglia, F.: Domain-based sense disambiguation in multilingual
structured data. In: The Diversity Workshop at the European Conference on Artificial
Intelligence (ECAI) (2016)

4. Freihat, A., Qwaider, M., Giunchiglia, F.: Using grice maxims in ranking community question
answers. In: Proceedings of the Tenth International Conference on Information, Process, and
Knowledge Management, EKNOW 2018, Rome, March 25–29, pp. 38–43 (2018)

 -563 52127 a -563 52127 a

http://doi.acm.org/10.1145/1459352.1459355

98 A. A. Freihat et al.

5. Giunchiglia, F., Kharkevich, U., Zaihrayeu, I.: Concept search. In: The Semantic Web:
Research and Applications, pp. 429–444 (2009)

6. Darwish, K., Mubarak, H., Abdelali, A., Eldesouki, M.: Arabic POS tagging: Don’t abandon
feature engineering just yet. In: Proceedings of the Third Arabic Natural Language Processing
Workshop, pp. 130–137 (2017)

7. Diab, M.: Second generation AMIRA tools for Arabic processing: Fast and robust tokenization,
POS tagging, and base phrase chunking. In: 2nd International Conference on Arabic Language
Resources and Tools, vol. 110 pp. 285–288 (2009)

8. Khoja, S.: APT: Arabic part-of-speech tagger. In: Proceedings of the Student Workshop at
NAACL, pp. 20–25 (2001)

9. Aldarmaki, H., Diab, M.: Robust part-of-speech tagging of Arabic text. In: Proceedings of the
Second Workshop on Arabic Natural Language Processing, pp. 173–182 (2015)

10. Habash, N., Rambow, O.: Arabic tokenization, part-of-speech tagging and morphological
disambiguation in one fell swoop. In: Proceedings of the 43rd Annual Meeting on Association
for Computational Linguistics, pp. 573–580 (2005)

11. Sawalha, M., Atwell, E.: Fine-grain morphological analyzer and part-of-speech tagger for
Arabic text. In: Proceedings of the Seventh Conference on International Language Resources
and Evaluation (LREC’10), pp. 1258–1265 (2010)

12. Mohamed, E., Kübler, S.: Is Arabic part of speech tagging feasible without word segmentation?
In: Human Language Technologies: The 2010 Annual Conference of the North American
Chapter of the Association for Computational Linguistics, pp. 705–708 (2010)

13. Shaalan, K., Raza, H.: Arabic named entity recognition from diverse text types. In: Proceedings
of the 6th International Conference on Advances in Natural Language Processing, pp. 440–451
(2008)

14. Althobaiti, M., Kruschwitz, U., Poesio, M.: A semi-supervised learning approach to Arabic
named entity recognition. In: Recent Advances in Natural Language Processing, RANLP
2013, 9–11 September, Hissar, Bulgaria, pp. 32–40 (2013). http://aclweb.org/anthology/R/R13/
R13-1005.pdf

15. Darwish, K.: Named entity recognition using cross-lingual resources: Arabic as an example.
In: Proceedings of the 51st Annual Meeting of the Association for Computational Linguistics
(Volume 1: Long Papers), vol. 1 pp. 1558–1567 (2013)

16. Abdallah, S., Shaalan, K., Shoaib, M.: Integrating rule-based system with classification for
Arabic named entity recognition. In: Computational Linguistics and Intelligent Text Processing
- 13th International Conference, CICLing 2012, New Delhi, March 11–17, 2012, Proceedings,
Part I, pp. 311–322 (2012)

17. AlGahtani, S.: Arabic Named Entity Recognition: A Corpus-Based Study, Ph.D. Thesis.
University of Manchester (2011)

18. Boudchiche, M., Mazroui, A., Ould Abdallahi Ould Bebah, M., Lakhouaja, A., Boudlal, A.:
AlKhalil Morpho Sys 2: A robust Arabic morpho-syntactic analyzer. J. King Saud Univ.
Comput. Inf. Sci.. 29, 141–146 (2017). https://doi.org/10.1016/j.jksuci.2016.05.002

19. Pasha, A., Al-Badrashiny, M., Diab, M., El Kholy, A., Eskander, R., Habash, N., Pooleery, M.,
Rambow, O., Roth, R.: MADAMIRA: a fast, comprehensive tool for morphological analysis
and disambiguation of Arabic. LREC. 14, 1094–1101 (2014)

20. Abdelali, A., Darwish, K., Durrani, N., Mubarak, H.: Farasa: A fast and furious segmenter
for arabic. In: Proceedings of the 2016 Conference of the North American Chapter of the
Association for Computational Linguistics: Demonstrations, pp. 11–16 (2016)

21. Attia, M., Zirikly, A., Diab, M.: The power of language music: Arabic lemmatization
through patterns. In: Proceedings of the 5th Workshop on Cognitive Aspects of the Lex-
icon, CogALex@COLING 2016, Osaka, December 12, 2016, pp. 40–50 (2016). https://
aclanthology.info/papers/W16-5306/w16-5306

22. Al-Shammari, E., Lin, J.: A novel Arabic lemmatization algorithm. In: Proceedings of the
Second Workshop on Analytics for Noisy Unstructured Text Data, pp. 113–118 (2008). http://
doi.acm.org/10.1145/1390749.1390767

 21490 28474 a 21490
28474 a

http://aclweb.org/anthology/R/R13/R13-1005.pdf
http://aclweb.org/anthology/R/R13/R13-1005.pdf

 14335 42865
a 14335 42865 a

https://doi.org/10.1016/j.jksuci.2016.05.002

 32220 52827 a 32220 52827
a

https://aclanthology.info/papers/W16-5306/w16-5306
https://aclanthology.info/papers/W16-5306/w16-5306

 32586 56148 a 32586 56148 a

http://doi.acm.org/10.1145/1390749.1390767
http://doi.acm.org/10.1145/1390749.1390767

References 99

23. El-Shishtawy, T., El-Ghannam, F.: An accurate Arabic root-based lemmatizer for information
retrieval purposes. CoRR abs/1203.3584 (2012). http://arxiv.org/abs/1203.3584

24. Diab, M.: Improved Arabic base phrase chunking with a new enriched POS tag set. In:
Proceedings of the 2007 Workshop on Computational Approaches to Semitic Languages:
Common Issues and Resources, pp. 89–96 (2007). https://www.aclweb.org/anthology/W07-
0812

25. Darwish, K., Mubarak, H.: Farasa: A new fast and accurate Arabic word segmenter. In:
Proceedings of the Tenth International Conference on Language Resources and Evaluation
(LREC’16) (2016)

26. Maamouri, M., Bies, A., Buckwalter, T., Mekki, W.: The penn arabic treebank: Building a
large-scale annotated Arabic corpus. In: NEMLAR Conference on Arabic Language Resources
and Tools, vol. 27, pp. 466–467 (2004)

27. El-Haj, M., Koulali, R.: KALIMAT a multipurpose Arabic corpus. In: Second Workshop on
Arabic Corpus Linguistics (WACL-2), pp. 22–25 (2013)

28. Freihat, A., Bella, G., Mubarak, H., Giunchiglia, F.: A single-model approach for Arabic seg-
mentation, POS tagging, and named entity recognition. In: 2018 2nd International Conference
on Natural Language and Speech Processing (ICNLSP), pp. 1–8 (2018)

29. Freihat, A., Abbas, M., Bella, G., Giunchiglia, F.: Towards an optimal solution to lemmatiza-
tion in Arabic. In: Proceedings of the 4th International Conference on Arabic Computational
Linguistics (ACLing 2018), pp. 1–9 (2018)

30. Shaalan, K.: A survey of Arabic named entity recognition and classification. Comput. Linguist.
40, 469–510 (2014)

31. Dukes, K., Habash, N.: Morphological annotation of quranic Arabic. In: Proceedings of the
Seventh International Conference on Language Resources and Evaluation (LREC’10) (2010)

32. Toutanova, K., Klein, D., Manning, C., Singer, Y.: Feature-rich part-of-speech tagging with a
cyclic dependency network. In: Proceedings of the 2003 Conference of the North American
Chapter of the Association for Computational Linguistics on Human Language Technology -
Volume 1, pp. 173–180 (2003). https://doi.org/10.3115/1073445.1073478

 17999 800 a 17999 800 a

http://arxiv.org/abs/1203.3584

 19433 4121 a 19433
4121 a

https://www.aclweb.org/anthology/W07-0812
https://www.aclweb.org/anthology/W07-0812

 11442 29581 a 11442
29581 a

https://doi.org/10.3115/1073445.1073478

	ALP: An Arabic Linguistic Pipeline
	1 Introduction
	2 Ambiguity in Arabic
	2.1 Ambiguity in Word Segmentation
	2.2 Ambiguity in POS Tagging
	2.2.1 Verb Ambiguities: Passive vs Active Voice
	2.2.2 Verb Ambiguities: Past vs Present Tense
	2.2.3 Verb Ambiguities: Imperative
	2.2.4 Noun Ambiguities: Singular vs Plural
	2.2.5 Noun Ambiguities: Dual vs Singular
	2.2.6 Noun Ambiguities: Dual vs Plural
	2.2.7 Noun Ambiguities: Feminine vs Masculine Singular

	2.3 Ambiguity in Named Entity Recognition
	2.3.1 Inherent Ambiguity in Named Entities
	2.3.2 Ellipses

	2.4 Ambiguity in Lemmatization
	2.5 Ambiguity in Phrase Chunking

	3 Pipeline Architecture
	3.1 Preprocessing: POS, NER, and Word Segment Tagging
	3.1.1 POS Tagging
	3.1.2 Named Entity Recognition
	3.1.3 Word Segmentation

	3.2 Lemmatization
	3.2.1 Learning-Based Lemmatizer
	3.2.2 Dictionary-Based Lemmatizer
	3.2.3 Fusion Lemmatizer

	3.3 Base Chunker

	4 Annotation Schema
	4.1 Annotation of POS Tags
	4.2 Annotation of Word Segments
	4.3 Annotation of Named Entities
	4.4 Annotation of Lemmas
	4.5 Annotation of Base Chunks

	5 Corpus Annotation
	5.1 POS and Name Annotation Method
	5.2 Lemma Annotation Method
	5.2.1 Dictionary Lemmatizer
	5.2.2 Machine Learning Lemmatizer

	5.3 Base Chunking Annotation Method

	6 Evaluation
	6.1 Evaluation of POS Tagging
	6.2 Evaluation of NER
	6.3 Evaluation of Lemmatization and Base Chunking

	7 Conclusion and Future Work
	References

