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Abstract Training on graphemes alone without phonemes simplifies the speech-
to-text pipeline. However, models respond differently to training on graphemes of
different writing systems. We investigate the impact of differences between Latin
and Tifinagh orthographies on automatic speech recognition quality on a Kabyle
Berber speech corpus. We train on a corpus represented in a Latin orthography
marked for vowels and gemination and subsequently transliterate model output to
a consonantal Tifinagh orthography not marked for these features, which results in
10% absolute improvement in word error rate over a model trained on the unmarked
orthography. We find that this performance gain is primarily due to a reduced error
rate for graphemes marked for vocalic and voiced consonantal phonemes. However,
this overall improvement is tempered by a reduction in recognition quality for
other phonemes, especially allophonic spirantized consonants that are replete in
the Kabyle language and many Berber dialects more widely. We also introduce
new methods to characterize the disparity in performance between ASR models
by analyzing outputs in terms of phonological networks. To our knowledge, this is
the first work analyzing phonological networks of artificial neural network speech
model outputs. Our results suggest that inputs written in defective orthographies
lead to worse recognition quality for modern speech-to-text architectures compared
to those fully marked for vowels and gemination.
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1 Introduction

Graphemic modeling units and their correspondence with the spoken word can vary
between different language communities [1], and even a single language community
may have multiple orthographic conventions for application in different contexts [2]
(diglossia). Minority languages in particular have often undergone less standardiza-
tion [3], contributing to a greater tendency to be written in multiple orthographies.
Improving speech technologies to support minority and “low-resource” languages
and orthographies is crucial to ensuring their vitality and their users’ access to
information in the digital era [4]. Poor quality of low-resource language systems
can compel users to interact with ASR systems in languages of which they are non-
native, diminishing use of their native language. Furthermore, high error rates for a
low-resource language ASR systems disadvantage monolingual speakers of the low-
resource language that have a limited ability to switch to systems in more prevalent
languages with better recognition quality.

Modern speech-to-text (S2T) models are trained on audio data paired with
sequences of modeling units [5], which may be graphemes, phonemes, or other
representations [6] that represent the linguistic constituents. Training models on
phonemes constitutes a general paradigm in the creation of S2T systems [7]
especially in the context of low-resource languages [8]. Training on phonemes can
be advantageous for decoding out-of-vocabulary words or words from an external
language [9], but manual annotation of speech data can be prohibitively expensive
for low-resource languages [4].

ASR pipelines often include a component to automatically generate phoneme-
based training data through grapheme to phoneme (G2P) conversions [10, 11]
by training supervised models [12–14] or constructing rule-based systems [15].
There is an emerging trend toward G2P conversion with minimal intervention and
preparation to streamline the end-to-end learning process. Several systems intend
to streamline the G2P process using different methods, including self-training [16],
ensembles of varying degrees of supervision [17], and leveraging open dictionaries
of high-resource languages [18]. For low-resource languages, training S2T systems
with graphemes alone obviates the G2P step in the S2T pipeline and the need for
language-specific expert annotations [19]. There is also evidence that neural speech
models implicitly learn phonemes at intermediate hidden layers when training
on graphemes [20]. A number of different methods, such as diagnostic probing
techniques and Representational Similarity Analysis, have been applied to show
phonological learning by peering into neural model internals [21]. However, further
research is required to show how S2T model quality responds to training on
graphemes of various writing systems and orthographies in practice.

In this chapter, we study the impact of using a fully featured orthography instead
of a consonantal orthography on S2T performance for Kabyle, a Berber language
of northern Algeria. We chose to experiment with this language to augment the
discussion surrounding orthographic choice on S2T quality that has been conducted
primarily on Semitic languages that are comparatively more resourced, such as
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Arabic. While several previous studies [22–24] have demonstrated the effect of
training and decoding using defective (i.e., omitting vocalic information) and non-
defective orthographies separately, our study is the first to compare a neural speech
model’s performance between (a) training and decoding in a defective orthography
and (b) training on a non-defective orthography and decoding into its defective
representation. Our study is also the first to analyze the nature of phonemic errors
made by neural ASR models trained on a corpus in a defective and non-defective
orthography to understand any systematic difference of types of errors made by
models trained on these orthographies. The results demonstrate the importance of
including vocalic graphemic inputs for improved S2T recognition of vowels and
voiced consonants. To our knowledge, this result represents the first S2T system
trained on a Tifinagh-encoded corpus of a Berber language. Our study is also
unique in being the first to apply phonological network methods to characterize
the differences between phonological networks between neural ASR model outputs
to compare them against those of their respective gold vocabularies. We find that
phonological networks of learned ASR vocabularies are significantly denser and less
modular than gold vocabularies and publish our network data to encourage further
investigations of phonological networks of ASR models.

2 Background

2.1 ASR Modeling Units

The investigation of orthographic choices on S2T system performance parallels
psycholinguistic and cognitive science research on humans’ linguistic and concep-
tual comprehension from auditory and visual information. A significant body of
research aims to uncover how different G2P correspondences across writing systems
may predict reading level achievement and interactions with dyslexia [25, 26]. For
example, the work [27] assesses the reading abilities of children diagnosed with
dyslexia when taught a novel orthography consisting of new G2P mappings. The
work [28] studies the effect of diacritization and non-diacritization of dyslexic and
non-dyslexic readers’ processing of the Arabic script and found spelling knowledge
of study participants to be the most significant predictor of processing speed.

S2T learning solely with graphemes has a long history [29]. Recently, studies
have focused on identifying the differences between training on phonemic and
graphemic inputs. The authors in [30] report that the phonemic–graphemic perfor-
mance gap closes when model architecture and hyperparameters are attuned to the
specific data input. Rao and Sak [31] found improved performance of graphemically
trained models in multi-accented corpora and in trials of increased input data scale.
Other work has tested derivatives of graphemes, such as bytes [32], wordpieces
[31], and context-dependent graphemes (i.e., chenones) [19, 33]. Wang et al. [33]
achieved state-of-the-art error rates on English data with graphemically derived
modeling units for English.
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2.2 Diacritization

Imputation of diacritics to augment defective model inputs has been, and continues
to be, another active area of research, especially in the context of Arabic speech-
to-text system design [34–38]. Diacritic imputation systems are designed to help
computational models resolve heterophonic homographs or congruent graphemic
sequences that have multiple phonemic interpretations, in orthographies that do not
mark certain features. Sequences of this type are prevalent in consonantal writing
systems, such as that used for Arabic, in which roughly one-third of tokens may be
pronounced differently when not diacritized [39].

There has been work investigating diacritization’s effect on speech modeling
in languages that are written in defective orthographies or those not marked for
certain phonemes. Afify et al. [40] used HMMs to demonstrate that training
on voweled graphemes could increase performance over training on unvowelled
graphemes on Arabic broadcast transcripts, even when decoding into unvowelled
text. However, to the authors’ knowledge, this has not been demonstrated in modern
neural speech models with CTC decoding. More recently, [22] showed that training
neural acoustic models upon voweled graphemes generally improved WER over
unvowelled graphemes when decoding into the same orthography. The authors
of [41] pre-annotate training transcripts with phonetic information deduced from
graphemic context with rules to improve system performance. Alshayeji et al. [23]
and Al-Anzi and AbuZeina [24] compare diacritized and non-diacritized input with
various S2T model architectures and hyperparameters and observe higher WER for
diacritized trials, though they do not train on diacritized data and decode on non-
diacritized data.

Augmenting inputs via transliteration has been shown to improve S2T systems or
machine translation performance. The authors of [42] transliterate model output as
a post-process to improve the recognition of code-switched speech. Le and Sadat
[43] and Cho et al. [44] model the G2P task as a neural sequence-to-sequence
model and record improvements in named entity recognition and code-switched
speech for Vietnamese and mixed Korean–Chinese scripts, respectively. While these
studies use neural G2P models, rule-based systems have been developed for under-
resourced languages [45, 46].

2.3 Berber Language Tools

To date, there have been limited efforts that apply neural speech models to Berber
languages. OCR techniques have been applied to Tifinagh recently [47, 48], and [49]
produced a pronunciation dictionary for speech modeling of phonemes. However,
to the best of our knowledge, the ASR research community has not documented the
training of Berber S2T models aside from those produced from the CommonVoice
initiative [50] trained with a Latin-script corpus. We cite [51] as a limited exception,
who describe a speech recognition system for Tarifit to recognize spoken numbers
in noisy environments.
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2.4 Phonological Networks

Phonological network analysis stems from investigations of how humans organize,
internalize, recall, and reproduce words during linguistic processing. The authors
of [52] were among the first to computationally model and understand the network
effects of word similarity on auditory word recognition. Vitevitch [53] and later
authors apply the methodology to understand the properties of phonological net-
works for specific language vocabularies and also to compare them. The authors
in [54] use phonological networks to attempt to discover the differences between
lexicon structures of different languages, identifying a robustness of connectivity of
the networks in response to node removal and small giant components compared to
complex networks in other domains. These authors also reveal general trends and
commonalities between various languages across phonological network statistics.

Shoemark et al. [55] further improves the methodology and argues the need to
control for network size (vocabulary size), to establish baselines for random net-
works governed by similar properties, and account for morphological processes by
casting vocabularies as sets of lemmata. This resulted in more robust measures for
phonological network comparison across languages while controlling for expected
network variability, word length, and phonological inventory size. They found that
most languages exhibit very similar network statistics trends as a result of the
way phonological networks are defined but note certain cross-linguistic differences
in the average shortest path length (ASPL) and small-world property between
languages at different sampled vocabulary sizes. However, the authors did not find
conclusive evidence that phonological networks represented “deeper organization
within language” as [54] stated.

Beyond comparative linguistics, studies have also attempted to study mono-
lingual phonological networks in the context of language acquisition. Siew [56]
uses Louvain optimization to find communities among the phonological network
analyzed by Vitevitch [53] and finds that larger communities are more likely
to contain short, frequent, and highly connected words and low average age of
acquisition ratings and a clustering effect of similar phonological segments in each
community. The authors in [57] find an inverse preferential attachment effect as
new words are acquired in language learners’ networks. Siew and Vitevitch [58]
extends the phonological network to cover orthographic differences to uncover
joint effects on visual word recognition and spoken word recognition. Neergaard
et al. [59] studies monolingual and bilingual speakers of Mandarin and English to
understand the differences in structure, cohesion, and interconnectedness of elicited
phonological networks. Turnbull [60] describes the graph-theoretic properties of
the most common type of phonological networks applied in this literature. Despite
considerable efforts to apply connectivist-theoretical methods in the realms of
psycholinguistics and comparative linguistics, phonological networks have not
heretofore been applied to the analysis of computational speech recognition models
to compare lexical network structures with individual and language-wide vocabu-
laries. To our knowledge, no prior work has described phonological networks of
artificial neural network speech model outputs.
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3 The Kabyle Language and Berber Writing Systems

Kabyle is a Berber language spoken in northern Algeria that has historically been
written in Latin, Arabic, and Tifinagh scripts. Contemporary Kabyle is most widely
written in a Latin orthography popularized by the linguist Mouloud Mammeri in
a 1976 grammar of the language, though the Arabic and Tifinagh scripts are still
promoted among certain groups within Algeria society [61]. Souag [61] contends
that the Latin script predominates over the others in modern usage.

The alphabetic Neo-Tifinagh orthographies came into use after language plan-
ning initiatives for the Berber languages in the mid-twentieth century carried
out by organizations such as Morocco’s IRCAM (Amazigh), the Nigerien APT
(Tuareg) [62], and the Académie berbère (Kabyle) [61]. The consonantal Tifinagh
orthographies are not commonly used to write Kabyle. However, we transliterate
Kabyle into a consonantal Tifinagh orthography to expand the incomplete literature
on decoding into defective orthographies, which has primarily focused on Semitic
languages. To our knowledge, no prior study has trained or decoded a speech model
for a Berber language using Tifinagh inputs or a consonantal Tifinagh orthography.

We outline the fundamental differences between the Latin Kabyle orthography
and the consonantal Tifinagh orthography: the first is that the Latin marks for
gemination via digraphs, unlike the traditional Tifinagh. In some dialects, singletons
are often spirantized as opposed to their geminated counterparts (e.g., “tt” from “t”).
In the Latin orthography, these doubled consonants are phonemically “tense” and
correlate with increased pronunciation length [63], register a fortis-lenis contrast
that includes devoicing, and can form minimal pairs [64]. A consonantal Tifinagh
orthography introduces additional heterophonic homography by graphically equat-
ing tense sounds with their non-tense counterparts.

The second fundamental difference is of vowel denotation. Although vowels are
written in all contexts in Neo-Tifinagh orthographies, they are not marked save for
word-final positions in the traditional Tifinagh orthographies [65, 66]. From the set
of Tifinagh characters that may represent vowels, only “ⴰ” exclusively represents
non-glide vowels (for “a,” “�”1) while “ⵓ” (“u”) and “ⵉ” (“i”) also represent semi-
vowels (“w” and “j,” respectively). These latter two graphemes are analogous to the
matres lectionis of Semitic language scripts [67].

A final difference is that certain Tifinagh orthographies make use of ligatures that
elide certain sequences of adjacent graphemes. The number of attested ligatures
across the many varieties of traditional Tifinagh is vast [66], and most are not
supported by Unicode.2 We test the effect of ligatures by encoding those used in the
Ahaggar orthography [65] as distinct characters in trial (1c) described in Section 5.

1 We do not find attestations of “ⴻ” in the traditional Tifinagh orthographies described in [65]. We
transliterate word-final “e” (primarily in loan-words) as “ⴰ,”.
2 https://www.unicode.org/charts/PDF/U2D30.pdf.
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4 Approach

4.1 Mozilla CommonVoice

We use the original CommonVoice Kabyle corpus for all experiments.3 The audio-
transcript pairs come from Mozilla’s CommonVoice crowdsourced initiative [50],
which has collected data for over 54 languages at the time of writing. All corpora
are released with train/dev/test subsets, and a unique speaker may appear in only
a single set among each split. Most utterances are derived from Wikipedia, but
some have been added by annotators through the language community’s Pontoon
page.4 We removed special symbols and normalized Unicode characters of similar
graphical appearance to ensure that characters intended to represent a single
grapheme were treated as such.5

4.2 Mozilla DeepSpeech

For S2T model training, we use Mozilla’s DeepSpeech pipeline, which is based on
the DeepSpeech framework [68] and is maintained by a large community. After
parameter tuning, we found that the default hyperparameters worked well. For all
experiments, we used models of 1024 hidden units and trained for 50 epochs, with
a learning rate of 0.0001 and a dropout of 0.3. We used batch sizes of 32, 16, and
16 for train, dev, and test sets, respectively. We used the default trigram settings for
training the LM with KenLM [69] in our experiments.

4.3 Transliterator

To convert the Latin-script CommonVoice corpus to the Tifinagh orthographies in
our experiments, we use the Graph Transliterator Python package[70].
This constructs a directed tree of ranked transition rules (e.g., mm -> ⵎ (not ⵎⵎ)
because mm -> ⵎ ranks before m -> ⵎ) to convert between Latin and Berber
orthographies. We write rules for two distinct defective orthographies modeled after
[65]’s description of the Ahaggar variant of Tiginagh—one with ligatures and one
without. In cases where multiple Unicode graphemes represent the same phonemes
across Berber languages and orthographies (e.g., ⴽ, ⴾ), we opted to use the symbol
closest to that described in [65]. Heterophonic homographs in the Latin corpus

3 Accessed April 2020, 4th ed.
4 https://pontoon.mozilla.org/projects/common-voice/.
5 For example, E and € were converted to E (U+025B).
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Table 1 Kabyle
commonvoice data statistics

Split Downloaded Processed Length

Train 37,056 35,715 35 hrs, 24 min

Dev 11,482 11,100 10 hrs, 52 min

Test 11,483 11,125 11 hrs, 42 min

Table 2 Normalization and transliteration examples

Original Normalized Tifinagh Transliteration

D tasnareft taserdasit i
yettres. s. in deg Lezzayer.

d tasnareft taserdasit i
yettres.s.in deg lezzayer

ⴷ ⵜⵙⵏⵔⴼⵜ ⵜⵙⵔⴷⵙⵜ ⵉ
ⵉⵜⵔⵙⵏ ⴷⴳ ⵍⵣⵉⵔ

Teĉĉid. iles-ik waqila? teččid. iles ik waqila ⵜⵞⴹ ⵍⵙ ⴾ ⵓⵈⵍⴰ
Σerd. eγ -t-id ad yekkes lxiq,
yez. z. el id. arren.

Eerd. eG t id ad yekkes lxiq
yez.z.el id. arren

ⵄⵔⴹⵗ ⵜ ⴷ ⴷ ⵉⴾⵙ ⵍⵆⵈ ⵉⵌⵍ
ⴹⵔⵏ

Tawaγ it d lmehna d-yeγ del
t.rad γ ef tmurt.

taGaGit d lmeh. na d yeGd. el
t.rad Gef tmurt

ⵜⵓⵗⵜ ⴷ ⵍⵎⵘⵏⴰ ⴷ ⵉⵗⴹⵍ ⵟⵔⴷ ⵗⴼ
ⵜⵎⵔⵜ

remain as such in the transliterated Tifinagh (e.g. ‘d’ represents both ‘d’ and ‘ð’,
and is transliterated as “ⴸ” and not the IRCAM “ⴸ.” All Kabyle phonemes that do
not have distinct graphemes in the orthography described in [65] are represented
with a corresponding Neo-Tifinagh symbol (e.g. -> ⵞ, -> ⵕ) (Tables 1 and 2).

4.4 Sequence Alignment

We sought to investigate which, and to what degree, phonemic classes are affected
by different training orthographies. To facilitate this analysis, we required a tool to
align the graphemic output sequences from the ASR systems, such that the aligned
character pairs represented the audio data at the same time periods in the input data.
We considered multiple techniques for matching the output sequences between the
gold input and the inferences of the two models. One potential approach was to use
an acoustic alignment model (e.g., the Montreal Forced Aligner [71] or DSAlign
[72]), though this method risked substantial error propagation for our analysis.
We also considered extracting time-aligned CTC model internals to understand
the exact timesteps at which outputs were predicted with respect to the gold data.
However, we felt that we could achieve the same results with Sound-Class-Based
Phonetic Alignment (SCA) [73] with substantially reduced effort. Sound-Class-
Based Phonetic Alignment (SCA) [73] was possible due to the relatively high degree
of transparency or unambiguous correspondence between graphemes and phonemes
[74] of the Kabyle Latin script. To implement SCA, we use the prog_align function
contained in the LingPy package [75], which constructs a similarity matrix
and applies a Neighbor-Joining algorithm (see [76]) to construct a guide tree to
successively align phonemic sequences. A dynamic programming routine finds a
least-cost path through the matrix to align the multiple sequences according to
similar sound classes. We alter the default SCA sound class matrix values to ensure
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that Tifinagh matres lectionis graphemes ((‘j’ | ‘ⵉ’) => ‘I’, (‘w’ | ‘ⵓ’) => ‘Y’) could
align with both vowels and semi-glides from the Latin gold transcripts. We find
that this approach gives accurate alignment for phonemic sequences. We found no
apparent errors after manually inspecting a thousand aligned phoneme pairs.6

5 Experimentation and Results

We present our result comparing S2T performance when training on orthographies
of varying degrees of phonemic informativeness and analyzing phonemic confusion
using sequence alignment techniques.

5.1 Experiments

First, we test the hypothesis that training and testing upon an orthography unmarked
for vowels, as opposed to marked, yields lower ASR word error rates. Because
the Tifinagh input only registers matres lectionis at the end of words, we expect
that most intra-word vocalic signals are lost during the training process on the
Tifinagh orthography compared to training on the Kabyle Latin script. Experiment
1 compares the effect of training and testing upon the Latin-based orthography and
transliterated Tifinagh orthography in a set of trials listed in Table 4 (1a–c). In
1a, the Latin corpus is used for training and testing. The outputs were evaluated
against Latin gold utterances in the test split. In 1b, we train in the same manner
but test by applying a transliterator to convert the Latin test set into the consonantal
Tifinagh orthography without ligatures. The corpus used to train the language model
(LM) is composed of the transliterated utterances of the original corpus. In the third
setup (1c), we repeat experiment 1b using a transliterator that models the ligatures
described in Section 3. Examples of the ligatured Tifinagh are shown in Table 3.

Secondly, we test the hypothesis that learning from an orthography marked for
vowels and decoding on an orthography unmarked for vowels result in lower word
error rates compared to training and testing on either of the marked or unmarked
orthographies alone. In experiment 2, we test the hypothesis that training on the

Table 3 Modelling unit experiment (1c) input example. Note: ⴵ and ⴺ are stand-in single-
character substitutions for ligatures that are not represented in Unicode and are not graphically
representative of the traditional graphemes for these ligatures

Non-ligatured ⵏⴳⵌⵓⵔ ⵉⵣⴳⵏ ⵣⴱⵓ ⵙⴷⵜ ⵛⵏⴳⴰ ⵂⵜ ⵜⴾⵏ ⴷⵉ ⵜⵎⵏⵜⵍⵜ
Ligatured ⵑⵌⵓⵔ ⵉⵣⴳⵏ ⵣⴱⵓ ⵙⴷⵜ ⵛⵑⴰ ⵂⵜ ⵜⴾⵏ ⴷⵉ ⵜⵎⴵⴺ

6 https://github.com/berbertranslit/berbertranslit.
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Table 4 The impact of orthography and language modeling. Group 1: trained and tested on the
same orthography types. Group 2: Latin to Tifinagh transliteration at test time given a Latin model.
Group 3: the same as Group 1 but without language modeling

Exp. Train orthography Transliteration LM Test orthography CER (%) WER (%)

1a Latin No Yes Latin 29.9 49.9

1b Tifinagh No Yes Tifinagh 35.8 57.9

1c Tifinagh (ligatured) No Yes Tifinagh (ligatured) 33.7 57.4

2 Latin Yes Yes Tifinagh 29.7 47.4

3a Latin No No Latin 34.9 78.3

3b Tifinagh No No Tifinagh 38.8 77.9

3c Latin Yes No Tifinagh 35.6 72.1

plene (fully marked) Latin orthography and subsequently decoding into and testing
against the defective Tifinagh orthography yield lower error rates compared to both
training and testing on the Tifinagh orthography. We train all components on the
Latin script and obtain Latin-script output for test utterances as in 1a. However,
we then transliterate the output and test against gold utterances transliterated into
Tifinagh, as in 1b. Because our main goal is to study the acoustic model and we do
not want a small LM training corpus to negatively affect the experimental result, we
build the LM in DeepSpeech on all train, dev, and test utterances of the normalized
CommonVoice Kabyle Latin-script data for experiments 1 and 2.

Finally, we train the S2T model without an LM as a post-process to specifically
understand the sensitivity of the neural speech component. Trials 3a–c replicate
1a–c but do not apply LM post-processing to help understand the effect of our
interventions on the neural ASR component.

5.2 Results

We report the results of all three sets of trials in Table 4. 1a and 1b show that the
original Kabyle input encoded in the plene Latin orthography yields lower error
rates than when training and testing on the transliterated Tifinagh alone (CER:
−5.9% and WER: −8%). However, this reduction is less pronounced when the
ligatured Tifinagh orthography is used (1c) (CER: −3.8% and WER: −7.5%).

Trial 2 exhibits improved recognition when training on the Latin orthography
and subsequently transliterating to and testing against Tifinagh. This arrangement
reduces CER by 0.2% and WER by 2.5% with respect to trial 1a in which the plene
orthography was used for both training and testing. Compared to training and testing
in the defective orthography (1b), Trial 2 shows a 10.5% absolute decrease in WER
and 6.1% absolute decrease in CER.

Trial 3 shows that, without the language model, the WER for training upon
and testing against Latin orthography (3a) is greater than when using the Tifinagh
orthography (3b) by 0.4%. However, the CER for the former procedure with respect
to the latter is less by 3.9%, likely due to the increased difficulty of predicting
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more characters. Applying a Tifinagh tansliterator to the Latin trained model (3c)
resulted in a WER reduction of 6.2 and 5.8% with respect to 3a and 3b. 3c exhibits
an improved CER compared to the Tifinagh-only trial (3b) (−3.2%), although it is
0.7% higher when compared to the Latin-only trial (3a).

5.3 Phonemic Confusion Analysis

To understand the orthographies’ effects on the speech model, we conduct an
analysis by alignment between the gold utterances and the predictions from
experiments 3b and 3c. This analysis is inspired by recent studies by Kong et al.
[77], Alishahi et al. [78], and Belinkov et al. [6], to explore the nature of neural
learning of phonemic information. More specifically, we use the LingPy [75]
package to determine phone error rates as described in Sect. 4.4. We translate all
graphemes of the gold utterances and their predicted counterparts into sequences of
G2P IPA representations and tabulate phoneme class confusions using PHOIBLE’s
sound classes [79]. To understand the models’ differential abilities in detecting
spirantized consonants, we establish a “spirantized” feature that is attributed to the
consonants “t,” “d,” “k,” “g,” and “b” that do not present in the contexts where non-
continuant stops are the norm. We follow Chaker’s description [80] of predictable
Kabyle spirantized contexts to estimate this number across the corpus, as spirantized
and non-spirantized consonants are commonly homographic in the Latin script.
We modify the SCA model to ensure that matris lectionis characters are more
easily aligned to their respective vowels in the gold Latin-text transcripts. Table 5
shows example aligned sentences produced by this procedure. By analyzing the
aligned utterances, we tabulate estimated confusions between the gold and predicted
alignments.

We count phonemic disagreements between the models as a proportion of gold
target contexts of the aligned matching phoneme. To understand which model
achieves better performance for word-final vowel recognition that is denoted in the
Tifinagh orthography, we analyze the counts of all gold contexts in which vowels
or semi-vowels appear (always word-finally) against the counts of aligned model
inferences at these contexts. Table 6 shows that the model trained on the Latin
orthography and subsequently transliterated (3c) achieves higher recognition of the
pure vowel grapheme compared to the model trained on the unvowelled traditional
Tifinagh (3b).

Table 7 compares the errors across several different phonemic classes. We do
not consider the “continuant” and “delayedRelease” features, as the distinction
between allophonic and phonemic fricativity is difficult to determine for Kabyle
from graphemes alone. Although the PHOIBLE database includes these features
as “syllabic,” we tally counts for the “approximate,” “sonorant,” and “dorsal,”
and “periodic glottal source” features without “syllabic” phonemes so as to better
analyze the contribution of non-syllabic features. McNemar’s asymptotic test with
continuity correction [81] affirms the significance of the difference between 3b and
3c (P < 0.025 for all features except the “geminate” feature).
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Table 6 Comparison of model performance for different word-final vowels. The columns
represent phoneme pairs (Tifinagh grapheme : Latin IPA). Trial 3c shows considerably higher
recognition of vowels.

ⴰ : a/ә ⵉ : i (j) ⵓ : u/ (w) All vowels

The number of word-final vowels in gold 7430 6557 1341 15,328

Cw: The portion (%) of all word-final phonemes 11.7% 10.3% 2.1% 13.0%

C2: The portion (%) of Cw either 3b (x)or 3c is correct 23.7% 28.1% 30.4% 26.2%

C3: Both 3b and 3c are incorrect 38.2% 46.8% 34.9% 41.6%

C3b: The portion (%) of C2 for which 3b is correct 18.5% 13.2% 13.7% 15.6%

C3c: The portion (%) of C2 for which 3c is correct 81.5% 86.8% 86.3% 84.5%

We bold the higher percentage between C3b and C3c

Table 7 Comparison of model performance for different phonemic features. Cp represents the
portion (%) of G2P mappings the feature comprises the total number of G2P mappings in the
corpus. See the definition of C2, C3, C3b, and C3c in Table 6. 3c is correct for more disagreements
for all features except for the coronal, strident, and trill features. We use McNemar’s asymptotic
test with continuity correction [81] to test the null hypothesis that there is no difference between
the performance of C3b and C3c with respect to different sound classes. χ2

1 values are particularly
high for voiced and syllabic phonemes. We bold the higher between C3b and C3c when χ2

1 > 18.5
(corresponding to P = 0.001)

Cp C2 C3 C3b C3c χ2
1

Syllabic (vowels) (word-final) 6.1% 26.2% 41.6% 15.6% 84.4% 1902.8

Periodic glottal (voiced) (– syllabic) 36.4% 18.5% 29.2% 42.2% 57.8% 407.9

Dorsal (– syllabic) 11.8% 17.7% 28.7% 38.2% 61.8% 294.6

Sonorant (– syllabic) 24.0% 18.1% 26.2% 44.1% 55.9% 151.4

Nasal 11.5% 17.6% 24.1% 42.0% 58.0% 130.1

Spirantized stops (+ voiced) 3.3% 20.1% 34.3% 36.0% 64.0% 129.8

Continuant (– syllabic) 28.4% 17.1% 27.5% 45.5% 54.5% 98.5

Approximate (– syllabic) 12.6% 18.6% 28.2% 45.9% 54.0% 38.2

Consonants 53.1% 16.6% 29.7% 47.9% 52.1% 38.9

Non-spirantized stops (+ voiced) 0.5% 24.1% 24.1% 34.8% 65.2% 27.1

Labial 11.7% 16.1% 49.8% 35.0% 65.0% 26.3

Labiodental 1.5% 17.8% 30.3% 40.7% 59.3% 23.7

Spread glottis 0.4% 20.3% 47.1% 34.6% 65.4% 18.8

Retracted tongue root 2.1% 16.7% 60.0% 45.8% 54.2% 6.0

Lateral 4.3% 18.6% 30.0% 47.4% 52.6% 5.3

Non-spirantized stops (– voiced) 1.2% 22.7% 45.9% 46.4% 53.6% 3.3

Geminate 8.6% 9.0% 56.8% 49.6% 50.4% 0.13

Strident 8.0% 10.5% 33.5% 53.8% 46.2% 12.3

Coronal 37.1% 16.4% 29.1% 51.9% 48.1% 22.3

Trill 5.0% 16.3% 30.7% 55.7% 44.3% 26.0

Spirantized stops (– voiced) 6.7% 16.9% 20.7% 70.1% 29.9% 458.1
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5.4 Phonological Network Analysis

We sought to understand the differences of the models based on the phonological
similarity of their predicted vocabularies. Specifically, we first tokenize the vocab-
ularies of the speech models’ unique lexical tokens from their predicted output,
as well as the vocabularies of the gold data as encoded in both Latin and the
transliterated Tifinagh. We model nodes as surface-form tokens as they appear in
their respective texts; we do not lemmatize outputs to study morphological effects on
the phonological network as conducted by Shoemark et al. [55] as we are not aware
of any available Kabyle lemmatizers. To construct a phonological network, we then
assign an edge to any pair of nodes that are one edit away from each other (Fig. 1).
That is, for any pair of tokens for which a single change, addition, or subtraction
could cause both tokens to be the same token, an edge is formed. For example, for
a given vocabulary set, “af�t” and “aq�t” are linked by an undirected edge, just as
“af�t” and “f�t” are likewise assigned an edge. However, “aq�t” and “f�t” are not
assigned an edge since they differ by an edit distance that is greater than one.

We analyze each gold corpus and speech model’s inferred vocabulary as a self-
contained phonological network and follow [53] and [55] in reporting common
network statistics to characterize the properties of the graph. For each vocabulary
network, we report the average degree, degree assortativity coefficient, error
assortativity coefficient, and average shortest path length. We control for vocabulary
size by computing the average statistics of 200 randomly sampled networks of
6000 nodes. We also obtain size-controlled modularity statistics for each network
by (1) obtaining 3 randomly sampled networks of 4000 nodes for each gold
and model phonological network, (2) conducting the Clauset–Newman–Moore
modularity maximization algorithm to split and bin nodes into communities, and (3)
computing the average modularity statistic given these communities. All statistics
were obtained using the Python networkx package, v.2.6.3 [82] (Table 8).

Fig. 1 Visualizations of phonological network structures on combined gold and ASR model
vocabularies. Rendered with the Python package bokeh, v. 2.4.2 [84]. (a) Example module within
a phonological network of Latin ASR gold and model output tokens. (b) Subgraph of the unionized
network of Tifinagh-encoded gold and model vocabularies
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Table 8 Descriptive statistics across gold vocabulary and model vocabulary phonological net-
works. Bold statistics are reported from averages across equally sized, randomly sampled
subgraphs over multiple trials as reported in Sect. 5.4. Group denotes the vocabulary set analyzed,
Orthography denotes the encoded orthography, Size denotes the length of the vocabulary, %
Giant Comp. denotes the percentage of nodes in the largest component of the graph, Avg.
Degree is the average degree of all nodes in the graph, ASPL is the average shortest path length
of the giant component, DAG stands for the degree assortativity coefficient, Err. AC is the
attribute assortativity coefficient of the binary feature of whether the node was outside of the gold
vocabulary, and Mod. is the modularity of from Clauset–Newman–Moore community groupings.
+ indicates a transliterated vocabulary

Group Orthography Size % Giant comp. Avg. deg. ASPL DAC Err. AC Mod.

Gold Latin 12,860 48.9% 1.9 (0.9) 10.0 (5.9) 0.66 (0.59) – (0.96)

Gold Tifinagh+ 9320 84.1% 8.4 (5.4) 5.5 (5.8) 0.54 (0.53) – (0.66)

3a Latin 13,985 70.8% 6.4 (2.7) 6.5 (4.3) 0.56 (0.54) 0.11 (0.79)

3b Tifinagh+ 8481 97.1% 22.6 (16.0) 3.9 (4.1) 0.40 (0.40) 0.10 (0.53)

3c Tifinagh+ 7396 95.3% 19.8 (16.0) 4.1 (4.2) 0.45 (0.45) 0.16 (0.54)

6 Discussion

Performance when training on fully featured inputs (3c) to decode word-final vowels
improves when compared 3b in which intra-word vowels are hidden from the model.
The results suggest that sonorous and vocalized phonemes benefit more from model
training on the voweled text. When only one model between 3b and 3c is correct,
we see that “approximate,” “sonorant,” and “period glottal” phonemes exhibit
comparatively high disagreement, surpassed only by the phonemes with positive
“lateral” and “syllabic” features. The model may share information across these
features, and in particular, voicing. All of these features record higher recognition
rates in the case of 3c. While the difference in error rates for sonorous and voiced
consonants between 3b and 3c does not exactly trend according to the sonority
hierarchy [83], the number of disagreements between the models does follow this
trend. These findings suggest that the model in 3c is leveraging correlates of sonority
for phoneme recognition (Fig. 2).

A surprising finding was an improved ability of the 3b model in classifying non-
tense/non-geminated phonemes modeled to be spirantized. This is interesting in that
spirantized consonants are often homographic with non-spirantized consonants, so
we are able to understand the variability of each model’s recognition for a homo-
graph corresponding to multiple sounds. The fact that non-spirantized consonants
were better recognized by the Latin-trained 3c suggests that it is spirantization, not
occlusivity, that is correlative with 3c’s decreased performance in recognition of
such phonemes. The reason for this disparity is unclear and may deserve additional
investigation. It is notable that all contexts in which stops are modeled to be non-
spirantized in our confusion analysis follow consonants. Model 3c, therefore, may
better be able to recognize a non-spirantized consonants since its input would
otherwise often include a vowel between the characters in question. However, the
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Fig. 2 Comparison of the
relative error difference
between 3b and 3c
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magnitude of the advantage of 3b over 3c in recognizing unvoiced spirantized stops
is highly significant, especially in light of the fact that both voiced and unvoiced
non-spirantized stops were more likely to be recognized by 3c when the two models
disagreed (Table 7).

The models exhibit different rates of correctly detecting coronal and dorsal
consonants. We hypothesize that this difference is a function of heterogeneous
distributions in the context of vowels and geminate consonants. Further inspection
of the data may also uncover imbalanced distributions between dorsal and coronal
consonants with respect to word-internal vowels that are omitted in the consonantal
orthography tested in this work. The improvement in the “spread glottis” feature
between 3b and 3c is notable, though it is difficult to generalize given the
low prevalence of graphemes representing phonemes possessing this feature. The
other major orthographic difference of the Latin text compared to Tifinagh is
that of marked gemination by means of digraphs. However, our results do not
suggest significant differences in the models’ abilities to correctly recognize these
phonemes. The portion of alignments in which both models failed exhibits a wide
range. Graphemes denoting the “retracted tongue root” feature were least likely to
be correctly aligned. This feature, however, comprises a relatively low portion of the
total number of alignments, and the models might simply not have enough instances
to be able to detect the difference of this feature well. The observations we present
may not hold for languages that observe some level of intra-word vowel denotation,
for example, Arabic and other languages whose consonantal writing systems attest
matres lectionis characters that present medially. To the authors’ knowledge, there
are no consonantal writing systems in widespread use that do not employ medial
matres lectionis in the same way as consonantal Tifinagh. Nevertheless, the results
characterize effects that may generalize to non-voweled orthographies as input to a
non-Semitic language.

Our phonological network analysis reveals a stark contrast between the average
degrees of the Latin and Tifinagh groups. As the phoneme vocabulary size is larger,
the hyperlexica [60] of the Latin vocabulary is larger, and this effect outweighs the
fact that the size of the Latin networks is larger to contribute to a high average
degree. The average degrees of the ASR model output networks is greater by
roughly a factor of 3 with respect to the gold networks. We believe this reflects
the consolidation of choices elected by the models toward gold tokens, causing
dense, closed structures to emanate from the gold signal. This interpretation is
supported by a comparatively larger portion of the tokens in the ASR models’
networks membership in the giant component of the graph. We note that the ASPL
of the speech models’ output is all roughly the same, whether encoded in Tifinagh or
Latin outputs. However, it is generally shorter than those of the gold vocabularies’,
which structurally reflects a consolidation and narrowing in the choices to which
the models converge as viable output emissions. We observe a higher average
modularity statistic of Latin networks compared to that of the Tifinagh networks,
reflecting the greater dispersion of highly connected modules in the network with a
larger possible emission set. We find that the error assortativity coefficient trends
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with the models’ error rates, which may reflect a tendency of erroneous tokens
predicted by the higher performing ASR models to be more similar to each other.

7 Future Work

Our study experiments with the DeepSpeech architecture using a single set of
hyperparameters for a single data set and language. Future work can investigate the
interactions of model architectures, hyperparameters, data scales, G2P mappings,
and statistics of orthographic informativeness on S2T performance. Additionally,
future work could study the incidence of particular features of phonological features
in modular communities in a phonological network context. An interesting direction
would be to explore how other features specific to ASR modeling goals, such
as a token’s character edit distance from nearest neighbors, classification status
as erroneous or licit, and its frequency in the gold corpora, vary with respect to
specific network structures. We would also like to understand network statistics
across different epoch checkpoints to observe how the network connectivity changes
during the training process of the neural model.

8 Conclusion

Our study is the first to document S2T performance on Tifinagh inputs and shows
that the choice of orthography may be consequential for S2T systems trained on
graphemes. We amplify findings of prior studies focused on Semitic languages by
showing that a Berber S2T model intended to output unvowelled graphemes benefits
from training on fully featured inputs. Our research suggests that ensuring data
inputs are fully featured would improve ASR model quality for languages that
conventionally use consonantal orthographies, like Syriac, Hebrew, Persian, and
Arabic vernaculars. Using phonological networks, we have also introduced a new
way to analyze the similarities between ASR model outputs trained on different
orthographies with respect to their respective gold vocabularies.
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