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Abstract Vector semantics has slightly become a key tool for natural language
processing, especially concerning text analysis. This kind of vector representation
is usually encoded through embeddings that can be used to encode semantic
information at different levels of granularity. In fact, through the years, not only
models for word embeddings have been developed but also for sentence and
documents. With this work, we address sentence embeddings, in particular the non-
parametric ones, which offer a good trade-off between performance and inference
speed. We present Static Fuzzy Bag-of-Word (SFBoW) model, a refinement of
the Fuzzy Bag-of-Words approach yielding fixed-dimension sentence embeddings.
We targeted fixed-size embeddings to promote caching a re-usability, speeding the
inference of a system that relies on our model. In this paper, we explore various
approaches for the construction of a static universe matrix, fundamental to make
the sentence embeddings of fixed size. To show the validity of our approach,
we benchmarked our model on a semantic similarity task, obtaining competitive
performances.

1 Introduction

The advent of machine and deep learning-based models has influenced many areas
of the artificial intelligence field [10, 17], including natural language processing
(NLP). To enable the deep neural network models, which strongly rely on matrix
multiplication operations, process data from NLP, vector semantics has played a
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crucial role. In fact, vector semantics rely on the concept that everything can be
represented as real-valued vectors (or points) in a hyperspace. Moreover, according
to vector semantics, the position of the object in the hyperspace represents its
meaning.

In the case of NLP, words with similar meaning should be represented close in the
hyperspace, and, analogously, words with different meaning should be far one from
the other. This approach to word vector representation is called word embedding.
These embeddings are computed through self-supervised representation learning
[9]. There are many different models to extract these embeddings, at different levels
of granularity, which have consistently taken the role of input representation for
many NLP tasks [19].

In the last decade, the approach shifted from shallow and static word represen-
tations [11, 22, 25] towards deep and contextual ones [15, 26, 28], pushing forward
incredibly the state of the art on NLP. However, for certain problems like web
search and question answering, word-level representations are not sufficient. For this
reason high-level models such as those for sentence embedding have been created
[40]. These high-level models can be powered through either satic or contextual
representations.

Shallow word embedding models immediately provided noticeable results [14].
Such representations were quickly adopted to provide an input for syntactic
analysis: they helped improve results in part-of-speech (POS) tagging, named entity
recognition (NER) and semantic role labelling (SRL). Shortly after, they were
employed in more complex problems like language modelling, machine translation
[36] and dialogue systems [35]. Although impressive, the results of these models
were limited by the inability to model properly the context surrounding each word
in the input sequence.

Neural language models (LMs) implemented through transformer networks [18,
37], on the other side, played a significant role for deep contextual representations.
The hidden representations extracted through these huge models, trained on massive
collections of unlabelled textual data, boosted the performances in many NLP tasks
[29, 30, 38, 39] The trade-off with respect to shallow model is indeed in the amount
of computational resources: both in terms of time and memory. This resource
demand is especially high at train time.

In this vector semantics settings, with focus on the sentence embeddings, we
present our Static Fuzzy Bag-of-Words (SFBoW) model. It’s a model for non-
parametric sentence embeddings based on the DynaMax Fuzzy Bag-of-Words
model [42]. In particular, with this paper, we explore approaches to build the
universe matrix, core component of the Fuzzy Bag-of-Words solutions, to be
static. This model is designed to promote caching (in the sense of re-usability of
the embeddings), short analysis time and valid performances; thus, it is advised
for applications with limited resources or with power consumption issues, like
embedded systems. To evaluate the goodness of the proposed universe matrices,
we relied on the semantic textual similarity (STS) benchmark.

We organise the remainder of this paper into the following sections: in Sect. 2, we
summarise the main concepts related to learnt word and sentence representations; in
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Sect. 3, we introduce SFBoW, our model; in Sects. 4 and 5, we present, respectively,
the evaluation approach we followed to evaluate SFBoW and the results of such
evaluation; and, finally, in Sect. 6, we summarise the presented work and we present
the expected future works.

2 Related Work

Our work revolves around the concept of vector semantics: the idea that the meaning
of a word or a sentence can be modelled as a vector [23].

The first steps on this subject were made in information retrieval (IR) context
with the vector space model [33], where documents and queries were represented as
high-dimensional (vocabulary size) sparse embedding vectors. In this model, each
dimension is used to represent a word, so that given a vocabulary V:

• A word wi ∈ V, with i ∈ [1, |V|] ⊆ N, is expressed as a so-called “one-hot”
binary vector vwi

∈ 1|V|, where, calling vwi,j the j th element of the word vector,
it holds that vwi,j = 1 ⇐⇒ j = i.

• A sentence S is expressed as vector µS ∈ N
|V|, where μS,i , the ith element

of vector µS , namely, cS,i , represents the number of times word wi appears in
sentence S.

The resulting sentence representation, used also for text documents, is called Bag-
of-Words (BoW) and can be summarised as

µS =
|V|∑

i=1

cS,i · vwi
. (1)

These representation models needed to be replaced because of the sparsity, which
made them resource consuming, and the induced orthogonality among vectors with
similar meanings.

2.1 Word and Sentence Embeddings

Word embeddings refer to the dense semantic vector representation of words; such
representation can be divided into prediction-based and count-based [8].

The former group identifies the embeddings obtained through the training of
models for next/missing word prediction given a context. It encompasses models
like Word2Vec [21, 22] and fastText [11]. The latter group refers to the embeddings
obtained leveraging word co-occurrence counts in a corpus. One of the most recent
solutions of this group is GloVe [25].
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All the models mentioned above belong to the class of shallow models, where
the embedding of a word wi can be extracted through lookup over the rows of the
embedding matrix W ∈ R

|V|×d , with d being the desired dimensionality of the
embedding space. Given the word (column) vector vwi

, the corresponding word
embedding uwi

∈ R
d can be computed as (see Sect. 2.2)

uwi
= W� · vwi

. (2)

More recently, the introduction of transformer-based LMs [18], like BERT [15],
GPT [12, 26, 27] or T5 [28], has spread the concept of contextual embeddings; such
embeddings proved to be particularly helpful for a wide variety of NLP problems,
as shown by the leader boards of NLP benchmarks [29, 30, 38, 39].

The inherent hierarchical structure of the human language makes it hard to
understand a text from single words; thus, the birth of higher-level semantic
representations for sentences, which are the sentence embeddings, was just a natural
consequence. As for the word embeddings, also sentence embeddings are organised
into two groups, parametrised and non-parametrised, depending on whether the
model requires parameter training or not.

Clear examples of parametric model are the skip-thoughts vectors [16] and
Sent2Vec [24], which generalises Word2Vec. Non-parametric models, instead, show
that simply aggregating the information from pre-trained word embeddings, for
example, through averaging, as in SIF weighting [6], is sufficient to represent higher-
level entities like sentences and paragraphs.

Transformer LMs are also usable at sentence level. An example is the parametric
model Sentence-BERT [31], obtained by fine-tuning on natural language inference
corpora.

All these models rely on the assumption that cosine similarity is the correct
metric to compute “meaning distance” between sentences. This is why parametric
models are explicitly trained to minimise this measure for similar sentences and
maximise it for dissimilar sentences.

However, cosine similarity may not be the only and best measure. The DynaMax
model [42] proposed to follow a fuzzy set representation of sentences and to rely
on fuzzy Jaccard similarity instead of the cosine one. As a result, the DynaMax
model outperformed many non-parametric models and performed comparably to
parametric ones under cosine similarity measurements, even if competitors were
trained directly to optimise that metric, while the DynaMax approach was utterly
unrelated to that objective.

The use of fuzzy sets to represent documents is not new, and it was already
proposed by [41]. With respect to DynaMax, previous results were inferior because
of their approach to compute fuzzy membership.
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2.2 Fuzzy Bag-of-Words and DynaMax for Sentence
Embeddings

The Fuzzy Bag-of-Words (FBoW) model for text representation [41]—and its gen-
eralised and improved variant DynaMax [42], which introduced a better similarity
metric—represents the starting point of our work, which is described in Sect. 3.

The BoW approach, described at the beginning of Sect. 2, can be seen as a multi-
set representation of text. It enables to measure similarity between two sentences
with set similarity measures, like Jaccard, Otsuka and Dice indexes. These indexes
share a common pattern to measure the similarity σ between two sets A and B [42]:

σ (A,B) = nshared (A,B) /ntotal (A,B) (3)

where nshared (A,B) denotes the count of shared elements and ntotal (A,B) is the
count of total elements. In particular, the Jaccard index is defined as

σJaccard (A,B) = |A ∩ B| / |A ∪ B| . (4)

However, the simple set similarity is a rigid approach as it allows for some degree
of similarity when the very same words appear in both sentences, but fails in the
presence of synonyms. This is where fuzzy sets theory comes handy: in fact, fuzzy
sets enable to interpret each word in V as a singleton and measure the degree
of membership of any word to this singleton as the similarity between the two
considered words [41].

The FBoW model prescribes to work in this way [41]:

• Each word wi is interpreted as a singleton {wi}; thus, the membership degree of
any word wj in the vocabulary (with j ∈ [1, |V|] ⊆ N) with respect to this set is
computed as the similarity σ between wi and wj . These similarities can be used
to fill a |V|-sized vector v̂wi

used to provide the fuzzy representation of wi (the
j th element v̂wi,j being σ

(
wi,wj

)
).

• A sentence S is simply defined through the fuzzy union operator, which is
determined by the max operator over the membership degrees. In this case, the S

is represented by a vector of |V| elements.

The generalised FBoW approach [42] prescribes to compute the fuzzy embedding
of a word singleton as

v̂wi
= U · uwi

= U · W� · vwi
(5)

to reduce the dimension of the output vector for S, where W ∈ R
|V|×d is a word

embedding matrix (defined as in Sect. 2.1), uwi
is defined in Eq. (2) and U ∈ R

u×d

(with u being the desired dimension of the fuzzy embeddings) is the universe matrix,
derived from the universe set U , which is defined as “the set of all possible terms that
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occur in a certain domain”. The generalised FBoW produces vectors of u elements,
where u = |U |.

Given the fuzzy embeddings of the words in a sentence S, the generalised FBoW
representation of S is a vector µ̂S whose j th element μ̂S,j (with j ∈ [1, u] ⊆ N)
can be computed as

μ̂S,j = max
wi∈S

cS,i · v̂wi ,j (6)

where cS,i and v̂wi ,j are, respectively, the number of occurrences of word wi in
sentence S and the j th element of the v̂wi

vector.
The universe set can be defined in different ways, and the same applies for the

universe matrix [42]. Among the possible solutions, the DynaMax algorithm for
fuzzy sentence embeddings builds the universe matrix from the word embedding
matrix, stacking solely the embedding vectors of the words appearing in the
sentences to be compared.

Notice that in this way the resulting universe matrix is not unique, and as a
consequence, neither are the embeddings. This condition can be noticed from the
description of the algorithm and from the definition of the universe matrix: when
comparing two sentences Sa and Sb, the universe set U used in their comparison is
U ≡ Sa ∪ Sb, so the resulting sentence embeddings have size u = |U | = |Sa ∪ Sb|.
In fact, the universe matrix is given by

U = [
uwi

∀wi ∈ U
]�

. (7)

This characteristic is unfortunate as, for example, in IR, it requires a complete
re-encoding of the entire document achieved for each query.

The real improvement of DynaMax is in the introduction of the fuzzy Jaccard
index to compute the semantic similarity between two sentences Sa and Sb, rather
than the generalisation of the FBoW, which replaced the original use of the cosine
similarity [41]:

σ̂Jaccard
(
µ̂Sa

, µ̂Sb

) =
∑u

i=1 min
(
μ̂Sa,i , μ̂Sb,i

)
∑u

i=1 max
(
μ̂Sa,i , μ̂Sb,i

) . (8)

3 Static Fuzzy Bag-of-Words Model

Starting from the DynaMax, which evolved from the FBoW model, we developed
our follow-up aimed at providing a unique matrix U and thus embeddings with a
fixed dimension. In Fig. 1 is represented the visualisation of our approach.
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3.1 Word Embeddings

Word embeddings play a central role in our algorithm as they also provide the
starting point of the construction of the universe matrix. For this work, we leveraged
pre-trained shallow models (more details in Sect. 4.1) for two main reasons:

• The model is encoded in a matrix where each row corresponds to a word.
• We want to provide a sentence embedding approach that does not require

training, easing its accessibility.

The vocabulary of these models, composed starting from all the tokens in
the training corpora, is usually more extensive than the English vocabulary, as it
contains named entities, incorrectly spelt words, non-existing words, URLs, email
addresses and similar. To reduce the computational effort needed to construct and
use the universe matrix, we have considered some subsets of the employed word
embedding model’s vocabulary.

Depending on the experiment, we work with either the 100,000 most frequently
used terms, the 50,000 most frequently used terms (term frequencies are given by
the corpora used to train the word embedding model) or the subset composed of all
the spell-checked terms present in a reference English dictionary (obtained through
the Aspell English spell-checker1).

In the following sections, the W̌ symbol refers to these as reduced word
embedding matrices/models.

3.2 Universe Matrix

During the experiments, we tried four main approaches to build the universe matrix
U: the first two – proposed, but not explored, by the original authors of DynaMax
[42] – consist, respectively, in the usage of a clustered embedding matrix and an
identity matrix with the rank equal to the size of the word embeddings. Instead,

Fig. 1 Visualisation of the sentence embedding computation process using SFBoW

1 http://aspell.net.
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the third approach consists of applying multivariate analysis techniques to the word
embedding matrix to build the universe one. The last approach considers the norm
of the word vectors to filter out less significant words for the representation.

In the following formulae, we refer to d as the dimensionality of the word
embedding vectors, while the SFBoW embedding of the singleton of word wi is
represented as v̌wi

. Clustering and multivariate analysis can be applied to the whole
embedding vocabulary or the subsets of the vocabulary introduced in Sect. 3.1.
Apart from reducing the computational time, we did so to see if these subsets are
sufficient to provide a helpful representation.

3.2.1 Clustering

The idea is to group the embedding vectors into clusters and use their centroids;
in this way, the fuzzy membership will be computed over the clusters—which are
expected to host semantically similar words—instead of all the word singletons.
The universe set is thus built out of abstract entities only, which are the centroids.
Considering k centroids the k-dimensional embedding v̌wi

of the singleton of word
wi is

v̌wi
= K� · uwi

= [
k1, . . . ,kk

]� · uwi
= K� · W� · vwi

(9)

where kj , the j th (with j ∈ [1, k] ⊆ N) column of K, corresponds to the centroid
of the j th cluster. This approach generates k-dimensional word and sentence
embeddings.

3.2.2 Identity

Alternatively, instead of looking for a group of semantically similar words that may
form a significant group, useful for semantic similarity, we consider the possibility
of re-using the word embedding dimensions (features) to represent the semantic
content of a sentence. So, we just use the identity matrix as the universe, U = I ∈
R

d×d , so that v̌wi
∈ R

d is

v̌wi
= I · uwi

= I · W� · vwi
(10)

where this approach generates d-dimensional word embeddings and sentence
embeddings.
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3.2.3 Multivariate Analysis

The same idea moves our multivariate analysis proposal. Judging by previous
results, word embeddings aggregated correctly might be sufficient to provide a
semantically valid representation of a sentence.

What can bring better results might be as simple as roto-translate the reference
system of the embedding representation. In this sense, we propose to use to compute
the fuzzy membership, and hence the fuzzy Jaccard similarity index, over these
dimensions resulting from roto-translation, expecting that this “new perspective”
will expose better the semantic content. So, defining U = M, where M ∈ R

d×d is
the transformation matrix, we have that v̌wi

∈ R
d is

v̌wi
= M · uwi

= M · W� · vwi
(11)

thus yielding d-dimensional word and sentence embeddings.

3.2.4 Vector Significance

Early analysis of shallow word embedding models showed that word vectors
providing stronger semantic representation have a higher norm [34]. Moreover,
when comparing the norm of the vectors with their term frequency within the
training corpus, it is possible to notice that highly frequent terms, as well as rare
one, have considerably smaller norm.

This concept is not anew. In fact, in the term frequency-inverse document
frequency (TF-IDF) approach for document representation, rare words, as well
as highly frequent words, should give little if any contribution to the meaning
representation [7, 20]. For similar reasons, in data mining and retrieval settings,
stop words, which are the highly frequent words in a corpus, are discarded from the
document analysis.

We propose to leverage the word embeddings with a significance level above
a certain (custom) threshold to build the universe matrix, to retain only the most
relevant vectors. Defining U = L�, where L ∈ R

d×d is the matrix whose columns
are the first n word vectors in decreasing Euclidean norm ‖uwi

‖2 order, we have
that v̌wi

∈ R
d is

v̌wi
= L� · uwi

=
[
. . . ,uwj

, . . .

]� · uwi
= L� · W� · vwi

(12)

where the resulting sentence embeddings have as many dimensions as the number
n of retained word vectors.
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4 Experiments

In order to find the best solution in terms of word embedding matrix and universe
matrix, we explored various possibilities. Then, to measure the goodness of our
sentence embeddings, we leveraged a series of STS tasks and compared the results
with the preceding models.

4.1 Word Embeddings

For what concerns the word embeddings, we have decided to work with a selection
of four models:

• Word2Vec, with 300-dimensional embeddings
• GloVe, with 300-dimensional embeddings
• fastText, with 300-dimensional embeddings
• Sent2Vec, with 700-dimensional embeddings

As shown by the word embedding models list, we are also employing a Sent2Vec
sentence embedding model. The embedding matrix of this model can be used for
word embeddings too. During the experiments, we focused on the universe matrix
construction. For this reason, we relied on pre-trained models for word embeddings,
available on the web.

4.2 Universe Matrices

The universe matrices we considered are divided into four buckets, as described in
Sect. 3.2.

4.2.1 Clustering

Universe matrices built using clustering leverage four different algorithms: k-means,
spherical k-means, DBSCAN and HDBSCAN.

We selected k-means and spherical k-means because they usually lead to good
results; the latter was specifically designed for textual purposes, with low demand
in time and computational resources. For all algorithms, we considered the same
values for k (the number of centroids), which were 100, 1000, 10,000 and 25,000.

For all the values of k, we performed clustering on different subsets of the
vocabulary: k-means was applied on the whole English vocabulary as well as to
the top 100,000 frequently used words subset, while spherical k-means was applied
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to the subset of the first 50,000 frequently used words (to reduce computational
time).

We also explored density-based algorithms (DBSCAN and HDBSCAN), which
do not require defining in advance the number of clusters, using Euclidean and
cosine distance between the word embedding.

For what concerns DBSCAN with Euclidean distance, we varied the radius of
the neighbourhood ε between 3 and 8 and worked over the same two subsets
considered for k-means, while the cosine distance ε was between 0.1 and 0.55,
and it was applied over the subset of the first 50, 000 frequently used words (for
computational reasons, as we did for spherical k-means). Concerning HDBSCAN,
we varied the smallest size grouping of clusters in the set {2, 4, 30, 50, 100} and
the minimum neighbourhood size of core samples in the set {1, 2, 5, 10, 50}. We
considered this latter density-based algorithm since basic DBSCAN happens to fail
with high-dimensional data.

4.2.2 Identity

This approach consists of using the identity matrix as the universe, and in this
way, the singletons we use to compute the fuzzy membership are the dimensions
of the word embeddings, which corresponds to the learnt features. This is the most
lightweight method as it just requires to compute the word embeddings of a sentence
and then the fuzzy membership over the exact d dimensions.

4.2.3 Multivariate Analysis

We adopted the principal component analysis (PCA) to get a rotation matrix to serve
as a universe matrix to the SFBoW. In fact, through PCA, the d-dimensional word
embedding vectors are decomposed along with the d orthogonal directions of their
variance. These components are then reordered to decrease explained variance and
represent our fuzzy semantic sets.

The principal component of the reduced word embedding matrix W̌ is described
by the matrix T = P� · W̌, where P is a d × d matrix whose columns are the
eigenvectors of the matrix W̌� · W̌. With our approach, the matrix P�, sometimes
called the whitening or sphering transformation matrix, serves as universe matrix
U. In this way, the SFBoW embedding of a word singleton becomes

v̌wi
= P� · uwi

= P� · W̌� · vwi
(13)

where, as for the clustering approach, we experimented with both the whole
vocabulary and the most 100,000 used words.
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4.2.4 Vector Significance

As premised, we considered word embeddings norm to identify the significance of
a term. We composed the universe matrix sorting the word vectors in decreasing
Euclidean norm order and taking the first n. During the experiments, we varied n in
the set {100, 1000, 10, 000, 25, 000}.

4.3 Data

We evaluated our SFBoW through a series of reference benchmarks; we selected the
STS benchmark series, one of the tasks of the International Workshop on Semantic
Evaluation (SemEval).2

SemEval is a series of evaluations on computational semantics; among these,
the semantic textual similarity (STS) benchmark3 [13] has become a reference
for scoring of sentence embedding algorithms. All the previous models we are
considering for comparison have been benched against STS; this is because
the benchmark highlights a model capability to provide a meaningful semantic
representation by scoring the correlation between model’s and human’s judgements.
For this reason, and also to allow comparisons, we decided to evaluate SFBoW on
STS.

We worked only on the English language, using the editions of STS from 2012
to 2016 [1–5]. Each year, a collection of corpora coming from different sources has
been created and manually labelled; Table 1 shows a reference, in terms of support,
for each edition. Thanks to the high number of samples, we are confident about the
robustness of our results.

To preprocess the input text strings, we lowercased each character and tokenised
in correspondence of spaces and punctuation symbols. Then, from the resulting
sequence, we retained only the tokens for which a corresponding embedding was
found in the vocabulary known by the model. Finally, we calculated the SFBoW
sentence embedding from the word embeddings of such tokens.

The samples constituting the corpora are a pair of sentences with a human-given
similarity score (the gold labels). The provided score is a real-valued index obtained
averaging those of multiple crowd-sourced workers and is scaled in a [0, 1] ∈ R

Table 1 Support of the corpora of the STS benchmark series

STS edition 2012 2013 2014 2015 2016

No. of sentence pairs 5250 2250 3750 3000 1186

2 https://aclweb.org/aclwiki/SemEval_Portal.
3 https://ixa2.si.ehu.eus/stswiki/index.php/Main_Page.
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interval. The final goal of our work is to provide a model able to provide a score as
close as possible to that of humans.

4.4 Evaluation Approach

To assess the quality of our model, we used it to compute the similarity score
between the sentence pairs provided by the five tasks, and we compared the output
with the target labels. The results are computed as the correlation between the
similarity score produced by SFBoW and the human one, using Spearman’s ρ

measure [32]. SFBoW employs fuzzy Jaccard similarity index [42] to compute word
similarity.

To have terms of comparison, we establish a baseline through the most straight-
forward models possible, the average word embedding in a sentence, leveraging
three different word embedding models: Word2Vec, GloVe and fastText. We also
provide results from more complex models: SIF weighting (applied to GloVe),
Sent2Vec, DynaMax (built using Word2Vec, GloVe and fastText) and Sentence-
BERT.

All the embedding models except DynaMax and the baselines are scored using
cosine similarity; DynaMax scores are obtained using fuzzy Jaccard similarity
index.

5 Results

To analyse the results of the considered reference embeddings and the approaches
to build the universe matrix, we reported, respectively, the aggregated Spearman’s
ρ correlation in the STS benchmark in Tables 2 and 3. Through these two tables,
we highlight how the choice of an embedding model rather than a universe
matrix approach affected the overall SFBoW performances in the STS benchmark.
Additionally, we report a comparison in terms of Spearman’s ρ correlation in
the STS benchmark of our SFBoW against other sentence embedding models in
Table 4. The comparison values, reported in the last three rows of Table 4, belong
to the SFBoW configurations that achieved the best score, among the variants we
considered for the experiments, in at least one task.

5.1 Individual SFBoW Results

As reported in Table 4, fastText yields the best absolute results among the four-word
embedding models, confirming the results of DynaMax. The best scores in terms of
universe matrix are achieved either with identity matrix or with PCA rotation matrix,
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Table 2 SFBoW aggregated results over the STS benchmark. Results are aggregated on the
employed word embedding model. Total scores are weighted averages across the STS editions and
are expressed as avg.±std. Bold and underlined values represent, respectively, the first and second
best results of a column

Reference Results (Spearman’s ρ)

embedding STS Total

model 2012 2013 2014 2015 2016

Word2Vec 51.25 ± 4.79 42.98 ± 5.27 57.62 ± 5.92 62.74 ± 6.90 62.81 ± 5.91 54.71 ± 5.63

GloVe 52.71 ± 5.14 43.40 ± 5.36 54.47 ± 7.20 61.55 ± 7.47 62.61 ± 6.32 54.26 ± 6.21

fastText 54.00 ± 4.90 44.16 ± 4.86 54.89 ± 7.60 61.62 ± 7.57 62.13 ± 7.31 54.88 ± 6.26

Sent2Vec 53.13 ± 1.46 41.48 ± 2.42 59.17 ± 2.70 64.81 ± 2.97 62.81 ± 2.18 55.91 ± 2.25

Table 3 SFBoW aggregated results over the STS benchmark. Results are aggregated on the universe
matrix building approach. Total scores are weighted averages across the STS editions and are
expressed as avg.±std. Bold and underlined values represent, respectively, the first and second best
results of a column

Universe Results (Spearman’s ρ)

matrix STS Total

approach 2012 2013 2014 2015 2016

Clustering 53.04 ± 3.60 42.69 ± 4.17 56.42 ± 5.45 62.81 ± 5.57 62.62 ± 4.42 54.99 ± 4.58

Identity 56.90 ± 3.87 49.45 ± 3.61 64.56 ± 2.20 70.59 ± 1.82 69.33 ± 4.20 61.29 ± 3.05

Multivariate
analysis

57.53 ± 3.27 48.64 ± 3.44 64.26 ± 1.77 70.20 ± 1.89 69.80 ± 4.02 61.27 ± 2.72

Vector
significance

48.49 ± 3.53 39.61 ± 2.48 51.05 ± 5.29 56.51 ± 5.36 57.18 ± 4.53 50.04 ± 4.24

highlighting how the features yield by word embeddings provide a better semantic
content representation of sentences.

To have a better understanding of the results and the performances of different
universe matrices, we broke down the results along two axes. On one side, we
aggregated the results distinguishing among the different embedding models (see
Table 2), and on the other, we distinguished among the different approaches to build
the universe matrix (see Table 3).

From Table 2, we noticed that, despite being fastText the word embedding
model yielding the best performances, Sent2Vec achieved the best results on
average. While the remaining models achieved on average very similar scores—all
differences in Spearman’s ρ are < 1—Sent2Vec detached from fastText (the second
best model on average) with a difference> 1 in Spearman’s ρ score. We hypothesise
that this is due to the fact that Sent2Vec, different from the other embeddings,
is actually a parametric sentence embedding model, which yields embeddings for
single words. However, despite being different, the average results of all models are
quite close, especially if compared with the differences found among average the
universe matrix results.
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Table 4 Comparison of results over the STS benchmark. SFBoW models are in the last block.
Total scores are weighted averages across the STS editions and are expressed as avg.±std. Bold
and underlined values represent, respectively, the first and second best results of a column.
Inference time refers to the time, in seconds, to carry out an evaluation on the entire STS corpus

Results (Spearman’s ρ)

STS

Model 2012 2013 2014 2015 2016 Total Analysis time [s]

Word2Veca 55.46 58.23 64.05 67.97 66.28 61.21 ± 5.04 –

GloVea 53.28 50.76 55.63 59.22 57.88 54.99 ± 2.80 –

fastTexta 58.82 58.83 63.42 69.05 68.24 62.65 ± 4.20 –

SIF weightingb 56.04 62.74 64.29 69.89 70.71 62.84 ± 5.54 –

Sent2Vec 56.26 57.02 65.82 74.46 69.01 63.21 ± 7.13 –

DynaMaxc 55.95 60.17 65.32 73.93 71.46 63.53 ± 6.92 –

DynaMaxb 57.62 55.18 63.56 70.40 71.36 62.25 ± 5.85 –

DynaMaxd 61.32 61.71 66.87 76.51 74.71 66.71 ± 6.10 –

Sentence-BERT 72.27 78.46 74.90 80.99 76.25 75.81 ± 3.27 218.3

SFBoWd,e,f 61.31 51.21 67.47 72.90 73.88 64.55 ± 7.20 56.5

SFBoWd,g,h 61.42 51.36 66.44 72.74 73.72 64.32 ± 7.00 56.8

SFBoWd,g,i 60.03 51.96 66.36 72.39 73.25 63.81 ± 6.93 56.6
a Used as baseline
b Built upon a GloVe model for word embeddings
c Built upon a Word2Vec model for word embeddings
d Built upon a fastText model for word embeddings
e Best average score
f Universe matrix is the identity matrix
g Universe matrix is the PCA projection matrix
h Universe matrix is built from the English vocabulary
i Universe matrix is built from the top 100,000 most frequent words

From Table 3, instead, we noticed that there is a clear difference in performances
among the considered approaches. Identity matrix and PCA universe matrices
consistently outperform all the other considered approaches, achieving also very
close scores between them—the difference between their average Spearman’s ρ is
only 0.02. Moreover, identity and PCA achieve scores very similar to the SFBoW
predecessor (see Table 4). We hypothesise that this is due to the fact that these
two techniques preserve the features extracted by the embedding models, which are
very robust, as observed by other non-parametric sentence embedding models like
SIF weighting.

Clustering, instead, presents way worse performances: the drop in Spearman’s ρ

is > 5 with respect to identity and PCA. Nevertheless, clustering scores are in line
with the single word embedding model’s averages.

Vector significance turned out to provide the worst overall results. We hypothe-
sise it is due to the fact that the significance is not strongly related to the semantic
representative capabilities.
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5.2 Comparison with Other Models

As premised, we compare our results with three baseline models and other sentence
embedding approaches, all reported in Table 4. The first group of scores is from the
baselines, the second one is from other sentence embedding models, and, finally, the
last group is from our SFBoW model. Additionally, the best values in each column
are highlighted in bold, while the second ones are underlined.

The key features about our model, which can be derived from the results, are the
following:

• Low number of parameters
• Faster inference time
• No training phase
• Results (in terms of ρ) comparable to similar models
• Fixed-size and easily re-usable embeddings

About the number of parameters, we can notice that even if Sentence-BERT
outperforms all the other models in every task, it relies on a much deeper feature
extraction model and was trained on a much bigger corpus. Moreover, this model
requires a considerably higher computational effort without an equally consistent
difference in performances. BERT alone requires more than 100 million parameters
just for its base version (and above 300 million for the large one), hence taking a
lot of (memory) space, not to mention the amount of time necessary for the self-
supervised training and the fine-tuning. On the other hand, non-parametric models
(like SIF, DynaMax or SFBoW) or shallow parametric ones (Sent2Vec) require
fewer parameters: just those for the embedding matrix |V| × d.

A similar discourse applies to inference speed. Even though Sentence-BERT
achieves the best results on all tasks, SFBoW turns out to be four times faster at
inferring the similarity, as can be noticed by the reported analysis times.

Being a non-parametric model, SFBoW does not require a training phase. It may
require clustering the embeddings to build the universe matrix, but our experiments
showed that clustering does not yield good results. Because of its simplicity, SFBoW
can generally be easily deployed, requiring only the word embedding model to
compute the sentence representation. Notice also that the SFBoW algorithm is
agnostic to the word embedding model.

Regarding the results we obtained, compared to other models, SFBoW provided
interesting figures: either considering the majority of tasks with higher Spearman’s
ρ rank or higher average score, it outperforms all the baselines, as well as SIF
weighting and Sent2Vec. Finally, we see as our model performs closely to its
predecessor, especially considering the weighted average of the results of the single
tasks. SFBoW bests out DynaMax in STS 2014 and gets almost the same results
in STS 2012 (the difference is 0.01), which are the first two corpora in terms of
samples; however, the difference in STS 2013 goes in favour of DynaMax.

About the comparison against DynaMax, it is worth underlining a few additional
points. Firstly, in both cases, fuzzy Jaccard similarity correlates better with human



Static Fuzzy Bag-of-Words 207

judgement as a measure of sentence similarity. Secondly, both models manage to
achieve better results when using fastText word embedding, possibly underling
that they lend better than other models at sentence-level combination; the baseline
performances also show this.

Finally, we remind that SFBoW generates embeddings with a fixed size, resulting
in much easier applicability with respect to DynaMax.

6 Conclusion

In this paper, we presented and evaluated the SFBoW model for sentence embed-
ding. This model leverages the approaches proposed by the FBoW and DynaMax
models, to compute static embeddings (in the sense of fixed-size embeddings). To
extract such static embeddings, we rely on a static universe matrix. This matrix
can be constructed in many different ways; thus, we explored them in order to
find the most suitable. We considered approaches based on clustering, identity,
multivariate analysis and vector significance. To evaluate the possible approaches,
we benchmarked the model on the STS benchmark.

We divided the evaluation into an individual one, to observe the different results
of the considered embeddings and approaches for the SFBoW universe matrix, and
a compared one, to observe the results of SFBoW with respect to those of other
sentence embedding models.

From the individual analysis, we derived that fastText and Sent2Vec are the two
most suitable embeddings for our model and that identity and PCA are the most
suitable universe matrix building approaches. From the compared evaluation, we
derived that even if SFBoW does not outperform state-of-the-art models on STS, it
performs comparably to DynaMax, its predecessor, and, different from DynaMax,
yields re-usable embeddings, because of their fixed dimensionality. Due to its low
computation demand (especially if compared with state-of-the-art Sentence-BERT)
and re-usability of embeddings, SFBoW can be seen as a reasonable solution,
especially for scenarios where low computational capabilities are essential.

In the future, we plan to carry out a deeper analysis of the results to identify
the reasons behind the different scores achieved by the universe matrix approaches.
Another idea for future evolution we considered is to combine the approaches we
analysed to build the universe matrix, in order to extract a more robust one. For
example, it would be possible to cluster the vectors with a significance above a
certain threshold to obtain, possibly, better results.
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