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Abstract A text-to-speech (TTS) synthesiser has to generate intelligible and natu-
ral speech while modelling linguistic and paralinguistic components characterising
human voice. In this work, we present ITAcotron 2, an Italian TTS synthesiser able
to generate speech in several voices. In its development, we explored the power
of transfer learning by iteratively fine-tuning an English Tacotron 2 spectrogram
predictor on different Italian data sets. Moreover, we introduced a conditioning
strategy to enable ITAcotron 2 to generate new speech in the voice of a variety
of speakers. To do so, we examined the zero-shot behaviour of a speaker encoder
architecture, previously trained to accomplish a speaker verification task with
English speakers, to represent Italian speakers’ voiceprints. We asked 70 volunteers
to evaluate intelligibility, naturalness, and similarity between synthesised voices
and real speech from target speakers. Our model achieved a MOS score of 4.15
in intelligibility, 3.32 in naturalness, and 3.45 in speaker similarity. These results
showed the successful adaptation of the refined system to the new language and its
ability to synthesise novel speech in the voice of several speakers.

1 Introduction

The development of text-to-speech (TTS) synthesis systems is one of the oldest
problems in the natural language processing (NLP) area and has a wide variety of
applications [14]. Such systems are designed to output the waveform of a voice
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uttering the input text string. In the last years, the introduction of approaches based
on deep learning (DL), and in particular the end-to-end ones [11, 20, 22, 25], led to
significant improvements.

Most of the evaluations carried out on these models are performed on languages
with many available resources, like English. Thereby, it is hard to tell how good
these models are and whether they are general across languages. With this work,
we propose to study how these models behave with less-resourced languages,
leveraging the transfer learning approach.

In particular, we evaluated the effectiveness of transfer learning on a TTS
architecture, experimenting with the English and Italian languages. Thus, we started
from the English TTS Tacotron 2 and fine-tuned its training on a collection of Italian
corpora. Then, we extended the resulting model, with speaker conditioning; the
result was an Italian TTS we named ITAcotron 2.

ITAcotron 2 was evaluated, through human assessment, on intelligibility and
naturalness of the synthesised audio clips, as well as on speaker similarity between
target and different voices. In the end, we obtained reasonably good results, in line
with those of the original model.

The rest of this paper is divided into the following sections: In Sect. 2, we
introduce the problem. In Sect. 3, we present some available solutions. In Sect. 4, we
detail the aim of the paper and the experimental hypotheses we assumed. In Sect. 5,
we present the corpora employed to train and test our model. In Sect. 6, we explain
the structure of the synthesis pipeline we are proposing and how we adapted it to
Italian from English. In Sect. 7, we describe the experimental approach we followed
to assess the model quality. In Sect. 8, we comment on the results of our model.
Finally, in Sect. 9, we sum up our work and suggest possible future extensions.

2 Background

Every TTS synthesiser represents an original imitation of the human reading
capability, and, to be implemented, it has to cope with the technological and
imaginative constraints characterising the period of its creation.

In the mid-1980s, the concomitant developments in NLP and digital signal
processing (DSP) techniques broadened the applications of these systems. Their
first employment was in screen reading systems for blind people, where a TTS was
in charge of reading user interfaces and textual contents (e.g. websites, books, etc.),
converting them into speech. Even though the early screen readers (e.g. JAWS1)
sounded mechanical and robotic, they represented a valuable alternative for blind
people to the usual braille reading.

Since the quality of TTS systems has been progressively enhanced, their adoption
was later extended to other practical domains such as telecommunications services,

1 https://www.freedomscientific.com/products/software/jaws.
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language education systems, talking books and toys, and video games. In 2004,
Yamaha Corporation released its first version of Vocaloid [16]. It is a voice
synthesising software product, based on diphone concatenation that allows creating
a virtual singer by specifying the text and the melody of a song.

In general, TTS can be conceived as a decoding problem where a highly
“compressed” input sequence (text) has to be “decompressed” into audio. However,
linguistic units (e.g. phonemes, characters, words) are discrete, whereas speech
signals are continuous and longer than textual input sequences; this mismatch causes
prediction errors to accumulate rapidly. Besides, the meaning expressed by an
utterance is typically undermined by its textual counterpart since the same textual
sequence can correspond to several pronunciations and speaking styles.

Nowadays, the hectic development of embodied agent technologies such as
embodied conversational agents (ECA) that adopt mimics, gestures, and speech
to communicate with the human user makes the modelling of human-computer
dialogues a research hotspot. To endow an ECA with a human-like conversational
behaviour, a TTS system cannot just synthesise understandable speech at a fast
rate. Instead, it needs to account for further speech nuances in order to reproduce
elements and peculiarities of human conversations [8].

Thus, to synthesise human-like speech, a TTS has to explicitly or implicitly
model many factors that are not attested in the textual input. This requirement is
invoked by the presence of paralinguistic components characterising human dialogic
exchanges. On the whole, the synthesised speech should express the correct message
(intelligibility) while sounding like human speech (naturalness) and conveying the
right prosody (expressiveness) [31]. This is what makes the development of high-
quality TTS systems a challenging task.

In our daily conversational exchanges, paralinguistic components (the so-called
prosody) are exploited as a whole to attribute mental states and an independent
mental life to our interlocutors. It follows that, if the ultimate goal is to develop an
ECA that can successfully hold a conversation and be mistaken for a human, all of
these components should be taken into account within the modelling pipeline [24].

Prosody is the systematic arrangement of various linguistic units into a single
utterance or group of utterances, which occurs in the process of human speech
production [7]. Its implementation encompasses both segmental and suprasegmental
features of speech, and it aims at conveying linguistic and non-linguistic informa-
tion.

Speech prosody mainly plays the roles of [28]:

• Disambiguating the verbal component of communication (i.e. augmentative
prosody) [21]

• Conveying emotions, intentions, and attitudes in communication (i.e. affective
prosody) [23]

The lack of explicit control on specific speech traits characterises architectures
based on DL. This usually prevents them from reproducing accurately prosodic
phenomena, both locally and globally. However, the end-to-end learning approach
allows for the introduction of rich conditioning on various prosodic attributes. Thus,
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besides generating a comprehensible synthetic product, Seq-2-Seq models enable
the synthesis of speech in multiple voices, in various styles, and with different
emotional nuances. In the following, we present some modern approaches to TTS,
which mostly inspired our work.

3 Related Work

Modern, DL-based TTS pipelines are composed of two main blocks: a spectro-
gram predictor and a vocoder [14]. These components take care of, respectively,
converting a string of characters into a (mel-scaled) spectral representation of the
voice signal and converting the spectral representation to an actual waveform.
Optionally, input text—apart from normalisation—undergoes phonemisation to
present the input to the spectrogram predictor as a sequence of phonemes rather
than graphemes.

Recent end-to-end solutions for spectrogram prediction are built with an encoder-
decoder architecture [20, 22, 25, 32]. The encoder maps the input sequence to a
hidden continuous space, and the decoder takes care of generating, autoregressively,
the spectrogram from the hidden representation. To produce the alignment between
encoder and decoder, an attention mechanism [2] is introduced between these two
blocks.

Among the available architectures for spectrogram prediction, Tacotron [32], and
in particular its advanced version, Tacotron 2 [25], seems to be the most flexible and
re-usable.

Many works have been developed to introduce conditioning into Tacotron,
obtaining a fine-grained control over different prosodic aspects. The Global Style
Token (GST) approach enabled control over the speaking style in an unsuper-
vised manner [33]. Another controllable aspect is the speaker voice, introduced
through additional speaker embeddings extracted through a speaker verification
network [13]. Finally, [27] proposed a methodology to control the prominence
and boundaries by automatically deriving prosodic tags to augment the input
character sequence. It is also possible to combine multiple techniques into a single
conditioned architecture, as shown by Skerry-Ryan et al. [26].

Neural vocoders completed the DL-based TTS pipeline improving consistently
the quality of synthesised voice [15, 17, 30, 34]. These vocoders substituted the
Griffin-Lim algorithm [9], which was characterised by artefacts and poor audio
quality, especially if compared with newer neural approaches. These components,
different from the spectrogram predictors, do not strictly depend on the input
language—their primary role is to invert a spectral representation into the time
domain; thus, they are thought to be language-agnostic.

As premised, the available models are primarily trained and evaluated on English
corpora, due to data availability. A general solution for data scarcity is to leverage a
technique called transfer learning [35] that mimics what typically occurs in human
learning. In most learning environments, in fact, people do not start from scratch
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when forming hypotheses and drawing inferences. Rather, knowledge gained from
one domain is abstracted and re-used in other domains. The more related a new task
is to our previous experience, the easier we can master it.

The lack of sufficiently large data sets makes DL hard to apply and yield
satisfying results. The mechanism of transfer learning [29] attempts to cope with
this issue by re-using the hidden representations learnt performing a task on a
domain similar to the target one. The idea is to leverage the knowledge derived
solving one or more source tasks and use it to improve the results in a new target
task. Techniques that enable knowledge transfer represent progress towards making
machine learning as efficient as human learning.

For our work, we applied a variant of transfer learning called fine-tuning, where
we used the pre-trained weights of the network as initialisation for the actual training
on the new task [35].

4 Aim and Experimental Hypotheses

Whereas recent research mainly focuses on further refining the intelligibility and
naturalness of the synthesised product, speech expressiveness requires for its
part explicit modelling. The lack of a similar control makes the prosody of the
synthesised speech feel like an “average, anonymous voice style”, preventing it from
fully displaying the range of prosody variations occurring in human speech.

In this work, we address the modelling of speech expressiveness by presenting
a customised TTS architecture, ITAcotron 2, which is able not only to generate
intelligible and natural Italian speech but also to emulate the voice of a given
speaker.

A speech synthesiser of this kind can endow an ECA with a personalised voice,
which contributes to increasing human engagement in the ongoing conversation [3,
19]. Furthermore, such a system can have a wider range of useful applications, such
as speech-to-speech translation, navigation systems, and fairy tale reciting. It could
also allow people who have lost their voices to recover their ability to communicate
naturally even though they can’t provide a satisfying amount of previously recorded
voice samples.

Note that, in achieving this goal, we distanced ourselves from the potential
misuses accompanying the development of this technology. Impersonating some-
one’s voice without their consent represents a clearer example of such a drift. In
developing our system, we stuck to AI Google’s principles,2 and we hope that future
users and developers will act in full compliance with these guidelines.

The experimental hypotheses underlying our research are the following: Firstly,
we examined the possibility of performing language adaptation using transfer
learning. To do so, we fine-tuned a customised TTS model, previously trained on

2 https://ai.google/principles.
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English data, porting it to the Italian language. Then, we conducted a listening
task to collect subjective ratings expressing the intelligibility and naturalness of the
synthesised Italian speech.

Secondly, we investigated the feasibility of modelling fine-grained, speaker-
dependent characteristics while generating new speech from text. These features
crucially contribute to the uniqueness of each utterance for the fact that every
speaker is provided with a unique vocal identity. Thus, we represented speakers’
voiceprints as fixed-dimensional embeddings (i.e. d-vectors) to condition the speech
generation with the purpose of synthesising different voices from a single model.

Finally, since we employed a speaker encoder architecture that was previously
trained on an English verification task to extract speakers’ voiceprints, we implicitly
tested the feasibility of performing language adaptation. In fact, if the speaker
encoder was able to derive discriminative features for representing English speakers,
it should have been able to do the same for Italian speakers. Thus, we designed
this experiment to prove whether the speaker encoder was language-agnostic and
applicable to a language that differs from the source one (English), without being
re-trained or fine-tuned. We did so because we wanted to observe the zero-shot
behaviour of this network in the new language (Italian). We apply the same strategy
to the neural vocoder, by using a network previously trained with English recordings
and not refined on the new language.

5 Corpora

In this work, we considered three different corpora of Italian speech, containing
recited utterances. We reported the main statistics about the corpora in Table 1. All
clips were re-sampled at 22.050Hz.

Mozilla Common Voice3 (MCV) is a publicly available corpus of crowd-sourced
audio recordings [1]. Contributors can either donate their voice by reading prompted
sentences or validate clips by listening to others’ recordings. Clips in this corpus
have a native sample rate of 48.000Hz.

Table 1 Statistics on the considered corpora for the Italian fine-tuning of the spectrogram predictor:
Mozilla Common Voice (MCV), VoxForge (VF), and Ortofonico (Ort)

Time [h] Clips Speakers

Corpus Train Validation Test Train Validation Test Train Validation Test

MCV 79.1 26.5 26.4 50,322 16,774 16,775 5151 3719 3743

VF 13.6 1.8 1.8 7176 913 918 903 584 597

Ort 2.9 0.4 0.3 1436 164 159 20 20 20

3 https://commonvoice.mozilla.org.
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VoxForge4 (VF) is a multilingual open-source speech database that includes
audio clips collected from volunteer speakers. Clips in this corpus have a native
sample rate of 16.000Hz.

Ortofonico (Ort) is a subset of the CLIPS5 corpus of Italian speech, collected
for a project funded by the Italian Ministry of Education, University and Research.
Audio recordings come from radio and television programmes, map task dialogues,
simulated conversations, and text excerpts read by professional speakers. Clips in
this corpus subset have a native sample rate of 22.050Hz.

Apart from the three presented corpora, we used some clips from a private
collection of audiobooks in the human evaluation step. We reported further details
in Sect. 7.

6 ITAcotron 2 Synthesis Pipeline

The model we propose is called ITAcotron 2. It is an entire TTS pipeline, complete
with speaker conditioning, based on Tacotron 2 [13, 25]. The pipeline is composed
of a phonemiser, a speaker encoder (used for the conditioning step), a spectrogram
predictor, and a neural vocoder. We reported a scheme of the pipeline in Fig. 1.

The core of the model we are presenting is the spectrogram predictor. We referred
to the Tacotron 2 implementation and weights provided by Mozilla6 [10]. The

Fig. 1 ITAcotron 2 speech synthesis pipeline

4 http://www.voxforge.org.
5 http://www.clips.unina.it.
6 Repository link, https://github.com/mozilla/TTS; reference commit link, https://github.com/
mozilla/TTS/tree/2136433.
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model uses a phoneme encoder to represent the input sequence to utter and an
autoregressive decoder to generate the target spectrogram; an intermediate attention
mechanism provides the input-output alignment. With respect to the original imple-
mentation, we only extended the employed phonemiser7 to accommodate Italian’s
accented vowels as additional input characters. Code and pre-trained weights for
speaker encoder and vocoder came from the Tacotron 2 same source.

We divided the fine-tuning process of the spectrogram predictor into two steps.
In this way, we iteratively improved the output quality.

The former used only the data coming from the MCV corpus, which constituted
the majority of the available data. Due to the low quality of the input audio
recordings, we leveraged this step mostly to drive the network’s weights towards the
target language. The noisy and sometimes poorly uttered clips of this corpus resulted
in synthesised clips of poor quality, which sometimes were impossible to under-
stand. This fine-tuning was performed for 52.271 update steps (identified through
validation) on mini-batches containing 64 clips each; other hyper-parameters were
left unchanged from the reference implementation.

The latter fine-tuning leveraged both VF and Ort corpora. Audio clips in these
corpora were of a noticeable higher quality than those of MCV in terms of audio
clearness and speaker articulation. As a result, the outputs of this final stage
had significantly less background noise, and the content was highly intelligible.
We performed this second fine-tuning for 42.366 update steps (identified through
validation) on mini-batches containing 42 clips each; other hyper-parameters were
left unchanged from the reference implementation.

To achieve speaker conditioning, we concatenated the encoder representation
of the spectrogram predictor with a speaker embedding. These embeddings were
extracted from a speaker verification model [4], similar to that of the reference work
by [13]. For the vocoder, instead, we adopted the more recent full-band MelGAN
(FB-MelGAN) vocoder [34].

Notice that while we fine-tuned the spectrogram synthesis network, we did not
apply the same process to the speaker embedding and neural vocoder networks. We
did so because we wanted to observe the zero-shot behaviour of these networks
in the new language. In this way, we could assess whether the two models are
language-agnostic.

7 Evaluation Approach

Similar to [13], we divided the evaluation process of our fine-tuned model into two
listening experiments:

7 https://pypi.org/project/phonemizer/.
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• Evaluation of intelligibility and naturalness (I&N) of the speaker-conditioned
synthesised samples

• Evaluation of speaker similarity (SS) of the speaker-conditioned synthesised
samples

For both experiments, we asked subjects to rate different aspects—in a 1 to 5 scale,
with 0.5 increments [12]—of several audio clips. We divided the 70 participants into
20 experimental groups for both listening tasks. We prompted participants of each
group with the same clips.

In the I&N experiment, we assigned each group with 4 clip pairs, for a total
of 160 among all groups. Each clip pair was composed of a real clip (ground
truth) coming from one of the corpora (including an additional private corpus of
audiobooks) and a synthetic clip generated in the voice of the ground truth, but
with different speech content (i.e. the same voice uttered a different sentence). At
this step, we asked subjects to rate the intelligibility and naturalness of each clip,
separately. Clips were presented in a random order (to avoid biases) and were rated
right after listening.

In the SS experiment, we assigned each group with 16 clips, split into 4 subsets,
for a total of 160 among all groups. We divided the SS experiment into three tasks.
Each task was composed of a synthetic clip and three real clips. Subjects compared
the synthetic clip to each of the other three real clips:

1. A real clip containing an utterance in the voice of the same speaker of the
synthetic utterance (the same-speaker comparison task)

2. A real clip containing an utterance in the voice of a different speaker having
the same gender of the speaker of the synthetic utterance (the same-gender
comparison task)

3. A real clip containing an utterance in the voice of a different speaker having
different gender of the speaker of the synthetic utterance (the different-gender
comparison task)

At this step, we asked subjects to rate how similar the synthetic voice was to the one
we paired it with (knowing that the fixed clip was synthetic and the other three real).
Real clips were presented in a random order (to avoid biases), and subjects rated the
similarity right after listening to a synthetic-real pair.

8 Results

In this section, we report results on the two experiments described in the previous
section, by providing both quantitative and qualitative analyses.

We report the mean opinion score (MOS) of each task in Table 2. The overall
scores were satisfying and reflected the intentions and the expectations underlying
this research.
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Table 2 Results of the listening tasks. MOS values are reported as μ±σ . All values are computed
with a support of 280 samples

(Comparison) 95% confidence

Task Task Model MOS interval

Intelligibility and naturalness Intelligibility ITAcotron 2 4.15 ± 0.78 [4.07, 4.23]

Ground truth 4.43 ± 0.74 [4.36, 4.50]

Naturalness ITAcotron 2 3.32 ± 0.97 [3.22, 3.41]

Ground truth 4.28 ± 0.86 [4.20, 4.37]

Speaker similarity Same speaker ITAcotron 2 3.45 ± 1.07 [3.34, 3.56]

Same gender ITAcotron 2 2.78 ± 1.01 [2.68, 2.89]

Different gender ITAcotron 2 1.99 ± 1.08 [1.91, 2.08]

Concerning the I&N evaluation, the first thing that jumps to the eye is the high
intelligibility score, very close to real clips. This high score provides clear evidence
of how easy it was to understand the linguistic content of the synthetic clips. The
naturalness score, however, is lower than that of intelligibility, meaning that it is still
possible to distinguish between real and synthetic clips.

Concerning the SS evaluation, instead, the thing that jumps to the eye is the
progressive drop in the MOS value. This reduction is precisely the expected
behaviour [18]—changing the speaker should lead to lower similarity, especially
when the two speakers have different gender. Thus, the MOS obtained for the same-
speaker task was the best one, with a promising absolute value; in other words,
the system was able to provide a good imitation of the speaker’s voice. Then,
changing speaker, the MOS dropped, meaning that the synthetic voice was able
to express the “personality” of the speaker it was imitating, and so it was clearly
distinguishable from other voices). Finally, as expected, a further drop was observed
by the different-gender similarity evaluations.

The figures we obtained are close to those obtained by the reference work [13]
on similar tasks, for English. However, we choose not to report a direct comparison
against the work mentioned above as it focuses on English and the tasks are not
perfectly comparable with ours. Nevertheless, obtaining similar scores is a hint
that our approach seems sound. More detailed results on the two experiments we
conducted are presented in the following.

8.1 Speech Intelligibility and Naturalness

This experiment was meant to evaluate the language adaptation hypothesis by
assessing the degree of intelligibility and naturalness exhibited by the synthesised
speech. MOS evaluation distributions, for real and synthesised speech, are reported
as histograms in Fig. 2.



ITAcotron 2: The Power of Transfer Learning in Expressive TTS Synthesis 11

(a) (b)

Fig. 2 MOS distributions of real and synthetic clips. (a) Intelligibility MOS distributions. (b)
Naturalness MOS distributions

Table 3 Results of Welch’s t-test with degrees of freedom (DoF) computed as n1−n2−2, where
n1 and n2 are the sample sizes of the first and second sample. The t-value is the value used to
produce the probability value (p-value) based on Student’s t-distribution. All scores are computed
with 558 DoF

Sample

Task First Second t-value p-value

Intelligibility ITAcotron 2 Ground truth 4.375 1.448e–6

Naturalness ITAcotron 2 Ground truth 12.414 2.237e–31

Speaker similarity Same speaker Same gender 7.606 1.208e–13

Same speaker Different gender 16.054 5.812e–48

Same gender Different gender 8.962 4.820e–18

Table 2 reports sample size, mean, standard deviation, and 95% confidence
interval computed with empirical bootstrap [5] for real and synthetic audio MOS
distributions. Results from Welch’s unequal variance t-test for intelligibility are
reported in Table 3.

Ground-truth recordings obtained a higher intelligibility MOS (μ = 4.43, σ =
0.74) than did audio clips synthesised by our model (μ = 4.15, σ = 0.78), t (558) =
4.37, p < 0.05. Our proposed model achieved 4.1 intelligibility MOS compared to
4.34 of the ground truth. This confirmed the system ability to synthesise speech with
highly intelligible content.

The speech content of the data sets used to train our synthesiser, especially in the
second fine-tuning, was in most of the cases clearly and smoothly comprehensible.
This could have influenced positively the output intelligibility. Moreover, using a
significant amount of hours and speakers in training could have lead the model both
to improve its generalisation ability and to distinguish easily useless from useful
spectral information at prediction time. These aspects could have jointly increased
the intelligibility of the synthesis.

In exploratory listening sessions, we noticed that the model learnt to smoothly
generate out of vocabulary words, long input texts, and complex syntactic structures
such as long-distance dependencies and topicalised sentences. Indeed, and surpris-
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ingly, there were cases in which its generative performance seemed to be enhanced
by the presence of such complexities. This could be originated by the adoption of
a double decoder that helped to reduce attention alignment problems at inference
time.

However, we also observed that the model was not able to synthesise interrog-
ative direct sentences from text. This may be caused by the fact that interrogative
sentences were not present in any training sets. Otherwise, the model could have
learnt to reproduce properly the suprasegmental prosody features which distinguish
an assertion from a direct question.

With respect to naturalness, the MOS distributions for real and synthesised
speech are reported as histograms in Fig. 2b. In addition, to visualise clearly the
differences between these two score distributions, two paired plots are presented in
Fig. 3b.

Sample size, mean, standard deviation, and confidence interval computed with
empirical bootstrap for both real and synthetic distributions are summarised in
Table 2. Results from Welch’s unequal variance t-test are reported in Table 3.

Ground-truth recordings obtained a higher naturalness MOS (μ = 4.28, σ =
0.86) than did audios synthesised by our model (μ = 3.32, σ = 0.97), t (558) =
12.41, p < 0.05. Our proposed model achieved 3.32 naturalness MOS compared to
4.18 of the ground truth. This might have been due to an evident drawback of the
ICV data set which presents a high level of background noise that the synthesiser
had learnt to reproduce.

In exploratory listening sessions, we noticed that the naturalness of the synthe-
sised voice mainly varied depending on which speaker embedding was adopted
to condition the generative process. Moreover, the model learnt to pause naturally
when punctuation marks, such as comma or full stop, were inserted in the input text.
This was probably the consequence of not having removed punctuation in speech
transcripts when training our system. Thus, the model seems to have learnt some
prosodic aspects connected to the presence of punctuation marks.

In analysing the experimental results for both intelligibility and naturalness, we
were also interested in discovering whether a linear correlation existed between
the amount of training data associated with the voices used to synthesise the
experimental stimuli (i.e. independent variable) and the quality of the speech
synthesised using those voices (i.e. dependent variable). We expected that the more
the system was exposed to speech data belonging to a given voice, the more it would
have been able to synthesise high-quality sentences in that voice.

About intelligibility, for each of the 62 voices used in the experiment, we
computed the total amount of training sentences associated with each of them and
its average intelligibility MOS from the scores it received in the listening test. Then,
we represented each voice as a point in a Cartesian plane, where x axis stood for
its average intelligibility MOS and y axis stood for the amount of time (in minutes)
that voice was seen during training.

Pearson product-moment correlation and Spearman’s rank correlation coefficient
were computed to detect whether a correlation could be identified between the
amount of training data each voice is assigned to and the intelligibility MOS each
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(a) (b)

Fig. 3 I&N scores vs duration of synthetic clips. (a) Voice-wise average intelligibility MOS vs.
duration time in training. (b) Voice-wise average naturalness MOS vs. duration time in training

voice received in the listening test. The p-value for the Pearson correlation between
these two variables was above the significance level of 0.05, which means that the
correlation coefficient was not significant (r = −0.07, n = 62, p = 0.55). The same
occurred for Spearman’s ρ correlation coefficient (rs = 0.03, n = 62, p = 0.83).

The scatterplot of Fig. 3a summarises the results. Overall, no correlation was
found between the amount of training data associated with a given voice and the
intelligibility MOS it received in the subjective listening test.

The same correlation was investigated for speech naturalness. We represented
each of the 62 voice in a Cartesian plane, where x axis stood for its average
naturalness MOS and y axis stood for the amount of time (in minutes) that voice
was seen in training.

We derived Pearson product-moment correlation and Spearman’s rank correla-
tion coefficient to detect whether there existed a correlation between the amount
of training data each voice is presented with and the naturalness MOS each voice
received when evaluated. With respect to Person correlation, the p-value between
these two variables was 0.16 (r = −0.18, n = 62). Since it was greater than the
significance level of 0.05, there was inconclusive evidence about the significance of
the association between these two variables. The same occurred for Spearman’s ρ

correlation coefficient (rs = −0.21, n = 62, p = 0.10).
The scatterplot in Fig. 3b summarises these results. Overall, no correlation was

found between the amount of training data associated with a given voice and the
naturalness MOS it received in the subjective listening test.

8.2 Speaker Similarity

The second experiment was meant to evaluate the effectiveness of the strategy
we used to condition our TTS generative pipeline. Namely, we wanted to assess
whether the model developed the capability of disentangling speaker-dependent
characteristics from linguistic component when synthesising new speech.
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Fig. 4 SS comparison task similarity MOS distributions

(a) (b)

Fig. 5 Speaker similarity vs duration. (a) Separate. (b) Combined

Moreover, we were also interested in verifying whether the speaker encoder
adopted to extract speaker discriminative characteristics was language-agnostic and
thus applicable to Italian speech samples.

Figure 4 reports the MOS distributions of same-speaker, same-gender, and
different-gender similarity judgements as histograms and box plots, respectively. In
addition, to clearly visualise the differences between these three score distributions,
in Fig. 5, two paired plots are presented.

We report mean, standard deviation, and confidence interval computed with
empirical bootstrap for SS comparison task MOS distributions in Table 2.

Results from three Welch’s unequal variance t-tests for speaker similarity are
reported in Table 3. Same-speaker similarity judgements obtained a higher MOS
(μ = 3.45, σ = 1.07) than same-gender similarity judgements (μ = 2.78,
σ = 1.01), t (558) = 7.60, p < 0.05. Same-gender similarity judgements obtained
a higher MOS (μ = 2.78, σ = 1.01) than different-gender similarity judgements
(μ = 1.99, σ = 1.08), t (558) = 8.96, p < 0.05. Same-speaker similarity
judgements obtained a higher MOS (μ = 3.45, σ = 1.07) than different-gender
similarity judgements (μ = 1.99, σ = 1.08), t (558) = 16.05, p < 0.05.

On one hand, same-speaker similarity average score amounts to 3.45, which
indicates a reasonable resemblance between the voices of audios synthesised in a
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given voice and their real counterparts. On the other hand, same-gender similarity
MOS is 2.78, while different-gender similarity MOS is 1.99. It means that the raters
recognised correctly the extent in which voices of speakers of the same or different
genders differed from each other.

These results confirmed the overall model ability to decouple speech content
from speaker-dependent characteristics and to learn high-fidelity speaker represen-
tations that can be exploited to generate speech in a desired voice. In general, our
system was able to transfer effectively speakers’ gender for all the 57 voices used in
the experiment (Table 2).

In exploratory listening sessions, we noticed mismatches on regional accent,
between synthesised and target voices. This could have influenced negatively the
similarity judgements since participants were not told how to judge accents, so they
could have rated poorly because of accent mismatches rather than because of low
model quality. Accent mismatches could have been caused by the use of a speaker
encoder trained only on English-accented speech. Since English and Italian do not
match in terms of accent, this could have prevented the system from properly and
systematically transferring accents from target to synthesised audios.

However, some raters reported that the accent of the synthesised speech exhibited
a clear resemblance with the accent of the original recording from the same speaker.
This effect was larger on IVF data set which contains more marked regional accents.
It follows that, to better exert a control on the synthesised rendition, a further
refinement is required to decouple speaker individual characteristics from prosody
and linguistic features.

As for the previous experiment, in analysing the results, we were interested in
verifying whether a correlation existed between the amount of training recordings
associated with the voices used to synthesised the experimental stimuli (i.e.
independent variable) and the degree of resemblance (i.e. dependent variable) that
particular voice exhibited with its real counterpart. We expected that the more the
system had been exposed to speech data belonging to a given voice, the more it
would have been able to transfer speaker-dependent characteristics at inference time.

In assessing whether such correlation occurred, we adopted both a disaggregated
and an aggregated approach to represent the similarity MOS score associated with
each voice.

In the first approach, we intended the similarity score as three distinct scores.
Namely, for each of the 57 voices used in the experiment, we computed comparison
task average similarity MOS, separately. Additionally, we computed the amount of
training data (in minutes) associated with each of these voices. It follows that each
voice used in the experiment was represented in a Cartesian plane, where the x axis
stood for either its comparison task average similarity score and y axis stood for the
amount of time that voice was seen in training.

We derived the Pearson product-moment correlation and Spearman’s rank cor-
relation coefficient between comparison task average scores and the corresponding
amount of recordings associated with each voice in training. The p-value for the
Pearson correlation between the same-speaker similarity MOS and the amount
of training data was above the significance level of 0.05, which indicated that
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the correlation coefficient was not significant (r = 0.21, n = 57, p = 0.11).
The same occurred for the Pearson correlation computed between same-gender
similarity MOS and the amount of training data synthesised (r = −0.01, n = 57,
p = 0.92) and between different-gender similarity MOS and the amount of training
data synthesised (r = 0.03, n = 57, p = 0.79).

Concerning Spearman’s ρ correlation coefficient, the p-value between SS sim-
ilarity MOS and the amount of training recordings is about 0.40, which indicates
that there was a moderate positive correlation [6] between these two variables
(p = 0.002, n = 57). Differently, the p-value for Spearman’s correlation between
same-gender similarity MOS and the amount of training data synthesised was above
the significance level of 0.05, which indicates that the correlation coefficient was
not significant (rs = 0.22, n = 56, p = 0.08). The same occurred between the
different-gender similarityMOS and the amount of training data (rs = 0.14, n = 56,
p = 0.30).

A scatterplot in Fig. 5a summarises these findings. It highlights that in general
no correlation exists between the amount of training data associated with a given
voice and the similarity MOS evaluations it received in the subjective listening test.
However, a moderate correlation can be detected between same-speaker similarity
MOS and the amount of training data (green dots on the right).

In verifying the existence of such correlation, the other approach we adopted
to represent the similarity MOS was to assign to each voice a single score. This
score was derived by subtracting from the same-speaker similarity MOS the average
between same-gender and different-gender similarity MOS. Thus, each voice used
in the experiment was represented in a Cartesian plane, where the x axis stood for
its aggregated similarity MOS score and y axis stood for the amount of time the
spectrogram predictor processed that voice during training.

We computed the Pearson product-moment correlation and Spearman’s rank
correlation coefficient between the aggregated similarity MOS and the amount of
time each voice was seen in training. The p-value for the Pearson correlation was
above the significance level of 0.05, which indicates that the correlation coefficient
was not significant (r = 0.15, n = 56, p = 0.23). The same occurred for
Spearman’s ρ correlation (rs = 0.21, n = 56, p = 0.10).

A scatterplot in Fig. 5b summarises these results. Overall, no correlation was
derived between the amount of training data associated with the speakers used to
construct the experimental stimuli and their similarity aggregated MOS.

Since we didn’t find significant correlations between intelligibility, naturalness,
and speaker similarity evaluations and the amount of training data, we concluded
that the model acquired a discrete ability to generalise to speakers for which a
low amount of training recordings was provided or even to speakers unseen during
training.
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9 Conclusion and Future Work

In this paper, we showed our approach to adapt a speech synthesis pipeline from
English to Italian. The procedure was language-agnostic, but spectrogram prediction
network required fine-tuning data in the target language. To show how some pipeline
components can be used without language adaptation, we also introduced a speaker
embedding network (to achieve speaker conditioning) and a neural vocoder.

Opinion scores from a human evaluation session showed that the adaptation
was successful in terms of intelligibility and naturalness. Concerning speaker
conditioning, the result was not as sharp as for the first evaluation; yet, we obtained
a satisfying similarity score, matching that of the reference model.

In general, the main issue arising in modelling prosody features implicated in
conveying linguistic and non-linguistic information in speech is that they are fully
entangled. However, some of these characteristics are speaker-dependent, such as
accent and idiolect, while others are speaker-independent such as prosodic phrasing,
lexical stress, and tune variation. Thus, if on one side controlling a given prosody
phenomenon using a unique latent embedding space would allow a complete
control over all linguistic and non-linguistic components, disentangling speaker-
dependent and speaker-independent characteristics enables simplified models and
better decoupling, from a human perspective, of the controlled aspects.

Traditionally, prosody modelling relied on labelling prosodic phenomena and
developing rule-based systems or statistical models from speech data. These
strategies allow a high control on speech products, but they require to derive hand-
crafted features, which is difficult and time-consuming in the presence of large data
sets. In contrast, end-to-end neural TTS systems permit to generate high-fidelity
speech with a simplified pipeline and to learn prosody as an inherent part of the
model. Even though these unsupervised methods are extensively used, they still
miss exerting an accurate and clear control over the output prosody.

Thus, future research will focus on different prosody phenomena, to identify
strategies to model micro and macro prosody patterns. To do so, a possibility will be
to leverage independent representations, in the form of GST or latent vectors from a
variational auto-encoder (VAE), for each of the speech traits of interest. In addition,
a multi-head attention mechanism can increase the system parallelisation capability
and help to cope with the hardness arising with RNN application in modelling
human speech long-distance dependencies.

On the whole, to improve the model ability to regulate its generation in
accordance to the mental and emotional status of its interlocutor, we could augment
the input with a multi-modal stream of information, encoding the features of the
previous conversational turn. For instance, the user’s prompt could be represented
by feeding the TTS with a visual input encoding the user’s facial expression, an
acoustic input encoding prosodic information characterising her/his speech, and a
linguistic embedding encoding information related to the meaning of her/his words.
The TTS should then be trained to align its generation in terms of prosody and
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linguistic content, in accordance with the previous conversational turn—thing that
we, as humans, do in every conversational exchange.

Acknowledgments This work was partially supported by the European Union’s Horizon 2020
projectWorkingAge (grant agreement no. 826232).

Appendix

The source code developed during this project is available at the following link:
https://github.com/vincenzo-scotti/ITAcotron_2. Inside the repository, we also pro-
vide the links to download the weights of the fine-tuned model ITAcotron 2, for
Italian speech synthesis. We remind that the original source code we forked, and the
weights of the speaker encoder and neural vocoder, was taken from the reference
open-source project developed by Mozilla8
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