
Signals and Communication Technology

Mourad Abbas Editor

Analysis and
Application
of Natural
Language and
Speech Processing

Signals and Communication Technology

Series Editors

Emre Celebi, Department of Computer Science, University of Central Arkansas,
Conway, AR, USA

Jingdong Chen, Northwestern Polytechnical University, Xi’an, China

E. S. Gopi, Department of Electronics and Communication Engineering, National
Institute of Technology, Tiruchirappalli, Tamil Nadu, India

Amy Neustein, Linguistic Technology Systems, Fort Lee, NJ, USA

H. Vincent Poor, Department of Electrical Engineering, Princeton University,
Princeton, NJ, USA

Antonio Liotta, University of Bolzano, Bolzano, Italy

Mario Di Mauro, University of Salerno, Salerno, Italy

This series is devoted to fundamentals and applications of modern methods of
signal processing and cutting-edge communication technologies. The main topics
are information and signal theory, acoustical signal processing, image processing
and multimedia systems, mobile and wireless communications, and computer and
communication networks. Volumes in the series address researchers in academia
and industrial R&D departments. The series is application-oriented. The level of
presentation of each individual volume, however, depends on the subject and can
range from practical to scientific.

Indexing: All books in “Signals and Communication Technology” are indexed
by Scopus and zbMATH

For general information about this book series, comments or suggestions, please
contact Mary James at mary.james@springer.com or Ramesh Nath Premnath at
ramesh.premnath@springer.com.

Mourad Abbas
Editor

Analysis and Application of
Natural Language and
Speech Processing

Editor
Mourad Abbas
High Council of Arabic
Algiers, Algeria

ISSN 1860-4862 ISSN 1860-4870 (electronic)
Signals and Communication Technology
ISBN 978-3-031-11034-4 ISBN 978-3-031-11035-1 (eBook)
https://doi.org/10.1007/978-3-031-11035-1

© The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland
AG 2023
This work is subject to copyright. All rights are solely and exclusively licensed by the Publisher, whether
the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse
of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and
transmission or information storage and retrieval, electronic adaptation, computer software, or by similar
or dissimilar methodology now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors, and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or
the editors give a warranty, expressed or implied, with respect to the material contained herein or for any
errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional
claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

 -2016 39373 a -2016 39373 a

https://doi.org/10.1007/978-3-031-11035-1

Preface

The increased access to powerful processors has made possible significant progress
in natural language processing (NLP). We find more research in NLP targeting
diverse spectrum of major industries that use voice recognition, text-to-speech
(TTS) solutions, speech translation, natural language understanding (NLU), and
many other applications and techniques related to these areas.

This book presents the latest research related to natural language processing and
speech technology and sheds light on the main topics for readers interested in this
field. For TTS and automatic speech recognition, it is demonstrated how to explore
transfer learning in order to generate speech in other voices from TTS of a specific
language (Italian), and to improve speech recognition for non-native English.
Language resources are the cornerstone for building high-quality systems; however,
some languages, as Arabic, are considered under-resourced compared to English.
Thus, a new Arabic linguistic pipeline for NLP is presented to enrich the Arabic
language resources and to solve common NLP issues, like word segmentation, POS
tagging, and lemmatization. Arabic named entity recognition, a challenging task,
has been resolved within this book using transformer-based-CRF model.

In addition, the readers of this book will discover conceptions and solutions for
other NLP issues such as language modeling, question answering, dialog systems,
and sentence embeddings.

Mourad Abbas

v

Contents

ITAcotron 2: The Power of Transfer Learning in Expressive TTS
Synthesis . 1
Anna Favaro, Licia Sbattella, Roberto Tedesco, and Vincenzo Scotti

Improving Automatic Speech Recognition for Non-native English
with Transfer Learning and Language Model Decoding . 21
Peter Sullivan, Toshiko Shibano, and Muhammad Abdul-Mageed

Kabyle ASR Phonological Error and Network Analysis . 45
Christopher Haberland and Ni Lao

ALP: An Arabic Linguistic Pipeline . 67
Abed Alhakim Freihat, Gábor Bella, Mourad Abbas, Hamdy Mubarak,
and Fausto Giunchiglia

Arabic Anaphora Resolution System Using New Features:
Pronominal and Verbal Cases . 101
Abdelhalim Hafedh Dahou, Mohamed Abdelmoazz,
and Mohamed Amine Cheragui

A Commonsense-Enhanced Document-Grounded Conversational
Agent: A Case Study on Task-Based Dialogue . 123
Carl Strathearn and Dimitra Gkatzia

BloomQDE: Leveraging Bloom’s Taxonomy for Question
Difficulty Estimation . 145
Sabine Ullrich, Amon Soares de Souza, Josua Köhler,
and Michaela Geierhos

A Comparative Study on Language Models for Dravidian Languages 157
Rahul Raman, Danish Mohammed Ebadulla, Hridhay Kiran Shetty,
and Mamatha H.R.

vii

viii Contents

Arabic Named Entity Recognition with a CRF Model Based
on Transformer Architecture . 169
Muhammad Al-Qurishi, Riad Souissi, and Sarah Al-Qaseemi

Static Fuzzy Bag-of-Words: Exploring Static Universe Matrices
for Sentence Embeddings . 191
Matteo Muffo, Roberto Tedesco, Licia Sbattella, and Vincenzo Scotti

Index . 213

ITAcotron 2: The Power of Transfer
Learning in Expressive TTS Synthesis

Anna Favaro , Licia Sbattella , Roberto Tedesco , and
Vincenzo Scotti

Abstract A text-to-speech (TTS) synthesiser has to generate intelligible and natu-
ral speech while modelling linguistic and paralinguistic components characterising
human voice. In this work, we present ITAcotron 2, an Italian TTS synthesiser able
to generate speech in several voices. In its development, we explored the power
of transfer learning by iteratively fine-tuning an English Tacotron 2 spectrogram
predictor on different Italian data sets. Moreover, we introduced a conditioning
strategy to enable ITAcotron 2 to generate new speech in the voice of a variety
of speakers. To do so, we examined the zero-shot behaviour of a speaker encoder
architecture, previously trained to accomplish a speaker verification task with
English speakers, to represent Italian speakers’ voiceprints. We asked 70 volunteers
to evaluate intelligibility, naturalness, and similarity between synthesised voices
and real speech from target speakers. Our model achieved a MOS score of 4.15
in intelligibility, 3.32 in naturalness, and 3.45 in speaker similarity. These results
showed the successful adaptation of the refined system to the new language and its
ability to synthesise novel speech in the voice of several speakers.

1 Introduction

The development of text-to-speech (TTS) synthesis systems is one of the oldest
problems in the natural language processing (NLP) area and has a wide variety of
applications [14]. Such systems are designed to output the waveform of a voice

A. Favaro (�)
Center for Language and Speech Processing (CLSP), Johns Hopkins University, Baltimore, MD,
USA
e-mail: afavaro1@jhu.edu

L. Sbattella · R. Tedesco · V. Scotti
Dipartimento di Elettronica, Informazione e Bioingegneria (DEIB), Politecnico di Milano,
Milano, MI, Italy
e-mail: licia.sbattella@polimi.it; roberto.tedesco@polimi.it; vincenzo.scotti@polimi.it

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
M. Abbas (ed.), Analysis and Application of Natural Language and Speech
Processing, Signals and Communication Technology,
https://doi.org/10.1007/978-3-031-11035-1_1

1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-11035-1_1&domain=pdf
http://orcid.org/0000-0001-8159-9841
http://orcid.org/0000-0001-5344-5976
http://orcid.org/0000-0002-2830-4247
http://orcid.org/0000-0002-8765-604X

 885
50756 a 885 50756 a

mailto:afavaro1@jhu.edu

 885
55738 a 885 55738 a

mailto:licia.sbattella@polimi.it

 10456
55738 a 10456 55738 a

mailto:roberto.tedesco@polimi.it

 20810 55738 a 20810
55738 a

mailto:vincenzo.scotti@polimi.it

 -2016 61494 a -2016 61494 a

https://doi.org/10.1007/978-3-031-11035-1_1

2 A. Favaro et al.

uttering the input text string. In the last years, the introduction of approaches based
on deep learning (DL), and in particular the end-to-end ones [11, 20, 22, 25], led to
significant improvements.

Most of the evaluations carried out on these models are performed on languages
with many available resources, like English. Thereby, it is hard to tell how good
these models are and whether they are general across languages. With this work,
we propose to study how these models behave with less-resourced languages,
leveraging the transfer learning approach.

In particular, we evaluated the effectiveness of transfer learning on a TTS
architecture, experimenting with the English and Italian languages. Thus, we started
from the English TTS Tacotron 2 and fine-tuned its training on a collection of Italian
corpora. Then, we extended the resulting model, with speaker conditioning; the
result was an Italian TTS we named ITAcotron 2.

ITAcotron 2 was evaluated, through human assessment, on intelligibility and
naturalness of the synthesised audio clips, as well as on speaker similarity between
target and different voices. In the end, we obtained reasonably good results, in line
with those of the original model.

The rest of this paper is divided into the following sections: In Sect. 2, we
introduce the problem. In Sect. 3, we present some available solutions. In Sect. 4, we
detail the aim of the paper and the experimental hypotheses we assumed. In Sect. 5,
we present the corpora employed to train and test our model. In Sect. 6, we explain
the structure of the synthesis pipeline we are proposing and how we adapted it to
Italian from English. In Sect. 7, we describe the experimental approach we followed
to assess the model quality. In Sect. 8, we comment on the results of our model.
Finally, in Sect. 9, we sum up our work and suggest possible future extensions.

2 Background

Every TTS synthesiser represents an original imitation of the human reading
capability, and, to be implemented, it has to cope with the technological and
imaginative constraints characterising the period of its creation.

In the mid-1980s, the concomitant developments in NLP and digital signal
processing (DSP) techniques broadened the applications of these systems. Their
first employment was in screen reading systems for blind people, where a TTS was
in charge of reading user interfaces and textual contents (e.g. websites, books, etc.),
converting them into speech. Even though the early screen readers (e.g. JAWS1)
sounded mechanical and robotic, they represented a valuable alternative for blind
people to the usual braille reading.

Since the quality of TTS systems has been progressively enhanced, their adoption
was later extended to other practical domains such as telecommunications services,

1 https://www.freedomscientific.com/products/software/jaws.

 -1446 58376 a -1446 58376
a

https://www.freedomscientific.com/products/software/jaws

ITAcotron 2: The Power of Transfer Learning in Expressive TTS Synthesis 3

language education systems, talking books and toys, and video games. In 2004,
Yamaha Corporation released its first version of Vocaloid [16]. It is a voice
synthesising software product, based on diphone concatenation that allows creating
a virtual singer by specifying the text and the melody of a song.

In general, TTS can be conceived as a decoding problem where a highly
“compressed” input sequence (text) has to be “decompressed” into audio. However,
linguistic units (e.g. phonemes, characters, words) are discrete, whereas speech
signals are continuous and longer than textual input sequences; this mismatch causes
prediction errors to accumulate rapidly. Besides, the meaning expressed by an
utterance is typically undermined by its textual counterpart since the same textual
sequence can correspond to several pronunciations and speaking styles.

Nowadays, the hectic development of embodied agent technologies such as
embodied conversational agents (ECA) that adopt mimics, gestures, and speech
to communicate with the human user makes the modelling of human-computer
dialogues a research hotspot. To endow an ECA with a human-like conversational
behaviour, a TTS system cannot just synthesise understandable speech at a fast
rate. Instead, it needs to account for further speech nuances in order to reproduce
elements and peculiarities of human conversations [8].

Thus, to synthesise human-like speech, a TTS has to explicitly or implicitly
model many factors that are not attested in the textual input. This requirement is
invoked by the presence of paralinguistic components characterising human dialogic
exchanges. On the whole, the synthesised speech should express the correct message
(intelligibility) while sounding like human speech (naturalness) and conveying the
right prosody (expressiveness) [31]. This is what makes the development of high-
quality TTS systems a challenging task.

In our daily conversational exchanges, paralinguistic components (the so-called
prosody) are exploited as a whole to attribute mental states and an independent
mental life to our interlocutors. It follows that, if the ultimate goal is to develop an
ECA that can successfully hold a conversation and be mistaken for a human, all of
these components should be taken into account within the modelling pipeline [24].

Prosody is the systematic arrangement of various linguistic units into a single
utterance or group of utterances, which occurs in the process of human speech
production [7]. Its implementation encompasses both segmental and suprasegmental
features of speech, and it aims at conveying linguistic and non-linguistic informa-
tion.

Speech prosody mainly plays the roles of [28]:

• Disambiguating the verbal component of communication (i.e. augmentative
prosody) [21]

• Conveying emotions, intentions, and attitudes in communication (i.e. affective
prosody) [23]

The lack of explicit control on specific speech traits characterises architectures
based on DL. This usually prevents them from reproducing accurately prosodic
phenomena, both locally and globally. However, the end-to-end learning approach
allows for the introduction of rich conditioning on various prosodic attributes. Thus,

4 A. Favaro et al.

besides generating a comprehensible synthetic product, Seq-2-Seq models enable
the synthesis of speech in multiple voices, in various styles, and with different
emotional nuances. In the following, we present some modern approaches to TTS,
which mostly inspired our work.

3 Related Work

Modern, DL-based TTS pipelines are composed of two main blocks: a spectro-
gram predictor and a vocoder [14]. These components take care of, respectively,
converting a string of characters into a (mel-scaled) spectral representation of the
voice signal and converting the spectral representation to an actual waveform.
Optionally, input text—apart from normalisation—undergoes phonemisation to
present the input to the spectrogram predictor as a sequence of phonemes rather
than graphemes.

Recent end-to-end solutions for spectrogram prediction are built with an encoder-
decoder architecture [20, 22, 25, 32]. The encoder maps the input sequence to a
hidden continuous space, and the decoder takes care of generating, autoregressively,
the spectrogram from the hidden representation. To produce the alignment between
encoder and decoder, an attention mechanism [2] is introduced between these two
blocks.

Among the available architectures for spectrogram prediction, Tacotron [32], and
in particular its advanced version, Tacotron 2 [25], seems to be the most flexible and
re-usable.

Many works have been developed to introduce conditioning into Tacotron,
obtaining a fine-grained control over different prosodic aspects. The Global Style
Token (GST) approach enabled control over the speaking style in an unsuper-
vised manner [33]. Another controllable aspect is the speaker voice, introduced
through additional speaker embeddings extracted through a speaker verification
network [13]. Finally, [27] proposed a methodology to control the prominence
and boundaries by automatically deriving prosodic tags to augment the input
character sequence. It is also possible to combine multiple techniques into a single
conditioned architecture, as shown by Skerry-Ryan et al. [26].

Neural vocoders completed the DL-based TTS pipeline improving consistently
the quality of synthesised voice [15, 17, 30, 34]. These vocoders substituted the
Griffin-Lim algorithm [9], which was characterised by artefacts and poor audio
quality, especially if compared with newer neural approaches. These components,
different from the spectrogram predictors, do not strictly depend on the input
language—their primary role is to invert a spectral representation into the time
domain; thus, they are thought to be language-agnostic.

As premised, the available models are primarily trained and evaluated on English
corpora, due to data availability. A general solution for data scarcity is to leverage a
technique called transfer learning [35] that mimics what typically occurs in human
learning. In most learning environments, in fact, people do not start from scratch

ITAcotron 2: The Power of Transfer Learning in Expressive TTS Synthesis 5

when forming hypotheses and drawing inferences. Rather, knowledge gained from
one domain is abstracted and re-used in other domains. The more related a new task
is to our previous experience, the easier we can master it.

The lack of sufficiently large data sets makes DL hard to apply and yield
satisfying results. The mechanism of transfer learning [29] attempts to cope with
this issue by re-using the hidden representations learnt performing a task on a
domain similar to the target one. The idea is to leverage the knowledge derived
solving one or more source tasks and use it to improve the results in a new target
task. Techniques that enable knowledge transfer represent progress towards making
machine learning as efficient as human learning.

For our work, we applied a variant of transfer learning called fine-tuning, where
we used the pre-trained weights of the network as initialisation for the actual training
on the new task [35].

4 Aim and Experimental Hypotheses

Whereas recent research mainly focuses on further refining the intelligibility and
naturalness of the synthesised product, speech expressiveness requires for its
part explicit modelling. The lack of a similar control makes the prosody of the
synthesised speech feel like an “average, anonymous voice style”, preventing it from
fully displaying the range of prosody variations occurring in human speech.

In this work, we address the modelling of speech expressiveness by presenting
a customised TTS architecture, ITAcotron 2, which is able not only to generate
intelligible and natural Italian speech but also to emulate the voice of a given
speaker.

A speech synthesiser of this kind can endow an ECA with a personalised voice,
which contributes to increasing human engagement in the ongoing conversation [3,
19]. Furthermore, such a system can have a wider range of useful applications, such
as speech-to-speech translation, navigation systems, and fairy tale reciting. It could
also allow people who have lost their voices to recover their ability to communicate
naturally even though they can’t provide a satisfying amount of previously recorded
voice samples.

Note that, in achieving this goal, we distanced ourselves from the potential
misuses accompanying the development of this technology. Impersonating some-
one’s voice without their consent represents a clearer example of such a drift. In
developing our system, we stuck to AI Google’s principles,2 and we hope that future
users and developers will act in full compliance with these guidelines.

The experimental hypotheses underlying our research are the following: Firstly,
we examined the possibility of performing language adaptation using transfer
learning. To do so, we fine-tuned a customised TTS model, previously trained on

2 https://ai.google/principles.

 -1446 58376 a -1446 58376
a

https://ai.google/principles

6 A. Favaro et al.

English data, porting it to the Italian language. Then, we conducted a listening
task to collect subjective ratings expressing the intelligibility and naturalness of the
synthesised Italian speech.

Secondly, we investigated the feasibility of modelling fine-grained, speaker-
dependent characteristics while generating new speech from text. These features
crucially contribute to the uniqueness of each utterance for the fact that every
speaker is provided with a unique vocal identity. Thus, we represented speakers’
voiceprints as fixed-dimensional embeddings (i.e. d-vectors) to condition the speech
generation with the purpose of synthesising different voices from a single model.

Finally, since we employed a speaker encoder architecture that was previously
trained on an English verification task to extract speakers’ voiceprints, we implicitly
tested the feasibility of performing language adaptation. In fact, if the speaker
encoder was able to derive discriminative features for representing English speakers,
it should have been able to do the same for Italian speakers. Thus, we designed
this experiment to prove whether the speaker encoder was language-agnostic and
applicable to a language that differs from the source one (English), without being
re-trained or fine-tuned. We did so because we wanted to observe the zero-shot
behaviour of this network in the new language (Italian). We apply the same strategy
to the neural vocoder, by using a network previously trained with English recordings
and not refined on the new language.

5 Corpora

In this work, we considered three different corpora of Italian speech, containing
recited utterances. We reported the main statistics about the corpora in Table 1. All
clips were re-sampled at 22.050 Hz.

Mozilla Common Voice3 (MCV) is a publicly available corpus of crowd-sourced
audio recordings [1]. Contributors can either donate their voice by reading prompted
sentences or validate clips by listening to others’ recordings. Clips in this corpus
have a native sample rate of 48.000 Hz.

Table 1 Statistics on the considered corpora for the Italian fine-tuning of the spectrogram predictor:
Mozilla Common Voice (MCV), VoxForge (VF), and Ortofonico (Ort)

Time [h] Clips Speakers

Corpus Train Validation Test Train Validation Test Train Validation Test

MCV 79.1 26.5 26.4 50,322 16,774 16,775 5151 3719 3743

VF 13.6 1.8 1.8 7176 913 918 903 584 597

Ort 2.9 0.4 0.3 1436 164 159 20 20 20

3 https://commonvoice.mozilla.org.

 -1446 58376 a -1446 58376
a

https://commonvoice.mozilla.org

ITAcotron 2: The Power of Transfer Learning in Expressive TTS Synthesis 7

VoxForge4 (VF) is a multilingual open-source speech database that includes
audio clips collected from volunteer speakers. Clips in this corpus have a native
sample rate of 16.000 Hz.

Ortofonico (Ort) is a subset of the CLIPS5 corpus of Italian speech, collected
for a project funded by the Italian Ministry of Education, University and Research.
Audio recordings come from radio and television programmes, map task dialogues,
simulated conversations, and text excerpts read by professional speakers. Clips in
this corpus subset have a native sample rate of 22.050 Hz.

Apart from the three presented corpora, we used some clips from a private
collection of audiobooks in the human evaluation step. We reported further details
in Sect. 7.

6 ITAcotron 2 Synthesis Pipeline

The model we propose is called ITAcotron 2. It is an entire TTS pipeline, complete
with speaker conditioning, based on Tacotron 2 [13, 25]. The pipeline is composed
of a phonemiser, a speaker encoder (used for the conditioning step), a spectrogram
predictor, and a neural vocoder. We reported a scheme of the pipeline in Fig. 1.

The core of the model we are presenting is the spectrogram predictor. We referred
to the Tacotron 2 implementation and weights provided by Mozilla6 [10]. The

Fig. 1 ITAcotron 2 speech synthesis pipeline

4 http://www.voxforge.org.
5 http://www.clips.unina.it.
6 Repository link, https://github.com/mozilla/TTS; reference commit link, https://github.com/
mozilla/TTS/tree/2136433.

 -1446 54612 a -1446 54612 a

http://www.voxforge.org

 -1446 55940 a -1446 55940
a

http://www.clips.unina.it

 5436 57269
a 5436 57269 a

https://github.com/mozilla/TTS

 27735 57269 a 27735 57269 a

https://github.com/mozilla/TTS/tree/2136433
https://github.com/mozilla/TTS/tree/2136433

8 A. Favaro et al.

model uses a phoneme encoder to represent the input sequence to utter and an
autoregressive decoder to generate the target spectrogram; an intermediate attention
mechanism provides the input-output alignment. With respect to the original imple-
mentation, we only extended the employed phonemiser7 to accommodate Italian’s
accented vowels as additional input characters. Code and pre-trained weights for
speaker encoder and vocoder came from the Tacotron 2 same source.

We divided the fine-tuning process of the spectrogram predictor into two steps.
In this way, we iteratively improved the output quality.

The former used only the data coming from the MCV corpus, which constituted
the majority of the available data. Due to the low quality of the input audio
recordings, we leveraged this step mostly to drive the network’s weights towards the
target language. The noisy and sometimes poorly uttered clips of this corpus resulted
in synthesised clips of poor quality, which sometimes were impossible to under-
stand. This fine-tuning was performed for 52.271 update steps (identified through
validation) on mini-batches containing 64 clips each; other hyper-parameters were
left unchanged from the reference implementation.

The latter fine-tuning leveraged both VF and Ort corpora. Audio clips in these
corpora were of a noticeable higher quality than those of MCV in terms of audio
clearness and speaker articulation. As a result, the outputs of this final stage
had significantly less background noise, and the content was highly intelligible.
We performed this second fine-tuning for 42.366 update steps (identified through
validation) on mini-batches containing 42 clips each; other hyper-parameters were
left unchanged from the reference implementation.

To achieve speaker conditioning, we concatenated the encoder representation
of the spectrogram predictor with a speaker embedding. These embeddings were
extracted from a speaker verification model [4], similar to that of the reference work
by [13]. For the vocoder, instead, we adopted the more recent full-band MelGAN
(FB-MelGAN) vocoder [34].

Notice that while we fine-tuned the spectrogram synthesis network, we did not
apply the same process to the speaker embedding and neural vocoder networks. We
did so because we wanted to observe the zero-shot behaviour of these networks
in the new language. In this way, we could assess whether the two models are
language-agnostic.

7 Evaluation Approach

Similar to [13], we divided the evaluation process of our fine-tuned model into two
listening experiments:

7 https://pypi.org/project/phonemizer/.

 -1446 58376 a -1446 58376
a

https://pypi.org/project/phonemizer/

ITAcotron 2: The Power of Transfer Learning in Expressive TTS Synthesis 9

• Evaluation of intelligibility and naturalness (I&N) of the speaker-conditioned
synthesised samples

• Evaluation of speaker similarity (SS) of the speaker-conditioned synthesised
samples

For both experiments, we asked subjects to rate different aspects—in a 1 to 5 scale,
with 0.5 increments [12]—of several audio clips. We divided the 70 participants into
20 experimental groups for both listening tasks. We prompted participants of each
group with the same clips.

In the I&N experiment, we assigned each group with 4 clip pairs, for a total
of 160 among all groups. Each clip pair was composed of a real clip (ground
truth) coming from one of the corpora (including an additional private corpus of
audiobooks) and a synthetic clip generated in the voice of the ground truth, but
with different speech content (i.e. the same voice uttered a different sentence). At
this step, we asked subjects to rate the intelligibility and naturalness of each clip,
separately. Clips were presented in a random order (to avoid biases) and were rated
right after listening.

In the SS experiment, we assigned each group with 16 clips, split into 4 subsets,
for a total of 160 among all groups. We divided the SS experiment into three tasks.
Each task was composed of a synthetic clip and three real clips. Subjects compared
the synthetic clip to each of the other three real clips:

1. A real clip containing an utterance in the voice of the same speaker of the
synthetic utterance (the same-speaker comparison task)

2. A real clip containing an utterance in the voice of a different speaker having
the same gender of the speaker of the synthetic utterance (the same-gender
comparison task)

3. A real clip containing an utterance in the voice of a different speaker having
different gender of the speaker of the synthetic utterance (the different-gender
comparison task)

At this step, we asked subjects to rate how similar the synthetic voice was to the one
we paired it with (knowing that the fixed clip was synthetic and the other three real).
Real clips were presented in a random order (to avoid biases), and subjects rated the
similarity right after listening to a synthetic-real pair.

8 Results

In this section, we report results on the two experiments described in the previous
section, by providing both quantitative and qualitative analyses.

We report the mean opinion score (MOS) of each task in Table 2. The overall
scores were satisfying and reflected the intentions and the expectations underlying
this research.

10 A. Favaro et al.

Table 2 Results of the listening tasks. MOS values are reported as μ±σ . All values are computed
with a support of 280 samples

(Comparison) 95% confidence

Task Task Model MOS interval

Intelligibility and naturalness Intelligibility ITAcotron 2 4.15 ± 0.78 [4.07, 4.23]

Ground truth 4.43 ± 0.74 [4.36, 4.50]

Naturalness ITAcotron 2 3.32 ± 0.97 [3.22, 3.41]

Ground truth 4.28 ± 0.86 [4.20, 4.37]

Speaker similarity Same speaker ITAcotron 2 3.45 ± 1.07 [3.34, 3.56]

Same gender ITAcotron 2 2.78 ± 1.01 [2.68, 2.89]

Different gender ITAcotron 2 1.99 ± 1.08 [1.91, 2.08]

Concerning the I&N evaluation, the first thing that jumps to the eye is the high
intelligibility score, very close to real clips. This high score provides clear evidence
of how easy it was to understand the linguistic content of the synthetic clips. The
naturalness score, however, is lower than that of intelligibility, meaning that it is still
possible to distinguish between real and synthetic clips.

Concerning the SS evaluation, instead, the thing that jumps to the eye is the
progressive drop in the MOS value. This reduction is precisely the expected
behaviour [18]—changing the speaker should lead to lower similarity, especially
when the two speakers have different gender. Thus, the MOS obtained for the same-
speaker task was the best one, with a promising absolute value; in other words,
the system was able to provide a good imitation of the speaker’s voice. Then,
changing speaker, the MOS dropped, meaning that the synthetic voice was able
to express the “personality” of the speaker it was imitating, and so it was clearly
distinguishable from other voices). Finally, as expected, a further drop was observed
by the different-gender similarity evaluations.

The figures we obtained are close to those obtained by the reference work [13]
on similar tasks, for English. However, we choose not to report a direct comparison
against the work mentioned above as it focuses on English and the tasks are not
perfectly comparable with ours. Nevertheless, obtaining similar scores is a hint
that our approach seems sound. More detailed results on the two experiments we
conducted are presented in the following.

8.1 Speech Intelligibility and Naturalness

This experiment was meant to evaluate the language adaptation hypothesis by
assessing the degree of intelligibility and naturalness exhibited by the synthesised
speech. MOS evaluation distributions, for real and synthesised speech, are reported
as histograms in Fig. 2.

ITAcotron 2: The Power of Transfer Learning in Expressive TTS Synthesis 11

(a) (b)

Fig. 2 MOS distributions of real and synthetic clips. (a) Intelligibility MOS distributions. (b)
Naturalness MOS distributions

Table 3 Results of Welch’s t-test with degrees of freedom (DoF) computed as n1 −n2 −2, where
n1 and n2 are the sample sizes of the first and second sample. The t-value is the value used to
produce the probability value (p-value) based on Student’s t-distribution. All scores are computed
with 558 DoF

Sample

Task First Second t-value p-value

Intelligibility ITAcotron 2 Ground truth 4.375 1.448e–6

Naturalness ITAcotron 2 Ground truth 12.414 2.237e–31

Speaker similarity Same speaker Same gender 7.606 1.208e–13

Same speaker Different gender 16.054 5.812e–48

Same gender Different gender 8.962 4.820e–18

Table 2 reports sample size, mean, standard deviation, and 95% confidence
interval computed with empirical bootstrap [5] for real and synthetic audio MOS
distributions. Results from Welch’s unequal variance t-test for intelligibility are
reported in Table 3.

Ground-truth recordings obtained a higher intelligibility MOS (μ = 4.43, σ =
0.74) than did audio clips synthesised by our model (μ = 4.15, σ = 0.78), t (558) =
4.37, p < 0.05. Our proposed model achieved 4.1 intelligibility MOS compared to
4.34 of the ground truth. This confirmed the system ability to synthesise speech with
highly intelligible content.

The speech content of the data sets used to train our synthesiser, especially in the
second fine-tuning, was in most of the cases clearly and smoothly comprehensible.
This could have influenced positively the output intelligibility. Moreover, using a
significant amount of hours and speakers in training could have lead the model both
to improve its generalisation ability and to distinguish easily useless from useful
spectral information at prediction time. These aspects could have jointly increased
the intelligibility of the synthesis.

In exploratory listening sessions, we noticed that the model learnt to smoothly
generate out of vocabulary words, long input texts, and complex syntactic structures
such as long-distance dependencies and topicalised sentences. Indeed, and surpris-

12 A. Favaro et al.

ingly, there were cases in which its generative performance seemed to be enhanced
by the presence of such complexities. This could be originated by the adoption of
a double decoder that helped to reduce attention alignment problems at inference
time.

However, we also observed that the model was not able to synthesise interrog-
ative direct sentences from text. This may be caused by the fact that interrogative
sentences were not present in any training sets. Otherwise, the model could have
learnt to reproduce properly the suprasegmental prosody features which distinguish
an assertion from a direct question.

With respect to naturalness, the MOS distributions for real and synthesised
speech are reported as histograms in Fig. 2b. In addition, to visualise clearly the
differences between these two score distributions, two paired plots are presented in
Fig. 3b.

Sample size, mean, standard deviation, and confidence interval computed with
empirical bootstrap for both real and synthetic distributions are summarised in
Table 2. Results from Welch’s unequal variance t-test are reported in Table 3.

Ground-truth recordings obtained a higher naturalness MOS (μ = 4.28, σ =
0.86) than did audios synthesised by our model (μ = 3.32, σ = 0.97), t (558) =
12.41, p < 0.05. Our proposed model achieved 3.32 naturalness MOS compared to
4.18 of the ground truth. This might have been due to an evident drawback of the
ICV data set which presents a high level of background noise that the synthesiser
had learnt to reproduce.

In exploratory listening sessions, we noticed that the naturalness of the synthe-
sised voice mainly varied depending on which speaker embedding was adopted
to condition the generative process. Moreover, the model learnt to pause naturally
when punctuation marks, such as comma or full stop, were inserted in the input text.
This was probably the consequence of not having removed punctuation in speech
transcripts when training our system. Thus, the model seems to have learnt some
prosodic aspects connected to the presence of punctuation marks.

In analysing the experimental results for both intelligibility and naturalness, we
were also interested in discovering whether a linear correlation existed between
the amount of training data associated with the voices used to synthesise the
experimental stimuli (i.e. independent variable) and the quality of the speech
synthesised using those voices (i.e. dependent variable). We expected that the more
the system was exposed to speech data belonging to a given voice, the more it would
have been able to synthesise high-quality sentences in that voice.

About intelligibility, for each of the 62 voices used in the experiment, we
computed the total amount of training sentences associated with each of them and
its average intelligibility MOS from the scores it received in the listening test. Then,
we represented each voice as a point in a Cartesian plane, where x axis stood for
its average intelligibility MOS and y axis stood for the amount of time (in minutes)
that voice was seen during training.

Pearson product-moment correlation and Spearman’s rank correlation coefficient
were computed to detect whether a correlation could be identified between the
amount of training data each voice is assigned to and the intelligibility MOS each

ITAcotron 2: The Power of Transfer Learning in Expressive TTS Synthesis 13

(a) (b)

Fig. 3 I&N scores vs duration of synthetic clips. (a) Voice-wise average intelligibility MOS vs.
duration time in training. (b) Voice-wise average naturalness MOS vs. duration time in training

voice received in the listening test. The p-value for the Pearson correlation between
these two variables was above the significance level of 0.05, which means that the
correlation coefficient was not significant (r = −0.07, n = 62, p = 0.55). The same
occurred for Spearman’s ρ correlation coefficient (rs = 0.03, n = 62, p = 0.83).

The scatterplot of Fig. 3a summarises the results. Overall, no correlation was
found between the amount of training data associated with a given voice and the
intelligibility MOS it received in the subjective listening test.

The same correlation was investigated for speech naturalness. We represented
each of the 62 voice in a Cartesian plane, where x axis stood for its average
naturalness MOS and y axis stood for the amount of time (in minutes) that voice
was seen in training.

We derived Pearson product-moment correlation and Spearman’s rank correla-
tion coefficient to detect whether there existed a correlation between the amount
of training data each voice is presented with and the naturalness MOS each voice
received when evaluated. With respect to Person correlation, the p-value between
these two variables was 0.16 (r = −0.18, n = 62). Since it was greater than the
significance level of 0.05, there was inconclusive evidence about the significance of
the association between these two variables. The same occurred for Spearman’s ρ

correlation coefficient (rs = −0.21, n = 62, p = 0.10).
The scatterplot in Fig. 3b summarises these results. Overall, no correlation was

found between the amount of training data associated with a given voice and the
naturalness MOS it received in the subjective listening test.

8.2 Speaker Similarity

The second experiment was meant to evaluate the effectiveness of the strategy
we used to condition our TTS generative pipeline. Namely, we wanted to assess
whether the model developed the capability of disentangling speaker-dependent
characteristics from linguistic component when synthesising new speech.

14 A. Favaro et al.

Fig. 4 SS comparison task similarity MOS distributions

(a) (b)

Fig. 5 Speaker similarity vs duration. (a) Separate. (b) Combined

Moreover, we were also interested in verifying whether the speaker encoder
adopted to extract speaker discriminative characteristics was language-agnostic and
thus applicable to Italian speech samples.

Figure 4 reports the MOS distributions of same-speaker, same-gender, and
different-gender similarity judgements as histograms and box plots, respectively. In
addition, to clearly visualise the differences between these three score distributions,
in Fig. 5, two paired plots are presented.

We report mean, standard deviation, and confidence interval computed with
empirical bootstrap for SS comparison task MOS distributions in Table 2.

Results from three Welch’s unequal variance t-tests for speaker similarity are
reported in Table 3. Same-speaker similarity judgements obtained a higher MOS
(μ = 3.45, σ = 1.07) than same-gender similarity judgements (μ = 2.78,
σ = 1.01), t (558) = 7.60, p < 0.05. Same-gender similarity judgements obtained
a higher MOS (μ = 2.78, σ = 1.01) than different-gender similarity judgements
(μ = 1.99, σ = 1.08), t (558) = 8.96, p < 0.05. Same-speaker similarity
judgements obtained a higher MOS (μ = 3.45, σ = 1.07) than different-gender
similarity judgements (μ = 1.99, σ = 1.08), t (558) = 16.05, p < 0.05.

On one hand, same-speaker similarity average score amounts to 3.45, which
indicates a reasonable resemblance between the voices of audios synthesised in a

ITAcotron 2: The Power of Transfer Learning in Expressive TTS Synthesis 15

given voice and their real counterparts. On the other hand, same-gender similarity
MOS is 2.78, while different-gender similarity MOS is 1.99. It means that the raters
recognised correctly the extent in which voices of speakers of the same or different
genders differed from each other.

These results confirmed the overall model ability to decouple speech content
from speaker-dependent characteristics and to learn high-fidelity speaker represen-
tations that can be exploited to generate speech in a desired voice. In general, our
system was able to transfer effectively speakers’ gender for all the 57 voices used in
the experiment (Table 2).

In exploratory listening sessions, we noticed mismatches on regional accent,
between synthesised and target voices. This could have influenced negatively the
similarity judgements since participants were not told how to judge accents, so they
could have rated poorly because of accent mismatches rather than because of low
model quality. Accent mismatches could have been caused by the use of a speaker
encoder trained only on English-accented speech. Since English and Italian do not
match in terms of accent, this could have prevented the system from properly and
systematically transferring accents from target to synthesised audios.

However, some raters reported that the accent of the synthesised speech exhibited
a clear resemblance with the accent of the original recording from the same speaker.
This effect was larger on IVF data set which contains more marked regional accents.
It follows that, to better exert a control on the synthesised rendition, a further
refinement is required to decouple speaker individual characteristics from prosody
and linguistic features.

As for the previous experiment, in analysing the results, we were interested in
verifying whether a correlation existed between the amount of training recordings
associated with the voices used to synthesised the experimental stimuli (i.e.
independent variable) and the degree of resemblance (i.e. dependent variable) that
particular voice exhibited with its real counterpart. We expected that the more the
system had been exposed to speech data belonging to a given voice, the more it
would have been able to transfer speaker-dependent characteristics at inference time.

In assessing whether such correlation occurred, we adopted both a disaggregated
and an aggregated approach to represent the similarity MOS score associated with
each voice.

In the first approach, we intended the similarity score as three distinct scores.
Namely, for each of the 57 voices used in the experiment, we computed comparison
task average similarity MOS, separately. Additionally, we computed the amount of
training data (in minutes) associated with each of these voices. It follows that each
voice used in the experiment was represented in a Cartesian plane, where the x axis
stood for either its comparison task average similarity score and y axis stood for the
amount of time that voice was seen in training.

We derived the Pearson product-moment correlation and Spearman’s rank cor-
relation coefficient between comparison task average scores and the corresponding
amount of recordings associated with each voice in training. The p-value for the
Pearson correlation between the same-speaker similarity MOS and the amount
of training data was above the significance level of 0.05, which indicated that

16 A. Favaro et al.

the correlation coefficient was not significant (r = 0.21, n = 57, p = 0.11).
The same occurred for the Pearson correlation computed between same-gender
similarity MOS and the amount of training data synthesised (r = −0.01, n = 57,
p = 0.92) and between different-gender similarity MOS and the amount of training
data synthesised (r = 0.03, n = 57, p = 0.79).

Concerning Spearman’s ρ correlation coefficient, the p-value between SS sim-
ilarity MOS and the amount of training recordings is about 0.40, which indicates
that there was a moderate positive correlation [6] between these two variables
(p = 0.002, n = 57). Differently, the p-value for Spearman’s correlation between
same-gender similarity MOS and the amount of training data synthesised was above
the significance level of 0.05, which indicates that the correlation coefficient was
not significant (rs = 0.22, n = 56, p = 0.08). The same occurred between the
different-gender similarity MOS and the amount of training data (rs = 0.14, n = 56,
p = 0.30).

A scatterplot in Fig. 5a summarises these findings. It highlights that in general
no correlation exists between the amount of training data associated with a given
voice and the similarity MOS evaluations it received in the subjective listening test.
However, a moderate correlation can be detected between same-speaker similarity
MOS and the amount of training data (green dots on the right).

In verifying the existence of such correlation, the other approach we adopted
to represent the similarity MOS was to assign to each voice a single score. This
score was derived by subtracting from the same-speaker similarity MOS the average
between same-gender and different-gender similarity MOS. Thus, each voice used
in the experiment was represented in a Cartesian plane, where the x axis stood for
its aggregated similarity MOS score and y axis stood for the amount of time the
spectrogram predictor processed that voice during training.

We computed the Pearson product-moment correlation and Spearman’s rank
correlation coefficient between the aggregated similarity MOS and the amount of
time each voice was seen in training. The p-value for the Pearson correlation was
above the significance level of 0.05, which indicates that the correlation coefficient
was not significant (r = 0.15, n = 56, p = 0.23). The same occurred for
Spearman’s ρ correlation (rs = 0.21, n = 56, p = 0.10).

A scatterplot in Fig. 5b summarises these results. Overall, no correlation was
derived between the amount of training data associated with the speakers used to
construct the experimental stimuli and their similarity aggregated MOS.

Since we didn’t find significant correlations between intelligibility, naturalness,
and speaker similarity evaluations and the amount of training data, we concluded
that the model acquired a discrete ability to generalise to speakers for which a
low amount of training recordings was provided or even to speakers unseen during
training.

ITAcotron 2: The Power of Transfer Learning in Expressive TTS Synthesis 17

9 Conclusion and Future Work

In this paper, we showed our approach to adapt a speech synthesis pipeline from
English to Italian. The procedure was language-agnostic, but spectrogram prediction
network required fine-tuning data in the target language. To show how some pipeline
components can be used without language adaptation, we also introduced a speaker
embedding network (to achieve speaker conditioning) and a neural vocoder.

Opinion scores from a human evaluation session showed that the adaptation
was successful in terms of intelligibility and naturalness. Concerning speaker
conditioning, the result was not as sharp as for the first evaluation; yet, we obtained
a satisfying similarity score, matching that of the reference model.

In general, the main issue arising in modelling prosody features implicated in
conveying linguistic and non-linguistic information in speech is that they are fully
entangled. However, some of these characteristics are speaker-dependent, such as
accent and idiolect, while others are speaker-independent such as prosodic phrasing,
lexical stress, and tune variation. Thus, if on one side controlling a given prosody
phenomenon using a unique latent embedding space would allow a complete
control over all linguistic and non-linguistic components, disentangling speaker-
dependent and speaker-independent characteristics enables simplified models and
better decoupling, from a human perspective, of the controlled aspects.

Traditionally, prosody modelling relied on labelling prosodic phenomena and
developing rule-based systems or statistical models from speech data. These
strategies allow a high control on speech products, but they require to derive hand-
crafted features, which is difficult and time-consuming in the presence of large data
sets. In contrast, end-to-end neural TTS systems permit to generate high-fidelity
speech with a simplified pipeline and to learn prosody as an inherent part of the
model. Even though these unsupervised methods are extensively used, they still
miss exerting an accurate and clear control over the output prosody.

Thus, future research will focus on different prosody phenomena, to identify
strategies to model micro and macro prosody patterns. To do so, a possibility will be
to leverage independent representations, in the form of GST or latent vectors from a
variational auto-encoder (VAE), for each of the speech traits of interest. In addition,
a multi-head attention mechanism can increase the system parallelisation capability
and help to cope with the hardness arising with RNN application in modelling
human speech long-distance dependencies.

On the whole, to improve the model ability to regulate its generation in
accordance to the mental and emotional status of its interlocutor, we could augment
the input with a multi-modal stream of information, encoding the features of the
previous conversational turn. For instance, the user’s prompt could be represented
by feeding the TTS with a visual input encoding the user’s facial expression, an
acoustic input encoding prosodic information characterising her/his speech, and a
linguistic embedding encoding information related to the meaning of her/his words.
The TTS should then be trained to align its generation in terms of prosody and

18 A. Favaro et al.

linguistic content, in accordance with the previous conversational turn—thing that
we, as humans, do in every conversational exchange.

Acknowledgments This work was partially supported by the European Union’s Horizon 2020
project WorkingAge (grant agreement no. 826232).

Appendix

The source code developed during this project is available at the following link:
https://github.com/vincenzo-scotti/ITAcotron_2. Inside the repository, we also pro-
vide the links to download the weights of the fine-tuned model ITAcotron 2, for
Italian speech synthesis. We remind that the original source code we forked, and the
weights of the speaker encoder and neural vocoder, was taken from the reference
open-source project developed by Mozilla8

References

1. Ardila, R., Branson, M., Davis, K., Kohler, M., Meyer, J., Henretty, M., Morais, R., Saunders,
L., Tyers, F.M., Weber, G.: Common voice: A massively-multilingual speech corpus. In:
Calzolari, N., Béchet, F., Blache, P., Choukri, K., Cieri, C., Declerck, T., Goggi, S., Isahara,
H., Maegaard, B., Mariani, J., Mazo, H., Moreno, A., Odijk, J., Piperidis, S. (eds.) Proceedings
of the 12th Language Resources and Evaluation Conference, LREC 2020, Marseille, France,
May 11–16, 2020, pages 4218–4222. European Language Resources Association (2020)

2. Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align
and translate. In: Bengio, Y., LeCun, Y. (eds.) 3rd International Conference on Learning
Representations, ICLR 2015, San Diego, CA, USA, May 7–9, 2015, Conference Track
Proceedings (2015)

3. Cassell, J.: Embodied conversational agents: Representation and intelligence in user interfaces.
AI Mag. 22(4), 67–84 (2001)

4. Chung, J.S., Huh, J., Mun, S., Lee, M., Heo, H.-S., Choe, S., Ham, C., Jung, S., Lee, B.-J., Han,
I.: In defence of metric learning for speaker recognition. In: Meng, H., Xu, B., Zheng, T.F.
(eds.) Interspeech 2020, 21st Annual Conference of the International Speech Communication
Association, Virtual Event, Shanghai, China, 25–29 October 2020, pages 2977–2981. ISCA
(2020)

5. Dekking, F.M., Kraaikamp, C., Lopuhaä, H.P., Meester, L.E.: A Modern Introduction to
Probability and Statistics: Understanding why and how. Springer Science & Business Media,
Berlin (2005)

6. Fowler, J., Cohen, L., Jarvis, P.: Practical Statistics for Field Biology. Wiley, Hoboken (2013)
7. Fujisaki, H.: Prosody, models, and spontaneous speech. In: Sagisaka, Y., Campbell, N.,

Higuchi, N. (eds.) Computing Prosody, Computational Models for Processing Spontaneous
Speech, pp. 27–42. Springer, Berlin (1997)

8 Repository link, https://github.com/mozilla/TTS; reference commit link, https://github.com/
mozilla/TTS/tree/2136433.

 -2016 14105 a -2016 14105 a

https://github.com/vincenzo-scotti/ITAcotron_2

 5436 57269
a 5436 57269 a

https://github.com/mozilla/TTS

 27735 57269 a 27735 57269 a

https://github.com/mozilla/TTS/tree/2136433
https://github.com/mozilla/TTS/tree/2136433

References 19

8. Gilmartin, E., Collery, M., Su, K., Huang, Y., Elias, C., Cowan, B.R., Campbell, N.. Social
talk: making conversation with people and machine. In Chaminade, T., Nguyen, N., Ochs,
M., Lefèvre, F. (eds.) Proceedings of the 1st ACM SIGCHI International Workshop on
Investigating Social Interactions with Artificial Agents, ISIAA@ICMI 2017, Glasgow, United
Kingdom, November 13, 2017, pp. 31–32. ACM, New Yrok (2017)

9. Griffin, D.W., Lim, J.S.: Signal estimation from modified short-time fourier transform. In:
IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP ’83,
Boston, Massachusetts, USA, April 14–16, 1983, pp. 804–807. IEEE, Piscataway (1983)

10. Gölge, E.: Solving Attention Problems of TTS Models with Double Decoder Consistency
(2020)

11. Hsu, P.-C., Wang, C.-H., Liu, A.T., Lee, H.-Y.: Towards robust neural vocoding for speech
generation: A survey. CoRR abs/1912.02461 (2019)

12. ITU-T Recommendation: P.910: Subjective video quality assessment methods for multimedia
applications (1999)

13. Jia, Y., Zhang, Y., Weiss, R.J., Wang, Q., Shen, J., Ren, F., Chen, Z., Nguyen, P., Pang,
R., Lopez-Moreno, I., Wu, Y.: Transfer learning from speaker verification to multispeaker
text-to-speech synthesis. In: Bengio, S., Wallach, H.M., Larochelle, H., Grauman, K., Cesa-
Bianchi, N., Garnett, R. (eds.) Advances in Neural Information Processing Systems 31: Annual
Conference on Neural Information Processing Systems 2018, NeurIPS 2018, December 3–8,
2018, Montréal, Canada, pp. 4485–4495 (2018)

14. Jurafsky, D., Martin, J.H.: Speech and Language Processing, 2nd edn. Prentice-Hall, Hoboken
(2009)

15. Kalchbrenner, N., Elsen, E., Simonyan, K., Noury, S., Casagrande, N., Lockhart, E., Stimberg,
F., van den Oord, A., Dieleman, S., Kavukcuoglu, K.: Efficient neural audio synthesis. In: Dy,
J.G., Krause, A. (eds.) Proceedings of the 35th International Conference on Machine Learning,
ICML 2018, Stockholmsmässan, Stockholm, Sweden, July 10–15, 2018. Proceedings of
Machine Learning Research, , vol. 80, pp. 2415–2424. PMLR (2018)

16. Kenmochi, H.: Vocaloid and Hatsune Miku phenomenon in Japan. In: Interdisciplinary
Workshop on Singing Voice (2010)

17. Kumar, K., Kumar, R., de Boissiere, T., Gestin, L., Teoh, W.Z., Sotelo, J., de Brébisson,A.,
Bengio, Y., Courville, A.C.: Melgan: Generative adversarial networks for conditional
waveform synthesis. In: Wallach, H.M., Larochelle, H., Beygelzimer, A., d’Alché-Buc, F.,
Fox, E.B., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32: Annual
Conference on Neural Information Processing Systems 2019, NeurIPS 2019, December 8–14,
2019, Vancouver, BC, pp. 14881–14892 (2019)

18. Leung, Y., Oates, J., Chan, S.P.: Voice, articulation, and prosody contribute to listener
perceptions of speaker gender: A systematic review and meta-analysis. J. Speech Language
Hearing Res. 61(2), 266–297 (2018)

19. Moridis, C.N., Economides, A.A.: Affective learning: Empathetic agents with emotional facial
and tone of voice expressions. IEEE Trans. Affect. Comput. 3(3), 260–272 (2012)

20. Ping, W., Peng, K., Gibiansky, A., Arik, S.Ö., Kannan, A., Narang, S., Raiman, J., Miller,
J.: Deep voice 3: Scaling text-to-speech with convolutional sequence learning. In: 6th
International Conference on Learning Representations, ICLR 2018, Vancouver, BC, April 30–
May 3, 2018, Conference Track Proceedings. OpenReview.net (2018)

21. Prieto, P., Borràs-Comes, J., Roseano, P.: Interactive Atlas of Romance Intonation (2010)
22. Ren, Y., Ruan, Y., Tan, X., Qin, T., Zhao, S., Zhao, Z., Liu, T.-Y.: Fastspeech: Fast, robust

and controllable text to speech. In: Wallach, H.M., Larochelle, H., Beygelzimer, A., d’Alché-
Buc, F., Fox, E.B., Garnett, R. (eds.) Advances in Neural Information Processing Systems
32: Annual Conference on Neural Information Processing Systems 2019, NeurIPS 2019,
December 8–14, 2019, Vancouver, BC, pp. 3165–3174 (2019)

23. Schuller, B., Batliner, A.: Computational Paralinguistics: Emotion, Affect and Personality in
Speech and Language Processing. Wiley, Hoboken (2013)

24. Schuller, D., Schuller, B.W.: The age of artificial emotional intelligence. Computer 51(9),
38–46 (2018)

20 A. Favaro et al.

25. Shen, J., Pang, R., Weiss, R.J., Schuster, M., Jaitly, N., Yang, Z., Chen, Z., Zhang, Y., Wang,
Y., Skerry-Ryan, R.J., Saurous, R.A., Agiomyrgiannakis, Y., Wu, Y.: Natural TTS synthesis
by conditioning wavenet on MEL spectrogram predictions. In: 2018 IEEE International
Conference on Acoustics, Speech and Signal Processing, ICASSP 2018, Calgary, AB, April
15–20, 2018, pp. 4779–4783. IEEE, Piscataway (2018)

26. Skerry-Ryan, R.J., Battenberg, E., Xiao, Y., Wang, Y., Stanton, D., Shor, J., Weiss, R.J.,
Clark, R., Saurous, R.A.: Towards end-to-end prosody transfer for expressive speech
synthesis with tacotron. In: Dy, J.G., Krause, A. (eds.) Proceedings of the 35th International
Conference on Machine Learning, ICML 2018, Stockholmsmässan, Stockholm, July 10–15,
2018. Proceedings of Machine Learning Research, vol. 80, pp. 4700–4709. PMLR (2018)

27. Suni, A., Kakouros, S., Vainio, M., Simko, J.: Prosodic prominence and boundaries in
sequence-to-sequence speech synthesis. CoRR abs/2006.15967 (2020)

28. Taylor, P.: Text-to-Speech Synthesis. Cambridge University Press, Cambridge (2009)
29. Torrey, L., Shavlik, J.: Transfer learning. In: Handbook of Research on Machine Learning

Applications and Trends: Algorithms, Methods, and Techniques, pp. 242–264. IGI Global,
Pennsylvania (2010)

30. van den Oord, A., Dieleman, S., Zen, H., Simonyan, K., Vinyals, O., Graves, A., Kalchbrenner,
N., Senior, A.W., Kavukcuoglu, K.: Wavenet: A generative model for raw audio. In: The
9th ISCA Speech Synthesis Workshop, Sunnyvale, CA, 13–15 September 2016, p. 125. ISCA
(2016)

31. Wang, Y., Skerry-Ryan, R.J., Stanton, D., Wu, D., Weiss, R.J., Jaitly, N., Yang, Z., Xiao, Y.,
Chen, Z., Bengio, S., Le, Q.V., Agiomyrgiannakis, Y., Clark, R., Saurous, R.A.: Tacotron: A
fully end-to-end text-to-speech synthesis model. CoRR abs/1703.10135 (2017)

32. Wang, Y., Skerry-Ryan, R.J., Stanton, D., Wu, Y., Weiss, R.J., Jaitly, N., Yang, Z., Xiao, Y.,
Chen, Z., Bengio, S., Le, Q.V., Agiomyrgiannakis, Y., Clark, R., Saurous, R.A.: Tacotron:
Towards end-to-end speech synthesis. In: Lacerda, F. (ed.) Interspeech 2017, 18th Annual
Conference of the International Speech Communication Association, Stockholm, August 20–
24, 2017, pp. 4006–4010. ISCA (2017)

33. Wang, Y., Stanton, D., Zhang, Y., Skerry-Ryan, R.J., Battenberg, E., Shor, J., Xiao, Y., Jia, Y.,
Ren, F., Saurous, R.A.: Style tokens: Unsupervised style modeling, control and transfer in end-
to-end speech synthesis. In: Dy, J.G., Krause, A. (eds.) Proceedings of the 35th International
Conference on Machine Learning, ICML 2018, Stockholmsmässan, Stockholm, July 10–15,
2018. Proceedings of Machine Learning Research, vol. 80, pp. 5167–5176. PMLR (2018)

34. Yang, G., Yang, S., Liu, K., Fang, P., Chen, W., Xie, L.: Multi-band melgan: Faster waveform
generation for high-quality text-to-speech. In: IEEE Spoken Language Technology Workshop,
SLT 2021, Shenzhen, January 19–22, 2021, pp. 492–498. IEEE, Piscataway (2021)

35. Yosinski, J., Clune, J., Bengio, Y., Lipson, H.: How transferable are features in deep neural
networks? In: Ghahramani, Z., Welling, M., Cortes, C., Lawrence, N.D., Weinberger, K.Q.
(eds.) Advances in Neural Information Processing Systems 27: Annual Conference on Neural
Information Processing Systems 2014, December 8–13 2014, Montreal, Quebec, pp. 3320–
3328 (2014)

Improving Automatic Speech Recognition
for Non-native English with Transfer
Learning and Language Model Decoding

Peter Sullivan, Toshiko Shibano, and Muhammad Abdul-Mageed

Abstract ASR systems designed for native English (L1) usually underperform on
non-native English (L2). To address this performance gap, (1) we extend our previ-
ous work to investigate fine-tuning of a pre-trained wav2vec 2.0 model (Baevski
et al. (wav2vec 2.0: A framework for self-supervised learning of speech repre-
sentations (2020). Preprint arXiv:200611477), Xu et al. (Self-training and pre-
training are complementary for speech recognition. In: ICASSP 2021–2021 IEEE
International Conference on Acoustics, Speech and Signal Processing (ICASSP),
IEEE, pp. 3030–3034 (2021))) under a rich set of L1 and L2 training conditions.
We further (2) incorporate language model decoding in the ASR system, along
with the fine-tuning method. Quantifying gains acquired from each of these two
approaches separately and an error analysis allows us to identify different sources of
improvement within our models. We find that while the large self-trained wav2vec
2.0 may be internalizing sufficient decoding knowledge for clean L1 speech (Xu
et al. (Self-training and pre-training are complementary for speech recognition.
In: ICASSP 2021–2021 IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP), IEEE, pp. 3030–3034 (2021))), this does not hold for
L2 speech and accounts for the utility of employing language model decoding on
L2 data.

1 Introduction

Although non-native English speakers (L2) outnumber native English speakers (L1)
[7], major challenges contribute to a gap between performance of automatic speech
recognition (ASR) systems on L2 speech. This is mainly due to influence of L1
pronunciation on the learned language and lack of annotated L2 speech data on
which ASR systems can be trained [42, 50]. To meet these challenges, previous

P. Sullivan (�) · T. Shibano · M. Abdul-Mageed
The University of British Columbia, Columbia, BC, Canada
e-mail: prsull@student.ubc.ca; tshibano@student.ubc.ca; muhammad.mageed@ubc.ca

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
M. Abbas (ed.), Analysis and Application of Natural Language and Speech
Processing, Signals and Communication Technology,
https://doi.org/10.1007/978-3-031-11035-1_2

21

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-11035-1_2&domain=pdf

 885 55738 a 885 55738 a

mailto:prsull@student.ubc.ca

 9775 55738 a 9775 55738 a

mailto:tshibano@student.ubc.ca

 19710 55738 a 19710
55738 a

mailto:muhammad.mageed@ubc.ca

 -2016 61494 a -2016 61494 a

https://doi.org/10.1007/978-3-031-11035-1_2

22 P. Sullivan et al.

work has generally followed two distinct approaches. The first is to make L2
speech representations more closely match those of L1 speech [42]. The second
approach leverages L2 speech data to improve model robustness. Due to L2 data
scarcity, this second approach necessitates employment of transfer learning or
domain adaptation [45, 47].

State-of-the-art ASR models based on self-supervised pre-training such as
wav2vec [44] and wav2vec 2.0 [2]1 offer a tantalizing starting point for applying the
transfer learning approach we list above, especially due to their strong performance
of self-trained wav2vec 2.0 models on ASR in low-resource settings even without a
language model [56]. However, challenges remain in identifying how best to apply
models such as wav2vec 2.0 in L2 fine-tuning scenarios. In spite of this advantage of
a fine-tuned model, it is not clear whether the knowledge it acquires is orthogonal
to that of a language model especially on L2 speech. Hence, we are interested in
investigating the practical sufficiency of fine-tuned models on their own and the
extent to which they may benefit from external language model decoding on both L1
and L2 speeches. As such, our main objective in the current work is to investigate
a rich set of conditions under which we can fine-tune ASR models for optimal
L2 performance and the utility of integrating language model decoding along with
fine-tuning in an overall ASR model. Concretely, we pursue this primary objective
through the following sub-objectives:

1. Evaluate fine-tuning and language model decoding strategies for adapting pre-
trained L1 English ASR models to L2 English.

2. Explore the impact of non-native (L2) accents on performance of these ASR
models fine-tuned under various conditions, comparing multi-accent training to
single-accent training.

3. Quantify the impact of L2 fine-tuning on model performance for L1 English
speech recognition.

4. Analyze error categories associated with fine-tuning, as well as language model
decoding.

Our investigation of the role of language model decoding in L2 ASR performance
extends our previous work [46]. We also better contextualize the magnitude of
impact of fine-tuned only vs. fine-tuning+LM decoding on the downstream tasks
for both L1 and L2 speeches. The rest of the paper is organized as follows: Sect. 2
is an overview of related work. We introduce our methods in Sect. 3. We describe
our data in Sect. 4, and Sect. 5 is about our experiments and results. We conclude in
Sect. 7.

1 Although sometimes referred to as “unsupervised,” these models employ a self-supervised
objective.

Automatic Speech Recognition for Non-native English 23

2 Related Work

Because of the difficulty in linguistically annotating corpora for hidden Markov
model (HMM)-based ASR [12], researchers have broadly embraced end-to-
end (E2E) deep learning architectures either based on Connectionist Temporal
Classification (CTC) [12, 13], Attention [4, 5, 14], or hybrids of the two
[54, 55]. Recent efforts inspired by work such as BERT [9] have improved
on these purely supervised learning baselines through self-supervised pre-training
[1, 2, 44] and self-training [56]. These self-supervised wav2vec models represent
one line of research in speech representation. Other works include models similar
to wav2vec that also use a contrastive loss [37], models using an autoregressive loss
function [6, 28], as well as models using a masked language model closer to the
original BERT [29].

With these efforts, ASR technologies for native languages have evolved signif-
icantly. However, we still observe problems in many applications. In particular,
several researchers have emphasized how performance of ASR models drops when
the input speech is from non-native speakers whose native languages are different
from the models’ target languages [31, 41, 42, 52, 53]. For systems developed
for English ASR, this can be a real issue due to the large populations of English
language speakers who are non-native [7]. In line with this argument, Ping [41]
points out the necessity to improve speech recognition technology for L2 speakers
given that many people speak more than one language for economic and social
reasons. It is hoped that continued efforts aiming at improving ASR for non-native
speakers will eventually lead to improved results for many as voice recognition
technology becomes increasingly pervasive in our daily lives [41].

There are two distinct approaches to improve current ASR performance on L2
speech: (1) accent conversion as an extension to the active area of research of
voice conversion and (2) incorporation of L2 speech data, which is often limited
in quantity and quality, during the model training process. The first approach takes
inspiration from voice conversion, but instead of focusing on modifying the pitch,
it modifies the pronunciation to reduce accents. Additionally, voice conversion
models aim to generate results that are speaker-dependent, while accent conversion
models deal with generalizing accents from a group of speakers, hence being
speaker-independent. With this approach, the resulting model can be used as a pre-
processing step to remove accents in the data prior to feeding these data into an
ASR model. Bearman et al. [3] adopt this approach but focus on L1 English accents,
while Radzikowski et al. [42] work on L2 English accents with speakers’ L1 being
Japanese. Liu et al. [30] took a step further and turned Hindi-accented English to
native American English without utilizing native utterances.

The second approach often employs methods such as domain adversarial training
and transfer learning in order to utilize as much available accented speech data as
possible. Domain adversarial training (DAT) is a popular approach as it encourages
models to learn accent-invariant features [19, 21, 47]. Transfer learning is another
popular approach in L2 speech recognition, as it possibly allows a model to gain

24 P. Sullivan et al.

knowledge from both the base task and the new task, even when the new task has
limited data [8, 34, 45]. In the Accented English Speech Recognition Challenge
2020 (AESRC2020), many teams utilize transfer learning to tackle the L2 accent
recognition task [45]. In a recent work, Das et al. [8] combine both DAT and transfer
learning to achieve robust accented speech recognition performance.

One method that is common in ASR systems is language model decoding, which
re-weights output probabilities to account for greater likelihoods of words occurring
in the language. Language models such as KenLM [17] give probabilities of
tokens occurring in a sequence and thus represent corpus-level statistic of language.
Language model decoding can help prevent unlikely sequences of words from being
selected (“the mat chased the rat”) in favor of more likely predictions (“the cat
chased the rat”).

While integration of language models has been a standard part of ASR systems,
only recent works have been able to reach parity without using an explicit language
model, either through knowledge distillation techniques [10], data augmentation
[40], or self-training [48, 56]. Language model-free ASR systems are appealing
due to the simplicity, but most still struggle with difficult ASR tasks, such as the
noisy recordings of LibriSpeech dev/test-other. To our knowledge, there has been
no work to date examining whether the properties of these systems transfer to L2
ASR.

3 Methods

We provide a background about our main methods in this section. We first introduce
transfer learning for ASR and then follow with CTC and language model decoding.

3.1 Transfer Learning

For tasks with limited labeled data, training models from scratch becomes imprac-
tical. One approach that has great success is transfer learning. Transfer learning
involves taking an existing model trained on one or more tasks from a given
domain and transferring its knowledge to a target downstream task or domain [38].
Tasks which share the same label and feature space, but perhaps differ in feature
distribution, can allow for a simple transfer learning method called model adap-
tation [51]. This allows for simply taking an existing model and re-training (i.e.,
“fine-tuning”) it using a smaller domain-specific dataset. Model adaptation for ASR
can be performed easily by freezing part of an existing model and re-training the
rest on the new domain [26].

One particularly promising base model for transfer learning is wav2vec 2.0 [2],
which is composed of a multi-layer convolutional neural network feature extractor
and a transformer context network. The network uses a contrastive task for self-

Automatic Speech Recognition for Non-native English 25

supervised pre-training to learn good general representations of audio. Following
pre-training, the CNN feature extractor layers of the model are frozen, and the
model is fine-tuned on domain-specific tasks by adding a linear layer on top of
the transformer context network followed by training with CTC loss [2].

While the original models are strong baselines, the self-trained wav2vec 2.0
Large (LV-60) version of the model [56], which we will refer to as Wav2Vec
2.0-ST [56],2 extends the original work with wav2vec 2.0 by applying a self-
training approach. The model is pre-trained on 960 hours of speech data from
LibriSpeech [39], followed with self-training on 53.2k hours of Libri-Light [24].
During the self-training process, pseudo-labels are generated using language models
trained on the LibriSpeech corpus, allowing for transfer of knowledge from the
language model into the ASR model proper ultimately resulting in a model with
little need for an external model during inference time [56].

Fine-tuning of pre-trained wav2vec 2.0 is performed with CTC and
the transcriptions of the audio segments. For each model, we identify the
optimal hyperparameters on the respective Dev set. We choose hyperpa-
rameters as follows: For mask_feature_prob, we pick from {0.25,
0.5}; for mask_feature_length, we choose from {15, 30}; and for
mask_time_prob, we use {0.5, 0.75} and a batch size of 16. To mimic the
tri-state learning rate schedule [2], we set different learning rates for different
stages: warm-up (1e–5, 3e–5), constant stage (1e–5, 3e–5), and decay (1e–5, 3e–5,
5e–6). The decay stage is followed by another constant stage (1e–5, 2e–6, 5e–6) to
simulate Fairseq’s fine-tuning configuration.

3.2 CTC Decoding

Because the output of CTC-trained models is a table of character probabilities for
each timestep, this output must be decoded to find the most probable sequence of
characters. One simple approach is to use a best path decoding strategy (see top
left of Fig. 1), which simply involves outputting the highest probability token for
each timestep condensing duplicate tokens and removing CTC blank symbols [11].
Following Graves [11], we can write the decoding as:

W ∗ = arg max
W

p(W |X) (1)

where W ∗ is our most likely sequence of characters (the labeling) and p(W |X) is
our probability of a labeling given a signal X. Then we can write best path decoding
as:

W ∗ ≈ F(π∗) (2)

2 https://github.com/pytorch/fairseq/tree/master/examples/wav2vec.

 -1446 58376 a -1446 58376
a

https://github.com/pytorch/fairseq/tree/master/examples/wav2vec

26 P. Sullivan et al.

where F is the CTC collapsing function, which removes duplicate letters and blank
tokens, and π∗ is the highest activation in the CTC output at a given timestep. The
simplicity of this method allows for fast predictions, but at the cost of potential
errors added through not considering combined probability states. As Graves [11]
notes, this matters when the “label is weakly predicted for several consecutive
timesteps”(p. 71). Several algorithms have been introduced to fix this shortcoming:
prefix search, which allows for accounting for the probability of children nodes in
the search graph [11]; token passing, which allows integration of a dictionary [11];
and decoding with attention, which uses a secondary RNN model to correct errors
[58].

Many decoding strategies aim to also integrate a language model in the process,
which allows for incorporating lexical information into the decoding process. N-
gram language models can be formalized as:

p(wi |wi−1, wi−2..., wi−n−1) (3)

where wi is the ith word in the sequence, which we would like to estimate the
probability of, and n is our n-gram size. Probabilities are generally calculated from
a text corpus either through efficient statistical packages such as KenLM [17] or
through training neural networks to generate probability distributions of the tokens.
Additional decoding strategies that use language model probability re-weighting
include modified beam search strategy [12, 16], weighted finite-state transducers
[36, 43], character-level recurrent neural network (RNN) decoding [22, 33], or
word-level RNN decoding [18].

In our experiments, we choose to apply the prefix beam search strategy for both
decoding and including an external language model (see top right of Fig. 1). Instead
of rehashing the full prefix beam search algorithm (see [16]), we focus on the
main components needed to understand the hyperparameter optimization process
of this decoding strategy. Prefix beam search attempts to find transcriptions which
maximize the following equation (see [16]):

pCT C(W ;X)pLM(W)α|W |β (4)

Here pCT C(W ;X) is our CTC-trained neural network probability of a character
sequence W given an input audio X, pLM(W) is the language model probability of
sequence W , α is the language model weight term, and β is a word insertion penalty
modifier. The algorithm to maximize the value in 4 is similar to normal beam search
in the sense that it keeps track of a set of possible contenders ≤ k, where we call k

the beam width [32, 35]. For CTC, the complexities of duplicates and blank tokens
mean that the actual probability of a given proposed sequence needs to be calculated
as follows:

p(l; x1:t) = (pb(l; x1:t) + pnb(l; x1:t))|W(l)|β (5)

Automatic Speech Recognition for Non-native English 27

Fig. 1 The overall ASR pipeline. We (a) evaluate performance of wav2vec 2.0 without LM using
best path decoding. We also (b) incorporate language model decoding with beam search along
with the fine-tuned model

where p(l; x1:t) is the probability of a given prefix, pb(l; x1:t) is the probability
of a blank token being appended onto the current sequence, pnb(l; x1:t) is the
probability of the next token being a character or punctuation (i.e., non − blank),
and |W(l)|β is our word insertion term based on the words W(l) in our proposed
sequence l. A list of these probabilities is kept and updated based on the probabilities
of each of the characters in the next segment of the CTC output table. When space
characters are added to an existing sequence, the language model probability weight
p(W(l+)|W(l))α is multiplied to the probability of the sequence, where W(l+) is
the new set of words in the sequence. Values of α, which indicate how much to
emphasize the language model, and values of β, the word insertion bonus, must be
set via a hyperparameter tuning process.

In our experiments with adding language model decoding, we use the pyctcde-
code3 implementation of prefix beam search. It functions much the same way as

3 https://github.com/kensho-technologies/pyctcdecode.

 -1446 58376 a -1446 58376 a

https://github.com/kensho-technologies/pyctcdecode

28 P. Sullivan et al.

normal prefix beam search, differing only in several minor ways: first by using
caching to speed up the decoding process and second by adding a partial word
score which penalizes out of vocabulary word matches (based on checking whether
the prefix is in a trie of the unigram vocabulary). For hyperparameter tuning, we
perform a small grid search using the development set of L2-ARCTIC, with the
ranges α ∈ {0.5, 1, 1.5} (considering both downweighting and overemphasizing
the LM), β ∈ {0.5, 1, 1.5}, and beamwidth ∈ {50, 100, 150, 200}, with final
hyperparameters as α = 1, β = 1.5, and beamwidth = 200. For experiments on
LibriSpeech, we similarly set hyperparameters on the development set (dev-other)
and find the combination α = 0.5, β = 0.5, andbeamwidth = 100 works best.
To ablate the contribution of the language model, we also conduct an experiment on
the full splits of L2-ARCTIC with α = 0, effectively neutralizing the impact of the
language model, keeping the rest of the hyperparameters the same.

4 Data

4.1 Corpus Information

We choose L2-ARCTIC, a non-native English speech corpus [59], for L2 fine-
tuning. The recordings are from 24 non-native speakers of English with a total
of 6 different L1s, and each of the L1s consists of 2 female speakers and 2 male
speakers. The L1s we use for our experiments are Arabic (AR), Hindi (HI), Korean
(KO), Mandarin (ZH), Spanish (ES), and Vietnamese (VI). Because L2-ARCTIC
is based on the original L1 English corpus, CMU ARCTIC [25] (henceforth L1-
ARCTIC, for simplicity), we can easily evaluate performance from fine-tuning on
same-domain L1 data.

Each speaker in L2-ARCTIC contributed approximately 1 hour of phonetically
balanced read speech based on the L1-ARCTIC prompts, which consist of carefully
selected sentences (1, 132 sentence prompts) from Project Gutenberg [25]. We
note this, as the pre-trained wav2vec 2.0 model we use was first pre-trained on
LibriSpeech4 [39] and then self-trained on Libri-Light5 [24]. Both corpora rely
on audiobooks from the LibriVox project,6 much of which comes from Project
Gutenberg.7 However, because the ARCTIC corpus was selected to create a good
phonological balance of sentences and weighted toward fiction [25], there may be
domain mismatch between the sets of texts selected between these different corpora,
and we aim to measure this with experiments using L1 fine-tuned models. Finally,

4 http://www.openslr.org/12/.
5 https://github.com/facebookresearch/libri-light.
6 https://librivox.org.
7 http://www.gutenberg.org.

 -1446 54390 a -1446 54390
a

http://www.openslr.org/12/

 -1446 55719 a -1446 55719
a

https://github.com/facebookresearch/libri-light

 -1446 57047 a -1446 57047 a

https://librivox.org

 -1446 58376 a -1446 58376 a

http://www.gutenberg.org

Automatic Speech Recognition for Non-native English 29

we ensure there is no overlap in sentences between our L2-ARCTIC dev and test
sets and the LibriSpeech training sets.

We also evaluate our fine-tuned models on (1) LibriSpeech to compare the fine-
tuning with the original performance of Wav2Vec 2.0-ST. In addition, we evaluate
on (2) L1-ARCTIC, identical to our L2-ARCTIC corpus but spoken by four native
US English speakers, allowing us to identify any degradation on same-domain
L1 speech performance, as well as estimate potential domain mismatch between
the LibriSpeech corpus used to train Wav2Vec 2.0-ST and ARCTIC. Each of L1-
ARCTIC speakers’ datasets contains approximately the same number of utterances
(n = ∼1, 132 ∗ 4) as each of L2-ARCTIC speakers’ datasets.

For the purpose of our experiments, we define native (L1) accents as those
represented in the LibriSpeech and L1-ARCTIC and non-native (L2) accents as
those represented in L2-ARCTIC.

4.2 Data Splits

For both L2-ARCTIC and L1-ARCTIC, we split the data into three distinct Train,
Dev, and Test sets with an 80:10:10 ratio. Importantly, we ensure there is no overlap
between utterances. For L2-ARCTIC, we split the data across the following settings
(see Fig. 2):

• Split-1 (speaker-dependent, multi-accent split): All speakers from all accents in
the Train set are also included in the Dev and Test sets; however, no utterances
are shared between Train, Dev, and Test.

• Split-2 (speaker-independent cross-validation splits with multiple accents): A
speaker from each accent8 is removed from the Train and Dev sets, but other
speakers with the same accent remain in the Train and Dev sets.

• Split-3 (speaker-independent zero-shot splits with multiple accents): All speakers
from one of the accents are entirely removed from the Train and Dev sets. The
removed speakers are included in Test.

• Split-4 (all-speaker, single-accent split): Speakers are broken down by accents
(six accents in total), and all speakers in a given accent are split into the Train,
Dev, and Test sets (3 data splits x 6 accents).

• Split-5 (speaker-independent cross-validation splits with single accent): One
speaker in each accent is removed from the Train and Dev sets, but the other
speakers with the same accent remain in the Train and Dev sets. As there are four
speakers per accent, four splits are created for each accent, which are further split
into the Train, Dev, and Test sets (3 data splits x 6 accents x 4 speakers).

8 We use the term “accent” here to loosely refer to variation in speakers with L1 other than English.

30 P. Sullivan et al.

Fig. 2 The various data splits we use in our experiments. Color represents a different run of our
training, with the rainbow blocks in Split 4 being present in all runs. For cross-validation splits,
we show a single fold as an example. Speakers are indicated by a pattern with “held-out” speakers
blacked out in the training set

5 Experiments

For all our wav2vec 2.0 models, we use Fairseq9 fine-tuning default settings
as a reference and convert the hyperparameters to align with HuggingFace’s
implementation. We evaluate all our models in terms of word error rate (WER).
For L2 fine-tuning, we train each model with three random seeds and report the
average WER. Our experiment code is available online.10

9 https://github.com/pytorch/fairseq.
10 https://github.com/UBC-NLP/L2ASR.

 -1446 57047 a -1446 57047 a

https://github.com/pytorch/fairseq

 -1088 58376 a -1088 58376 a

https://github.com/UBC-NLP/L2ASR

Automatic Speech Recognition for Non-native English 31

5.1 Baselines

We use the following baselines:

• Baseline-I: We use Wav2Vec 2.0-ST as a baseline, due to its strong performance
on L1 English speech. We use the model released via HuggingFace.11

• Baseline-II: This is Wav2Vec 2.0-ST, the same as Baseline-I, fine-tuned on L1-
ARCTIC described earlier. The purpose of Baseline-II is to measure potential
domain shift between LibriSpeech/Libri-Light and ARCTIC, as well as to
measure potential trade-offs from the fine-tuning process itself.

5.2 Multi-Accent Models

With our multi-accent models, we examine performance using multiple accents
during training. We introduce each of our models here and present the results
acquired with each. We provide a summary of our different data splits and models
across accent and speaker dependency categories in Table 1.

Model-1 (Speaker- and Accent-Dependent) The model is fine-tuned with Split-
1 data to identify any speaker-dependent training impact, as well as an upper
limit on performance. In addition to evaluating on L2-ARCTIC Test, we evaluate
on L1-ARCTIC Test and LibriSpeech in order to observe any changes in model
performance on L1 English.

As Table 2 shows, our Model-1 achieves best performance on both Dev and Test
of L2-ARCTIC as compared to our two baselines. On Test, our Model-1 acquires
25.66% improvement over our Baseline-I wav2vec 2.0 system on L2-ARCTIC (9.27
WER for our model vs. 12.47 WER for Baseline-I). This gain is not surprising and
simply means that a model with access to L2 data for fine-tuning will improve over
models fine-tuned with L1 data (Baseline-II, which is fine-tuned on L1-ARCTIC) or

Table 1 Summary of data splits, fine-tuning, and evaluation setups

Accent dependency Speaker dependency

Dependent Independent Dependent Independent

Multi-accent Model-1 (Split-1) x x

Model-2 (Split-2) x x

Model-3 (Split-3) x x

Single-accent Model-4 (Split-4) x x x x

Model-5 (Split-5) x x

11 https://huggingface.co/facebook/wav2vec2-large-960h-lv60-self.

 -1088 58376 a -1088 58376
a

https://huggingface.co/facebook/wav2vec2-large-960h-lv60-self

32 P. Sullivan et al.

Table 2 Model-1 performance in word error rate (WER) (lower is better) on non-native accents
(L2-ARCTIC) and native accents (L1-ARCTIC, LSdev and LStest). Baseline-I and Baseline-II are
reported on the same Dev and Test sets of each corpus for comparison

L2-ARCTIC L1-ARCTIC LSdev LStest

Model Dev Test Dev Test Clean Other Clean Other

Baseline-I 13.47 12.47 2.30 2.23 1.69 3.55 1.86 3.89
Baseline-II 17.29 15.95 1.26 1.30 2.19 5.13 2.32 5.00

Model-1 9.78 9.27 1.94 1.86 2.75 5.55 2.82 6.36

not-fine-tuned at all (Baseline-I). Nor is performance on L1-ARCTIC surprising:
A model fine-tuned with native data (Baseline-II) outperforms one fine-tuned with
accented data (our Model-1), both of which outperform a model without fine-tuning
(Baseline-I). These results, however, show that in absence of L1 data, L2 data can
be valuable for improving ASR model performance even on L1. For LibriSpeech,
Baseline-I, which is trained on LibriSpeech data, outperforms the two fine-tuned
models (our Model-1 and Baseline-II). The reason is that these two latter models
are fine-tuned on a domain that is different from LibriSpeech. That is, fine-tuning
models on out-of-domain data will, and as we see here does, result in deterioration
of performance on in-domain data. We also note that our Model-1’s performance
on LibriSpeech is worse than that of Baseline-II on both the “Clean” (LSClean,
native speech under quite recording environments) and “Other” (LSOther, both noisy
environment and accented recordings) Dev and Test splits. This may be because
LibriSpeech is mostly comprised of L1 data and the greater variability on our L2-
ARCTIC Train set (24 non-native speakers in our Model-1 vs. 4 native speakers in
Baseline-II).

Model-2 (Speaker-Independent, Accent-Dependent) While Model-1 mimics a
situation where we have some training data from speakers that we serve (i.e., test
on), this is rarely a realistic scenario. We instead switch to a speaker-independent
(but still accent-dependent) setting, Split-2. We carry out four-fold cross-validation
with the 24 speakers in the data, every time using 18 speakers (3 speakers per accent)
in Train12 and 6 speakers in Test (1 per accent). We report the average of the four
folds/runs, along with standard deviation.

As Table 3 shows, Model-2 performance is consistent with Model-1. Our Model-
2 outperforms the two baselines on both Dev and Test, reaching 9.96 WER on
Test compared to 12.47 for Baseline-I and 15.96 for Baseline-II. These results
demonstrate that fine-tuning with multiple accents improves the accented ASR
system without access to test speaker data.

Model-3 (Speaker- and Accent-Independent) To evaluate performance on
unseen accents, we adopt a zero-shot strategy by removing one accent at a time
from both Train and Dev sets and evaluating on the Test set of the removed accent,

12 We use 10% of the utterances from these 18 speakers for development (Dev).

Automatic Speech Recognition for Non-native English 33

Table 3 Model-2 cross-validated performance on L2-ARCTIC Dev and Test sets, alongside
Baseline-I and Baseline-II performance on the same cross-validation splits. Mean refers to the
average WER over the four runs and SD refers to the standard deviation

DevL2 TestL2

Model Mean SD Mean SD

Baseline-I 13.47 0.23 12.47 0.84

Baseline-II 17.29 0.41 15.96 1.58

Model-2 9.57 0.19 9.96 0.64

Table 4 Model-3 setting, where a different accent is removed each run. Testall refers to Test
of all 24 speakers, and Testzeroshot refers to Test of those 4 speakers who have L1removed accent.
Baseline-I acquires 12.47 on Testall, while Baseline-II acquires 15.95 on the same test set (i.e.,
Testall)

Baseline-I Baseline-II Model-3

L1removed Testzeroshot Testzeroshot DevL2 Testzeroshot Testall

VI 23.30 28.81 7.96 18.81 9.43

ZH 14.85 19.32 9.02 12.13 9.08

AR 10.95 14.82 9.40 10.10 9.13

ES 10.48 13.48 9.38 8.89 8.98

KO 8.18 10.22 10.10 6.95 9.01

HI 6.93 8.93 10.29 6.67 9.11

Split-3. To evaluate model performance on each accent, we conduct six runs in total
with one accent removed at a time.

As Table 4 shows, fine-tuning on accented speech benefits unseen accents and
speakers (Model-3 setting). All the multi-accent, zero-shot models outperform
Baseline-I and Baseline-II, which means each of the six accents benefit from other
accents through this process of transfer learning. Our results also show that, in
absence of in-accent data, some unseen accents are easier for the model than others.
For example, on Testzeroshot , Vietnamese (VI) is the most challenging (with 18.81
WER), and Hindi (HI) is the least challenging (with only 6.67 WER).

5.3 Accent-Specific Models

We evaluate the accent-dependent performance by fine-tuning our models on a
single type of L1-specific accent at a time.

Model-4 (Speaker-Dependent, Accent-Dependent) The model is fine-tuned with
Split-4 data to identify any accent-dependent training impact on downstream
performance, as well as an upper bound on performance when the model is
optimized for a single accent. In addition to evaluating on L2-ARCTIC Test, we

34 P. Sullivan et al.

Table 5 Model-4 performance on L2 accent (TestL2) and native accent (TestL1, LSClean, LSOther),
compared with Baseline-I, Baseline-II, and Model-1. SD refers to the standard deviation

Baseline-I Baseline-II Model-1 Model-4

L1 TestL2 TestL2 TestL2 TestL2 TestL1 LSClean LSOther

VI 23.30 28.81 15.14 12.12 2.02 3.08 6.96

ZH 14.85 19.32 11.49 8.95 1.82 2.84 6.22

AR 10.95 14.82 8.90 6.92 1.55 2.66 6.24

ES 10.48 13.48 8.92 6.68 1.56 2.53 6.11

KO 8.18 10.22 6.60 4.99 1.71 2.51 5.63

HI 6.93 8.93 5.51 4.99 1.52 2.36 6.05

Mean 12.45 15.93 9.43 7.44 1.70 2.66 6.20

SD 5.97 7.30 3.49 2.72 0.20 0.26 0.43

test the model on L1-ARCTIC Test and LibriSpeech as a means to identify any
degradation on L1 English data.

As Table 5 shows, while the multi-accent model (Model-1) outperforms
Baseline-I for all six accents, all of the accent-specific models (Model-4 setting)
outperform Model-1 on the TestL2 setting despite the small amount of data (roughly
5 hours) used for fine-tuning each of the versions of Model-4. On average, Model-4
setting is two points WER better than Model-1. In addition, Model-4 type models
(each of which is fine-tuned on one non-native accent) perform reasonably well on
L1 data (TestL1, LSClean, and LSOther). Further, large accent-specific variability is
observed across different model types on TestL2 (SD = [2.72 − 7.30]), compared
with native counterparts such as TestL1 (SD = [0.20 − 0.43]). An interesting result
is the apparent difficulty difference between different accents (HI and KO easiest,
V I hardest), regardless of model types. We provide sample outputs from Model-4
in Table 11.

As shown in Table 6, we also perform accent-wise zero-shot evaluation. Results
of this set of experiments reveal an interesting pattern: While fine-tuning on a single
accent generally benefits at least one other accent, fine-tuning on the Hindi accent
only benefits Hindi (the same accent) and hinders performance on all the other
accents.

Strong to moderate positive correlations (see Fig. 3) are observed among ZH,
KO, and VI (0.79 between ZH and KO, 0.44 between VI and ZH, 0.34 between VI
and KO). On the contrary, HI accents have negative correlations with all the other
L1s. Strong negative correlations with ZH, KO, and VI (−0.95, −0.73, and 0.67,
respectively) suggest that the more we fine-tune on HI accents, the more detrimental
to the performance on those three accents (and vice versa; those three accents would
have negative impacts on HI performance).

Model-5 (Speaker-Independent and Accent-Dependent) This setup simulates
a more realistic scenario where we target a single accent, without access to all
speakers during development time. Thus, we use Split-5 data which mimics a
speaker-independent setting. We cross-validate each L1 subset with one of the four
speakers per fold. The hyperparameters we use are those identified for Model-4.
To evaluate the performance on each speaker, we conduct 24 folds in total with

Automatic Speech Recognition for Non-native English 35

Table 6 Model-4 performance in the zero-shot setting. Bold fonts represent the accent whose
WER drops the most in the zero-shot setting. For example, compared with Baseline-I, the VI-
specific fine-tuning not only improves performance on VI (i.e., a drop in WER) but also improves
on ZH despite ZH being the unseen accent. One notable pattern is that HI-specific fine-tuning only
benefits HI-accented speech recognition, while all the other fine-tuning hinder performance on the
HI accent

VI ZH AR ES KO HI

Baseline-I 23.30 14.85 10.95 10.48 8.18 6.93

VI-specific 12.12 13.62 13.01 9.95 8.55 9.62

�WER −11.18 −1.23 2.06 −0.53 0.37 2.69

�% −48.00 −8.31 18.84 −5.03 4.52 38.77

ZH-specific 20.37 8.95 11.42 9.79 6.82 10.91

�WER −2.93 −5.90 0.47 −0.69 −1.36 3.98

�% −12.58 −39.75 4.26 −6.62 −16.67 57.43

AR-specific 23.88 14.86 6.92 9.86 9.16 7.74

�WER 0.58 0.01 −4.03 −0.62 0.98 0.81

�% 2.47 0.07 −36.83 −5.92 11.94 11.69

ES-specific 20.71 13.99 11.00 6.68 7.92 8.66

�WER −2.59 −0.86 0.05 −3.80 −0.26 1.73

�% −11.13 −5.81 0.43 −36.23 −3.22 25.01

KO-specific 20.07 12.12 11.66 10.04 4.99 9.09

�WER −3.23 −2.73 0.71 −0.44 −3.19 2.16

�% −13.88 −18.38 6.45 −4.23 −39.04 31.17

HI-specific 26.18 18.39 13.51 11.90 10.72 4.99

�WER 2.88 3.54 2.56 1.42 2.54 −1.94

�% 12.37 23.82 23.35 13.55 31.01 −27.99

1 speaker removed at a time and report the average and standard deviation of the
fourfolds per each accent. As Table 7 shows, speaker-dependent variability is small
for Testall (SD = [0.11−0.38]) but large for Testzeroshot-speaker (SD = [1.12−4.87]).
These results suggest that individual speaker’s differences may play an important
role in how much performance gain can be obtained by fine-tuning.13

5.4 Language Model Decoding

We evaluate the impact of language model decoding in comparison to the fine-tuning
techniques already identified. We use a 4-gram KenLM model [17] trained on the

13 For those speakers whose TOEFL scores are known [59], a strong negative correlation was
observed between speaker-specific WERs of Baseline-I and speaker’s TOEFL scores, r(8) ≈
−0.77, p <0.01.

36 P. Sullivan et al.

Fig. 3 Model-4 correlations of fine-tuning accent vs. test-accent percent performance change.
Here we present the correlations based on Table 6, to show the accents that most benefit each
other

Table 7 Model-5 performance on L2 accent. Testall contains utterances by all speakers within
each L1, whereas Testzeroshot-speaker contains utterances by a single speaker that is absent in the
training phase. Mean refers to the average WER over fourfolds for each L1, and SD refers to the
standard deviation

Testall Testzeroshot-speaker

L1 Mean SD Mean SD

VI 12.67 0.38 14.28 4.87

ZH 9.65 0.31 11.26 3.03

AR 7.28 0.29 8.56 2.28

ES 6.95 0.26 7.76 3.99

KO 5.22 0.18 5.69 2.20

HI 5.27 0.11 5.79 1.12

concatenated LibriSpeech and ARCTIC training corpora. We find performance gain
from language model decoding to be relatively similar to fine-tuning for most splits,
with the combination of the two methods even more beneficial (see Tables 8 and 9).
To further quantify the results, for each target accent, we calculate the average
reduction from adding language model decoding and compare with the average
reduction from fine-tuning, calculated as �WERLM = AV G(B1LM −B1,MLM −
M), while fine-tuning reduction is �WERFT = AV G(M − B1,MLM − B1LM)

(see Fig. 4). For more difficult accents (VI, ZH), fine-tuning appears to play a much
bigger role in performance improvements, with easier accents benefiting more from
the language model decoding (HI, KO).

Automatic Speech Recognition for Non-native English 37

Table 8 Comparison of models with and without language model decoding on the full L2-
ARCTIC Test set. We further ablate this by setting α to 0 to demonstrate performance with beam
search, but without language model re-weighting. �WER indicates increase (+) or decrease (−)
in WER given as a percent relative to the no LM results

Best path ↓ Beam search ↓ �WER ↓
B1 12.47 8.43 −32.40%

B1α=0 12.47 12.74 +2.17%

B2 15.95 11.96 −25.02%

B2α=0 15.95 16.38 +2.70%

M1 9.27 5.53 −40.32%
M1α=0 9.27 9.42 +1.62%

Table 9 Comparison of models with and without language model decoding on the language
background splits (subscript). Results in WER and relative decrease (−) in WER (�WER%)

Best path ↓ Beam search ↓ �WER % ↓
B1V I 23.30 17.01 −27.00%

B2V I 28.81 22.60 −21.56%

M4V I 12.12 7.36 −39.23%

B1ZH 14.85 9.76 −34.28%

B2ZH 19.32 14.28 −26.09%

M4ZH 8.95 5.98 −33.20%
B1AR 10.95 7.53 −31.23%

B2AR 14.82 10.90 −26.45%

M4AR 6.92 4.72 −31.81%
B1ES 10.48 7.04 −32.82%

B2ES 13.48 9.96 −26.11%

M4ES 6.68 3.96 −40.80%
B1KO 8.18 4.75 −41.93%

B2KO 10.22 7.25 −29.06%

M4KO 4.99 2.80 −43.85%
B1HI 6.93 4.43 −36.08%

B2HI 8.93 6.67 −25.31%

M4HI 4.99 2.78 −44.22%

In evaluating beam search on its own (α = 0), performance degrades slightly
compared to the baseline. This indicates that most of the performance gain in
decoding is coming from the inclusion of the language model. We note the B2
baseline not only performs worse than B1 baseline but additionally benefits the
least from language model decoding (perhaps indicating that it has overfit to the
L1-ARCTIC corpus). For L2 ASR, this suggests that simply fine-tuning on domain-
specific but L1 accent corpora is counterproductive.

For performance on the LibriSpeech corpus (see Table 10), results are more
mixed. As already shown by earlier work [56], Wav2Vec 2.0-ST benefits only
slightly from language model decoding on the clean split of LibriSpeech (�WER−
0.05). The fine-tuned models show mild benefit from language model decoding,

38 P. Sullivan et al.

Fig. 4 Here we show the average absolute WER reduction from adding a language model
compared with fine-tuning on the different test splits

Table 10 Comparison of models with and without language model decoding on the test-clean
and test-other splits of LibriSpeech. Results in WER and relative decrease (−) or increase (+) in
WER (�WER%)

LS test-clean LS test-other

Best path ↓ Beam search ↓ �WER % ↓ Best path ↓ Beam search ↓ �WER % ↓
B1 1.86 1.81 −2.69% 3.89 3.67 −5.66%

B2 2.32 1.96 −15.52% 5.00 4.34 −13.20%

M1 2.82 2.54 −11.30% 6.36 5.42 −17.35%

M4VI 3.08 2.78 −10.78% 6.96 5.97 −16.53%

M4ZH 2.83 2.56 −10.53% 6.22 5.38 −15.54%

M4AR 2.66 2.42 −10.06% 6.24 5.38 −15.92%

M4ES 2.53 2.31 −9.51% 6.12 5.30 −15.61%

M4KO 2.51 2.24 −12.22% 5.64 4.82 −16.86%

M4HI 2.36 2.12 −11.16% 6.05 5.19 −16.63%

though some (M4VI, M4ES) are not statistically significantly. For the more difficult
test-other, we however observe across the board improvements in performance for
all models using language model decoding. The overall performance gains from
adding a language model and beam search to decoding L1 speech are minor in
comparison to the benefits in L2 speech decoding, and fine-tuning on L2 speech
decreases the performance on L1 speech substantially even when compared with
better decoding (M1 results test-clean 40.33% and test-other 47.68% increase from

Automatic Speech Recognition for Non-native English 39

B1). This suggests an L1 vs. L2 trade-off that cannot entirely be overcome by the
combination of fine-tuning and decoding strategies we have tried.

6 Error Analysis

To understand the benefit of fine-tuning and language model decoding, we further
analyze the types of error corrected by the respective approaches, using Levenshtein
single-character edit operations (as measured from gold standard to predicted
utterance) as our proxy for types of errors. For this analysis, we use the L2-
ARCTIC development set. An interesting finding of our analysis (see Fig. 5) is
that while adding language model decoding to the B1 baseline improves WER on
L2-ARCTIC, it increases the number of deletion operations, indicative of over-
generation. For fine-tuned models (M1 and M4), there is reduction in error types
across the board, with particular benefit to substitution (M4,−43%) and deletion
operations (M4,−55%) and mild benefit to insertion operations (M4,−30%). For
adding a language model on top of the fine-tuning, we see further reduction in the
substitution operations (M4LM,−64%) and insertion operations (M4LM,−52%),
with mild benefit to deletion operations (M4LM,−65%) (Table 11).

We give examples of some of these errors in Table 12 and use the B1 predictions
on the Dev set of L2-ARCTIC to explore them in more detail. When looking at cases
of single Levenshtein edit operations, we notice the following patterns: Out of the
18 deletion operations, 15 are spelling errors, 1 is a pluralization error, 1 is a tense

Fig. 5 The change in number of Levenshtein edit operations compared to our baseline B1 with
best path decoding and no language model

40 P. Sullivan et al.

Table 11 Examples of transcription output of selected utterances from the Test set of Model-4
among all six L1s without a language model. Capitalized words indicate errors. We show samples
from two speakers per accent

Model Model output

Ref At lake linderman i had one canoe very good peterborough canoe

VI At LAY LINDEMAN i had one canoe very good PETERBORROUG CANOES

A lake LNDER MAN i had one canoe very good BIET OF ROCK canoe

ZH At lake LINGERMAN i had ONCE canoe very good PETERBROUGH canoe

At lake LINERMAN i had one canoe very good PETERE BROUGHTA canoe

AR At lake LUNDERBOGH i had one canoe very good BITTERBOROUGH canoe

At lake LUNDERMAN i had one canoe very good BETTER BORT canoe

ES At lake linderman i had one canoe a very good PETERBOURN canoe

At lake linderman i had ONCE canoe very good PIERREBOROUGH canoe

KO At lake linderman i had one canoe very good peterborough canoe

At lake LINDEMAN i had ONCE canoe very good PITTEBRAUG canoe

HI At lake LINDEMAN i had one canoe very good PETERBURGH canoe

At lake linderman i had one canoe A very good PEACHERBROROU canoe

Table 12 Examples of transcription output of different categories of edit operation. We use a
shorthand to indicate the applied method: fine-tuning, +FT ; language model decoding, +LM; or
lack thereof (−). Errors capitalized

Edit type Model Model output

Ref The portuguese boy crawled nearer and nearer

Substitution −FT − LM The portuguese boy CROWLED nearer and nearer

−FT + LM The portuguese boy crawled nearer and nearer

+FT − LM The portuguese boy CROWLED nearer and nearer

+FT + LM The portuguese boy crawled nearer and nearer

Ref Tomorrow it will be strong enough for you to stand upon

Insertion −FT − LM TO MORROW it will be strong enough for you to stand upon

−FT + LM TO MORROW it will be strong enough for you to stand upon

+FT − LM Tomorrow it will be strong enough for you to stand upon

+FT + LM Tomorrow it will be strong enough for you to stand upon

Ref There are no kiddies and half grown youths among them

Deletion −FT − LM There are no kiddies and half grown YOUTH among them

−FT + LM There are no kiddies and half grown YOUTH among them

+FT − LM There are no kiddies and half grown YOUTH among them

+FT + LM There are no kiddies and half grown youths among them

error, and 1 is a spacing error. For the 18 substitution operations, all are indicative of
spelling errors. Of the 11 insertion operations, 7 are spacing errors and 3 are spelling
errors, and 1 is a pluralization error. Using this rough analysis, it appears that while
both fine-tuning and language model decoding substantially improve spelling of the
model, language model decoding is more effective at ensuring proper spacing of
words.

Automatic Speech Recognition for Non-native English 41

7 Conclusion

We demonstrated the potential of developing accent-independent and accent-
dependent models that improve non-native speech recognition simply by fine-tuning
the pre-trained wav2vec 2.0 model on a small amount of labeled data. Both our
multi- and single-accent models improve performance on L2 English speakers.
However, each accent benefits differently: Results of the multi-accent, zero-shot
experiments suggest that transfer learning on accent is possible and single-accent
models improve the most for the target L2 accents. Comparing the benefit from
using a language model in decoding the ASR outputs with simply fine-tuning the
models, we find that both these methods yield comparable improvements. We also
find that the combination of the two methods greatly closes the gap between L1 and
L2 ASR. We summarize our findings as follows:

• Fine-tuning either on single accents (most effective) or groups of accents (more
generalizable) significantly improves L2 ASR performance. This is possible
through large reductions in calculated substitution and deletion operations.

• Fine-tuning on domain-specific L1 accents is counterproductive to L2 ASR.
• Language model decoding is useful for L2 ASR, even for models with strong

language model-free performance on L1 speech, and is particularly good at
reducing calculated substitution and insertion operations.

When looking at future research directions, it is important to stress the need the
field has for benchmark L2 ASR datasets. Datasets proposed by Wang et al. [53] is
one of the few L2 ASR datasets collected with this intention in mind (although these
only cover L1 Chinese speakers). Without datasets to cover a wide variety of L2
English accents, relying on accent embeddings [23, 49, 50] and multi-task learning
might be a vital addition to L2 ASR work if the goal is wide-accent coverage.
While our fine-tuning of Wav2vec 2.0-ST did not seem to keep the model’s language
model-free performance, there may be other directions to take to try to maintain it.
These can include looking more closely at fine-tuning techniques, such as Layer
Norm and Attention fine-tuning [27] or Adapter fine-tuning [20]. These might be
better at preserving this internal language model, as they freeze more of the original
model weights. Finally, smaller ASR model size and federated learning—although
early results have noted difficulties in applying it to ASR [57], effort is underway to
lower the training cost and improve accuracy [15]—might bring about the potential
for ASR individualization to be targeted at the level of idiolects, with people able to
use ASR models tailored to their personal accent profile.

Acknowledgments We would like to thank Mia Li, Jeremy Zhang, and Haejin Cho for having
contributed to an initial phase of this work.

42 P. Sullivan et al.

References

1. Baevski, A., Schneider, S., Auli, M.: vq-wav2vec: Self-supervised learning of discrete speech
representations (2019). Preprint arXiv:191005453

2. Baevski, A., Zhou, H., Mohamed, A., Auli, M.: wav2vec 2.0: A framework for self-supervised
learning of speech representations (2020). Preprint arXiv:200611477

3. Bearman, A., Josund, K., Fiore, G.: Accent conversion using artificial neural networks.
Technical Report, Stanford University, Technical Report, Tech. Rep (2017)

4. Chan, W., Jaitly, N., Le, Q., Vinyals, O.: Listen, attend and spell: A neural network for large
vocabulary conversational speech recognition. In: 2016 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP), IEEE, pp. 4960–4964 (2016)

5. Chorowski, J.K., Bahdanau, D., Serdyuk, D., Cho, K., Bengio, Y.: Attention-based models
for speech recognition. In: Advances in Neural Information Processing Systems, pp 577–585
(2015)

6. Chung, Y.A., Hsu, W.N., Tang, H., Glass, J.: An unsupervised autoregressive model for speech
representation learning (2019). Preprint arXiv:190403240

7. Crystal, D.: English as a global language. Ernst Klett Sprachen, Stuttgart (2003)
8. Das, N., Bodapati, S., Sunkara, M., Srinivasan, S., Chau, D.H.: Best of both worlds:

Robust accented speech recognition with adversarial transfer learning (2021). Preprint
arXiv:210305834

9. Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: Bert: Pre-training of deep bidirectional
transformers for language understanding (2018). Preprint arXiv:181004805

10. Futami, H., Inaguma, H., Ueno, S., Mimura, M., Sakai, S., Kawahara, T.: Distilling the
knowledge of bert for sequence-to-sequence ASR (2020). Preprint arXiv:200803822

11. Graves, A.: Connectionist temporal classification. In: Supervised Sequence Labelling with
Recurrent Neural Networks, pp. 61–93. Springer, Berlin (2012)

12. Graves, A., Jaitly, N.: Towards end-to-end speech recognition with recurrent neural networks.
In: International Conference on Machine Learning, pp. 1764–1772 (2014)

13. Graves, A., Fernández, S., Gomez, F., Schmidhuber, J.: Connectionist temporal classification:
Labelling unsegmented sequence data with recurrent neural networks. In: Proceedings of the
23rd International Conference on Machine Learning, pp. 369–376 (2006)

14. Gulati, A., Qin, J., Chiu, C.C., Parmar, N., Zhang, Y., Yu, J., Han, W., Wang, S., Zhang, Z.,
Wu Y., et al.: Conformer: Convolution-augmented transformer for speech recognition (2020).
Preprint arXiv:200508100

15. Guliani, D., Beaufays, F., Motta, G.: Training speech recognition models with federated
learning: A quality/cost framework. In: ICASSP 2021-2021 IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP), IEEE, pp. 3080–3084 (2021)

16. Hannun, A.Y., Maas, A.L., Jurafsky, D., Ng, A.Y.: First-pass large vocabulary continuous
speech recognition using bi-directional recurrent DNNs (2014). Preprint arXiv:14082873

17. Heafield, K.: KenLM: Faster and smaller language model queries. In: Proceedings of the sixth
Workshop on Statistical Machine Translation, pp. 187–197 (2011)

18. Hori, T., Cho, J., Watanabe, S.: End-to-end speech recognition with word-based rnn language
models. In: 2018 IEEE Spoken Language Technology Workshop (SLT), IEEE, pp. 389–396
(2018)

19. Hou, J., Guo, P., Sun, S., Soong, F.K., Hu, W., Xie, L.: Domain adversarial training
for improving keyword spotting performance of esl speech. In: ICASSP 2019-2019 IEEE
International Conference on Acoustics, Speech and Signal Processing (ICASSP), IEEE, pp.
8122–8126 (2019)

20. Houlsby, N., Giurgiu, A., Jastrzebski, S., Morrone, B., De Laroussilhe, Q., Gesmundo,
A., Attariyan, M., Gelly, S.: Parameter-efficient transfer learning for NLP. In: International
Conference on Machine Learning, PMLR, pp. 2790–2799 (2019)

21. Hu, H., Yang, X., Raeesy, Z., Guo, J., Keskin, G., Arsikere, H., Rastrow, A., Stolcke, A., Maas,
R.: Redat: Accent-invariant representation for end-to-end asr by domain adversarial training

References 43

with relabeling. In: ICASSP 2021-2021 IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP), IEEE, pp. 6408–6412 (2021)

22. Hwang, K., Sung, W.: Character-level incremental speech recognition with recurrent neural
networks. In: 2016 IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP), IEEE, pp. 5335–5339 (2016)

23. Jain, A., Upreti, M., Jyothi, P.: Improved accented speech recognition using accent embeddings
and multi-task learning. In: Interspeech, pp. 2454–2458 (2018)

24. Kahn, J., Rivière, M., Zheng, W., Kharitonov, E., Xu, Q., Mazaré, P.E., Karadayi, J.,
Liptchinsky, V., Collobert, R., Fuegen, C., et al.: Libri-light: A benchmark for asr with limited
or no supervision. In: ICASSP 2020-2020 IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP), IEEE, pp. 7669–7673 (2020)

25. Kominek, J., Black, A.W., Ver, V.: CMU ARCTIC databases for speech synthesis (2003)
26. Kunze, J., Kirsch, L., Kurenkov, I., Krug, A., Johannsmeier, J., Stober, S.: Transfer learning

for speech recognition on a budget (2017). Preprint arXiv:170600290
27. Li, X., Wang, C., Tang, Y., Tran, C., Tang, Y., Pino, J., Baevski, A., Conneau, A., Auli, M.:

Multilingual speech translation with efficient finetuning of pretrained models (2020). Preprint
arXiv:201012829

28. Ling, S., Liu, Y., Salazar, J., Kirchhoff, K.: Deep contextualized acoustic representations for
semi-supervised speech recognition. In: ICASSP 2020–2020 IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP), IEEE, pp. 6429–6433 (2020)

29. Liu, A.T., Yang, S.W., Chi, P.H., Hsu, P.C., Lee, H.Y.: Mockingjay: Unsupervised speech
representation learning with deep bidirectional transformer encoders. In: ICASSP 2020-2020
IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), IEEE,
pp. 6419–6423 (2020)

30. Liu, S., Wang, D., Cao, Y., Sun, L., Wu, X., Kang, S., Wu, Z., Liu, X., Su, D., Yu, D., et al.:
End-to-end accent conversion without using native utterances. In: ICASSP 2020-2020 IEEE
International Conference on Acoustics, Speech and Signal Processing (ICASSP), IEEE, pp
6289–6293 (2020)

31. Livescu, K., Glass, J.: Lexical modeling of non-native speech for automatic speech recognition.
In: 2000 IEEE International Conference on Acoustics, Speech, and Signal Processing.
Proceedings (Cat. No. 00CH37100), IEEE, vol 3, pp. 1683–1686 (2000)

32. Lowerre, B.T.: The Harpy Speech Recognition System. Carnegie Mellon University (1976)
33. Maas, A., Xie, Z., Jurafsky, D., Ng, A.Y.: Lexicon-free conversational speech recognition with

neural networks. In: Proceedings of the 2015 Conference of the North American Chapter of
the Association for Computational Linguistics: Human Language Technologies, pp. 345–354
(2015)

34. Matassoni, M., Gretter, R., Falavigna, D., Giuliani, D.: Non-native children speech recognition
through transfer learning. In: 2018 IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP), IEEE, pp. 6229–6233 (2018)

35. Meister, C., Vieira, T., Cotterell, R.: If beam search is the answer, what was the question?
(2020) Preprint arXiv:201002650

36. Miao, Y., Gowayyed, M., Metze, F.: Eesen: End-to-end speech recognition using deep
RNN models and WFST-based decoding. In: 2015 IEEE Workshop on Automatic Speech
Recognition and Understanding (ASRU), IEEE, pp. 167–174 (2015)

37. Oord, A.V.D., Li, Y., Vinyals, O.: Representation learning with contrastive predictive coding
(2018). Preprint arXiv:180703748

38. Pan, S.J., Yang, Q.: A survey on transfer learning. IEEE Trans. Knowl. Data Eng. 22(10),
1345–1359 (2009)

39. Panayotov, V., Chen, G., Povey, D., Khudanpur, S.: Librispeech: An ASR corpus based on
public domain audio books. In: 2015 IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP), IEEE, pp. 5206–5210 (2015)

40. Park, D.S., Chan, W., Zhang, Y., Chiu, C.C., Zoph, B., Cubuk, E.D., Le, Q.V.: Specaugment:
A simple data augmentation method for automatic speech recognition (2019). Preprint
arXiv:190408779

44 P. Sullivan et al.

41. Ping, T.T.: Automatic speech recognition for non-native speakers. PhD Thesis, Université
Joseph-Fourier-Grenoble I (2008)

42. Radzikowski, K., Wang, L., Yoshie, O., Nowak, R.: Accent modification for speech recognition
of non-native speakers using neural style transfer. EURASIP J. Audio Speech Music Process.
2021(1), 1–10 (2021)

43. Sak, H., Senior, A., Rao, K., Irsoy, O., Graves, A., Beaufays, F., Schalkwyk, J.: Learning
acoustic frame labeling for speech recognition with recurrent neural networks. In: 2015 IEEE
International Conference on Acoustics, Speech and Signal Processing (ICASSP), IEEE, pp.
4280–4284 (2015)

44. Schneider, S., Baevski, A., Collobert, R., Auli, M.: wav2vec: Unsupervised pre-training for
speech recognition (2019). Preprint arXiv:190405862

45. Shi, X., Yu, F., Lu, Y., Liang, Y., Feng, Q., Wang, D., Qian, Y., Xie, L.: The accented english
speech recognition challenge 2020: Open datasets, tracks, baselines, results and methods.
In: ICASSP 2021-2021 IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP), IEEE, pp. 6918–6922 (2021)

46. Shibano, T., Zhang, X., Li, M.T., Cho, H., Sullivan, P., Abdul-Mageed, M.: Speech technology
for everyone: Automatic speech recognition for non-native english with transfer learning
(2021). Preprint arXiv:211000678

47. Sun, S., Yeh, C.F., Hwang, M.Y., Ostendorf, M., Xie, L.: Domain adversarial training for
accented speech recognition. In: 2018 IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP), IEEE, pp. 4854–4858 (2018)

48. Synnaeve, G., Xu, Q., Kahn, J., Likhomanenko, T., Grave, E., Pratap, V., Sriram, A.,
Liptchinsky, V., Collobert, R.: End-to-end ASR: from supervised to semi-supervised learning
with modern architectures (2019). Preprint arXiv:191108460

49. Turan, M.A.T., Vincent, E., Jouvet, D.: Achieving multi-accent asr via unsupervised acoustic
model adaptation. In: INTERSPEECH 2020 (2020)

50. Viglino, T., Motlicek, P., Cernak, M.: End-to-end accented speech recognition. In: Interspeech,
pp. 2140–2144 (2019)

51. Wang, D., Zheng, T.F.: Transfer learning for speech and language processing. In: 2015
Asia-Pacific Signal and Information Processing Association Annual Summit and Conference
(APSIPA), IEEE, pp. 1225–1237 (2015)

52. Wang, Z., Schultz, T., Waibel, A.: Comparison of acoustic model adaptation techniques on
non-native speech. In: 2003 IEEE International Conference on Acoustics, Speech, and Signal
Processing, 2003. Proceedings (ICASSP’03), IEEE, vol. 1, pp. I–I (2003)

53. Wang, Y., Luan, H., Yuan, J., Wang, B., Lin, H.: Laix corpus of chinese learner english:
Towards a benchmark for l2 english asr. In: INTERSPEECH, pp. 414–418 (2020)

54. Wang, Y., Mohamed, A., Le, D., Liu, C., Xiao, A., Mahadeokar, J., Huang, H., Tjandra,
A., Zhang. X., Zhang, F., et al.: Transformer-based acoustic modeling for hybrid speech
recognition. In: ICASSP 2020-2020 IEEE International Conference on Acoustics, Speech and
Signal, Processing. (ICASSP), IEEE, pp. 6874–6878 (2020)

55. Watanabe, S., Hori, T., Kim, S., Hershey, J.R., Hayashi, T.: Hybrid CTC/attention architecture
for end-to-end speech recognition. IEEE J. Selec. Top. Signal Process. 11(8), 1240–1253
(2017)

56. Xu, Q., Baevski, A., Likhomanenko, T., Tomasello, P., Conneau, A., Collobert, R., Synnaeve,
G., Auli, M.: Self-training and pre-training are complementary for speech recognition.
In: ICASSP 2021–2021 IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP), IEEE, pp. 3030–3034 (2021)

57. Yu, W., Freiwald, J., Tewes, S., Huennemeyer, F., Kolossa, D.: Federated learning in ASR: Not
as easy as you think. In: Speech Communication; 14th ITG Conference, VDE, pp 1–5 (2021)

58. Zenkel, T., Sanabria, R., Metze, F., Niehues, J., Sperber, M., Stüker, S., Waibel, A.: Comparison
of decoding strategies for ctc acoustic models (2017). Preprint arXiv:170804469

59. Zhao, G., Sonsaat, S., Silpachai, A.O., Lucic, I., Chukharev-Hudilainen, E., Levis, J.,
Gutierrez-Osuna, R.: L2-ARCTIC: A non-native english speech corpus. In: INTERSPEECH
Perception Sensing Instrumentation Lab (2018)

Kabyle ASR Phonological Error and
Network Analysis

Christopher Haberland and Ni Lao

Abstract Training on graphemes alone without phonemes simplifies the speech-
to-text pipeline. However, models respond differently to training on graphemes of
different writing systems. We investigate the impact of differences between Latin
and Tifinagh orthographies on automatic speech recognition quality on a Kabyle
Berber speech corpus. We train on a corpus represented in a Latin orthography
marked for vowels and gemination and subsequently transliterate model output to
a consonantal Tifinagh orthography not marked for these features, which results in
10% absolute improvement in word error rate over a model trained on the unmarked
orthography. We find that this performance gain is primarily due to a reduced error
rate for graphemes marked for vocalic and voiced consonantal phonemes. However,
this overall improvement is tempered by a reduction in recognition quality for
other phonemes, especially allophonic spirantized consonants that are replete in
the Kabyle language and many Berber dialects more widely. We also introduce
new methods to characterize the disparity in performance between ASR models
by analyzing outputs in terms of phonological networks. To our knowledge, this is
the first work analyzing phonological networks of artificial neural network speech
model outputs. Our results suggest that inputs written in defective orthographies
lead to worse recognition quality for modern speech-to-text architectures compared
to those fully marked for vowels and gemination.

Ni Lao contributed to this chapter while he was working at SayMosaic Inc.

C. Haberland (�)
USAA, San Antonio, TX, USA
e-mail: crh2ke@virginia.edu

N. Lao
Google, Mountain View, CA, USA

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
M. Abbas (ed.), Analysis and Application of Natural Language and Speech
Processing, Signals and Communication Technology,
https://doi.org/10.1007/978-3-031-11035-1_3

45

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-11035-1_3&domain=pdf

 885
52970 a 885 52970 a

mailto:crh2ke@virginia.edu

 -2016 61494 a -2016 61494 a

https://doi.org/10.1007/978-3-031-11035-1_3

46 C. Haberland and N. Lao

1 Introduction

Graphemic modeling units and their correspondence with the spoken word can vary
between different language communities [1], and even a single language community
may have multiple orthographic conventions for application in different contexts [2]
(diglossia). Minority languages in particular have often undergone less standardiza-
tion [3], contributing to a greater tendency to be written in multiple orthographies.
Improving speech technologies to support minority and “low-resource” languages
and orthographies is crucial to ensuring their vitality and their users’ access to
information in the digital era [4]. Poor quality of low-resource language systems
can compel users to interact with ASR systems in languages of which they are non-
native, diminishing use of their native language. Furthermore, high error rates for a
low-resource language ASR systems disadvantage monolingual speakers of the low-
resource language that have a limited ability to switch to systems in more prevalent
languages with better recognition quality.

Modern speech-to-text (S2T) models are trained on audio data paired with
sequences of modeling units [5], which may be graphemes, phonemes, or other
representations [6] that represent the linguistic constituents. Training models on
phonemes constitutes a general paradigm in the creation of S2T systems [7]
especially in the context of low-resource languages [8]. Training on phonemes can
be advantageous for decoding out-of-vocabulary words or words from an external
language [9], but manual annotation of speech data can be prohibitively expensive
for low-resource languages [4].

ASR pipelines often include a component to automatically generate phoneme-
based training data through grapheme to phoneme (G2P) conversions [10, 11]
by training supervised models [12–14] or constructing rule-based systems [15].
There is an emerging trend toward G2P conversion with minimal intervention and
preparation to streamline the end-to-end learning process. Several systems intend
to streamline the G2P process using different methods, including self-training [16],
ensembles of varying degrees of supervision [17], and leveraging open dictionaries
of high-resource languages [18]. For low-resource languages, training S2T systems
with graphemes alone obviates the G2P step in the S2T pipeline and the need for
language-specific expert annotations [19]. There is also evidence that neural speech
models implicitly learn phonemes at intermediate hidden layers when training
on graphemes [20]. A number of different methods, such as diagnostic probing
techniques and Representational Similarity Analysis, have been applied to show
phonological learning by peering into neural model internals [21]. However, further
research is required to show how S2T model quality responds to training on
graphemes of various writing systems and orthographies in practice.

In this chapter, we study the impact of using a fully featured orthography instead
of a consonantal orthography on S2T performance for Kabyle, a Berber language
of northern Algeria. We chose to experiment with this language to augment the
discussion surrounding orthographic choice on S2T quality that has been conducted
primarily on Semitic languages that are comparatively more resourced, such as

Kabyle ASR Phonological Error and Network Analysis 47

Arabic. While several previous studies [22–24] have demonstrated the effect of
training and decoding using defective (i.e., omitting vocalic information) and non-
defective orthographies separately, our study is the first to compare a neural speech
model’s performance between (a) training and decoding in a defective orthography
and (b) training on a non-defective orthography and decoding into its defective
representation. Our study is also the first to analyze the nature of phonemic errors
made by neural ASR models trained on a corpus in a defective and non-defective
orthography to understand any systematic difference of types of errors made by
models trained on these orthographies. The results demonstrate the importance of
including vocalic graphemic inputs for improved S2T recognition of vowels and
voiced consonants. To our knowledge, this result represents the first S2T system
trained on a Tifinagh-encoded corpus of a Berber language. Our study is also
unique in being the first to apply phonological network methods to characterize
the differences between phonological networks between neural ASR model outputs
to compare them against those of their respective gold vocabularies. We find that
phonological networks of learned ASR vocabularies are significantly denser and less
modular than gold vocabularies and publish our network data to encourage further
investigations of phonological networks of ASR models.

2 Background

2.1 ASR Modeling Units

The investigation of orthographic choices on S2T system performance parallels
psycholinguistic and cognitive science research on humans’ linguistic and concep-
tual comprehension from auditory and visual information. A significant body of
research aims to uncover how different G2P correspondences across writing systems
may predict reading level achievement and interactions with dyslexia [25, 26]. For
example, the work [27] assesses the reading abilities of children diagnosed with
dyslexia when taught a novel orthography consisting of new G2P mappings. The
work [28] studies the effect of diacritization and non-diacritization of dyslexic and
non-dyslexic readers’ processing of the Arabic script and found spelling knowledge
of study participants to be the most significant predictor of processing speed.

S2T learning solely with graphemes has a long history [29]. Recently, studies
have focused on identifying the differences between training on phonemic and
graphemic inputs. The authors in [30] report that the phonemic–graphemic perfor-
mance gap closes when model architecture and hyperparameters are attuned to the
specific data input. Rao and Sak [31] found improved performance of graphemically
trained models in multi-accented corpora and in trials of increased input data scale.
Other work has tested derivatives of graphemes, such as bytes [32], wordpieces
[31], and context-dependent graphemes (i.e., chenones) [19, 33]. Wang et al. [33]
achieved state-of-the-art error rates on English data with graphemically derived
modeling units for English.

48 C. Haberland and N. Lao

2.2 Diacritization

Imputation of diacritics to augment defective model inputs has been, and continues
to be, another active area of research, especially in the context of Arabic speech-
to-text system design [34–38]. Diacritic imputation systems are designed to help
computational models resolve heterophonic homographs or congruent graphemic
sequences that have multiple phonemic interpretations, in orthographies that do not
mark certain features. Sequences of this type are prevalent in consonantal writing
systems, such as that used for Arabic, in which roughly one-third of tokens may be
pronounced differently when not diacritized [39].

There has been work investigating diacritization’s effect on speech modeling
in languages that are written in defective orthographies or those not marked for
certain phonemes. Afify et al. [40] used HMMs to demonstrate that training
on voweled graphemes could increase performance over training on unvowelled
graphemes on Arabic broadcast transcripts, even when decoding into unvowelled
text. However, to the authors’ knowledge, this has not been demonstrated in modern
neural speech models with CTC decoding. More recently, [22] showed that training
neural acoustic models upon voweled graphemes generally improved WER over
unvowelled graphemes when decoding into the same orthography. The authors
of [41] pre-annotate training transcripts with phonetic information deduced from
graphemic context with rules to improve system performance. Alshayeji et al. [23]
and Al-Anzi and AbuZeina [24] compare diacritized and non-diacritized input with
various S2T model architectures and hyperparameters and observe higher WER for
diacritized trials, though they do not train on diacritized data and decode on non-
diacritized data.

Augmenting inputs via transliteration has been shown to improve S2T systems or
machine translation performance. The authors of [42] transliterate model output as
a post-process to improve the recognition of code-switched speech. Le and Sadat
[43] and Cho et al. [44] model the G2P task as a neural sequence-to-sequence
model and record improvements in named entity recognition and code-switched
speech for Vietnamese and mixed Korean–Chinese scripts, respectively. While these
studies use neural G2P models, rule-based systems have been developed for under-
resourced languages [45, 46].

2.3 Berber Language Tools

To date, there have been limited efforts that apply neural speech models to Berber
languages. OCR techniques have been applied to Tifinagh recently [47, 48], and [49]
produced a pronunciation dictionary for speech modeling of phonemes. However,
to the best of our knowledge, the ASR research community has not documented the
training of Berber S2T models aside from those produced from the CommonVoice
initiative [50] trained with a Latin-script corpus. We cite [51] as a limited exception,
who describe a speech recognition system for Tarifit to recognize spoken numbers
in noisy environments.

Kabyle ASR Phonological Error and Network Analysis 49

2.4 Phonological Networks

Phonological network analysis stems from investigations of how humans organize,
internalize, recall, and reproduce words during linguistic processing. The authors
of [52] were among the first to computationally model and understand the network
effects of word similarity on auditory word recognition. Vitevitch [53] and later
authors apply the methodology to understand the properties of phonological net-
works for specific language vocabularies and also to compare them. The authors
in [54] use phonological networks to attempt to discover the differences between
lexicon structures of different languages, identifying a robustness of connectivity of
the networks in response to node removal and small giant components compared to
complex networks in other domains. These authors also reveal general trends and
commonalities between various languages across phonological network statistics.

Shoemark et al. [55] further improves the methodology and argues the need to
control for network size (vocabulary size), to establish baselines for random net-
works governed by similar properties, and account for morphological processes by
casting vocabularies as sets of lemmata. This resulted in more robust measures for
phonological network comparison across languages while controlling for expected
network variability, word length, and phonological inventory size. They found that
most languages exhibit very similar network statistics trends as a result of the
way phonological networks are defined but note certain cross-linguistic differences
in the average shortest path length (ASPL) and small-world property between
languages at different sampled vocabulary sizes. However, the authors did not find
conclusive evidence that phonological networks represented “deeper organization
within language” as [54] stated.

Beyond comparative linguistics, studies have also attempted to study mono-
lingual phonological networks in the context of language acquisition. Siew [56]
uses Louvain optimization to find communities among the phonological network
analyzed by Vitevitch [53] and finds that larger communities are more likely
to contain short, frequent, and highly connected words and low average age of
acquisition ratings and a clustering effect of similar phonological segments in each
community. The authors in [57] find an inverse preferential attachment effect as
new words are acquired in language learners’ networks. Siew and Vitevitch [58]
extends the phonological network to cover orthographic differences to uncover
joint effects on visual word recognition and spoken word recognition. Neergaard
et al. [59] studies monolingual and bilingual speakers of Mandarin and English to
understand the differences in structure, cohesion, and interconnectedness of elicited
phonological networks. Turnbull [60] describes the graph-theoretic properties of
the most common type of phonological networks applied in this literature. Despite
considerable efforts to apply connectivist-theoretical methods in the realms of
psycholinguistics and comparative linguistics, phonological networks have not
heretofore been applied to the analysis of computational speech recognition models
to compare lexical network structures with individual and language-wide vocabu-
laries. To our knowledge, no prior work has described phonological networks of
artificial neural network speech model outputs.

50 C. Haberland and N. Lao

3 The Kabyle Language and Berber Writing Systems

Kabyle is a Berber language spoken in northern Algeria that has historically been
written in Latin, Arabic, and Tifinagh scripts. Contemporary Kabyle is most widely
written in a Latin orthography popularized by the linguist Mouloud Mammeri in
a 1976 grammar of the language, though the Arabic and Tifinagh scripts are still
promoted among certain groups within Algeria society [61]. Souag [61] contends
that the Latin script predominates over the others in modern usage.

The alphabetic Neo-Tifinagh orthographies came into use after language plan-
ning initiatives for the Berber languages in the mid-twentieth century carried
out by organizations such as Morocco’s IRCAM (Amazigh), the Nigerien APT
(Tuareg) [62], and the Académie berbère (Kabyle) [61]. The consonantal Tifinagh
orthographies are not commonly used to write Kabyle. However, we transliterate
Kabyle into a consonantal Tifinagh orthography to expand the incomplete literature
on decoding into defective orthographies, which has primarily focused on Semitic
languages. To our knowledge, no prior study has trained or decoded a speech model
for a Berber language using Tifinagh inputs or a consonantal Tifinagh orthography.

We outline the fundamental differences between the Latin Kabyle orthography
and the consonantal Tifinagh orthography: the first is that the Latin marks for
gemination via digraphs, unlike the traditional Tifinagh. In some dialects, singletons
are often spirantized as opposed to their geminated counterparts (e.g., “tt” from “t”).
In the Latin orthography, these doubled consonants are phonemically “tense” and
correlate with increased pronunciation length [63], register a fortis-lenis contrast
that includes devoicing, and can form minimal pairs [64]. A consonantal Tifinagh
orthography introduces additional heterophonic homography by graphically equat-
ing tense sounds with their non-tense counterparts.

The second fundamental difference is of vowel denotation. Although vowels are
written in all contexts in Neo-Tifinagh orthographies, they are not marked save for
word-final positions in the traditional Tifinagh orthographies [65, 66]. From the set
of Tifinagh characters that may represent vowels, only “ⴰ” exclusively represents
non-glide vowels (for “a,” “�”1) while “ⵓ” (“u”) and “ⵉ” (“i”) also represent semi-
vowels (“w” and “j,” respectively). These latter two graphemes are analogous to the
matres lectionis of Semitic language scripts [67].

A final difference is that certain Tifinagh orthographies make use of ligatures that
elide certain sequences of adjacent graphemes. The number of attested ligatures
across the many varieties of traditional Tifinagh is vast [66], and most are not
supported by Unicode.2 We test the effect of ligatures by encoding those used in the
Ahaggar orthography [65] as distinct characters in trial (1c) described in Section 5.

1 We do not find attestations of “ⴻ” in the traditional Tifinagh orthographies described in [65]. We
transliterate word-final “e” (primarily in loan-words) as “ⴰ,”.
2 https://www.unicode.org/charts/PDF/U2D30.pdf.

 -1446 58376 a -1446 58376
a

https://www.unicode.org/charts/PDF/U2D30.pdf

Kabyle ASR Phonological Error and Network Analysis 51

4 Approach

4.1 Mozilla CommonVoice

We use the original CommonVoice Kabyle corpus for all experiments.3 The audio-
transcript pairs come from Mozilla’s CommonVoice crowdsourced initiative [50],
which has collected data for over 54 languages at the time of writing. All corpora
are released with train/dev/test subsets, and a unique speaker may appear in only
a single set among each split. Most utterances are derived from Wikipedia, but
some have been added by annotators through the language community’s Pontoon
page.4 We removed special symbols and normalized Unicode characters of similar
graphical appearance to ensure that characters intended to represent a single
grapheme were treated as such.5

4.2 Mozilla DeepSpeech

For S2T model training, we use Mozilla’s DeepSpeech pipeline, which is based on
the DeepSpeech framework [68] and is maintained by a large community. After
parameter tuning, we found that the default hyperparameters worked well. For all
experiments, we used models of 1024 hidden units and trained for 50 epochs, with
a learning rate of 0.0001 and a dropout of 0.3. We used batch sizes of 32, 16, and
16 for train, dev, and test sets, respectively. We used the default trigram settings for
training the LM with KenLM [69] in our experiments.

4.3 Transliterator

To convert the Latin-script CommonVoice corpus to the Tifinagh orthographies in
our experiments, we use the Graph Transliterator Python package[70].
This constructs a directed tree of ranked transition rules (e.g., mm -> ⵎ (not ⵎⵎ)
because mm -> ⵎ ranks before m -> ⵎ) to convert between Latin and Berber
orthographies. We write rules for two distinct defective orthographies modeled after
[65]’s description of the Ahaggar variant of Tiginagh—one with ligatures and one
without. In cases where multiple Unicode graphemes represent the same phonemes
across Berber languages and orthographies (e.g., ⴽ, ⴾ), we opted to use the symbol
closest to that described in [65]. Heterophonic homographs in the Latin corpus

3 Accessed April 2020, 4th ed.
4 https://pontoon.mozilla.org/projects/common-voice/.
5 For example, E and € were converted to E (U+025B).

 -1446 57047 a -1446 57047
a

https://pontoon.mozilla.org/projects/common-voice/

52 C. Haberland and N. Lao

Table 1 Kabyle
commonvoice data statistics

Split Downloaded Processed Length

Train 37,056 35,715 35 hrs, 24 min

Dev 11,482 11,100 10 hrs, 52 min

Test 11,483 11,125 11 hrs, 42 min

Table 2 Normalization and transliteration examples

Original Normalized Tifinagh Transliteration

D tasnareft taserdasit i
yettres. s. in deg Lezzayer.

d tasnareft taserdasit i
yettres.s.in deg lezzayer

ⴷ ⵜⵙⵏⵔⴼⵜ ⵜⵙⵔⴷⵙⵜ ⵉ
ⵉⵜⵔⵙⵏ ⴷⴳ ⵍⵣⵉⵔ

Teĉĉid. iles-ik waqila? teččid. iles ik waqila ⵜⵞⴹ ⵍⵙ ⴾ ⵓⵈⵍⴰ
Σerd. eγ -t-id ad yekkes lxiq,
yez. z. el id. arren.

Eerd. eG t id ad yekkes lxiq
yez.z.el id. arren

ⵄⵔⴹⵗ ⵜ ⴷ ⴷ ⵉⴾⵙ ⵍⵆⵈ ⵉⵌⵍ
ⴹⵔⵏ

Tawaγ it d lmehna d-yeγ del
t.rad γ ef tmurt.

taGaGit d lmeh. na d yeGd. el
t.rad Gef tmurt

ⵜⵓⵗⵜ ⴷ ⵍⵎⵘⵏⴰ ⴷ ⵉⵗⴹⵍ ⵟⵔⴷ ⵗⴼ
ⵜⵎⵔⵜ

remain as such in the transliterated Tifinagh (e.g. ‘d’ represents both ‘d’ and ‘ð’,
and is transliterated as “ⴸ” and not the IRCAM “ⴸ.” All Kabyle phonemes that do
not have distinct graphemes in the orthography described in [65] are represented
with a corresponding Neo-Tifinagh symbol (e.g. -> ⵞ, -> ⵕ) (Tables 1 and 2).

4.4 Sequence Alignment

We sought to investigate which, and to what degree, phonemic classes are affected
by different training orthographies. To facilitate this analysis, we required a tool to
align the graphemic output sequences from the ASR systems, such that the aligned
character pairs represented the audio data at the same time periods in the input data.
We considered multiple techniques for matching the output sequences between the
gold input and the inferences of the two models. One potential approach was to use
an acoustic alignment model (e.g., the Montreal Forced Aligner [71] or DSAlign
[72]), though this method risked substantial error propagation for our analysis.
We also considered extracting time-aligned CTC model internals to understand
the exact timesteps at which outputs were predicted with respect to the gold data.
However, we felt that we could achieve the same results with Sound-Class-Based
Phonetic Alignment (SCA) [73] with substantially reduced effort. Sound-Class-
Based Phonetic Alignment (SCA) [73] was possible due to the relatively high degree
of transparency or unambiguous correspondence between graphemes and phonemes
[74] of the Kabyle Latin script. To implement SCA, we use the prog_align function
contained in the LingPy package [75], which constructs a similarity matrix
and applies a Neighbor-Joining algorithm (see [76]) to construct a guide tree to
successively align phonemic sequences. A dynamic programming routine finds a
least-cost path through the matrix to align the multiple sequences according to
similar sound classes. We alter the default SCA sound class matrix values to ensure

Kabyle ASR Phonological Error and Network Analysis 53

that Tifinagh matres lectionis graphemes ((‘j’ | ‘ⵉ’) => ‘I’, (‘w’ | ‘ⵓ’) => ‘Y’) could
align with both vowels and semi-glides from the Latin gold transcripts. We find
that this approach gives accurate alignment for phonemic sequences. We found no
apparent errors after manually inspecting a thousand aligned phoneme pairs.6

5 Experimentation and Results

We present our result comparing S2T performance when training on orthographies
of varying degrees of phonemic informativeness and analyzing phonemic confusion
using sequence alignment techniques.

5.1 Experiments

First, we test the hypothesis that training and testing upon an orthography unmarked
for vowels, as opposed to marked, yields lower ASR word error rates. Because
the Tifinagh input only registers matres lectionis at the end of words, we expect
that most intra-word vocalic signals are lost during the training process on the
Tifinagh orthography compared to training on the Kabyle Latin script. Experiment
1 compares the effect of training and testing upon the Latin-based orthography and
transliterated Tifinagh orthography in a set of trials listed in Table 4 (1a–c). In
1a, the Latin corpus is used for training and testing. The outputs were evaluated
against Latin gold utterances in the test split. In 1b, we train in the same manner
but test by applying a transliterator to convert the Latin test set into the consonantal
Tifinagh orthography without ligatures. The corpus used to train the language model
(LM) is composed of the transliterated utterances of the original corpus. In the third
setup (1c), we repeat experiment 1b using a transliterator that models the ligatures
described in Section 3. Examples of the ligatured Tifinagh are shown in Table 3.

Secondly, we test the hypothesis that learning from an orthography marked for
vowels and decoding on an orthography unmarked for vowels result in lower word
error rates compared to training and testing on either of the marked or unmarked
orthographies alone. In experiment 2, we test the hypothesis that training on the

Table 3 Modelling unit experiment (1c) input example. Note: ⴵ and ⴺ are stand-in single-
character substitutions for ligatures that are not represented in Unicode and are not graphically
representative of the traditional graphemes for these ligatures

Non-ligatured ⵏⴳⵌⵓⵔ ⵉⵣⴳⵏ ⵣⴱⵓ ⵙⴷⵜ ⵛⵏⴳⴰ ⵂⵜ ⵜⴾⵏ ⴷⵉ ⵜⵎⵏⵜⵍⵜ
Ligatured ⵑⵌⵓⵔ ⵉⵣⴳⵏ ⵣⴱⵓ ⵙⴷⵜ ⵛⵑⴰ ⵂⵜ ⵜⴾⵏ ⴷⵉ ⵜⵎⴵⴺ

6 https://github.com/berbertranslit/berbertranslit.

 -1446 58376 a -1446 58376
a

https://github.com/berbertranslit/berbertranslit

54 C. Haberland and N. Lao

Table 4 The impact of orthography and language modeling. Group 1: trained and tested on the
same orthography types. Group 2: Latin to Tifinagh transliteration at test time given a Latin model.
Group 3: the same as Group 1 but without language modeling

Exp. Train orthography Transliteration LM Test orthography CER (%) WER (%)

1a Latin No Yes Latin 29.9 49.9

1b Tifinagh No Yes Tifinagh 35.8 57.9

1c Tifinagh (ligatured) No Yes Tifinagh (ligatured) 33.7 57.4

2 Latin Yes Yes Tifinagh 29.7 47.4

3a Latin No No Latin 34.9 78.3

3b Tifinagh No No Tifinagh 38.8 77.9

3c Latin Yes No Tifinagh 35.6 72.1

plene (fully marked) Latin orthography and subsequently decoding into and testing
against the defective Tifinagh orthography yield lower error rates compared to both
training and testing on the Tifinagh orthography. We train all components on the
Latin script and obtain Latin-script output for test utterances as in 1a. However,
we then transliterate the output and test against gold utterances transliterated into
Tifinagh, as in 1b. Because our main goal is to study the acoustic model and we do
not want a small LM training corpus to negatively affect the experimental result, we
build the LM in DeepSpeech on all train, dev, and test utterances of the normalized
CommonVoice Kabyle Latin-script data for experiments 1 and 2.

Finally, we train the S2T model without an LM as a post-process to specifically
understand the sensitivity of the neural speech component. Trials 3a–c replicate
1a–c but do not apply LM post-processing to help understand the effect of our
interventions on the neural ASR component.

5.2 Results

We report the results of all three sets of trials in Table 4. 1a and 1b show that the
original Kabyle input encoded in the plene Latin orthography yields lower error
rates than when training and testing on the transliterated Tifinagh alone (CER:
−5.9% and WER: −8%). However, this reduction is less pronounced when the
ligatured Tifinagh orthography is used (1c) (CER: −3.8% and WER: −7.5%).

Trial 2 exhibits improved recognition when training on the Latin orthography
and subsequently transliterating to and testing against Tifinagh. This arrangement
reduces CER by 0.2% and WER by 2.5% with respect to trial 1a in which the plene
orthography was used for both training and testing. Compared to training and testing
in the defective orthography (1b), Trial 2 shows a 10.5% absolute decrease in WER
and 6.1% absolute decrease in CER.

Trial 3 shows that, without the language model, the WER for training upon
and testing against Latin orthography (3a) is greater than when using the Tifinagh
orthography (3b) by 0.4%. However, the CER for the former procedure with respect
to the latter is less by 3.9%, likely due to the increased difficulty of predicting

Kabyle ASR Phonological Error and Network Analysis 55

more characters. Applying a Tifinagh tansliterator to the Latin trained model (3c)
resulted in a WER reduction of 6.2 and 5.8% with respect to 3a and 3b. 3c exhibits
an improved CER compared to the Tifinagh-only trial (3b) (−3.2%), although it is
0.7% higher when compared to the Latin-only trial (3a).

5.3 Phonemic Confusion Analysis

To understand the orthographies’ effects on the speech model, we conduct an
analysis by alignment between the gold utterances and the predictions from
experiments 3b and 3c. This analysis is inspired by recent studies by Kong et al.
[77], Alishahi et al. [78], and Belinkov et al. [6], to explore the nature of neural
learning of phonemic information. More specifically, we use the LingPy [75]
package to determine phone error rates as described in Sect. 4.4. We translate all
graphemes of the gold utterances and their predicted counterparts into sequences of
G2P IPA representations and tabulate phoneme class confusions using PHOIBLE’s
sound classes [79]. To understand the models’ differential abilities in detecting
spirantized consonants, we establish a “spirantized” feature that is attributed to the
consonants “t,” “d,” “k,” “g,” and “b” that do not present in the contexts where non-
continuant stops are the norm. We follow Chaker’s description [80] of predictable
Kabyle spirantized contexts to estimate this number across the corpus, as spirantized
and non-spirantized consonants are commonly homographic in the Latin script.
We modify the SCA model to ensure that matris lectionis characters are more
easily aligned to their respective vowels in the gold Latin-text transcripts. Table 5
shows example aligned sentences produced by this procedure. By analyzing the
aligned utterances, we tabulate estimated confusions between the gold and predicted
alignments.

We count phonemic disagreements between the models as a proportion of gold
target contexts of the aligned matching phoneme. To understand which model
achieves better performance for word-final vowel recognition that is denoted in the
Tifinagh orthography, we analyze the counts of all gold contexts in which vowels
or semi-vowels appear (always word-finally) against the counts of aligned model
inferences at these contexts. Table 6 shows that the model trained on the Latin
orthography and subsequently transliterated (3c) achieves higher recognition of the
pure vowel grapheme compared to the model trained on the unvowelled traditional
Tifinagh (3b).

Table 7 compares the errors across several different phonemic classes. We do
not consider the “continuant” and “delayedRelease” features, as the distinction
between allophonic and phonemic fricativity is difficult to determine for Kabyle
from graphemes alone. Although the PHOIBLE database includes these features
as “syllabic,” we tally counts for the “approximate,” “sonorant,” and “dorsal,”
and “periodic glottal source” features without “syllabic” phonemes so as to better
analyze the contribution of non-syllabic features. McNemar’s asymptotic test with
continuity correction [81] affirms the significance of the difference between 3b and
3c (P < 0.025 for all features except the “geminate” feature).

56 C. Haberland and N. Lao

Ta
bl

e
5

A
lig

nm
en

t
of

th
e

sa
m

e
se

nt
en

ce
pr

od
uc

ed
by

di
ff

er
en

t
m

od
el

s
in

Ta
bl

e
4.

∗
in

di
ca

te
s

a
m

is
si

ng
sp

ac
e

in
th

e
al

ig
nm

en
t.

+
in

di
ca

te
s

T
ifi

na
gh

-
tr

an
sl

ite
ra

te
d

go
ld

.

G
ro

up
-

tr
ai

n/
de

co
de

R
aw

A
lig

nm
en

t(
in

IP
A

re
pr

es
en

ta
tio

n)

3a
-

L
at

in
/L

at
in

G
ol

d
yu

w
ed

.
G
er

le
bG

is
j

u
w

�
d .

K
�

r
l

�
b

*
K

*
i

s

Pr
ed

yu
w

ed
.

G
al

eb
G

is
j

u
w

�
d .

K
a

-
*

l
�

b
K

i
*

s

3b
-

T
ifi

na
gh

/T
ifi

na
gh

G
ol

d+
ⵉⵓ
ⴹ
ⵗⵔ

ⵍⴱ
ⵗⵉ

ⵙ
j

w
d .

K
r

l
b

K
j

s

Pr
ed

ⵉⵓ
ⴹ
ⵗⵍ
ⴱ
ⵗ
ⵙ

j
w

d .
K

-
*

l
b

K
-

s

3c
-

L
at

in
/T

ifi
na

gh
G

ol
d+

ⵉⵓ
ⴹ
ⵗⵔ

ⵍⴱ
ⵗⵉ

ⵙ
j

w
d .

K
r

l
b

*
K

j
s

Pr
ed

ⵉⵓ
ⴹ
ⵗⵍ
ⴱ
ⵗ
ⵙ

j
w

d .
K

-
*

l
b

K
-

s

Kabyle ASR Phonological Error and Network Analysis 57

Table 6 Comparison of model performance for different word-final vowels. The columns
represent phoneme pairs (Tifinagh grapheme : Latin IPA). Trial 3c shows considerably higher
recognition of vowels.

ⴰ : a/ә ⵉ : i (j) ⵓ : u/ (w) All vowels

The number of word-final vowels in gold 7430 6557 1341 15,328

Cw: The portion (%) of all word-final phonemes 11.7% 10.3% 2.1% 13.0%

C2: The portion (%) of Cw either 3b (x)or 3c is correct 23.7% 28.1% 30.4% 26.2%

C3: Both 3b and 3c are incorrect 38.2% 46.8% 34.9% 41.6%

C3b: The portion (%) of C2 for which 3b is correct 18.5% 13.2% 13.7% 15.6%

C3c: The portion (%) of C2 for which 3c is correct 81.5% 86.8% 86.3% 84.5%

We bold the higher percentage between C3b and C3c

Table 7 Comparison of model performance for different phonemic features. Cp represents the
portion (%) of G2P mappings the feature comprises the total number of G2P mappings in the
corpus. See the definition of C2, C3, C3b, and C3c in Table 6. 3c is correct for more disagreements
for all features except for the coronal, strident, and trill features. We use McNemar’s asymptotic
test with continuity correction [81] to test the null hypothesis that there is no difference between
the performance of C3b and C3c with respect to different sound classes. χ2

1 values are particularly
high for voiced and syllabic phonemes. We bold the higher between C3b and C3c when χ2

1 > 18.5
(corresponding to P = 0.001)

Cp C2 C3 C3b C3c χ2
1

Syllabic (vowels) (word-final) 6.1% 26.2% 41.6% 15.6% 84.4% 1902.8

Periodic glottal (voiced) (– syllabic) 36.4% 18.5% 29.2% 42.2% 57.8% 407.9

Dorsal (– syllabic) 11.8% 17.7% 28.7% 38.2% 61.8% 294.6

Sonorant (– syllabic) 24.0% 18.1% 26.2% 44.1% 55.9% 151.4

Nasal 11.5% 17.6% 24.1% 42.0% 58.0% 130.1

Spirantized stops (+ voiced) 3.3% 20.1% 34.3% 36.0% 64.0% 129.8

Continuant (– syllabic) 28.4% 17.1% 27.5% 45.5% 54.5% 98.5

Approximate (– syllabic) 12.6% 18.6% 28.2% 45.9% 54.0% 38.2

Consonants 53.1% 16.6% 29.7% 47.9% 52.1% 38.9

Non-spirantized stops (+ voiced) 0.5% 24.1% 24.1% 34.8% 65.2% 27.1

Labial 11.7% 16.1% 49.8% 35.0% 65.0% 26.3

Labiodental 1.5% 17.8% 30.3% 40.7% 59.3% 23.7

Spread glottis 0.4% 20.3% 47.1% 34.6% 65.4% 18.8

Retracted tongue root 2.1% 16.7% 60.0% 45.8% 54.2% 6.0

Lateral 4.3% 18.6% 30.0% 47.4% 52.6% 5.3

Non-spirantized stops (– voiced) 1.2% 22.7% 45.9% 46.4% 53.6% 3.3

Geminate 8.6% 9.0% 56.8% 49.6% 50.4% 0.13

Strident 8.0% 10.5% 33.5% 53.8% 46.2% 12.3

Coronal 37.1% 16.4% 29.1% 51.9% 48.1% 22.3

Trill 5.0% 16.3% 30.7% 55.7% 44.3% 26.0

Spirantized stops (– voiced) 6.7% 16.9% 20.7% 70.1% 29.9% 458.1

58 C. Haberland and N. Lao

5.4 Phonological Network Analysis

We sought to understand the differences of the models based on the phonological
similarity of their predicted vocabularies. Specifically, we first tokenize the vocab-
ularies of the speech models’ unique lexical tokens from their predicted output,
as well as the vocabularies of the gold data as encoded in both Latin and the
transliterated Tifinagh. We model nodes as surface-form tokens as they appear in
their respective texts; we do not lemmatize outputs to study morphological effects on
the phonological network as conducted by Shoemark et al. [55] as we are not aware
of any available Kabyle lemmatizers. To construct a phonological network, we then
assign an edge to any pair of nodes that are one edit away from each other (Fig. 1).
That is, for any pair of tokens for which a single change, addition, or subtraction
could cause both tokens to be the same token, an edge is formed. For example, for
a given vocabulary set, “af�t” and “aq�t” are linked by an undirected edge, just as
“af�t” and “f�t” are likewise assigned an edge. However, “aq�t” and “f�t” are not
assigned an edge since they differ by an edit distance that is greater than one.

We analyze each gold corpus and speech model’s inferred vocabulary as a self-
contained phonological network and follow [53] and [55] in reporting common
network statistics to characterize the properties of the graph. For each vocabulary
network, we report the average degree, degree assortativity coefficient, error
assortativity coefficient, and average shortest path length. We control for vocabulary
size by computing the average statistics of 200 randomly sampled networks of
6000 nodes. We also obtain size-controlled modularity statistics for each network
by (1) obtaining 3 randomly sampled networks of 4000 nodes for each gold
and model phonological network, (2) conducting the Clauset–Newman–Moore
modularity maximization algorithm to split and bin nodes into communities, and (3)
computing the average modularity statistic given these communities. All statistics
were obtained using the Python networkx package, v.2.6.3 [82] (Table 8).

Fig. 1 Visualizations of phonological network structures on combined gold and ASR model
vocabularies. Rendered with the Python package bokeh, v. 2.4.2 [84]. (a) Example module within
a phonological network of Latin ASR gold and model output tokens. (b) Subgraph of the unionized
network of Tifinagh-encoded gold and model vocabularies

Kabyle ASR Phonological Error and Network Analysis 59

Table 8 Descriptive statistics across gold vocabulary and model vocabulary phonological net-
works. Bold statistics are reported from averages across equally sized, randomly sampled
subgraphs over multiple trials as reported in Sect. 5.4. Group denotes the vocabulary set analyzed,
Orthography denotes the encoded orthography, Size denotes the length of the vocabulary, %
Giant Comp. denotes the percentage of nodes in the largest component of the graph, Avg.
Degree is the average degree of all nodes in the graph, ASPL is the average shortest path length
of the giant component, DAG stands for the degree assortativity coefficient, Err. AC is the
attribute assortativity coefficient of the binary feature of whether the node was outside of the gold
vocabulary, and Mod. is the modularity of from Clauset–Newman–Moore community groupings.
+ indicates a transliterated vocabulary

Group Orthography Size % Giant comp. Avg. deg. ASPL DAC Err. AC Mod.

Gold Latin 12,860 48.9% 1.9 (0.9) 10.0 (5.9) 0.66 (0.59) – (0.96)

Gold Tifinagh+ 9320 84.1% 8.4 (5.4) 5.5 (5.8) 0.54 (0.53) – (0.66)

3a Latin 13,985 70.8% 6.4 (2.7) 6.5 (4.3) 0.56 (0.54) 0.11 (0.79)

3b Tifinagh+ 8481 97.1% 22.6 (16.0) 3.9 (4.1) 0.40 (0.40) 0.10 (0.53)

3c Tifinagh+ 7396 95.3% 19.8 (16.0) 4.1 (4.2) 0.45 (0.45) 0.16 (0.54)

6 Discussion

Performance when training on fully featured inputs (3c) to decode word-final vowels
improves when compared 3b in which intra-word vowels are hidden from the model.
The results suggest that sonorous and vocalized phonemes benefit more from model
training on the voweled text. When only one model between 3b and 3c is correct,
we see that “approximate,” “sonorant,” and “period glottal” phonemes exhibit
comparatively high disagreement, surpassed only by the phonemes with positive
“lateral” and “syllabic” features. The model may share information across these
features, and in particular, voicing. All of these features record higher recognition
rates in the case of 3c. While the difference in error rates for sonorous and voiced
consonants between 3b and 3c does not exactly trend according to the sonority
hierarchy [83], the number of disagreements between the models does follow this
trend. These findings suggest that the model in 3c is leveraging correlates of sonority
for phoneme recognition (Fig. 2).

A surprising finding was an improved ability of the 3b model in classifying non-
tense/non-geminated phonemes modeled to be spirantized. This is interesting in that
spirantized consonants are often homographic with non-spirantized consonants, so
we are able to understand the variability of each model’s recognition for a homo-
graph corresponding to multiple sounds. The fact that non-spirantized consonants
were better recognized by the Latin-trained 3c suggests that it is spirantization, not
occlusivity, that is correlative with 3c’s decreased performance in recognition of
such phonemes. The reason for this disparity is unclear and may deserve additional
investigation. It is notable that all contexts in which stops are modeled to be non-
spirantized in our confusion analysis follow consonants. Model 3c, therefore, may
better be able to recognize a non-spirantized consonants since its input would
otherwise often include a vowel between the characters in question. However, the

60 C. Haberland and N. Lao

Fig. 2 Comparison of the
relative error difference
between 3b and 3c

Kabyle ASR Phonological Error and Network Analysis 61

magnitude of the advantage of 3b over 3c in recognizing unvoiced spirantized stops
is highly significant, especially in light of the fact that both voiced and unvoiced
non-spirantized stops were more likely to be recognized by 3c when the two models
disagreed (Table 7).

The models exhibit different rates of correctly detecting coronal and dorsal
consonants. We hypothesize that this difference is a function of heterogeneous
distributions in the context of vowels and geminate consonants. Further inspection
of the data may also uncover imbalanced distributions between dorsal and coronal
consonants with respect to word-internal vowels that are omitted in the consonantal
orthography tested in this work. The improvement in the “spread glottis” feature
between 3b and 3c is notable, though it is difficult to generalize given the
low prevalence of graphemes representing phonemes possessing this feature. The
other major orthographic difference of the Latin text compared to Tifinagh is
that of marked gemination by means of digraphs. However, our results do not
suggest significant differences in the models’ abilities to correctly recognize these
phonemes. The portion of alignments in which both models failed exhibits a wide
range. Graphemes denoting the “retracted tongue root” feature were least likely to
be correctly aligned. This feature, however, comprises a relatively low portion of the
total number of alignments, and the models might simply not have enough instances
to be able to detect the difference of this feature well. The observations we present
may not hold for languages that observe some level of intra-word vowel denotation,
for example, Arabic and other languages whose consonantal writing systems attest
matres lectionis characters that present medially. To the authors’ knowledge, there
are no consonantal writing systems in widespread use that do not employ medial
matres lectionis in the same way as consonantal Tifinagh. Nevertheless, the results
characterize effects that may generalize to non-voweled orthographies as input to a
non-Semitic language.

Our phonological network analysis reveals a stark contrast between the average
degrees of the Latin and Tifinagh groups. As the phoneme vocabulary size is larger,
the hyperlexica [60] of the Latin vocabulary is larger, and this effect outweighs the
fact that the size of the Latin networks is larger to contribute to a high average
degree. The average degrees of the ASR model output networks is greater by
roughly a factor of 3 with respect to the gold networks. We believe this reflects
the consolidation of choices elected by the models toward gold tokens, causing
dense, closed structures to emanate from the gold signal. This interpretation is
supported by a comparatively larger portion of the tokens in the ASR models’
networks membership in the giant component of the graph. We note that the ASPL
of the speech models’ output is all roughly the same, whether encoded in Tifinagh or
Latin outputs. However, it is generally shorter than those of the gold vocabularies’,
which structurally reflects a consolidation and narrowing in the choices to which
the models converge as viable output emissions. We observe a higher average
modularity statistic of Latin networks compared to that of the Tifinagh networks,
reflecting the greater dispersion of highly connected modules in the network with a
larger possible emission set. We find that the error assortativity coefficient trends

62 C. Haberland and N. Lao

with the models’ error rates, which may reflect a tendency of erroneous tokens
predicted by the higher performing ASR models to be more similar to each other.

7 Future Work

Our study experiments with the DeepSpeech architecture using a single set of
hyperparameters for a single data set and language. Future work can investigate the
interactions of model architectures, hyperparameters, data scales, G2P mappings,
and statistics of orthographic informativeness on S2T performance. Additionally,
future work could study the incidence of particular features of phonological features
in modular communities in a phonological network context. An interesting direction
would be to explore how other features specific to ASR modeling goals, such
as a token’s character edit distance from nearest neighbors, classification status
as erroneous or licit, and its frequency in the gold corpora, vary with respect to
specific network structures. We would also like to understand network statistics
across different epoch checkpoints to observe how the network connectivity changes
during the training process of the neural model.

8 Conclusion

Our study is the first to document S2T performance on Tifinagh inputs and shows
that the choice of orthography may be consequential for S2T systems trained on
graphemes. We amplify findings of prior studies focused on Semitic languages by
showing that a Berber S2T model intended to output unvowelled graphemes benefits
from training on fully featured inputs. Our research suggests that ensuring data
inputs are fully featured would improve ASR model quality for languages that
conventionally use consonantal orthographies, like Syriac, Hebrew, Persian, and
Arabic vernaculars. Using phonological networks, we have also introduced a new
way to analyze the similarities between ASR model outputs trained on different
orthographies with respect to their respective gold vocabularies.

References

1. Turki, H., Adel, E., Daouda, T., Regragui, N.: A conventional orthography for maghrebi Arabic.
In: Proceedings of the International Conference on Language Resources And Evaluation
(LREC), Portoroz, Slovenia (2016)

2. Zitouni, I.: Natural Language Processing of Semitic Languages. Springer, Berlin (2014)
3. Jaffe, A.: Introduction: non-standard orthography and non-standard speech. J. Socioling. 4,

497–513 (2000)

References 63

4. Cooper, E.: Text-to-Speech Synthesis Using Found Data for Low-Resource Languages.
Columbia University (2019)

5. Davel, M., Barnard, E., Heerden, C., Hartmann, W., Karakos, D., Schwartz, R., Tsakalidis, S.:
Exploring minimal pronunciation modeling for low resource languages. In: Sixteenth Annual
Conference Of The International Speech Communication Association (2015)

6. Belinkov, Y., Ali, A., Glass, J.: Analyzing phonetic and graphemic representations in end-to-
end automatic speech recognition (2019). Preprint ArXiv:1907.04224

7. Yu, X., Vu, N., Kuhn, J.: Ensemble self-training for low-resource languages: grapheme-to-
phoneme conversion and morphological inflection. In: Proceedings of the 17th SIGMOR-
PHON Workshop on Computational Research in Phonetics, Phonology, and Morphology, pp.
70–78 (2020)

8. Besacier, L., Barnard, E., Karpov, A., Schultz, T.: Automatic speech recognition for under-
resourced languages: a survey. Speech Commun. 56, 85–100 (2014)

9. Hu, K., Bruguier, A., Sainath, T., Prabhavalkar, R., Pundak, G.: Phoneme-based con-
textualization for cross-lingual speech recognition in end-to-end models (2019). Preprint
ArXiv:1906.09292

10. Kubo, Y., Bacchiani, M.: Joint phoneme-grapheme model for end-to-end speech recognition.
In: ICASSP 2020-2020 IEEE International Conference On Acoustics, Speech And Signal
Processing (ICASSP), pp. 6119-6123 (2020)

11. Chen, Z., Jain, M., Wang, Y., Seltzer, M., Fuegen, C.: Joint grapheme and phoneme embeddings
for contextual end-to-end ASR. In: INTERSPEECH, pp. 3490–3494 (2019)

12. Rao, K., Peng, F., Sak, H., Beaufays, F.: Grapheme-to-phoneme conversion using long short-
term memory recurrent neural networks. In: 2015 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), pp. 4225–4229 (2015)

13. Jyothi, P., Hasegawa-Johnson, M.: Low-resource grapheme-to-phoneme conversion using
recurrent neural networks. In: 2017 IEEE International Conference On Acoustics, Speech
And Signal Processing (ICASSP), pp. 5030–5034 (2017)

14. Arora, A., Gessler, L., Schneider, N.: Supervised Grapheme-to-Phoneme Conversion of
Orthographic Schwas in Hindi and Punjabi (2020). Preprint ArXiv:2004.10353

15. Abbas, M., Asif, D.: Punjabi to ISO 15919 and Roman transliteration with phonetic rectifica-
tion. In: ACM Transactions On Asian And Low-Resource Language Information Processing
(TALLIP), vol. 19, pp. 1–20 (2020)

16. Hasegawa-Johnson, M., Goudeseune, C., Levow, G.: Fast transcription of speech in low-
resource languages (2019). Preprint ArXiv:1909.07285

17. Yu, X., Vu, N., Kuhn, J.: Ensemble self-training for low-resource languages: Grapheme-to-
phoneme conversion and morphological inflection. In: Proceedings of the 17th SIGMOR-
PHON Workshop on Computational Research in Phonetics, Phonology, and Morphology, pp.
70–78 (2020). https://www.aclweb.org/anthology/2020.sigmorphon-1.5

18. Deri, A., Knight, K.: Grapheme-to-phoneme models for (almost) any language. In: Proceedings
of the 54th Annual Meeting Of The Association For Computational Linguistics (Volume 1:
Long Papers), pp. 399-408 (2016)

19. Le, D., Zhang, X., Zheng, W., Fügen, C., Zweig, G., Seltzer, M.: From senones to chenones:
Tied context-dependent graphemes for hybrid speech recognition. In: 2019 IEEE Automatic
Speech Recognition And Understanding Workshop (ASRU), pp. 457–464 (2019)

20. Krug, A., Knaebel, R., Stober, S.: Neuron activation profiles for interpreting convolutional
speech recognition models. In: NeurIPS Workshop on Interpretability and Robustness in
Audio, Speech, and Language (IRASL) (2018)

21. Chrupała, G., Higy, B., Alishahi, A.: Analyzing analytical methods: The case of phonology in
neural models of spoken language (2020). Preprint ArXiv:2004.07070

22. Alhanai, T.: Lexical and language modeling of diacritics and morphemes in Arabic automatic
speech recognition. Massachusetts Institute of Technology (2014)

23. Alshayeji, M., Sultan, S., et al., Diacritics effect on arabic speech recognition. Arab. J. Sci.
Eng. 44, 9043–9056 (2019)

 5004
40651 a 5004 40651 a

https://www.aclweb.org/anthology/2020.sigmorphon-1.5

64 C. Haberland and N. Lao

24. Al-Anzi, F., AbuZeina, D.: The effect of diacritization on Arabic speech recogntion. In: 2017
IEEE Jordan Conference on Applied Electrical Engineering and Computing Technologies
(AEECT), pp. 1–5 (2017)

25. Daniels, P., Share, D.: Writing system variation and its consequences for reading and dyslexia.
Sci. Stud. Read. 22, 101–116 (2018)

26. Rafat, Y., Whitford, V., Joanisse, M., Mohaghegh, M., Swiderski, N., Cornwell, S., Valdivia,
C., Fakoornia, N., Hafez, R., Nasrollahzadeh, P., et al.: First language orthography influences
second language speech during reading: Evidence from highly proficient Korean-English
bilinguals. In: Proceedings of the International Symposium on Monolingual and Bilingual
Speech, pp. 100–107 (2019)

27. Law, J., De Vos, A., Vanderauwera, J., Wouters, J., Ghesquière, P., Vandermosten, M.:
Grapheme-phoneme learning in an unknown orthography: A study in typical reading and
dyslexic children. Front. Psychol. 9, 1393 (2018)

28. Maroun, L., Ibrahim, R., Eviatar, Z.: Visual and orthographic processing in Arabic word
recognition among dyslexic and typical readers. Writing Syst. Res., 11(2), 142–158 (2019)

29. Eyben, F., Wöllmer, M., Schuller, B., Graves, A.: From speech to letters-using a novel neural
network architecture for grapheme based ASR. In: 2009 IEEE Workshop On Automatic Speech
Recognition & Understanding, pp. 376-380 (2009)

30. Wang, Y., Chen, X., Gales, M., Ragni, A., Wong, J.: Phonetic and graphemic systems for multi-
genre broadcast transcription. In: 2018 IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP), pp. 5899–5903 (2018)

31. Rao, K., Sak, H.: Multi-accent speech recognition with hierarchical grapheme based models.
In: 2017 IEEE International Conference On Acoustics, Speech And Signal Processing
(ICASSP), pp. 4815–4819 (2017)

32. Li, B., Zhang, Y., Sainath, T., Wu, Y., Chan, W.: Bytes are all you need: End-to-end multilingual
speech recognition and synthesis with bytes. In: ICASSP 2019-2019 IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 5621–5625 (2019)

33. Wang, Y., Mohamed, A., Le, D., Liu, C., Xiao, A., Mahadeokar, J., Huang, H., Tjandra, A.,
Zhang, X., Zhang, F., et al.: Others transformer-based acoustic modeling for hybrid speech
recognition. In: ICASSP 2020-2020 IEEE International Conference On Acoustics, Speech And
Signal Processing (ICASSP), pp. 6874–6878 (2020)

34. Schone, P.: Low-resource autodiacritization of abjads for speech keyword search. In: Ninth
International Conference on Spoken Language Processing (2006)

35. Ananthakrishnan, S., Narayanan, S., Bangalore, S.: Automatic diacritization of Arabic tran-
scripts for automatic speech recognition. In: Proceedings of the 4th International Conference
on Natural Language Processing, pp. 47–54 (2005)

36. Alqahtani, S., Diab, M.: Investigating input and output units in diacritic restoration. In: 2019
18th IEEE International Conference on Machine Learning and Applications (ICMLA), pp.
811–817 (2019)

37. Alqahtani, S., Mishra, A., Diab, M.: Efficient convolutional neural networks for diacritic
restoration (2019). Preprint ArXiv:1912.06900

38. Darwish, K., Abdelali, A., Mubarak, H., Eldesouki, M.: Arabic diacritic recovery using a
feature-rich biLSTM model (2020). Preprint ArXiv:2002.01207

39. Maroun, M., Hanley, J.: Diacritics improve comprehension of the Arabic script by providing
access to the meanings of heterophonic homographs. Reading Writing 30, 319–335 (2017)

40. Afify, M., Nguyen, L., Xiang, B., Abdou, S., Makhoul, J.: Recent progress in Arabic broadcast
news transcription at BBN. INTERSPEECH. 5, 1637–1640 (2005)

41. Alsharhan, E., Ramsay, A.: Improved Arabic speech recognition system through the automatic
generation of fine-grained phonetic transcriptions. Inf. Process. Manag. 56, 343–353 (2019)

42. Emond, J., Ramabhadran, B., Roark, B., Moreno, P., Ma, M.: Transliteration based approaches
to improve code-switched speech recognition performance. In: 2018 IEEE Spoken Language
Technology Workshop (SLT), pp. 448–455 (2018)

43. Le, N., Sadat, F.: Low-resource machine transliteration using recurrent neural networks of asian
languages. In: Proceedings of the seventh Named Entities Workshop, pp. 95–100 (2018)

References 65

44. Cho, W., Kim, S., Kim, N.: Towards an efficient code-mixed grapheme-to-phoneme conversion
in an agglutinative language: A case study on to-Korean Transliteration. In: Proceedings of the
The 4th Workshop on Computational Approaches to Code Switching, pp. 65–70 (2020)

45. Ahmadi, S.: A rule-based Kurdish text transliteration system. ACM Trans. Asian Low-Resour.
Lang. Inf. Process. 18, 1–8 (2019)

46. Abbas, M., Asif, D.: Punjabi to ISO 15919 and Roman transliteration with phonetic rectifica-
tion. ACM Trans. Asian Low-Resour. Lang. Inf. Process. 19 (2020). https://doi.org/10.1145/
3359991

47. Sadouk, L., Gadi, T., Essoufi, E.: Handwritten tifinagh character recognition using deep
learning architectures. In: Proceedings of the 1st International Conference on Internet of Things
and Machine Learning, pp. 1–11 (2017)

48. Benaddy, M., El Meslouhi, O., Es-saady, Y., Kardouchi, M.: Handwritten tifinagh characters
recognition using deep convolutional neural networks. Sensing Imaging 20, 9 (2019)

49. Lyes, D., Leila, F., Hocine, T.: Building a pronunciation dictionary for the Kabyle language.
In: International Conference on Speech and Computer, pp. 309–316 (2019)

50. Ardila, R., Branson, M., Davis, K., Henretty, M., Kohler, M., Meyer, J., Morais, R., Saunders,
L., Tyers, F., Weber, G.: Common voice: A massively-multilingual speech corpus (2019).
Preprint ArXiv:1912.06670

51. Zealouk, O., Hamidi, M., Satori, H., Satori, K.: Amazigh digits speech recognition system
under noise car environment. In: Embedded Systems And Artificial Intelligence, pp. 421–428
(2020)

52. Luce, P., Pisoni, D.: Recognizing spoken words: the neighborhood activation model. Ear
Hearing 19, 1 (1998)

53. Vitevitch, M.S: What can graph theory tell us about word learning and lexical retrieval? J.
Speech Lang. Hear. Res. 51(2), 408–422 (2008)

54. Arbesman, S., Strogatz, S., Vitevitch, M.: The structure of phonological networks across
multiple languages. Int. J. Bifurcat. Chaos 20, 679–685 (2010)

55. Shoemark, P., Goldwater, S., Kirby, J., Sarkar, R.: Towards robust cross-linguistic comparisons
of phonological networks. In: Proceedings of the 14th SIGMORPHON Workshop on Compu-
tational Research in Phonetics, Phonology, and Morphology, pp. 110–120 (2016)

56. Siew, C.: Community structure in the phonological network. Front. Psychol. 4, 553 (2013)
57. Siew, C., Vitevitch, M.: An investigation of network growth principles in the phonological

language network. J. Exper. Psychol. General 149, 2376 (2020)
58. Siew, C., Vitevitch, M.: The phonographic language network: using network science to

investigate the phonological and orthographic similarity structure of language. J. Exper.
Psychol. General. 148, 475 (2019)

59. Neergaard, K., Luo, J., Huang, C.: Phonological network fluency identifies phonological
restructuring through mental search. Sci. Rep. 9, 1–12 (2019)

60. Turnbull, R.: Graph-theoretic properties of the class of phonological neighbourhood networks.
In: Proceedings of the Workshop on Cognitive Modeling and Computational Linguistics, pp.
233–240 (2021)

61. Souag, L.: Kabyle in Arabic script: A history without standardisation. In: Creating Standards,
pp. 273. De Gruyter, Boston (2019)

62. Blanco, J.: Tifinagh & the IRCAM: Explorations in cursiveness and bicameralism in the
tifinagh script. Unpublished Dissertation, University of Reading (2014)

63. Louali, N., Maddieson, I.: Phonological contrast and phonetic realization: The case of Berber
stops. In: Proceedings of the 14th International Congress Of Phonetic Sciences, pp. 603–606
(1999)

64. Elias, A.: Kabyle “Double” Consonants: Long or Strong? UC Berkeley (2020). Retrieved from
https://escholarship.org/uc/item/176203d

65. Elghamis, R.: Le tifinagh au Niger contemporain: Étude sur lécriture indigène des Touaregs.
Unpublished PhD Thesis, Leiden: Universiteit Leiden (2011)

66. Savage, A.: Writing Tuareg–the three script options. Int. J. Sociol. Lang. 2008, 5–13 (2008)

 25964 6335 a 25964 6335 a

https://doi.org/10.1145/3359991
https://doi.org/10.1145/3359991

 -563 53934 a -563
53934 a

https://escholarship.org/uc/item/176203d

66 C. Haberland and N. Lao

67. Posegay, N.: Connecting the dots: The shared phonological tradition in Syriac, Arabic, and
Hebrew Vocalisation. In: Studies In Semitic Vocalisation And Reading Traditions, p. 191–226
(2020)

68. Hannun, A., Case, C., Casper, J., Catanzaro, B., Diamos, G., Elsen, E., Prenger, R., Satheesh,
S., Sengupta, S., Coates, A., et al.: Deep speech: Scaling up end-to-end speech recognition
(2014). Preprint ArXiv:1412.5567

69. Heafield, K., Pouzyrevsky, I., Clark, J., Koehn, P.: Scalable modified Kneser-Ney language
model estimation. In: Proceedings of the 51st Annual Meeting Of The Association For
Computational Linguistics (Volume 2: Short Papers), pp. 690-696 (2013). https://www.aclweb.
org/anthology/P13-2121

70. Pue, A.: Graph transliterator: a graph-based transliteration tool. In: J. Open Source Softw.
4(44), 1717 (2019). https://doi.org/10.21105/joss.01717

71. McAuliffe, M., Socolof, M., Mihuc, S., Wagner, M., Sonderegger, M.: Montreal forced aligner:
trainable text-speech alignment using Kaldi. Interspeech 2017, 498–502 (2017)

72. Tilmankamp, L.: DSAlign. GitHub Repository (2019). https://github.com/mozilla/DSAlign
73. List, J.: Sequence comparison in historical linguistics. Düsseldorf University Press (2014)
74. Marjou, X.: OTEANN: Estimating the transparency of orthographies with an artificial neural

network. In: Proceedings of the Third Workshop On Computational Typology And Multilin-
gual NLP, pp. 1–9 (2021). https://aclanthology.org/2021.sigtyp-1.1

75. List, J., Greenhill, S., Tresoldi, T., Forkel, R.: LingPy. A Python library for quantitative tasks
in historical linguistics. Max Planck Institute for the Science of Human History (2019). http://
lingpy.org

76. Saitou, N., Nei, M.: The neighbor-joining method: a new method for reconstructing phyloge-
netic trees. Molecular Biol. Evolut. 4, 406–425 (1987)

77. Kong, X., Choi, J., Shattuck-Hufnagel, S.: Evaluating automatic speech recognition systems in
comparison with human perception results using distinctive feature measures. In: 2017 IEEE
International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 5810–
5814 (2017)

78. Alishahi, A., Barking, M., Chrupała, G.: Encoding of phonology in a recurrent neural model
of grounded speech (2017). Preprint ArXiv:1706.03815

79. Moran, S., McCloy, D. (Eds.): PHOIBLE 2.0. Max Planck Institute for the Science of Human
History (2019). https://phoible.org/

80. Chaker, S.: Propositions pour la notation usuelle a base latine du Berbère. In: INALCO-CRB,
p. e0245263 (1996)

81. Edwards, A.: Note on the “correction for continuity” in testing the significance of the difference
between correlated proportions. Psychometrika 13, 185–187 (1948)

82. Hagberg, A., Swart, P., S Chult, D.: Exploring network structure, dynamics, and function using
NetworkX. Los Alamos National Lab. (LANL), Los Alamos, NM (2008). https://github.com/
networkx/networkx/releases/tag/networkx-2.6.3

83. Ladefoged, P., Johnson, K.: A Course in Phonetics. Nelson Education, Toronto (2014)
84. Bokeh Development Team: Bokeh: Python library for interactive visualization. (2022) https://

bokeh.org/

 27155 8549 a 27155 8549 a

https://www.aclweb.org/anthology/P13-2121
https://www.aclweb.org/anthology/P13-2121

 7042 11870 a 7042 11870
a

https://doi.org/10.21105/joss.01717

20209 15191 a 20209 15191 a

https://github.com/mozilla/DSAlign

 9577 19619 a 9577 19619
a

https://aclanthology.org/2021.sigtyp-1.1

32586 21833 a 32586 21833 a

http://lingpy.org
http://lingpy.org

 5474 34009 a 5474 34009
a

https://phoible.org/

 27735 40651 a 27735 40651 a

https://github.com/networkx/networkx/releases/tag/networkx-2.6.3
https://github.com/networkx/networkx/releases/tag/networkx-2.6.3

 32220 43972 a 32220 43972 a

https://bokeh.org/
https://bokeh.org/

ALP: An Arabic Linguistic Pipeline

Abed Alhakim Freihat, Gábor Bella, Mourad Abbas, Hamdy Mubarak,
and Fausto Giunchiglia

Abstract This paper presents ALP, an entirely new linguistic pipeline for nat-
ural language processing of text in Modern Standard Arabic. In contrary to the
conventional pipeline architecture, we solve common NLP operations of word
segmentation, POS tagging, and named entity recognition as a single sequence
labeling task. Based on this single component, we also introduce a new lemmatizer
tool that combines machine-learning-based and dictionary-based approaches, the
latter providing increased accuracy, robustness, and flexibility to the former. In
addition, we present a base phrase chunking tool which is an essential tool in many
NLP operations. The presented pipeline configuration results in a faster operation
and is able to provide a solution to the challenges of processing Modern Standard
Arabic, such as the rich morphology, agglutinative aspects, and lexical ambiguity
due to the absence of short vowels.

1 Introduction

Natural language understanding tasks, such as information retrieval [1], word sense
disambiguation [2, 3], question answering [4], or semantic search [5], are usually
built on top of a set of basic NLP preprocessing operations. These operations are
supposed to bring text to a more canonical form with dictionary words (lemmas)
and named entities clearly identified. The precise solutions applied depend greatly
on the language; however, state-of-the-art approaches typically involve a pipeline

A. A. Freihat (�) · G. Bella · F. Giunchiglia
University of Trento, Trento, Italy
e-mail: abed.freihat@unitn.it; Gabor.Bella@unitn.it; fausto.giunchiglia@unitn.it

M. Abbas
High Council of Arabic Language, Algiers, Algeria

H. Mubarak
Hamad Bin Khalifa University, Ar-Rayyan, Qatar
e-mail: hmubarak@hbku.edu.qa

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
M. Abbas (ed.), Analysis and Application of Natural Language and Speech
Processing, Signals and Communication Technology,
https://doi.org/10.1007/978-3-031-11035-1_4

67

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-11035-1_4&domain=pdf

 885 49096 a 885 49096
a

mailto:abed.freihat@unitn.it

 9409 49096 a 9409 49096 a

mailto:Gabor.Bella@unitn.it

17986 49096 a 17986 49096 a

mailto:fausto.giunchiglia@unitn.it

 885 55738
a 885 55738 a

mailto:hmubarak@hbku.edu.qa

 -2016 61494 a -2016 61494 a

https://doi.org/10.1007/978-3-031-11035-1_4

68 A. A. Freihat et al.

of components, such as a part-of-speech tagger, a morphological analyzer, a
lemmatizer, and a named entity recognizer (NER). Compared to English, both
lemmatization and NER are harder for Arabic text: for the former because of the
inflectional complexity and ambiguity inherent to written language and for the latter
mainly because Arabic does not mark named entities by capitalization.

There has been extensive research on each of the tasks mentioned above. In
the case of Arabic POS tagging, the approaches are typically based on statistical
classifiers such as SVM [6, 7], sometimes combined with rule-based methods [8]
or with a morphological analyzer [9–11]. The idea of POS tagging applied to
unsegmented words has been investigated in [10] and in [12].

For NER, several solutions and tools have been reported. They can be classified
as rule-based systems such as the approach presented in [13], machine-learning-
based ones such as [14, 15], and hybrid systems such as [16]. The correlation
between NER and POS tagging is illustrated in [17].

For Arabic lemmatization, while several approaches were proposed, few tools
are actually available. Existing tools typically combine multiple techniques to
achieve efficient lemmatization. The Alkhalil lemmatizer [18] first applies morpho-
syntactic analysis to the input sentence in order to generate all potential word
surface forms. Then, among these, only one form is selected per word using a
technique based on hidden Markov models. The accuracy of the tool is reported to be
about 94%. Another lemmatizer is MADAMIRA [19] which relies on preliminary
morphological analysis on the input word that outputs a list of possible analyses. As
a second step, it predicts the correct lemma using language models. The accuracy
of the tool is 96.6%. The FARASA lemmatizer [20] uses a dictionary of words
and their diacritizations ordered according to their number of occurrences. The
accuracy reported for FARASA is 97.32%. Besides these tools, there are other
proposed approaches: for example, [21] proposes a pattern-based approach, while
[22] and [23] present rule-based solutions.

For Arabic chunking tools, the only available research on phrase chunking is
the work done by Mona Diab who introduced a chunking tool as a component of
MADAMIRA. The adopted approach and details about the tools are described in
[24]. The reported accuracy of the tools is 96.33%. In terms of overall NLP pipeline
architecture, most existing solutions perform the aforementioned tasks as a cascade
of several processing steps. For example, POS tagging in FARASA [20, 25] and in
MADAMIRA supposes that word segmentation has been done as a previous step.
Segmentation, in turn, relies on further preprocessing tasks such as morphological
analysis in MADAMIRA.

Likewise, NER and lemmatization are often implemented as separate down-
stream tasks that rely on the results of POS tagging, base phrase chunking, and
morphological analysis. In several Arabic pipelines in the literature [7], however,
upstream tasks such as POS tagging are implemented in a coarse-grained manner,
which amounts to delegating the resolution of certain cases of ambiguity to
downstream components. For example, by using single VERB and PART tags, the
POS tagger in [6] avoids challenging ambiguities in Arabic verbs and particles,
respectively. Consequently, an additional downstream component is needed for

ALP: An Arabic Linguistic Pipeline 69

morphological disambiguation, e.g., to find out whether
������ is an imperative

(
���	
� 	�	��/recognize), past (

	��	
� 	�	��/recognized), or present tense verb (
����	

��	��/you know or

she knows); whether the noun � ��� is singular (in which case it means withdrawal)

or plural (meaning clouds); or whether ��
�
� is an accusative (

	
��
�
�) or a subordinate

particle (
���
�
�).

Good-quality Arabic annotated corpora for machine learning are few and
far between. The Penn Arabic Treebank [26] is a non-free, half-a-million-word
annotated corpus destined for POS tagging and syntactic parsing, upon which a
large number of research results are based. The KALIMAT corpus,1 while freely
available, is a silver standard corpus on which a POS tagging accuracy of 96% was
reported [27].

In this paper, we present an entirely new linguistic pipeline for natural language
processing of text in Modern Standard Arabic. Our goal was to provide an open-
source tool that simultaneously maximizes accuracy, speed of execution, as well as
the resolution of difficult cases of ambiguity within the Arabic text. This way, NLP
tasks downstream of ALP are also expected to work in a more accurate and robust
manner as they need to deal with less amount of ambiguity.

One of the general design principles we used to achieve these goals was to
reduce the number of individual NLP components within the pipeline. Thus, ALP
consists of just two components: the first one is a preprocessor that performs word
segmentation, POS tagging, and named entity recognition as a single processing
task, without any other auxiliary processing tool [28]. The second component uses
these results to perform lemmatization [29].

In an effort to improve accuracy with respect to state-of-the-art tools, we decided
to implement a solution that is independent from implicit NLP design choices
embedded in the annotations of existing corpora. Thus, we hand-annotated an over
two-million-token corpus that forms the basis of ALP. The pipeline can be tested
online2 and is freely available for research upon request.

The rest of the paper is organized as follows: Sect. 2 presents the main cases of
lexical and morphological ambiguity in Arabic that ALP was designed to tackle.
Section 3 introduces the general architecture of ALP and its components. Section 4
provides details and the rationale behind the tag sets we used for annotation.
Section 5 presents the annotation methods we used for the two-million-token corpus.
Section 6 provides evaluation results on ALP, and Sect. 7 reflects on future work.

1 https://sourceforge.net/projects/kalimat/.
2 http://www.arabicnlp.pro/alp/.

 -1446 57047 a -1446 57047 a

https://sourceforge.net/projects/kalimat/

 -1446 58376 a -1446 58376 a

http://www.arabicnlp.pro/alp/

70 A. A. Freihat et al.

2 Ambiguity in Arabic

To illustrate the challenging cases that low-level NLP tasks such as word segmenta-
tion or lemmatization typically need to solve, in the following, we list some common
examples of lexical and morphological ambiguity in Arabic.

2.1 Ambiguity in Word Segmentation

Certain words can be segmented into morphemes in more than one valid way. In
such cases, the correct segmentation can only be determined in context. In Table 1,
we list some common examples of ambiguity that occur at the segmentation level.

2.2 Ambiguity in POS Tagging

While correct segmentation decreases the ambiguity in Arabic text, polysemy and
the lack of short vowels result in morphemes having multiple meanings with distinct
parts of speech. In Table 2, we show some examples of this kind.

Table 1 Ambiguity examples at the segmentation level

Ambiguity Example

Nouns vs conjunction+pronoun ����/weakness vs ����/and they (feminine)

Noun vs conjunction+verb ���/mud vs ���/and (he) solved

Noun vs conjunction+noun
�� ����/receipt vs

�� ����/and (a) character

Noun vs singular noun+pronoun ��� �
� !/two books (in genitive) vs ��� �

� !/my book

Noun vs preposition+noun
���"#/sting vs

���"#/for capacity
Proper noun vs preposition+noun

��� $���� /a city in Iraq vs
��� $���� /with punishment

Proper noun vs conjunction+noun ������/a city in Algeria vs ������/and two cats

Proper noun vs definite article+noun % � # �/a city in Syria vs % � # �/the door
Noun vs interrogative particle+negation particle &#

�
�/pain vs &#

�
�/did I not

Adjective vs noun+pronoun ��'
�� �� /lateral vs ��'

�� �� /my side
Adjective vs preposition+noun

������() /nautical vs
������() /to freedom

Verb vs conjunction+pronoun *+ �,/(he) understood vs *+ �,/and they (masculine)

Verb vs conjunction+verb � �,�/saved vs � �,�/and (he) escaped

Verb vs verb+pronoun � � -.//we knew vs � � -.//(he) taught us

Verb vs interrogative particle+verb �! �0��
�
�/(I) remember vs �! �0��

�
�/do (you) remember

ALP: An Arabic Linguistic Pipeline 71

Table 2 Ambiguity examples at the POS tagging level

Ambiguity Example

Verb vs noun �1�/carried vs �1�/carrying

Verb vs comparative ���2�
�
�/overburdened vs ���2��/heavier

Verb vs adjective �34�/facilitate vs �34�/easy
Verb/noun vs particle &#/gathered vs &#/not
Verb vs number 5"�6/expanded vs 5"�6/nine
Verb vs proper noun ���.7/rose vs ���.7/Talat

Noun vs number 5 8/lion vs 5 8/seven

Noun vs proper noun ���"9��/philanthropy vs ���"9��/Ehsan
Adjective vs noun

�� �/$��/qualitative vs
�� �/$��/quality

Adjective vs proper noun � �1� /nice vs � �1� /Jamil
Interrogative particle vs relative pronoun According to their position in the sentence

Particle ambiguity in ��
�
� ���

�
�/subordinating vs

	
��
�
�/accusative

Particle ambiguity in ����
�����/conditional vs

	
����/accusative
Particle ambiguity in &# �&#/negation vs 	&#	/interrogative
Particle ambiguity in �: �:/negation vs �:/interrogative

Even with correct segmentation and POS tagging, challenging cases of ambiguity
still remain on the level of fine-grained POS tags, mostly due to MSA words
overwhelmingly being written without diacritics. In the following, we list some
examples of ambiguity with which we deal on the fine-grained level.

2.2.1 Verb Ambiguities: Passive vs Active Voice

Many verbs in Arabic have the same form in the active or passive voice cases.
Verbs like �
���/reported or has been reported can be only through the context

disambiguated.

2.2.2 Verb Ambiguities: Past vs Present Tense

The same verb word form that denotes a verb in first-person singular present denotes
(another) verb in third-person singular masculine past. Consider, for example, the

verb �1�
�
� which can be

�
�1	

��
��
�/(I) illustrate can also be

	
�	1 ��

	�
�/(he) illustrated.

72 A. A. Freihat et al.

A third-person singular feminine present verb form denotes (another) verb in
third-person singular masculine past. Consider, for example, the verb �-�(�) which

can be �-	
��(

	�)/(she) carries can be also
	

� 	
-	�(
	�)/(he) sustained.

2.2.3 Verb Ambiguities: Imperative

The imperative verb form (second person singular masculine) can be read as a past
tense verb (third person singular masculine). For example, the verb

������ which may

be an imperative verb (
���	
� 	�	��/recognize) or a past tense verb (

	��	
� 	�	��/(he) recognized).

The imperative verb form (second person plural masculine) can be read as a past
tense verb (third person plural masculine). It can be also a present tense verb (third
person plural masculine). For example, the verb �$ �,���� which may be an imperative

verb (�$��, 	
� 	�	��/recognize), a past tense verb (�$��, 	
� 	�	��/(they) recognized), or a present

tense verb in cases like �$��,�	
��	�� ���

	
!/so that (you) know.

The imperative verb form (second person singular feminine) can be read as
a present tense verb (second person singular feminine), after some particles. For
example, the same form ��

�,���� can be an imperative verb (second person singular

feminine like in (��
�,	
	
� 	�	��/recognize) or a present tense verb (second person singular

feminine) after subordination particles such as in the case (��
�,	 �	

��	�� ���
	
!/so that you

know).

2.2.4 Noun Ambiguities: Singular vs Plural

In Arabic, there are several word forms that denote (different) singular and plural
nouns. For example, the word � ��� denotes the singular noun �

���	�/dragging and

the plural noun �
�����/clouds.

2.2.5 Noun Ambiguities: Dual vs Singular

The � accusative case ending in Arabic leads to dual singular ambiguity. For

example, the word form �� �� ! may be read as singular noun
;
�	� �

	� !	 /one book or dual

�	� �
	� !	 /two books (in genitive dual cases such as <$

�
. ��# � �	� �

	� !).

ALP: An Arabic Linguistic Pipeline 73

2.2.6 Noun Ambiguities: Dual vs Plural

Dual form nouns and masculine plural noun in general are ambiguous. For example,
the word ��=� � : �$: can be read as ���=�

	� :	 �$:/dual form or as ���=� � 	:	 �$:/masculine plural form.

2.2.7 Noun Ambiguities: Feminine vs Masculine Singular

There are cases in which the same word form denotes singular but with differ-
ent gender. For example, the word <0�, can be feminine < 	0	�,/foot or masculine

< 	0�,	/antiquity.

2.3 Ambiguity in Named Entity Recognition

Besides the ambiguity cases that we have presented in the previous section, we
present below two examples of ambiguity related to NER, referring the reader
to [30] for a more detailed treatise on the matter.

2.3.1 Inherent Ambiguity in Named Entities

It is possible for a word or a sequence of words to denote named entities that
belong to different classes. For example, ��>� 28�� denotes both a person and location.

It is also frequent that organizations and establishments are named after person
names. For example,

�� � � ��� # � <$.�.# �?# � 0 / @.AB � ���:�� /King Abdullah University

of Science and Technology.

2.3.2 Ellipses

Ellipses (omitting parts of nominal phrases and entity names) contribute to
the high ambiguity of natural languages. Considering the lack of orthographic
features in Arabic, ellipses increase the ambiguity. For example, a text about

C8$� AB � �D ��
�
E� �F # � �/The Mediterranean Sea mentions it explicitly at the beginning

of the text. After that, it may omit �D ��
�
E� �F # �/the White Sea and refers to it by

C8$� AB �/the Mediterranean. This word is used mostly as an adjective (which means

the average), and there is no orthographic triggers that may disambiguate the entity
from the adjective token.

74 A. A. Freihat et al.

2.4 Ambiguity in Lemmatization

Lexical ambiguity is pervasive in conventional written Arabic due to the absence of
short vowels. For example, the past tense verb �%�GH could be vocalized as

��%��GH	
with the corresponding lemma 	I� 	�/become or as ;
�G	H with the corresponding lemma
	
�G	H/grit. Nouns can also be ambiguous: the word � 8 can be read as �� �8/ways or

�	 	8/ears.

As choosing the correct lemma is ultimately a word sense disambiguation
problem, such cases put considerable stress on the quality of lemmatization. Tools
that are capable of outputting multiple solutions in an order of preference are in
this sense more robust as they potentially allow the disambiguation problem to be
delayed to subsequent syntactic or semantic processing steps.

2.5 Ambiguity in Phrase Chunking

Ambiguity in phrase chunking is related to ambiguity at POS tagging and
named entity recognition ambiguities. For example, the two tokens � � �0#� J$-�K
could be read in two different ways. The first can be read as one nominal
phrase J$-�K/Mahmud � � �0#�/Althahab (family name) in a sentence like

� � �0#� J$-�K ����
�
�I/I saw Mahmud Althahab. They can also be read as two separate

nominal phrases J$-�K/Mahmud � � �0#�/the gold as in the following sentence:

� � �0#� J$-�K L�� /Mahmud sold the gold.

We have also the named entity boundary ambiguity problem. For example, the
two nouns 0-�K/Mohammed and J$-�K/Mahmud can constitute two different noun

sequences. While the sentence J$-�K 0-�K M
�
�I/Mohammed saw Mahmud contains

two nominal phrases, the sentence J$-�K 0-�K IJ� �///Mohammed Mahmud left con-

tains only one. We believe that solving this kind of ambiguity needs extending the
verb tags with the verb transitivity/intransitive information which is planned as a
future work.

3 Pipeline Architecture

The pipeline specific to our method is shown in Fig. 1 and is composed of the
following main steps:

ALP: An Arabic Linguistic Pipeline 75

Fig. 1 The high-level NLP pipeline architecture for lemmatization and chunking

1. Prepossessing: taking white-space tokenized Arabic text in input, we pre-
annotate the text through the following operations:

(a) POS and name tagging: tokens are annotated by a machine-learning-based
sequence labeler that outputs POS, named entity, and word segment tags.

(b) Word segmentation: using the POS output, cliticized words are segmented
into a proclitic, a base word, and an enclitic, making the subsequent
lemmatization step simpler.

2. Lemmatization: the segmented and pre-annotated text is fed into the following
lemmatizer components:

(a) Dictionary-based lemmatizer: words are lemmatized through dictionary
lookup.

(b) Machine-learning-based lemmatizer: words are lemmatized by a trained
machine learning lemmatizer.

(c) Fusion: the outputs of the two lemmatizers are combined into a single output.

3. Chunking: the input of the chunker is similar to the input of the lemmatizer. The
output is a list of base chunks.

The input of the annotator is expected to be UTF-8-encoded, white-space
tokenized but otherwise unannotated text in Modern Standard Arabic. We are also
supposing that sentences have been previously split by the usual sentence end
markers (“.”, “!”, “?”, “. . . ”) and newlines.

3.1 Preprocessing: POS, NER, and Word Segment Tagging

The first component of ALP is a single preprocessor component that tackles three
conventionally distinct NLP tasks: part-of-speech tagging, named entity tagging,
and word segmentation. The common underlying goal of these preprocessing
tasks is to reduce the ambiguity of words by extracting information from their
morphology and context. Consequently, our combined tagger uses a machine-
learning-based sequence labeling approach.

76 A. A. Freihat et al.

Performing the three operations in a single step presents several advantages:

• It is faster to execute than running several machine learning models in series.
• It is easier to reuse as part of a natural language understanding application.
• It does not suffer from the problem of cumulative errors that are inherent to

solutions that solve the same tasks in series.

3.1.1 POS Tagging

The training corpus of the ALP preprocessor was annotated with fine-grained POS
tags that, besides the high-level category, also provide number, gender, tense, and
other information (see Sect. 4.1 for details). This detailed output can be effectively
used by downstream components—such as the ALP lemmatizer—for solving a large
number of cases of lexical ambiguity due to missing vocalization. There remain,
however, some cases of word sense disambiguation that POS tagging alone cannot
deal with, such as transitive/ditransitive verb ambiguity. For example, verbs such as

&N/ (&N	
	//knew or 	&

	

N 	//taught) remain ambiguous according to our current annotation

tag set.

3.1.2 Named Entity Recognition

The ALP preprocessor does not mark named entities as nouns or proper nouns;
rather, it annotates them directly with named entity tags (see Sect. 4.3 for details).
This way the need for a separate NER component is avoided.

Based on the NER tags output by the ALP annotator, identifying the start and
end of a named entity is a trivial task. Then through subsequent word segmentation,
clitics can be removed from the entity and the canonical name obtained.

3.1.3 Word Segmentation

Word segmentation serves a double goal: to reduce the amount of distinct word
forms, resulting in smaller and more robust lemmatizers, and to reduce lexi-
cal ambiguity due to multiple possible interpretations. For example, segmenta-
tion reduces the number of possible word forms of the lemma &N�, from sev-

eral hundreds of cliticized nouns {&N�,, O� -.�,,O� -.��� ,O� -.��� �, &N��# �,. . .} to six forms

{&N�,, ���-.�,, �-.�,, ��=�-.�,,O� -.�,,<P�,
�
�} only. On the other hand, word segmentation reduces

the lexical ambiguity in cases such as
���"# which may be single word (sting) or a

cliticized word (for capacity).
The actual segmentation of words is executed based on the clitic tags provided

by the POS tagger. The input of the method is a word and its corresponding tag. The

ALP: An Arabic Linguistic Pipeline 77

Fig. 2 An example output of the word segmenter

output is a list of tokens that correspond to the PROCLITIC, the BASETAG, and
the ENCLITIC tags. Given that clitics are linguistically determined, segmentation
becomes a simple string splitting task. An example of the output of a segmentation
tool we implemented is shown in Fig. 2.

3.2 Lemmatization

Lemmatization returns the canonical (dictionary) forms of inflected words of a text.
As such, it is a frequent upstream processing step before any analysis of lexical
semantics (the meaning of words). For morphologically rich languages, lemmati-
zation is usually a complex task, e.g., due to the presence of irregular cases. In
Arabic, this includes broken plurals and irregular verbs. State-of-the-art lemmatizers
typically apply finite-state transducers and/or lemmatization dictionaries to such
cases, such as AraComLex [21] or the OpenNLP lemmatizer.3 For regular cases,
such as singular nouns and adjectives, regular plural nouns, and regular verbs,
lemmatization is reduced to a straightforward task of normalization that removes
inflectional prefixes and suffixes. For example, the verb form �$.-�()� is normalized

into the lemma �1�. In the case of singular and regular plural nouns, it is sufficient

to remove the plural suffixes and case endings. For example, the lemma of the dual
noun form ����0#� is 0#�.

The ALP lemmatizer operates over an input pre-annotated by previous prepro-
cessing steps, taking the segmented and POS-annotated text in input. It is built from
the following components:

1. A machine-learning-based lemmatizer: words are lemmatized by a supervised
classifier.

2. A dictionary-based lemmatizer: words are lemmatized through dictionary
lookup.

3. A fusion lemmatizer: the outputs of the two lemmatizer components above are
combined into a single output.

Both the learning-based and the dictionary-based lemmatizers were implemented
using the Apache OpenNLP toolkit.4

3 https://opennlp.apache.org/docs/1.8.4/manual/opennlp.html.
4 http://opennlp.apache.org/docs/1.9.0/manual/opennlp.html#tools.cli.lemmatizer.

 -1446 58376 a -1446 58376
a

https://opennlp.apache.org/docs/1.8.4/manual/opennlp.html

 -1446 59704
a -1446 59704 a

http://opennlp.apache.org/docs/1.9.0/manual/opennlp.html#tools.cli.lemmatizer

78 A. A. Freihat et al.

3.2.1 Learning-Based Lemmatizer

The principal component of our lemmatization approach is a machine-learning-
based classifier. It takes word segments and their corresponding POS tag in input,
also taking context (words and tags) into account. The learning-based approach is
justified by the inherent ambiguity of diacritic-free Arabic words whose meanings
are typically deduced, by humans and machines alike, from context. While the
preliminary POS tagging resolves a great deal of ambiguity, some cases still remain
such as the verb form ��$Q�� which may represent the verb ���R or the verb ��$!.

3.2.2 Dictionary-Based Lemmatizer

A downside of learning-based lemmatization is that more rare and exceptional

cases, such as
�� � 8

�
� (spears), may not be covered by its training corpus, which

leads to lemmatization mistakes. The addition of new cases requires the re-training
of the classifier. Another inconvenience is that classifiers—such as OpenNLP that
we used—typically commit on a single output result, which may or may not be
correct. In case of such ambiguity, from the full set of possible lemmas, further
NLP processing steps may be able to provide correct results based on, e.g., syntactic
or semantic analysis. In order to support these cases, we complement the learning-
based lemmatizer by a dictionary-based one. The dictionary lemmatizer can be run
independently, but we also provide a simple fusion method that combines the results
of the two lemmatizers as described below.

3.2.3 Fusion Lemmatizer

While the learning-based lemmatizer outputs for each word a single candidate
lemma, from the dictionary, multiple solutions could be retrieved even for a single
part of speech (e.g., the verb form &N"6� can be a verb form of the verb &N8 gave up

or &N8
�
� converted to Islam). The goal of the simple fusion component is to produce

a final result from these solutions. The final output is a list of one or more lemmas
in a decreasing order of confidence.

The idea underlying the fusion method is that we usually trust the dictionary to be
capable of providing a correct solution space (a small set of possible lemmas), while
we usually trust the classifier to return the most likely lemma from the previous set.
However, in the case of out-of-corpus words, the classifier may return incorrect
results extrapolated from similar examples, such as returning the lemma ��-3�S for

the word form ��-3 �4��. Thus, whenever a lemma is returned by the classifier that is

not included in the dictionary, it will still be included as a solution but with a lower
confidence.

ALP: An Arabic Linguistic Pipeline 79

Accordingly, our simple fusion method is as follows. We take as input the results
output by the two lemmatizers, namely, LDIC = {l1, . . . , ln} for the dictionary-
based one and LCL = {l} for the classifier-based one, and output LF, the fusion
result. We start by comparing the results of the two lemmatizers:

1. If |LDIC| = 1 and l1 = l, i.e., the outputs are identical, then the solution is trivial,
and we return either output and we are done: LF = {l}.

2. Otherwise, two further cases are distinguished:

(a) If l ∈ LDIC, that is, the dictionary contains the classification output, then
we prioritize the result of the classifier by making it first (i.e., the preferred
lemma): LF = {l, l1, . . . , ln}.

(b) Otherwise, we add the classifier result as the last element: LF =
{l1, . . . , ln, l}.

3.3 Base Chunker

Base chunker splits sentences into groups of base chunks. These chunks in turn
form sentence phrases or may be parts of sentence phrases. It operates over an
input pre-annotated by previous preprocessing steps, taking the segmented and POS-
annotated text in input. The output of the component is a list of chunks. These
chunks may be one of the following base phrases:

1. N
¯

ominal phrases: Base nominal phrases are the longest possible sequence
of adjacent words that constitute a phrase which does not contain coordi-
nations or relative clauses. The length of base nominal phrases may range
from one token to ten tokens or more. An example for such long phrases is
�%�� ��> ��E ��:��#� �� � �� �AB

�
E� ��>6 ��# � $ �T/ ��="6��-� �U��I �%$A �VI�� �� � : ��AB � <$ � # � / member

of the German General Association of Chronic Sleep Disorders Hartmut Rint-
mäster.

2. V
¯

erbal phrases: Verbal phrases are phrases that contain a verb, two verbs, and an
optional nominal phrase, prepositional phrase, or adverbial phrase complement.
The verb part of the phrase may be also preceded by a particle such as E in

the following example: �%� U�����=# � ���0��� ��$#� ���� E/are still making arrangements.

Notice that the boundary of verbal phrases is implicit in case of the object
complement. This means only the verbal part of the phrase will be annotated
as a verbal phrase. The complement part will keep its original annotation.

3. P
¯
redicative adjective phrases: A predicate adjective is a predicate that follows a

nominal phrase. It may range from one to several adjectives such as the phrases
� 8� � :/appropriate and � 8� � : �=� �//inappropriate.

4. P
¯
repositional phrases: Prepositional phrases are phrases that contain a preposi-

tion followed by a nominal phrase such as
��80AB � ��

�,/at school.

80 A. A. Freihat et al.

5. A
¯

dverbial phrases: Adverbial phrases are modifiers that follow an adjective

like �0� in �0� � �1� or a verb such as � �/$ 8
�
� in � �/$ 8

�
� � �,�"6�/travels weekly.

In the case of verbs, it is not necessary that the adverb follows the verb
directly. It is possible to find intermediate phrases between the verb and its

modifiers. Consider, for example, the phrase � �/$ 8
�
� �"�6� �, �W�� � �,�"6�/travels to

France weekly.

4 Annotation Schema

This section presents the tag set used for the preprocessing component of the
pipeline and the design choices behind it.

We annotated a single large training corpus with complex and fine-grained tags
that encode information with respect to part of speech, word segments, and named
entities. On a high level, the tag set is composed as follows:

<TAG> ::= <PREFIX> <BASETAG> <POSTFIX>
<BASETAG> ::= <POSTAG> | <NERTAG>
<PREFIX> ::= <PREFIX> | <PROCLITIC> "+" | ""
<POSTFIX> ::= <POSTFIX> | "+" <ENCLITIC> | ""

A tag is thus composed of a mandatory base tag and of zero or more
(i.e., optional) proclitics and enclitics concatenated with the “+” sign indicating
word segments. A base tag, in turn, is either a POS tag or a NER tag, but not
both (in other words, we do not annotate named entities by part of speech). For
example, the full tag of the word �� �� Q� � is a noun tag preceded by two proclitic

tags (conjunction and preposition) and followed by a pronoun enclitic tag. The
choice of our base and clitic tags was inspired by the coarse-grained tags used in
MADA 2.32 [7] and 3.0 [19], as well as by the more fine-grained tags used in the
Qur’an Corpus [31]. For compatibility with other NLP tools, mapping our tags to
MADA 2.32, MADA 3.0, and Stanford [32] or any other tag sets is straightforward.

In Fig. 3, we provide an example of a complete annotated sentence.

Fig. 3 An example of annotated sentence

ALP: An Arabic Linguistic Pipeline 81

4.1 Annotation of POS Tags

The POS tag set consists of 58 tags classified into 5 main categories:

<POSTAG> ::= <NOUN> | <ADJECTIVE> | <VERB> | <ADVERB>
| <PREPOSITION> | <PARTICLE>

Nouns The noun class has 13 tags as shown in Table 4. The first nine tags are
fine-grained annotations of common nouns that we classify according to their
number (singular, dual, or plural) and gender (masculine, feminine, or irregular).
We use the feature irregular to annotate the irregular plural nouns. As it is the
case in MADA, we consider quantifiers, numbers, and foreign words as special
noun classes. Following the Qur’an corpus, we consider pronouns, demonstrative
pronouns, and relative pronouns as special noun classes (Table 3).

Adjectives The adjective class has nine tags as described in Table 4. Similar to
nouns, the first seven tags are fine-grained annotations of adjectives that we classify
according to their number and gender. As it is the case in MADA, we consider
comparative adjectives and numerical adjectives as special adjective classes.

Verbs The verb class contains five tags as described in Table 4. The first four tags
are fine-grained annotations of verbs that we classify according to their passive
marking (active or passive) and tense (past or present). Annotating future tense in
Arabic is explained in the particle class. For imperative verbs, we use the tag IMPV.

Adverbs It is not clear in the modern Arabic linguistics community whether adverb
belongs to the Arabic part of speech system or not. In this study, we follow FARASA
and MADA in considering adverbs as a category of the Arabic part of speech system,
where we consider adverbs as predicate modifiers that we classify in three classes
as shown in Table 4.

Prepositions and Particles This class contains 28 preposition and particle tags
from the Qur’an corpus tag set that we list in Table 5.

Table 3 Clitic tags No. of clitics No. of tags Examples

0 78 SMN % �� !
1 163 C+PRSV 5� �����
2 105 C+PIN+PRO X ����,0�

�
��

3 12 C+FUT+PRSV+PRO � � Q �8�

82 A. A. Freihat et al.

Table 4 Noun, adjective, verb, and adverb tags

Tag Explanation Example

SMN Singular masculine noun % �� !, � 9 , �� I
SFN Singular feminine noun

�X0���9 ,
������, , �� �U�

DMN Dual masculine noun ���� �� ! , ��=�� �� ! , �� �� ! , ��� �
� !

DFN Dual feminine noun ���� ����, , ��=�� ����, , �� ����, , ��
�'����,

PMN Plural masculine noun ��$ �� �7$: , ��=� �� �7$: , $ �� �7$:, O�
�� �7$:

PFN Plural feminine noun �%� �� �7$: , �%�:�34� �� , �%E��, �%�� �� !
PIN Plural irregular noun � � ! , M��, , �%� � � , Y�� I
FWN Foreign noun ��=�." �U� , ����� $: , % $� � E , I$��� � U�8
NQ Quantifiers 5 �1� , �R , �D�� , M�

�
�

NM Numbers 0���, Z , ��� � 2� � , ��=� � 2� �
PRO Pronouns $�, �[, O� � , �+[
DM Demonstrative pronouns � �0� , ��� �0� , \E �$� , @.��
REL Relative pronouns M�

�0#�, ��
�'# � , ��� �0.# � , ��

���$.# �
SMAJ Singular masculine adjective � �1� , M� $�, , &'�.8
SFAJ Singular feminine adjective

��. �1� ,
����$�, ,

��- �.8
DMAJ Dual masculine adjective ��P �1� , ��=�. �1� , P �1� , ��N �1

�
DFAJ Dual feminine adjective ��=�� . �1� , ���� ��$�, , ���� - �.8
PMAJ Plural masculine adjective ��=�. �1� , ��$ �. �1� , $. �1� , ��N �1

�
PFAJ Plural feminine adjective �%P �1� , �%���$�, , �%�- �.8
PIAJ Plural irregular adjective \���H�

� , \���$�,
�
� , �1�

AJCMP Comparative adjectives �1�
�
� , M$�,

�
� , &N8

�
�

AJNM Ordinal adjectives Y�
�
�, ��

���2� , 2�#�2�
PRSV Present verb (active) Y$���� , Y

�
�"6� , �-�()�

PSTV Past verb (active) Y��,, Y
�
�8 , �1�

PPRSV Present verb (passive) Y����� , Y
�
�"6� , �-�()�

PPSTV Past verb (passive) � ��,
�
� , �� 8 , �1�

IMPV Imperative verb ��, , Y
�
�8� , �1��

T Temporal adverb ��� � , � �� � �9
�
� , 0��

LC Location adverb
�]$ �, , ���(�) , 0��

AV Adverb � �:$�� ,
���� �� , �:�A �V

ALP: An Arabic Linguistic Pipeline 83

Table 5 Preposition and
particle tags

Tag Explanation Example

D Definite article Y�
C Conjunctions �, �

�
� ,

��
P Prepositions ��:, �W� , Y
Q Interrogative particles � �J�:, ��,

�̂ �!
COND Conditional particles $#, � �J ��,

�����
NEG Negation particles &#, E, ��#
ACC Accusative particles ����, ��Q# , ��#
SUB Subordinate particles

���
�
�, ��!

FUT Future particles _8,
��$8

VOC Vocative particles ���, *[
ANS Answer particles *���, EPR
EXL Explanation particles M�

�
�, �:

�
�

EXP Exceptive particles M$8, �0/
EXC Exclamation particles �:, ���
RES Restriction particle E��
CERT Certainty particle 0�,
SUR Surprise particle � �J ��, �� �J��
EMPH Emphatic particle _#
PRP Purpose particle _#
RET Retraction particle ��
REM Resumption particles

��, �
INTG Interrogative particle

�
�

PREV Preventive particle �:
INC Inceptive particle E

�
�

IMPP Imperative particle Y
PR Prohibition particle E
ABB Abbreviation Ì$� !Ja J
PX Punctuation , b

4.2 Annotation of Word Segments

We represent the morphology of words through complex tags that correspond to
their internal structure. As shown above, the structure of a complex tag is

[PROCLITIC+]∗ BASETAG [+ENCLITIC]∗

84 A. A. Freihat et al.

where BASETAG is one of the base POS tags; ENCLITIC, when present, stands for
one or two clitic tags at the end of the word; and PROCLITIC, when present, is the
combination of one to three tags out of a set of the proclitic tags at the beginning of
the word.

In our corpus, the number of distinct individual tags (including both simple and
complex tags) is 358, as shown in Table 3.

4.3 Annotation of Named Entities

The named entity tags output by the ALP preprocessor are shown below:

<NERTAG> ::= <POSITION> "-" <CLASS>
<POSITION> ::= "B" | "I"
<CLASS> ::= "PER" | "LOC" | "ORG" | "EVENT"| "MISC"

Following the conventions of CONLL-2003,5 the NER tags provide both the
class of the entity and its boundaries through indicating the positions of the tokens
composing it. B- stands for beginning, i.e., the first token of the entity, while I-
stands for internal, marking subsequent tokens of the same entity.

Our corpus currently distinguishes the most common types of named entities:
persons, locations, organizations, events, and others. We did not yet classify entity
classes such as date, time, currency, or measurement nor subclasses of organizations
(e.g., we do not differentiate between a football team and a university).

Thus, the total number of NER tags is 10 as shown in Table 6; however, as shown
earlier, NER tags can be further combined with clitic tags.

Table 6 Named entity tags

Tag Explanation Example

B-PER, I-PER Person � ��(
�)_B-PER �c$ ���K_I-PER

B-LOC, I-LOC Location �F # �_B-LOC �D ��
�
E�_I-LOC C8$� AB �_I-LOC

B-ORG, I-ORG Organization % ��9_B-ORG
������d)�_I-ORG

��# �0�#��_I-ORG

B-EVENT, I-EVENT Event % ��d)�_B-EVENT
�� �AB ��# �_I-EVENT

�� � �� �2 # �_I-EVENT

B-MISC, I-MISC Misc % IJ_B-MISC
�� �� � � # �_I-MISC

5 http://www.cnts.ua.ac.be/conll2003/ner/annotation.txt.

 -1446 58376 a -1446 58376
a

http://www.cnts.ua.ac.be/conll2003/ner/annotation.txt

ALP: An Arabic Linguistic Pipeline 85

4.4 Annotation of Lemmas

The lemmatization dictionary is a text file with each tab-separated row containing a
word form, its POS tag, and the corresponding lemma and each column separated
by a tab character. In case of ambiguous word forms (i.e., a word form-POS tag pair
that has several lemmas), the corresponding lemmas are separated by “#” character:
for example, the lemmas of the word form I� ���� are I� �I#I� �I. An example of the

dictionary is shown in Fig. 4a.
The format of the annotated corpus for the learning-based lemmatizer is similar

to the dictionary. The only difference is that the entries are ordered according to
their original position in the sentence in the segmented corpus, in order to retain
context. An empty line indicates the end of a sentence. An example of the training
corpus is shown in Fig. 4b.

4.5 Annotation of Base Chunks

For example, the phrase ���$>#� �� �# �/the tall man in Fig. 5 is a base chunk, while

the phrase � �' AB � �]$ �, ���$>#� �� �# �/�the tall man on the building is not.

We use the following BIO annotation schema to annotate the base chunks:

Fig. 4 Examples of the contents of (a) the lemmatization dictionary and (b) the training corpus of
the classifier-based lemmatizer

Fig. 5 An example output of the base chunker

86 A. A. Freihat et al.

<PHRASE> ::= "-" <CLASS> (<I> "-" <CLASS)*
 ::= "B"
<I> ::= "I"
<CLASS> ::= "NP" | "VP" | "PP" | "ADJP"| "ADVP"

In the following, we describe the base chunks and their annotations:

• N
¯

ominal phrases: The annotation schema for basic nominal phrases is B-NP (I-
NP)∗. This can be one of the following basic noun phrase categories:

1. Pronouns: This category refers to separate pronouns such as $�/he or attached

object pronouns like X/him. Attached possessive pronouns like X/his are

genitive constructions as decribed below. Pronouns are annotated using the
tag B-NP.

2. Nouns: These refer to single-word nouns. They can be definite such % �� !/book

and indefinite like % �� Q#�/the book. We use the tag B-NP if the noun is

indefinite and the tag B-NP I-NP otherwise.
3. Nouns+possessive pronouns: This category refers to nouns followed by

attached possessive pronouns such as ��� �
� !/my book. Such phrase is annotated

as B-NP I-NP.
4. Nouns+adjective modifiers: This category refers to nouns modified by one

or more adjectives. They can be definite nouns such as 0��0�d)� % �� Q#�/the new
book and 0��0�d)� ��� �

� !/my new book or indefinite nouns like 0��0� % �� !/a new

book. The possible tag sequence here is (B-NP|(B-NP I-NP)) (I-NP)+.
5. Genitive nouns: Noun+possessive pronouns are special case of this category.

It includes also the other forms of genitive constructions. They can be
definite nouns such

��8I0AB � % �� !/The school book or indefinite nouns like
��8I0: % �� !/school book. The length of the noun sequence can be of course

more than two tokens such as
��8I0AB � &N�: % �� !/the school teacher book. We

use the tag sequence B-NP (I-NP)+ here.
6. Genitive nouns+adjective modifiers: This category contains possessive con-

structions modified by one or more adjectives. The phrases may be def-
inite such as 0��0�d)� ��8I0AB � % �� !/the new school book or indefinite like

0��0� ��8I0: % �� !/a new school book. The used tag sequence here is B-NP

(I-NP) (I-NP)+.
7. Proper nouns: This category contains proper nouns such as 0-�K/Mohammed

or �?# � 0 / ��� 0-�K/Mohammed bin Abdullah. The length of the sequence can

be in some cases very long.
8. Nouns+proper nouns+adjective modifiers B-NP (I-NP) (I-NP)+: This

category contains phrases such as ��K$F +# � � :���� % �> �9/Trump’s offensive

speech.

ALP: An Arabic Linguistic Pipeline 87

• P
¯
repositional phrases: Prepositional phrases begin with a preposition followed

by one of the basic nominal phrases. The only used tag here is B-PP.
• V

¯
erbal phrases: Verbal phrases consist of two parts—a verbal part that may be

followed by one of the basic nominal phrases. The sequence in the verbal part
may contain one token which the main verb such as &N���/learned, an auxiliary

verb followed by the phrase main verb such as &N�� �� ���R/was learning, negation

particle followed by the main verb such as &N�� �� &#/didn’t learn, or a negation

particle followed by an auxiliary verb and the main verb such as &N�� �� ��Q�� &#/was
not learning. The possible tag sequences are B-VP (NULL—I-VP—(I-VP I-
VP)).

• P
¯
redicative adjective phrases: Predicative constructions may be a predicative

adjective such as � �1� /beautiful or a negation particle followed by a predicative

adjective like � �1� �=� �//not beautiful. The possible tag sequences are B-ADJ

(NULL|I-ADJ | (I-ADJ I-ADJ)).
• A

¯
dverbial phrases: Adverbial constructions contain an adverb that modifies a ver-

bal or adjectival phrase. Examples for this category are �0� /very, � �/$ 8
�
�/weekly,

or � �T���2�/personally. The used tag for adverbial phrase is B-ADV.

5 Corpus Annotation

This section presents the methods we used to annotate the more than two-million-
token corpus that is the fundament of ALP. We have chosen to develop an entirely
new corpus instead of relying on existing resources such as the Penn Arabic
Treebank [26] in order to be free both from licensing restrictions and from past
modeling choices. The main challenge of the annotation process, besides the corpus
size, was to cover and address as many cases of ambiguity (discussed in Sect. 2) as
possible.

The corpus was assembled from documents and text segments from a varied
set of online resources in Modern Standard Arabic, such as medical consultancy
web pages, Wikipedia, news portals, online novels, and social media, as shown in
Table 7. The diversity of sources serves the purpose of increasing the robustness
of the model with respect to changes in domain, genre, style, and orthography. For
consistency within the corpus and with the type of texts targeted by our annotator,
we removed all short vowels from the input corpora.

The current corpus consists of more than 130k annotated sentences with more
than 2 millions Arabic words and 200k punctuation marks (Table 8).

88 A. A. Freihat et al.

Table 7 Resources used in
the training corpus

Resource Proportion

Aljazeera online 30%

Arabic Wikipedia 20%

Novels 15%

Al-quds Al-Arabi newspaper 10%

Altibbi medical corpus 10%

IslamWeb 5%

Social networks (Facebook, Twitter) 5%

Other resources 5%

Table 8 Domains covered in the training corpus

No. of documents No. of tokens Domain Description

Archaeology 61 19745 Archaeological and fossil science

Articles 285 261264 Articles from news portals

Business 73 49937 (Online) Business and trading

Economy 159 61,954 Regional and international economy

Encyclopedia
locations

140 129553 Cities, villages, and countries

Encyclopedia persons 131 90601 Famous persons

Encyclopedia politics 53 52080 Political organizations and events

Environment 110 41506 Environment-related documents

Food recipes 11 4511 Food and cooking recipes

Literature 130 264354 Novels, short stories, proverbs

Medical 339 159,452 Human health-related documents

Medical answers 1 297608 Medical question answers from medical
portals

Miscellaneous 24 2190 Uncategorized documents

Miscellaneous news 985 276323 None political or military nature news

Nature 62 25044 Nature-related documents

News 1013 373884 Political and war news

Quran 1 2915 Verses from Quran

Science 196 73650 Science-related documents

Space 84 41629 Space-related documents

Sport 30 9398 Sport-related documents

Technology 77 24588 Technology-related documents

Theology 10 19576 Islamic theology articles

5.1 POS and Name Annotation Method

The annotation was performed semi-automatically in two major steps:

1. Annotation of a corpus large enough to train an initial machine learning model.

ALP: An Arabic Linguistic Pipeline 89

2. Iterative extension of the corpus. We add new sets of sentences tagged by the
current model after manual correction. Then, we retrain the model after each
iteration.

Step 1 was an iterative process. It was bootstrapped using a 200-sentence gold
standard seed corpus that was fully hand-annotated. The goal of each iteration was
to add a new set of 100 new sentences to the seed corpus, until about 15k sentences
were tagged. Each iteration consisted of the following steps:

1.a For each word in the untagged corpus that was already tagged in the seed
corpus, simply copy the tag from the tagged word (this of course can lead to
wrong tagging as the process does not take the context into account; we fix
such mistakes later).

1.b Find the 100 sentences with the highest number of tags obtained through
replacement in the previous step.

1.c Manually verify, correct, and complete the annotation of the sentences extracted
in step 1.b.

1.d Add the annotated and verified sentences to the seed corpus and repeat.

At the end of step 1, many rounds of manual verification were performed on the
annotated corpus.

In step 2, we extended the corpus in an iterative manner:

2.a Train an initial machine learning model from the annotated corpus.
2.b Use this model to label a new set of 100 sentences.
2.c Verify and correct the new annotations obtained.
2.d Add the newly annotated sentences to the annotated corpus and repeat.

For training the machine learning model, we used the POS tagger component
of the widely known OpenNLP tool with default features and parameters. The
annotation work was accomplished by two linguists, the annotator and a consultant
who was beside the design of the tag set active in corrections and consultations
especially in the first phase.

5.2 Lemma Annotation Method

In the following, we describe the method we used to build the lemmatization
dictionary and the annotations for the learning-based lemmatizer. Our starting point
was the POS corpus that we extended with lemma annotations.

5.2.1 Dictionary Lemmatizer

The dictionary was generated through the following steps:

90 A. A. Freihat et al.

Table 9 Plural classes

Class Possible word forms Example

SMN_PMN SMN,SFN,DMN, DFN, PFN, PMN ��: �$:: ��: �$:,
�� � : �$:, ��� � : �$:, ���� � : �$:, �%� � : �$:, ��$� : �$:

SMN_PFN SMN,DMN,PFN \ ��9 ��:,\ ��9 ��, ���\ ��9 ��, �%�\��9 ��
SFN_PFN SFN,DFN,PFN

��� �� !:,
��� �� !, ��=�� � �� !, �%�� �� !

SMN_PIN SMN,DMN,PIN &N/:,&N/, ���-./,<P/
�
�

SFN_PIN SFN,DFN,PIN
�X�G�

�
�:, �X�G�

�
�, ������G�

�
�,�G�

�
�

FWN_PFN FWN,DMN,PFN ��$�� �� ��.��:, ��$�� �� ��.��, ��� ��� �� ��.��, �%� ��$�� �� ��.��

1. Segmentation. The corpus was segmented as explained in the previous section.
The result of this step was generating a segmented corpus that contains more than
3.1 million segmented tokens.

2. POS tag-based classification. In this step, we classified the word forms
according to their POS tag.

3. Inherent feminine and adjectival feminine classification. In this step, we
classified the feminine nouns into inherent feminine and adjectival feminine

nouns. For example, the noun
�X�G�

�
�_SFN/family is inherent feminine, while the

noun
�X�=�8

�
�_SFN/prisoner is adjectival. This differentiation is important because

the lemma of adjectival nouns is the masculine singular form of the noun �=�8
�
�,

while there is no masculine singular lemma for
�X�=�8

�
�.

4. Plural type classification. In this step, we classified the singular and dual nouns
(after extracting their singular forms) according to their plural type into six
classes as shown in Table 9. This classification enables us to build the possible
word number-gender forms of a given lemma automatically. For example, the
class SMN_PMN has six different possible number-gender forms. On the other
hand, using the feminine classification lists in the previous step enabled us to
differentiate between the SMN_PFN and SFN_PFN. In the class SMN_PFN,
the lemma of a singular feminine noun (SFN) is the singular masculine noun
(SMN). In the class SFN_PFN, on the other hand, the lemma is the singular
feminine noun itself. The adjectives were classified into three classes. The first
class is similar to the class SMN_PMN which allows six different word forms.
The second class contains a seventh possible form which is the broken plural
adjective form. The third class contains PIAJ as a single possible plural form.
For example, ���: belongs to this class since it has two possible plural forms
������: and

�X�+:.

5. Lemma extraction. This step is semi-automatic as follows:

(a) Manual. Assigning the lemmas to broken plural nouns and adjectives was
performed manually.

ALP: An Arabic Linguistic Pipeline 91

(b) Automatic. Based on the morphological features in the tags, it was possible
to extract lemmas for singular, dual, masculine plurals, feminine plurals
adjectives, and nouns. We also used rules to extract the verb lemmas such
as removing the affixes ��.

6. Lemma enrichment. Using the lemmas from the previous step, we have
enriched the corpus with new verbs, adjectives, and nouns. For example, if the
lemma of a plural noun or adjective was missing, we added it to the noun and
adjective lemma lists.

7. Dictionary generation. The files produced so far are as follows:

• Noun files. Three files for masculine, feminine, and foreign nouns. The
lemmas in these files were classified according to Table 9. There is a fourth
file that contains quantifiers, pronouns, adverbs, etc.

• Adjectives. Three files for adjectives, comparatives, and ordinal adjectives.
The lemmas in the adjective file are classified according to Table 9.

• Verbs. One file that contains all extracted verb lemmas.

Using these files, the dictionary was generated as follows:

(a) Noun and adjective generation. According to the plural class, the noun and
adjective forms were generated. The � case ending and changing

�X to �% were

also considered in this step.
(b) Verb generation. For each verb in the verb lemma list, we automatically

generated the verb conjugations in present, past, and imperative cases. We
considered also accusative (% $T� : �� �,) and asserted verbs (<� ���K �� �,).

(c) Dictionary building. Using the results from the previous step, we built the
dictionary as shown in Fig. 4b, where the lemmas of ambiguous surface
forms were concatenated into a single string using the # separator.

5.2.2 Machine Learning Lemmatizer

We used the segmented corpus from the previous section to build the lemmatization
corpus in the two steps below:

1. Lemma assignation. We used a dictionary lemmatizer to assign the word forms
to their corresponding lemmas. In case of prepositions, particles, and numbers,
the lemma of the word form was obtained through simple normalization. The
lemmas of named entities were the named entities themselves. If a word form
was ambiguous, all its possible lemmas were assigned.

2. Validation. We disambiguated the lemmas of the ambiguous word forms
manually.

The size of the generated corpus is 3,229,403 lines. The unique word forms after
discarding the digits are 59,049 as shown in Table 10.

92 A. A. Freihat et al.

Table 10 Distribution of
lemmas and unique word
forms by part of speech in the
corpus of the learning-based
lemmatizer

POS No. of lemmas No. of word forms

Noun 18,165 26,337

Adjective 6369 13,703

Verb 4258 19,009

Named entity 20,407 20,407

Particle 605 649

In a final step, we added all generated word forms and their corresponding
lemmas from the dictionary described in the previous section to the corpus. This
increased the size of the corpus to 3,890,737 lines.

5.3 Base Chunking Annotation Method

We used the segmented corpus from the previous section to build the chunking
corpus by using the BIO tags semi-automatically. The manual part of this process
was identifying the POS tag sequences that constitute a phrase chunk. The total
number of the identified sequences was 4298. Most of these sequences were nominal
phrase sequences, where the number of this group was 4250 sequence. In Table
11, we give examples for the identified noun sequences. The complete identified
POS tag sequences can be found on the project page on ResearchGate.6 In Table
12, we show the identified verb sequences. Table 13 contains predicative adjective
sequences. The prepositional and the adverbial groups contained one sequence only
which is the preposition or the adverb.

Using the identified sequences, we have built the corpus automatically. The size
of the current chunking corpus is more than three million tokens. Of course, we
do not claim that the identified sequences are exhaustive. There may be other non-
detected sequences in our corpus or other sequences that our corpus does not cover.

6 Evaluation

In this section, we present evaluation results, both on individual NLP tasks and
overall results pertaining to the ALP pipeline as a whole (the latter included within
the lemmatizer results).

6 https://www.researchgate.net/project/ALP-Arabic-Linguistic-Tool.

 -1446 58376 a -1446 58376 a

https://www.researchgate.net/project/ALP-Arabic-Linguistic-Tool

ALP: An Arabic Linguistic Pipeline 93

Table 11 Noun phrases Sequences

Length No. of sequences Sequences sample Sample phrase

1 21 D+SMN ��U� # �
2 351 D+SFN D+SFAJ

����0"�d)� ��9��# �
3 1119 SMN PFN

D+DMN

����0. # � �%��,P/ ���� �����

4 1534 AJCMP PFN
SMN D+PFN

�%�R�G2e# � f��(
�) �%�:$��: *�

�
�

5 861 PFN SMN PFN
D+PIN D+PIAJ

�X�2=�� AB � ��$��0#� �%���$� ": L� ����I� �%E�-� 9�

6 263 SMN PIN SFN
D+SMN D+SFAJ
D+SFAJ

��!��= 2"AB � ��.:� 2"#� �-�#� ��> �9 J$� �
�0 � �� � ��

7 68 SFN SMN PFN
SMN D+PFN
D+PFAJ D+PFAJ

�� �#�AB � �� �. � �� 2"�U# � �%� �� �I�$AB � J �0/�� �%�I�+: �1/ �� 28I�

8 14 SMN NQ PIN
SMN SFN SMN
D+PIN D+PIAJ

�� ��� ��0#� g���,
�
E� 5.� �� �.1/ � �34e�6 �]�7 �D�� L� �� �

Table 12 Verbal phrase sequences

Length No. of sequences Sequence sample Sample phrase

1 5 PSTV 59 I
�
�

2 14 PRSV PSTV �%I�
�
�
�
� ��$Q��

3 7 NEG PSTV PPRSV � Q����� �%�� �I �:

Table 13 Predicative adjective phrases Sequences

Length No. of sequences Sequence sample Sample phrase

1 9 DFAJ ��=�� :��
2 9 NEG SFAJ

�XI� �� �=� �/
3 7 SMAJ SMAJ SMAJ

�h�� 2": M� J�:I ��
�'�

6.1 Evaluation of POS Tagging

To evaluate the performance of the proposed solution, we trained a machine learning
model on the annotated corpus using the OpenNLP maximum entropy POS tagger
with default features and cutoff = 3. We did not apply any preliminary normalization
to the evaluation corpus. The evaluation corpus was taken from two sources: the
Aljazeera news portal and the Altibbi medical consultancy web portal. The text
contained 9990 tokens (9075 words and 915 punctuations). Manual validation of
the evaluation results was performed. The per-task accuracy figures are shown in
Table 14.

94 A. A. Freihat et al.

Table 14 Evaluation results
on the POS tagging and word
segmentation tasks

Error type Number of errors Accuracy

Segmentation 25 99.7%

Coarse-grained POS 131 98.7%

Fine-grained POS 206 97.9%

The segmentation error type refers to words that were not segmented correctly.
The coarse-grained POS error type refers to words that were correctly segmented
but the base POS tag was wrong. This also includes incorrect named entity POS
tags. Finally, the fine-grained POS error type means that the word segmentation and
the coarse-grained POS tag were correct but the fine-grained information within the
tag was incorrect in one of the following ways:

• For nouns and adjectives: number/gender error
• For verbs: tense error or passive/active voice error

In some cases, the tag included more than one type of error. For example, the�X�G�i:�_SFN tag (instead of C+SFAJ) includes both segmentation and POS tagging

errors and therefore was counted twice.
The evaluation data and the process to replicate the evaluation tests are available

online.7

6.2 Evaluation of NER

We evaluated the named entity recognition component separately. Our evaluation
corpus contained 674 named entity tags that denote 297 named entities (e.g.,�%�� �I_B-PER ��$"�6��_I-PER is one named entity that contains two named entity

tags). The total number of true positives (correctly detected and classified named
entities) was 265 (89.2% precision). The number of false negatives (assigning a non-
named entity tag, partial tagging, named entity boundary error, or a wrong named
entity class applied) was 32 and the number of the false positives 15 (94.6% recall).
F1-Measure = 91.8%. In Table 15, we provide some examples of these errors.

6.3 Evaluation of Lemmatization and Base Chunking

For evaluating the lemmatizers, we used a corpus of a 46,018-token text, retrieved
and assembled from several news portals (such as Aljazeera news portal8 and Al-

7 http://www.arabicnlp.pro/alp/eval.zip.
8 http://www.aljazeera.net/.

 -1446 57047 a -1446 57047 a

http://www.arabicnlp.pro/alp/eval.zip

 -1446 58376 a -1446 58376 a

http://www.aljazeera.net/

ALP: An Arabic Linguistic Pipeline 95

Table 15 Examples of NER mistakes

Error type Example

Non-NER tag �0��I$ �� �,�_C+SMN instead of C+B-LOC

Partially tagged @ � �,�_SMN �-"U� F U�8_I-PER instead of @ � �,�_C+B-PER

�-"U� F U�8_I-PER

Boundary error
��!�G2�_SFN ������= �8_B-ORG

�� �8�I��_I-ORG instead of
��!�G2�_SFN

������= �8_B-ORG
�� �8�I��_D+SFAJ

Wrong classification ����� �/_B-LOC (in ����� �/ �/J�) instead of ����� �/_B-PER

False positive * �>�6_P+B-ORG
�� �9 ��$Q��

j
� � �_I-ORG instead of * �>�6_P+D+PIN

�� �9 ��$Q��
j
� � �_D+PIAJ

quds Al-Arabi newspaper9). We excluded from the evaluation the categories of
tokens that cannot be lemmatized: 5853 punctuation tokens, 3829 tokens tagged
as named entities, 482 digit tokens, and 10 malformed tokens (i.e., containing

typos, such as
�h �,�$AB �� �� �� �I�

�
� instead of

�h �,�$AB �� �� �� �I�
�
�). Thus, the number of

tokens considered was 35,844. In order to have a clear idea of the efficiency of
the lemmatization pipeline, we evaluated it in a fine-grained manner, manually
classifying the mistakes according to the component involved. This allowed us
to compute a comprehensive accuracy for the entire pipeline as well as evaluate
individual components. The evaluation data files are available online.10

The fine-grained evaluation is summed up in Table 16.11 Nonexistent lemma
stands for cases where the POS tag and the segmentation were correct, yet the
classifier gave a wrong, non-linguistic result. Wrong disambiguation means that the
lemmatizer chose an existing but incorrect lemma for an ambiguous word form.

The accuracy measures reported in Table 17 were computed based on the results
in Table 16. On these, we make the following observations. The performance
of preprocessing (98.6%) represents an upper bound for the entire lemmatization
pipeline. In this perspective, the near-perfect results of the classifier (99.5% when
evaluated in isolation, 98.1% on the entire pipeline) are remarkable. We cross-
checked these results using the built-in cross-validation feature of OpenNLP
and obtained similar results (99.7%). The dictionary-based lemmatizer reached a
somewhat lower yet still very decent result (96.6% in isolation, 95.2% on the entire
pipeline), due to the 1207 OOV word forms. The fusion of the two lemmatizers,
finally, improved slightly on the classifier: of the 170 mistakes made by the classifier,
120 could be correctly lemmatized using the dictionary. Thus, the fusion method

9 http://www.alquds.co.uk/.
10 http://www.arabicnlp.pro/alp/lemmatizationEval.zip.
11 While, after tagging and segmentation, the number of (segmented) tokens rose to 62,694, we
computed our evaluation results based on the number of unsegmented tokens.

 -1446 54612 a -1446 54612
a

http://www.alquds.co.uk/

 -1088 55940 a -1088 55940 a

http://www.arabicnlp.pro/alp/lemmatizationEval.zip

96 A. A. Freihat et al.

Table 16 Types of mistakes committed by the learning-based lemmatizer and their proportions

Type of mistake Occurrences Example

POS tag (coarse-grained)
mistakes

199 k K�= ��_SMN instead of k K�= ��_PRSV

Morphological tag
(fine-grained) mistakes

201 <��!_SMN instead of <��!_PIN

Segmentation tag mistakes 103 � � �� �0 ��
�
�_PSTV instead of �% �0 ��

�
�_PSTV and � ��_PRO

Classifier mistakes: nonexistent
lemma

158 �0� instead of 0� � for ��0�()�_PRSV

Classifier mistakes: wrong
disambiguation

12 ���R instead of ��$! for �$ ��$Q��_PRSV

Dictionary mistakes: missing
word form

1207 \�T �,��,,*/��J,
��> 28�R

Fusion mistakes 50 */��J, <� �$/, �� �= ��

Table 17 Accuracy values computed for various components of the lemmatization pipeline

Component Evaluation method Accuracy

Preprocessing All mistakes (POS, morphological, segmentation) 98.6%

Classifier-based lemmatizer In isolation 99.5%

Classifier-based lemmatizer In isolation, built-in OpenNLP cross-validation 99.7%

Classifier-based lemmatizer Entire pipeline 98.1%

Dictionary-based lemmatizer In isolation 96.6%

Dictionary-based lemmatizer Entire pipeline 95.2%

Fusion lemmatizer Entire pipeline 98.4%

reached a full-pipeline result of 98.4%, only a tiny bit worse than the performance of
preprocessing itself. We have used cross-validation method to evaluate the chunking
corpus. The evaluation result was 98.6%.

7 Conclusion and Future Work

This paper presented ALP, an Arabic linguistic pipeline that solves low-level
Arabic NLP tasks: POS tagging, word segmentation, named entity recognition, and
lemmatization. All of these tasks were performed using tools and resources derived
from a new 2.2-million-word corpus hand-annotated by the authors. Due to the
size of the corpus but also the annotation schemas and the overall pipeline design,
ALP manages to disambiguate a large proportion of cases of lexical ambiguity
and perform the tasks above with high accuracy. This increases the potential of
downstream language understanding tasks, some of which we are planning to
include in ALP in the future.

References 97

In particular, we are working on new Arabic components such as a vocalizer, a
phrase chunker, a dependency parser, or a multiword expression detector.

The trained models and corresponding tools are free for research purposes upon
request. We are also planning to release the annotated corpus itself in the near future.

We are also planning further improvements on the existing components, as
detailed below:

Fine Tuning While the tool reached very good results with default OpenNLP
features, we believe that they can still be improved by customizing the classifier
and the features or using another machine or deep learning algorithm such as CRF
and BiLSTM.

Noun Classification In the current tag set, we do not differentiate between gerunds
(I0TAB �) and other noun classes. For example, the noun � .�,/heart is tagged the same

as the gerund � .�,/overthrow.

Named Entity Classification The classification of named entities in our corpus

is still incomplete and coarse-grained. For example, ��=� �8� �# �, ��
���AB

�
E� � � 2"#�,

and
�� �� ��#� �� ��.# � are not classified as named entities. We plan to introduce new

classes such as dates and currencies, as well as a finer-grained classification of
organizations.

Chunker Coverage Extension We are planning to extend the chunker to detect
sentence phrases without restriction. This will include detecting coordinated nomi-
nal phrases, verbal phrases, and relative clauses. We plan also to do more research
on the relation between adverbs and other phrases and find a way to connect the
modifying adverb to its modified phrase. On the other hand, we will also work
on extending the verb POS tags to differentiate between transitive and intransitive
verbs and study the effect of this new verb classification on proper name boundary
disambiguation.

Other Tools and Corpora We plan to use the same corpus and tag set to produce
annotations for other NLP tasks such as co-reference resolution and parsing.

References

1. Balakrishnan, V., Ethel, L.: Stemming and lemmatization: a comparison of retrieval perfor-
mances. Lect. Notes Soft. Eng. 2, 262–267 (2014)

2. Navigli, R.: Word sense disambiguation: a survey. ACM Comput. Surv. 41, 10:1–10:69 (2009).
http://doi.acm.org/10.1145/1459352.1459355

3. Bella, G., Zamboni, A., Giunchiglia, F.: Domain-based sense disambiguation in multilingual
structured data. In: The Diversity Workshop at the European Conference on Artificial
Intelligence (ECAI) (2016)

4. Freihat, A., Qwaider, M., Giunchiglia, F.: Using grice maxims in ranking community question
answers. In: Proceedings of the Tenth International Conference on Information, Process, and
Knowledge Management, EKNOW 2018, Rome, March 25–29, pp. 38–43 (2018)

 -563 52127 a -563 52127 a

http://doi.acm.org/10.1145/1459352.1459355

98 A. A. Freihat et al.

5. Giunchiglia, F., Kharkevich, U., Zaihrayeu, I.: Concept search. In: The Semantic Web:
Research and Applications, pp. 429–444 (2009)

6. Darwish, K., Mubarak, H., Abdelali, A., Eldesouki, M.: Arabic POS tagging: Don’t abandon
feature engineering just yet. In: Proceedings of the Third Arabic Natural Language Processing
Workshop, pp. 130–137 (2017)

7. Diab, M.: Second generation AMIRA tools for Arabic processing: Fast and robust tokenization,
POS tagging, and base phrase chunking. In: 2nd International Conference on Arabic Language
Resources and Tools, vol. 110 pp. 285–288 (2009)

8. Khoja, S.: APT: Arabic part-of-speech tagger. In: Proceedings of the Student Workshop at
NAACL, pp. 20–25 (2001)

9. Aldarmaki, H., Diab, M.: Robust part-of-speech tagging of Arabic text. In: Proceedings of the
Second Workshop on Arabic Natural Language Processing, pp. 173–182 (2015)

10. Habash, N., Rambow, O.: Arabic tokenization, part-of-speech tagging and morphological
disambiguation in one fell swoop. In: Proceedings of the 43rd Annual Meeting on Association
for Computational Linguistics, pp. 573–580 (2005)

11. Sawalha, M., Atwell, E.: Fine-grain morphological analyzer and part-of-speech tagger for
Arabic text. In: Proceedings of the Seventh Conference on International Language Resources
and Evaluation (LREC’10), pp. 1258–1265 (2010)

12. Mohamed, E., Kübler, S.: Is Arabic part of speech tagging feasible without word segmentation?
In: Human Language Technologies: The 2010 Annual Conference of the North American
Chapter of the Association for Computational Linguistics, pp. 705–708 (2010)

13. Shaalan, K., Raza, H.: Arabic named entity recognition from diverse text types. In: Proceedings
of the 6th International Conference on Advances in Natural Language Processing, pp. 440–451
(2008)

14. Althobaiti, M., Kruschwitz, U., Poesio, M.: A semi-supervised learning approach to Arabic
named entity recognition. In: Recent Advances in Natural Language Processing, RANLP
2013, 9–11 September, Hissar, Bulgaria, pp. 32–40 (2013). http://aclweb.org/anthology/R/R13/
R13-1005.pdf

15. Darwish, K.: Named entity recognition using cross-lingual resources: Arabic as an example.
In: Proceedings of the 51st Annual Meeting of the Association for Computational Linguistics
(Volume 1: Long Papers), vol. 1 pp. 1558–1567 (2013)

16. Abdallah, S., Shaalan, K., Shoaib, M.: Integrating rule-based system with classification for
Arabic named entity recognition. In: Computational Linguistics and Intelligent Text Processing
- 13th International Conference, CICLing 2012, New Delhi, March 11–17, 2012, Proceedings,
Part I, pp. 311–322 (2012)

17. AlGahtani, S.: Arabic Named Entity Recognition: A Corpus-Based Study, Ph.D. Thesis.
University of Manchester (2011)

18. Boudchiche, M., Mazroui, A., Ould Abdallahi Ould Bebah, M., Lakhouaja, A., Boudlal, A.:
AlKhalil Morpho Sys 2: A robust Arabic morpho-syntactic analyzer. J. King Saud Univ.
Comput. Inf. Sci.. 29, 141–146 (2017). https://doi.org/10.1016/j.jksuci.2016.05.002

19. Pasha, A., Al-Badrashiny, M., Diab, M., El Kholy, A., Eskander, R., Habash, N., Pooleery, M.,
Rambow, O., Roth, R.: MADAMIRA: a fast, comprehensive tool for morphological analysis
and disambiguation of Arabic. LREC. 14, 1094–1101 (2014)

20. Abdelali, A., Darwish, K., Durrani, N., Mubarak, H.: Farasa: A fast and furious segmenter
for arabic. In: Proceedings of the 2016 Conference of the North American Chapter of the
Association for Computational Linguistics: Demonstrations, pp. 11–16 (2016)

21. Attia, M., Zirikly, A., Diab, M.: The power of language music: Arabic lemmatization
through patterns. In: Proceedings of the 5th Workshop on Cognitive Aspects of the Lex-
icon, CogALex@COLING 2016, Osaka, December 12, 2016, pp. 40–50 (2016). https://
aclanthology.info/papers/W16-5306/w16-5306

22. Al-Shammari, E., Lin, J.: A novel Arabic lemmatization algorithm. In: Proceedings of the
Second Workshop on Analytics for Noisy Unstructured Text Data, pp. 113–118 (2008). http://
doi.acm.org/10.1145/1390749.1390767

 21490 28474 a 21490
28474 a

http://aclweb.org/anthology/R/R13/R13-1005.pdf
http://aclweb.org/anthology/R/R13/R13-1005.pdf

 14335 42865
a 14335 42865 a

https://doi.org/10.1016/j.jksuci.2016.05.002

 32220 52827 a 32220 52827
a

https://aclanthology.info/papers/W16-5306/w16-5306
https://aclanthology.info/papers/W16-5306/w16-5306

 32586 56148 a 32586 56148 a

http://doi.acm.org/10.1145/1390749.1390767
http://doi.acm.org/10.1145/1390749.1390767

References 99

23. El-Shishtawy, T., El-Ghannam, F.: An accurate Arabic root-based lemmatizer for information
retrieval purposes. CoRR abs/1203.3584 (2012). http://arxiv.org/abs/1203.3584

24. Diab, M.: Improved Arabic base phrase chunking with a new enriched POS tag set. In:
Proceedings of the 2007 Workshop on Computational Approaches to Semitic Languages:
Common Issues and Resources, pp. 89–96 (2007). https://www.aclweb.org/anthology/W07-
0812

25. Darwish, K., Mubarak, H.: Farasa: A new fast and accurate Arabic word segmenter. In:
Proceedings of the Tenth International Conference on Language Resources and Evaluation
(LREC’16) (2016)

26. Maamouri, M., Bies, A., Buckwalter, T., Mekki, W.: The penn arabic treebank: Building a
large-scale annotated Arabic corpus. In: NEMLAR Conference on Arabic Language Resources
and Tools, vol. 27, pp. 466–467 (2004)

27. El-Haj, M., Koulali, R.: KALIMAT a multipurpose Arabic corpus. In: Second Workshop on
Arabic Corpus Linguistics (WACL-2), pp. 22–25 (2013)

28. Freihat, A., Bella, G., Mubarak, H., Giunchiglia, F.: A single-model approach for Arabic seg-
mentation, POS tagging, and named entity recognition. In: 2018 2nd International Conference
on Natural Language and Speech Processing (ICNLSP), pp. 1–8 (2018)

29. Freihat, A., Abbas, M., Bella, G., Giunchiglia, F.: Towards an optimal solution to lemmatiza-
tion in Arabic. In: Proceedings of the 4th International Conference on Arabic Computational
Linguistics (ACLing 2018), pp. 1–9 (2018)

30. Shaalan, K.: A survey of Arabic named entity recognition and classification. Comput. Linguist.
40, 469–510 (2014)

31. Dukes, K., Habash, N.: Morphological annotation of quranic Arabic. In: Proceedings of the
Seventh International Conference on Language Resources and Evaluation (LREC’10) (2010)

32. Toutanova, K., Klein, D., Manning, C., Singer, Y.: Feature-rich part-of-speech tagging with a
cyclic dependency network. In: Proceedings of the 2003 Conference of the North American
Chapter of the Association for Computational Linguistics on Human Language Technology -
Volume 1, pp. 173–180 (2003). https://doi.org/10.3115/1073445.1073478

 17999 800 a 17999 800 a

http://arxiv.org/abs/1203.3584

 19433 4121 a 19433
4121 a

https://www.aclweb.org/anthology/W07-0812
https://www.aclweb.org/anthology/W07-0812

 11442 29581 a 11442
29581 a

https://doi.org/10.3115/1073445.1073478

Arabic Anaphora Resolution System
Using New Features: Pronominal and
Verbal Cases

Abdelhalim Hafedh Dahou, Mohamed Abdelmoazz, and Mohamed
Amine Cheragui

Abstract Anaphoric resolution is one of the major problems in natural language
processing (NLP), since this linguistic phenomenon is very answered in natural
languages, especially in Arabic; therefore, a resolution mechanism is needed in
several applications of NLP. The resolution process consists in establishing the
link between anaphoric entities and their referents in the text. This research has
two main objectives—the first one is to implement a resolution system dedicated
to pronominal and verbal anaphoras in the Arabic language (called A3T) based
on a rule-based approach combining rules and statistical features to identify the
referent. The second objective is to create a specialized corpus for Arabic anaphora
resolution which we’ve named A3C, in order to fill the gap of lack of resources.
Using the AnATAr as a test corpus, our A3T system obtains an accuracy of 83.19%
for pronominal anaphora and 57.23% for verbal anaphora.

1 Introduction

Most of the obstacles faced by tasks in natural language processing are related to
the presence of linguistic phenomena specific to the language that make this process
difficult. One of these phenomena is anaphora.

One of the standard definitions of anaphora is given by [1] based on the notion
of cohesion: “anaphora is a cohesion (presupposition) which points back to some
previous item.” In a discourse, whether spoken or textual, we often refer to the same
object, fact, action, or event in a repetitive way. But we do not always refer to it in the
same way. This avoids unnecessary repetition of information and ensures coherence
in our discourse.

If anaphora is considered by linguists as an elegant way to avoid repetition [2],
it constitutes a real challenge issue in NLP due to the difficulty of identifying the

A. H. Dahou (�) · M. Abdelmoazz · M. A. Cheragui
Department of Mathematics and Computer Science, Ahmed Draia University, Adrar, Algeria

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
M. Abbas (ed.), Analysis and Application of Natural Language and Speech
Processing, Signals and Communication Technology,
https://doi.org/10.1007/978-3-031-11035-1_5

101

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-11035-1_5&domain=pdf

 -2016 61494 a -2016 61494 a

https://doi.org/10.1007/978-3-031-11035-1_5

102 A. H. Dahou et al.

referent. Hence, setting up an anaphoric resolution approach has become essential
for several languages, in particular Arabic, which has morphological and syntactic
characteristics that make identification and resolution a real challenge, but also for a
multitude of applications, such as sentiment analysis [3], question-answer systems
[4], machine translation [5], text summarization [6], information extraction [7], and
language generation and dialog systems [8], to improve their performance.

In our work, we aim to achieve—first, the development of an anaphora resolution
system (A3T) specific to pronominal and verbal anaphoras in the Arabic language,
where our contribution is to propose a rule-based approach, and second, to build an
annotated corpus (A3C) to overcome the scarcity of linguistic resources that Arabic
faces.

The present paper is organized as follows: in Sect. 2, we present varieties of
anaphora in Arabic text. In Sect. 3, we review related work about Arabic anaphora
resolution systems and corpus. In Sect. 4, we outline some Arabic anaphora
resolution challenge. We describe in Sect. 5 the full system of anaphora resolution
and text annotation using a friendly interface. In Sect. 6, we evaluate the proposed
approach. Section 7 presents a discussion, and finally, Sect. 8 concludes the paper
and gives some future directions.

2 Varieties of Anaphora in Arabic Text

What makes the anaphora resolution mechanism complex in natural language
processing in general and in Arabic, in particular, is the fact that it can manifest
in different forms (linguistic categories: lexical and grammatical) but also requires
knowledge at different levels, as well as an “understanding” of the context. There
are many varieties of anaphora in the Arabic text, and we will only mention the most
frequent ones.

2.1 Verb Anaphora

Verbal anaphora is used to describe or represent various movements or actions by
using the verb (did—�� �,—) and the different conjugation variants to minimize

writing and avoid repetition (Fig. 1) [9, 10].

Arabic Anaphora Resolution System Using New Features: Pronominal and. . . 103

Fig. 1 Example of verbal
anaphora

Fig. 2 Example of lexical anaphora

2.2 Lexical Anaphora

Lexical anaphora occurs when the referent is designated by definite descriptions
or proper names representing the same concept (the anaphora) or concepts that
are semantically close [11]. Usually, this form of anaphora adds more information
to the sentence and increases cohesion and can take several forms (synonym,
generalization/hypernymy, or specialization/hyponymy) (Fig. 2) [12].

2.3 Pronominal Anaphora

Based on statistical studies done by [11], it shows that the pronominal anaphora is
the most frequent variant in Arabic texts. Pronouns form a special class of anaphora
because of their empty semantic structures, and they have a meaning independent
of its referents and usually refer to names or noun phrases [13]. However, not all
pronouns are anaphoric.

104 A. H. Dahou et al.

Pronominal anaphoras can be divided into three categories, and each category can
be subdivided into subcategories according to several parameters, such as gender,
number, etc.

2.3.1 Third-Person Personal Pronouns

In the Arabic, not all personal pronouns are anaphoric, so the first-person (���(�) � � �� �)
and second-person (�-� �� � l ����

�
�) pronouns are not (they specify the communi-

cation partners and their meaning goes back to their specific uses), except the
third-person pronouns which have this characteristic (Figs. 3 and 4). These pronouns
can be subdivided into two categories (Tables 1 and 2) [4]:

In some cases, the pronouns �[and �+[are not anaphoric since they are not

interpreted as related to an expression (referent). In this case, we will call them
pleonastic pronouns (Fig. 5).

2.3.2 Relative Pronouns

Relative pronouns in Arabic have the characteristic of being always anaphoric;
in addition, they have only one possible referent [14] and refer to the immediate
nominal phrase mentioned before [15] which they agree in gender and number
(Fig. 6; Table 3).

Table 1 Disjoint Personal Pronouns

Nominative (5 �,I ��K) Accusative (� T�6 ��K)

3rd Person Pronoun Singular Dual Plural Singular Dual Plural

Disjoint Personal Pronouns
(
��.T �� � AB � ����- �T#�)

Masculin $� �-� *� X��� �� �-���� �� *���� ��

Feminine O� � ��� ����� �� ������ ��

Fig. 3 Example of anaphora (case: third-person personal pronouns (disjoint))

Arabic Anaphora Resolution System Using New Features: Pronominal and. . . 105

Table 2 Joint Personal Pronouns

Nominative (5 �,I ��K) Accusative (� T�6 ��K)

3rd Person Pronoun Singular Dual Plural Singular Dual Plural

Joint Personal Pronouns
(
��.T� AB � ����- �T#�)

Masculin �� l� l � �[�-m+[*+[

Feminine �m+[��+[

Fig. 4 Example of anaphora (case: third-person personal pronouns (joint))

Fig. 5 Example of pleonastic pronouns

Table 3 Relative pronoun

Singular Plural Dual

Masculine M�
�J� � \ �

�
�
�
� � � l ��� ��

	
� � � � l M

�
�
�
� � � l ��mm�� �J�[� ���� �J � � � l ���

	�0m[�[� �
Feminine ��� mm[�[� � l ��[�[� � l ��

�'m[�[� M 	$m[�[� � l ��
��
	
� � � � � l O� mm�� �$m[�[� � ��=��� � � � l ���� mmm[�[� �

106 A. H. Dahou et al.

Fig. 6 Example of anaphora
(case: relative pronouns)

Fig. 7 Example of anaphora (case: demonstrative pronouns)

The use of relative pronouns is possible if the referent denotes a process or
situation, and here the anaphora denotes some of these lexical meanings. They refer
to persons, places, or things that are close or distant, and the table below illustrates
this type of pronouns.

2.3.3 Demonstrative Pronouns

They are linguistic elements that accompany a designation gesture in order to
coordinate the attention of the interlocutors when they are speaking [16]. Generally,
demonstrative pronouns are cataphoric, and in some cases, they can be anaphoric
and even deixis [15]. Demonstratives agree in person, gender (masculine/feminine),
and number (singular/dual/plural) with their referent (Tables 4 and 5). In addition,
there are pronouns which are considered demonstratives and which designate time
and place (Fig. 7).

2.4 Comparative Anaphora

This type of anaphora is manifested by the introduction of lexical modifiers

(e.g., M� �9� l � �9�/other,
�X0��/one) or comparative adjectives (��: �=!

�
�/greater than,

Arabic Anaphora Resolution System Using New Features: Pronominal and. . . 107

Ta
bl

e
4

D
em

on
st

ra
tiv

e
pr

on
ou

n Pr
on

om

Si
ng

ul
ar

D
ua

l
Pl

ur
al

R
ef

er
M

F
M

F
M

F

N
ea

r
pe

rs
on

or
th

in
g

l�� 0m
��

� J
lM �� Jl

O �m� �l
�m� �

l�m
� mm

�
l�m

m� �l
�� +mm

� �l
��

� J 	l
X 	� J 	

�m� ��m
m�

lX 	
� 0m

�

l� ��
� 0�

� �� �
� 0�

l
� ��

� ���
� � = �

� ���
l\��

�\
�� �

� $m
m�

Fa
r/

di
st

an
tp

er
so

n
or

th
in

g
ln 	

� J 	� Jl
n�

n�
� 0mm

�
ln

�� J
l@

mm �
mm� �l

@� � �@
mm �

mm� ��m
m�

@m
m� ��� J

@m
m� ��m

m� �
l@

mm� ���
�� �@

[�[
���

� �

108 A. H. Dahou et al.

Table 5 Demonstrative
pronoun (place)

Refer Pronom

Near place � � �
Far/distant place n�� � � l n� � �

Fig. 8 Example of
comparative anaphora

��: ��"9
�
�/better than) [11]. This variety of anaphora indicates a relation such as

set-complement, similarity, and comparison between the anaphora and the referent
(Fig. 8) [12].

3 Related Work

According to a review of the literature, the majority of studies on anaphora
resolution (AR) in Arabic focus on the pronominal, which is the most common
type of anaphora in Arabic texts (90%) [17]. We can divide the work into three cate-
gories in terms of resolution approaches: rule-based (symbolic and knowledge-rich
approaches), machine learning (knowledge-poor approaches), and hybrid approach.

The rule-based approach is mainly based on setting up linguists rules using a
set of morphological, syntactic, semantic, and even pragmatic features in order to
determine the link between the anaphora and its referent. Mitkov et al. [18] start
the contribution in the anaphora resolution and particularly with pronominal type
by using some indicators such as number-gender, referential distance, definiteness,
and others to calculate a score that preferred candidate than others to determine
the best antecedent. Abolohom and Omar [19] tackled the pronominal type by
using different linguistic rules depending on the morphological, lexical, heuristic,
syntactic, and positional constraints. The experiments are conducted using the
Quran corpus, and as a result, the model achieves an accuracy rate of 84,43%. Nabil
and Saad [4] presented a resolution strategy to four Arabic anaphora types which
are nominative disjoint personal pronouns, accusative disjoint personal pronouns,
genitive joint personal pronouns which are attached to nouns and particles not
verbs, and relative pronouns. The authors use syntactic rules for the selection of

Arabic Anaphora Resolution System Using New Features: Pronominal and. . . 109

antecedents. The proposed method allows to obtain a success rate of 86% using the
LDC Arabic Treebank Part 3.

Secondly, the objective of the machine learning approach is to identify anaphora-
antecedent pairs by means of simple co-occurrence rules and a previously annotated
corpus to train the resolution model. Abolohom et al. [20] presented a solution based
on the extraction of a new set of computational and linguistic features and then
using one of the multiple classifiers (the maximum entropy, decision tree, k-nearest
neighbor, and stacking methods). The experiments were done using the Quran
corpus, and they obtained the best result by combining the four classifiers with F1
score equal to 93.50%. Trabelsi et al. [9] used Markov decision process (MDP)
and reinforcement learning for the pronominal type, and they got 83.33% accuracy
rate. Bouzid and Zribi [17] combine a reinforcement learning method based on Q-
learning algorithm and a word embedding model, to deal with pronominal anaphora
and zero anaphora, and they achieved a precision rate of 79.37% case of pronominal
anaphora and 70.82% case of zero anaphora. Elghamry et al. [21] proposed an
algorithm dedicated to pronominal type based on collocational evidence, recency,
and bands as AR-related features. As a result, the algorithm achieves an F-measured
rate of 87.6%. Hammami et al. [22] also contributed in pronominal type using
machine learning approach and a set of new features specific for Arabic language.
They got an F-measure of 86.2% for the genre of technical manuals, 84.5%for
newspaper articles, and 72.1% for the literary texts.

Finally, the hybrid approach combines the advantages of the two approaches
mentioned above, which will give a better coverage of the anaphoric phenomenon,
thus increasing the performance of the resolution systems. Abolohom and Omar [21]
proposed a resolution approach for the three types of pronominal anaphora, namely,
third-person pronouns, reflexive pronouns, and possessive pronouns. The authors
combined the rule-based approach (using morphological and syntactic filter) and
the machine learning approach (using k-nearest neighbor approach). The resolution
approach was performed using the Quranic annotated corpus and obtained 74.80%
F-score.

4 Arabic Anaphoric Resolution Challenges

Arabic is a semitic language with a very specific structure and characteristics
(morphological richness and syntactic flexibility) that make the process of anaphoric
resolution difficult. The aim of this section is to present the main factors which affect
anaphoric resolution process.

110 A. H. Dahou et al.

Fig. 9 Example of incorrect
segmentation

Fig. 10 Example of agglutination

4.1 Lack of Diacritical Marks

Without diacritical marks, an Arabic text is extremely unclear (morphologically
and grammatically). According to [23], 74% of Arabic words might potentially
take several lexical diacritization, making it difficult to determine if the anaphoric
phenomenon or referent is the case (Fig. 9).

4.2 Agglutination Phenomenon

The Arabic writing structure is characterized by the agglutination phenomena which
is explained by the fact of combining numbers of words in just one (Fig. 10).
Compared to French or English, an Arabic word can sometimes correspond to a
full sentence [17].

This characteristic generates morphological ambiguities during the analysis. For
that, we have to break up (tokenize) the phrase and start the process of resolution to
solve it.

Arabic Anaphora Resolution System Using New Features: Pronominal and. . . 111

Fig. 11 Example of ambiguity of the referent

4.3 Syntactic Flexibility (Words Free Order)

Arabic is a nearly free-order language. This order causes artificial syntactic
ambiguities, since the grammar should provide all the possible combination rules
for reversing the order of words in the sentence (Table 6). For anaphora resolution,
this type of flexibility is a problem for referent localization [13, 24].

4.4 Ambiguity of the Referent

This difficulty occurs when the referent is ambiguous (due to the presence of two
or more referents for the same anaphora). In this case, external knowledge of the
context is necessary to identify the correct referent (Fig. 11) [25].

4.5 Hidden Referent

This case occurs when the anaphora refers to something which is not present in the
sentence or text. The Quranic text is an example where this phenomenon persists
[26], so in the example below, the pronominal anaphora ($�/he) refers to (X � � �/Allah)

which is not present in the “Aya.” The human through his knowledge and reasoning
system can easily make the connection between the pronominal anaphora ($�/he)

and (X � � �/Allah). However, for anaphoric resolution systems, the task is complicated

(Fig. 12).

112 A. H. Dahou et al.

Ta
bl

e
6

E
xa

m
pl

e
of

w
or

ds
fr

ee
or

de
r

in
A

ra
bi

c
se

nt
en

ce
s

E
xa

m
pl

e
of

A
ra

bi
c

se
nt

en
ce

s
E

ng
lis

h
tr

an
sl

at
io

n
O

rd
er

O
bs

er
va

tio
n

� X��8
I��

� �:�
8� ��

� !
O

us
sa

m
a

w
ro

te
th

e
le

tte
r

V
SO

/
� X��8

I��
�

� !
� �:�

8� �
O

us
sa

m
a

w
ro

te
th

e
le

tte
r

SV
O

/

�34
� !

� �:�
8� �� X��8

I��
T

he
le

tte
r

O
us

sa
m

a
w

ro
te

it
O

SV
Jo

in
tp

er
so

na
lp

ro
no

un
“

��
”

ar
e

an
ap

ho
ri

c
� �:�

8� �� X��8
I��

�34
� !

T
he

le
tte

r
w

as
w

ri
tte

n
by

M
oh

am
ed

V
O

S
Jo

in
tp

er
so

na
lp

ro
no

un
“

��
”

ar
e

ca
ta

ph
or

ic

Arabic Anaphora Resolution System Using New Features: Pronominal and. . . 113

Fig. 12 Example of hidden referent

4.6 Lack of Annotated Corpora with Anaphoric Links

The lack of annotated Arabic corpus is due to the significant effort, time, and
complexity required by a human annotator to annotate a large-volume corpus. This
lack implied a limited amount of progress in Arabic natural language processing
[27].

5 The A3T Architecture

The purpose of this research is to solve the anaphora problem by addressing two
types of anaphora: pronominal and verbal anaphora. Furthermore, the community
will have access to a new annotated resource that may be used in the automatic
Arabic anaphora resolving mechanism. We created a system based on a rule-based
approach and a user-friendly interface that allows computer scientists and linguists
to easily track the process and intervene during the annotation phase.

We’ll go over the system’s modules (A3T) in this part and explain each step and
its outcome. We considered dividing the process of creating our system environment
into four (04) stages: preprocessing, anaphora and candidate identification, anaphora
resolution, and finally corpus annotation. Each module is made up of crucial steps
that must be completed in order for the module’s purpose to be achieved.

5.1 Preprocessing

Sentence tokenization is used first to split the text file into sentences for which POS
and morphological analysis will be applied. The following step is to determine the
grammatical category and other morphological aspects of a given word (Fig. 14),
such as gender, number, condition, and voice. Due to its precision and high-quality
word-level disambiguation of Arabic text and also based on some experiments, the

114 A. H. Dahou et al.

Fig. 13 Data preparation

Fig. 14 POS output (MADAMIRA)

MADAMIDA tool [28] was chosen for our purposes. The word-level disambigua-
tion feature will assist us in determining the attached pronouns.

5.2 Anaphora and Candidate Identification

Anaphoras are identified using the MADAMIRA tag set’s grammatical code. The
result is a list of all anaphoras in the text, along with information such as ID, name,
gender, number, and sentence number. For the pronominal case, the process differs
from one type to another, for example, the POS tagging for the attached pronominal
anaphora does not contain a tag for gender, number, or person, and we should utilize
a split mechanism to place each of them in their proper tag, as shown in Fig. 15.

On the other hand, for verbal anaphora identification, we take all of the features
used for pronominal anaphora, such as gender, number, and so on, as shown in

Arabic Anaphora Resolution System Using New Features: Pronominal and. . . 115

Fig. 15 Pronominal anaphora identification

Fig. 16 Verbal anaphora identification

Fig. 16, and we add another feature, the voice feature (active or passive form), which
will aid in resolution.

Candidates are chosen based on their POS (nouns, NPs, and proper noun)
(Fig. 17) and a specific search scope adjusted based on some tests and previous
research [29]. In the case of anaphora, the search scope is still unknown; however,
based on analysis, a large number of references appear in the two preceding phrases.
In our situation, we took two sentences before and the same number after as a special
case for demonstrative type. In the case of verbal anaphora, we took two sentences
following the verb in the active form and two sentences before the verb in the passive
or unknown form. All of candidate’s characteristics are taken into account, including
gender, number, voice, definiteness, and sentence number.

5.3 Anaphora Resolving

This is the most crucial module in the system because it will have a direct impact on
the system’s accuracy. The purpose of this module is to select the most appropriate
referent for each anaphora from among the most likely candidates. To determine the
proper referent, we applied a set of favorable features, as indicated in Table 7, that
can favor certain candidates over others.

116 A. H. Dahou et al.

Fig. 17 Identification of noun and proper noun candidates

Fig. 18 Score similarity (example in pronominal case)

For each rule, we assigned a score value (Fig. 18). Each score was determined
by a series of trials that took into account past research [19]. For all candidates,
we calculated the scores for each rule and joined them to each candidate’s previous
score. As shown in Fig. 19, all of the candidates were given a ranking, and the one
with the highest total score was recommended as a good referent. As seen in Fig. 18,
we chose the one that came closest to overcoming the score similarity.

5.4 Automatic Text Annotation

As previously stated, the system provides to the linguistic experts a user-friendly
interface that allows them to check and, if necessary, modify the links between
anaphora and its referent, resulting in a reliable corpus that can be used in future
studies.

Arabic Anaphora Resolution System Using New Features: Pronominal and. . . 117

Fig. 19 Anaphora resolution algorithm

Table 7 The linguistic preferences and their respective scores

Linguistic rules Description

Definiteness A score of 1 is given if an NP is definite and of 0 if not

Recency A score of 1 is assigned to the recency NP to the anaphora and
0 if not

Referential distance A score of 2 is assigned to NPs in the previous sentence or two
sentences, and further than those are given 0

NPs in the title A score of 1 is issued to the existing NP in title and 0 if not

Grammatical function Scores of 1 are given to an NP that has the same syntactic
structure as the anaphora and 0 if not

NP frequency A score of 2 is assigned to the most frequent NP in text and 0
if not

First noun phrases A score of 1 is issued to the first NP of each sentence and 0 if
not

More specifically, the interface (Fig. 20) displays the automatic annotated text in
the center, while all of the couples anaphora/referent are shown on the right, with
the system’s chosen couple. In this case, all the expert has to do is to check whether
the anaphora tag’s number of referent matches the correct one, and if not, he may
adjust the number of referent to the correct one from the other suggested couples
or create a new one if the system doesn’t find out the correct antecedent. Finally,
the A3T will generate an XML file that contains the text with anaphoric relationship
tags as shown in Fig. 21.

118 A. H. Dahou et al.

Fig. 20 The friendly interface for the annotator

Fig. 21 Example from the annotated text for the pronominal case

6 Experiments and Results

There are a lot of works in the field of anaphora resolution, notably with the
pronominal type, as noted in the related work section; however, there is fewer corpus
to use in the evaluation. We found Holy Qur’an corpus [29] and QurAna Corpus
QAC [3] for the Quran script and AnATAr corpus [11] which is based on Tunisian
education books and addresses the pronominal type and Hadder [4] with textbooks
and newspapers, which tackles the zero anaphora. In our research, we used the
“AnATAr” corpora for the evaluation of both anaphora phenomena. We used the
standard accuracy metric to calculate the efficiency of the A3T, and Table 8 presents

Arabic Anaphora Resolution System Using New Features: Pronominal and. . . 119

Table 8 The result of
anaphora resolution system
A3T on AnATAr corpora

Anaphora type Corpus Accuracy achieved

Pronominal AnATAr 83.19

Verbal AnATAr 57.23

the results obtained. We were unaware of any prior works on verbal anaphora, so we
tested our work by taking the help of a linguistic specialist and utilizing the same
corpus.

7 Discussion

After analyzing the output of our system, particularly for the verbal anaphora, we
found some factors that have influenced our findings. The first factor is the limitation
of the word disambiguation tool that fails to extract the right meaning of words
that have more than one, for example: the word “ X$Ao�” can be understood as a verb

(name, designate) or a noun (Highness, grace). The second factor is the search scope,
which could also lead to the best referent being excluded from the list of referents
due to being out of scope. In the automatic resolution, the tool rid the references
that span multiple sentences, but we correct this issue in the expert verification
part. The third factor is that the MADAMIRA tool can’t recognize composed words
like “

�� �� ��#� �Gi: ����I$+1� ” (Arab Republic of Egypt) or even compound proper

names that always occur together like “fP� 0-�K” (Mohamed Salah). Finally, in

some situations, the voice feature causes a faulty judgment when deciding if the
better referent occurs before or after the verb anaphora. As previously stated, we
discovered that our system produced satisfactory results with the pronominal type
but struggled with the resolution of the verbal type. We decided to use this system
to annotate a collected text corpus with anaphora links under the supervision of
a linguistic expert in order to produce a trustworthy corpus for the community.
The following research paper [30], which explains the procedure from collection
through annotation, gives more information about the size of the corpus as well as
the categorizations that it comprises.

8 Conclusion

Anaphora plays an important role in understanding text and making it coherent,
and at the same time, it is still a challenging task in Arabic language due to the
complexity of language and the lack of tools and linguistic resources. By proposing
a resolution method that uses several aspects to locate the relationships between

120 A. H. Dahou et al.

pronominal and verbal anaphora and their referent in Arabic text, our current work
will make a contribution to the field of anaphora resolution in Arabic. In addition, we
provide a contribution to linguistic resources by offering an annotated corpus that
includes both types of anaphora. To save time and effort during the resolution and
annotation phases, we developed A3T, a system that employs linguistic concepts
to resolve and annotate this phenomenon. We are confident that the corpus with
the assistance of an expert will be highly valuable in developing intelligence
tools to address the Arabic anaphora problem. For the future, our focus will be
on improving the verbal resolution mechanism using cutting-edge computational
linguistic techniques and methodologies while also expanding the size of the corpus.

References

1. Halliday, M.A.K., Hasan, R.: Cohesion in english. Routledge (2014)
2. D’Souza, J., Ng, V.: Anaphora resolution in biomedical literature: a hybrid approach. In: Pro-

ceedings of the ACM Conference on Bioinformatics, Computational Biology and Biomedicine
(pp. 113–122) (2012, October)

3. Cambria, E., Das, D., Bandyopadhyay, S., Feraco, A.: Affective computing and sentiment
analysis. In: A Practical Guide to Sentiment Analysis (pp. 1–10). Springer, Cham (2017)

4. El-Said Nada, A.N.M., Saad, S., El-Magd Al-Ansary, A.: A syntactic based approach to
anaphora resolution in Arabic. In: Proceeding of the Eighteenth Conference on Language
Engineering (ESOLEC’18) (2018)

5. Phadke, M., Devane, S.: Pronoun resolution task for multilingual machine translation. In: 5th
International Conference on Next Generation Computing Technologies (NGCT-2019) (2020)

6. Antunes, J., Lins, R.D., Lima, R., Oliveira, H., Riss, M., Simske, S.J.: Automatic cohesive
summarization with pronominal anaphora resolution. Comput. Speech Lang. 52, 141–164
(2018)

7. Matysiak, I.: Information extraction systems and nominal anaphora analysis needs. In:
Proceedings of the International Multiconference on Computer Science and Information
Technology (pp. 183–192) (2007)

8. Annam, V., Koditala, N., Mamidi, R.: Anaphora resolution in dialogue systems for south asian
languages. Preprint (2019). arXiv:1911.09994

9. Trabelsi, F.B.F., Zribi, B.O., C., Mathlouthi, S.: Arabic anaphora resolution using Markov deci-
sion process. In: Gelbukh, A. (ed.) Computational Linguistics and Intelligent Text Processing.
CICLing 2016 Lecture Notes in Computer Science, vol. 9623, pp. 520–532. Springer, Cham
(2016)

10. Hamouda, W.: Anaphora resolution for Arabic machine translation: a case study of nafs
(Doctoral dissertation, Newcastle University) (2014)

11. Hammami, S., Belguith, L., Ben Hamadou, A.: Arabic anaphora resolution: corpora annotation
with coreferential links. Int. Arab J. Inf. Tech. (IAJIT) 6(5), 480–488 (2009)

12. Seddik, K.M., Farghaly, A.: Anaphora resolution. Natural Language Processing of Semitic
Languages (pp. 247–277). Springer, Berlin, Heidelberg (2014)

13. Beseiso, M., Al-Alwani, A.: A coreference resolution approach using morphological features
in arabic. Int. J. Adv. Comput. Sci. Appl. 7(10), 107–113 (2016)

14. Mathlouthi, S., Ben, F., Trabelsi, F., Zribi, C.B.O.: A novel approach based on reinforcement
learning for anaphora resolution. In: 28th IBIMA Conference (2016, November)

15. Bouzid, S.M., Trabelsi, F.B.F., Zribi, C.B.O.: How to combine salience factors for arabic
pronoun anaphora resolution. In: 2017 IEEE/ACS 14th International Conference on Computer
Systems and Applications (AICCSA) (pp. 929–936). IEEE (2017, October)

References 121

16. Jarbou, S.O.: Time frame as a determinant of accessibility of anaphoric demonstratives in
classical arabic. Top. Linguist. 19(2), 57–71 (2018)

17. Bouzid, S.M., Zribi, C.B.O.: A generic approach for pronominal anaphora and zero anaphora
resolution in arabic language. Procedia Comput. Sci. 176, 642–652 (2020)

18. Mitkov, R., Belguith, L.H., Stys, M.: Multilingual robust anaphora resolution. In: Proceedings
of the Third Conference on Empirical Methods for Natural Language Processing (pp. 7–16)
(1998, June)

19. Abolohom, A., Omar, N.: A computational model for resolving arabic anaphora using linguistic
criteria. Indian J. Sci. Tech. 10(3), 1–6 (2017)

20. Abolohom, A., Omar, N., Pais, S., Cordeiro, J.: A comparative study of linguistic and
computational features based on a machine learning for arabic anaphora resolution. Procedia
Comput. Sci. 189, 37–47 (2021)

21. Elghamry, K., Al-Sabbagh, R., El-Zeiny, N.: Arabic anaphora resolution using web as corpus.
In: Proceedings of the Seventh Conference on Language Engineering, Cairo, Egypt (2007,
December)

22. Hammami, S.M., Belguith, L.H.: Arabic pronominal anaphora resolution based on new set
of features. In: International Conference on Intelligent Text Processing and Computational
Linguistics (pp. 533–544). Springer, Cham (2016, April)

23. Debili, F., Achour, H.: Voyellation automatique de l’arabe. In: Computational Approaches to
Semitic Languages (1998)

24. Fotiadou, G., Muñoz, A.I.P., Tsimpli, I.: Anaphora resolution and word-order across adulthood:
Ageing effects on online listening comprehension (2020)

25. Mitamura, T., Nyberg, E., Torrejon, E., Svoboda, D., Brunner, A., Baker, K.: Pronominal
anaphora resolution in the KANTOO multilingual machine translation system. In: Proceedings
of the 9th Conference on Theoretical and Methodological Issues in Machine Translation of
Natural Languages (2002)

26. Seddik, K.M., Farghaly, A.: Arabic anaphora resolution using Holy Qur’an text as corpus. In:
Proceeding of Arabic Language Technology International Conference (ALTIC) (2011)

27. Seddik, K.M., Farghaly, A.: Anaphora resolution. In: Natural Language Processing of Semitic
Languages (pp. 247–277). Springer, Berlin, Heidelberg (2014)

28. Pasha, A., Al-Badrashiny, M., Diab, M., El Kholy, A., Eskander, R., Habash, N., ..., Roth,
R.: Madamira: A fast, comprehensive tool for morphological analysis and disambiguation
of arabic. In Proceedings of the Ninth International Conference on Language Resources and
Evaluation (LREC’14) (pp. 1094–1101) (2014, May)

29. Mitkov, R.: Anaphora Resolution: The State of the Art (pp. 1–34). School of Languages and
European Studies, University of Wolverhampton (1999)

30. Dahou, A.H., Abdelmoazz, M., Cheragui, M.A.: A3C: Arabic anaphora annotated corpus.
ICNLSP 2021, 117 (2021)

A Commonsense-Enhanced
Document-Grounded Conversational
Agent: A Case Study on Task-Based
Dialogue

Carl Strathearn and Dimitra Gkatzia

Abstract This paper argues that future dialogue systems must retrieve relevant
information from multiple structured and unstructured data sources in order to
generate natural and informative responses as well as exhibit commonsense capa-
bilities and flexibility in dialogue management. To this end, we firstly review recent
methods in document-grounded dialogue systems (DGDS) and commonsense-
enhanced dialogue systems and then demonstrate how these techniques can be
combined in a unified, commonsense-enhanced document-grounded dialogue sys-
tem (CDGDS). As a case study, we use the Task2Dial dataset,1 a newly collected
dataset which contains instructional conversations between an information giver
(IG) and information follower (IF) in the cooking domain. We then propose a novel
architecture for commonsense-enhanced document-grounded conversational agents,
demonstrating how to incorporate various sources to synergistically achieve new
capabilities in dialogue systems. Finally, we discuss the implications of our work
for future research in this area.

1 Introduction

Much of the work in dialogue systems has focused on developing task- and goal-
oriented conversational agents that are capable of completing tasks, such as making
restaurant reservations, ordering transport services and booking travel [1]. Tradi-
tionally, dialogue systems utilise domain-specific database schemas [2] and focus
on slot-filling response generation. However, encoding all available information
can be prohibitive in most domains, as the majority of domain knowledge exists in

1 https://huggingface.co/datasets/cstrathe435/Task2Dial/tree/main.

C. Strathearn (�) · D. Gkatzia
Edinburgh Napier University, Edinburgh, UK
e-mail: c.strathearn@napier.ac.uk; d.gkatzia@napier.ac.uk

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
M. Abbas (ed.), Analysis and Application of Natural Language and Speech
Processing, Signals and Communication Technology,
https://doi.org/10.1007/978-3-031-11035-1_6

123

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-11035-1_6&domain=pdf

 -1446 51178 a -1446 51178
a

https://huggingface.co/datasets/cstrathe435/Task2Dial/tree/main

 885 55738 a 885 55738 a

mailto:c.strathearn@napier.ac.uk

 11158 55738 a 11158 55738
a

mailto:d.gkatzia@napier.ac.uk

 -2016 61494 a -2016 61494 a

https://doi.org/10.1007/978-3-031-11035-1_6

124 C. Strathearn and D. Gkatzia

some unstructured format, such as documents [3]. DGDS can provide opportunities
for dialogue systems that were not possible before, such as answering questions
based on the information provided in documents and imitating the human capacity
to possess background knowledge. Recent work on DGDS has focused on question-
answering (Q&A) and machine reading comprehension. For instance, CoQA [4], a
Q&A task between two interlocutors who have access to the same passage, requires
the receiver to comprehend the passage in order to ask questions. Other tasks have
focus on commonsense reasoning. For instance, QuAC [5] follows a similar setting
as CoQA; however, only the receiver has access to the passage, and the questioner
asks questions based on the title of the passage alone.

Here, we focus on Task2Dial [6], a new task for CDGDS, which aims at
generating instructions grounded in a document so that the receiver of the instruc-
tions can complete a task. Task2Dial is similar to QuAC in that the information
giver (IG) has access to the underlying document. However, Task2Dial differs from
QuAC, because the information follower (IF) can ask questions for answers which
are not grounded to a specific document, requiring commonsense capabilities by
both IG and IF. Task2Dial requires following steps in a pre-specified order, invoking
every day communication characteristics, such as asking for clarification, questions
or advice, which may require the use of commonsense knowledge to answer. The
proposed task differs from existing document-grounded tasks, as answers may
require commonsense knowledge generated from the underlying information that
may not be present in the document. Inspired by previous work on document-
grounded dialogue [3, 7, 8], commonsense-enhanced natural language generation
(NLG) [9, 10] and Q&A [4, 5], neural referring expression generation [11], concept
acquisition [12], and task-based/instructional dialogue [13], we aim to capture two
different types of knowledge: (1) document-level procedural context, i.e. what is
the next step, and (2) commonsense, i.e. answering questions that are not available
in the document, as demonstrated in Fig. 1. Our task is designed as an instruction-
following scenario with an information giver (IG) and an information follower (IF),
inspired partly by the GIVE challenge [13]. The IG has access to the recipe and gives
instructions to the IF. The IG might choose to omit irrelevant information, simplify
the content or provide it as is. The IF will either ‘follow’ the task by confirming that
they have understood an instruction or ask for further information. For this, the IG
may have to rely on information outside the given document; in other words, the IG
will rely on their commonsense to enhance understanding and success of the task. To
explore this, we propose a novel conversational agent, ChefBot, to structure and
control the flow and type of information provided to the user from the documents.
This requires a cumulative approach to formatting additional data from documents,
i.e. structuring and extracting metadata to create additional knowledge databases
that contain information such as the utility of objects and alternative ingredients,
while retaining the underlying sequential structure of the instructional document
[14].

The Task2Dial dataset introduces new challenges for dialogue systems: (1)
generating instructions for task completion requires a flexible dialogue manager,
as following specific steps in the form of a checklist might invoke discourse

A Commonsense-Enhanced Document-Grounded Conversational Agent: A. . . 125

Fig. 1 Excerpt from dialogue showing the commonsense handling of hot objects using the
Task2Dial dataset and ChefBot. Left: commonsense handling of objects. Right: swapping ingredi-
ents for appropriate alternatives using custom actions

phenomena not present in other dialogue styles, such as paraphrasing, as instruc-
tional responses may have been modified from the underlying document, and
interlocutors may ask for clarification or alternative steps; (2) hence, this task
requires commonsense knowledge, since questions may not necessarily be grounded
in the document; (3) generating requires planning based on context, as task steps
need to be provided in order; and finally (4) Task2Dial’s human reference texts
show more lexical richness and variation than other document-grounded dialogue
datasets. The Task2Dial dataset contains dialogues with an average 18.15 number
of turns and 19.79 tokens per turn, as compared to 12.94 and 12, respectively, in
existing datasets. Therefore, developing a conversational agent based on this new
task requires flexible dialogue management with global and domain-specific intents
to enhance natural communication, custom actions to swap ingredients and explain
unknown objects and rule-based state tracking for sequential and non-sequential
information giving. For instance, it is not enough for the agent to just ‘read’ the
next recipe instruction—the conversation might briefly diverge from the current
plan to provide information about an ingredient replacement, and then it will have
to correctly resume the previous conversation.

To this end, our contributions to the field can be summarised as follows:

• We propose a new task, Task2Dial, for commonsense-enhanced document-
grounded dialogue.

• We present a novel dataset for commonsense-enhanced document-grounded
dialogue.

• We propose a novel conversational agent architecture which considers how
elements of the documents are represented within the dialogue manager, i.e.
intents, utterances, entities and actions, and how the data is labelled to enable the
system to follow the sequential logic of a given recipe while remaining flexible
in terms of topic switch.

126 C. Strathearn and D. Gkatzia

In the next section (Sect. 2), we refer to the related work. The proceeding sections
cover the task formulation and data curation methodology (Sect. 6) and present an
analysis of the Task2Dial dataset and a comparison to related datasets (Sect. 4).
Finally, Sect. 5 proposes a novel conversational agent architecture for addressing the
task of CDGDS, and finally, in Sect. 6, we discuss the implications and challenges
for the development of instruction-giving dialogue systems for real-world tasks.

2 Related Work

The work presented in this paper focuses on the development of a CDGDS
conversational agent for instruction-giving task-based dialogue, which is relevant
to several areas of research on task- and goal-oriented dialogue, state tracking,
document-grounded dialogue, commonsense reasoning and dialogue management.
Next, we review each of these areas.

2.1 Task- and Goal-Oriented Dialogue

In dialogue management, task-oriented approaches focus on the successful com-
pletion of the individual stages of a task, towards achieving an end goal [15].
Comparatively, goal-oriented approaches focus on comparing the outcome or
overall performance against a gold standard [16]. Task- and goal-oriented dialogue
systems are common in domains such as booking and reservation systems for
businesses [17]. However, business models are typically goal-oriented as the
instructions are minimal and the focus is on the outcome [18]. Instead, the
Task2Dial task is formulated as a task-oriented dialogue paradigm to imitate real-
world practical scenarios that can vary in complexity and require adaptability,
additional information, clarification and natural conversation in order to enhance
understanding and success.

2.2 Dialogue State Tracking and Planning

Task-based dialogue systems require the user and artificial agent to work syn-
ergistically by following and reciting instructions to achieve a goal. Human-bot
conversational models are defined as follows [19]:

• Single intent and single turn policy: relies solely on question and answer pairs
assuming that the user provides all slot values in a single utterance. This type of
task does not require dialogue state tracking.

A Commonsense-Enhanced Document-Grounded Conversational Agent: A. . . 127

• Single intent and multi-turn policy: extends the previous conversational model;
however, this model can include multiple turns, to fill in missing information.
Historic information is then extracted from all turns and used to structure data.

• Multi-intent and multi-turn policy: the intents can change depending on the
context.

Instruction-giving scenarios follow the multi-intent multi-turn conversational
framework, since they must accommodate knowledge and variability outside of
a linear deterministic model as practical tasks can vary in complexity and the
conversation can vary based on the interlocutors’ prior knowledge and experience.
In addition, there is no restriction on the amount of variability introduced into a
task, such as introducing alternate methods, commonsense knowledge and concepts
that change the structure and information within the dialogue. Variability is often
reduced in human-machine scenarios as systems are limited in knowledge and
their ability to respond to questions not seen in training [20], which can result in
shortened responses and fewer questions asked on aspects of the task [21]. This
reduces the system’s ability to ensure that the IF has understood the IG’s directions,
which may produce irregular outcomes or result in an incomplete task. Therefore,
capturing and emulating natural variability within the dialogue is crucial for creating
robust and reliable conversational systems for instruction-giving scenarios.

Existing datasets such as the Multi-Domain Wizard-of-Oz (MultiWOZ) [22],
Taskmaster-1 [21], Doc2dial [3] and Action-Based Conversations Dataset (ABCD)
[23] strictly follow the sequential logic of an instructional document. However, in
addition to grounded information in documents, Task2Dial aims to accommodate
questions and clarification on different aspects of a task that might not be grounded
in the document. In previous work, the user is limited to the path of the subroutine;
however, in Task2Dial, the IF can ask the IG questions at any stage of the
task, regardless of the position within a given sequence, and then return to that
position after the question is fulfilled. For example, in a cooking scenario, the
IF may ask the IG how to use a certain kitchen utensil. The IG would need to
answer this question and then return to the correct stage in the recipe in order
to continue the sequence. This introduces additional challenges for state tracking.
The conversational agent must not only generate instructions sequentially, based on
the schema of a document, but also request confirmation to ensure that the user
has understood the task and answer questions outside its predefined script. Using
document-grounded subroutines to capture intents that change the direction of a task
broadens the interaction between the IG and IF [23] and introduces new challenges
for dialogue state tracking.

2.3 Document-Grounded Dialogue

DGDS classify unstructured, semi-structured and structured information in docu-
ments to aid in understanding human knowledge and interactions, creating greater

128 C. Strathearn and D. Gkatzia

naturalistic human-computer interactions (HCI) [24]. The aim of DGDS is to
formulate a mode of conversation from the information (utterances, turns, context,
clarification) provided in a document(s) [25]. DGDS are particularly useful in task-
oriented and goal-oriented scenarios as they emulate the natural dialogue flow
between the IG and IF. A recent example of DGDS and closest to our work is
Doc2Dial, a multi-domain DGDS dataset for goal-oriented dialogue modelled on
hypothetical dialogue scenes (dialogue act, a role such as user or agent and a
piece of grounding content from a document) and dialogue flows (a sequence of
dialogue scenes) to simulate realistic interactions between a user and machine
agent in information seeking settings [3]. DoQA [26] contains domain-specific
Q&A dialogues in three domains including cooking, where users can ask for
recommendations/instructions regarding a specific task, although the task does not
involve providing steps for completing it. Other document-grounded tasks have
been proposed such as MultiWOZ [22], Taskmaster-1 [21] and ABCD [23] which
demonstrate how DGDS can be configured in end-to-end pipelines for task-driven
dialogue in virtual applications such as online booking systems. Here, we follow
a similar setup as Doc2Dial; however, in our proposed task, we allow users to
ask clarification questions, the answers to which are not necessarily grounded in
the document. This consideration is vital in the development of instruction-giving
conversational agents as it has implications for the dialogue pipeline.

2.4 Commonsense-Enhanced Dialogue

Commonsense reasoning is a general understanding of our surroundings, situations
and objects, which is essential for many AI applications [27]. Simulating these
perceptual processes in task- and goal-oriented DGDS generates greater context
and grounding for more human-like comprehension. An example of commonsense
dialogue in a practical task-based scenario is understanding the common storage
locations of objects or the safe handling and use of objects from their common
attributes, i.e. a handle, knob or grip. Commonsense dialogue is highly contextual:
in Question Answering in Context (QuAC) [5], dialogues are constructed from
Wikipedia articles interpreted by a teacher. A student is given the title of the article
and asks the teacher questions on the subject from prior knowledge, and the teacher
responds to the students’ questions using the information in the document. This
mode of question answering (Q&A) development is more naturalistic and grounded
than previous methods as the challenges of understanding the information are
ingrained in the dialogue from the underlying context. Similarly, the Conversational
Question Answering Challenge (CoQA) dataset [4] is formulated on a rationale,
scenario and conversation topic, and the Q&A pairs are extracted from this data.
This methodology is used in the Task2Dial dataset as it provides greater co-reference
and pragmatic reasoning within the dialogue for enhanced comprehension as shown
in Fig. 1.

A Commonsense-Enhanced Document-Grounded Conversational Agent: A. . . 129

In human-human IG/IF tasks, the IG may have prior knowledge of appropriate
alternative methods, components and tools that can be used in a task that are
not mentioned in the instructions. This information is vital if the IF has missing
components or requires clarification on aspects of the task that are not clearly
represented in the document. Variability is problematic to capture in DGDS alone
as hypothetical scenarios in documents cannot account for all the potential issues in
practice [28]. Thus, the ability to ask questions that are not available in the document
is crucial when conducting real-world tasks due to the changeable conditions,
complexity of the task and availability of components. This is particularly important
in cooking tasks (as well as other instruction-giving tasks) as the user may not
have all the ingredients stated in a recipe but may have access to alternative items
that can be used instead. This approach can also be used in other domains such
as maintenance or construction tasks if the user does not have a specific tool
but has access to a suitable alternative tool without knowing it. This inevitably
introduces new challenges for dialogue systems as commonsense-related intents
and actions need to be introduced in the dialogue system. Task2Dial moves away
from the closed knowledge base(s) in DGDS into incorporating multiple sources
of information to broaden the adaptability and application of DGDS. This is
achieved by developing additional resources that list alternative ingredients to those
mentioned in the metadata from the original recipes, as well as instructions on how
to use cookery tools. Appropriate alternative ingredients were collected and verified
using certified online cooking resources that provide food alternatives.

2.5 Dialogue Management

Dialogue managers are used to structure data and control the flow of a conversation
and the way in which information is delivered to the user [29]. There are numerous
DM tools for DGDS; however, it is important to consider the structure of the
dataset and the complexity of the task [30]. Due to the complexity of our cooking
scenario, the DM must be able to read multiple documents, intents, state tracking,
paths, entities, rules and actions to generate responses logically and coherently [14].
The ability to deploy a DM on different platforms, channels and servers is also
an important consideration for accessibility, usability, data protection and security
[31]. Open-source DM tools such as RASA X2 are particularly useful for task-based
dialogue as the natural language understanding and core dialogue manager libraries
are highly configurable for different tasks [32]. This is an important consideration
for handling structured and unstructured data; flexibility in dialogue management,
i.e. customisation of features; configuring classifiers; interpreter pipelines for
training; conversation history; and managing interaction. This cannot be achieved

2 rasa.com/docs/rasa-x/.

http://doi.org/rasa.com/docs/rasa-x/

130 C. Strathearn and D. Gkatzia

with DM tools such as Amazon Lex3 and Google Dialogflow4 due to system
limitations and restricted user access [33, 34].

3 Task2Dial

The proposed task considers the recipe-following scenario with an information giver
(IG) and an information follower (IF), where the IG has access to the recipe and
gives instructions to the IF. The IG might choose to omit irrelevant information,
simplify the content of a recipe or provide it as is. The IF will either follow the task
or ask for further information. The IG might have to rely on information outside the
given document (i.e. commonsense) to enhance understanding and success of the
task. In addition, the IG decides on how to present the recipe steps, i.e. split them
into sub-steps or merge them together, often diverting from the original number
of recipe steps. The task is regarded successful when the IG has successfully
followed/understood the recipe. Hence, other dialogue-focused metrics, such as the
number of turns, are not appropriate here. Formally, Task2Dial can be defined as
follows: given a recipe Ri from R = R1, R2, R3, . . . , Rn, an ontology or ontologies
Oi = O11,O2, . . . , On of cooking-related concepts, a history of the conversation
h, predict the response r of the IG.

The Task2Dial dataset includes (1) a set of recipe documents and (2)
conversations between an IG and an IF, which are grounded in the associated recipe
documents. Figure 2 presents sample utterances from a dialogue along with the
associated recipe. It demonstrates some important features of the dataset, such
as mentioning entities not present in the recipe document, re-composition of the

Fig. 2 Original recipe text converted to Task2Dial dialogue

3 https://aws.amazon.com/lex/.
4 https://cloud.google.com/dialogflow.

 -1446 57047 a -1446 57047
a

https://aws.amazon.com/lex/

 -1446 58376 a -1446 58376 a

https://cloud.google.com/dialogflow

A Commonsense-Enhanced Document-Grounded Conversational Agent: A. . . 131

Fig. 3 Overview of the Task2Dial dataset collection

original text to focus on the important steps and the breakdown of the recipe into
manageable and appropriate steps. Following recent efforts in the field to standardise
NLG research [35], we have made the dataset freely available.5

3.1 Data Collection Methodology

The overall data collection methodology is shown in Fig. 3 and is described in detail
below.

Pilot Data Collection Prior to data collection, we performed three pilot studies.
In the first, two participants assumed the roles of IG and IF, respectively, where
the IG had access to a recipe and provided recipe instructions to the IF (who
did not have access to the recipe) over the phone, recording the session and then
transcribing it. Next, we repeated the process with text-based dialogue through
an online platform following a similar setup; however, the interaction was solely
chat-based. The final study used self-dialogue [21], with one member of the team
who wrote the entire dialogues assuming both the IF and IG roles. We found that
self-dialogue results were proximal to the results of two-person studies. However,
time and cost were higher for producing two-person dialogues, with additional time
needed for transcribing and correction; thus, we opted to use self-dialogue.

Creation of a Recipe Dataset Three open-source and creative commons licensed
cookery websites6 were identified for data extraction, which permit any use or non-
commercial use of data for research purposes [36, 37]. As content submission to the

5 www.huggingface.co/datasets/cstrathe435/Task2Dial.
6 (a) www.makebetterfood.com, (b) www.cookeatshare.com and (c) www.bbcgoodfood.com.

 -1446 57047 a -1446 57047
a

www.huggingface.co/datasets/cstrathe435/Task2Dial

 -166 58376 a -166 58376 a

www.makebetterfood.com

 11600 58376 a 11600 58376
a

www.cookeatshare.com

 23678 58376 a 23678 58376 a

www.bbcgoodfood.com

132 C. Strathearn and D. Gkatzia

cooking websites was unrestricted, data appropriateness was ratified by the ratings
and reviews given to each recipe by the public, and highly rated recipes with positive
feedback were given preference over recipes with low scores and poor reviews [38].
From this, a list of 353 recipes was compiled and divided amongst the annotators
for the data collection. As mentioned earlier, annotators were asked to take on the
roles of both IF and IG, rather than a multi-turn WoZ approach, to allow flexibility
in the utterances. This approach allowed the annotators additional time to formulate
detailed and concise responses.

Participants Research assistants (RAs) from the School of Computing were
employed on temporary contracts to construct and format the dataset. After an initial
meeting to discuss the job role and determine suitability, the RAs were asked to
complete a paid trial, and this was evaluated, and further advice was given on how
to write dialogues and format the data to ensure high quality. After the successful
completion of the trial, the RAs were permitted to continue with the remainder of
the data collection. To ensure high quality of the dataset, samples of the dialogues
were often reviewed, and further feedback was provided.

Instructions to Annotators Each annotator was provided with a detailed list
of instructions, an example dialogue and an IF/IG template (see Appendix A).
The annotators were asked to read both the example dialogue and the original
recipe to understand the text, context, composition, translation and annotation. The
instructions included information handling and storage of data, text formatting,
metadata and examples of high-quality and poor dialogues. An administrator
was on hand throughout the data collection to support and guide the annotators.
This approach reduced the amount of low-quality dialogues associated with large
crowdsourcing platforms that are often discarded post evaluation, as demonstrated
in the data collection of the Doc2Dial dataset [3].

Time Scale The data collection was scheduled over 4 weeks. This was to permit
additional time for the annotators to conduct work and study outside of the project.
Unlike crowdsourcing methods, the annotators were given the option to work on the
project flexibly in their spare time and not commit to a specific work pattern or time
schedule.

Ethics An ethics request was submitted for review by the board of ethics at our
university. No personal or other data that may be used to identify an individual was
collected in this study.

Task2Dial Long-Form Description Unlike previous task- and goal-oriented
DGDS, the Task2Dial corpus is unique as it is configured for practical IF/IG
scenarios as demonstrated in Fig. 2. Following [39], we provide a long-form
description of the Task2Dial cooking dataset here.

Curation Rationale Text selection was dependent on the quality of information
provided in the existing recipes. Too little information and the transcription and
interpretation of the text became diffused with missing or incorrect knowledge.
Conversely, providing too much information in the text resulted in a lack of

A Commonsense-Enhanced Document-Grounded Conversational Agent: A. . . 133

creativity and commonsense reasoning by the data curators. Thus, the goal of the
curation was to identify text that contained all the relevant information to complete
the cooking task (tools, ingredients, weights, timings, servings) but not in such
detail that it subtracted from the creativity, commonsense and imagination of the
annotators.

Language Variety The recipes selected for this dataset were either written in
English or translated into English prior to data collection for ease of the annotators,
language understanding and future training for language models. This made the
dataset accessible to all contributors involved in the curation, support and adminis-
tration framework.

Speaker Demographics The recipes are composed by people of different
race/ethnicity, nationalities, socioeconomic status, abilities, age, gender and
language with significant variation in pronunciations, structure, language and
grammar. This provided the annotators with unique linguistic content for each
recipe to interpret the data and configure the text into an IF/IG format. To help
preserve sociolinguistic patterns in speech, the data curators retained the underlying
language when paraphrasing, to intercede social and regional dialects with their
own interpretation of the data to enhance lexical richness [40].

Annotator(s) Demographics Undergraduate RAs were recruited through email.
The participants were paid an hourly rate based on a university pay scale which is
above the living wage and corresponds to the real living wage, following ethical
guidelines for responsible innovation [41]. The annotation team was composed
of two male and one female data curators, under the age of 25 years of mixed
ethnicity with experience in AI and computing. This minimised the gender bias
that is frequently observed in crowdsourcing platforms [42].

Speech Situation The annotators were given equal workloads, although workloads
were adjusted accordingly over time per annotator availability to maximise data
collection. The linguistic modality of the dialogue is semi-structured, synchronous
interactions as existing recipes were used to paraphrase the instructions for the IG.
Following this, the IF responses were created spontaneously following the logical
path of the recipe in the context of the task. The intended audience for the Task2Dial
dataset is broad, catering for people of different ages and abilities. Thus, the dataset
is written in plain English with no jargon or unnecessary commentary to maximise
accessibility.

Text Characteristics The structural characteristics of the Task2Dial dataset are
influenced by real-world cooking scenarios that provide genre, texture and structure
to the dialogues. This provides two important classifications, utterances and intents,
that are universal for all task-based datasets and domain-specific text that is only
relevant for certain tasks. This data is used when training language models as non-
domain-specific sample utterances such as ‘I have completed this step’ can be used
to speed up the development of future task-based DGDS.

134 C. Strathearn and D. Gkatzia

Recording Quality As mentioned previously, the dialogues in Task2Dial are text-
based.

4 Dataset Analysis

This section presents an overall statistics of the Task2Dial dataset. We compare
our dataset to the Doc2Dial dataset, although the latter focuses on a different
domain. Employing research assistants to collect and annotate data rather than using
crowdsourcing platforms meant that no dialogues were discounted from the dataset.
However, a pre-evaluation check was performed on the dataset before statistical
analysis to reduce spelling and grammatical errors that may affect the results of the
lexical analysis.

Size Table 1 summarises the main descriptive statistics of Task2Dial and Doc2Dial.
The dialogues in Task2Dial contain a significantly higher number of turns than
Doc2Dial dialogues (18.15 as opposed to 12.94). In addition, Task2Dial utterances
are significantly longer than in Doc2Dial, containing on average more than seven
tokens.

Lexical Richness and Variation We further report on the lexical richness and
variation [43], following [44] and [45]. We compute both type-token ratio (TTR),
i.e. the ratio of the number of word types to the number of words in a text, and
the mean segmental TTR (MSTTR), which is computed by dividing the corpus into
successive segments of a given length and then calculating the average TTR of all
segments to account for the fact the compared datasets are not of equal size.7 All
results are shown in Table 1. We further investigate the distribution of the top 25
most frequent bigrams and trigrams in our dataset as seen in Fig. 4. The majority
of both trigrams (75%) and bigrams (59%) is only used once in the dataset, which
creates a challenge to efficiently train on this data. For comparison, in Doc2Dial,
54% of bigrams and 70% of trigrams are used only once. Infrequent words and
phrases pose a challenge for the development of data-driven dialogue systems as
handling out-of-vocabulary words is a bottleneck.

Table 1 Size and lexical richness of the dataset

Dataset #docs #Turns #Tkns/turn TTR MSTTR

TASK2DIAL 353 18.15 19.79 0.025 0.84

DOC2DIAL 487 12.94 12 0.011 0.86

7 TTR and MSTTR have been computed using https://github.com/LSYS/LexicalRichness.

 15744 58376 a 15744 58376 a

https://github.com/LSYS/LexicalRichness

A Commonsense-Enhanced Document-Grounded Conversational Agent: A. . . 135

Fig. 4 Frequencies of trigrams and bigrams in the Task2Dial dataset

5 The ChefBot Conversational Agent

ChefBot was created using the RASA X dialogue manager8 to control the dialogue
flow and access external databases for swapping ingredients, object explanations,
intents, utterances and entities modelled from the dialogues in the Task2Dial dataset,
as shown in Fig. 5.

ChefBot System Architecture The system architecture for ChefBot is depicted
in Fig. 6, and the technical details of the system are described in this section. The
data folder contains the files that the ChefBot is trained on, and these include the IF
dialogues and recipe sequences from the Task2Dial dataset. The rules file contains
the directives for intents, paths and state tracking. The actions folder holds the
entities files which are the external datasets and rules for alternative ingredients
and object explanations. When a model is trained, it is stored in the models folder.
Similarly, if a path is changed or corrected during a session, i.e. using RASA
interactive, it is stored in the test folder. The domain file contains the IG dialogues
from the Task2Dial dataset configured into utterances. This file also contains the
classifications for the intents, entities and actions. The credential’s file contains
the parameters for deploying the system on channels and servers. Similarly, the
endpoints file is the data for the custom actions server for entity extraction. The
config file is the interpreter pipeline for the NLU model that includes the classifiers
and policies for training the ChefBot. When a trained model is loaded into a terminal
(such as Anaconda9 or similar), it can be deployed using the RASA shell or RASA
X commands to load the RASA user interface (UI) on a channel or server, allowing
the user to interact with ChefBot.

8 rasa.com/blog/dialogue-policies-rasa-2/.
9 www.anaconda.com/.

http://doi.org/rasa.com/blog/dialogue-policies-rasa-2/

 -1446 58376 a -1446 58376 a

www.anaconda.com/

136 C. Strathearn and D. Gkatzia

Fig. 5 The pipeline from Task2Dial to ChefBot and the user

Data Entry and Formatting Data entry was conducted over a 6-week period
by project members. Due to the restructuring of data, manual entry was the
most effective way to ensure data from the Task2Dial dataset was formatted and
entered correctly in ChefBot. All 353 recipe documents, alternative food and object
databases from the Task2Dial dataset were successfully uploaded into ChefBot
within the designated 6-week period.

Modelling Intents and Utterances ChefBot uses non-domain-specific ‘user’
responses from the Task2Dial dataset to model global intents in the dialogue
manager, such as ‘I have done this’, ‘OK what’s next’ and ‘What is the next step’.
These global intents can be used in other task-based dialogue scenarios, such as
cleaning and maintenance tasks. Domain-specific intents are modelled from the user
responses which contain information that is only relevant to the cooking domain.
For example, ‘I have put the cake in the oven’ or ‘I have mixed the ingredients in
a bowl’. This approach is important for enhancing natural communication between
the IG and IF as it allows the IF to give both short and full responses to the IG,
proximal to a genuine human conversation. Within the domain file, the instructions
from the IG were turned into utterances and numerically labelled depending on the
position of the instruction within the sequence of a recipe, i.e. r1a, r1b, r1c, etc.,
as shown in the example below. This approach creates a sequential order for each
recipe which can be tracked in the DM. This data is used both for state tracking and
creating a dialogue pathway for each recipe.

A Commonsense-Enhanced Document-Grounded Conversational Agent: A. . . 137

Fig. 6 ChefBot system architecture

Example of Modelling User Utterances in ChefBot
utter_r1a:—text: English Muffins takes 180 minutes to cook, serves 16 and contains
7 ingredients, is this ok?
utter_r1b:—text: To cook English Muffins you will need, ‘milk’, ‘butter’, ‘salt’,
‘sugar’, ‘egg’, ‘bread flour’, ‘instant yeast’, do you have these ingredients?
utter_r1c:—text: To start with combine 1 and three quarter cups of lukewarm milk,
3 tablespoons of soft butter, one and a half teaspoons of salt, 2 tablespoons of sugar,
one egg, 5 cups of bread flour, and 2 teaspoons of yeast in a large mixing bowl of
an electric stand mixer.

Modelling Dialogue Paths and Conversation History Within each pathway are
the global and domain-specific intents for each recipe that are activated using the
‘or’ variable in multi-intent, multi-turn policy, as outlined in the literature review.
This information is important for training the DM to determine the next logical step
in a sequence from the history of the conversation and the path. Custom actions
for alternative ingredients activate if the user answers ‘no’ to ‘do you have all
the ingredients?’. This initiates the search_rec function and lists the alternative

138 C. Strathearn and D. Gkatzia

ingredients for each recipe. The paths are modelled using the IG and IF sequences
from the Task2Dial dataset, as demonstrated below.

Example of Recipe Path in ChefBot

– story:
strawberrypienopath //Name of path
steps:

– intent: strawberrypie //Name of recipe from Task2Dial dataset
– action: utter_r2a //First line of the recipe sequence
– or:
– intent: globint //Global intents
– intent: r2 //Domain/recipe specific intents
– action: utter_r2b //Second line of the recipe sequence
– intent: nomode
– action: utter_ingredients_strawberrypie //Identify missing ingredient’s
– intent: search_rec_r2a // Perform a search for alternative ingredients

Rule-Based Tracking and Entity Extraction The frequently asked questions
(FAQ) rule in RASA allows the user to ask questions that may not be represented
within a given form or path. The DM will then answer the question using specific
‘FAQ’ labelled intents and then return to the next or previous step in a sequence, as
shown below. The FAQ labelling facility can also be used to create a list of intents
for context-aware entity extraction, i.e. ‘how do I use a’ with entities [cheese knife]
(utensil) within a given FAQ function. This method is less formulaic than using
RASA forms, which requires specified slots to be filled at each stage of a sequence
or sub-sequence, which is important in ChefBot as we aim to capture the natural
flow of conversation between the IG and IF from the Task2Dial dataset, to enhance
user understanding and accessibility.

Rule-Based Tracking Example

– rule: respond to IF questions
steps:

– intent: utter_faq_questions
– action: search_utensils

External Databases for Alternative Ingredients and Object Descriptions
In ChefBot, additional commonsense knowledge is modelled in two external
databases. The first is the ability to swap ingredients for appropriate alternatives. It
is important that the alternative ingredients do not alter the procedural context of
the recipe. For example, swapping olive oil for sunflower oil will not change how
a recipe is prepared or cooked. Conversely, changing chicken breast for beef fillet
would require a significant change in the recipe instructions. This would have an
impact on the cooking situation, including times, food preparation, servings, steps
and utensils, and may require additional ingredients for cooking or preparation.
Therefore, to avoid unnecessary complications, all alternative ingredients must not
significantly affect the sequence and instructions within a given recipe.

A Commonsense-Enhanced Document-Grounded Conversational Agent: A. . . 139

Fig. 7 Examples of how the additional datasets were handled as custom actions in ChefBot. Left:
utensil explanations. Right: alternative ingredients

Metadata containing information on the ingredients and utensils used in each
recipe from the Task2Dial dataset was extracted. The first dataset was created using
the list of ingredients from each recipe. A Google search using cooking and food
health websites was performed to find appropriate alternatives for each ingredient.
Similarly, a list of cooking utensils and kitchen devices was constructed using
the same approach. However, the second dataset also contains object descriptions,
object comparisons, alternative names for objects, appropriate handling methods
and common storage locations. This data is important as it may not be grounded in
the original documents, but vital for enhancing user understanding. This approach
allows the IG to simplify the content or provide additional information depending
on the needs of the IF. The two datasets are transformed into custom actions in the
dialogue manager as shown in Fig. 7.

Using these databases as custom actions allows the user to trigger an action at
any stage of the task from keyword recognition. For instance, in Fig. 6, the keyword
or entity extraction is the names of the ingredients and objects. In the intent list,
these entities are given context, for example, ‘how do I use a (fish slice) [object-
name]’ or ‘what does a (lemon zester) [object-name] look like’. This is important
as the user’s response may consist of more than one named entity. For instance,
‘I do not know where my (fish slice) is kept or what a (lemon zester) looks like’.
Here context awareness is important for relaying information back to the user in
a meaningful way. This was achieved by using the multi-intent function in rasa to
handle more than one intent per turn.

ChefBot Demo and Repository Training ChefBot takes approximately 2–3 hours,
so a trained model is supplied in a GitHub repository within the system files for

140 C. Strathearn and D. Gkatzia

ease of demonstration.10 A description of the libraries and system requirements
needed to run ChefBot are located in the ‘requirements.txt’ file. The provided video
demonstrates how the ChefBot generates dialogue, swaps ingredients, uses global
and domain-specific intents and explains the utility of objects and state tracking,
using a random recipe selected from the Task2Dial dataset.11

6 Conclusions and Future Work

This paper demonstrates how commonsense-enhanced document-grounded dia-
logue can be modelled for task-based dialogue. As a case study, we used the
Task2Dial, a task-based document-grounded conversation dataset, modelled as an
interaction between an IG and an IF during a cooking task. In this domain, common-
sense is the ability to provide alternative ingredients and provide recommendations
on object utility, both of which are not present in the cooking instruction dialogues
and require additional knowledge in the form of a database or domain ontology.
We then presented a novel conversational agent architecture, ChefBot, which is
able to flexibly adapt to the changes in dialogue flow. With this research, we
extend previous work in DGDS in order to emulate the unpredictability of human-
human conversations in instruction-giving tasks that do not necessarily follow
a tight schema as the sequential structure of instructional documents. Instead,
other discourse and dialogue phenomena might take place such as clarification
questions and explanations. We further considered the aforementioned challenges
of modelling dialogue for instruction-giving tasks with a focus on state tracking,
task planning and commonsense reasoning and proposed a new task, model and
associated dataset. With this, we demonstrate a more robust approach for DGDS
called CDGDS to more effectively handle real-world task-based scenarios and open
the door to tasks outside the cooking domain, such as general maintenance and
furniture assembly.

6.1 Future Work and Open Questions

Our proposed task aims to motivate research for modern dialogue systems that
address the following challenges. Firstly, modern dialogue systems should be flex-
ible and allow for ‘off-script’ scenarios in order to emulate real-world phenomena,
such as the ones present in human-human communication. This will require new
ways of encoding user intents and new approaches to dialogue management in
general. Secondly, as dialogue systems find different domain applications, the

10 github.com/carlstrath/ChefBot.
11 https://youtu.be/XoTXraGs5rA.

http://doi.org/github.com/carlstrath/ChefBot

 -1088 58376 a -1088 58376 a

https://youtu.be/XoTXraGs5rA

References 141

complexity of the dialogues might increase as well as the reliance of domain
knowledge that can be encoded in structured or unstructured ways, such as docu-
ments, databases, etc. Many applications might require access to different domain
knowledge sources in a course of a dialogue, and as such, context selection might
prove beneficial in choosing ‘what to say’ [46]. Finally, as we design more complex
dialogue systems, commonsense will play an essential part, with models required
to perform reasoning with background commonsense knowledge, and generalise
to tackle unseen concepts, similar to [9]. In the future, we aim to benchmark
and evaluate a dialogue system based on the Task2Dial dataset and the ChefBot
[14] and extend this approach to a human-robot interaction (HRI) scenario. Other
interesting directions can include the exploration of pre-trained models as part of
a conversational agent architecture to eliminate the need to encode knowledge or
design domain ontologies [47].

Acknowledgments The research is supported under the EPSRC projects CiViL (EP/T014598/1)
and NLG for low-resource domains (EP/T024917/1).

References

1. Chen, H., Liu, X., Yin, D., Tang, J.: A survey on dialogue systems: Recent advances and new
frontiers. SIGKDD Explor. Newsl. 19(2), 25–35 (2017). https://doi.org/10.1145/3166054.
3166058

2. Shah, P., Hakkani-Tür, D., Liu, B., Tür, G.: Bootstrapping a neural conversational agent with
dialogue self-play, crowdsourcing and on-line reinforcement learning. In: Proceedings of the
2018 Conference of the North American Chapter of the Association for Computational Lin-
guistics: Human Language Technologies, Volume 3 (Industry Papers), pp. 41–51. Association
for Computational Linguistics, New Orleans - Louisiana (2018). https://doi.org/10.18653/v1/
N18-3006. https://www.aclweb.org/anthology/N18-3006

3. Feng, S., Wan, H., Gunasekara, C., Patel, S., Joshi, S., Lastras, L.: doc2dial: A goal-
oriented document-grounded dialogue dataset. In: Proceedings of the 2020 Conference on
Empirical Methods in Natural Language Processing (EMNLP), pp. 8118–8128. Association
for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.
652. https://www.aclweb.org/anthology/2020.emnlp-main.652

4. Reddy, S., Chen, D., Manning, C.D.: CoQA: A conversational question answering challenge.
Trans. Assoc. Comput. Linguist. 7, 249–266 (2019). https://doi.org/10.1162/tacl_a_00266.
https://aclanthology.org/Q19-1016

5. Choi, E., He, H., Iyyer, M., Yatskar, M., tau Yih, W., Choi, Y., Liang, P., Zettlemoyer, L.: Quac:
Question answering in context (2018)

6. Strathearn, C., Gkatzia, D.: The Task2Dial dataset: A novel dataset for commonsense-
enhanced task-based dialogue grounded in documents. In: Proceedings of The Fourth
International Conference on Natural Language and Speech Processing (ICNLSP 2021),
pp. 242–251. Association for Computational Linguistics, Trento, Italy (2021). https://
aclanthology.org/2021.icnlsp-1.28

7. Hu, Z., Dick, M., Chang, C.N., Bowden, K., Neff, M., Fox Tree, J., Walker, M.: A corpus of
gesture-annotated dialogues for monologue-to-dialogue generation from personal narratives.
In: Proceedings of the Tenth International Conference on Language Resources and Evaluation
(LREC’16), pp. 3447–3454. European Language Resources Association (ELRA), Portorož,
Slovenia (2016). https://aclanthology.org/L16-1550

 22435 28319
a 22435 28319 a

https://doi.org/10.1145/3166054.3166058
https://doi.org/10.1145/3166054.3166058

 24291 34960 a 24291
34960 a

https://doi.org/10.18653/v1/N18-3006
https://doi.org/10.18653/v1/N18-3006

 3882 36067 a 3882 36067 a

https://www.aclweb.org/anthology/N18-3006

17336 40495 a 17336 40495 a

https://doi.org/10.18653/v1/2020.emnlp-main.652
https://doi.org/10.18653/v1/2020.emnlp-main.652

 1422
41602 a 1422 41602 a

https://www.aclweb.org/anthology/2020.emnlp-main.652

 20659 43816 a 20659
43816 a

https://doi.org/10.1162/tacl_a_00266

 -563 44923 a -563 44923 a

https://aclanthology.org/Q19-1016

 32220 51565 a 32220 51565 a

https://aclanthology.org/2021.icnlsp-1.28
https://aclanthology.org/2021.icnlsp-1.28

 6020
58206 a 6020 58206 a

https://aclanthology.org/L16-1550

142 C. Strathearn and D. Gkatzia

8. Stoyanchev, S., Piwek, P.: Constructing the CODA corpus: A parallel corpus of monologues
and expository dialogues. In: Proceedings of the Seventh International Conference on
Language Resources and Evaluation (LREC’10). European Language Resources Associ-
ation (ELRA), Valletta, Malta (2010). http://www.lrec-conf.org/proceedings/lrec2010/pdf/
127_Paper.pdf

9. Lin, B.Y., Zhou, W., Shen, M., Zhou, P., Bhagavatula, C., Choi, Y., Ren, X.: CommonGen: A
constrained text generation challenge for generative commonsense reasoning. In: Findings of
the Association for Computational Linguistics: EMNLP 2020, pp. 1823–1840. Association for
Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.findings-emnlp.
165. https://aclanthology.org/2020.findings-emnlp.165

10. Clinciu, M.A., Gkatzia, D., Mahamood, S.: It’s commonsense, isn’t it? demystifying human
evaluations in commonsense-enhanced NLG systems. In: Proceedings of the Workshop on
Human Evaluation of NLP Systems (HumEval), pp. 1–12. Association for Computational
Linguistics, Online (2021). https://aclanthology.org/2021.humeval-1.1

11. Panagiaris, N., Hart, E., Gkatzia, D.: Generating unambiguous and diverse referring expres-
sions. Comput. Speech Lang. 68, 101184 (2021). https://doi.org/10.1016/j.csl.2020.101184.
https://www.sciencedirect.com/science/article/pii/S0885230820301170

12. Gkatzia, D., Belvedere, F.: “what’s this?” comparing active learning strategies for concept
acquisition in hri. In: Companion of the 2021 ACM/IEEE International Conference on Human-
Robot Interaction, HRI ’21 Companion, p. 205–209. Association for Computing Machinery,
New York, NY, USA (2021). https://doi.org/10.1145/3434074.3447160

13. Gargett, A., Garoufi, K., Koller, A., Striegnitz, K.: The GIVE-2 corpus of giving instructions
in virtual environments. In: Proceedings of the Seventh International Conference on Language
Resources and Evaluation (LREC’10). European Language Resources Association (ELRA),
Valletta, Malta (2010). http://www.lrec-conf.org/proceedings/lrec2010/pdf/532_Paper.pdf

14. Strathearn, C., Gkatzia, D.: Chefbot: A novel framework for the generation of commonsense-
enhanced responses for task-based dialogue systems. In: Proceedings of the 14th International
Conference on Natural Language Generation, pp. 46–47. Association for Computational
Linguistics, Aberdeen, Scotland, UK (2021). https://aclanthology.org/2021.inlg-1.5

15. Hosseini-Asl, E., McCann, B., Wu, C.S., Yavuz, S., Socher, R.: A simple language
model for task-oriented dialogue. In: Larochelle, H., Ranzato, M., Hadsell, R., Bal-
can, M.F., Lin, H. (eds.) Advances in Neural Information Processing Systems, vol. 33,
pp. 20179–20191. Curran Associates, Inc. (2020). https://proceedings.neurips.cc/paper/2020/
file/e946209592563be0f01c844ab2170f0c-Paper.pdf

16. Ham, D., Lee, J.G., Jang, Y., Kim, K.E.: End-to-end neural pipeline for goal-oriented dialogue
systems using GPT-2. In: Proceedings of the 58th Annual Meeting of the Association
for Computational Linguistics, pp. 583–592. Association for Computational Linguistics,
Online (2020). https://doi.org/10.18653/v1/2020.acl-main.54. https://aclanthology.org/2020.
acl-main.54

17. Zhang, Z., Takanobu, R., Huang, M., Zhu, X.: Recent advances and challenges in task-oriented
dialog system. CoRR abs/2003.07490 (2020). https://arxiv.org/abs/2003.07490

18. Ilievski, V., Musat, C., Hossmann, A., Baeriswyl, M.: Goal-oriented chatbot dialog manage-
ment bootstrapping with transfer learning. In: Proceedings of the 27th International Joint
Conference on Artificial Intelligence, IJCAI’18, p. 4115–4121. AAAI Press (2018)

19. Zamanirad, S., Benatallah, B., Rodriguez, C., Yaghoubzadehfard, M., Bouguelia, S., Brabra,
H.: State machine based human-bot conversation model and services. In: Dustdar, S., Yu, E.,
Salinesi, C., Rieu, D., Pant, V. (eds.) Advanced Information Systems Engineering, pp. 199–
214. Springer International Publishing, Cham (2020)

20. Shum, H.Y., He, X., Li, D.: From eliza to xiaoice: Challenges and opportunities with social
chatbots (2018)

21. Byrne, B., Krishnamoorthi, K., Sankar, C., Neelakantan, A., Duckworth, D., Yavuz, S.,
Goodrich, B., Dubey, A., Cedilnik, A., Kim, K.: Taskmaster-1: Toward a realistic and diverse
dialog dataset. CoRR abs/1909.05358 (2019). http://arxiv.org/abs/1909.05358

 15311 3014 a 15311 3014 a

http://www.lrec-conf.org/proceedings/lrec2010/pdf/127_Paper.pdf
http://www.lrec-conf.org/proceedings/lrec2010/pdf/127_Paper.pdf

 16185 8549 a 16185 8549
a

https://doi.org/10.18653/v1/2020.findings-emnlp.165
https://doi.org/10.18653/v1/2020.findings-emnlp.165

 1422 9656
a 1422 9656 a

https://aclanthology.org/2020.findings-emnlp.165

 9969 14084 a 9969 14084 a

https://aclanthology.org/2021.humeval-1.1

 19011 16298
a 19011 16298 a

https://doi.org/10.1016/j.csl.2020.101184

 -563 17405 a -563 17405 a

https://www.sciencedirect.com/science/article/pii/S0885230820301170

 10633 21833 a 10633
21833 a

https://doi.org/10.1145/3434074.3447160

 8295 26260 a 8295 26260
a

http://www.lrec-conf.org/proceedings/lrec2010/pdf/532_Paper.pdf

 16658 30688 a 16658 30688 a

https://aclanthology.org/2021.inlg-1.5

 18841 35116 a 18841 35116 a

https://proceedings.neurips.cc/paper/2020/file/e946209592563be0f01c844ab2170f0c-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/e946209592563be0f01c844ab2170f0c-Paper.pdf

 5597 40651 a 5597 40651
a

https://doi.org/10.18653/v1/2020.acl-main.54

 23569
40651 a 23569 40651 a

https://aclanthology.org/2020.acl-main.54
https://aclanthology.org/2020.acl-main.54

 17209 43972 a 17209 43972 a

https://arxiv.org/abs/2003.07490

 17208 57255 a 17208
57255 a

http://arxiv.org/abs/1909.05358

References 143

22. Budzianowski, P., Wen, T.H., Tseng, B.H., Casanueva, I., Ultes, S., Ramadan, O., Gašić,
M.: MultiWOZ - a large-scale multi-domain Wizard-of-Oz dataset for task-oriented dialogue
modelling. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language
Processing, pp. 5016–5026. Association for Computational Linguistics, Brussels, Belgium
(2018). https://doi.org/10.18653/v1/D18-1547. https://www.aclweb.org/anthology/D18-1547

23. Chen, D., Chen, H., Yang, Y., Lin, A., Yu, Z.: Action-based conversations dataset: A corpus for
building more in-depth task-oriented dialogue systems. In: Proceedings of the 2021 Conference
of the North American Chapter of the Association for Computational Linguistics: Human
Language Technologies, pp. 3002–3017. Association for Computational Linguistics, Online
(2021). https://www.aclweb.org/anthology/2021.naacl-main.239

24. Zhou, K., Prabhumoye, S., Black, A.W.: A dataset for document grounded conversations. In:
Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing,
pp. 708–713. Association for Computational Linguistics, Brussels, Belgium (2018). https://
doi.org/10.18653/v1/D18-1076. https://aclanthology.org/D18-1076

25. Ma, L., Zhang, W., Li, M., Liu, T.: A survey of document grounded dialogue systems (DGDS).
CoRR abs/2004.13818 (2020). https://arxiv.org/abs/2004.13818

26. Campos, J.A., Otegi, A., Soroa, A., Deriu, J., Cieliebak, M., Agirre, E.: Doqa—accessing
domain-specific faqs via conversational qa (2020)

27. Ilievski, F., Oltramari, A., Ma, K., Zhang, B., McGuinness, D.L., Szekely, P.: Dimensions of
commonsense knowledge (2021)

28. Li, Z., Niu, C., Meng, F., Feng, Y., Li, Q., Zhou, J.: Incremental transformer with deliberation
decoder for document grounded conversations. In: Proceedings of the 57th Annual Meeting of
the Association for Computational Linguistics, pp. 12–21. Association for Computational Lin-
guistics, Florence, Italy (2019). https://doi.org/10.18653/v1/P19-1002. https://aclanthology.
org/P19-1002

29. Galitsky, B., Ilvovsky, D.: Chatbot with a discourse structure-driven dialogue management. In:
Proceedings of the Software Demonstrations of the 15th Conference of the European Chapter
of the Association for Computational Linguistics, pp. 87–90 (2017)

30. Ma, L., Zhang, W.N., Li, M., Liu, T.: A survey of document grounded dialogue systems (dgds)
(2020)

31. Hasal, M., Nowaková, J., Ahmed Saghair, K., Abdulla, H., Snášel, V., Ogiela, L.: Chatbots:
Security, privacy, data protection, and social aspects. Concurr. Comput. Pract. Exp. 33(19),
e6426 (2021). https://doi.org/10.1002/cpe.6426. https://onlinelibrary.wiley.com/doi/abs/10.
1002/cpe.6426

32. Bocklisch, T., Faulkner, J., Pawlowski, N., Nichol, A.: Rasa: Open source language under-
standing and dialogue management (2017)

33. Williams, S.: Hands-On Chatbot Development with Alexa Skills and Amazon Lex: Create
Custom Conversational and Voice Interfaces for Your Amazon Echo Devices and Web
Platforms. Packt Publishing Ltd. (2018)

34. Sabharwal, N., Agrawal, A.: Cognitive Virtual Assistants Using Google Dialogflow: Develop
Complex Cognitive Bots Using the Google Dialogflow Platform. Apress (2020)

35. Gehrmann, S., Adewumi, T.P., Aggarwal, K., Ammanamanchi, P.S., Anuoluwapo, A., Bosse-
lut, A., Chandu, K.R., Clinciu, M., Das, D., Dhole, K.D., Du, W., Durmus, E., Dusek,
O., Emezue, C., Gangal, V., Garbacea, C., Hashimoto, T., McMillan-Major, A., Mille, S.,
van Miltenburg, E., Nadeem, M., Narayan, S., Nikolaev, V., Niyongabo, R.A.: The GEM
benchmark: Natural language generation, its evaluation and metrics. CoRR abs/2102.01672
(2021). https://arxiv.org/abs/2102.01672

36. Bień, M., Gilski, M., Maciejewska, M., Taisner, W., Wisniewski, D., Lawrynowicz, A.:
RecipeNLG: A cooking recipes dataset for semi-structured text generation. In: Proceedings of
the 13th International Conference on Natural Language Generation, pp. 22–28. Association for
Computational Linguistics, Dublin, Ireland (2020). https://www.aclweb.org/anthology/2020.
inlg-1.4

 2520 4121 a 2520 4121 a

https://doi.org/10.18653/v1/D18-1547

 17508 4121 a 17508 4121 a

https://www.aclweb.org/anthology/D18-1547

 2520 9656 a 2520 9656 a

https://www.aclweb.org/anthology/2021.naacl-main.239

 32220 12977 a 32220
12977 a

https://doi.org/10.18653/v1/D18-1076
https://doi.org/10.18653/v1/D18-1076

 11811 14084 a 11811 14084 a

https://aclanthology.org/D18-1076

 11434 16298 a 11434 16298
a

https://arxiv.org/abs/2004.13818

 12092 25153 a 12092 25153 a

https://doi.org/10.18653/v1/P19-1002

 27185 25153 a 27185
25153 a

https://aclanthology.org/P19-1002
https://aclanthology.org/P19-1002

 5607 35116 a 5607 35116 a

https://doi.org/10.1002/cpe.6426

 18896
35116 a 18896 35116 a

https://onlinelibrary.wiley.com/doi/abs/10.1002/cpe.6426
https://onlinelibrary.wiley.com/doi/abs/10.1002/cpe.6426

 2520 50614 a 2520 50614 a

https://arxiv.org/abs/2102.01672

 19514 55041 a 19514
55041 a

https://www.aclweb.org/anthology/2020.inlg-1.4
https://www.aclweb.org/anthology/2020.inlg-1.4

144 C. Strathearn and D. Gkatzia

37. Marin, J., Biswas, A., Ofli, F., Hynes, N., Salvador, A., Aytar, Y., Weber, I., Torralba, A.:
Recipe1m+: A dataset for learning cross-modal embeddings for cooking recipes and food
images. IEEE Trans. Pattern Anal. Mach. Intell. (2019). arXiv:1810.06553

38. Wang, Y., Kim, J.: Interconnectedness between online review valence, brand, and restaurant
performance. J. Hosp. Tour. Manag. 48, 138–145 (2021). https://doi.org/10.1016/j.jhtm.2021.
05.016. https://www.sciencedirect.com/science/article/pii/S1447677021000851

39. Bender, E.M., Friedman, B.: Data statements for natural language processing: Toward miti-
gating system bias and enabling better science. Trans. Assoc. Comput. Linguist. 6, 587–604
(2018). https://doi.org/10.1162/tacl_a_00041

40. Zampieri, M., Nakov, P., Scherrer, Y.: Natural language processing for similar languages,
varieties, and dialects: A survey. Nat. Lang. Eng. 26(6), 595–612 (2020). https://doi.org/
10.1017/S1351324920000492

41. Silberman, M.S., Tomlinson, B., LaPlante, R., Ross, J., Irani, L., Zaldivar, A.: Responsible
research with crowds: Pay crowdworkers at least minimum wage. Commun. ACM 61(3), 39–
41 (2018). https://doi.org/10.1145/3180492

42. Goodman, J.K., Cryder, C., Cheema, A.: Data collection in a flat world: Strengths and
weaknesses of mechanical turk samples. J. Behav. Decis. Making (2012, Forthcoming)

43. Van Gijsel, S., Speelman, D., Geeraerts, D.: A variationist, corpus linguistic analysis of lexical
richness, pp. 1–16 (2005)

44. Novikova, J., Dušek, O., Rieser, V.: The E2E dataset: New challenges for end-to-end
generation. In: Proceedings of the 18th Annual SIGdial Meeting on Discourse and Dialogue,
pp. 201–206. Association for Computational Linguistics, Saarbrücken, Germany (2017).
https://doi.org/10.18653/v1/W17-5525. https://aclanthology.org/W17-5525

45. Perez-Beltrachini, L., Gardent, C.: Analysing data-to-text generation benchmarks. In: Pro-
ceedings of the 10th International Conference on Natural Language Generation, pp. 238–242.
Association for Computational Linguistics, Santiago de Compostela, Spain (2017). https://doi.
org/10.18653/v1/W17-3537. https://aclanthology.org/W17-3537

46. Gkatzia, D.: Content selection in data-to-text systems: A survey. CoRR abs/1610.08375
(2016). http://arxiv.org/abs/1610.08375

47. Petroni, F., Rocktäschel, T., Riedel, S., Lewis, P., Bakhtin, A., Wu, Y., Miller, A.: Language
models as knowledge bases? In: Proceedings of the 2019 Conference on Empirical Methods in
Natural Language Processing and the 9th International Joint Conference on Natural Language
Processing (EMNLP-IJCNLP), pp. 2463–2473. Association for Computational Linguistics,
Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1250. https://aclanthology.org/
D19-1250

 21389 5228 a 21389
5228 a

https://doi.org/10.1016/j.jhtm.2021.05.016
https://doi.org/10.1016/j.jhtm.2021.05.016

 2599 6335 a 2599 6335 a

https://www.sciencedirect.com/science/article/pii/S1447677021000851

 2520 9656 a 2520 9656 a

https://doi.org/10.1162/tacl_a_00041

 29283 11870 a 29283 11870 a

https://doi.org/10.1017/S1351324920000492
https://doi.org/10.1017/S1351324920000492

 3696 16298 a 3696 16298
a

https://doi.org/10.1145/3180492

 -563 25153 a -563 25153
a

https://doi.org/10.18653/v1/W17-5525

 14635 25153 a 14635
25153 a

https://aclanthology.org/W17-5525

 30782 28474 a 30782
28474 a

https://doi.org/10.18653/v1/W17-3537
https://doi.org/10.18653/v1/W17-3537

 10582 29581 a 10582 29581
a

https://aclanthology.org/W17-3537

 2520 31795 a 2520 31795 a

http://arxiv.org/abs/1610.08375

 10411 37330 a 10411 37330 a

https://doi.org/10.18653/v1/D19-1250

 25686 37330 a 25686
37330 a

https://aclanthology.org/D19-1250
https://aclanthology.org/D19-1250

BloomQDE: Leveraging Bloom’s
Taxonomy for Question Difficulty
Estimation

Sabine Ullrich, Amon Soares de Souza, Josua Köhler, and Michaela Geierhos

Abstract Current question answering systems often focus on providing a simple
entity or short sentence as an answer. By gaining confidence in information retrieval
systems, users start to ask more complex questions that require sophisticated
answers, such as reasoning chains. However, no research has been carried out yet to
determine how exhaustive an answer should be.

We combine Bloom’s learner’s levels of understanding with question difficulty
classification. Therefore, we heuristically determine the threshold within Bloom’s
taxonomy that separates question types into simple and complex. Moreover, we
extract keywords from the taxonomy within question datasets and categorize
questions accordingly. Then, we train a word n-gram multi-layer perceptron (MLP)
and an LSTM model with syntactic features. The results are further improved by
applying a genetic algorithm for parameter tuning.

1 Introduction

Question answering (QA) has become increasingly popular in information retrieval
and chatbots and on smart home devices. The returned answer thereby heavily
depends on the trained system: some systems (Alexa, Siri) return simple answers
such as short entities or yes/no answers. Other systems are trained on reasoning
datasets and provide a chain of reasoning steps. This can be useful when explana-
tions are needed, but the steps are provided for any type of question complexity.

Question difficulty estimation (QDE) can help here, as it is already used for
measuring difficulty in question forums or student essays, for example. A popular
approach for student essays is Bloom’s taxonomy, in which questions are estimated
using question keywords. Such keywords range from simple ones such as “name”
or “list” to more difficult questions including “explain” or “justify.”

S. Ullrich · A. Soares de Souza · J. Köhler · M. Geierhos (�)
Research Institute CODE, Bundeswehr University Munich, Neubiberg, Germany
e-mail: michaela.geierhos@unibw.de

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
M. Abbas (ed.), Analysis and Application of Natural Language and Speech
Processing, Signals and Communication Technology,
https://doi.org/10.1007/978-3-031-11035-1_7

145

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-11035-1_7&domain=pdf

 885 55738 a 885 55738 a

mailto:michaela.geierhos@unibw.de

 -2016 61494 a -2016 61494 a

https://doi.org/10.1007/978-3-031-11035-1_7

146 S. Ullrich et al.

These keywords also occur in QA. Therefore, extracting them and classifying the
questions accordingly can help to determine the required answer type. Furthermore,
the inclusion of syntactic features helps to classify unseen sentences that do not
contain keywords from the taxonomy. This can help to provide a tailored answer to
the question without being limited to simple answers or multi-hop answers.

2 Related Work

As relevant as determining the difficulty of questions in QA systems and reasoning
might seem, not much research has been conducted on QDE [12]. To the best of
our knowledge, there has been no work done on predictive QDE using Bloom’s
taxonomy.

However, some research has been done on the question if Bloom’s taxonomy
can be usefully applied to determine question difficulty. Padó [6] experiments on a
small dataset consisting of test questions and student answers showed that variation
in student responses can be an indicator of question difficulty as well as that the
latter can be successfully approximated by Bloom’s taxonomy. Question difficulty
was estimated by applying the Rasch model, which is a joint model of student
ability and question difficulty. The knowledge dimension according to Bloom’s
taxonomy was determined for each question by the annotators. In a final step, they
analyzed whether the annotation according to Bloom’s taxonomy actually reflected
the difficulty determined by the Rasch model.

Some work has been done on predicting question difficulty in the context of
community question services [5, 10]. This context benefits from the advantage
that both textual features and additional meta-information about users and their
interactions can be added to an estimation, so the problem addressed is only partly
related to our problem.

One approach [5] uses a competition-based Bayesian model. This model deter-
mines question difficulty by reframing the process of question answering as a
competition, where the questioner, the answerer, and the question are considered to
be players u. Their expected performance is given by a normal distributionN(μ, σ),
where μ indicates the skill level. The parameters of the distribution are iteratively
fitted by applying the model to a dataset.

A model by Huang et al. [3] for estimating the question difficulty in reading tasks
uses sentence representations for questions and neural networks to process text and
estimate difficulty. The network architecture is a convolutional neural network that
uses an attention mechanism to measure the contribution of the reading context
to question difficulty. For training and validation, they used a dataset of reading
tasks for standard tests, where test logs gave an indicator of task difficulty for each
reading task. They also introduced a test-dependent pairwise loss function in order
to address the incomparability of question difficulty across tests.

Some research has been conducted to predict question difficulty in specific
domains. DAN [7] uses an attention-based neural network with document expansion

BloomQDE: Question Difficulty Estimation 147

to determine question difficulty in multiple-choice medical exams. DAN retrieves
relevant medical documents to enrich questions with additional textual information.
To improve effectiveness, DAN breaks down the difficulty of questions into two
distinct parts so that two attention layers can attend to different aspects of the
question. Finally, DAN processes the output of the two attention layers to estimate
the final difficulty score.

3 Approach

We combine Bloom’s learner’s levels of understanding with question difficulty
classification. We argue that questions that are difficult for learners require similarly
difficult answers in QA systems. Bloom separates the levels of understanding
into the knowledge dimension (factual, conceptual, procedural, and meta-cognitive
knowledge) and the cognitive process dimension (remember, understand, apply,
analyze, and evaluate). The complexity of the questions increases from top to bottom
(A–D) and from left to right (1–5). Formally, complexity can be defined as follows:

Theorem 1 Let Q = {q1, . . . , qn} be a set of n questions, and find all lexical,
structural, and semantic features Flex , Fstruct , Fsem ∈ F that map Q to a binary
set of complexity classes C = {0, 1}. If the mapping F(qm) → C yields 0, a simple
answer is sufficient, while 1 indicates that qm requires a complex answer. Simple
answers include words, entities, and short phrases or sentences, while complex
answers indicate the necessity for including reasoning.

Typical verbs can be categorized into the resulting matrix. The verbs serve
as keywords for searching questions from a selection of QA datasets. Table 1
shows Bloom’s matrix with the assigned keywords. Syntactic and lexical features
are extracted from selected candidates. Since a classification into 20 categories is
not necessary and would also lead to poor results due to the uneven distribution
and small number of candidates, a binary classification is performed. This is also
helpful for our use case, since the question classification should indicate two answer
types, simple or complex. After separating into the two classes, resampling is done
to balance the training data. The following sections describe the processing and
training steps in detail.

3.1 Datasets

Most datasets focus on factoid questions where superficial cues alone are sufficient
to find an answer. We consider two different sources: the AI2 Reasoning Challenge
(ARC) [2] and the Stanford Question Answering Dataset (SQuAD) [9].

148 S. Ullrich et al.

Table 1 The knowledge dimension matrix by Cannon and Feinstein [1] filled with key indicators
for complex questions. The complexity ranges from low (top left) to very high (bottom right) [11]

The cognitive process dimension

The knowledge 1 2 3 4 5

dimension Remember Understand Apply Analyze Evaluate

A Name, list Restate State Distinguish Select

Factual Define, label Order Determine Classify According to

B Identify Describe Illustrate Examine Rank

Conceptual Locate Explain Show Analyze Compare

C Tell Summarize Solve Deduct Conclude

Procedural Describe Translate Demonstrate Diagram Choose

D Interpret Find out Infer Justify

Meta-cognitive – Paraphrase Use Examine Judge

3.1.1 ARC

The AI2 Reasoning Challenge (ARC) [2] contains science questions for elementary
school students. It is the largest public-domain collection of its kind (7787 multiple-
choice questions without diagrams). The questions were taken from 21 different
sources, including questions from the California Standards Test and the Arkansas
Comprehensive Testing, Assessment, and Accountability Program. It is divided into
a set of 2590 complex questions (those that cannot be answered correctly by both
a retrieval and a co-occurrence method) and a set of 5197 simple questions. The
characteristics of the dataset already indicate the importance of syntactic features
such as question length for question difficulty: the “complex dataset” contains
longer questions with a min/avg/max of 2/22.3/128, whereas the “simple dataset”
contains shorter questions with a min/avg/max of 3/19.4/118 [2].

3.1.2 SQuAD

The Stanford Question Answering Dataset (SQuAD) 1.0 is a reading comprehension
dataset consisting of more than 100,000 questions from Wikipedia articles [9]. The
dataset contains a wide range of question and answer types that require reasoning.
The new version, SQuAD 2.0, also called SQuADRUn, combines the existing
SQuAD data with over 50,000 unanswerable questions written by crowdworkers
to resemble answerable questions [8]. Since we are interested in a large number and
variety of questions, we consider all questions from SQuAD 2.0 that are suitable for
our approach.

BloomQDE: Question Difficulty Estimation 149

3.2 Data Preparation

The data preparation steps are (1) performing part-of-speech (PoS) tagging for the
questions, (2) stemming all occurring verbs, (3) mapping these verbs to the stemmed
verbs in Bloom’s matrix, and (4) categorizing the questions accordingly and adding
them to the training data. (5) The test dataset for evaluation is created by human
annotation.

3.2.1 Keyword Mapping

To generate the training data, the questions from the described datasets are classified
by occurring keywords from Bloom’s matrix. This is done by stemming the words
in each question and searching the stems in the matrix. This helps us to find
morphologically matched words with different word endings, such as “describing”
or “examines” which are both stemmed to “describ” and “examin,” respectively.
However, a simple search for stemmed words within the keywords is not sufficient.
Some questions contain phrases like “in order to” or the noun phrase “United
States.” Stemming would place the first in category A2 and the second in category
A3. To get around this problem, all words are tagged with their respective PoS tag,
and then only verbs are searched in the matrix.

3.2.2 PoS Tagging

The syntactic features are PoS tags. Instead of using lexical tokens or tuples of
tokens enriched with syntactic information, we do not train with lexical features.
The reason is that we want to derive complexity from the structure of the questions
and avoid learning domain-specific complexity. The only lexical features we use
are question words, which are domain independent. This means PoS tags are
not determined for question words, e.g., “what,” “who,” “how,” “when,” “where,”
“why,” “which,” “whom,” and “whose.” In fact, since question words affect the
difficulty of a question and their omission would reduce classification accuracy,
it is desirable to keep their lexical information. For example, questions containing
the question words “how” or “why” require longer, more sophisticated answers than
simple factual questions with “who” or “when.”

3.2.3 Class Binarization

The classes are very unbalanced, and some categories even contain no samples after
keyword assignment. Our goal is to decide whether a question is simple or complex,
so it is not necessary to assign 20 different classes. We perform a heuristic split
where we look at the training samples and determine whether the question requires

150 S. Ullrich et al.

Table 2 Examples for each of the analyzed categories. Each class from Bloom’s matrix (A1–D5)
is assigned to a category. “Category 0” contains simple questions, while “Category 1” contains
complex questions that may require reasoning

No. Example Class Category

1 Name the British economist theorist and philosopher who is also an
author and alumni

A1 0

2 What cannot be restated as decision problems? A2 0

3 What unit is measured to determine circuit simplicity? A3 0

4 Complexity theory classifies problems based on what primary
attribute?

A4 0

5 Who selects and hires the best ideas and appropriate contractors? A5 0

6 What river was Petrela located by? B1 0

7 How do physical experiments explain fluid inclusion data? B2 1

8 How does Victoria rank as to population density? B3 1

9 What are the ties that best described what the “eight counties” are
based on?

C1 1

10 What does “Huisgenoten” translate to in French? C2 1

11 What cannot be solved by mechanical application of mathematical
steps?

C3 1

12 In whose diagram is each matter particle represented as a curved
line?

C4 1

13 What did Basset analyze before coming to his conclusions? C5 1

14 What can be interpreted by individuals to determine if funding for
course content is forbidden?

D2 1

15 What number is used in perpendicular computing? D3 1

16 What is a science that examines the structure and function of the
brain?

D4 1

17 What could justify restrictions on freedom of establishment? D5 1

Table 3 Number of questions in the SQuAD and ARC datasets. The “Category 0” and “Cate-
gory 1” columns show the number of questions assigned to the respective categories based on the
keywords from Table 1

Dataset Category 0 Category 1 Total

SQuAD 2517 6325 8842

ARC 242 919 1161

reasoning or not. Table 2 shows a selection of examples and their classification into
simple and complex. We decide that category B2 is the first that requires reasoning,
since “explain” clearly indicates the need for explanation. Since the complexity in
the matrix ranges from low (top left) to high (bottom right), classes with a higher
complexity than B2 are assigned to “Category 1” (i.e., complex), while classes
in a lower class than B2 are assigned to “Category 0” (i.e., simple). Both classes
are balanced; class 0 contains 9,714 training samples, and class 1 contains 10,232
samples. Therefore, no resampling is required.

BloomQDE: Question Difficulty Estimation 151

Table 4 Number of
questions classified by the
different annotators per
dataset

Annotator SQuAD ARC

1 354 300

2 588 366

3 354 263

Table 3 shows the distribution of simple and complex questions in the SQuAD
and ARC datasets. In both cases, the complex ones (i.e., “Category 1”) dominate.

3.2.4 Test Data

Using the keyword-based approach to create the test data would be very biased,
as questions that fall into a particular class of Bloom’s taxonomy can easily
be classified without using the keywords provided in Table 1. For instance, if
we consider the example “How does photosynthesis work?” and “Explain how
photosynthesis works,” both prompt an explanation of the process of photosynthesis,
and both would be classified as B2 in Bloom’s taxonomy, one with the keyword
“explain” and one without.

For this reason, a total of 2225 annotations were performed by 3 independent
annotators (cf. Table 4). Random questions from SQuAD and ARC were selected
for annotation. The annotators were asked to classify these questions into what they
considered to be the appropriate complexity classes (according to Bloom’s matrix
in Table 1). If the annotators are unsure about their choice, they have the option of
making a second choice. This allows us to characterize the inherent ambiguity of
questions that are removed of their original context.

To generate the test set, majority voting was used for the different questions.
Thus, for a question, the class that the majority (in this case, two) of the annotators
agreed with was chosen. If all annotators disagreed on a question and no absolute
majority was reached, the question was not included in the test set. In addition to
the complexity classes, other datasets were created with binary classes. Here, the
following mapping from Table 2 was used. This procedure resulted in datasets with
the quantities shown in Table 5.

The inter-annotator agreement between the datasets (cf. Table 6) is significantly
different. This is primarily due to the fact that there are many simple questions in
the SQuAD dataset. Since the binary classes are only an abstraction of Bloom’s
taxonomy, the results are better there. More detailed analysis of the data shows
that annotators often agree that a question is complex, but not on the exact class.1

Another part of the disagreement between annotators can be attributed to the
different interpretations of some classes. Despite written annotation guidelines
and a discussion beforehand, there were some classes here that were interpreted

1 The annotation and evaluation results, as well as the scripts used for the evaluation, are available
in the GitHub repository: https://github.com/amonsoes/bloom_qde.

 7707 58376 a 7707 58376 a

https://github.com/amonsoes/bloom_qde

152 S. Ullrich et al.

Table 5 Number of
remaining annotations after a
majority vote. Annotators
disagreed on some questions,
so these were not included in
the test set

Including Number of questions

Dataset second choice Classes in test set

ARC No Binary 162

Bloom 58

Yes Binary 162

Bloom 94

SQuAD No Binary 266

Bloom 177

Yes Binary 266

Bloom 213

Table 6 Inter-annotator agreement (Cohen’s κ) using the binary classes and Bloom’s taxonomy

SQuAD ARC

Annotators Binary classes Bloom’s taxonomy Binary classes Bloom’s taxonomy

1 & # 2 0.50 0.27 0.33 0.15

1 & # 3 0.39 0.20 0.47 0.24

2 & # 3 0.45 0.30 0.37 0.22

differently. The last identified reason for disagreement between annotators is the
framing of the questions. One annotator assumed that the questions should be
evaluated from the perspective of a human, for example, in an exam situation,
while the other annotators evaluated the complexity of creating an answer for an
automated answering system.

4 Experiments

In the following, we present how model training and parameter optimization were
performed before presenting and discussing the evaluation results.

4.1 Model Training

We perform experiments with two different neural networks. Firstly, we train a
multi-layer perceptron (MLP) based on n-grams, where n = {1, 2, 3, 4} to capture
the sequential question structure. Secondly, we train a long short-term memory
(LSTM) because it is a recurrent neural network that automatically captures the
sequential structure. For each model, we try two different feature sets. One contains
only syntactic features (PoS tags) and question words. Another contains lexical
features along with the structural information as tuples. All experiments are trained

BloomQDE: Question Difficulty Estimation 153

Table 7 Detailed results on test set for the MLP and LSTM models. If the model name contains
SQuAD, it means that the model was tested on the manually created SQuAD annotations.
Accordingly, ARC is tested only on ARC annotations, and ALL refers to the entire test data (for
binary classification). Bold numbers indicate the best observed result for a metric over all tested
model-data combinations

Accuracy Precision Recall F1 score

MLP_SQuAD 0.31 0.52 0.58 0.28

MLP_ARC 0.31 0.43 0.43 0.31

MLP_ALL 0.33 0.48 0.46 0.31

LSTM_SQuAD 0.42 0.55 0.51 0.35

LSTM_ARC 0.44 0.40 0.36 0.37
LSTM_ALL 0.43 0.47 0.43 0.36

to provide both a binary classification into simple and complex questions and a
multi-class classification that categorizes all classes within Bloom’s taxonomy.

4.2 Parameter Optimization

The hyperparameters of both models are optimized using a genetic algorithm to find
the best combination of parameters. The algorithm iteratively improves the overall
fitness of a population (Y) consisting of n chromosomes randomly initialized in the
first iteration t [4]. In our case, the fitness v of a chromosome x ∈ (Y) is determined
by the evolutionary accuracy of the hyperparameter sequence of that chromosome.
If the fitness of two chromosomes xp and xq is high enough, they can generate a
new chromosome of the new population (Y)t+1 by utilizing the crossover operation
that designs a chromosome with a combination of the hyperparameter settings of the
original chromosomes [4]. However, since there is an obvious discrepancy between
the statistics of the test dataset and the training dataset, the hyperparameter set still
needs to be manually adjusted afterwards.

4.3 Experimental Results

The n-gram MLP achieves the best results for n = {1, 4}, a learning rate of 0.003,
5 layers, 128 units, and a dropout rate of 0.2. The precision for “Category 0” (i.e.,
simple) is 0.89, while it remains at 0.14 for “Category 1” (i.e., complex). However,
the recall for “Category 1” lies at 0.75, illustrating the unbalanced distribution in
the test dataset. The overall results in Table 7 show the averaged values of precision
and recall across both classes. Best results were obtained with combinations of ARC
and SQuAD and with the evaluation of the ARC test set only. The highest precision
value of 0.52 is achieved on SQuAD. The overall accuracy remains low at 0.33.

154 S. Ullrich et al.

Similarly, the LSTM also favors overrepresented classes in the test set. In general,
it is helpful to keep the number of neurons relatively low, firstly to avoid overfitting
and secondly to prevent the model from selecting only the overrepresented class.
Recall seems to be the biggest issue for the LSTM, and the overall F1 score for the
test data is 0.36.

4.4 Room for Improvement

There is a variety of possibilities to further improve our results. A major drawback
is the strict separation of machine-labeled training data and human-annotated test
data. It would be desirable to annotate a greater number of instances and extend
the training data to include human-annotated questions. Also, questions containing
Bloom’s keywords should be added to the test set to provide more representative
data for both training and testing. Furthermore, the number of annotators is
relatively small, which was acceptable for our proof of concept, but could definitely
be adjusted for larger experiments. Finally, we consider only a small number of
features, i.e., PoS tags and question words. Question complexity depends on more
than just structural features, so results could be improved by adding lexical features
such as word embeddings or language models to the feature set.

5 Conclusion and Future Work

We presented an approach that classifies keywords in QA systems into difficulty
levels, as known from Bloom’s learner’s levels of understanding in pedagogy. We
searched for Bloom’s keywords in questions from QA systems and derived PoS
tags from these questions to identify the structural difference between difficult
and simple questions. For binary classification (simple and complex), we defined
a threshold between the classes B1 and B2, where all classes up to B1 require words
or short entities as answers, while classes B2 or higher require longer, complex
answers such as (multi-hop) reasoning. Moreover, we created a new dataset divided
into Bloom’s taxonomy to provide an objective unbiased test set for evaluation. We
trained an MLP and LSTM for question difficulty estimation (called BloomQDE)
based on structural features and evaluated both on a human-annotated dataset.

For future work, we plan to consider a greater variety of features, including
lexical, structural, and semantic features. In addition, the test set should be extended
and labeled by more annotators so that bias can be reduced and inter-annotator
agreement can be improved. In this way, human-annotated questions can also be
integrated into the training set to obtain a representative classifier for datasets that
are equally automatically and manually labeled. Finally, we aim for a more balanced
distribution of classes in the new dataset.

References 155

References

1. Cannon, H.M., Feinstein, A.H.: Bloom beyond Bloom: Using the revised taxonomy to develop
experiential learning strategies. In: Developments in Business Simulation and Experiential
Learning: Proceedings of the Annual ABSEL Conference, vol. 32 (2005)

2. Clark, P., Cowhey, I., Etzioni, O., Khot, T., Sabharwal, A., Schoenick, C., Tafjord, O.: Think
you have solved question answering? Try arc, the AI2 reasoning challenge. Preprint (2018).
arXiv:1803.05457. https://arxiv.org/pdf/1803.05457.pdf

3. Huang, Z., Liu, Q., Chen, E., Zhao, H., Gao, M., Wei, S., Su, Y., Hu, G.: Question difficulty
prediction for READING problems in standard tests. In: Singh, S.P., Markovitch, S. (eds.)
Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence, February 4–9,
2017, San Francisco, California, USA, pp. 1352–1359. AAAI Press (2017). http://aaai.org/
ocs/index.php/AAAI/AAAI17/paper/view/14572

4. Katoch, S., Chauhan, S.S., Kumar, V.: A review on genetic algorithm: past, present, and future.
Multim. Tools Appl. 80(5), 8091–8126 (2021). https://doi.org/10.1007/s11042-020-10139-6

5. Liu, J., Wang, Q., Lin, C., Hon, H.: Question difficulty estimation in community question
answering services. In: Proceedings of the 2013 Conference on Empirical Methods in Natural
Language Processing, EMNLP 2013, 18–21 October 2013, Grand Hyatt Seattle, Seattle,
Washington, USA, A meeting of SIGDAT, a Special Interest Group of the ACL, pp. 85–90.
ACL (2013). https://aclanthology.org/D13-1009/

6. Padó, U.: Question Difficulty – How to Estimate Without Norming, How to Use for Automated
Grading. In: Tetreault, J.R., Burstein, J., Leacock, C., Yannakoudakis, H. (eds.) Proceedings
of the 12th Workshop on Innovative Use of NLP for Building Educational Applications,
BEA@EMNLP 2017, Copenhagen, Denmark, September 8, 2017, pp. 1–10. Association for
Computational Linguistics (2017). https://doi.org/10.18653/v1/w17-5001

7. Qiu, Z., Wu, X., Fan, W.: Question difficulty prediction for multiple choice problems in medical
exams. In: Zhu, W., Tao, D., Cheng, X., Cui, P., Rundensteiner, E.A., Carmel, D., He, Q.,
Yu, J.X. (eds.) Proceedings of the 28th ACM International Conference on Information and
Knowledge Management, CIKM 2019, Beijing, China, November 3-7, 2019, pp. 139–148.
ACM (2019). https://doi.org/10.1145/3357384.3358013

8. Rajpurkar, P., Jia, R., Liang, P.: Know What You Don’t Know: Unanswerable Questions for
SQuAD. In: Proceedings of the 56th Annual Meeting of the Association for Computational
Linguistics (Volume 2: Short Papers), pp. 784–789 (2018). https://aclanthology.org/P18-2124.
pdf

9. Rajpurkar, P., Zhang, J., Lopyrev, K., Liang, P.: SQuAD: 100,000+ Questions for Machine
Comprehension of Text. In: Proceedings of the 2016 Conference on Empirical Methods in
Natural Language Processing, pp. 2383–2392 (2016). https://aclanthology.org/D16-1264.pdf

10. Sun, J., Moosavi, S., Ramnath, R., Parthasarathy, S.: QDEE: Question Difficulty and Expertise
Estimation in Community Question Answering Sites. In: Proceedings of the Twelfth
International Conference on Web and Social Media, ICWSM 2018, Stanford, California, USA,
June 25–28, 2018, pp. 375–384. AAAI Press (2018). https://aaai.org/ocs/index.php/ICWSM/
ICWSM18/paper/view/17854

11. Ullrich, S., Geierhos, M.: Using Bloom’s Taxonomy to Classify Question Complexity.
In: Proceedings of The Fourth International Conference on Natural Language and Speech
Processing (ICNLSP 2021), pp. 285–289. Association for Computational Linguistics, Trento,
Italy (2021). https://aclanthology.org/2021.icnlsp-1.34

12. Wang, Q., Liu, J., Wang, B., Guo, L.: A regularized competition model for question difficulty
estimation in community question answering services. In: Moschitti, A., Pang, B., Daelemans,
W. (eds.) Proceedings of the 2014 Conference on Empirical Methods in Natural Language
Processing, EMNLP 2014, October 25-29, 2014, Doha, Qatar, A meeting of SIGDAT, a Special
Interest Group of the ACL, pp. 1115–1126. ACL (2014). https://doi.org/10.3115/v1/d14-1118

 6861 8250 a 6861 8250
a

https://arxiv.org/pdf/1803.05457.pdf

 29337 12678 a 29337
12678 a

http://aaai.org/ocs/index.php/AAAI/AAAI17/paper/view/14572
http://aaai.org/ocs/index.php/AAAI/AAAI17/paper/view/14572

17447 15999 a 17447 15999 a

https://doi.org/10.1007/s11042-020-10139-6

 4599 21534 a 4599 21534 a

https://aclanthology.org/D13-1009/

 12766 27068 a 12766
27068 a

https://doi.org/10.18653/v1/w17-5001

 4861
32603 a 4861 32603 a

https://doi.org/10.1145/3357384.3358013

 21736 35924 a 21736 35924
a

https://aclanthology.org/P18-2124.pdf
https://aclanthology.org/P18-2124.pdf

19950 40352 a 19950 40352 a

https://aclanthology.org/D16-1264.pdf

 20020 44780 a 20020 44780
a

https://aaai.org/ocs/index.php/ICWSM/ICWSM18/paper/view/17854
https://aaai.org/ocs/index.php/ICWSM/ICWSM18/paper/view/17854

 4480
50315 a 4480 50315 a

https://aclanthology.org/2021.icnlsp-1.34

 21099 55849 a 21099
55849 a

https://doi.org/10.3115/v1/d14-1118

A Comparative Study on Language
Models for Dravidian Languages

Rahul Raman, Danish Mohammed Ebadulla, Hridhay Kiran Shetty,
and Mamatha H.R.

Abstract We train embeddings for four Dravidian languages, a family of languages
spoken by the people of South India. The embeddings are trained using the latest
deep learning language models, to successfully encode semantic properties of
words. We demonstrate the effect of vocabulary size on word similarity and model
performance. We evaluate our models on the downstream task of text classification
and small custom similarity tasks. Our best model attains accuracy on par with
the current state of the art while being only a fraction of its size. Our models
are released on the popular open-source platform HuggingFace. We hope that by
publicly releasing our trained models, we will help in accelerating research and
easing the effort involved in training embeddings for downstream tasks.

1 Introduction

Distributed representation is the foundation of natural language processing, as
advances in language modelling serve as a stepping stone for many NLP tasks. Pop-
ular domains like text classification, text generation, translation, sentiment analysis,
NER, etc. can be advanced with access to contextualized word embeddings. A rise
in quality of embeddings is synonymous with an improvement in downstream NLP
tasks.

India is a diverse and rapidly growing country. With advances in technology,
electronic devices are making their way into the hands of every citizen of the
country, giving them the ability to access information that was previously out of
reach for them. But this also presents another problem. India has over 22 official
languages and several thousand more languages and dialects. It is of paramount
importance that we develop NLP tools that bridge this gap and help India progress
faster.

R. Raman (�) · D. M. Ebadulla · H. K. Shetty · Mamatha H.R.
PES University, Bangalore, India
e-mail: mamathahr@pes.edu

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
M. Abbas (ed.), Analysis and Application of Natural Language and Speech
Processing, Signals and Communication Technology,
https://doi.org/10.1007/978-3-031-11035-1_8

157

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-11035-1_8&domain=pdf

 885 55738 a 885 55738 a

mailto:mamathahr@pes.edu

 -2016 61494 a -2016 61494 a

https://doi.org/10.1007/978-3-031-11035-1_8

158 R. Raman et al.

Indian languages are considered resource poor and have very little monolingual
corpora that are publicly available for NLP tasks. Dravidian languages in particular
are far behind Indo-Aryan languages. With access to such few resources, training a
language model is very challenging, as it is very easy to overfit your model and lose
its ability to generalize. Many corpora are also domain specific, making it difficult
for the model to generalize context.

In this paper, we experiment with the latest language models on four Dravidian
languages: Kannada, Tamil, Telugu and Malayalam. We first train word embedding
models and run word similarity tests to evaluate the effect of vocabulary size on
model performance and word choice. We then train contextual embedding models
on all four languages and evaluate these models on the news article classification
provided by indicNLP.1 We show that lightweight transformer-based models such
as RoBERTa [13], DeBERTa [6] and ELECTRA[3] outperform previously used
mainstream models. We release these models on the popular transformer’s open-
source repository HuggingFace2 where our fine-tuned models, capable of generating
quality word embeddings, will significantly improve all Kannada language down-
stream tasks.

2 Related Work

One of the earliest papers to perform embedding generation on Kannada at scale
was fastText by Meta [2]. They proposed an improvised approach for the skip-gram
model, representing each word as a bag of character n-grams. This overcame the
main drawback in Word2Vec [14], where words were considered as atomic units
leading to subpar performance on morphologically rich languages such as Kannada.
FastText’s embeddings are used as a benchmark for comparison of results in several
Indic language model papers.

Kunchukuttan et al. [12] released the indicNLP corpus in 2020, a monolingual
corpora for ten Indian languages sourced from various domains and sites. Word
embeddings trained on fastText using this corpus were also released. A news
classification dataset to be used as a downstream evaluation task was also released.
Their embeddings were compared against the original fastText embeddings and
were found to outperform the latter in several languages.

Gaurav Arora [1] released the Natural Language Toolkit for Indic languages
a few months later, which also released embeddings for 13 Indic languages that
outperformed indicNLP and fastText. ULMFiT [7] and Transformer-XL [5] were
used to train the embeddings, and the data sourced from Wikipedia was only a
fraction of the indicNLP corpora’s size. A two-step augmentation technique was
used to improve the performance of their models. Kumar Saurav et al. [11] also

1 https://github.com/AI4Bharat/indicnlp_corpus#indicnlp-news-article-classification-dataset.
2 https://huggingface.co.

 -1446 57047 a -1446 57047 a

https://github.com/AI4Bharat/indicnlp_corpus#indicnlp-news-article-classification-dataset

 -1446 58376 a -1446 58376 a

https://huggingface.co

A Comparative Study on Language Models for Dravidian Languages 159

released word embeddings for 14 Indian languages in a single repository, although
their results are not competitive with Anoop Kunchukuttam or Gaurav Arora. They
trained their embeddings on several transformer architectures such as BERT [9] and
ELMo [15] and tested them on several custom tasks.

Kakwani et al. [8] presented the IndicNLPSuite, a collection of large-scale,
general-domain, sentence-level corpora of 8.9 billion words across 11 Indian lan-
guages, along with pre-trained models and NLU benchmarks available to the public.
Yinhan Liu et al. [13] carefully studied the impact of various hyperparameters
in pre-training BERT models and released and improved procedure – RoBERTa.
Pengcheng He et al. [6] released a model called DeBERTa that improves on BERT
and RoBERTa using a disentangled attention mechanism and an enhanced mask
decoder. As an alternative to masked language models like BERT, Kevin Clark
et al. [3] suggested a discriminative model leveraging replaced token detection
called ELECTRA which was shown to be more efficient than BERT particularly
for smaller models.

3 Methodology

The following section elaborates on the data pipeline, the preprocessing steps and
the experimental setup of this work.

3.1 Dataset

Our pre-training data is sourced from the indicCORP [8], a collection of ten Indic
languages. We use a small subset of the datasets available to prove that our models
can perform in resource-constrained situations. We use the news classification
released by indicNLP for the downstream task of text classification. We also build
small custom datasets for word similarity and word analogy tests. To ensure fair
comparison for downstream tasks across all models for a particular language, we
train all our models on the same corpora.

3.2 Preprocessing

The corpora were cleaned to remove any foreign tokens and fix formatting errors.
Shuffling and deduplication were applied after extracting the data subset. An md5
hash was applied to deduplicate the corpora, leaving us with roughly four to five
million sentences per language after it was applied on the corpora. To make initial

160 R. Raman et al.

Table 1 Dataset statistics.
Pre-training data is the
indicCORP subset used to
pre-train our models. News
classification data is the
indicNLP news category
classification dataset

News classification data

Language Pre-training Train Test

Kannada 4.07M 24,000 2400

Telugu 4.82M 19,000 2400

Tamil 5.16M 5346 669

Malayalam 5.85M 5036 630

training easier, any sentences greater than 30 words or having English in more than
30% of the sentence were removed. The exact statistics of each language’s dataset
are given in Table 1.

3.3 Tokenization and Vocabulary

Our word embedding models are tokenized using SentencePiece [10] with varying
vocabulary sizes. The RoBERTa and DeBERTa models use the ByteBPE tokenizer,
and ELECTRA uses BertWordPiece. With the help of SentencePiece API,3 tokens
were generated by experimenting with the hyperparameters. Vocabulary size ranged
from 8000 to 32,000 with incremental steps of 4000. BertWordPiece and ByteBPE
were trained to generate a vocabulary size of 32,000 with words having a minimum
frequency of 4.

Previous works claim that higher vocabulary sizes correspond to a lower chance
of out-of-vocabulary words occurring, and this usually translates to better perfor-
mance in downstream tasks. But without a morphologically motivated technique
to segment subwords, increasing the vocabulary size might lead to an increased
occurrence of different inflections of the same word. Hence, we decide to compare
varying vocabulary sizes and their performance.

3.4 Experimental Setup

We evaluate our models on the downstream task of text classification using the
indicNLP and iNLTK news classification dataset. All information relevant to the
datasets is tabulated in Table 1. All models were trained using a single 12GB
NVIDIA Tesla K80 GPU.

3 https://github.com/google/sentencepiece.

 -1446 58376 a -1446 58376 a

https://github.com/google/sentencepiece

A Comparative Study on Language Models for Dravidian Languages 161

4 Models and Evaluation

The following section covers the models we used starting from word embedding
models and going up to contextual embeddings. It covers their architecture and the
downstream task setup.

4.1 Word Embedding Models

Our word embedding models are trained using the fastText API.4 The publicly
released language model has an approximate vocabulary size of 1.7 million. With
the API, we pre-trained a fastText model from scratch with both CBOW and
skip-gram architecture. The fastText API takes its input directly and handles the
tokenization. Due to very few hyperparameters provided by the fastText API
for tuning the model, further experimentation was done with the gensim API.
With the gensim API, first the input data was tokenized with SentencePiece.
The API provides hyperparameters for tokenization, vocabulary frequency and
the architecture which helped us fine-tune our model for better accuracy in the
news classification dataset. The API’s supervised module was used to perform text
classification on the news dataset.

4.2 Contextual Embedding Models

We train a different language model for each language and use three BERT-based
architectures: RoBERTa, DeBERTa and ELECTRA. The following subsections will
cover these models in more detail.

4.2.1 RoBERTa

Since base BERT models require a large corpus and access to heavy computation
resources, we trained embeddings on a RoBERTa model with distilBERT’s [16]
configuration. When compared to the BERT pre-training technique, one of the
key aspects of the design feature in the RoBERTa model is the removal of the
next sentence prediction objective from the pre-training phase and the addition of
dynamic masking for the training data, which has shown a significant improvement
in performance.

4 https://github.com/facebookresearch/fastText.

 -1446 58376 a -1446 58376 a

https://github.com/facebookresearch/fastText

162 R. Raman et al.

Our model was trained using the HuggingFace API. Byte Pair Encoding [17]
was used to tokenize the corpus after which the tokenizer weights were transferred
to the RoBERTa tokenizer. The vocabulary size was set to 32,000, and the model’s
configuration was set to 6 hidden layers, 12 attention heads and 768 embedding
size. The size of the model was 68 M parameters. After the pre-training phase, two
linear layers were added to fine-tune the model on the classification task. We pre-
trained the model for 300,000 steps and stopped the model when loss flattened out.
Hyperparameters such as batch size, hidden layers, number of attention layers and
the embedding size were tuned to accommodate the decreased model size.

4.2.2 DeBERTa

In transformers, the input word vector for the multi-head attention mechanism is
a mathematical combination of the word embedding and positional encoding. In
absolute positional encoding, used in language models like BERT and RoBERTa,
each token will have its own positional encoding vector. But in relative positional
embedding, each token will have ‘n’ (size of the tokenized sentence) positional
vectors indicating the positional relation between the current token and other tokens,
and these positional vectors are shared amongst all the tokens.

The DeBERTa architecture utilizes relative positional encoding and incorporates
two techniques, disentangled attention mechanism and enhanced mask decoder.
Disentangled attention mechanism computes the attention weights using disen-
tangled matrices on the word and positional encodings instead of mathematically
combining word and positional encodings. The enhanced mask decoder incorporates
the absolute positional embedding at the last layer to address the disambiguation
relation between the generated word and the context.

The DeBERTa model was also trained using the HuggingFace API with Byte
Pair Encoding for tokenization. The vocabulary size was set to 32,000. We used the
DeBERTa v2 model with 6 hidden layers, 12 attention heads and an embedding size
of 768. The final model had 75M parameters. Pre-training steps of the model are
given in Table 2. Two additional linear layers were added to the model during the
classification tests.

Table 2 Number of
pre-training steps for all our
language models

Model Kannada Tamil Telugu Malayalam

RoBERTa 330K 360K 280K 210K

ELECTRA 200K 200K 200K 200K

DeBERTa 210K 200K 200K 200K

A Comparative Study on Language Models for Dravidian Languages 163

4.2.3 ELECTRA

We also trained embeddings using one of Google research’s newer models, ELEC-
TRA. Unlike the RoBERTa and DeBERTa models, which were pre-trained with
masked language model task, the ELECTRA model was trained with replaced token
detection task. The architecture setup for pre-training comprises of two components:
a generator and a discriminator. During the pre-training task, the ELECTRA model
predicts whether the sentence has been generated by the BERT model or if the
sentence is from the dataset.

The efficiency gains by replacing the token detection approach are due to the loss
being defined over all tokens rather than just the mask token (which is the case for
MLM) and because there is no masked token discrepancy between pre-training and
fine-tuning phases.

Since ELECTRA generates tf.pretrain records of the input corpora and
stores them offline, it is not limited by memory and is capable of training on large
datasets. The model uses the BertWordPiece tokenizer. The vocabulary size was set
to 32,000. We used the ‘small’ version of the model which has 14 M parameters
and trained it for 200,000 steps. Maximum sequence length was set to 512. After
pre-training the model, it was fine-tuned and evaluated on a text classification task
using the ktrain library on the news article dataset.

5 Results

5.1 Word Similarity

We found that our fastText models trained with a vocabulary size of 8,000 had more
meaningful similar word predictions compared to the same models with a 32,000
vocabulary size. As a baseline, we also present results on a simple Word2Vec model
trained on the same data. Our fastText model’s accuracy was marginally lower
than the original fastText model. Figure 1 shows some notable results from our
experiments on word similarity. Word similarity results were largely comparable
across all languages; hence, Fig. 1 only shows the results for the Kannada language.
Word2Vec results were observed to be heavily influenced by the domain of the
dataset and contained pronouns in word similarity results as it considers word as
the atomic token value. In comparison, fastText produces significantly better results
at it considers the n-gram characters’ information as an atomic unit.

We can also observe that the lower vocabulary models produce words that are
synonyms of the input word, while the large vocabulary models produce inflections
of the same word. The official fastText model had very different words at the
morpheme level, but these words were distinctly similar to the actual word.

164 R. Raman et al.

Fig. 1 Word similarity. FastText_R: fastText’s Meta Research implementation with character-level
embeddings. FastText_G: is the gensim implementation which takes in SentencePiece embeddings

Table 3 News article
classification results. FT
models are all fastText
models trained by Kakwani et
al. [8]. Our models are
italicized

Model Kannada Tamil Telugu Malayalam

FT-W 95.93 95.99 98.67 89.02

FT-WC 96.53 95.90 98.08 89.18

IndicFT 97.43 97.26 99.17 92.83

RoBERTa 98.30 95.36 99.16 94.76

ELECTRA 97.43 91.47 97.29 89.36

DeBERTa 97.96 93.87 99.16 93.01

indicBERT base 97.87 96.60 99.67 93.33

indicBERT large 97.87 95.24 99.67 85.33

indicNLP 97.20 97.01 98.79 92.50

XLM-R 97.60 97.28 99.33 96.00
mBERT 97.87 94.56 98.67 81.33

The bold values indicate the best performing model

5.2 News Article Classification

Our models are compared against Meta Research’s fastText model trained on
Wikipedia and Commmon Crawl, fastText models trained by Kakwani et al. [8],
indicNLP, indicCORP and large BERT-based models like XLM-R [4] and mBERT
on a text classification task using the indicNLP news classification dataset. The
results are documented in Table 3.

A Comparative Study on Language Models for Dravidian Languages 165

All three of our contextual embedding models manage to outperform the fastText
models. Of our three language models, RoBERTa performs the best, especially in
Kannada where it manages to outperform the previous state-of-the-art models as
well with a classification accuracy of 98.30%.

The ELECTRA model managed to keep up with the other models despite being
considerably smaller than them. Our ELECTRA model is built using the ‘small’
version with 14 M parameters and was fine-tuned on the text classification task
after pre-training for 200,000 steps. The accuracy it obtains is only marginally
lower than the other models’ accuracy on the same task, despite having a fraction
of the parameters. All our models were trained on lesser data and with smaller
parameters but still managed to deliver performance comparable to the state of the
art. This proves that with the right tokenization and hyperparameter choices, we can
overcome the morphological richness of Indic languages and build compact models
that can deliver a high level of performance on downstream NLP tasks.

6 Conclusion

In this work, we present a detailed comparative study of language models and their
performance on the agglutinative languages of South India. We start our comparison
with basic word embedding models like Word2Vec and fastText and build our way
up to the latest contextual embedding models like RoBERTa and ELECTRA. We
explore the effect of vocabulary size on language models when we use subword
segmentation techniques on our corpus. We show that larger vocabulary sizes
correspond to the models choosing inflections of the original word in similarity
tasks. We also train BERT-based lightweight models like RoBERTa, DeBERTa and
ELECTRA and compare them against other state-of-the-art Indic language models.
Our models perform on par with their much larger counterparts, and our RoBERTa
model achieves the best performance on the news classification task, beating larger
models like XLM-R and mBERT. All our models are released on HuggingFace5 for
the open research community to experiment with.

7 Future Work

Future work will involve training contextual embedding models on all Indic
languages and uploading them on a popular site like HuggingFace. The models used
in this work have proven to be a competitive and efficient choice to develop language
models for Indic languages by achieving accuracy on par with much larger and
compute-intensive BERT models. BERT-based models have proved to be superior

5 https://huggingface.co/RahulRaman.

 -1446 58376 a -1446 58376
a

https://huggingface.co/RahulRaman

166 R. Raman et al.

to the previously utilized mainstream models like Word2Vec and fastText. With
more training and fine-tuning, lightweight BERT models might even be able to
outperform their mainstream counterparts in low-resource settings.

We believe that the vocabulary size dilemma can be overcome by using a
linguistically motivated subword segmentation technique like Morfessor.6 This
will help us identify frequently occurring suffixes and eliminate the occurrence of
inflections in the vocabulary.

References

1. Arora, G.: inltk: Natural language toolkit for indic languages. In: Proceedings of Second
Workshop for NLP Open Source Software (NLP-OSS), pp. 66–71 (2020)

2. Bojanowski, P., Grave, É., Joulin, A., Mikolov, T.: Enriching word vectors with subword
information. Trans. Assoc. Comput. Linguist. 5, 135–146 (2017)

3. Clark, K., Luong, M.T., Le, Q.V., Manning, C.D.: Electra: Pre-training text encoders as dis-
criminators rather than generators. In: International Conference on Learning Representations
(2019)

4. Conneau, A., Khandelwal, K., Goyal, N., Chaudhary, V., Wenzek, G., Guzmán, F., Grave, E.,
Ott, M., Zettlemoyer, L., Stoyanov, V.: Unsupervised cross-lingual representation learning at
scale. In: ACL (2020)

5. Dai, Z., Yang, Z., Yang, Y., Carbonell, J.G., Le, Q., Salakhutdinov, R.: Transformer-xl:
Attentive language models beyond a fixed-length context. In: Proceedings of the 57th Annual
Meeting of the Association for Computational Linguistics, pp. 2978–2988 (2019)

6. He, P., Liu, X., Gao, J., Chen, W.: Deberta: Decoding-enhanced bert with disentangled
attention. In: International Conference on Learning Representations (2020)

7. Howard, J., Ruder, S.: Universal language model fine-tuning for text classification. In:
Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics
(Volume 1: Long Papers), pp. 328–339. Association for Computational Linguistics, Melbourne,
Australia (2018). https://doi.org/10.18653/v1/P18-1031. https://aclanthology.org/P18-1031

8. Kakwani, D., Kunchukuttan, A., Golla, S., Gokul, N., Bhattacharyya, A., Khapra, M.M.,
Kumar, P.: Indicnlpsuite: Monolingual corpora, evaluation benchmarks and pre-trained
multilingual language models for indian languages. In: Findings of the Association for
Computational Linguistics: EMNLP 2020, pp. 4948–4961 (2020)

9. Kenton, J.D.M.W.C., Toutanova, L.K.: Bert: Pre-training of deep bidirectional transformers for
language understanding. In: Proceedings of NAACL-HLT, pp. 4171–4186 (2019)

10. Kudo, T., Richardson, J.: Sentencepiece: A simple and language independent subword
tokenizer and detokenizer for neural text processing. In: Proceedings of the 2018 Conference
on Empirical Methods in Natural Language Processing: System Demonstrations, pp. 66–71
(2018)

11. Kumar, S., Kumar, S., Kanojia, D., Bhattacharyya, P.: “a passage to India”: Pre-trained
word embeddings for Indian languages. In: Proceedings of the 1st Joint Workshop on
Spoken Language Technologies for Under-resourced languages (SLTU) and Collaboration
and Computing for Under-Resourced Languages (CCURL), pp. 352–357. European Language
Resources association, Marseille, France (2020). https://aclanthology.org/2020.sltu-1.49

12. Kunchukuttan, A., Kakwani, D., Golla, S., N.C., G., Bhattacharyya, A., Khapra, M.M., Kumar,
P.: Ai4bharat-indicnlp corpus: Monolingual corpora and word embeddings for indic languages.

6 https://github.com/aalto-speech/morfessor.

 6204 35373 a 6204 35373 a

https://doi.org/10.18653/v1/P18-1031

 21037
35373 a 21037 35373 a

https://aclanthology.org/P18-1031

 18094 51978 a 18094
51978 a

https://aclanthology.org/2020.sltu-1.49

 -1446 58376 a -1446 58376 a

https://github.com/aalto-speech/morfessor

References 167

Preprint (2020). arXiv:2005.00085
13. Liu, Y., Ott, M., Goyal, N., Du, J., Joshi, M., Chen, D., Levy, O., Lewis, M., Zettlemoyer,

L., Stoyanov, V.: Roberta: A robustly optimized bert pretraining approach. Preprint (2019).
arXiv:1907.11692

14. Mikolov, T., Chen, K., Corrado, G.S., Dean, J.: Efficient estimation of word representations in
vector space. In: ICLR (2013)

15. Peters, M.E., Neumann, M., Iyyer, M., Gardner, M., Clark, C., Lee, K., Zettlemoyer, L.: Deep
contextualized word representations (2018)

16. Sanh, V., Debut, L., Chaumond, J., Wolf, T.: Distilbert, a distilled version of bert: smaller,
faster, cheaper and lighter. Preprint (2019). arXiv:1910.01108

17. Sennrich, R., Haddow, B., Birch, A.: Neural machine translation of rare words with subword
units. In: Proceedings of the 54th Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pp. 1715–1725 (2016)

Arabic Named Entity Recognition with
a CRF Model Based on Transformer
Architecture

Muhammad Al-Qurishi, Riad Souissi, and Sarah Al-Qaseemi

Abstract Named Entity Recognition (NER) is one of the most important tasks
of Natural Language Processing that has a very well-defined purpose. There are
multiple methodologies suitable for identification of a named entity in a wider
text, each with its own advantages. One methodology that has been demonstrated
to be very effective involves local versions of deep learning algorithms based
on BERT, where ARBERT/MARBERT and AraBERT represent some of the best
known implementations in the Arabic language. In this chapter, we introduce a
simple model capable of performing NER task with Arabic content. This model
is composed of three separate layers—one based on Transformer architecture, one
fully connected, and finally one based on the Conditional Random Field technique.
This model performs quite well compared to other NER tools for Arabic, reaching
F1-scores of nearly 90% on three relevant datasets (ANERCorp, AQMAR, and
CANERCorp). We also evaluate our model on one of our customized datasets of
Arabic legal textual content. The model achieved 85% which is the highest results
of F1-macro score comparing to other related models.

1 Introduction

Named Entity Recognition (NER) is a group of techniques for recognition of several
types of named entities (i.e., persons, organizations, locations, etc.) within a corpus
of text. Since the linguistic rules guiding the construction of sentences and word
sequencing are language-specific, NER tools are far more effective when they are
developed for a certain language. Accurate performance of the NER task has a lot
of practical values and sometimes represents a precondition for the completion of
more complex linguistic operations. Unusual morphology and syntax of the Arabic
language infuse additional difficulty into this problem, so different methods need

M. Al-Qurishi (�) · R. Souissi · S. Al-Qaseemi
Research Department, Elm Company, Riyadh, Saudi Arabia
e-mail: mualqurishi@elm.sa; souissi@elm.sa; salqaseemi@elm.sa

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
M. Abbas (ed.), Analysis and Application of Natural Language and Speech
Processing, Signals and Communication Technology,
https://doi.org/10.1007/978-3-031-11035-1_9

169

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-11035-1_9&domain=pdf

 885 55738 a 885 55738
a

mailto:mualqurishi@elm.sa

 9175 55738 a 9175 55738
a

mailto:souissi@elm.sa

15530 55738 a 15530 55738 a

mailto:salqaseemi@elm.sa

 -2016 61494 a -2016 61494 a

https://doi.org/10.1007/978-3-031-11035-1_9

170 M. Al-Qurishi et al.

to be developed to properly classify Arabic words and detect named entities. Broad
global distribution of Arabic speakers and the existence of large number of regional
variations emphasize the need to create versatile and customizable tools that could
be equally effective regardless of the dialect [19, 38].

So far, only a few NER algorithms specialized for the Arabic language had
been created, and those have been practically tested only in a limited capacity
and their results have been uneven. There are several examples of NER tools
based on machine learning principles, such as MADAMIRA [34], FARASA [1],
and CAMeL [31]. Probably, the best way to overcome the limitations shared
by those works is to establish a sound methodological framework that would
facilitate more efficient processing of the large corpus of Arabic text samples
that has already been collected. Such a framework would immensely help the
researchers in multiple fields and potentially lead to more diverse application of
NLP technologies for tasks such as semantic analysis of data in various media and
identification of unique entries within the big data paradigm. While the approach
relying on automation is not new in NLP and has already been well described
in the literature, there are numerous recent studies that provide valuable insights
into NER techniques, such as [19, 27]. Early wave of NER research was mostly
focused on simple and straightforward learning mechanisms [10, 12, 32], followed
by studies that leverage grammatical structure of the language to identify named
entities [24]. In the recent years, a new generation of powerful linguistic tools has
been developed, leading to general increase of accuracy with many tasks, NER
included. Those tools are derived from the BERT algorithm developed by Devlin
et al. in 2018 [16], taking advantage of its extreme flexibility and suitability for
localization. Consequently, many BERT variations in local languages have been
created, with ARBERT/MARBERT [3] and ARABERT [8] as the most successful
Arabic language models to date.

This study is an extension to our previous work in [5]. We propose a model
based on the Transformers architecture that can successfully tag Arabic language
text and identify named entities within it. The model has three separate layers
organized in the following way. Bidirectional encoder–decoder model represents the
foundation and is generated by pretraining and fine-tuning of the Arabic BERT. The
next layer consists of a fully connected layer and serves to optimize the outgoing
values, thus setting up the initial weights for the next step in the process. Finally,
the last layer includes a CRF (conditional random field) algorithm, which decides
which tag to associate with a particular word based on neighboring tags. After
processing the extracted features and their weights, this algorithm calculates the
likelihood of the analyzed word being a named entity. In this manner, a highly
complex semantic analysis problem can be simplified and its solution derived from
statistical operations. At the same time, linear analysis of nearby words ensures
that context of the sentence is preserved. This mixture of sophisticated analytic
capacity and relatively simple structure makes CRF very popular for the purpose
of NER tagging. Three well-known public datasets were used to train and evaluate
the solution, ANERCorp [11], AQMAR [37], and CANERCorpus [36]. During the
evaluation, the three-layered model was found to perform better than any currently

Arabic Named Entity Recognition with a CRF Model Based on Transformer. . . 171

available alternatives, and this result was repeated on three datasets. In addition,
we evaluate our model on one of our customized datasets of Arabic legal textual
content. The model achieved 85%, which is the highest results of F1-macro score
comparing to other related models. The organization of this chapter is constructed
as follows. Section 2 introduces a brief background about the used language models.
Section 3 explains existing works related to this solution, Sect. 4 provides a detailed
blueprint of the suggested model, Sect. 5 explains the setup of the experimental
evaluation, Sect. 6 reports the main findings, while Sect. 7 draws some conclusions
about the value of the proposed methodology.

2 Background

In this section, we will try to give a brief background about the transformer-based
language models that we used in this chapter.

2.1 AraBERT

The idea behind AraBERT is to localize BERT architecture for linguistic analysis
and use it for completing NLP tasks in the Arabic language [8]. By training it
with Arabic content and adjusting for its specificities, the authors created their own
model named AraBERT, harnessing the deductive power of machine learning and
maximizing its effectiveness with limited availability of good datasets. In the first
stage, data preprocessing was performed, with masked language modeling (MLM)
where entire words were used as tokens as 80% of them were masked, 10 percent
were replaced with a random token, and only 10% were left in their natural state.

This procedure allows the algorithms to derive conclusions based on entire words
rather than just linguistic elements, which is better suited for the Arabic language.
Next, Sentence Prediction task was used as well in order to teach the model about
the relationships between different sentences. Due to relative scarcity of publicly
available large-scale resources in Arabic, the training dataset had to be manually
collected from several sources and included many regional variations as well as
Latin characters in personal names. The final size of the training set after the removal
of duplicates was approximately 70 million sentences. To account for the unique
nature of Arabic prefixes, sub-word segmentation was performed to separate all
tokens into prefixes, stems, and suffixes.

This resulted in a vocabulary of around 60K words, which was used to pretrain
the model and create its regional AraBERT variation. Another version was created
without segmentation in order to illustrate the benefits of this procedure. After this
step, fine-tuning for specific tasks was performed, with downstream linguistic tasks
including Named Entity Recognition, Sentiment Analysis, and Question Answering
as the main requirements. For the NER task, IOB2 format was used to facilitate

172 M. Al-Qurishi et al.

multi-class differentiation and recognize entities that consist of more than two
words. Final version of AraBERT was evaluated on the same tasks that it was fine-
tuned for and compared against existing baselines to check whether it creates any
tangible improvement. It was found that pretraining of the model with a large dataset
significantly improves the performance on all linguistic tasks over any alternative
methods, including the multilingual BERT model that inspired AraBERT.

2.2 AraELECTRA

The success of linguistic models based on the transformer architecture has inspired
numerous works on the local or regional level, with the objective to use a proven
blueprint and customize it for a particular language or thematic field. BERT [16]
and ELECTRA [14] are well-known examples of deep models capable of mastering
demanding NLP tasks with adequate training, and there have been several imple-
mentations of similar designs aimed at Arabic semantic analysis.

The original ELECTRA model is pretrained based on the masked language
modeling (MLM) task, while AraELECTRA [9] model (as the localization Arabic
version of ELACTRA) was pretrained using the replaced token detection (RTD)
technique. This was done to address an inherent weakness where the algorithm was
able to keep track of tokens only during pretraining but not in the fine-tuning stage.

Two different neural models were trained with RTD, one acting as the generator
(G) and the other as the discriminator (D). G model has fewer layers and attention
heads than D model, which is nearly identical to BERT only with an additional linear
classification layer on top of the existing architecture. The output of the G model
is fed directly into the discriminator component, which attempts to interpret which
tokens from the original input were replaced based on the previously seen examples.
In the fine-tuning stage, three new tasks were introduced—named entity recognition
(NER), questions answering (QA), and sentiment analysis (SA), validating the level
of linguistic comprehension of the model and refining its ability to conduct specific
predictions.

As opposed to some similar methods based on adversarial relations between
two models, AraELECTRA deploys the principle of maximal likelihood and uses
meaningful input with replaced tokens rather than randomly generated content.
Pretraining was conducted using the same datasets that were originally used
for the benchmark solution, AraBERT, allowing for head-to-head comparisons
between them along with several other Arabic language linguistic models built with
similar architecture, including ALBERT with localizations, Arabic BERT [35], and
ARBERT [3].

In sum, 15% of all tokens were replaced during pretraining, which took a total of
24 days to complete. All hyperparameters were standardized, as it was deemed too
computationally expensive to conduct an optimization procedure and discover the
most suitable values for learning rate, batch size, or sequence length.

Arabic Named Entity Recognition with a CRF Model Based on Transformer. . . 173

2.3 RoBERTa

Starting from the well-known BERT model that was proven to be very effective
with lots of different automated linguistic tasks, the authors develop a specific
version of the algorithm aimed at achieving maximum accuracy. They retain the
basic Transformer architecture that includes a number of stacked bidirectional
encoders and decoders with self-attention heads and hidden dimensions, but they
optimize the training procedure to include larger and more diverse datasets. Training
parameters were also modified to various extents to increase the efficiency of the
process and acquire further gains. This implementation with robust optimization
was named RoBERTa [28], and it was intended to be a refinement of the original
BERT algorithm.

RoBERTa was trained on the same tasks that were used in the formulation of
BERT, including Masked Language Modeling where tokens are randomly replaced
by “masks” and the algorithm tries to predict their values. The second training
task was namely Next Sentence Prediction, where the algorithm attempts to decide
whether two sentences logically follow each other or not. However, after tracking
the contributions of each task, the authors concluded that the model can be improved
if the Next Sentence Prediction objective was eliminated from consideration,
thereby simplifying training. Parameter optimization included control of multiple
factors such as learning rate, weight decay, batch size, and dropout rate, with
the idea to discover the most favorable combination that allows for maximizing
predictive abilities of the model. Sequence length was limited to 512 tokens in this
implementation, with up to 256 sequences per batch. In contrast to BERT, in this
case, only full-length sequences were used without the insertion of shorter sentences
early in the training cycle. Training was conducted using five diverse datasets
compiled from different sources, including the one used in the original BERT study;
all datasets contained English language material only. All of the datasets contained
large volumes of documents, in line with the objective to maximize the performance
of the algorithm regardless of the time constraints.

The impact of the modifications implemented by the authors was assessed
by benchmarking RobERTa against basic BERT implementation on three dif-
ferent evaluation tools designed to measure linguistic aptitude—GLUE, RACE,
and SQuAD. This comparison clearly demonstrated that with improved training
Transformer architecture can be utilized more effectively and model’s capacity for
contextual analysis deepened. RoBERTa represents a product of this testing, as the
finalized model uses optimized procedures and hyperparameters that were obtained
by testing.

174 M. Al-Qurishi et al.

3 Related Works

While most existing automated NER systems are made for English language con-
tent, in the recent years, specialized systems for Arabic are increasingly receiving
attention. Those systems differ in terms of complexity and basic methodology, as
they employ a wide range of analytic procedures to detect named entities. In the
following sections, the most important approaches used to extract named entities
will be explained.

3.1 Rule-Based Approach

Rule-based methods for Named Entity Recognition in Arabic were among the first
to be proposed, as they represent a simple extension of grammatical rules. These
methods in general rely on specific expert knowledge about the language provided
by gazetteers or human linguists and require handcrafted features to be developed
specifically for the purpose of recognizing named entities. As such, they tend to be
labor intensive and poorly suited for creation of unsupervised NER tools. Some of
the best known systems of this kind include TAGARAB [29], NERA [39], as well
as a solution based on BPC features proposed [10]. The authors in [17] analyzed the
structure of the Arabic sentences and searched for indicators of named entities using
rules based on heuristics. Another approach that was proven very successful was
the use of the POS morpho-syntactic tag, which can be utilized to find boundaries
of named entities within a sentence. This approach was demonstrated by [18],
yielding solid results and motivating other authors to experiment with the same
concept. Some of the most notable works that rely primarily on morphologic and
syntactic rules include [4, 38, 42]. Some of those methods achieve levels of accuracy
comparable to machine learning approaches, especially when used on a suitable
dataset. They take full advantage of language-specific rules to detect situations
where appearance of a named entity is highly likely, which is very important in
a language as complex and unique as Arabic. However, the time needed to create
highly predictive features and accurately tag input sequences is too great for such
methods to be fully scalable. For this reason, rule-based methods are increasingly
being combined with other approaches in hybrid arrangements.

3.2 Machine Learning Approach

Various machine learning techniques have been proven effective for linguistic tasks,
and many authors developed Arabic NER tools based on them. Such methods
typically rely on learning algorithms to capture the relationships between words and
identify named entities based on statistical calculations. Many different machine

Arabic Named Entity Recognition with a CRF Model Based on Transformer. . . 175

learning approaches have been used for linguistic tasks that require accurate
NER tagging, with Conditional Random Fields, Support Vector Machines, Hidden
Markov Models, Maximum Entropy, and Decision Trees among the most popular.
Some of the first NER tools that could be used with Arabic text were language
independent [41]. In 2007, Benajiba et al. [6] formulated ANERsys, which is
based on ME approach, while the same authors experimented with CRF and HMM
algorithms in the later years with the goal to discover the most optimal settings.
The authors in [30] used a three-stage procedure that included transliteration of
Arabic text into Latin characters and the use of an Artificial Neural Network
classifier. A very interesting study was completed by [2], combining two different
machine learning methodologies to facilitate accurate recognition of 10 different
entity classes. More recent examples of Arabic NER solutions are based on
machine learning [20–23], with increasingly accurate performance. As opposed
to methods with handcrafted features, tools from this group are well suited to
work with an open-ended vocabulary and very large datasets, which are important
practical advantages. While they eliminate the need for knowledge bases, those
methods require high-quality datasets to be sufficiently trained, which can present
a difficulty considering the limited availability of linguistic resources in Arabic
and the differences between regional variants of this language. Under optimal
conditions, many tools from this group perform very well and identify even those
named entities that can be ambiguously interpreted.

3.3 Deep Learning Approach

Further sophistication of self-training algorithms led to the development of high-
powered neural networks and multilayered learning modules that are able to track
a huge number of latent connections within the text. Those tools are typically very
complex and involve several stages such as feature engineering, model training,
and classification. There are many different network architectures that can be
used to process linguistic tasks, including Convolutional Neural Networks (CNNs),
Recurrent Neural Networks (RNNs), Long Short-Term Memory networks (LSTMs),
and many other types. One model in particular was proven to be very effective
with linguistic tasks including NER—BERT algorithm developed by Devlin et al.
[16]. This model is built upon Transformer architecture and features a stack of
layers that process words and sentences in both directions. One of the greatest
advantages of BERT is the possibility to pretrain it on specific datasets, allowing
for the creation of highly specialized versions of the model that achieve even
better results in a certain language or with specific topics. Consequently, BERT has
been widely customized to create more narrowly focused tools, including several
implementations in the Arabic language [22]. Probably, the best known examples
of this approach are AraBERT, proposed by [8] in 2020 and ARBERT/MARBERT
that was created by [3] and takes into account multiple dialects of Arabic spoken
in different countries. More recently, Arabic language tools specialized for thematic

176 M. Al-Qurishi et al.

niches started to emerge, with AbioNER [13], which is completely dedicated to the
biomedical domain as a great example. Deep learning tools generally outperform
older methods by a steady margin and can recognize named entities based on
contextual clues carried by distant words. On the negative side, they also tend to
be far more computationally demanding, especially when working with sizable
vocabularies and very large training samples. From this perspective, creation of
language-specific tools is a more promising direction of research, as localized
versions of deep learning algorithms can achieve high levels of accuracy with fewer
training examples. However, one precondition for this development is improved
availability of labeled training materials in Arabic that would be publically shared
for benchmarking and cross-referencing. The appearance of better datasets created
specifically for Arabic NER will enable more optimal pretraining of Transformer-
based models, thus creating the possibility to work on efficient and highly accurate
systems for named entity recognition in many forms of Arabic written and spoken
text.

3.4 Hybrid Approach

To leverage the advantages of various methods for named entity recognition, some
authors attempted to combine different approaches and create hybrid solutions. This
usually involves using separate tools to handle different phases of the process, i.e.,
using one algorithm to extract features and another in the role of a classifier. It is
possible to use multiple tools of the same type (i.e., two machine learning methods)
or to combine approaches and use a simpler technique alongside a more complex
one. For example, the authors in [1, 34] attempted to create hybrid frameworks
by using rule-based methods along with machine learning methods. Another work
from this group was conducted by [33], reaching high-accuracy figures on multiple
categories of named entities with a hybrid algorithm. On the other side of the
spectrum, the work by [7] demonstrated that two highly advanced methods such as
BERT and bidirectional GRU can be effectively merged and optimized to analyze
Arabic language content. Due to their effectiveness and practical benefits, hybrid
methods are regarded as very promising, and it can be expected that more such
models will be developed for Arabic NER in the near future.

4 Transformer-Based CRF Model

BERT and all of the derivative models feature an identical architecture which was
directly inspired by Transformer [40]. In all cases, there are two-layer stacks—
decoder stack and encoder stack, each of which must contain one attention layer
at the bottom. Self-attention mechanism in the decoder stack encodes the semantic
relationships from the input sequence as attention scores and passes their normalized

Arabic Named Entity Recognition with a CRF Model Based on Transformer. . . 177

Fig. 1 Basic layout of the model. Words are sent into a BERT-CRF model. Tokens are used to
contextualize the word, to build the final representation

values to a series of forward-propagating layers. Conversely, in the encoder stack,
the representations are gradually refined with each new layer, until the correct output
sequence can be produced. The number of layers and self-attention heads in the
model can be variable, while the model is capable of processing semantic infor-
mation in both directions, thus treating the entire sequence as a single connected
unit. This simple setup is now broadly accepted as the basis for advanced linguistic
tasks, but it can be greatly improved through pretraining on certain supervised
benchmark tasks, as well as fine-tuning of relevant model hyperparameters. Our
proposed architecture consists of three layers, as shown in Fig. 1. In the first layer,
we fine-tuned three pretrained models, including AraBERT [8], AraELECTRA [9],
and XLM-Roberta [15] for Arabic Named Entity Recognition task. The second layer
is a fully connected linear layer that receives the output of the pretrained model and
reshapes it to be an input for the third layer. The final layer is the conditional random
field (CRF), which is the tagging algorithm. The CRF makes sure that the objective

178 M. Al-Qurishi et al.

of the model training is to return the most accurate combination of outgoing tags. We
applied a dropout procedure in order to keep the training procedure well balanced
between entity classes.

4.1 Proposed Model Architecture

Figure 1 illustrates the proposed model architecture. If we have an input sentence
x, it has to be tokenized before it is entered into the BERT model. In this process,
the sentence x is padded to reach the maximum length of the sequence. Tokenized
x with the corresponding attention mask is passed to the model, which outputs
contextual embeddings of x. Transformer models including BERT use numerous
separate attention mechanisms in each layer, in case of BERT base model, a total
of 12 x 12 attention heads. In practice, this means that each token can be connected
with 12 distinct features of any other token in the sequence. There are two major
aspects of BERT output crucial for accurate classification—prediction scores and
hidden states. The prediction scores are obtained as the output of the last layer of
the model and thus represent the result of all attention heads in all layers and are
relative to parameters such as batch size, hidden states size, and sequence length.
Meanwhile, hidden states are the outputs of the individual layers of the model, and
their total number is equal to the number of layers + 1 (12+1 for BERT). The output
of one layer is immediately used as input for the next layer, which contextualizes its
content further using its own attention heads. Thus, the prediction score basically
represents a hidden state created by the final layer in the BERT model. This output
of the model can be understood in different ways. Intuitively, it seems logical that
the last layer should contain all the information gained through different stages of
learning, so its output should be seen as relevant regardless of the way the input
vectors changed as they passed through the layers. On the other hand, it is quite
possible that some of the vector modifications accidentally eliminated bits of useful
information that could have contributed to an accurate prediction. To compensate
for it, the input vectors can be partially or completely concatenated, or their sum
could be used. We noticed that this procedure provides significant gains in terms
of accuracy improvement, which is why we used this technique in our experiments.
The model also includes a linear layer that helps to reshape the output of BERT into
3 dimensions (batch size, number of tags, and sequence length) and then pass it to
a CRF layer tasked with making a prediction regarding the probabilities for each of
the tags.

4.2 Linear Layer

Linear layer of the model serves to apply a linear transformation on the data
arriving from the BERT-based model. This transformation can be summarized as

Arabic Named Entity Recognition with a CRF Model Based on Transformer. . . 179

Fig. 2 The BERT output matrix with dimensions 786 x sequence length, the matrix of linear
weights sized at 786 x number of classes, and the matrix that is the product of the linear
transformations and has dimensions equal to sequence length x the number of classes

y = x.AT + b, where AT denotes model weight that is shaped by 786 dimensions
(the number of classes). As we can see in Fig. 2, for each sequence, several different
matrices are constructed, including the BERT output matrix with dimensions 786
x sequence length, the matrix of linear weights sized at 786 x number of classes,
and the matrix that is the product of the linear transformations and has dimensions
equal to sequence length x the number of classes. Key parameters of this model
include linear weights, which represent the learnable weights determined based
on the incoming and outgoing features, as well as the linear bias which can be
learned based on solely the output features. All values are initialized starting from
the formula U(−√

k,
√

k), where k = 1/(inf eatures). In the fine-tuning stage, both
the weights and the bias are adjusted in the linear layer.

4.3 CRF Tagging Algorithm

Using transformer-based models, we get full distribution over the potential labels
of the actual input possibilities. From this distribution, the classifier can predict the
most likely class that the input could belong to. Named Entity Recognition meets
this description, as the need to apply rules for semantic interpretation stretches it to a
breaking point. That is because I-PER cannot match B-LOC under such conditions,
effectively preventing the algorithm from maintaining its independence. Because of
this, the selection of tags is performed using the conditional random field (CRF)
method.

CRF method was originally publicized in the early 2000s [25] and has since
been much discussed and broadly transferred to a number of different fields. This
machine learning approach has proven to be useful in applications as diverse as
genetic sequencing and linguistics. In the recent years, models of this type are

180 M. Al-Qurishi et al.

frequently used alongside LSTM (Long Short-Term Memory) networks to obtain
the highest performance possible. This is especially noticeable in the natural
language processing field, where this combination is increasingly becoming a
standard due to its ability to raise the accuracy level for all tasks where tagging
of token sequences is required. Classification of token sequences has the ultimate
goal to determine the likelihood that a particular sequence belongs to the class Y

from incoming data in vector form X. This section will present a simple type of
conditional random field known as the linear chain conditional random field [26].
We motivate the use of conditional random fields in the context of named entity
classification where we want to be able to jointly model the full sequence of labels y
associated with a sequence of inputs X as follows: For a given training set {(X, y)} ,
where X = [x1, . . . , xk] is a set of inputs and y = [y1, . . . , yk] is a target sequences,
we calculate the conditional probability p(y|X) as follows:

p(y|X) =
k∏

i=1

p(yi |xi) =
k∏

i=1

exp(E(xi, yi))

Z(xi)
= exp(

∑k
i=1(E(xi, yi)))∏k
i=1 Z(xi)

(1)

From Eq. 1, for a pair (X, y), the normal classification task can be resolved by
calculating P(y|X) in the way of multiplication of individual probabilities for all
tokens in the sequence up to the position i, where the value of i is greater than one
but lower than the total length of the sequence k. Normalization with exponential
function is used in this model, rather than the softmax function that is commonly
deployed in the same role in most deep learning models.

Two central variables in this equation of the model are marked by E and Z, with
the following definitions:

E(x, y) denotes the emission score and represents the score assigned for the class
y based on the vector x after i iterations. In other words, it represents the output
of a BERT model after i steps are completed. While the input vector can contain
practically any type of information, it is typically populated by a combination of
nearby tokens, i.e., words or sentence representations. Each score is assigned its
relative weight based on the results of training BERT model.

Z(x) refers to the partition function and can be viewed as a specific type of
normalization function as it serves to discover a distribution of probabilities. All
probabilities for different classes must always add up to 1. In this sense, it is a
component of the softmax activation and can be calculated as follows:

Z(X) =
∑

y′
1

∑

y′
2

. . .
∑

y′
i

. . .
∑

y′
k

exp(

k∑

i=1

E(xi, y
′
i) +

k−1∑

i=1

V (y′
i , y

′
i+1)) (2)

Due to numerous loops in the model, calculating the value of Z(X) is not simple.
This requires considering all iterations of the input for each step in the model,
necessitating k repetitions of all calculations to get the value for the entire set.

Arabic Named Entity Recognition with a CRF Model Based on Transformer. . . 181

While the complexity of this procedure is very high O(|y|k), it is feasible to use
the recurrent properties of the model and decrease the computational requirements.
This can be accomplished with the forward/backward algorithm, which is capable
of processing the sequence in either direction. Once this parameter is determined,
the CRF implementation can be undertaken.

Above is described a standard model that calculates probabilities for each class,
but we need to expand it by introducing ponders that can be adjusted through
learning. Basically, this means the possibility of following up the label yi with yi+1
can be quantified, linking the neighboring labels to each other, which is why this
variation is named Conditional Random Field with a linear chain. All probabilities
are thus factored with P(yi+1|yi), using the exponential function to reformat this
value as an emission score E(x, y) expanded by the transition score V (yi, yi+1) as
follows:

p(y|X) = exp(
∑k

i=1 E(xi, yi) + ∑k−1
i=1 V (yi, yi+1))

Z(X)
(3)

Parameter V (yi, yi+1) is defined as a matrix consisting of elements obtained
through learning, while the model transitions from the position i in the sequence to
the position i + 1 in the same sequence. In other words, it shows the chance that
yi+1 succeeds after yi .

4.4 Calculating the NLL Function

With every classification task, a crucial concern is to keep the errors to a minimum,
while the model is being trained with input data. A common way to achieve this
goal is to use a loss function (L) and feed model predictions into it along with the
accurate labels. This function has two possible outputs, 0 or a value greater than
0, depending on whether the two input values match or not. When probabilities
P(y|X) are calculated, it is obviously important to eliminate erroneous predictions.
This problem can be solved by using the negative log value of the probability of
error. This quantity is often referred to as the loss based on negative log probabilities
or NLL loss. It can be summarized with the formula L = −log(P (y|X)) and
modulated with different types of log properties as follows:

− log(P (y|X)) = −log(
exp(

∑k
i=1 E(xi, yi) + ∑k−1

i=1 V (yi, yi+1))

Z(X)
)

= log(Z(X)) − log(exp(

k∑

i=1

E(xi, yi) +
k−1∑

i=1

V (yi, yi+1)))

182 M. Al-Qurishi et al.

= log(Z(X)) − (

k∑

i=1

E(xi, yi) +
k−1∑

i=1

V (yi, yi+1)) (4)

The quantity log(Z) denotes the logarithmic value calculated while the partition
was performed [26]. This value is very useful for the implementation of the forward
algorithm. NLL loss represents the forward pass and can be calculated by reversing
the sign before a normal value of log probabilities. Those probabilities can be
obtained by calculating all the scores based on the partition and determining the
difference between them. This procedure can be made significantly more efficient
by the use of a mask matrix, which allows the model to skip any operations that
refer to non-essential elements.

5 Experiment

In this section, we will evaluate the training techniques used to improve the
algorithm, as well as its performance with different tasks and objectives and the
relationship between architecture of the proposed model and quality of the output.

5.1 Tagging Types

The ultimate objective of NER procedure is to associate a label belonging with a
particular class to each included word. It is important to note that some complex
named entities could stretch across multiple words but are always contained in a
single sentence. The predominant sentence representation form used in this field is
IOB, with words that start a name of an entity marked with B, internally located
words marked as I, and other tokens marked with O.

5.2 Data Samples

The model was evaluated using four Arabic available datasets including ANERcorp,
AQMAR, CANERCorpus, and our dataset (Arabic legal content ALC). They are
formulated specifically for the Arabic NER task.

5.2.1 ANERcorp Dataset

ANERcorp is a high-quality, annotated dataset containing Arabic language content
gathered from a variety of publically available media sources. It was created in

Arabic Named Entity Recognition with a CRF Model Based on Transformer. . . 183

Table 1 Overview of
sources of articles container
in ANERcorp dataset

Source Ratio %

http://www.aljazeera.net 34.8

http://www.raya.com 15.5

http://ar.wikipedia.org 6.6

http://www.alalam.ma 5.4

http://www.ahram.eg.org 5.4

http://www.alittihad.ae 3.5

http://www.bbc.co.uk/arabic/ 3.5

http://arabic.cnn.com 2.8

http://www.addustour.com 2.8

http://kassioun.org 1.9

Other newspapers and magazines 17.8

2008 and has since been widely accepted as one of the standard datasets used for
a variety of linguistic tasks. There are four classes of named entities included in
this set, namely Persons, Locations, Organizations, and Miscellaneous. Based on
those classes, the dataset includes a number of tags that pertain to named entities,
including: B-PERS: Beginning of the name of a PERSon I-PERS: Continuation
(Inside element) of the name of a PERSon B-LOC: Beginning of the name of
a LOCation I-LOC: Inside element present within the name of a LOCation B-
ORG: Beginning of the name of an ORGanization I-ORG: Inside element present
within the name of an ORGanization B-MISC: Beginning of the name of an entity
which doesn’t belong to any of the previous classes (Miscellaneous) I-MISC: Inside
element present within the name of a miscellaneous entity O: The word is not a
named entity (Other)

There are a total of 316 articles within the ANERcorp dataset, all taken from
journalistic sources and online publications. An overview of the content of the
dataset regarding the sources, expressed in percentages as in Table 1.

In total, there are more than 150,000 tokens of more than 32,000 types within
this dataset, with an average of 4.67 tokens per type. 11% of the content consists of
proper names. In collaboration between the original creator of the corpus Yassine
Benajiba and the researchers from CAMeL Lab and Mind Lab, the dataset was
slightly revised in 2020 to correct some imperfections and make it better suited for
the type of studies it is needed for. Some of the corrections agreed upon involved
spelling errors, blank Unicode characters, and diacritical marks. At this time, the
dataset was also divided into a training portion (125K words) and testing portion
(25K words) to facilitate even better performance. In this study, the latest version of
the ANERcorp corpus was used.

5.2.2 AQMAR Dataset

AQMAR (American and Qatari Modeling of Arabic) is a relatively small Arabic
language dataset created specifically for the purpose of natural language processing

17303 1348 a 17303 1348 a

http://www.aljazeera.net

 17303 2677 a 17303 2677
a

http://www.raya.com

 17303 4005 a 17303 4005 a

http://ar.wikipedia.org

 17303 5333 a 17303 5333 a

http://www.alalam.ma

 17303 6662 a 17303 6662 a

http://www.ahram.eg.org

 17303 7990 a 17303 7990
a

http://www.alittihad.ae

 17303 9318 a 17303 9318 a

http://www.bbc.co.uk/arabic/

 17303 10647 a 17303 10647 a

http://arabic.cnn.com

 17303 11975 a 17303 11975 a

http://www.addustour.com

 17303 13304 a 17303 13304 a

http://kassioun.org

184 M. Al-Qurishi et al.

evaluation, including named entity recognition (NER). It was created in collabora-
tion between the US-based Carnegie Mellon University and Qatari governmental
institutions and is widely used in projects of various types. This dataset consists of
more than 3000 sentences taken from around 30 representative Wikipedia articles
in Arabic, touching on a wide range of topics from history and science to politics
and sports. This dataset was manually annotated with four standard NER classes—
persons, locations, organizations, and miscellaneous, in addition to other many tags
pertaining to sentiments, relations, etc. The total number of tokens contained in
the AQMAR dataset is at 74,000, providing more than enough variability for NLP
research purposes.

5.2.3 CANERCorpus Dataset

CANERCorpus stands for a Classical Arabic Named Entity Recognition Corpus
that was built by [36] in 2018. This dataset was used by [7], and we compare our
proposed model with theirs as shown in Table 6. CANERCorpus was compiled
starting from more than 7000 hadiths—religious texts written by Islamic scholars
that include mentions of a large number of named entities, totaling around 250
thousand words. There were approximately 13,000 named entities identified in
the reviewed texts, and they were separated in 20 different classes based on the
general category they are related to. In the preprocessing stage [36], the texts were
segmented into sentences before they were annotated by three human operators,
with majority opinion taken as valid in cases when there was disagreement. Words
were annotated in the IOB2 format, which determines whether they are included
in the beginning, middle, or end of the entity name. This dataset is notable for
very fine granulation with a lot of unique classes related to Islamic tradition (i.e.,
Allah, Prophet, Clan) in addition to standard NER classes such as person, time, or
organization. For this reason, the dataset provides a strong foundation for testing
Arabic language AI tools with sophisticated NLP capacities.

5.2.4 Our Arabic Legal Content (ALC) Dataset

This dataset was created inside the research department at Elm company. This
dataset was extracted from 3648 Arabic legal case documents, which have been
collected form Board of Grievances (BoG). It contains more than 345K tokens
including almost 6K distinct entities of four classes in the initial stage of our project.
The used NER classes are
PER such as

�I�� ��� <�:E� l �T � �, @.AB �
, LOC such as �� �� $ � �d)� ����>� AB � l �̂ ���G2e# � ��pAB � <��d)�

Arabic Named Entity Recognition with a CRF Model Based on Transformer. . . 185

, ORG such as �X0�()
����I�JE� � ��-QFAB � l �-�#� �XI� �I$�

and JOB such as ����0.� qU���I l �� �> �,��K ��7�G2� ���0:

5.3 Fine-Tuning Process

Our proposed model was trained and tested on all datasets mentioned in Sect. 5.2,
with the idea of fine-tuning the hyperparameters in every iteration. Hyperparameters
are set up to create the best possible conditions for recognizing named entities in a
labeled dataset based on the words found in the input sequence as shown in Table 2.
When the dataset is used for model training and testing, individual sentences from
unseen content are selected at random and fed into the model as input. 80% of the
dataset is typically used for training, 10% as a validation set, and the remaining 10%
to test the performance of the model on unseen examples.

All the datasets are very useful in model evaluation due to their versatility and
the relevance of the content, making it a logical choice to include in this study.
We have fine-tuned three pretrained models, including AraBERT, AraElectra, and
XLM-Roberta. In the first experiment, we fine-tuned AraBert V2, the large model
containing 24 layers of encoders stacked on top of one another, 16 self-attention
heads, and a hidden size of 1024. In the second experiment, we used only the
discriminator base model for AraElactra. This model has 12 attention heads, 12
hidden layers, and 768 hidden states size. In the third experiment, we used XLM-
Roberta, a model with 12 attention heads, 12 hidden layers, and 768 hidden states.

During the three experiments, we used an AdamW optimizer, which is useful
when fine-tuning a pretrained model as frozen layers. In all experiments, the
learning ratio was 5e − 5, and the number of epochs was 5. The model input is

Table 2 Table of hyperparameters for training the proposed Arabic NER model

Parameter AraBERT AraElectra XLM-Roberta

Max sequence length [128,256,512] [128,256,512] [128,256,512]

No. heads 16 12 12

No. hidden layers 24 12 12

Hidden layer size 1024 768 768

Batch size 4 16 4

Vocab size 64000 64000 250002

loss Crf loss Crf loss Crf loss

Dropout prob 0.1 0.1 0.1

Optimizer AdamW AdamW AdamW

Learning rate 5e−5 5e−5 5e−5

Number of epochs 5 5 5

186 M. Al-Qurishi et al.

a sequence of tokens that are processed to two vectors, input IDs, and attention
masks using the BERT tokenizer. The tested sequence lengths were 128, 256, and
512 tokens. Dropout optimization was applied where a dropout step was introduced
immediately before the data reach the linear layer. We used the same dropout ratio
of 0.1.

6 Results

In Table 3, the output of the proposed model is compared with state-of-the-art
NER models for the Arabic language. Since the proposed solution does not use any
sources other than the training sample, the performance of the competing methods
was presented without access to such sources for the sake of fair evaluation. The
AraBertv2 + CRF model achieved the most impressive result; the F1-macro score
of almost 89.6% for this model concatenates the last 6 hidden layers. However, this
model achieved these results on a sequence length of 256 tokens. Therefore, we
applied the same model on a 512 token length, and we found that the best result
is attained when we sum the 11 hidden layers; the F1-macro has not significantly
change. In general, all the fine-tuned models outperform the state-of-the-art models,
with significant improvements by almost 5% more than the best one, as we can see
in Table 3. Tables 4 and 5 show the experimental results of our proposed model with
respect to the AQMAR dataset, using AraBert and AraElectra models, respectively.
Besides ANERCorp and AQMAR, we also tested the model on CANERCorpus data
that are MSA data taken from the books of Hadith and Islamic history described in
Sect. 5.2.3. The results were as in Table 6 showing the superiority of our model

Table 3 The performance of the proposed Arabic NER model vs state of the art on ANERCorp.
Bold values are the highest F1 macro that the model achieved

Model Seq F1-Macro Accuracy Precision Recall F1-measure

AraBertv1 512 0.82767 0.971329 0.83902 0.816630 0.842

mBERT 512 0.76721 0.96293 0.79244 0.74354 0.784

gigaBERT 512 NA 0.969889 0.82820 0.812253 0.82015

AraBertv2 512 0.8043 0.97004 0.82900 0.81050 0.81965

Mawdoo3 512 NA 0.964331 0.79183 0.755798 0.77339

MARBERT 512 NA 0.966730 0.81267 0.774617 0.79318

ARBERT 512 NA 0.97224 0.84656 0.82582 0.83606

AraBertv2 + CRF (last) 512 0.88888 0.9916173 0.905367 0.912455 0.90889

AraBertv2 + CRF (concat 6) 256 0.8956 0.9919526 0.913135 0.91378 0.91345
AraBertv2 + CRF (concat 9) 512 0.8933 0.9916918 0.910310 0.913536 0.91192

AraBertv2 + CRF (sum 11) 512 0.8946 0.9917663 0.908192 0.915954 0.91205
AraElectra +CRF (concat 5) 512 0.872115 0.98755 0.9104595 0.894163 0.9022379

XLM-Roberta +CRF (concat 9) 256 0.875697 0.98968 0.90608 0.90181 0.90181

Arabic Named Entity Recognition with a CRF Model Based on Transformer. . . 187

Table 4 The performance of the proposed Arabic NER model using bert-large-arabertv2+crf test
results on AQMAR dataset

Model #state Seq F1-Macro Accuracy Precision Recall F1-measure

last 1 128 0.862648 0.984333 0.8567 0.879594 0.8680425

concat 12 128 0.88176 0.985708 0.87530 0.895202 0.8851435

sum 8 128 0.88222 0.984944 0.864197 0.88832 0.876095

last 1 256 0.852139 0.983815 0.848448 0.878862 0.8633879

concat 6 256 0.875361 0.985300 0.866348 0.888616 0.8773413

sum 9 256 0.8772 0.98478 0.85322 0.8982412 0.875

last 1 512 0.86588 0.984261 0.8651 0.8809234 0.8729

concat 10 512 0.87350 0.98500 0.87350 0.8766467 0.875

sum 11 512 0.87789 0.985374 0.871121 0.8902439 0.88

Table 5 The performance of the proposed Arabic NER model using araelectra-base-discriminator
+crf test results on AQMAR dataset

Model #states Seq F1-Macro Accuracy Precision Recall F1-measure

last 1 128 0.869587 0.978834 0.875871 0.86620689 0.871012482

concat 10 128 0.865022 0.97758 0.86192 0.8583333 0.860125261

sum 2 128 0.859811 0.978417 0.853556 0.8547486 0.854152128

last 1 256 0.862752 0.978032 0.864902 0.8758815 0.870357393

concat 2 256 0.875771 0.978344 0.87883 0.87638888 0.877607788

sum 3 256 0.861978 0.978552 0.864902 0.8601108 0.8625

Last 1 512 0.872761 0.979593 0.862116 0.8792613 0.870604781

concat 10 512 0.862209 0.977719 0.86908 0.85714285 0.863070539

Sum 2 512 0.8559 0.977719 0.866295 0.859116 0.862690707

Table 6 The performance of the proposed Arabic NER model using bert-large-arabertv2+crf test
results on CANERCorpus dataset. Bold values are the highest F1 macro that the model achieved

Model Seq F1-Macro Precision Recall F1-measure

[7] 54 NA 94.10 95.54 94.76

AraBertv2 + CRF (concat 6) 54 91 98.11 98.42 98.26

Table 7 The performance of the proposed Arabic NER model using bert-large-arabertv2+crf test
results on our Arabic legal dataset. Bold values are the highest F1 macro that the model achieved

Model Seq F1-Macro Precision Recall F1-measure

xlm-roberta-large 256 0.824 0.874 0.871 0.872

araelectra-base-discriminator 256 0.762 0.784 0.852 0.815

AraBertv2 + CRF (concat last 6) 256 0.851 0.9 0.894 0.897

over the model mentioned in [7] with the same hyperparameter settings. Finally, we
tested our model on customized data for Arabic legal content and found that the
model achieved better results than the previous models and an increase in F1-macro
by 3% over the best model as shown in Table 7.

188 M. Al-Qurishi et al.

Thus, it is fair to say that stack architecture of the transformer-based models
in combination with conditional random field currently represents one of the most
successful NER methodologies that are independent from external sources. Its
surprising performance can be explained by the strength of contextualization unique
for this approach, which allows it to be accurate even when only limited information
is available.

7 Conclusion

In some studies, scalability and versatility of the NER solution were considered
alongside accuracy, reflecting the objective to create tools that could be used in
practice without too many limitations. In this study, a simple architectural design
of transformer-based model was presented, created specifically for tagging of word
sequences in the context of Named Entity Recognition. This solution outperforms
most of the state-of-the-art methods for this task, including those that rely on
knowledge bases. A crucial element of the proposed solutions is their ability to
track interdependencies between labels. This can be done with a CRF layer. Also,
the process of summing and concatenating vectors has been shown to be effective in
generating additional information that helps to improve the tagging accuracy. Since
vector representations are made on the words level, the model is able to collect
contextual clues related to both syntax and morphology. The work in the future will
be in two parts as follows. The first is to work on disambiguating the label when
there is a word that expresses two different entities, such as the name of a place and
a person at the same time. The second is to increase the number of named entity
classes as well as working on our own dataset.

Acknowledgments This work was supported by the Research Department in Elm Company under
the Arabic language processing initiative.

References

1. Abdelali, A., Darwish, K., Durrani, N., Mubarak, H.: Farasa: A fast and furious segmenter
for Arabic. In: Proceedings of the 2016 Conference of the North American Chapter of the
Association for Computational Linguistics: Demonstrations, pp. 11–16 (2016)

2. AbdelRahman, S., Elarnaoty, M., Magdy, M., Fahmy, A.: Integrated machine learning tech-
niques for Arabic named entity recognition. IJCSI 7(4), 27–36 (2010)

3. Abdul-Mageed, M., Elmadany, A., Nagoudi, E.M.B.: Arbert & MARBERT: deep bidirectional
transformers for Arabic. Preprint (2020). arXiv:2101.01785

4. Aboaoga, M., Ab Aziz, M.J.: Arabic person names recognition by using a rule based approach.
J. Comput. Sci. 9(7), 922 (2013)

5. Al-Qurishi, M.S., Souissi, R.: Arabic named entity recognition using transformer-based-crf
model. In: Proceedings of The Fourth International Conference on Natural Language and
Speech Processing (ICNLSP 2021), pp. 262–271 (2021)

References 189

6. Alkhatib, M., Shaalan, K.: Boosting Arabic named entity recognition transliteration with deep
learning. In: The Thirty-Third International Flairs Conference (2020)

7. Alsaaran, N., Alrabiah, M.: Classical Arabic named entity recognition using variant deep neural
network architectures and BERT. IEEE Access 9, 91537–91547 (2021)

8. Antoun, W., Baly, F., Hajj, H.: Arabert: Transformer-based model for Arabic language
understanding. In: Proceedings of the 4th Workshop on Open-Source Arabic Corpora and
Processing Tools, with a Shared Task on Offensive Language Detection, pp. 9–15 (2020)

9. Antoun, W., Baly, F., Hajj, H.: Araelectra: Pre-training text discriminators for Arabic language
understanding. In: Proceedings of the Sixth Arabic Natural Language Processing Workshop,
pp. 191–195 (2021)

10. Benajiba, Y., Rosso, P.: Arabic named entity recognition using conditional random fields. In:
Proc. of Workshop on HLT & NLP within the Arabic World, LREC, vol. 8, pp. 143–153.
Citeseer (2008)

11. Benajiba, Y., Rosso, P., Benedíruiz, J.M.: ANERsys: An Arabic named entity recognition
system based on maximum entropy. In: International Conference on Intelligent Text Processing
and Computational Linguistics, pp. 143–153. Springer (2007)

12. Benajiba, Y., Zitouni, I., Diab, M., Rosso, P.: Arabic named entity recognition: using features
extracted from noisy data. In: Proceedings of the ACL 2010 Conference Short Papers, pp.
281–285 (2010)

13. Boudjellal, N., Zhang, H., Khan, A., Ahmad, A., Naseem, R., Shang, J., Dai, L.: Abioner: a
BERT-based model for Arabic biomedical named-entity recognition. Complexity 2021, Article
ID 6633213 (2021). https://doi.org/10.1155/2021/6633213

14. Clark, K., Luong, M.T., Le, Q.V., Manning, C.D.: Electra: Pre-training text encoders as
discriminators rather than generators. Preprint (2020). arXiv:2003.10555

15. Conneau, A., Khandelwal, K., Goyal, N., Chaudhary, V., Wenzek, G., Guzmán, F., Grave, E.,
Ott, M., Zettlemoyer, L., Stoyanov, V.: Unsupervised cross-lingual representation learning at
scale. Preprint (2019). arXiv:1911.02116

16. Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional
transformers for language understanding. Preprint (2018). arXiv:1810.04805

17. Elsebai, A., Meziane, F.: Extracting person names from Arabic newspapers. In: 2011 Interna-
tional Conference on Innovations in Information Technology, pp. 87–89. IEEE (2011)

18. Farber, B., Freitag, D., Habash, N., Rambow, O.: Improving NER in Arabic using a morpho-
logical tagger. In: LREC (2008)

19. Goyal, A., Gupta, V., Kumar, M.: Recent named entity recognition and classification tech-
niques: a systematic review. Comput. Sci. Rev. 29, 21–43 (2018)

20. Gridach, M.: Character-aware neural networks for Arabic named entity recognition for social
media. In: Proceedings of the 6th workshop on South and Southeast Asian Natural Language
Processing (WSSANLP2016), pp. 23–32 (2016)

21. Gridach, M.: Deep learning approach for Arabic named entity recognition. In: International
Conference on Intelligent Text Processing and Computational Linguistics, pp. 439–451.
Springer (2016)

22. Helwe, C., Dib, G., Shamas, M., Elbassuoni, S.: A semi-supervised BERT approach for Arabic
named entity recognition. In: Proceedings of the Fifth Arabic Natural Language Processing
Workshop, pp. 49–57 (2020)

23. Helwe, C., Elbassuoni, S.: Arabic named entity recognition via deep co-learning. Artif. Intell.
Rev. 52(1), 197–215 (2019)

24. Khalil, H., Osman, T., Miltan, M.: Extracting Arabic composite names using genitive principles
of Arabic grammar. ACM Trans. Asian Low Resource Lang. Inf. Process. (TALLIP) 19(4), 1–
16 (2020)

25. Lafferty, J., McCallum, A., Pereira, F.C.: Conditional random fields: Probabilistic models for
segmenting and labeling sequence data (2001)

26. Larochelle, H.: Lectures on conditional random fields (2021)
27. Li, J., Sun, A., Han, J., Li, C.: A survey on deep learning for named entity recognition. IEEE

Trans. Knowl. Data Eng. (2020)

 7172
22940 a 7172 22940 a

https://doi.org/10.1155/2021/6633213

190 M. Al-Qurishi et al.

28. Liu, Y., Ott, M., Goyal, N., Du, J., Joshi, M., Chen, D., Levy, O., Lewis, M., Zettlemoyer,
L., Stoyanov, V.: Roberta: A robustly optimized BERT pretraining approach. Preprint (2019).
arXiv:1907.11692

29. Maloney, J., Niv, M.: TAGARAB: a fast, accurate Arabic name recognizer using high-precision
morphological analysis. In: Computational Approaches to Semitic Languages (1998)

30. Mohammed, N.F., Omar, N.: Arabic named entity recognition using artificial neural network.
J. Comput. Sci. 8(8), 1285 (2012)

31. Obeid, O., Zalmout, N., Khalifa, S., Taji, D., Oudah, M., Alhafni, B., Inoue, G., Eryani,
F., Erdmann, A., Habash, N.: Camel tools: An open source Python toolkit for Arabic
natural language processing. In: Proceedings of the 12th Language Resources and Evaluation
Conference, pp. 7022–7032 (2020)

32. Oudah, M., Shaalan, K.: A pipeline Arabic named entity recognition using a hybrid approach.
In: Proceedings of COLING 2012, pp. 2159–2176 (2012)

33. Oudah, M., Shaalan, K.: Person name recognition using the hybrid approach. In: International
Conference on Application of Natural Language to Information Systems, pp. 237–248.
Springer (2013)

34. Pasha, A., Al-Badrashiny, M., Diab, M.T., El Kholy, A., Eskander, R., Habash, N., Pooleery,
M., Rambow, O., Roth, R.: MADAMIRA: A fast, comprehensive tool for morphological
analysis and disambiguation of Arabic. In: Lrec. vol. 14, pp. 1094–1101. Citeseer (2014)

35. Safaya, A., Abdullatif, M., Yuret, D.: KUISAIL at SemEval-2020 task 12: BERT-CNN for
offensive speech identification in social media. In: Proceedings of the Fourteenth Workshop on
Semantic Evaluation, pp. 2054–2059 (2020)

36. Salah, R.E., Zakaria, L.Q.B.: Building the classical Arabic named entity recognition corpus
(CANERCorpus). In: 2018 Fourth International Conference on Information Retrieval and
Knowledge Management (CAMP). pp. 1–8. IEEE (2018)

37. Schneider, N., Mohit, B., Oflazer, K., Smith, N.A.: Coarse lexical semantic annotation with
supersenses: an Arabic case study. In: Proceedings of the 50th Annual Meeting of the
Association for Computational Linguistics (Volume 2: Short Papers), pp. 253–258 (2012)

38. Shaalan, K.: A survey of Arabic named entity recognition and classification. Computational
Linguistics 40(2), 469–510 (2014)

39. Shaalan, K., Raza, H.: NERA: Named entity recognition for Arabic. J. Am. Soc. Inf. Sci. Tech.
60(8), 1652–1663 (2009)

40. Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł.,
Polosukhin, I.: Attention is all you need. In: Advances in neural Information Processing
Systems, pp. 5998–6008 (2017)

41. Yucel, O., Sen, S.: Language independent recommender agent. Knowl. Eng. Rev. 33, e15
(2018)

42. Zaghouani, W.: RENAR: A rule-based Arabic named entity recognition system. ACM Trans.
Asian Lang. Inf. Process. (TALIP) 11(1), 1–13 (2012)

Static Fuzzy Bag-of-Words: Exploring
Static Universe Matrices for Sentence
Embeddings

Matteo Muffo , Roberto Tedesco , Licia Sbattella , and
Vincenzo Scotti

Abstract Vector semantics has slightly become a key tool for natural language
processing, especially concerning text analysis. This kind of vector representation
is usually encoded through embeddings that can be used to encode semantic
information at different levels of granularity. In fact, through the years, not only
models for word embeddings have been developed but also for sentence and
documents. With this work, we address sentence embeddings, in particular the non-
parametric ones, which offer a good trade-off between performance and inference
speed. We present Static Fuzzy Bag-of-Word (SFBoW) model, a refinement of
the Fuzzy Bag-of-Words approach yielding fixed-dimension sentence embeddings.
We targeted fixed-size embeddings to promote caching a re-usability, speeding the
inference of a system that relies on our model. In this paper, we explore various
approaches for the construction of a static universe matrix, fundamental to make
the sentence embeddings of fixed size. To show the validity of our approach,
we benchmarked our model on a semantic similarity task, obtaining competitive
performances.

1 Introduction

The advent of machine and deep learning-based models has influenced many areas
of the artificial intelligence field [10, 17], including natural language processing
(NLP). To enable the deep neural network models, which strongly rely on matrix
multiplication operations, process data from NLP, vector semantics has played a

M. Muffo (�)
Indigo.ai, Milano, Italy
e-mail: matteo@indigo.ai

R. Tedesco · L. Sbattella · V. Scotti
Dipartimento di Elettronica, Informazione e Bioingegneria (DEIB), Politecnico di Milano,
Milano, Italy
e-mail: roberto.tedesco@polimi.it; licia.sbattella@polimi.it; vincenzo.scotti@polimi.it

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
M. Abbas (ed.), Analysis and Application of Natural Language and Speech
Processing, Signals and Communication Technology,
https://doi.org/10.1007/978-3-031-11035-1_10

191

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-11035-1_10&domain=pdf
https://orcid.org/0000-0003-0122-894X
https://orcid.org/0000-0002-2830-4247
https://orcid.org/0000-0001-5344-5976
https://orcid.org/0000-0002-8765-604X

 885
50756 a 885 50756 a

mailto:matteo@indigo.ai

 885 55738 a 885 55738 a

mailto:roberto.tedesco@polimi.it

 11239 55738 a 11239
55738 a

mailto:licia.sbattella@polimi.it

 20810 55738 a 20810 55738
a

mailto:vincenzo.scotti@polimi.it

 -2016 61494 a -2016 61494 a

https://doi.org/10.1007/978-3-031-11035-1_10

192 M. Muffo et al.

crucial role. In fact, vector semantics rely on the concept that everything can be
represented as real-valued vectors (or points) in a hyperspace. Moreover, according
to vector semantics, the position of the object in the hyperspace represents its
meaning.

In the case of NLP, words with similar meaning should be represented close in the
hyperspace, and, analogously, words with different meaning should be far one from
the other. This approach to word vector representation is called word embedding.
These embeddings are computed through self-supervised representation learning
[9]. There are many different models to extract these embeddings, at different levels
of granularity, which have consistently taken the role of input representation for
many NLP tasks [19].

In the last decade, the approach shifted from shallow and static word represen-
tations [11, 22, 25] towards deep and contextual ones [15, 26, 28], pushing forward
incredibly the state of the art on NLP. However, for certain problems like web
search and question answering, word-level representations are not sufficient. For this
reason high-level models such as those for sentence embedding have been created
[40]. These high-level models can be powered through either satic or contextual
representations.

Shallow word embedding models immediately provided noticeable results [14].
Such representations were quickly adopted to provide an input for syntactic
analysis: they helped improve results in part-of-speech (POS) tagging, named entity
recognition (NER) and semantic role labelling (SRL). Shortly after, they were
employed in more complex problems like language modelling, machine translation
[36] and dialogue systems [35]. Although impressive, the results of these models
were limited by the inability to model properly the context surrounding each word
in the input sequence.

Neural language models (LMs) implemented through transformer networks [18,
37], on the other side, played a significant role for deep contextual representations.
The hidden representations extracted through these huge models, trained on massive
collections of unlabelled textual data, boosted the performances in many NLP tasks
[29, 30, 38, 39] The trade-off with respect to shallow model is indeed in the amount
of computational resources: both in terms of time and memory. This resource
demand is especially high at train time.

In this vector semantics settings, with focus on the sentence embeddings, we
present our Static Fuzzy Bag-of-Words (SFBoW) model. It’s a model for non-
parametric sentence embeddings based on the DynaMax Fuzzy Bag-of-Words
model [42]. In particular, with this paper, we explore approaches to build the
universe matrix, core component of the Fuzzy Bag-of-Words solutions, to be
static. This model is designed to promote caching (in the sense of re-usability of
the embeddings), short analysis time and valid performances; thus, it is advised
for applications with limited resources or with power consumption issues, like
embedded systems. To evaluate the goodness of the proposed universe matrices,
we relied on the semantic textual similarity (STS) benchmark.

We organise the remainder of this paper into the following sections: in Sect. 2, we
summarise the main concepts related to learnt word and sentence representations; in

Static Fuzzy Bag-of-Words 193

Sect. 3, we introduce SFBoW, our model; in Sects. 4 and 5, we present, respectively,
the evaluation approach we followed to evaluate SFBoW and the results of such
evaluation; and, finally, in Sect. 6, we summarise the presented work and we present
the expected future works.

2 Related Work

Our work revolves around the concept of vector semantics: the idea that the meaning
of a word or a sentence can be modelled as a vector [23].

The first steps on this subject were made in information retrieval (IR) context
with the vector space model [33], where documents and queries were represented as
high-dimensional (vocabulary size) sparse embedding vectors. In this model, each
dimension is used to represent a word, so that given a vocabularyV:

• A word wi ∈ V, with i ∈ [1, |V|] ⊆ N, is expressed as a so-called “one-hot”
binary vector vwi

∈ 1|V|, where, calling vwi,j the j th element of the word vector,
it holds that vwi,j = 1 ⇐⇒ j = i.

• A sentence S is expressed as vector μS ∈ N|V|, where μS,i , the ith element
of vector μS , namely, cS,i , represents the number of times word wi appears in
sentence S.

The resulting sentence representation, used also for text documents, is called Bag-
of-Words (BoW) and can be summarised as

μS =
|V|∑

i=1

cS,i · vwi
. (1)

These representation models needed to be replaced because of the sparsity, which
made them resource consuming, and the induced orthogonality among vectors with
similar meanings.

2.1 Word and Sentence Embeddings

Word embeddings refer to the dense semantic vector representation of words; such
representation can be divided into prediction-based and count-based [8].

The former group identifies the embeddings obtained through the training of
models for next/missing word prediction given a context. It encompasses models
like Word2Vec [21, 22] and fastText [11]. The latter group refers to the embeddings
obtained leveraging word co-occurrence counts in a corpus. One of the most recent
solutions of this group is GloVe [25].

194 M. Muffo et al.

All the models mentioned above belong to the class of shallow models, where
the embedding of a word wi can be extracted through lookup over the rows of the
embedding matrix W ∈ R|V|×d , with d being the desired dimensionality of the
embedding space. Given the word (column) vector vwi

, the corresponding word
embedding uwi

∈ Rd can be computed as (see Sect. 2.2)

uwi
= W� · vwi

. (2)

More recently, the introduction of transformer-based LMs [18], like BERT [15],
GPT [12, 26, 27] or T5 [28], has spread the concept of contextual embeddings; such
embeddings proved to be particularly helpful for a wide variety of NLP problems,
as shown by the leader boards of NLP benchmarks [29, 30, 38, 39].

The inherent hierarchical structure of the human language makes it hard to
understand a text from single words; thus, the birth of higher-level semantic
representations for sentences, which are the sentence embeddings, was just a natural
consequence. As for the word embeddings, also sentence embeddings are organised
into two groups, parametrised and non-parametrised, depending on whether the
model requires parameter training or not.

Clear examples of parametric model are the skip-thoughts vectors [16] and
Sent2Vec [24], which generalises Word2Vec. Non-parametric models, instead, show
that simply aggregating the information from pre-trained word embeddings, for
example, through averaging, as in SIF weighting [6], is sufficient to represent higher-
level entities like sentences and paragraphs.

Transformer LMs are also usable at sentence level. An example is the parametric
model Sentence-BERT [31], obtained by fine-tuning on natural language inference
corpora.

All these models rely on the assumption that cosine similarity is the correct
metric to compute “meaning distance” between sentences. This is why parametric
models are explicitly trained to minimise this measure for similar sentences and
maximise it for dissimilar sentences.

However, cosine similarity may not be the only and best measure. The DynaMax
model [42] proposed to follow a fuzzy set representation of sentences and to rely
on fuzzy Jaccard similarity instead of the cosine one. As a result, the DynaMax
model outperformed many non-parametric models and performed comparably to
parametric ones under cosine similarity measurements, even if competitors were
trained directly to optimise that metric, while the DynaMax approach was utterly
unrelated to that objective.

The use of fuzzy sets to represent documents is not new, and it was already
proposed by [41]. With respect to DynaMax, previous results were inferior because
of their approach to compute fuzzy membership.

Static Fuzzy Bag-of-Words 195

2.2 Fuzzy Bag-of-Words and DynaMax for Sentence
Embeddings

The Fuzzy Bag-of-Words (FBoW) model for text representation [41]—and its gen-
eralised and improved variant DynaMax [42], which introduced a better similarity
metric—represents the starting point of our work, which is described in Sect. 3.

The BoW approach, described at the beginning of Sect. 2, can be seen as a multi-
set representation of text. It enables to measure similarity between two sentences
with set similarity measures, like Jaccard, Otsuka and Dice indexes. These indexes
share a common pattern to measure the similarity σ between two sets A and B [42]:

σ (A,B) = nshared (A,B) /ntotal (A,B) (3)

where nshared (A,B) denotes the count of shared elements and ntotal (A,B) is the
count of total elements. In particular, the Jaccard index is defined as

σJaccard (A,B) = |A ∩ B| / |A ∪ B| . (4)

However, the simple set similarity is a rigid approach as it allows for some degree
of similarity when the very same words appear in both sentences, but fails in the
presence of synonyms. This is where fuzzy sets theory comes handy: in fact, fuzzy
sets enable to interpret each word in V as a singleton and measure the degree
of membership of any word to this singleton as the similarity between the two
considered words [41].

The FBoW model prescribes to work in this way [41]:

• Each word wi is interpreted as a singleton {wi}; thus, the membership degree of
any word wj in the vocabulary (with j ∈ [1, |V|] ⊆ N) with respect to this set is
computed as the similarity σ between wi and wj . These similarities can be used
to fill a |V|-sized vector v̂wi

used to provide the fuzzy representation of wi (the
j th element v̂wi,j being σ

(
wi,wj

)
).

• A sentence S is simply defined through the fuzzy union operator, which is
determined by the max operator over the membership degrees. In this case, the S

is represented by a vector of |V| elements.

The generalised FBoW approach [42] prescribes to compute the fuzzy embedding
of a word singleton as

v̂wi
= U · uwi

= U · W� · vwi
(5)

to reduce the dimension of the output vector for S, where W ∈ R|V|×d is a word
embedding matrix (defined as in Sect. 2.1), uwi

is defined in Eq. (2) and U ∈ Ru×d

(with u being the desired dimension of the fuzzy embeddings) is the universe matrix,
derived from the universe set U , which is defined as “the set of all possible terms that

196 M. Muffo et al.

occur in a certain domain”. The generalised FBoW produces vectors of u elements,
where u = |U |.

Given the fuzzy embeddings of the words in a sentence S, the generalised FBoW
representation of S is a vector μ̂S whose j th element μ̂S,j (with j ∈ [1, u] ⊆ N)
can be computed as

μ̂S,j = max
wi∈S

cS,i · v̂wi ,j (6)

where cS,i and v̂wi ,j are, respectively, the number of occurrences of word wi in
sentence S and the j th element of the v̂wi

vector.
The universe set can be defined in different ways, and the same applies for the

universe matrix [42]. Among the possible solutions, the DynaMax algorithm for
fuzzy sentence embeddings builds the universe matrix from the word embedding
matrix, stacking solely the embedding vectors of the words appearing in the
sentences to be compared.

Notice that in this way the resulting universe matrix is not unique, and as a
consequence, neither are the embeddings. This condition can be noticed from the
description of the algorithm and from the definition of the universe matrix: when
comparing two sentences Sa and Sb, the universe set U used in their comparison is
U ≡ Sa ∪ Sb, so the resulting sentence embeddings have size u = |U | = |Sa ∪ Sb|.
In fact, the universe matrix is given by

U = [
uwi

∀wi ∈ U
]�

. (7)

This characteristic is unfortunate as, for example, in IR, it requires a complete
re-encoding of the entire document achieved for each query.

The real improvement of DynaMax is in the introduction of the fuzzy Jaccard
index to compute the semantic similarity between two sentences Sa and Sb, rather
than the generalisation of the FBoW, which replaced the original use of the cosine
similarity [41]:

σ̂Jaccard
(
μ̂Sa

, μ̂Sb

) =
∑u

i=1 min
(
μ̂Sa,i , μ̂Sb,i

)
∑u

i=1 max
(
μ̂Sa,i , μ̂Sb,i

) . (8)

3 Static Fuzzy Bag-of-Words Model

Starting from the DynaMax, which evolved from the FBoW model, we developed
our follow-up aimed at providing a unique matrix U and thus embeddings with a
fixed dimension. In Fig. 1 is represented the visualisation of our approach.

Static Fuzzy Bag-of-Words 197

3.1 Word Embeddings

Word embeddings play a central role in our algorithm as they also provide the
starting point of the construction of the universe matrix. For this work, we leveraged
pre-trained shallow models (more details in Sect. 4.1) for two main reasons:

• The model is encoded in a matrix where each row corresponds to a word.
• We want to provide a sentence embedding approach that does not require

training, easing its accessibility.

The vocabulary of these models, composed starting from all the tokens in
the training corpora, is usually more extensive than the English vocabulary, as it
contains named entities, incorrectly spelt words, non-existing words, URLs, email
addresses and similar. To reduce the computational effort needed to construct and
use the universe matrix, we have considered some subsets of the employed word
embedding model’s vocabulary.

Depending on the experiment, we work with either the 100,000 most frequently
used terms, the 50,000 most frequently used terms (term frequencies are given by
the corpora used to train the word embedding model) or the subset composed of all
the spell-checked terms present in a reference English dictionary (obtained through
the Aspell English spell-checker1).

In the following sections, the W̌ symbol refers to these as reduced word
embedding matrices/models.

3.2 Universe Matrix

During the experiments, we tried four main approaches to build the universe matrix
U: the first two – proposed, but not explored, by the original authors of DynaMax
[42] – consist, respectively, in the usage of a clustered embedding matrix and an
identity matrix with the rank equal to the size of the word embeddings. Instead,

Fig. 1 Visualisation of the sentence embedding computation process using SFBoW

1 http://aspell.net.

 -1446 58376 a -1446 58376
a

http://aspell.net

198 M. Muffo et al.

the third approach consists of applying multivariate analysis techniques to the word
embedding matrix to build the universe one. The last approach considers the norm
of the word vectors to filter out less significant words for the representation.

In the following formulae, we refer to d as the dimensionality of the word
embedding vectors, while the SFBoW embedding of the singleton of word wi is
represented as v̌wi

. Clustering and multivariate analysis can be applied to the whole
embedding vocabulary or the subsets of the vocabulary introduced in Sect. 3.1.
Apart from reducing the computational time, we did so to see if these subsets are
sufficient to provide a helpful representation.

3.2.1 Clustering

The idea is to group the embedding vectors into clusters and use their centroids;
in this way, the fuzzy membership will be computed over the clusters—which are
expected to host semantically similar words—instead of all the word singletons.
The universe set is thus built out of abstract entities only, which are the centroids.
Considering k centroids the k-dimensional embedding v̌wi

of the singleton of word
wi is

v̌wi
= K� · uwi

= [
k1, . . . , kk

]� · uwi
= K� · W� · vwi

(9)

where kj , the j th (with j ∈ [1, k] ⊆ N) column of K, corresponds to the centroid
of the j th cluster. This approach generates k-dimensional word and sentence
embeddings.

3.2.2 Identity

Alternatively, instead of looking for a group of semantically similar words that may
form a significant group, useful for semantic similarity, we consider the possibility
of re-using the word embedding dimensions (features) to represent the semantic
content of a sentence. So, we just use the identity matrix as the universe, U = I ∈
R

d×d , so that v̌wi
∈ Rd is

v̌wi
= I · uwi

= I · W� · vwi
(10)

where this approach generates d-dimensional word embeddings and sentence
embeddings.

Static Fuzzy Bag-of-Words 199

3.2.3 Multivariate Analysis

The same idea moves our multivariate analysis proposal. Judging by previous
results, word embeddings aggregated correctly might be sufficient to provide a
semantically valid representation of a sentence.

What can bring better results might be as simple as roto-translate the reference
system of the embedding representation. In this sense, we propose to use to compute
the fuzzy membership, and hence the fuzzy Jaccard similarity index, over these
dimensions resulting from roto-translation, expecting that this “new perspective”
will expose better the semantic content. So, defining U = M, where M ∈ Rd×d is
the transformation matrix, we have that v̌wi

∈ Rd is

v̌wi
= M · uwi

= M · W� · vwi
(11)

thus yielding d-dimensional word and sentence embeddings.

3.2.4 Vector Significance

Early analysis of shallow word embedding models showed that word vectors
providing stronger semantic representation have a higher norm [34]. Moreover,
when comparing the norm of the vectors with their term frequency within the
training corpus, it is possible to notice that highly frequent terms, as well as rare
one, have considerably smaller norm.

This concept is not anew. In fact, in the term frequency-inverse document
frequency (TF-IDF) approach for document representation, rare words, as well
as highly frequent words, should give little if any contribution to the meaning
representation [7, 20]. For similar reasons, in data mining and retrieval settings,
stop words, which are the highly frequent words in a corpus, are discarded from the
document analysis.

We propose to leverage the word embeddings with a significance level above
a certain (custom) threshold to build the universe matrix, to retain only the most
relevant vectors. Defining U = L�, where L ∈ Rd×d is the matrix whose columns
are the first n word vectors in decreasing Euclidean norm ‖uwi

‖2 order, we have
that v̌wi

∈ Rd is

v̌wi
= L� · uwi

=
[
. . . , uwj

, . . .

]� · uwi
= L� · W� · vwi

(12)

where the resulting sentence embeddings have as many dimensions as the number
n of retained word vectors.

200 M. Muffo et al.

4 Experiments

In order to find the best solution in terms of word embedding matrix and universe
matrix, we explored various possibilities. Then, to measure the goodness of our
sentence embeddings, we leveraged a series of STS tasks and compared the results
with the preceding models.

4.1 Word Embeddings

For what concerns the word embeddings, we have decided to work with a selection
of four models:

• Word2Vec, with 300-dimensional embeddings
• GloVe, with 300-dimensional embeddings
• fastText, with 300-dimensional embeddings
• Sent2Vec, with 700-dimensional embeddings

As shown by the word embedding models list, we are also employing a Sent2Vec
sentence embedding model. The embedding matrix of this model can be used for
word embeddings too. During the experiments, we focused on the universe matrix
construction. For this reason, we relied on pre-trained models for word embeddings,
available on the web.

4.2 Universe Matrices

The universe matrices we considered are divided into four buckets, as described in
Sect. 3.2.

4.2.1 Clustering

Universe matrices built using clustering leverage four different algorithms: k-means,
spherical k-means, DBSCAN and HDBSCAN.

We selected k-means and spherical k-means because they usually lead to good
results; the latter was specifically designed for textual purposes, with low demand
in time and computational resources. For all algorithms, we considered the same
values for k (the number of centroids), which were 100, 1000, 10,000 and 25,000.

For all the values of k, we performed clustering on different subsets of the
vocabulary: k-means was applied on the whole English vocabulary as well as to
the top 100,000 frequently used words subset, while spherical k-means was applied

Static Fuzzy Bag-of-Words 201

to the subset of the first 50,000 frequently used words (to reduce computational
time).

We also explored density-based algorithms (DBSCAN and HDBSCAN), which
do not require defining in advance the number of clusters, using Euclidean and
cosine distance between the word embedding.

For what concerns DBSCAN with Euclidean distance, we varied the radius of
the neighbourhood ε between 3 and 8 and worked over the same two subsets
considered for k-means, while the cosine distance ε was between 0.1 and 0.55,
and it was applied over the subset of the first 50, 000 frequently used words (for
computational reasons, as we did for spherical k-means). Concerning HDBSCAN,
we varied the smallest size grouping of clusters in the set {2, 4, 30, 50, 100} and
the minimum neighbourhood size of core samples in the set {1, 2, 5, 10, 50}. We
considered this latter density-based algorithm since basic DBSCAN happens to fail
with high-dimensional data.

4.2.2 Identity

This approach consists of using the identity matrix as the universe, and in this
way, the singletons we use to compute the fuzzy membership are the dimensions
of the word embeddings, which corresponds to the learnt features. This is the most
lightweight method as it just requires to compute the word embeddings of a sentence
and then the fuzzy membership over the exact d dimensions.

4.2.3 Multivariate Analysis

We adopted the principal component analysis (PCA) to get a rotation matrix to serve
as a universe matrix to the SFBoW. In fact, through PCA, the d-dimensional word
embedding vectors are decomposed along with the d orthogonal directions of their
variance. These components are then reordered to decrease explained variance and
represent our fuzzy semantic sets.

The principal component of the reduced word embedding matrix W̌ is described
by the matrix T = P� · W̌, where P is a d × d matrix whose columns are the
eigenvectors of the matrix W̌� · W̌. With our approach, the matrix P�, sometimes
called the whitening or sphering transformation matrix, serves as universe matrix
U. In this way, the SFBoW embedding of a word singleton becomes

v̌wi
= P� · uwi

= P� · W̌� · vwi
(13)

where, as for the clustering approach, we experimented with both the whole
vocabulary and the most 100,000 used words.

202 M. Muffo et al.

4.2.4 Vector Significance

As premised, we considered word embeddings norm to identify the significance of
a term. We composed the universe matrix sorting the word vectors in decreasing
Euclidean norm order and taking the first n. During the experiments, we varied n in
the set {100, 1000, 10, 000, 25, 000}.

4.3 Data

We evaluated our SFBoW through a series of reference benchmarks; we selected the
STS benchmark series, one of the tasks of the International Workshop on Semantic
Evaluation (SemEval).2

SemEval is a series of evaluations on computational semantics; among these,
the semantic textual similarity (STS) benchmark3 [13] has become a reference
for scoring of sentence embedding algorithms. All the previous models we are
considering for comparison have been benched against STS; this is because
the benchmark highlights a model capability to provide a meaningful semantic
representation by scoring the correlation between model’s and human’s judgements.
For this reason, and also to allow comparisons, we decided to evaluate SFBoW on
STS.

We worked only on the English language, using the editions of STS from 2012
to 2016 [1–5]. Each year, a collection of corpora coming from different sources has
been created and manually labelled; Table 1 shows a reference, in terms of support,
for each edition. Thanks to the high number of samples, we are confident about the
robustness of our results.

To preprocess the input text strings, we lowercased each character and tokenised
in correspondence of spaces and punctuation symbols. Then, from the resulting
sequence, we retained only the tokens for which a corresponding embedding was
found in the vocabulary known by the model. Finally, we calculated the SFBoW
sentence embedding from the word embeddings of such tokens.

The samples constituting the corpora are a pair of sentences with a human-given
similarity score (the gold labels). The provided score is a real-valued index obtained
averaging those of multiple crowd-sourced workers and is scaled in a [0, 1] ∈ R

Table 1 Support of the corpora of the STS benchmark series

STS edition 2012 2013 2014 2015 2016

No. of sentence pairs 5250 2250 3750 3000 1186

2 https://aclweb.org/aclwiki/SemEval_Portal.
3 https://ixa2.si.ehu.eus/stswiki/index.php/Main_Page.

 -1446 57047 a -1446 57047
a

https://aclweb.org/aclwiki/SemEval_Portal

 -1446 58376 a -1446 58376 a

https://ixa2.si.ehu.eus/stswiki/index.php/Main_Page

Static Fuzzy Bag-of-Words 203

interval. The final goal of our work is to provide a model able to provide a score as
close as possible to that of humans.

4.4 Evaluation Approach

To assess the quality of our model, we used it to compute the similarity score
between the sentence pairs provided by the five tasks, and we compared the output
with the target labels. The results are computed as the correlation between the
similarity score produced by SFBoW and the human one, using Spearman’s ρ

measure [32]. SFBoW employs fuzzy Jaccard similarity index [42] to compute word
similarity.

To have terms of comparison, we establish a baseline through the most straight-
forward models possible, the average word embedding in a sentence, leveraging
three different word embedding models: Word2Vec, GloVe and fastText. We also
provide results from more complex models: SIF weighting (applied to GloVe),
Sent2Vec, DynaMax (built using Word2Vec, GloVe and fastText) and Sentence-
BERT.

All the embedding models except DynaMax and the baselines are scored using
cosine similarity; DynaMax scores are obtained using fuzzy Jaccard similarity
index.

5 Results

To analyse the results of the considered reference embeddings and the approaches
to build the universe matrix, we reported, respectively, the aggregated Spearman’s
ρ correlation in the STS benchmark in Tables 2 and 3. Through these two tables,
we highlight how the choice of an embedding model rather than a universe
matrix approach affected the overall SFBoW performances in the STS benchmark.
Additionally, we report a comparison in terms of Spearman’s ρ correlation in
the STS benchmark of our SFBoW against other sentence embedding models in
Table 4. The comparison values, reported in the last three rows of Table 4, belong
to the SFBoW configurations that achieved the best score, among the variants we
considered for the experiments, in at least one task.

5.1 Individual SFBoW Results

As reported in Table 4, fastText yields the best absolute results among the four-word
embedding models, confirming the results of DynaMax. The best scores in terms of
universe matrix are achieved either with identity matrix or with PCA rotation matrix,

204 M. Muffo et al.

Table 2 SFBoW aggregated results over the STS benchmark. Results are aggregated on the
employed word embedding model. Total scores are weighted averages across the STS editions and
are expressed as avg.±std. Bold and underlined values represent, respectively, the first and second
best results of a column

Reference Results (Spearman’s ρ)

embedding STS Total

model 2012 2013 2014 2015 2016

Word2Vec 51.25 ± 4.79 42.98 ± 5.27 57.62 ± 5.92 62.74 ± 6.90 62.81 ± 5.91 54.71 ± 5.63

GloVe 52.71 ± 5.14 43.40 ± 5.36 54.47 ± 7.20 61.55 ± 7.47 62.61 ± 6.32 54.26 ± 6.21

fastText 54.00 ± 4.90 44.16 ± 4.86 54.89 ± 7.60 61.62 ± 7.57 62.13 ± 7.31 54.88 ± 6.26

Sent2Vec 53.13 ± 1.46 41.48 ± 2.42 59.17 ± 2.70 64.81 ± 2.97 62.81 ± 2.18 55.91 ± 2.25

Table 3 SFBoW aggregated results over the STS benchmark. Results are aggregated on the universe
matrix building approach. Total scores are weighted averages across the STS editions and are
expressed as avg.±std. Bold and underlined values represent, respectively, the first and second best
results of a column

Universe Results (Spearman’s ρ)

matrix STS Total

approach 2012 2013 2014 2015 2016

Clustering 53.04 ± 3.60 42.69 ± 4.17 56.42 ± 5.45 62.81 ± 5.57 62.62 ± 4.42 54.99 ± 4.58

Identity 56.90 ± 3.87 49.45 ± 3.61 64.56 ± 2.20 70.59 ± 1.82 69.33 ± 4.20 61.29 ± 3.05

Multivariate
analysis

57.53 ± 3.27 48.64 ± 3.44 64.26 ± 1.77 70.20 ± 1.89 69.80 ± 4.02 61.27 ± 2.72

Vector
significance

48.49 ± 3.53 39.61 ± 2.48 51.05 ± 5.29 56.51 ± 5.36 57.18 ± 4.53 50.04 ± 4.24

highlighting how the features yield by word embeddings provide a better semantic
content representation of sentences.

To have a better understanding of the results and the performances of different
universe matrices, we broke down the results along two axes. On one side, we
aggregated the results distinguishing among the different embedding models (see
Table 2), and on the other, we distinguished among the different approaches to build
the universe matrix (see Table 3).

From Table 2, we noticed that, despite being fastText the word embedding
model yielding the best performances, Sent2Vec achieved the best results on
average. While the remaining models achieved on average very similar scores—all
differences in Spearman’s ρ are < 1—Sent2Vec detached from fastText (the second
best model on average) with a difference > 1 in Spearman’s ρ score. We hypothesise
that this is due to the fact that Sent2Vec, different from the other embeddings,
is actually a parametric sentence embedding model, which yields embeddings for
single words. However, despite being different, the average results of all models are
quite close, especially if compared with the differences found among average the
universe matrix results.

Static Fuzzy Bag-of-Words 205

Table 4 Comparison of results over the STS benchmark. SFBoW models are in the last block.
Total scores are weighted averages across the STS editions and are expressed as avg.±std. Bold
and underlined values represent, respectively, the first and second best results of a column.
Inference time refers to the time, in seconds, to carry out an evaluation on the entire STS corpus

Results (Spearman’s ρ)

STS

Model 2012 2013 2014 2015 2016 Total Analysis time [s]

Word2Veca 55.46 58.23 64.05 67.97 66.28 61.21 ± 5.04 –

GloVea 53.28 50.76 55.63 59.22 57.88 54.99 ± 2.80 –

fastTexta 58.82 58.83 63.42 69.05 68.24 62.65 ± 4.20 –

SIF weightingb 56.04 62.74 64.29 69.89 70.71 62.84 ± 5.54 –

Sent2Vec 56.26 57.02 65.82 74.46 69.01 63.21 ± 7.13 –

DynaMaxc 55.95 60.17 65.32 73.93 71.46 63.53 ± 6.92 –

DynaMaxb 57.62 55.18 63.56 70.40 71.36 62.25 ± 5.85 –

DynaMaxd 61.32 61.71 66.87 76.51 74.71 66.71 ± 6.10 –

Sentence-BERT 72.27 78.46 74.90 80.99 76.25 75.81 ± 3.27 218.3

SFBoWd,e,f 61.31 51.21 67.47 72.90 73.88 64.55 ± 7.20 56.5

SFBoWd,g,h 61.42 51.36 66.44 72.74 73.72 64.32 ± 7.00 56.8

SFBoWd,g,i 60.03 51.96 66.36 72.39 73.25 63.81 ± 6.93 56.6
a Used as baseline
b Built upon a GloVe model for word embeddings
c Built upon a Word2Vec model for word embeddings
d Built upon a fastText model for word embeddings
e Best average score
f Universe matrix is the identity matrix
g Universe matrix is the PCA projection matrix
h Universe matrix is built from the English vocabulary
i Universe matrix is built from the top 100,000 most frequent words

From Table 3, instead, we noticed that there is a clear difference in performances
among the considered approaches. Identity matrix and PCA universe matrices
consistently outperform all the other considered approaches, achieving also very
close scores between them—the difference between their average Spearman’s ρ is
only 0.02. Moreover, identity and PCA achieve scores very similar to the SFBoW
predecessor (see Table 4). We hypothesise that this is due to the fact that these
two techniques preserve the features extracted by the embedding models, which are
very robust, as observed by other non-parametric sentence embedding models like
SIF weighting.

Clustering, instead, presents way worse performances: the drop in Spearman’s ρ

is > 5 with respect to identity and PCA. Nevertheless, clustering scores are in line
with the single word embedding model’s averages.

Vector significance turned out to provide the worst overall results. We hypothe-
sise it is due to the fact that the significance is not strongly related to the semantic
representative capabilities.

206 M. Muffo et al.

5.2 Comparison with Other Models

As premised, we compare our results with three baseline models and other sentence
embedding approaches, all reported in Table 4. The first group of scores is from the
baselines, the second one is from other sentence embedding models, and, finally, the
last group is from our SFBoW model. Additionally, the best values in each column
are highlighted in bold, while the second ones are underlined.

The key features about our model, which can be derived from the results, are the
following:

• Low number of parameters
• Faster inference time
• No training phase
• Results (in terms of ρ) comparable to similar models
• Fixed-size and easily re-usable embeddings

About the number of parameters, we can notice that even if Sentence-BERT
outperforms all the other models in every task, it relies on a much deeper feature
extraction model and was trained on a much bigger corpus. Moreover, this model
requires a considerably higher computational effort without an equally consistent
difference in performances. BERT alone requires more than 100 million parameters
just for its base version (and above 300 million for the large one), hence taking a
lot of (memory) space, not to mention the amount of time necessary for the self-
supervised training and the fine-tuning. On the other hand, non-parametric models
(like SIF, DynaMax or SFBoW) or shallow parametric ones (Sent2Vec) require
fewer parameters: just those for the embedding matrix |V| × d.

A similar discourse applies to inference speed. Even though Sentence-BERT
achieves the best results on all tasks, SFBoW turns out to be four times faster at
inferring the similarity, as can be noticed by the reported analysis times.

Being a non-parametric model, SFBoW does not require a training phase. It may
require clustering the embeddings to build the universe matrix, but our experiments
showed that clustering does not yield good results. Because of its simplicity, SFBoW
can generally be easily deployed, requiring only the word embedding model to
compute the sentence representation. Notice also that the SFBoW algorithm is
agnostic to the word embedding model.

Regarding the results we obtained, compared to other models, SFBoW provided
interesting figures: either considering the majority of tasks with higher Spearman’s
ρ rank or higher average score, it outperforms all the baselines, as well as SIF
weighting and Sent2Vec. Finally, we see as our model performs closely to its
predecessor, especially considering the weighted average of the results of the single
tasks. SFBoW bests out DynaMax in STS 2014 and gets almost the same results
in STS 2012 (the difference is 0.01), which are the first two corpora in terms of
samples; however, the difference in STS 2013 goes in favour of DynaMax.

About the comparison against DynaMax, it is worth underlining a few additional
points. Firstly, in both cases, fuzzy Jaccard similarity correlates better with human

Static Fuzzy Bag-of-Words 207

judgement as a measure of sentence similarity. Secondly, both models manage to
achieve better results when using fastText word embedding, possibly underling
that they lend better than other models at sentence-level combination; the baseline
performances also show this.

Finally, we remind that SFBoW generates embeddings with a fixed size, resulting
in much easier applicability with respect to DynaMax.

6 Conclusion

In this paper, we presented and evaluated the SFBoW model for sentence embed-
ding. This model leverages the approaches proposed by the FBoW and DynaMax
models, to compute static embeddings (in the sense of fixed-size embeddings). To
extract such static embeddings, we rely on a static universe matrix. This matrix
can be constructed in many different ways; thus, we explored them in order to
find the most suitable. We considered approaches based on clustering, identity,
multivariate analysis and vector significance. To evaluate the possible approaches,
we benchmarked the model on the STS benchmark.

We divided the evaluation into an individual one, to observe the different results
of the considered embeddings and approaches for the SFBoW universe matrix, and
a compared one, to observe the results of SFBoW with respect to those of other
sentence embedding models.

From the individual analysis, we derived that fastText and Sent2Vec are the two
most suitable embeddings for our model and that identity and PCA are the most
suitable universe matrix building approaches. From the compared evaluation, we
derived that even if SFBoW does not outperform state-of-the-art models on STS, it
performs comparably to DynaMax, its predecessor, and, different from DynaMax,
yields re-usable embeddings, because of their fixed dimensionality. Due to its low
computation demand (especially if compared with state-of-the-art Sentence-BERT)
and re-usability of embeddings, SFBoW can be seen as a reasonable solution,
especially for scenarios where low computational capabilities are essential.

In the future, we plan to carry out a deeper analysis of the results to identify
the reasons behind the different scores achieved by the universe matrix approaches.
Another idea for future evolution we considered is to combine the approaches we
analysed to build the universe matrix, in order to extract a more robust one. For
example, it would be possible to cluster the vectors with a significance above a
certain threshold to obtain, possibly, better results.

Acknowledgments This work was partially supported by the European Union’s Horizon 2020
project WorkingAge (grant agreement no. 826232).

208 M. Muffo et al.

References

1. Agirre, E., Cer, D.M., Diab, M.T., Gonzalez-Agirre, A.: Semeval-2012 task 6: A pilot on
semantic textual similarity. In: Agirre, E., Bos, J., Diab, M.T. (eds.) Proceedings of the 6th
International Workshop on Semantic Evaluation, SemEval@NAACL-HLT 2012, Montréal,
Canada, June 7-8, 2012, pp. 385–393. The Association for Computer Linguistics (2012).
https://www.aclweb.org/anthology/S12-1051/

2. Agirre, E., Cer, D.M., Diab, M.T., Gonzalez-Agirre, A., Guo, W.: *sem 2013 shared task:
Semantic textual similarity. In: Diab, M.T., Baldwin, T., Baroni, M. (eds.) Proceedings of the
Second Joint Conference on Lexical and Computational Semantics, *SEM 2013, June 13-14,
2013, Atlanta, Georgia, USA, pp. 32–43. Association for Computational Linguistics (2013).
https://www.aclweb.org/anthology/S13-1004/

3. Agirre, E., Banea, C., Cardie, C., Cer, D.M., Diab, M.T., Gonzalez-Agirre, A., Guo, W.,
Mihalcea, R., Rigau, G., Wiebe, J.: Semeval-2014 task 10: Multilingual semantic textual
similarity. In: Nakov, P., Zesch, T. (eds.) Proceedings of the 8th International Workshop on
Semantic Evaluation, SemEval@COLING 2014, Dublin, Ireland, August 23-24, 2014, pp. 81–
91. The Association for Computer Linguistics (2014). https://doi.org/10.3115/v1/s14-2010

4. Agirre, E., Banea, C., Cardie, C., Cer, D.M., Diab, M.T., Gonzalez-Agirre, A., Guo, W., Lopez-
Gazpio, I., Maritxalar, M., Mihalcea, R., Rigau, G., Uria, L., Wiebe, J.: Semeval-2015 task
2: Semantic textual similarity, english, spanish and pilot on interpretability. In: Cer, D.M.,
Jurgens, D., Nakov, P., Zesch, T. (eds.) Proceedings of the 9th International Workshop on
Semantic Evaluation, SemEval@NAACL-HLT 2015, Denver, Colorado, USA, June 4-5, 2015,
pp. 252–263. The Association for Computer Linguistics (2015). https://doi.org/10.18653/v1/
s15-2045

5. Agirre, E., Banea, C., Cer, D.M., Diab, M.T., Gonzalez-Agirre, A., Mihalcea, R., Rigau, G.,
Wiebe, J.: Semeval-2016 task 1: Semantic textual similarity, monolingual and cross-lingual
evaluation. In: Bethard, S., Cer, D.M., Carpuat, M., Jurgens, D., Nakov, P., Zesch, T. (eds.)
Proceedings of the 10th International Workshop on Semantic Evaluation, SemEval@NAACL-
HLT 2016, San Diego, CA, USA, June 16-17, 2016, pp. 497–511. The Association for
Computer Linguistics (2016). https://doi.org/10.18653/v1/s16-1081

6. Arora, S., Liang, Y., Ma, T.: A simple but tough-to-beat baseline for sentence embeddings. In:
5th International Conference on Learning Representations, ICLR 2017, Toulon, France, April
24–26, 2017, Conference Track Proceedings. OpenReview.net (2017). https://openreview.net/
forum?id=SyK00v5xx

7. Baeza-Yates, R., Ribeiro-Neto, B.A.: Modern Information Retrieval - The Concepts and
Technology Behind Search, Second edition. Pearson Education Ltd., Harlow, England (2011).
http://www.mir2ed.org/

8. Baroni, M., Dinu, G., Kruszewski, G.: Don’t count, predict! a systematic comparison of
context-counting vs. context-predicting semantic vectors. In: Proceedings of the 52nd Annual
Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 238–
247. Association for Computational Linguistics, Baltimore, Maryland (2014). https://doi.org/
10.3115/v1/P14-1023. https://aclanthology.org/P14-1023

9. Bengio, Y., Courville, A.C., Vincent, P.: Representation learning: A review and new perspec-
tives. IEEE Trans. Pattern Anal. Mach. Intell. 35(8), 1798–1828 (2013). https://doi.org/10.
1109/TPAMI.2013.50

10. Bengio, Y., LeCun, Y., Hinton, G.E.: Deep learning for AI. Commun. ACM 64(7), 58–65
(2021). https://doi.org/10.1145/3448250

11. Bojanowski, P., Grave, E., Joulin, A., Mikolov, T.: Enriching word vectors with subword
information. Trans. Assoc. Comput. Linguist. 5, 135–146 (2017). https://transacl.org/ojs/
index.php/tacl/article/view/999

12. Brown, T.B., Mann, B., Ryder, N., Subbiah, M., Kaplan, J., Dhariwal, P., Neelakantan, A.,
Shyam, P., Sastry, G., Askell, A., Agarwal, S., Herbert-Voss, A., Krueger, G., Henighan,
T., Child, R., Ramesh, A., Ziegler, D.M., Wu, J., Winter, C., Hesse, C., Chen, M., Sigler,

 -563 7143 a -563 7143 a

https://www.aclweb.org/anthology/S12-1051/

-563 12678 a -563 12678 a

https://www.aclweb.org/anthology/S13-1004/

 20056 18213 a 20056 18213 a

https://doi.org/10.3115/v1/s14-2010

 24291 24854 a 24291
24854 a

https://doi.org/10.18653/v1/s15-2045
https://doi.org/10.18653/v1/s15-2045

 10936 32603 a 10936
32603 a

https://doi.org/10.18653/v1/s16-1081

26292 35924 a 26292 35924 a

https://openreview.net/forum?id=SyK00v5xx
https://openreview.net/forum?id=SyK00v5xx

 -563 40352 a -563
40352 a

http://www.mir2ed.org/

29283 44780 a 29283 44780 a

https://doi.org/10.3115/v1/P14-1023
https://doi.org/10.3115/v1/P14-1023

 8248 45887 a 8248 45887 a

https://aclanthology.org/P14-1023

 28107 48101 a 28107 48101
a

https://doi.org/10.1109/TPAMI.2013.50
https://doi.org/10.1109/TPAMI.2013.50

 2520 51422 a 2520 51422
a

https://doi.org/10.1145/3448250

26200 53635 a 26200 53635 a

https://transacl.org/ojs/index.php/tacl/article/view/999
https://transacl.org/ojs/index.php/tacl/article/view/999

References 209

E., Litwin, M., Gray, S., Chess, B., Clark, J., Berner, C., McCandlish, S., Radford, A.,
Sutskever, I., Amodei, D.: Language models are few-shot learners. In: Larochelle, H., Ranzato,
M., Hadsell, R., Balcan, M., Lin, H. (eds.) Advances in Neural Information Processing
Systems 33: Annual Conference on Neural Information Processing Systems 2020, NeurIPS
2020, December 6–12, 2020, virtual (2020). https://proceedings.neurips.cc/paper/2020/hash/
1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html

13. Cer, D.M., Diab, M.T., Agirre, E., Lopez-Gazpio, I., Specia, L.: Semeval-2017 task 1: Semantic
textual similarity multilingual and crosslingual focused evaluation. In: Bethard, S., Carpuat,
M., Apidianaki, M., Mohammad, S.M., Cer, D.M., Jurgens, D. (eds.) Proceedings of the 11th
International Workshop on Semantic Evaluation, SemEval@ACL 2017, Vancouver, Canada,
August 3–4, 2017, pp. 1–14. Association for Computational Linguistics (2017)

14. Collobert, R., Weston, J., Bottou, L., Karlen, M., Kavukcuoglu, K., Kuksa, P.P.: Natural
language processing (almost) from scratch. J. Mach. Learn. Res. 12, 2493–2537 (2011). http://
dl.acm.org/citation.cfm?id=2078186

15. Devlin, J., Chang, M., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional
transformers for language understanding. In: Burstein, J., Doran, C., Solorio, T. (eds.)
Proceedings of the 2019 Conference of the North American Chapter of the Association for
Computational Linguistics: Human Language Technologies, NAACL-HLT 2019, Minneapolis,
MN, USA, June 2–7, 2019 (Volume 1, Long and Short Papers), pp. 4171–4186. Association
for Computational Linguistics (2019). https://doi.org/10.18653/v1/n19-1423

16. Kiros, R., Zhu, Y., Salakhutdinov, R., Zemel, R.S., Urtasun, R., Torralba, A., Fidler,
S.: Skip-thought vectors. In: Cortes, C., Lawrence, N.D., Lee, D.D., Sugiyama, M.,
Garnett, R. (eds.) Advances in Neural Information Processing Systems 28: Annual Con-
ference on Neural Information Processing Systems 2015, December 7–12, 2015, Montreal,
Quebec, Canada, pp. 3294–3302 (2015). https://proceedings.neurips.cc/paper/2015/hash/
f442d33fa06832082290ad8544a8da27-Abstract.html

17. LeCun, Y., Bengio, Y., Hinton, G.E.: Deep learning. Nature 521(7553), 436–444 (2015).
https://doi.org/10.1038/nature14539

18. Liu, Q., Kusner, M.J., Blunsom, P.: A survey on contextual embeddings. CoRR
abs/2003.07278 (2020). https://arxiv.org/abs/2003.07278

19. Liu, Z., Lin, Y., Sun, M.: Representation Learning for Natural Language Processing. Springer
(2020). https://doi.org/10.1007/978-981-15-5573-2

20. Manning, C.D., Raghavan, P., Schütze, H.: Introduction to Information Retrieval. Cambridge
University Press (2008). https://doi.org/10.1017/CBO9780511809071. https://nlp.stanford.
edu/IR-book/pdf/irbookprint.pdf

21. Mikolov, T., Chen, K., Corrado, G., Dean, J.: Efficient estimation of word representations
in vector space. In: Bengio, Y., LeCun, Y. (eds.) 1st International Conference on Learning
Representations, ICLR 2013, Scottsdale, Arizona, USA, May 2–4, 2013, Workshop Track
Proceedings (2013). http://arxiv.org/abs/1301.3781

22. Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed represen-
tations of words and phrases and their compositionality. In: Burges, C.J.C., Bot-
tou, L., Ghahramani, Z., Weinberger, K.Q. (eds.) Advances in Neural Information Pro-
cessing Systems 26: 27th Annual Conference on Neural Information Processing Sys-
tems 2013. Proceedings of a meeting held December 5–8, 2013, Lake Tahoe, Nevada,
United States, pp. 3111–3119 (2013). https://proceedings.neurips.cc/paper/2013/hash/
9aa42b31882ec039965f3c4923ce901b-Abstract.html

23. Osgood, C.E., Suci, G.J., Tannenbaum, P.H.: The measurement of meaning. Am. J. Sociol.
63(5), 550–551 (1958)

24. Pagliardini, M., Gupta, P., Jaggi, M.: Unsupervised learning of sentence embeddings using
compositional n-gram features. In: Walker, M.A., Ji, H., Stent, A. (eds.) Proceedings of
the 2018 Conference of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies, NAACL-HLT 2018, New Orleans, Louisiana,
USA, June 1-6, 2018 (Volume 1, Long Papers), pp. 528–540. Association for Computational
Linguistics (2018). https://doi.org/10.18653/v1/n18-1049

 16855 4121 a 16855 4121 a

https://proceedings.neurips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html

32586 12977 a 32586 12977 a

http://dl.acm.org/citation.cfm?id=2078186
http://dl.acm.org/citation.cfm?id=2078186

14098 20726 a 14098 20726 a

https://doi.org/10.18653/v1/n19-1423

 16855 26260 a 16855 26260
a

https://proceedings.neurips.cc/paper/2015/hash/f442d33fa06832082290ad8544a8da27-Abstract.html
https://proceedings.neurips.cc/paper/2015/hash/f442d33fa06832082290ad8544a8da27-Abstract.html

 -563 29581 a -563 29581 a

https://doi.org/10.1038/nature14539

 8845 31795 a 8845 31795
a

https://arxiv.org/abs/2003.07278

 2520
34009 a 2520 34009 a

https://doi.org/10.1007/978-981-15-5573-2

 9565 36223 a 9565 36223
a

https://doi.org/10.1017/CBO9780511809071

 27464 36223 a 27464
36223 a

https://nlp.stanford.edu/IR-book/pdf/irbookprint.pdf
https://nlp.stanford.edu/IR-book/pdf/irbookprint.pdf

 7354 41758 a 7354 41758
a

http://arxiv.org/abs/1301.3781

 16855 48400 a 16855 48400
a

https://proceedings.neurips.cc/paper/2013/hash/9aa42b31882ec039965f3c4923ce901b-Abstract.html
https://proceedings.neurips.cc/paper/2013/hash/9aa42b31882ec039965f3c4923ce901b-Abstract.html

 6937 58362 a 6937 58362
a

https://doi.org/10.18653/v1/n18-1049

210 M. Muffo et al.

25. Pennington, J., Socher, R., Manning, C.D.: Glove: Global vectors for word representation.
In: Moschitti, A., Pang, B., Daelemans, W. (eds.) Proceedings of the 2014 Conference on
Empirical Methods in Natural Language Processing, EMNLP 2014, October 25–29, 2014,
Doha, Qatar, A meeting of SIGDAT, a Special Interest Group of the ACL, pp. 1532–1543.
ACL (2014). https://doi.org/10.3115/v1/d14-1162

26. Radford, A., Narasimhan, K., Salimans, T., Sutskever, I.: Improving language understanding
by generative pre-training. OpenAI blog 1(11), 12 (2018). https://openai.com/blog/language-
unsupervised/

27. Radford, A., Wu, J., Child, R., Luan, D., Amodei, D., Sutskever, I.: Language models are
unsupervised multitask learners. OpenAI blog 1(8), 9 (2019). https://openai.com/blog/better-
language-models/

28. Raffel, C., Shazeer, N., Roberts, A., Lee, K., Narang, S., Matena, M., Zhou, Y., Li, W., Liu,
P.J.: Exploring the limits of transfer learning with a unified text-to-text transformer. J. Mach.
Learn. Res. 21, 140:1–140:67 (2020). http://jmlr.org/papers/v21/20-074.html

29. Rajpurkar, P., Zhang, J., Lopyrev, K., Liang, P.: Squad: 100, 000+ questions for machine
comprehension of text. In: Su, J., Carreras, X., Duh, K. (eds.) Proceedings of the 2016
Conference on Empirical Methods in Natural Language Processing, EMNLP 2016, Austin,
Texas, USA, November 1–4, 2016, pp. 2383–2392. The Association for Computational
Linguistics (2016). https://doi.org/10.18653/v1/d16-1264

30. Rajpurkar, P., Jia, R., Liang, P.: Know what you don’t know: Unanswerable questions for squad.
In: Gurevych, I., Miyao, Y. (eds.) Proceedings of the 56th Annual Meeting of the Association
for Computational Linguistics, ACL 2018, Melbourne, Australia, July 15–20, 2018, Volume 2:
Short Papers, pp. 784–789. Association for Computational Linguistics (2018). https://doi.org/
10.18653/v1/P18-2124. https://aclanthology.org/P18-2124/

31. Reimers, N., Gurevych, I.: Sentence-bert: Sentence embeddings using siamese bert-networks.
In: Inui, K., Jiang, J., Ng, V., Wan, X. (eds.) Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the 9th International Joint Conference on Natural
Language Processing, EMNLP-IJCNLP 2019, Hong Kong, China, November 3–7, 2019, pp.
3980–3990. Association for Computational Linguistics (2019). https://doi.org/10.18653/v1/
D19-1410

32. Reimers, N., Beyer, P., Gurevych, I.: Task-oriented intrinsic evaluation of semantic textual sim-
ilarity. In: Proceedings of COLING 2016, the 26th International Conference on Computational
Linguistics: Technical Papers, pp. 87–96. The COLING 2016 Organizing Committee, Osaka,
Japan (2016). https://aclanthology.org/C16-1009

33. Salton, G.: The SMART Retrieval System: Experiments in Automatic Document Processing.
Prentice-Hall Series in Automatic Computation. Prentice-Hall (1971)

34. Schakel, A.M.J., Wilson, B.J.: Measuring word significance using distributed representations
of words. CoRR abs/1508.02297 (2015). http://arxiv.org/abs/1508.02297

35. Sordoni, A., Galley, M., Auli, M., Brockett, C., Ji, Y., Mitchell, M., Nie, J.Y., Gao, J., Dolan,
B.: A neural network approach to context-sensitive generation of conversational responses.
In: Proceedings of the 2015 Conference of the North American Chapter of the Association
for Computational Linguistics: Human Language Technologies, pp. 196–205. Association for
Computational Linguistics, Denver, Colorado (2015). https://doi.org/10.3115/v1/N15-1020.
https://aclanthology.org/N15-1020

36. Sutskever, I., Vinyals, O., Le, Q.V.: Sequence to sequence learning with neural net-
works. In: Ghahramani, Z., Welling, M., Cortes, C., Lawrence, N.D., Weinberger,
K.Q. (eds.) Advances in Neural Information Processing Systems 27: Annual Confer-
ence on Neural Information Processing Systems 2014, December 8–13, 2014, Montreal,
Quebec, Canada, pp. 3104–3112 (2014). https://proceedings.neurips.cc/paper/2014/hash/
a14ac55a4f27472c5d894ec1c3c743d2-Abstract.html

37. Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L.,
Polosukhin, I.: Attention is all you need. In: Guyon, I., von Luxburg, U., Bengio, S., Wallach,
H.M., Fergus, R., Vishwanathan, S.V.N., Garnett, R. (eds.) Advances in Neural Information
Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017,

 4599 4121 a 4599 4121 a

https://doi.org/10.3115/v1/d14-1162

 21894 6335 a 21894 6335 a

https://openai.com/blog/language-unsupervised/
https://openai.com/blog/language-unsupervised/

 23167 9656 a 23167 9656 a

https://openai.com/blog/better-language-models/
https://openai.com/blog/better-language-models/

 13940 14084 a 13940
14084 a

http://jmlr.org/papers/v21/20-074.html

 6937
19619 a 6937 19619 a

https://doi.org/10.18653/v1/d16-1264

 29283 24046 a 29283 24046
a

https://doi.org/10.18653/v1/P18-2124
https://doi.org/10.18653/v1/P18-2124

 8718 25153 a 8718 25153
a

https://aclanthology.org/P18-2124/

 24291 30688 a 24291
30688 a

https://doi.org/10.18653/v1/D19-1410
https://doi.org/10.18653/v1/D19-1410

 4897
36223 a 4897 36223 a

https://aclanthology.org/C16-1009

 15317 40651 a 15317 40651 a

http://arxiv.org/abs/1508.02297

 20655 46186 a 20655
46186 a

https://doi.org/10.3115/v1/N15-1020

 -563 47293 a -563 47293 a

https://aclanthology.org/N15-1020

 16855 52827
a 16855 52827 a

https://proceedings.neurips.cc/paper/2014/hash/a14ac55a4f27472c5d894ec1c3c743d2-Abstract.html
https://proceedings.neurips.cc/paper/2014/hash/a14ac55a4f27472c5d894ec1c3c743d2-Abstract.html

References 211

December 4–9, 2017, Long Beach, CA, USA, pp. 5998–6008 (2017). https://proceedings.
neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html

38. Wang, A., Singh, A., Michael, J., Hill, F., Levy, O., Bowman, S.R.: GLUE: A multi-task
benchmark and analysis platform for natural language understanding. In: Linzen, T., Chrupala,
G., Alishahi, A. (eds.) Proceedings of the Workshop: Analyzing and Interpreting Neural
Networks for NLP, BlackboxNLP@EMNLP 2018, Brussels, Belgium, November 1, 2018, pp.
353–355. Association for Computational Linguistics (2018). https://doi.org/10.18653/v1/w18-
5446

39. Wang, A., Pruksachatkun, Y., Nangia, N., Singh, A., Michael, J., Hill, F., Levy, O., Bowman,
S.R.: Superglue: A stickier benchmark for general-purpose language understanding systems.
In: Wallach, H.M., Larochelle, H., Beygelzimer, A., d’Alché-Buc, F., Fox, E.B., Garnett,
R. (eds.) Advances in Neural Information Processing Systems 32: Annual Conference on
Neural Information Processing Systems 2019, NeurIPS 2019, December 8–14, 2019, Van-
couver, BC, Canada, pp. 3261–3275 (2019). https://proceedings.neurips.cc/paper/2019/hash/
4496bf24afe7fab6f046bf4923da8de6-Abstract.html

40. Yih, W., He, X., Gao, J.: Deep learning and continuous representations for natural language
processing. In: Mihalcea, R., Chai, J.Y., Sarkar, A. (eds.) NAACL HLT 2015, The 2015
Conference of the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies, Denver, Colorado, USA, May 31–June 5, 2015, pp. 6–8. The
Association for Computational Linguistics (2015). https://doi.org/10.3115/v1/n15-4004

41. Zhao, R., Mao, K.: Fuzzy bag-of-words model for document representation. IEEE Trans. Fuzzy
Syst. 26(2), 794–804 (2018). https://doi.org/10.1109/TFUZZ.2017.2690222

42. Zhelezniak, V., Savkov, A., Shen, A., Moramarco, F., Flann, J., Hammerla, N.Y.: Don’t settle
for average, go for the max: Fuzzy sets and max-pooled word vectors. In: 7th International
Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6–9, 2019.
OpenReview.net (2019). https://openreview.net/forum?id=SkxXg2C5FX

 27438 -307 a 27438 -307 a

https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html

 22302 6335 a 22302 6335
a

https://doi.org/10.18653/v1/w18-5446
https://doi.org/10.18653/v1/w18-5446

 16855 14084 a 16855
14084 a

https://proceedings.neurips.cc/paper/2019/hash/4496bf24afe7fab6f046bf4923da8de6-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/4496bf24afe7fab6f046bf4923da8de6-Abstract.html

 18777 20726 a 18777
20726 a

https://doi.org/10.3115/v1/n15-4004

 10648 22940 a 10648 22940
a

https://doi.org/10.1109/TFUZZ.2017.2690222

 8944 27367 a 8944 27367 a

https://openreview.net/forum?id=SkxXg2C5FX

Index

A
Accented speech, 15, 23, 24, 33, 35
Anaphora, 101–120
ANERCorp, 170, 182–183, 186
AQMAR, 170, 182–184, 186, 187
AraBERT, 170–172, 175, 177, 185–187
Arabic language, 102, 109, 120, 170–172, 175,

176, 182, 184, 186
Arabic NLP, 96
AraELECTRA, 172, 177, 185–187
Automatic speech recognition (ASR), v,

21–41, 45–62

B
Berber, 46–48, 50, 51, 62
BERT, 23, 159, 161–166, 170–173, 175–180,

186, 194, 203, 208
Binary classification, 147, 153, 154
Bloom’s taxonomy, 145–154

C
CANERCorp, 170, 182, 184, 186, 187
Chatbots, 124, 125, 135–140, 145
Clustering, 49, 198, 200–201, 204–207
CMU ARCTIC, 28
Commonsense knowledge, 123–141
CommonVoice, 48, 51, 52, 54
Conditional random field (CRF), v, 97,

169–188
Corpus, 2, 23, 47, 69, 102, 132, 158, 169, 193

D
Data collection, 131–134
Data management, 125, 126, 129, 131, 140
DeBERTa v2, 162
Deep learning (DL), 2–5, 23, 97, 175–176, 191
DeepSpeech, 51, 54, 62
Dictionary-based lemmatization, 68, 75,

77–79, 85, 89–91, 95, 96

E
ELECTRA, 158–163, 165, 172
Encoder-decoder, 170
Error analysis, 39–40

F
FastText, 158, 161, 163–166, 193, 200,

203–205, 207
Fuzzy sets, 194, 195

G
GloVe, 193, 200, 203–205

H
Human computer intection (HCI), 128

I
Intelligibility, 2, 3, 5, 6, 9–13, 16, 17
Italian, v, 2, 5–8, 14, 15, 17, 18

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
M. Abbas (ed.), Analysis and Application of Natural Language and Speech
Processing, Signals and Communication Technology,
https://doi.org/10.1007/978-3-031-11035-1

213

 -2016 61494 a -2016 61494 a

https://doi.org/10.1007/978-3-031-11035-1

214 Index

L
Language model decoding, 21–41
Language models (LMs), 21–41, 53, 54, 68,

133, 157–166
L2-ARCTIC, 28, 29, 31–33, 37, 39
L2 ASR, 22, 37, 41
Lemmatization, v, 68–70, 74, 75, 77, 78, 85,

89, 91, 94–96
Librispeech, 24, 25, 28, 29, 31, 32, 34, 37, 38
Long short-term memory (LSTM), 152–154,

175, 180
Low-resource langauages, 46
Low resource speech, 46

M
Machine learning, 5, 68, 69, 75–78, 88, 89,

91–93, 108, 109, 170, 171, 174–176,
179

Machine-learning-based lemmatization, 68,
75–78, 91–92

MADAMIRA, 68, 114, 119
Model bias, 151, 154, 179
Morphological analysis, 68, 102, 113
Morphologically rich languages, 77, 158
MSA, 71, 186
Multi-class classification, 153, 172
Multi-layer perceptron (MLP), 152–154

N
Named entity recognition (NER), v, 48, 68, 69,

73–76, 80, 84, 94–96, 157, 169–188,
192

Natural dialogue, 127–129
Natural language generation (NLG), 124, 131
Natural language interaction, 129, 194
Natural language progressing (NLP), v, 1, 2,

67–70, 75, 78, 80, 92, 96, 97, 101, 113,
157, 158, 165, 170–172, 184, 191, 192,
194

Naturalness, 2, 3, 5, 6, 9–13, 16, 17
Non-native (L2) accent, 22, 29, 32, 41

O
Orthography, 46–55, 59, 61, 62, 73, 87

P
Part-of-speech (POS), v, 68–71, 74–80, 84, 85,

88–90, 92–97, 113–115, 174, 192
Phonological network, 47, 49, 58, 59, 61, 62
POS-tagging, 68, 69, 71, 74, 76, 78, 93–94, 96,

114, 149, 192
Principal component analysis (PCA), 201, 203,

205, 207

Pronominal anaphora, 103–104, 109, 111, 115

Q
Question answering (QA), v, 67, 128, 145–148,

154, 171, 172, 192
Question complexity, 145, 154
Question difficulty estimation (QDE), 145–154

R
Reasoning chain, 145
Referent, 102–104, 106, 108, 110, 111, 113,

115, 116, 119, 120
RoBERTa, 158–165, 173, 177
Rule-based approach, 102, 108, 109, 113, 174
Rule-based systems, 17, 46, 48, 68

S
Self-attention mechanism, 176
Semantic textual similarity (STS), 192,

200–207
Sentence embeddings, v, 191–207
Sent2Vec, 194, 200, 203–207
Speaker conditioning, 2, 7–9, 17
Speaker embeddings, 4, 8, 12
Speaker similarity (SS), 2, 9–11, 13–17
Speech synthesis, 1–18

T
Tacotron 2, 1–18
Task-based diagloue, 123–141
Tifinagh, 47, 48, 50–59, 61, 62
Tokenization, 113, 160–162, 165
Transfer learning, v, 1–18, 22–25, 33, 41
Transformer, v, 24, 25, 158, 159, 162, 169–188,

192, 194

U
Universe matrix, 192, 195–207

V
Vector significance, 199, 202, 204, 205, 207
Verbal anaphor, 101–120

W
wav2vec 2.0, 22, 24, 25, 27–31, 37, 41
Word embeddings, 109, 154–161, 165,

192–194, 196–207
Word2Vec, 158, 163, 165, 166, 193, 194, 200,

203–205

	Preface
	Contents
	ITAcotron 2: The Power of Transfer Learning in Expressive TTS Synthesis
	1 Introduction
	2 Background
	3 Related Work
	4 Aim and Experimental Hypotheses
	5 Corpora
	6 ITAcotron 2 Synthesis Pipeline
	7 Evaluation Approach
	8 Results
	8.1 Speech Intelligibility and Naturalness
	8.2 Speaker Similarity

	9 Conclusion and Future Work
	 Appendix
	References

	Improving Automatic Speech Recognition for Non-native English with Transfer Learning and Language Model Decoding
	1 Introduction
	2 Related Work
	3 Methods
	3.1 Transfer Learning
	3.2 CTC Decoding

	4 Data
	4.1 Corpus Information
	4.2 Data Splits

	5 Experiments
	5.1 Baselines
	5.2 Multi-Accent Models
	5.3 Accent-Specific Models
	5.4 Language Model Decoding

	6 Error Analysis
	7 Conclusion
	References

	Kabyle ASR Phonological Error and Network Analysis
	1 Introduction
	2 Background
	2.1 ASR Modeling Units
	2.2 Diacritization
	2.3 Berber Language Tools
	2.4 Phonological Networks

	3 The Kabyle Language and Berber Writing Systems
	4 Approach
	4.1 Mozilla CommonVoice
	4.2 Mozilla DeepSpeech
	4.3 Transliterator
	4.4 Sequence Alignment

	5 Experimentation and Results
	5.1 Experiments
	5.2 Results
	5.3 Phonemic Confusion Analysis
	5.4 Phonological Network Analysis

	6 Discussion
	7 Future Work
	8 Conclusion
	References

	ALP: An Arabic Linguistic Pipeline
	1 Introduction
	2 Ambiguity in Arabic
	2.1 Ambiguity in Word Segmentation
	2.2 Ambiguity in POS Tagging
	2.2.1 Verb Ambiguities: Passive vs Active Voice
	2.2.2 Verb Ambiguities: Past vs Present Tense
	2.2.3 Verb Ambiguities: Imperative
	2.2.4 Noun Ambiguities: Singular vs Plural
	2.2.5 Noun Ambiguities: Dual vs Singular
	2.2.6 Noun Ambiguities: Dual vs Plural
	2.2.7 Noun Ambiguities: Feminine vs Masculine Singular

	2.3 Ambiguity in Named Entity Recognition
	2.3.1 Inherent Ambiguity in Named Entities
	2.3.2 Ellipses

	2.4 Ambiguity in Lemmatization
	2.5 Ambiguity in Phrase Chunking

	3 Pipeline Architecture
	3.1 Preprocessing: POS, NER, and Word Segment Tagging
	3.1.1 POS Tagging
	3.1.2 Named Entity Recognition
	3.1.3 Word Segmentation

	3.2 Lemmatization
	3.2.1 Learning-Based Lemmatizer
	3.2.2 Dictionary-Based Lemmatizer
	3.2.3 Fusion Lemmatizer

	3.3 Base Chunker

	4 Annotation Schema
	4.1 Annotation of POS Tags
	4.2 Annotation of Word Segments
	4.3 Annotation of Named Entities
	4.4 Annotation of Lemmas
	4.5 Annotation of Base Chunks

	5 Corpus Annotation
	5.1 POS and Name Annotation Method
	5.2 Lemma Annotation Method
	5.2.1 Dictionary Lemmatizer
	5.2.2 Machine Learning Lemmatizer

	5.3 Base Chunking Annotation Method

	6 Evaluation
	6.1 Evaluation of POS Tagging
	6.2 Evaluation of NER
	6.3 Evaluation of Lemmatization and Base Chunking

	7 Conclusion and Future Work
	References

	Arabic Anaphora Resolution System Using New Features: Pronominal and Verbal Cases
	1 Introduction
	2 Varieties of Anaphora in Arabic Text
	2.1 Verb Anaphora
	2.2 Lexical Anaphora
	2.3 Pronominal Anaphora
	2.3.1 Third-Person Personal Pronouns
	2.3.2 Relative Pronouns
	2.3.3 Demonstrative Pronouns

	2.4 Comparative Anaphora

	3 Related Work
	4 Arabic Anaphoric Resolution Challenges
	4.1 Lack of Diacritical Marks
	4.2 Agglutination Phenomenon
	4.3 Syntactic Flexibility (Words Free Order)
	4.4 Ambiguity of the Referent
	4.5 Hidden Referent
	4.6 Lack of Annotated Corpora with Anaphoric Links

	5 The A3T Architecture
	5.1 Preprocessing
	5.2 Anaphora and Candidate Identification
	5.3 Anaphora Resolving
	5.4 Automatic Text Annotation

	6 Experiments and Results
	7 Discussion
	8 Conclusion
	References

	A Commonsense-Enhanced Document-Grounded Conversational Agent: A Case Study on Task-Based Dialogue
	1 Introduction
	2 Related Work
	2.1 Task- and Goal-Oriented Dialogue
	2.2 Dialogue State Tracking and Planning
	2.3 Document-Grounded Dialogue
	2.4 Commonsense-Enhanced Dialogue
	2.5 Dialogue Management

	3 Task2Dial
	3.1 Data Collection Methodology

	4 Dataset Analysis
	5 The ChefBot Conversational Agent
	6 Conclusions and Future Work
	6.1 Future Work and Open Questions

	References

	BloomQDE: Leveraging Bloom's Taxonomy for Question Difficulty Estimation
	1 Introduction
	2 Related Work
	3 Approach
	3.1 Datasets
	3.1.1 ARC
	3.1.2 SQuAD

	3.2 Data Preparation
	3.2.1 Keyword Mapping
	3.2.2 PoS Tagging
	3.2.3 Class Binarization
	3.2.4 Test Data

	4 Experiments
	4.1 Model Training
	4.2 Parameter Optimization
	4.3 Experimental Results
	4.4 Room for Improvement

	5 Conclusion and Future Work
	References

	A Comparative Study on Language Models for Dravidian Languages
	1 Introduction
	2 Related Work
	3 Methodology
	3.1 Dataset
	3.2 Preprocessing
	3.3 Tokenization and Vocabulary
	3.4 Experimental Setup

	4 Models and Evaluation
	4.1 Word Embedding Models
	4.2 Contextual Embedding Models
	4.2.1 RoBERTa
	4.2.2 DeBERTa
	4.2.3 ELECTRA

	5 Results
	5.1 Word Similarity
	5.2 News Article Classification

	6 Conclusion
	7 Future Work
	References

	Arabic Named Entity Recognition with a CRF Model Based on Transformer Architecture
	1 Introduction
	2 Background
	2.1 AraBERT
	2.2 AraELECTRA
	2.3 RoBERTa

	3 Related Works
	3.1 Rule-Based Approach
	3.2 Machine Learning Approach
	3.3 Deep Learning Approach
	3.4 Hybrid Approach

	4 Transformer-Based CRF Model
	4.1 Proposed Model Architecture
	4.2 Linear Layer
	4.3 CRF Tagging Algorithm
	4.4 Calculating the NLL Function

	5 Experiment
	5.1 Tagging Types
	5.2 Data Samples
	5.2.1 ANERcorp Dataset
	5.2.2 AQMAR Dataset
	5.2.3 CANERCorpus Dataset
	5.2.4 Our Arabic Legal Content (ALC) Dataset

	5.3 Fine-Tuning Process

	6 Results
	7 Conclusion
	References

	Static Fuzzy Bag-of-Words: Exploring Static Universe Matrices for Sentence Embeddings
	1 Introduction
	2 Related Work
	2.1 Word and Sentence Embeddings
	2.2 Fuzzy Bag-of-Words and DynaMax for Sentence Embeddings

	3 Static Fuzzy Bag-of-Words Model
	3.1 Word Embeddings
	3.2 Universe Matrix
	3.2.1 Clustering
	3.2.2 Identity
	3.2.3 Multivariate Analysis
	3.2.4 Vector Significance

	4 Experiments
	4.1 Word Embeddings
	4.2 Universe Matrices
	4.2.1 Clustering
	4.2.2 Identity
	4.2.3 Multivariate Analysis
	4.2.4 Vector Significance

	4.3 Data
	4.4 Evaluation Approach

	5 Results
	5.1 Individual SFBoW Results
	5.2 Comparison with Other Models

	6 Conclusion
	References

	Index

