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Abstract We extend the existing family of flexible survival models by assembling
models scattered across the literature into a more knit form and under the same
umbrella. New special cases are obtained not only by constraining the shape
and scale parameters of the extended generalized gamma (EGG) model to fixed
constants, but also by imposing relationships (such as equality, reciprocal, and
negative reciprocal) between them. Apart from common parametric distributions
such as exponential, Weibull, gamma, and log normal, the further extended family
includes Rayleigh, inverse Rayleigh, ammag, inverse ammag, and half-normal
distributions. The models are applied, in a Bayesian framework, on time to entry
into first marriage among Eritrean men and women based on data from the
2010 Population and Health Survey. The application demonstrates that the further
extended family of distributions provides a wide range of alternatives for a baseline
distribution in the analysis of survival data. The empirical results reveal that the
inverse gamma model fits best the data for men. It also performs closely as good as
the EGG model in the data for women as well as in the combined sample.
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distributions · Inverse gamma distribution · Ammag distribution · Inverse
Ammag distribution · Log normal distribution · Half normal distributions · Log
predictive density score (LPDS) · Censoring · Bayes Factors · Time to event
data · Model comparison · Markov chain Monte Carlo (MCMC) · Random
walk · Metropolis Hasting algorithm · Block sampling · Posterior distribution ·
Ergodic mean theorem · Inefficiency factor (IF)

1 Introduction

The usual goals in the analysis of survival data include: (a) describing the distribu-
tional shape of the time variable; (b) comparing the survival experiences of different
groups in a population; and (c) modeling the relationship between explanatory
variables and survival time—as measured by time to the event of interest or the
rate at which the event occurs.

Two classes of models are common in the literature for investigating effects
of explanatory variables on survival. In the Cox proportional hazards models, the
explanatory variables act multiplicatively on a baseline hazard so that their effect
is to increase or decrease the hazard relative to that of the baseline group. A
second class of models, known as the accelerated failure-time models, specifies
the covariates to act multiplicatively on time to event itself so that their effect
is to accelerate or decelerate time to event relative to an event time for baseline
group. According to Wei (1992), the accelerated failure-time model has an intuitive
physical interpretation and would be a useful alternative to the Cox PH model in
survival analysis.

It has been documented that covariate effects on survival time are not robust to
the choice of the baseline distribution—see, for instance (Addison and Portugal,
1987; Bergström and Edin, 1992; Bergström et al., 1994; Ghilagaber, 2005). It is,
therefore, of paramount importance to correctly specify the baseline distribution
if results from analysis of survival data are to be utilized optimally. A number
of distributions for survival data are available in the literature scattered across
disciplines and application areas. Some previous works have attempted to put these
scattered models in a more knit form by embedding a number of competing models
under the umbrella of a general parametric framework as in Butler and McDonald
(1986) and Peng et al. (1998). This enables the use of ordinary parametric inference
for assessment of each competing model relative to a more comprehensive one.
Among others, (Ghilagaber, 2005) shows that five parametric duration models
(exponential, Weibull, gamma, log normal, and reciprocal Weibull) may be treated
as special cases of a more general extended generalized gamma (EGG) model by
constraining the shape and/or scale parameters of the EGG model to some fixed
constants.

In this chapter, we extend the EGG model further and increase the family of
flexible distributions to include 13 special cases. This is achieved by including
distributions that not only constrain the shape and scale parameters to specified
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constants but also impose some relationships between them. The new set of special
cases include the Rayleigh and inverse Rayleigh distributions as well as the ammag
and inverse ammag distributions as described in Cox et al. (2007). Further, a half-
normal distribution can be obtained as a special case of ammag distribution.

A Bayesian approach is used to fit the EGGmodel and its 13 special cases to data
on time to entry into first marriage among Eritrean men and women. Each special
case model is then tested relative to a more general model using the log predictive
density score (LPDS) in a Bayesian approach, see Li et al. (2010). Compared to
the classical likelihood inference approach, the Bayesian approach provides three
main advantages. First, we sample from a posterior density using Markov Chain
Monte Carlo (MCMC), and hence, we can make exact inference for any sample
size in any parametric survival models of various complexities. Second, we do not
need to worry about the problem of local maximum trapping since our algorithm
can go through the whole parameter spaces supported by the data. Third, it is
straightforward to investigate the performance of joint posterior density, whereas in
a frequentist paradigm, we need to run simulation by pre-specifying the true values
of parameters when evaluating the performance of maximum likelihood estimates.

In Sect. 2, we introduce the accelerated failure-time models and demonstrate how
a number of common distributions can be brought under the umbrella of the EGG
model. Bayesian density estimation of the EGG model and MCMC implementation
is described in Sect. 3. In Sect. 4, we illustrate the models of Sect. 2 and the methods
of Sect. 3 using real-life data from the 2010 Eritrean Population and Health Survey.
Section 5 concludes the chapter by way of summary and concluding remarks. A full
list of the distributions used in this chapter, a proof for a lemma, and the R code
used in the illustrative example are provided in Appendices.

2 Parametric Models for Survival Data

2.1 Background

Survival data contain information on durations until event or censoring (t1, t2, ..., tn)
together with a censoring indicator as well as background variables or covariates
(z1, z2, ..., zp) that are often socio-demographic characteristics of individuals or
organizations. The distribution of survival time, T , may be described by its three
equivalent functions: the survival function, S(t) = P (T > t), the density function,
f (t), or the hazard (intensity) function, h(t) = f (t)/S(t), where the last two
functions require absolute continuity.

These functions can vary not only over time, but also among individuals within a
population. Thus, one objective in the analysis of survival data is to draw inferences
about the influence of covariates on these functions. One popular model is the Cox
proportional hazards model presented in Cox (1972) where a p-dimensional vector
of covariates z affects the hazard function in a multiplicative manner according to
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h(t |z) = h0(t) exp
(
z′β

)
, (1)

where h0(t) is an unspecified baseline function of time and β ∈ Rp is an unknown
vector of parameters representing the effect of the covariates z. The factor exp(z′β)

describes the intensity (hazard) for an individual with vector z relative to that of a
standard individual (with z = 0).

2.2 Accelerated Failure-Time Models

A second class of models, the accelerated failure-time model, specifies the covari-
ates to act multiplicatively on the event time itself rather than on the hazard function.

If T0 is the random time to event associated with an individual in the baseline
group (z = 0), then the accelerated failure-time model specifies that for an
individual with a non-zero vector of covariates z, the event time is given by

T = T0 exp(z′β) (2)

or equivalently

ln(T ) = z′β + ln(T0), (3)

where, as before, T is the event time, z is a vector of covariates, and β is a vector
of regression parameters. Since covariates alter, by a scale factor, the rate at which
an individual traverses the time axis, Eq. (2) is referred to as the accelerated failure-
time model. Thus, in accelerated failure-time models, the effect of the explanatory
variables is to accelerate or decelerate time to event relative to T0.

The model in (3) is a linear model with ln(T0) playing the role of an error term
with an underlying baseline distribution. Usually, a scale parameter δ is allowed in
the model to give

ln(T ) = z′β + δ ln(T0) = z′β + δε, (4)

where a more conventional notation ε is used for the error term.
From (4), we note that T = ez

′βT δ
0 . Thus, the survival function of T may be

written in terms of that of T0:

S(t) = P(T > t) = P(ez
′βT δ

0 > t) = P(T δ
0 > te−z′β) = S0(te

−z′β), (5)

where S0(.) is the survival function of the baseline time with scale parameter δ, T δ
0 ,

and e−z′β is the accelerating/decelerating factor. In other words, the probability for
an individual with covariate vector z surviving beyond time t is the same as the
probability for an individual in the baseline group (z = 0) surviving beyond time
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te−z′β . A positive coefficient β shifts the time te−z′β to the left of t , while a negative
β shifts the time te−z′β to the right of t if all components of z > 0. Accordingly,
the density and hazard functions can also be written in terms of the baseline density
and hazard:

f (t) = e−z′βf0(te
−z′β)

h(t) = e−z′βh0(te
−z′β).

The distribution of T0 in (4) may be selected from positive-valued distributions such
as Weibull or log normal that, in turn, yield extreme-value and normal distributions
for the error term ε. Below, we demonstrate how the list may be expanded by
assembling various models under the same umbrella.

2.3 The Extended Generalized Gamma (EGG) Model

Stacy (1962) introduced the generalized gamma model that is useful in embedding
competing models into a single parametric framework. This model is the distribution
of T such that ln(T ) = μ + δε, where μ ∈ R, δ > 0, and the random error term ε
has the density

f (k, ε) = 1

�(k)
exp

[
kε − exp(ε)

]
, k > 0,

where k is an additional shape parameter. Prentice (1974) showed that a shift of

parameter of the form q = k− 1
2 leads to a standard normal distribution for T giving

an interior point for q = 0 in the parameter space. The final model with parameters
μ, q ∈ R and δ > 0 can be written as ln(T ) = μ + δε, where the error density
function f (q, ε) is given by

f (q, ε) =

⎧
⎪⎨

⎪⎩

|q|
�(q−2)

(q−2)q
−2

exp
{
q−2

[
qε − exp(qε)

]}
, q �= 0

1√
2π

exp(− ε2

2 ), q = 0.

(6)

The distribution of T when the error term has the density given in Eq. (6) is
known as the extended generalized gamma (EGG) distribution, see, for instance
(Ghilagaber, 2005; Ghilagaber et al., 2014).

As can be seen from the lower part of (6), the EGGmodel reduces to the standard
normal distribution for ε when the shape parameter q is equal to zero. Accordingly,
T will have a log-normal distribution. When the shape parameter q = 1, (6) reduces
to
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f (q, ε) = exp
[
ε − exp(ε)

]
,

which is the standard (type 1) extreme-value distribution. As ln (T ) is a linear
function of ε, it has the same (extreme-value) distribution as ε. Hence, T =
exp(z′β + δε) as defined in Eq. (4) will have a Weibull distribution. If q = 1
and δ = 1, then T has the exponential distribution as a special case of the
Weibull distribution. The case of q = −1 corresponds to extreme maximum-value
distribution for ln (T ). This, in turn, corresponds to reciprocal Weibull distribution
for T .

The case of δ = 1 and q > 0 is also of interest. Farewell and Prentice (1977)
argue that this gives the ordinary gamma distribution for T . Others, (Bergström and
Edin, 1992; Bergström et al., 1994, 1997), argue that this did not hold in their case
illustrations. Consequently, we shall relax this special case to δ = 1 and q ∈ R

and label it the “gamma” distribution in our illustrative example. Below, we further
extend the above family of distributions by imposing some relationships between
the scale and shape parameters.

2.4 Further Extensions of the EGG Model

We begin with a baseline distribution for time to event, T0 ∼ EGG(0, 1, q),
and label it as standard generalized gamma distribution with density and survival
functions given by

fEGG(0,1,q)(t0) = |q|
t0�(q−2)

(q−2t
q

0 )q
−2

exp(−q−2t
q

0 ),

SEGG(0,1,q)(t0) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

1 − �(ln t0), q = 0

1 − γ (q−2, t
q

0 q−2)/�(q−2), q > 0

γ (q−2, t
q

0 q−2)/�(q−2), q < 0,

where �(·) is the cumulative distribution function of the standard normal distri-
bution. By transformation, t = eμtδ0 ∼ EGG(μ, δ, q), and T is said to have
the extended generalized gamma distribution with shape parameter μ ∈ R, scale
parameter δ > 0, and an additional index shape parameter q ∈ R. We denote this
by T ∼ EGG(μ, δ, q), with density

fEGG(t) = |q|
tδ�(q−2)

[
q−2(e−μt)

q
δ

]q−2

exp
[
−q−2(e−μt)

q
δ

]
(7)
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=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
δt

√
2π

e
− (ln t−μ)2

2δ2 q = 0

q
δ
t

q
δ
−1 1

�(q−2)

[
q−2(e−μ)

q
δ

]q−2

(t
q
δ )q

−2−1exp
[
−q−2(e−μ)

q
δ t

q
δ

]
q > 0

− q
δ
t

q
δ
−1 1

�(q−2)

[
q−2(e−μ)

q
δ

]q−2

(t
q
δ )q

−2−1exp
[
−q−2(e−μ)

q
δ t

q
δ

]
q < 0.

The component

1

�(q−2)

[
q−2(e−μ)

q
δ

]q−2

(t
q
δ )q

−2−1exp
[
−q−2(e−μ)

q
δ t

q
δ

]

in the above equation is the density of the gamma distribution for t
q
δ with a shape

parameter q−2 and a rate parameter q−2(e−μ)
q
δ . The next lemma gives the rth

moment and the first four central moments of the EGG density. The following
definitions of skewness and excess kurtosis are used:

S(T ) = E [T − E(T )]3

V (T )3/2
,

K(T ) = E [T − E(T )]4

V (T )2
− 3,

where V (T ) is the variance.

Lemma 1 If T ∼ EGG(μ, δ, q), then

E(T r) =

⎧
⎪⎪⎨

⎪⎪⎩

�
(
q−2+r δ

q

)

(
q

−2δ
q e−μ

)r

�(q−2)

, if rδ/q > −q−2,

∞ otherwise.

E(T ) = �(q−2 + δ
q
)

q
−2δ
q e−μ�(q−2)

,

V (T ) = �(q−2 + 2δ
q

)�(q−2) − �2(q−2 + δ
q
)

�2(q−2)(q
−2δ
q e−μ)2

,

E [T − E(T )]3 = 2�3
(

q−2 + δ

q

)
− 3�

(
q−2 + 2δ

q

)
�

(
q−2 + δ

q

)
�(q−2)

+�

(
q−2 + 3δ

q

)
�2(q−2),
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E [T − E(T )]4 = −3�4
(

q−2 + δ

q

)
+ 6�

(
q−2 + 2δ

q

)
�2

(
q−2 + δ

q

)
�(q−2)

−4�

(
q−2 + 3δ

q

)
�

(
q−2 + δ

q

)
�2(q−2) + �

(
q−2 + 4δ

q

)
�3(q−2).

A simplified proof of Lemma 1 is provided in Appendix 2.
From Lemma 1, we note that S(T ) and K(T ) are the functions of q and δ/q,

implying both q and δ/q are shape parameters.
The survival function of t is then given by

SEGG(t) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

1 − �
(
ln t−μ

δ

)
q = 0

1 − γ
[
q−2, t

q
δ q−2(e−μ)

q
δ

]
/�(q−2) q > 0

γ
[
q−2, t

q
δ q−2(e−μ)

q
δ

]
/�(q−2) q < 0,

(8)

where γ
[
q−2, t

q
δ q−2(e−μ)

q
δ

]
/�(q−2) is the corresponding cumulative dis-

tribution function of the gamma distribution for t
q
δ when q > 0 and

γ
[
q−2, t

q
δ q−2(e−μ)

q
δ

]
is a lower incomplete gamma function with the form of

γ (s, r) = ∫ r

0 xs−1e−xdx described in Abramowitz and Stegun (1964).
The EGG model redefined in Eqs. (7) and (8) is a rich and versatile model

containing many special cases based on different combinations of q and δ.
Apart from those mentioned in the previous subsection, the list may be extended

to include the inverse exponential (q = −δ = −1), standard gamma (q = δ),
inverse gamma (when q = −δ), ammag (q = 1/δ), inverse ammag (q = −1/δ),
Rayleigh (q = 1 and δ = 1/2), inverse Rayleigh (q = −1 and δ = 1/2), and
half-normal (q = √

2 and δ = √
2/2).

EGG nests more special cases such as Maxwell–Boltzmann, but we have not
included this in the present chapter since our focus is on the distribution of survival
time T . Further, the equivalent distributions of some special cases are excluded.
For instance, the inverse gamma model is equivalent to the Levy model in some
special cases: inverse gamma(q−2, q−2e−μ) ↔ Levy(0, c) when q−2 = 1/2 and
q−2e−μ = 2c. The standard gamma model is also equivalent to a chi-squared model
in some situations: standard gamma(q−2, q−2e−μ) ↔ χ2

(v) when q−2 = v/2 and

q−2e−μ = 1/2.
To sum up, the EGG model constitutes of at least 13 special cases whose

relationships are depicted in Fig. 1. Each special case model can be assessed relative
to a more comprehensive one using appropriate procedures for comparing nested
models. A summary of the density functions, f (t), and survival functions, S(t), for
13 special cases is provided in Appendix 1. The corresponding hazard functions
can be obtained by hEGG(t) = fEGG(t)/SEGG(t). The hazards in the EGG models
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can be of various forms—increasing, decreasing, bathtub, or arc-shaped (Cox et al.,
2007).

When we adapt the generalized gamma distribution to accelerated failure-time
models, the location parameter μ can be composed of a linear predictor based on p

covariates μ = β0 +
n∑

i=1
zjiβj (j = 1 · · · p), which justifies the feasibility of the

EGG in accelerated failure-time models.
The distribution of ε = ln(T0) is given in Eq. (6). When q = 0, ε is standard

normal distributed; when q �= 0, it can be manipulated to give

f (ε; q) = |q| eqε (q
−2)q

−2

�(q−2)
(eqε)q

−2−1exp
[
−q−2exp(qε)

]
(9)

with the corresponding survival functions

S(ε, q) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

1 − �(ε) q = 0

1 − γ
[
q−2, exp(qε)q−2

]
/�(q−2) q > 0

γ
[
q−2, exp(qε)q−2

]
/�(q−2) q < 0.

(10)

Based on the density of ε, Fig. 2 shows the shape of some density functions, f (ε), for
some selected values of q. Here, we have a special case of ln(T ) = z′β+δε = μ+δε

−10 −5 0 5 10

0.0
0.1

0.2
0.3

0.4
0.5

ln(t)

De
ns

ity

q= −3
q= −1
q= 0
q= 1
q= 3

Fig. 2 Five distributions of ln(T ) for μ = 0, δ = 1, and some values of q
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in which μ = 0 and δ = 1. We note that the densities are positively skewed for
q < 0 and negatively skewed for q > 0 with both the absolute skewness and kurtosis
monotone increasing in |q|—which are in accordance with those of Prentice (1974).

3 Bayesian Inference in the Extended Generalized Gamma
Model

Bayesian inference for a three-parameter EGG model and four-parameter gen-
eralized gamma distribution (EGG model with one extra location parameter) is
discussed in Tsionas (2001) and Van Noortwijk (2001) for situations where there
is no censoring. Inference becomes more complicated in the presence of censored
observations due to, for instance, difficulty to find conjugate prior or derive full
conditional posterior.

Heleno and Alberto (1986) have used Bayesian approach for EGG model with
censored data using Jeffrey multi-parameter prior. Ramos et al. (2017) have shown
that both the Jeffreys prior and the reference priors give improper posteriors to the
EGG model, and then proposed the overall reference prior in Berger et al. (2015),
which provided the proper posterior. In this section, we present Bayesian inference
in the EGG model that allows for any type of censoring mechanism.

3.1 Prior and Posterior

In a Bayesian framework, any prior information about the parameters of interest is
combined with the data (likelihood) to derive a posterior distribution.

In our present case, we use normal priors with mean 0 and large variance σ 2
1 for

each effect parameters βj (j = 0, · · · , p). We also assume a vague prior, a gamma
distribution with hyperparameters a and b for the scale parameter δ. For the index
shape parameter q, a normal prior with mean 0 and large variance σ 2

2 is assumed.
These independent priors can be summarized as follows:

βj ∼ N(0, σ 2
1 ), j = 1, . . . , p

δ ∼ Gamma(a, b)

q ∼ N(0, σ 2
2 ).

We can use any prior that reflects our prior knowledge (if any) of the unknown
parameters. In our illustration in Sect. 4, we will use σ1 = σ2 = 1000 and
hyperparameters a = b = 1. The rationale behind this is to let the likelihood
dominate the posterior so that the inferences drawn are driven by the data.

Denoting data withD, the joint posterior distribution is then given by
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f (β, δ, q|D) ∝ L(β, δ, q;D)f (β, δ, q)

= L(β, δ, q;D)

p∏

j=1

f (βj )f (δ)f (q),

where L(β, δ, q;D) is the likelihood function, and f (·) is the prior density function
of βj , δ, and q with known hyperparameters. The above posterior can be generalized
to other types of likelihood functions based on other censoring mechanisms (than
the standard right censoring assumed in our present case). With right censored data,
the likelihood function becomes

L(β, δ, q;D) =
n∏

i=1

(δ−1f (εi , q))di S(εi , q)1−di ,

where di is the censoring indicator and f (εi , q) and S(εi , q) are given by Eqs. (9)
and (10), respectively.

Since there is no explicit analytical form for the posterior distribution, sampling
is performed using numerical methods based on Markov Chain Monte Carlo
(MCMC).

3.2 MCMC: Random Walk Metropolis–Hastings Algorithm
with Block Sampling

We sample all parameters sequentially from the joint posterior distribution using the
Metropolis–Hastings algorithm. See Gelman et al. (2004) for more details on the
Metropolis–Hastings algorithm and its nice properties. A random walk Metropolis–
Hastings algorithm with block sampling is used, and the sampling procedure for the
parameters θ = (β, δ, q)′ can be summarized as follows:

(1) Set the initial values for the parameters θ0 = (β0, δ0, q0)
′.

(2) Construct the proposal distribution J (θp|θc) ∼ N(θc, c
2�), where θp is the

candidate value, θc is the current value, and c is the scaling constant and �

is a known covariance matrix. Here we choose � = −H−1(̂θ), where H(̂θ)

is the Hessian matrix evaluated at θ̂ , which is obtained by Newton’s method.
Following Gelman et al. (2004), we choose a value of c = 2.4/

√
k, where k is

the length of the vector θ .
(3) Generate θ∗ from J (θp|θc) and U from U(0, 1).
(4) If

U <
f (θ∗|D)f (θ∗)J (θc|θp)

f (θc|D)f (θc)J (θp|θc)
,

the candidate vector θ∗ is accepted and θc = θ∗; otherwise, we keep θc.
(5) Return to step (2).
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3.3 Posterior Statistics and Convergence Diagnostics

We summarize our posterior distribution by way of posterior means and highest
posterior density (hpd). Since MCMC is based on ergodic mean theorem (Markov
chain law of large numbers), convergence can be verified using diagnostic plots
such as a plot of the cumulative mean against the number of iterations. In addition,
inefficiency factors (IF) can be computed as a measure of the efficiency of the
MCMC scheme.

3.4 Bayesian Model Comparisons

The common way of comparing models in the Bayesian framework is the use of
Bayes factor that is the ratio of marginal likelihood of two competing models.

Suppose we have a set of candidate models Mm,m = 1, · · · ,M and the
corresponding model parameters θm. The posterior model probability is then given
by

P(Mm|Y ) ∝ P(Mm)P (Y |Mm),

where Y represents the data at hand. The posterior odds P(Mm|Y )/P (Ml |Y ) can
be used to compare two models, and it can be written in terms of the Bayes factor:

P(Mm)

P (Ml )
BFml,

where BFml is the Bayes factor between Mm and Ml with the form

BF(Y ) = P(Y |Mm)

P (Y |Ml )
=

∫
P(Y |θm,Mm)P (θm|Mm)dθm∫

P(Y |θl,Ml )P (θl |Ml )dθl

.

The marginal likelihood is a conditional expectation for the likelihood given the
prior

EP(θm|Mm)(P (Y |θm,Mm)).

It is sensitive to the choice of the prior, especially when the prior is not very infor-
mative (Villani et al., 2009). For instance, if P(θm|Mm) is far from P(Y |θm,Mm),
while P(θl |Ml ) is close to P(Y |θl,Ml ), it is possible that P(Y |Mm) is less than
P(Y |Ml ) even though Ml is a sub-model of Mm.

To avoid such sensitivity to the choice of prior, we compare our models in the
illustration on the basis of their predictive performance. The data is split randomly
into B folds, and B-1 fold is used as a training data ỹ−b, while the rest one-fold is
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used as a testing data ỹb. The B-fold cross-validation of the log predictive density
score (LPDS) is then formed as

B−1
B∑

b=1

lnp(ỹb|ỹ−b, x).

In other words, part of the observations are used to update the flat (non-
informative) prior and the sensitivity to the prior can be reduced substantially.
According to Villani et al. (2009), the Bayes factor is roughly B times more
discriminatory than the LPDS. For selecting models in Sect. 4, the LPDS was
computed using B = 5 folds of the data.

4 Application: Educational and Residential Differences in
Marriage Timing Among Eritrean Men and Women

We now illustrate the models and methods described in the previous sections with
real-life data—entry into marriage among Eritrean men and women based on its
2010 Population and Health Survey (EPHS2010).

The main goals with the illustration are to study the distributional shapes of the
times to marriage, model the effects of covariates on these event times, and examine
if inferences regarding covariate effects are robust to the choice of distributional
shape.

The study of marriage timing (age at marriage) is also of substantive interest in its
own because of its strong negative association with women’s health directly (Raj,
2010) or indirectly through its negative impact on health care utilization (Godha
et al., 2016).

4.1 Data and Variables

The data used for illustration in this chapter come from the 2010 Eritrea Population
and Health Survey, EPHS2010 (National-Statistics-Office-Eritrea and Fafo-AIS,
2013). The EPHS2010 was designed as a follow-up to its predecessors—the 1995
and 2002 Demographic and Health Surveys (National-Statistics-Office-Eritrea and
Macro-International-Inc., 1997, 2003), and to update the information from the
previous surveys as well as provide findings on some new topics of interest.

The EPHS2010 was conducted between January and July 2010 and gathered
information from 30224 women aged 15–49 and 5021 men aged 15–59. For the
purpose of this paper, only respondents with known values on marital status at the
time of the survey are used in the analyses. This resulted in 10238 usable records
for women and all 5021 records for men. Detailed tabulations for the entire survey
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Table 1 Summary statistics of the data sets used in the illustration

Women Men Combined Sample

Covariate Levels n Events % Event n Event % Event n Event % Event

No Educ 4186 3799 90.75 1050 892 84.95 5236 4691 89.59

Primary 2055 1634 79.51 803 543 67.62 2858 2177 76.17

Education Middle 1827 1006 55.06 1209 455 37.63 3036 1461 48.12

Secon 1894 886 46.78 1516 461 30.41 3410 1347 39.50

PostSec 276 96 34.78 442 218 49.32 718 314 43.73

Capital 1819 969 53.27 931 344 36.95 2750 1313 47.75

Residence Other Towns 2504 1739 69.45 1257 565 44.95 3761 2304 61.26

Rural Areas 5915 4713 79.68 2833 1660 58.60 8748 6373 72.85

Total 10,238 7421 72.49 5021 2569 51.17 15,259 9990 65.47

may be found in the EPHS2010 Final Report (National-Statistics-Office-Eritrea
and Fafo-AIS, 2013). Summary statistics for the subset of data used in the present
chapter are shown in Table 1.

By the survey time (January–July 2010), 7421 of the 10238 women (72 %)
and 2569 of the 5021 men (51 %) have responded they were ever married (this
includes those who might have been separated or widowed after). The rest, 2817
women and 2452 men (28 % and 49 %, respectively), have responded that they
were still single at the time of interview. The distribution of the women across
educational level shows that 4186 (41 %) had no education at all, 2055 (20 %) had
primary-level education, 1827 (18 %) had middle-level education, 1894 (18 %) had
secondary-level education, while the rest 276 (3 %) had post-secondary education.
The corresponding figures for men are 1051 (21 %), 803 (16 %), 1209 (24 %), 1516
(30 %), and 442 (9 %), respectively. Further, 1819 (18 %) of the women respondents
were from the capital (Asmara), 2504 (24 %) were from other towns, while the
majority 5915 (58 %) were from rural areas. The corresponding figures for men are
931 (19 %), 1257 (25 %), and 2833 (56 %), respectively.

The columns of percentage married in Table 1 reveal clear differentials across
both educational levels and residence for both women and men. For instance, while
women with no education constitute 41 % of the entire sample, they constitute 51
% of the marriages (3799 of 7421). Women with post-secondary education, on
the other hand, constitute only 1 % of the marriages (96 of 7421). The pattern
is similar but less dramatic for men—those with no education constitute 35 % of
the marriages, while those with post-secondary education constitute only 8 % of
the marriages. Differentials across residence show that women from rural areas
constitute 58 % of the sub-sample but 64 % of the marriages. Women from the
capital, on the other hand, constitute 19 % of the sub-sample but only 13 % of the
marriages. The contribution of men from the capital to the sub-sample is 18 %, while
their contribution to the total marriage is 15 %. Men from rural areas constitute 56
% of the sub-sample but 65 % of the marriages.
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Fig. 3 Survival functions by education: Women

Plots of survival functions by education and residence for women and men are
shown in Figs. 3, 4, 5, 6, and 7. Figures 3 and 4 show plots for women by education
and residence, respectively, while Figs. 5 and 6 show the corresponding plots for
men. Figure 7 shows gender differences in entry to first marriage among all men
and women.

The plots depict what we already noted in Table 1—that there are differentials
across education and residence and that the educational differences are more
pronounced in the women data than in men data. The last figure shows that women
enter marriage at faster rates than men.

The summary in Table 1 and Figs. 3, 4, 5, 6, and 7 provides a good description of
the data at hand, but in order to make sound inferences based on the sub-sample, we
need deeper analyses of the data and formal statistical tests. Ghilagaber (2018) has
analyzed the data sets using frequentist statistical methods ranging from elementary
measures of association between an event of interest and background variables
to more complex and advanced methods that utilize the data more efficiently.
Elsewhere in this book, (Munezero and Ghilagaber, 2022b) analyze the data sets
using dynamic Bayesian approach where covariate effects are allowed to vary over
time.

In the next sub-section, we present and discuss results from fitting the further
EGG model of Sect. 2 to the above data sets in the Bayesian framework of Sect. 3.
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Fig. 4 Survival functions by residence: Women
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Fig. 6 Survival functions by residence: Men
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4.2 Results from Bayesian Analysis of the Data Using the EGG
Model

Table 2 contains a summary of our results to which we will return at the end of this
section. Results from fitting the extended generalized gamma (EGG) model and its
13 special cases to the data for women, men, and the combined sample are shown
in Tables 3, 4, and 5, respectively.

In Table 3, the results from the unconstrained EGG model show that the scale
and shape parameters (which are freely estimated from the data) are δ = 0.246 and
q = −0.526, respectively.

These estimates give early indications of the constants to which the scale and
shape parameters are close as well as the relationship between them. For instance,
the estimated shape parameter (−0.526) is much closer to −1 and 0 than it is
to 1. This, in turn, means the reciprocal Weibull distribution (which constrains
the shape parameter to −1) and the log-normal distribution (which constrains the
shape parameter to 0) are more plausible candidate distributions than the Weibull
distribution (which constrains the shape parameter to 1).

With regard to the relationships between the scale and shape parameters, a
model that constrains negative equality is δ = −q that seems to be more
plausible compared to, for instance, a model that constrains reciprocal or negative
reciprocal relationship. This is so because a reciprocal relationship would give a
scale parameter of 1/(−0.526) = −1.90, while a negative reciprocal relationship
would yield −(1/(−0.526)) = 1.90 both of which are far from the freely estimated
scale parameter 0.246. This, in turn, excludes models such as ammag and inverse
ammag in favor of the inverse gamma model.

The above closeness of the special case models to the more general EGG model
is also reflected in the values of log predictive density scores (LPDS) given in the
last columns of each model. For instance, the LPDS of the EGG model is −4584,
while that of the closest model (the inverse gamma) is −4594. On the other hand,
the LPDS for ammag and inverse ammag are−5705 and−5184, respectively, which
are far from that of the EGG.

Table 2 Posterior means (and 95 % hpd) of estimated effects in the selected models

Women (EGG model) Men (Inverse gamma) Combined (EGG model)

Covariate Levels Estimate 2.5 % 97.5 % Estimate 2.5 % 97.5 % Estimate 2.5 % 97.5 %

No Educ 0 (ref.) – – 0 (ref.) – – 0 (ref.) – –

Primary 0.015 0.002 0.028 −0.016 −0.04 0.009 0.042 0.029 0.055

Education Middle 0.138 0.123 0.153 0.023 −0.001 0.047 0.186 0.007 0.2

Secon 0.251 0.234 0.269 0.097 0.071 0.122 0.315 0.008 0.331

PostSec 0.425 0.39 0.461 0.138 0.105 0.171 0.518 0.493 0.466

Capital 0 (ref.) – – 0 (ref.) – – 0 (ref.) – –

Residence Other −0.086 −0.069 −0.052 −0.061 d −0.035 −0.052 −0.068 −0.036

Rural −0.079 −0.094 −0.062 −0.137 −0.161 −0.111 −0.042 −0.058 −0.026
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Another point worth noting is that the estimates of the covariate effects and their
associated 95% hpd are much alike in the models that are close to each other (in
terms of estimated scale and/or shape parameters or in terms of LPDS) than those
estimates that are far apart.

Thus, for the women data, it would not make much difference if we base our
conclusions on the estimates from the EGG model or the inverse gamma model
though a formal test would favor the larger EGG model.

The results for men shown in Table 4 can be interpreted similarly. Here, the
scale and shape parameters estimated freely from the data in the EGG model are
δ = 0.235 and q = −0.199, respectively. Again, the inverse gamma model that
imposes a negative relationship between the scale and shape parameters (δ = −q)
seems to be much more plausible than any other model. In fact, a closer look at
the LPDS values shows that it even outperforms the larger EGG model though the
difference in LPDS is marginal.

Hence, for the men data, we have a very strong evidence to base our conclusions
on the results from the inverse gamma model that, of course, are identical to those
from the EGG model.

Last, the results for the combined sample are shown in Table 5. Similar reasoning
as in the above leads to the choice of EGG model or the inverse gamma model
though a formal test would favor the larger EGG model. That the results for the
combined sample reflected those for women are not surprising because women
constitute about two-third of the combined sample.

The final estimates of covariate effects and their associated 95% hpd from our
chosen models for respective data sets are summarized in Table 2.

The results in Table 2 show that there are significant differentials in entry to first
marriage across women’s educational level and residence where lower education
and rural residence are associated with higher intensities of marriage. For men,
the educational differences are less pronounced as there is no significant difference
in the intensities of entry to first marriage between those with no education and
those with primary or middle education. The residential differential is, however, still
significant. The results for the combined sample follow those of women because, as
mentioned before, women constitute majority in the combined sample.

5 Summary and Concluding Remarks

In this chapter, we presented the extended generalized gamma (EGG) model for
survival data with censored observations. Previous works have shown that five
known models can be treated as special cases of the EGG model by constraining
the scale parameter, shape parameter, or both to some constants. In the present
chapter, we extended the EGGmodel further to include 13 special case models. This
was achieved by imposing relationships between the scale and shape parameters in
addition to constraining them to some constants.

The issues were illustrated with data on entry into first marriage among Eritrean
men and women based on data from the 2010 Eritrean Population and Health Survey
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(EPHS 2010). Inference was fully Bayesian using a random walk Metropolis–
Hastings algorithm to sample from the posterior distribution, and we compared the
models with each other and relative to the more general EGG model using the log
predictive density score (LPDS).

The application demonstrates that the further extended family of distributions
provides a wide range of alternatives for a baseline distribution in the analysis of
survival data with censored observations. For instance, we found that the inverse
gamma model, where we impose the scale parameter to be the negative of the shape
parameters (δ = −q), fits the men data best and outperforms the EGGmodel. It also
performs well in the women data and the combined sample though the evidence is
not as strong as in the men data. This was in accordance with the freely estimated
values of the scale and shape parameters in the EGG model.

The empirical results in the final selected models reveal significant differentials in
the pace of entry to first marriage across women’s educational levels and residence.
As would be expected, lower education and rural residence is associated with higher
intensities of marriage. Educational differentials are, however, less pronounced for
men as there was no significant difference in the intensities of entry to first marriage
between those with no education (the baseline group) and those with primary or
middle education. The residential differential was still significant in the men’s data.
When we analyzed the combined data, the results followed those of women due,
mainly, to the fact that women constitute about two-third in the combined sample.

It may be worth noting that the educational level of the individuals refers to
what is achieved by the survey time. As such, it is anticipatory in the sense that
the reported educational level might have been achieved after the event of interest.
But, our aim here is to demonstrate the models and methods empirically, and
the anticipatory nature of education does not affect our purpose. Ghilagaber and
Koskinen (2009), Ghilagaber and Larsson (2019), and Munezero and Ghilagaber
(2022a) study potential biases due to the use of anticipatory covariates and how to
account for that.

Our analysis was based on the tacit assumption that the survivor function S(t)

tends to 0 as the study period gets longer. This, in turn, means that we have assumed
all individuals will experience the event of interest sooner or later. This may not
be true for the event in our illustrative example (marriage) as there may be some
individuals who may never marry for various reasons. Future works may, therefore,
consider accounting for such long-term survivors (those who may never experience
the event of interest). This can be achieved by using, for instance, a mixture model
consisting of a hazard/intensity model for those who experienced the event or may
experience it in the future and a logistic model for the probability of being long-term
survivor (never experiencing the event).

Appendix 1: Density Functions, f (t), and Survival Functions,
S(t), of Special Cases in the Extended Generalized Gamma
Model
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Appendix 2: Proof of Lemma 1

Proof:
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When r = 1, we get E(T ), and when r = 2, we get E(T 2). Using these, we have
V (T ) = E(T 2) − E2(T ). �

Appendix 3: R Program Codes for Bayesian Inference

###############################################################
###########Random Walk Metropolis algorithm####################
###############################################################
library(MASS)
library(mvtnorm)

#Calculate log-likelihood and the Hessian evaluated at the mode

calculate.loglike <- function(beta){

beta1 <- beta[1]+beta[2]*Prim+beta[3]*Middle+beta[4]*Secon+
beta[5]*PostSec+beta[6]*Other+beta[7]*Rural

delta <- beta[8]
q <- beta[9]

error <- (log(y)-beta1)/delta
s <- q^(-2)
r <- exp(q*error)
#Probability density function
pdf <- function(r,s,q){

if (q!=0) pdf <- abs(q)*r*dgamma(r,s,s)
else pdf <- dnorm(error,0,1)

pdf
}
#Survival function
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surv <- function(r,s,q){
if (q!=0) surv <- (q>0)*(1-pgamma(r,s,s))+

(q<0)*(pgamma(r,s,s))
else surv <- 1-pnorm(error,0,1)

surv
}
#log-likelihood function
loglike <- function(r,s,q){
loglike <- sum(d*(log(pdf(r,s,q))-log(delta))+

(1-d)*log(surv(r,s,q)))
loglike

}

list(loglike=loglike(r,s,q))
}

m=20000
beta0 <- c(5,0,0,0,0,0,0)
delta0 <- 1
q0 <- 0.12

theta0 <- c(beta0,delta0,q0)

mu.beta <- c(0,0,0,0,0,0,0) #prior
s.beta <- c(1000,1000,1000,1000,1000,1000,1000) #prior

theta <- matrix(nrow=m,ncol=9)
acc.prob_theta <- 0
current.theta <- theta0

for (t in 1:m){
cur <- calculate.loglike(current.theta)

prop.theta <- mvrnorm(1,current.theta,Sigma=vcov_mode)
jump_1 <- -as.numeric(0.5*log(det(vcov_mode)))-

0.5*t(prop.theta-current.theta)%*%solve(vcov_mode)
%*%(prop.theta-current.theta)

prop <- calculate.loglike(prop.theta)

ll_1 <- prop$loglike
jump_2 <- -as.numeric(0.5*log(det(vcov_mode)))-

0.5*t(current.theta-prop.theta)%*%solve(vcov_mode)
%*% (current.theta-prop.theta)

ll_2 <- cur$loglike
loga <- ll_1-ll_2+sum(dnorm(prop.theta[1:7],mu.beta,s.beta,

log=T))-
sum(dnorm(current.theta[1:7],mu.beta,s.beta,log=T))+
dgamma(prop.theta[8],1,1,log=T)-dgamma(current.theta[8],

1,1,log=T)+
dnorm(prop.theta[9],0,1000,log=T)-dnorm(current.theta[9],

0,1000,log=T)+
jump_2-jump_1

u <- runif(1)
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u <- log(u)
if (u < loga){

current.theta <- prop.theta
acc.prob_theta <- acc.prob_theta+1

}
theta[t,] <- current.theta

}

###############################################################
###########Log predictivedensity score (LPDS)##################
###############################################################

#5-fold cross validation
cv <- matrix(cbind(Age,1,Prim,Middle,Secon,PostSec,Other,Rural,

Marr),ncol=9, nrow=length(Age))

index <- sample(length(y),size=length(y),replace=F)
index_1 <- index[1:2047]
index_2 <- index[2048:4095]
index_3 <- index[4096:6143]
index_4 <- index[6144:8191]
index_5 <- index[8192:10238]

new <- list(as.matrix(cv[index_1,]),as.matrix(cv[index_2,]),as.
matrix(cv[index_3,]),
as.matrix(cv[index_4,]),as.matrix(cv[index_5,]))

calculate.loglike <- function(b,delta,q,data){

x<- data[,2:8]
y <- data[,1]
d <- data[,9]
mu <- x%*%b

#Probility density function
pdf <- function(b,delta,q){

if (q!=0) pdf <- abs(q)/delta*y^(q/delta-1)*
dgamma(y^(q/delta),q^(-2),q^(-2)*exp
(-mu)^(q/delta))

else pdf <- dnorm(log(y),mu,delta^2)
pdf
}
#Survival function
surv <- function(b,delta,q){

if (q!=0) surv <- (q>0)*(1-pgamma(y^(q/delta),q^(-2),q^(-2)

*exp(-mu)^(q/delta)))+
(q<0)*pgamma(y^(q/delta),q^(-2),q^(-2)

*exp(-mu)^(q/delta))
else surv <- 1-pnorm(log(y),mu,delta^2)

surv
}

loglike <- sum(d*(log(pdf(b,delta,q)))+(1-d)*log(surv(b,delta,q)))
return(list(loglike=loglike))

}
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m<-20000

#initial values
beta0 <- mode[1:7]
delta0 <- mode[8]
q0 <- -0.15
theta0 <- c(beta0,delta0)

mu.beta <- c(0,0,0,0,0,0,0) #prior
s.beta <- c(1000,1000,1000,1000,1000,1000,1000) #prior

theta <- matrix(nrow=m,ncol=8)
q <- c()
pre <- c()
logpre <- c()
loglike <- c()
Cb <- c()
acc.prob_theta <- 0
acc.prob_q <- 0
current.theta <- theta0
current.q <- q0

for (k in 1:5){
for (t in 1:m){
prop.theta <- mvrnorm(1,current.theta,cov[1:8,1:8])
ll_1 <- calculate.loglike(prop.theta[1:7],prop.theta[8],

current.q,data=rbind(new[-k][[1]],new[-k][[2]],
new[-k][[3]],new[-k][[4]]))$loglike

ll_2 <- calculate.loglike(current.theta[1:7],current.theta[8],
current.q,data=rbind(new[-k][[1]],new[-k][[2]],new[-k]
[[3]],new[-k][[4]]))$loglike

jump_1 <- -as.numeric(0.5*log(det(cov[1:8,1:8])))-
0.5*t(prop.theta-current.theta)%*%solve(cov[1:8,1:8])%*%(prop.
theta-current.theta)
jump_2 <- -as.numeric(0.5*log(det(cov[1:8,1:8])))-
0.5*t(current.theta-prop.theta)%*%solve(cov[1:8,1:8])
%*%(current.theta-prop.theta)

loga <- ll_1-ll_2+sum(dnorm(prop.theta[1:7],mu.beta,s.beta,
log=T))-sum(dnorm(current.theta[1:7],mu.beta,s.beta,
log=T))+dgamma(prop.theta[8],1,1,log=T)-dgamma(current.
theta[8],1,1,log=T)+jump_2-jump_1

u <- runif(1)
u <- log(u)

if (u < loga){
current.theta <- prop.theta
acc.prob_theta <- acc.prob_theta+1

}
theta[t,] <- current.theta

prop.q <- rnorm(1,current.q,cov[9,9])
ll_1 <- calculate.loglike(current.theta[1:7],current.theta[8],
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prop.q,data=rbind(new[-k][[1]],new[-k][[2]],new[-k][[3]],
new[-k][[4]]))$loglike

ll_2 <- calculate.loglike(current.theta[1:7],current.theta[8],
current.q,data=rbind(new[-k][[1]],new[-k][[2]],new[-k]
[[3]],new[-k][[4]]))$loglike

loga <- ll_1-ll_2+dnorm(prop.q,0,1000,log=T)-dnorm(current.q,0,
1000,log=T)

u <- runif(1)
u <- log(u)
if (u < loga){

current.q <- prop.q
acc.prob_q <- acc.prob_q+1

}
q[t] <- current.q
loglike[t] <- calculate.loglike(theta[t,1:7],theta[t,8],q[t],

data=new[[k]])$loglike
}
Cb[k] <- mean(loglike)
pre <- exp(loglike-Cb[k])
burnin <- 5000
logpre[k]<- Cb[k]+log(mean(pre[(burnin+1):m]))

}
lpds <- mean(logpre)
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