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Preface

The DELTAS Africa Sub-Saharan Africa Consortium for Advanced Biostatistics
(SSACAB) training program is funded by the Wellcome Trust in partnership
with the Alliance for Accelerating Excellence in Science in Africa (AESA). The
consortium was established in 2015, with the overall aim of building a critical mass
of biostatisticians and biostatistics research leadership in Sub-Saharan Africa. This
is achieved through the development and strengthening of biostatistics capacity and
resource at the 11 participating local institutions, in collaboration with four local
research institutions and three northern university partners.

In celebrating the contributions, achievements, and progress of SSACAB scien-
tists and their partners and collaborators, this book is organized to document the
contributions from the consortium with a diverse mix of current scholarship and
exposition of biostatistics methods and application for evidence-based global health
in the Region. The volume features inspiring and informative chapters that reflect on
the accomplishments of biostatistics research and its applications that offer solutions
to local health problems. There are a total of 18 chapters to provide an overview of
the emerging topics in biostatistical methods and their applications to Sub-Saharan
Africa public health research and evidence-based management decision-making.

The structure of these 18 chapters is subsequently organized with the following
five parts. As an introductory chapter, chapter “Sub-Saharan African Region Strate-
gies to Improve Biostatistics Capacity: Exploring Collaborations Between Training
and Research Institutions,” describes the origins and contributions of SACCAB as
well as its structure.

Part I (Data Harmonization and Analysis) contains three chapters (Chapters 2
to 4). In chapter “Diagonal Reference Modelling of the Effects of Educational
Differences Between Couples on Women’s Health-Care Utilization in Eritrea,”
Ghilagaber adapted models developed in the social mobility literature to examine
the effects of differences between couples’ educational levels on women’s health-
related decisions (such as the propensity to deliver in health facilities). Both
conventional modeling and Diagonal Reference Modeling (DRM) which account
for origin (woman’s education), destination (partner’s education), and “mobility”
(differences between couples’ educational levels) are applied on data from Demo-
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vi Preface

graphic and Health Surveys (DHS). Results from conventional models reveal strong
effects of educational differences on women’s health-related decisions, but such
strong effects disappear when data is analyzed using DRM. In chapter “Sequential
Probit Modeling of Regional Differences in the Effects of Education on Parity
Progression Ratios in Ethiopia,” Ghilagaber and Peristera proposed a sequential
procedure to model differentials in parity progression in Ethiopia based on data
from its 2019 Mini Demographic and Health Survey in which 8885 women from 11
regions were interviewed. Their results showed that the sequential model provides
more insight than conventional models when exploring the association between
education and parity progression in particular and fertility decision process in
general. They also found both similarities and differences in the effects of education
on parity progression among the regions. In chapter “Propensity Score Approaches
for Estimating Causal Effects of Exposures in Observational Studies,” Twabi and
Manda assessed causal effects of maternal health (including HIV infection) and
breastfeeding practices on child health outcomes. They offered a statistical causal
inference method to rigorously investigate the purported causal relationships of
maternal HIV infection, nutritional status, and breastfeeding practices on child
health outcomes from population-based nationally representative data from Demo-
graphic and Health Surveys in Malawi and Zambia.

Part II (Systematic Review and Statistical Meta-Analysis) is organized with four
chapters (Chapters 5 to 8). In chapter “Evidence-Informed Public Health, System-
atic Reviews and Meta-analysis,” Abariga, Ayele, McCaul, Musekiwa, Ochodo, and
Rohwer used systematic reviews, statistical meta-analysis, and illustrative examples
relevant to Sub-Saharan Africa that can be used to inform public health decisions.
They unpacked aspects that need to be considered when performing meta-analysis
including statistical tests to use, assessment of heterogeneity, subgroup analysis,
meta-regression, and sensitivity analysis. Furthermore, they covered emerging
techniques in the meta-analysis, including network meta-analysis, multivariate
meta-analysis, data synthesis when meta-analysis is not possible, and meta-analysis
of diagnostic test accuracy (DTA) studies. In chapter “Statistical Meta-analysis
and Its Efficiency: A Real Data Analysis and a Monte-Carlo Simulation Study,”
Chen gave an overview of meta-analysis on classical fixed-effects and random-
effects to synthesize summary statistics as well as meta-regression to explain
the between-study heterogeneity. A Monte-Carlo simulation study was designed
to illustrate the relative efficiency of the MA using summary statistics to the
MA using the original individual participant-level data. Real meta-data from 13
clinical trials to assess the Bacillus Calmette-Guerin vaccine in the prevention of
tuberculosis was used to demonstrate the implementation of these meta-analysis
models. In chapter “Meta-Analysis Using R Statistical Software,” Onyango and
Wao introduced a series of topics in systematic review and meta-analysis (SRMA).
They used illustrative examples to demonstrate how SRMA is undertaken for one
continuous and one dichotomous outcome. In chapter “Longitudinal Meta-analysis
of Multiple Effect Sizes,” Musekiwa and colleagues discussed the meta-analysis
from multiple outcomes where multiple effect sizes are estimated and produced.
These estimated effect sizes could be correlated because they are measured from
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Preface vii

the same studies. Additionally, the outcomes are often measured longitudinally,
resulting in multiple effect sizes estimated repeatedly over time. This chapter
proposes methods for statistical meta-analysis combining summary data from more
than one longitudinal study with multiple effect sizes. The proposed methods were
illustrated by an analysis of an example involving longitudinal meta-analysis of HIV
studies assessing the effect of some antiretroviral drugs in improving viral load
suppression and increasing CD4 count at weeks 4, 8, 12, 16, 20, 24, 32, 40, and
48 after start of treatment assignment.

Part III (Spatial-Temporal Modelling and Disease Mapping) consists of two
chapters (Chapters 9 to 10). In chapter “Measuring Bivariate Spatial Clustering in
Disease Risks,” Darikwa and Manda compared a set of full Bayesian estimations
for fitting a multivariate spatial disease model. They applied the models to age-
gender all-cause mortality in South Africa and childhood illnesses in Malawi. The
effect on the degree of spatial correlation after adjusting for socio-demographic
factors previously associated with studies diseases is also assessed. In chapter
“Bivariate Copula-Based Spatial Modelling of Health Care Utilisation in Malawi,”
Gondwe, Chipeta, and Kazembe constructed three joint models: first to analyze the
distribution of mixed binary-continuous data, a second for a mixture of a count and
continuous variables, and a third for a discrete set of count and binary variables.
The models are applied to study ANC utilization among Malawian women using
the 2015 Malawi Demographic and Health Survey (MDHS) data, drawn using
a stratified cross-sectional survey design. The models allowed for simultaneous
estimation of dependence and marginal distribution parameters of timing and
frequency of healthcare utilization to understand factors influencing utilization.
Covariates included demographics, socio-economic factors, and location. Various
models were fitted and compared, assuming different spatial structures.

Part IV (Bayesian Statistical Modelling) is composed of four chapters (Chapters
11–14). In chapter “Bayesian Survival Analysis with the Extended Generalized
Gamma Model: Application to Demographic and Health Survey Data,” Liang and
Ghilagaber extended the existing family of flexible survival models by assembling
models scattered across the literature into a more knit-form and under the same
umbrella. New special cases are obtained not only by constraining the shape
and scale parameters of the extended generalized gamma (EGG) model to fixed
constants but also by imposing relationships (such as reciprocal) between them.
The models were illustrated using data on family initiation from Demographic
and Health Surveys in some Sub-Saharan African countries. Preliminary results
showed that the further extended family of distributions provided a wide range of
alternatives for a baseline distribution in the analysis of survival data. In chapter
“Dynamic Bayesian Modeling of Educational and Residential Differences in Family
Initiation Among Eritrean Men and Women,” Munezero and Ghilagaber proposed a
dynamic Bayesian survival model in analyzing differentials in the timing of family
initiation. Such formulation relaxed the strong assumption of constant hazard ratio
in conventional proportional hazard models and allows covariate effects to vary
over time. The inference is fully Bayesian and efficient sequential Monte Carlo
(Particle Filter) is used to sample from the posterior distribution. They illustrated
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the proposed model with data on entry into first marriage among Eritrean men
and women surveyed in the 2010 Eritrean Population and Health Survey. Results
from the conventional proportional hazards model indicated significant differences
in family initiation among all educational and residential groups. In the dynamic
model, on the other hand, only one educational and one residential group among the
women and only one residential group among the men differed from their respective
baseline groups. In chapter “Bayesian Spatial Modeling of HIV Using Conditional
Autoregressive Model,” Ogunsakin and Chen proposed a generalized linear model
(GLM) with Bayesian inference to build the Spatially Varying Coefficients model
and compared it with the stationary model to evaluate the spatial association
between the incidence of HIV and some socio-demographic risk factors in Nigeria.
They found a nonlinear relationship between the incidence of HIV and age. The
modeling of the socio-demographic predictors of HIV infection and spatial maps
provided in this study could aid in developing a framework to alleviate HIV and
identify its hotspots for urgent intervention in the endemic regions. In chapter
“Estimating Determinants of Stage at Diagnosis of Breast Cancer Prevalence
in Western Nigeria Using Bayesian Logistic Regression,” Ogunsakin and Chen
estimated the prevalence and investigated determinants of stage at diagnosis by
constructing Bayesian logistic regression model from a generalized linear modeling
using socio-economic, demographic, and medical factors. They established that age,
higher educational level, being a westerner, as well as choosing nursing as a career
were the major factors that motivate early stage at breast cancer diagnosis in this part
of Nigeria and that delays in diagnosis reflect a lack of education. They recommend
an intensive health education program in order to increase early-stage diagnosis for
patients.

Part V (Statistical Applications) has four chapters (Chapters 15–18) to discuss
the statistical methods and applications in longitudinal data, survival data, and
missing data imputation. In chapter “Identifying Outlying and Influential Clusters
in Multivariate Survival Data Models,” Kaombe and Manda developed methods for
group outlier and influence assessments for the time-independent clustered survival
model. Appropriate extensions of martingale-based residuals in univariate survival
model and the re-weighted minimum covariance determinant method in multivariate
linear mixed-effects model have been defined for group outlier analysis for the
clustered survival model. They adapted influence approximations based on the one-
step Newton-Raphson method for maximum likelihood estimators in univariate
survival analysis to develop a group influence method for the survival mixed model.
They demonstrated the performance of the proposed methods through a simulation
study and real data application. In chapter “Joint Modelling of Longitudinal and
Competing Risks Survival Data,” Masangwi, Muula, and Mukaka used a joint
modeling framework to combine the three blocks in the analysis. The methods were
applied to the malaria dataset from Malawi where longitudinal markers hemoglobin
level and parasite count were considered. Time to treatment failure due to severe
malaria and time to withdrawal were the survival outcomes. Different survival
outcomes were observed, and they noted that when there is an association between
longitudinal and survival outcomes in biomedical research, joint models should be
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considered as they performed better than the separate methods. But where there is
no association, separate models for survival and longitudinal data analysis should
be considered. In chapter “Stratified Multilevel Modelling of Survival Data: Appli-
cation to Modelling Regional Differences in Transition to Parenthood in Ethiopia,”
Ghilagaber, Akinyi Lagehäll, and Yemane presented a multilevel extension of the
Cox proportional hazards model where a shared frailty term is included to account
for clustering of women within households. The extended model is used to analyze
regional differences in the intensity of transition to parenthood among 15,019
Ethiopian women aged 15–49 years old in the country’s Demographic and Health
Survey of 2016. They found that household frailty effects are fairly small in the
nine regions, but the log-normal frailties were significant in the entire country and
the two city administrations which are relatively heterogeneous with inhabitants
from many ethnic groups. They also found regional differences in the effects of
the background variables on the intensity of transition to parenthood, but the effects
were generally stable across the three models in each region. In chapter “Application
of Multiple Imputation, Inverse Probability Weighting, and Double Robustness in
Determining Blood Donor Deferral Characteristics in Malawi,” Kudowa, Mavuto,
and Mukaka addressed missing data to a retrospective cohort involving blood donor
data to estimate predictors of donor deferral status. The logistic regression model
was fit on deferral status and the independent variables. Multiple Imputation by
Chained Equation, Inverse Probability Weighting (IPW), and Double Robustness
(DR-IPW) were applied to correct for the missingness. The estimates from these
methods were compared with estimates from the CC method.

We sincerely thank all of the people who have given us strong support for
the publication of this book on time. Our acknowledgments go to all the chapter
authors (in the “List of Contributors”) for submitting the excellent works to this
book. We deeply appreciate the reviews of many reviewers (in the “List of Chapter
Reviewers”). Their comments and suggestions have improved the quality and
presentation of the book substantially. Last but not least, we are so grateful to Laura
Aileen Briskman and Eva Hiripi (Editors, Statistics, Springer Nature) and Kirthika
Selvaraju (Project Coordinator of Books, Springer Nature) for their full support
during the long publication process. We look forward to receiving comments about
the book from the readers. For any suggestions about further improvements to the
book, please contact us by email.

Phoenix, AZ, USA Ding-Geng (Din) Chen
Pretoria, South Africa Samuel O. M. Manda
Johannesburg, South Africa Tobias F. Chirwa
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Abstract There has been an increase in health sciences research conducted within
the sub-Saharan African (SSA) region in connection with the rest of the world.
However, the capacity to analyse the generated data to support public health
policies has been limited. Several initiatives aimed at building and retaining
biostatistics resources and capacity in the region have been implemented with
differing successes, scope and coverage. One such initiative is the African Academy
of Sciences (AAS), Alliance for Accelerating Excellence in Science in Africa
(AESA), the DELTAS Africa Sub-Saharan African Consortium for Advanced Bio-
statistics (SSACAB) training programme. The DELTAS Africa SSACAB training
programme was created to address the dearth of biostatistical capacity in the SSA
region. It relies on the principle of pooling together limited biostatistics capacity in
the African region to increase the numbers of trained fellows through collaborative
masters and doctoral training. This book showcases some of the research work that
has been undertaken under SACCAB. In this introductory chapter, we describe
the origins and contributions of SACCAB as well as its structure. A total of 150
fellows of which 123 are masters fellowships (41 female) have been produced under
SACCAB.
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1 Introduction

Health sciences research plays a key role in strengthening health systems, providing
evidence-based interventions which help to inform policy and practice (Agnandji
et al., 2012; Franzen et al., 2017). Although a lot of data has been generated
from such initiatives and largely driven by local research institutions in most sub-
Saharan African (SSA) countries (Gezmu et al., 2011), there is limited statistical
and biostatistical capacity to analyse such data (Thomson et al., 2016). The limited
biostatistical capacity often based in universities and research institutions is often
overstretched (Gezmu et al., 2011; Machekano et al., 2015).

Training biostatisticians abroad is not cost-effective compared to utilising exist-
ing local institutions. Further, many biostatisticians trained abroad rarely return
to their home countries. A group of local biostatisticians dotted within the SSA
region took the opportunity and started an initiative to build the critical mass to
fill the urgent need for biostatisticians in the region. The group of biostatisti-
cians piggybacked on the existing limited post-graduate training programmes and
research institutions that provided cutting-edge health sciences research questions
and learning experiences for masters and doctoral fellows (Machekano et al.,
2016; Thomson et al., 2016). This resulted in the formation of the DELTAS
Africa SSACAB training programme (Chirwa et al., 2020). The DELTAS Africa
SSACAB programme constitutes 11 African universities in 9 countries, 4 research
institutions and 4 Northern partners led by the School of Public Health based at
the University of the Witwatersrand, Johannesburg. Chirwa et al. (2020) highlight
and describe the eight other initiatives in the region which are geared towards
developing biostatistics capacity. SSACAB is based on the principle of pooling
limited biostatistics resources in training and research institutions to teach and
supervise postgraduate students at various partner universities.

One of the research institutions which have actively contributed to the success of
SSACAB is the South Africa Medical Research Council (SA MRC) Biostatistics
Unit. The biostatistics unit is one of the intra-mural capacity building efforts
based in the SAMRC whose mandate is to provide biostatistics expertise and
support to the organisation’s network of medical and health researchers as well
as government departments and national and international research bodies and
is an interdisciplinary unit with expertise in biostatistics, GIS, data management
and food science. The key focus areas for the biostatistics unit are to develop
generic, innovative and rigorous statistical methodology that improves the design
and analysis of health studies and to provide biostatistical leadership and expertise
in collaborative health and medical-related research projects. The unit also produces
and uses health-related maps and dietary intake research tools in the national
food database. The SAMRC Biostatistics Unit is also responsible for ensuring that
a high standard of data quality is achieved in all studies through rigorous data
management by providing relevant biostatistical knowledge and support to inform
local, national and international public health policy through service on projects
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and review boards. The unit supports SSACAB capacity-building efforts through
postgraduate supervision and specialised training in South Africa and in the region.

More recently, we have seen growth, especially in South Africa, to support
capacity for advanced biostatistics through research chairs. One such unique
chair, based at the University of Pretoria, was funded by the South African
Research Chair Initiative (SARChI) in 2018 and supported by the Department
of Science and Technology (DST), the National Research Foundation (NRF) and
the South African Medical Research Council (SAMRC). There are several long-
term objectives for this SARChI Research Chair in Biostatistics. Firstly, this
SARChI Research Chair in Biostatistics is to develop novel biostatistics method-
ologies for designing and building appropriate foundations for health research
and interventions that will provide the tools for building classical and adaptive
research interventions to meet cost-effective public health needs and interventions
in South Africa. Secondly, this SARChI Research Chair in Biostatistics is to
develop novel methodologies for analysing rich and complex biostatistical data
obtained from intensive longitudinal research in public health, cancer epidemiology,
bioinformatics and genetics, HIV/AIDS and malaria intervention and management.
Thirdly, the SARChI Research Chair in Biostatistics is to develop computational
software and tools for use by researchers in public health and to publicise these
novel methodologies to facilitate their application and implementation. Some of
these software and tools can be patented, and some will be distributed free for
immediate public use and to train faculty members, students and public health
researchers by means of short courses and seminars during national/international
conferences and advanced courses in biostatistics to train qualified biostatisticians
needed to address the copious enormous number of public health issues facing SA
today. Since 2018, the SARCHI Research Chair in Biostatistics has published 12
books in biostatistics and public health in internationally known journals. Forty-
eight referred papers are also featured in public available journals highlighting
the importance of biostatistical methods and applications for solving public health
problems. The SARChI Research Chair in Biostatistics has also presented six
keynote presentations at international conferences and has taught eight lectures at
international biostatistics workshops. In terms of building capacity, the SARChI
Research Chair in Biostatistics has trained and mentored 5 postdocs, 3 PhD students,
8 masters fellows and 26 honours students.

2 SSACAB

A total of 150 (masters and PhD) fellows have been awarded scholarships to date
from 14 different countries in SSA. Since the inception of the SSACAB in 2016,
a total of 123 masters have been awarded a fellowship as of 2018. Of these 90%
have completed their MSc degrees in biostatistics and graduated. Thirteen masters
graduates have been enrolled in PhD programmes either in the same institutions that
they graduated from such as KCMCo or in partner institutions two at KWTRP and



4 T. F. Chirwa et al.

collaborating programmes, Malawi Liverpool Wellcome Trust Programme, Catholic
University of Health and Allied Sciences in Tanzania and in the universities of Cape
Town and Kwa-Zulu Natal as well as three who are in the United Kingdom and
other parts of SSA highlighting SSACAB’s global reach and clear career pathing
goals.

To date, our masters and PhD fellows have been able to publish more than
60 research articles in peer-reviewed journals such as Frontiers, BioMed Central,
journals of medical statistics and informatics, Lancet Global Health, Geospatial
Health, Statistical Methods in Medical Research, Research in Mathematics &
Statistics and many other high-impact journals. Their publications address various
research areas using longitudinal data analysis (malaria, HIV repeated measures),
machine learning, spatial analysis (malaria clustering, malnutrition, mortality),
transition modelling (HIV staging, family formation and dissolution) and stochastic
and deterministic modelling (nutrition interventions) to address regional public
health challenges.

Although initially SSACAB had planned 15 PhD fellowships, a total of 27
(10 female) PhD students have been offered fellowships. Of these, six PhDs are
now pursuing post-doctoral fellowships or working as lecturers in various African
countries.

There are currently more than 40 peer-reviewed publications from PhD fellows.
SSACAB has also partially supported other PhD students enrolled in partner
institutions with their manuscript publication fees in peer-reviewed open-access
journals. Furthermore, staff members within SSACAB have also been supported
in publishing their research work, while some have presented their work at
international conferences such as The Sub-Saharan Africa Network (SUSAN) of
the International Biometrics Society (IBS), the South African Statistical Association
and conferences organised by SSACAB since 2017 to 2021. Partially supported staff
and student research have resulted in approximately 65 peer-reviewed and open-
access publications. Some staff-supported research has resulted in the publication of
books, including the Statistical Modelling of Complex correlated and clustered data
using household surveys in Africa edited volume from the University of Namibia
(Ngianga-Bakwin & Lawrence, 2019).

3 Collaborations with Training Institutions

The SAMRC BSU collaborated with the MASAMU Program at Auburn University
(funded by the National Science Foundation (NSF)). One of its objectives is to
enhance research in the mathematical sciences within Southern Africa Mathe-
matical Sciences Association (SAMSA) institutions and the African Institute for
Mathematical Sciences (AIMS). The AIMS has six centres of excellence across
Africa, in Ghana, Cameroon, Senegal, Tanzania and Rwanda, and South Africa.
AIMS’s objective is to enable Africa’s talented students to become innovators
driving the continent’s scientific, educational and economic self-sufficiency. The
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South African Centre for Epidemiological Modelling and Analysis (SACEMA),
another collaborator, is a national research centre dedicated to modelling and
analysis to improve health in South Africa and across the African continent.
SACEMA offers training in mathematics, biology, physics, economics, statistics and
epidemiology; we bridge disciplines to understand disease dynamics and improve
real-world outcomes. The Wellcome Trust African Institutions Initiative (AII)
through several consortia (e.g. SSACAB, CARTA and other regional initiatives
including Training Health Researchers into Vocational Excellence in East Africa
(THRiVE)) links academic and research institutions from Uganda, Rwanda, Tan-
zania and Kenya. The Netherlands–African Partnership for Capacity Development
and Clinical Interventions of Poverty-related Diseases (NACCAP), which builds
research capacity between several sub-Saharan African academic institutions with
support from Dutch partners; the Health Research Capacity Strengthening Initiative
partnership between the UK Department for International Development (DFID), the
International Development and Research Centre (IDRC) Canada and the Wellcome
Trust, SACORE and BAPED, have made significant progress to build research
capacity.

These initiatives have had various degrees of success. However, most have been
rather disjointed and more focused on HIV/AIDS, TB, child and maternal health
with statisticians leaving to private industry, as there are few academic centres for
biostatistics that are tightly linked to local biomedical research. Perhaps, one of the
most concerning issues has been a lack of systematic and rigorous interrogation
of the data being used. South Africa and the sub-Saharan African (SSA) region
generate huge amounts of health data from a variety of sources including demo-
graphic and health surveillance sites (DHSS), regional and nationally representative
health surveys and Routine Health Information Systems (RHIS). These data have
varying concerns regarding completeness, timeliness, representativeness and accu-
racy. However, their utilisation remains sub-optimal because optimal analyses of
such data demand an in-depth assessment and investigation of data and the process
and design that generated it. Moreover, current postgraduate training in biostatistics
has tended to produce ‘data analysts’, with heavy reliance on implementation
of developed biostatistics techniques in the widely available statistical software.
Seldom have this training embedded development and validation of methods
relevant to the problem at hand. SACCAB tried to blend the two: reliance on
implementation of developed biostatistics techniques in the widely available and
development and validation of methods relevant.

4 Conclusion

There has been tremendous progress in terms of capacity building and research for
students as part of their training and learning experiences. While others have had
opportunities to publish their work, some were limited and could not showcase
their work and advanced biostatistical skills gained through research and analysis
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conducted. This book, therefore, provides an excellent opportunity to the readers to
see the high-level analysis conducted over the 5-year period or so by locally trained
biostatisticians to answer cutting-edge research questions within the SSA region.
It not only aims to show evidence-based decisions based on such analysis but also
that, if the right candidates are identified, nurtured and mentored, the region is able
to support research without exporting data for analysis abroad.
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Diagonal Reference Modelling of the
Effects of Educational Differences
Between Couples on Women’s
Health-Care Utilization in Eritrea

Gebrenegus Ghilagaber

Abstract We examine effects of differences in education between couples on
women’s propensity to utilize health care (specifically deliver at health facilities
instead of at home). We contrast results from conventional logistic regression with
those from diagonal reference models (DRM). Data used for illustration come
from the 2002 Eritrean Demographic and Health Survey (DHS) and consist of
4255 women who have borne at least one child by the survey time (with a total
of 6366 children). Standard logistic regression models indicate strong effects of
educational differences on women’s decision to deliver at health facilities. On the
contrary, results from Diagonal Reference Modelling which accounts for origin
(woman’s education), destination (partner’s education), and mobility (differences
between couples’ educational levels) show that there is no mobility effect. If any,
DRM reveals that woman’s own education is more important than her partner’s
education in such decisions. That the mobility effect disappeared in the DRM is
in accordance with previous studies that used DRM and where mobility had no
effect on the outcome variable in diverse fields. But, our recommendation is not to
encourage users to use the results from DRM. Rather, we recommend to examine
the DRM model more closely in the light of recent studies suggesting that an artifact
of the model itself may lie behind the lack of mobility effects.

Keywords Social mobility · Diagonal reference models (DRM) · Health care
utilization · Eritrea · Mother’s education · Partner’s education · Couple’s
education · Health decision · Hospital delivery · Birth outcome · Logistic
regression · Binary outcome · Ideal number of children · Intended number of
children · Family size · Maternal health · Prenatal care · Model artifact ·
Demographic and Health Surveys (DHS) · The DHS program · Developing
countries · Family planning · Baseline levels
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1 Introduction

Institutional delivery and prenatal care have been some of the main recommenda-
tions of the World Health Organization (WHO) in order to improve the outcome
of pregnancy in developing countries, see, for instance, World-Health-Organization
and Others (2016). Since there are no formal randomized experiments on health
care utilization, it is difficult to evaluate its benefits without examining correlates to
health care utilization—especially in countries where health care centers may not be
uniformly distributed across regions or rural and urban areas, see Ghilagaber (2014)
for a method to correct for such selection bias.

To address this issue, investigators have often controlled for some of women’s
characteristics such as residence and education (alone or together with her partner’s
education and/or occupation) in models relating health inputs to outcome such as
maternal health. However, the role of educational difference between couples has
been ignored—especially in investigations based on data from Demographic and
Health Surveys (DHS).

In this chapter, we attempt to fill this gap in knowledge and adapt models
developed in the social mobility literature to examine effects of differences between
couples’ educational levels on women’s propensity to utilize facilities (especially
deliver a child at health facilities). These models, developed by Sobel (1981, 1985)
and known as Diagonal Reference Models (DRM), account for woman’s education
(origin), her partner’s education (destination) as well as differences between their
educational levels (mobility). The model is applied on data from 4255 women with
at least one child in the 2002 Eritrean Demographic and Health Survey (DHS) which
resulted in 6366 children in total.

The main research question we intend to address is if educational mobility (being
married to a partner with a different educational level) itself affects a woman’s
propensity to deliver a child at health facilities aside from the effects of her own
educational level.

Results from conventional logistic regression reveal strong effects of mobil-
ity (educational differences) on women’s decision to deliver at health facilities.
However, such strong effects disappear when the same data is analyzed using the
Diagonal Reference Models. Our results are in accordance with many other findings
based on DRM in various fields and different outcome variables. Some recent works
are reported in van der Waal et al. (2017), Boylan et al. (2014), Chaparro and Koupil
(2014), Aitsi-Selmi et al. (2013), Kuntz and Lampert (2013), Krzyżanowska and
Mascie-Taylor (2011), and Heraclides and Brunner (2010). But, we are not yet in
a position to recommend the DRM model because there are other ongoing studies
suggesting that the lack of mobility effects in the DRM can be an artifact of the
model itself.

We introduce our illustrative data set in Sect. 2. In Sect. 3, we describe the
Diagonal Reference Model. This model is then applied on our data set in Sect. 4
and the results are compared with those from a standard logistic regression model
for the propensity to deliver in health facilities. We summarize the findings of our
chapter by way of concluding remarks and recommendations in Sect. 5.
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2 Data: Hospital Delivery Among Eritrean Women

Data used for illustration in this chapter come from the 2002 Eritrean Demographic
and Health Survey, see National-Statistics-Office-Eritrea and Macro-International-
Inc. (2003). Usable records for the purpose of this chapter consist of 4255 women
who have borne at least one child by the survey time (March–July 2002) and with
valid values for the their own and partner’s educational levels and other background
variables. The total number of births by these women was 6366 children.

Frequency distribution of the data set across couples’ educational levels is shown
in Table 1 (left panel) while the corresponding percent distribution is shown on the
right panel. Thus, 2278 women (53.54%) had no education and were married to a
partner with no education while 448 women (10.53%) reported they have primary-
level education and were married to a partner with the same level of education. 401
of the 4255 women (9.42%) reported to have secondary or higher level education but
only 32 (0.75% of the entire sample) were married to a partner with no education.

Table 2 displays frequency distribution of the women who reported to have
delivered their first child in hospital. Thus, only 1034 of the 4255 women (24.30%)
delivered their first child at health facilities while the rest 75.70% reported that
they have delivered their first child at home (with the help of traditional midwives).
The right panel of Table 2 shows corresponding percent distributions of these 1034
hospital deliveries.

Table 3 shows percent of hospital deliveries among all women and is obtained
by dividing the frequencies in Table 2 by the corresponding entry in Table 1. The
educational gradient in the propensity to deliver at hospital is clear in Table 3. Thus,
while couples with no education constitute more than half of the sample (53.54%),
only 8.43% of women in this group have delivered in hospital. Couples with the

Table 1 Frequency and percent distribution of the sample across couples’ education

Frequencies Partner’s educ Percentages Partner’s educ

Own educ No Prim. Sec. Total Own educ No Prim. Sec. Total

No Educ 2278 591 81 2950 None 53.54 13.89 1.90 69.63

Primary 209 448 247 904 Primary 4.91 10.53 5.80 21.25

Second+ 32 66 303 401 Second+ 0.75 1.55 7.12 9.42

Total 2519 1105 631 4255 Total 59.20 25.97 14.83 100

Table 2 Frequency and percent of hospital delivery across couples’ education

Frequencies Partner’s educ Percentages Partner’s educ

Own educ No Prim. Sec. Total Own educ No Prim. Sec. Total

No Educ 192 95 38 325 None 18.57 9.19 3.68 31.43

Primary 61 155 151 367 Primary 5.90 14.99 14.60 35.49

Second+ 25 51 266 342 Second+ 2.42 4.93 25.73 33.08

Total 278 301 455 1034 Total 26.89 29.11 44.00 100
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Table 3 Percentage of
hospital deliveries in the
sample

Partner’s educ

Woman’s educ No Educ Primary Secon+ Total

No Educ 8.43 16.07 46.91 11.02

Primary 29.19 34.60 61.13 40.60

Second+ 78.13 77.27 87.79 85.29

Total 11.04 27.24 72.11 24.30

highest educational level (secondary or higher), on the other hand, constitute only
7.12% of the sample but 87.79% of women in this group have reported they
delivered their first child at health facilities.

Overall we observe a strong association between couples’ educational levels and
the decision to deliver in health facilities (hospital) but also that women’s own
education is more important than partner’s education in such decisions. As reported
in Ghilagaber (2018) part of the explanation may be that highly educated couples
live in urban areas where health facilities are easily accessible and we will control
for residence and other background variables when analyzing the data in Sect. 4
after introducing the Diagonal Reference Model below.

3 Diagonal Reference Models

The diagonal reference model was developed by Sobel (1981, 1985) to build on the
rectangular model of Hope (1971) to examine the effect of social mobility (changes
in social class between generations) on demographic outcome. It was later applied
to other areas like political efficacy in Clifford and Heath (1993), attitude towards
immigrants in Paskov et al. (2019), health and well-being in Chan (2018) and Präg
and Richards (2019). It was also adapted to problems outside social class such as
educational differences in, among others, Eeckhaut et al. (2013).

The diagonal reference model treats origin, destination, and indicators for
upward and downward mobility differently. In the original formulation in Sobel
(1981, 1985), origin refers to parent’s social class, destination to own social class,
and mobility as belonging to a social class that is different from parent’s. In this
chapter, however, origin refers to a woman’s own educational level, destination
refers to her partner’s educational level, and mobility refers to having a partner with
different educational level hers.

The model is designed for contingency tables classified by factors with the same
levels (same number of rows and columns). The main diagonal then represents the
“immobile” individuals (those who have the same educational level as their partners)
and are assumed to set the norm of behavior. The mobile individuals occupy the off-
diagonal cells and are either upward mobile (their own educational level is lower
than their partner’s) or downward mobile (their own educational level is higher than
their partner’s).
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Turner and Firth (2022) model the cell means as a function of the diagonal
effects, i.e., the mean responses of the “diagonal” cells in which the levels of the row
and column factors are the same. In our present case, we have a three-way square
matrix defined by the three educational levels described in the previous section (No
Educ, Primary, Secondary, or higher). Following Turner and Firth (2022), if the
mean response in cell (i, j) is denoted by μij , then the diagonal reference model
expresses it as

μij = ωμii + (1 − ω)μjj ,

where ω (0 < ω < 1) is a weight associated with the origin (woman’s education)
and reflects the degree of importance of her own education in couples with different
educational levels. Women in cell (i, i) and their partners in cell (j, j) represent
“pure” i and j effects, respectively, whereas individuals in cells (i, j) have partners
with lower or higher educational levels than their own and, hence, represent some
intermediate category.

According to Turner and Firth (2022), a diagonal reference term comprises an
additive component for each factor. The component for factor f is given by

ωf = exp (δr )
∑

r

exp (δr )
,

where the sum is over the levels of the factor and δr is a parameter to be estimated.
Thus, in a diagonal reference model for a contingency table classified by

the row factor i (origin = woman’s own education) and the column factor j

(destination = her partner’s educations), the mean response in cell (i, j) is given by

μij = ωγi + (1 − ω)γj =
(

exp (δ1)

exp (δ1) + exp (δ2)

)

γi +
(

exp (δ2)

exp (δ1) + exp (δ2)

)

γj ,

where γi and γj are mean responses of origin i and destination j (ith education
level of woman and j th education level of her partner) and δ1 and δ2 are parameters
to be estimated.

In the presence of one or more explanatory variables, as is the case in our
illustrative example where we control for four background variables (birth cohort,
region, residence, and ethnicity), the above model may be extended as follows, see
van der Slik et al. (2002) and Turner and Firth (2022):

μijk = β1x1k+β2x2k+β3x3k+β4x4k+
(

exp (δ1)

exp (δ1) + exp (δ2)

)

γi+
(

exp (δ2)

exp (δ1) + exp (δ2)

)

γj .

Thus, the problem reduces to estimating the parameters δ1 and δ2 (and from them
the weight ω from the relation shown in the equation for ω above) and the covariate
effects β if the model includes explanatory variables. This is achieved using the Dref
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option in the R-package for general nonlinear models, gnm, developed by Turner
and Firth (2022).

According to Turner and Firth (2022) the diagonal effects represent contrasts
with the off-diagonal cells and, hence, do not need to be constrained. Further, the
coefficients of the covariates are not aliased with the parameters of the diagonal
reference term implying it suffices with the usual constraints (using one of the levels
as baseline reference category). The only unidentified parameters in the DRM model
are the weight parameters, ωi .

In the next section we fit the above model to our data set described in Sect. 2 and
compare the results with those obtained from a standard logistic regression model
for the decision to deliver a child at a health facility.

4 Application: Educational-Mobility Effects on Hospital
Delivery

4.1 Measures

Our response variable is the binary outcome on whether a woman delivers her first
child at health facilities (hospital or clinics) rather than at home. We have access to
women with multiple children but we concentrate on the first birth in this chapter.
The main rational behind this choice is to avoid correlation among children from the
same mother and, hence, underestimation of standard errors of covariates which, in
turn, would lead to spurious significance.

Our main explanatory variable is educational mobility which, in our case, refers
to women whose educational level is different from their partners’. In addition to
educational mobility, women’s own education (origin) and their partners’ education
(destination) are part of the model. We also controlled for 5 background variables—
birth cohort, region, residence (urban or rural), religion, and ethnicity. But, in
our results section below we will report only those of primary interest (origin,
destination, and mobility).

4.2 Results

4.2.1 Results from Conventional Logistic Regression

The presentation of our results in this section follows that of van der Waal et al.
(2017). Since we have a 3 by 3 contingency table, we have 9 educational groups
(pairs of own-partner education). In the conventional logistic regression, one of
these groups (couples without education) is used as a baseline level. This produces
8 dummy variables whose estimated parameters are shown in the upper panel of
Table 4 together with their corresponding standard errors, odds ratios, and 95%



Effects of Couples’ Educational Differences on Women’s Health-Care Utilization 15

Table 4 Estimated mobility effects from conventional logistic regression and two DR models

Model Estimate Stand. error OR Lower 95% Upper 95%

Conventional logistic regression

No Educ married to men
with Prim. Educ

0.359 0.129 1.43 1.11 1.84

No Educ married to men
with Sec. Educ

1.159 0.231 3.19 2.03 5.01

Prim. Educ married to
men with No Educ

0.856 0.171 2.35 1.68 3.29

Prim. Educ married to
men with Prim. Educ

0.976 0.133 2.65 2.05 3.44

Prim. educ married to
men with Sec. Educ

1.454 0.157 4.28 3.14 5.82

Sec. Educ married to
men with No Educ

1.911 0.394 6.76 3.12 14.64

Sec. Educ married to
men with Prim. Educ

1.965 0.278 7.14 4.14 12.30

Sec. Educ married to
men with Sec. Educ

2.761 0.205 15.82 10.59 23.64

DRM (ref: Downward mobile)

“Immobile” couples
with no education

−0.595 0.286 0.55 0.31 0.97

“Immobile” couples
with primary education

−0.095 0.278 0.91 0.53 1.57

“Immobile” couples
with secon+ education

−0.089 0.322 0.91 0.49 1.72

Upward (own educ
lower than partner’s)

−0.454 0.247 0.64 0.39 1.03

DRM (ref: Upward mobile)

“Immobile” couples
with no education

−0.141 0.241 0.87 0.54 1.39

“Immobile” couples
with primary education

0.359 0.268 1.43 0.85 2.42

“Immobile” couples
with secon+ education

0.365 0.360 1.44 0.71 2.92

Downward (own educ
higher than partner’s)

0.454 0.247 1.57 0.97 2.55

confidence intervals. We see that all 8 educational combinations have higher odds
of delivering a child in hospital compared to the baseline group of couples with no
education. The confidence intervals for the odds ratios show that the differences are
significant at 5% significance level (in fact the p-values are all less than 0.01 except
for the first group whose p-value is between 0.01 and 0.05).

The odds ratios in the upper panel of Table 4 are reproduced in the 3 by 3 array
on the left panel of Table 5. From these we produced profiles of odds ratios across
woman’s education (middle panel in Table 5) and partner’s education (right panel
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Table 5 OR (left) and OR-profiles across own (mid) and partner’s educ (right)

Educ Partner’s Educ Partner’s Educ Partner’s

Own No Prim. Sec. Own No Prim. Sec. Own No Prim. Sec.

No 1 1.43 3.19 No 1 1 1 No 1 1.43 3.19

Prim. 2.35 2.65 4.28 Prim. 2.35 1.85 1.34 Prim. 1 1.13 1.82

Sec. 6.76 7.14 15.82 Sec. 6.76 4.99 4.96 Sec. 1 1.06 2.34

in Table 5). From Table 5 (left panel), we note that the odds of hospital delivery
are about 16 times among couples with secondary or higher education compared to
couples with no education. This combination of highest education is also confirmed
in the last row of the middle panel where women with secondary or higher education
have the highest odds of hospital delivery. The last column of the right panel where
women whose partners have secondary or higher education have the highest odds
also lends support to the confirmation.

A result worth noting Table 5 is that among women with the highest education
(middle panel) it is those women whose partners have no education who have the
highest odds (though the differences are not large ranging between 4.96 to 6.76).
Similarly, we note that among women whose partners have the highest education
(right panel), it is those with no education who have the highest odds (3.19 compared
to 1.82 and 2.34).

Another interesting result in Table 5 is that women’s own education seems to
have stronger effect on the decision to deliver at hospital compared to their partners’
education. We will assess this formally in the results for DRM.

4.2.2 Results from Diagonal Reference Models (DRM)

Results from two variants of the diagonal reference model are shown in the middle
and lower panels of Table 4. In the middle panel (where downward mobile women
are treated as baseline) we note that the mean effects of the diagonal elements are
estimated as μ11 = −0.595, μ22 = −0.095, and μ33 = −0.089, while the estimate
associated with upward mobility is −0.454.

The results in the lower panel of Table 4 come from a DRM where upward mobile
women are treated as baseline. The results are now in the opposite directions except
for μ11. In fact, the estimate associated with downward mobility (0.454) is just the
negative of that for upward mobility in the middle panel.

But, the most striking result in the two DRM models is that only couples with no
education have significantly lower odds of hospital delivery than the baseline couple
(where women’s education is higher than their partners’). None of the other effects
is significant as indicated by their corresponding 95% confidence intervals for the
odds ratios.

The weights associated with the origin (woman’s own education) and destination
(her partner’s education) are displayed in Table 6 for our response variable (hospital
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Table 6 Estimated origin and destination weights in Diagonal Reference Models for three health
related outcomes

Response variable Origin (Woman’s educ) Destination (Partner’s educ)

Delivery at health facilities 0.54 0.46

Intended number of children 0.30 0.70

Ideal number of children 0.58 0.42

delivery) and two other health related outcomes in the same survey (intended
number of children and ideal number children, dichotomized into small and large).

The weights, ω, reflect the extent mobile women are influenced by origin
effects (their own educational level) relative to destination effects (their partners’
educational level). Thus, the results for hospital delivery show that woman’s
education is more important (ω = 0.54) than her partner’s education (1 − ω = 0.46)
though the difference is not large. This can be compared with the estimate of
the weight for another outcome variable (intended number of children). For this
outcome, partner’s education (1 − ω = 0.70) weighs more than twice her own
education (ω = 0.30).

Thus, our results from the DRM indicate that for women whose education is
different from their partners’, the decision to deliver at health facilities is influenced
almost equally by their own and their partners education. Further, after accounting
for women’s own and their partners’ education, there is no effect of educational
differences between couples on the decision to deliver at health facilities.

5 Summary and Concluding Remarks

In this chapter, we explored the relationship between educational mobility and the
propensity to deliver at health facilities in Eritrea based on data from its 2002
Demographic and Health Survey.

Previous studies have considered woman’s educational level alone or together
with partner’s education but ignored effect of educational differences. Thus, the
scientific question we intended to address was if differences in educational levels
between couples affect woman’s decision to utilize health care (specifically deliver
a child at health institution).

We used the diagonal reference model which has been recommended in the
literature because, it is argued, can accurately capture the effect of mobility and
isolate it from those of origin and destination. Propensity to deliver a child at health
centers was modelled as a function of women’s own and their partners’ education
as well as educational differences between the couples. We also controlled for some
background variables (birth cohort, region, residence, religion, and ethnicity).

Results from conventional logistic regression models showed that there is
strong association between educational differences among couples and women’s
propensity to deliver at hospital. However, these strong associations disappeared
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when the data was analyzed using Diagonal reference Models (DRM). These results
are consistent with findings on the application of DRM in various fields (that
mobility has no effect on a range of important outcomes).

Recent works by Fosse and Pfeffer (2019) caution researchers who use DRM that
the resulting estimated mobility effects can, in part, be an artifact of the model. We,
therefore, suggest that future studies focus on a closer look at the DRM model and
its properties before recommending its universal use.
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Appendix: R-Codes Used for Computing the Results in Some
of the Tables in This Chapter

----------------------------------------------------------------------

Installing necessary packages, reading the source file in excel
format, and defining the origin and destination.

----------------------------------------------------------------------

install.packages("xlsx")
library(readxl)
install.packages("gnm")
require(gnm)
Eri2002 <- readexcel("C:/DRM-Revised-Educ-Occup-Hosp-Children-Ideal.
xlsx")
View(Eri2002)
Origin<-factor(Eri2002$WomEdu)
Destination<-factor(Eri2002$HusbEdu)
The source file has 6366 rows (children) from 4255 mothers and 24
columns(woman´s education, husband´s education, categorical
mobility indicators, and many other background variables). But, not
all columns are used in the analyses.

---------------------------------------------------------------------

Fitting conventional logistic regression models on the binary
outcome (hospital delivery) using some background factors as
covariates.

----------------------------------------------------------------------

HospConv1 <- gnm(Delivery ~ -1 + factor(Cohort) + factor(Region) +
factor(Resid) + factor(Religion) + factor(Ethn) + factor(EduMob),
family = binomial, data = Eri2002)

summary(HospConv1)
HospConv2 <- gnm(Delivery ~ -1 + factor(Cohort) + factor(Region) +
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factor(Resid) + factor(Religion) + factor(Ethn) + factor(ImmobPrim) +
factor(ImmobSecon)+ factor(Upwards) + factor(Downwards), family =
binomial, data = Eri2002)summary(HospConv2)

---------------------------------------------------------------------

---------------------------------------------------------------------

Fitting Diagonal Reference Model for Hospital Delivery with
downwards mobile women as baseline (reference) in mobility.

---------------------------------------------------------------------

HospUp <- gnm(Delivery ~ -1 + factor(Cohort) + factor(Region) +
factor(Resid) + factor(Religion) + factor(Ethn) + factor(Immobile) +
factor(Upwards) + Dref(Origin,Destination), family = binomial, data =
Eri2002)

summary(HospUp)
DrefWeights(HospUp)

---------------------------------------------------------------------

Fitting Diagonal Reference Model for Hospital Delivery with upwards
mobile women as baseline (reference) in mobility.

---------------------------------------------------------------------

HospDown <- gnm(Delivery ~ -1 + factor(Cohort) + factor(Region)
+ factor(Resid) + factor(Religion) + factor(Ethn) + factor(Immobile) +
factor(Downwards) + Dref(Origin, Destination), family = binomial, data
= Eri2002)

summary(HospDown)
DrefWeights(HospDown)

----------------------------------------------------------------------
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Sequential Probit Modeling of Regional
Differences in the Effects of Education on
Parity Progression Ratios in Ethiopia
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Abstract A sequential probit model is applied to analyze differentials in the effects
of women’s educational level on parity progression ratios in Ethiopia. Since parity
progression requires successful completion of the prior parity for progression into
the next higher parity, we argue that a sequential decision model captures the
decision process more accurately. Further, since reasons to have a first child may
differ from those to have, say, a second or third child, we allow the effects of
covariates on the progression propensities to vary between parities in the same
model. Data used for illustration come from the Ethiopian Mini Demographic and
Health Survey of 2019 in which 8885 women from 11 regions were interviewed.
Results show that the sequential model provides more insight than conventional
models when exploring the association between education and parity progression in
particular and fertility decision process in general. We also found both similarities
and differences in the effects of education on parity progression among the regions.
We included a household random-effect term to account for women’s clustering
within households. The random effect was significant in a model for the entire
country but disappeared when region was included as a covariate in the model.
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region · Somali region · Benishangul Gumuz region · Southern nations ·
Nationalities and peoples region · Gambela region · Harari region · Addis Abeba
city administration · Dire Dawa city administration

1 Introduction

Over the past four decades, the Demographic and Health Survey (DHS) program
has played a vital role in conducting nationally representative household surveys in
developing countries. Among the information gathered by DHS is the information
on current and total fertility such as age at first marriage and first birth, birth intervals
by background variables, children ever born, and fertility preferences as indicated
by an ideal number of children. Apart from their strong association to maternal and
child health (for instance, shorter birth intervals increase childhood mortality; age
at childbirth can affect maternal health and birth outcome), the above indicators
are important for monitoring population growth and developing family planning
programs. A notable example is the 1970s Chinese policy for limiting fertility. The
policy was based on the slogan “wan, xi, shao” (“later, longer, fewer”) and strongly
promoted later marriage, longer birth intervals, and fewer children in total.

The rich data in Demographic and Health Surveys (DHS) enable investigators
to make in-depth analyses that guide policy intervention. Such analyses, in turn,
require advanced statistical techniques in order to get maximum use of the available
data.

The effect of timing of age at first marriage and first birth on fertility has been
documented in, among others, Marini (1981). Recently, Arroyo et al. (2017) and
Eickmeyer et al. (2017) studied changes in median ages at first marriage and first
birth over the period 1980–2017. Gurmu and Etana (2014) analyze the roles of social
and demographic factors on age at first marriage in Ethiopia.

A birth-interval approach to the study of fertility was studied in, for instance,
Ghilagaber et al. (2005) where models were proposed for the quantum of fertility
(the proportion of women who move to the next higher parity) and the tempo of
fertility (the time it takes to make the progression for those women who continue
reproduction). Accelerated failure-time models for the tempo of fertility and
dynamic survival models for the quantum of fertility are also presented elsewhere in
this book and illustrated with data on age at first marriage in a Bayesian framework
in Liang and Ghilagaber (2022); Munezero and Ghilagaber (2022) and with data on
age at first birth in Ghilagaber et al. (2022).

The above sample of studies address the “later” and “longer” components of
fertility-related policy (in the context of the Chinese slogan). In the present chapter,
we propose and apply a method for assessing the last component (“fewer”) of the
slogan. The information we extract is the total number of children reported by
women interviewed in the Demographic and Health Surveys (DHS). But, rather than
applying methods for count data on the number of children, we propose sequential
procedure for the conditional propensity to progress to the next higher parity for
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women who have completed a given parity. Our approach is closer to the quantum
approach to fertility because our interest is in the proportion of women who move
to the next higher parity.

We illustrate our approach using data on parity progression among women in
Ethiopia based on data from the 2019 Mini DHS in the country, see Ethiopian-
Public-Health-Institute and ICF (2019). The information on which our response
variable is based is the total number of children borne by the respondent by the
survey time. This is sequentially ordered with values between 0 and 15.

It may be tempting to analyze such data by dichotomizing the number of
children into two groups (small and large) with some threshold for what is a large
number of children and applying conventional logistic regression models. We argue,
in accordance with Amemiya (1978), Maddala (1986), Mare (1980), Nagakura
(2004), and Waelbroeck (2005), that such procedure is subjective, and different
conclusions can be reached for different choices of thresholds. Instead, we propose
sequential probit modeling that is appropriate for outcome variables that are ordered
sequentially, which is the case in our data set. For more applications of sequential
models in different areas, see, for instance, Alpu and Fidan (2004); Amemiya
(1985); Brien and Lillard (1994); Davidson and MacKinnon (2004); Liao (1994);
Munkin (2011); Steele and Durrant (2011). Ghilagaber and Peristera (2014) use
multilevel sequential probit to model neighborhood effects on educational progress
among children to Polish and Turkish immigrants in Sweden.

We present the probit and sequential probit models in the next section. In Sect. 3,
we present our data set, apply the models on the data set, and present the results. We
summarize our findings together with some concluding remarks in Sect. 4.

2 Probit and Sequential Probit Models

2.1 Probit Model

Following Albert (2009), let us present a woman’s decision to progress to the next
higher parity by a binary indicator variable Yi where Yi = 1 if the woman decides
to progress to the next higher parity and Yi = 0 if she does not.

Suppose there exists a continuous measurement Zi of decision such that Zi is
positive if woman i decides to progress to the next higher parity and Zi is negative
if woman i does not make the progress. Moreover, the decision measurement is
related to the k covariates xi1...xik (such as k dummy variables indicating different
levels of education) by the normal regression model:

Zi = xi1β1 + ... + xikβk + εi ,

where εi , ..., εn is a vector of error terms from the standard normal distribution.
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The probit regression model (which is analogous to the logistic regression model)
expresses the probability pi = P (Yi = 1) as

pi = P (Yi = 1) = P (Zi > 0) = �(xi1β1 + ... + xikβk) ,

where (β1, ..., βk) is a vector of unknown parameters and � is the cumulative
distribution function of a standard normal distribution.

2.2 Sequential Probit Model

Suppose one observes N independent women and Wi is the outcome variable with
J possible ordered values {j = 1, . . . , J }. Let xi = (xi1, . . . xik) denote a set of k
covariates associated with response Wi .

In the sequential model, the variable Wi can take the value j only after the levels
1, . . . , j − 1 are reached. So, in order to get the outcome j , one must first have
experienced levels 1, 2, . . . , j − 1. The conditional probability of reaching level
j (1 ≤ j ≤ J − 1) is given by

Pr (Wi = j |Wi ≥ j, γ, δ) = �
(
γj − x

′
iδ
)
, (1)

where �(.) is the cumulative distribution function of the standard normal distri-
bution, δ is the regression parameter vector, γ = (γ1, . . . , γJ−1) are threshold
parameters, and x

′
iδ represents the effect of covariates. The unconditional proba-

bilities are defined as follows:

• The probability of reaching level j is given by

Pr (Wi = j |γ, δ) = F
(
γj − x

′
iδ
) j−1∏

r=1

{
1 − �

(
γr − x

′
iδ
)}

, j ≤ J −1. (2)

• The probability of reaching the highest level J is given by

Pr (Wi = J |γ, δ) =
J−1∏

r=1

{
1 − �

(
γr − x

′
iδ
)}

. (3)

The sequential model is often formulated in terms of latent variables. Let us
define

{
uij
}

the latent variables corresponding to the i-th observation,

{
uij
} = x

′
iδ + eij , (4)

where eij are independently distributed from �. The observed data are then obtained
as
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Wi =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1 if ui1 ≤ γ1

2 if ui1 > γ1, ui2 ≤ γ2
...

...

j if ui1 > γ1, . . . , uij−1 > γj−1, uij ≤ γj

. (5)

In the above model, the latent variable uij represents a woman’s propensity to
progress to parity j + 1, given that she already has j children. This implies that
sequential models can be estimated by conditioning on the appropriate sub-samples
in the data.

2.3 Parameter Estimation in the Sequential Probit Model

In classical framework, the parameters in the sequential probit model can be
estimated using the maximum likelihood approach by maximizing the likelihood
function,

L (γ, δ) = ∏

i:yi<J

[

�
(
γyi − x

′
iδ
) yi−1∏

r=1

{
1 − �

(
γr − x

′
iδ
)}
]

∗ ∏

i:yi=J

[
J−1∏

r=1

{
1 − �

(
γr − x

′
iδ
)}
]

.

(6)

Fahrmeir and Tutz (2001) have shown that sequential ordered models are special
cases of multivariate generalized linear models and that maximum likelihood
estimates can be obtained using an iterative re-weighted least-squares algorithm.

For more details on estimation in sequential ordered models, we refer the reader
to chapter 3 of Fahrmeir and Tutz (2001), where several sequential models with
different choices of distribution functions (the function F in Eq. 2 above) are
presented. We also refer to chapter 5 of Lillard and Panis (2003) on which the
program we use for computation in this chapter (aML) is based. Markov chain
Monte Carlo (MCMC) algorithms have also been developed for fitting such models.
See, for instance, Albert and Chib (2001) and Waelbroeck (2005).

3 Application to Parity Progression Among Ethiopian
Women

3.1 Data Set and Measures

The data set for our illustration comes from the Ethiopia Mini Demographic and
Health Survey of 2019, see Ethiopian-Public-Health-Institute and ICF (2019).
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Our response variable is the propensity of progression to next higher parity
among women who have completed the current parity. Thus, all women are
considered in modeling progression from parity 0 (no child) to parenthood (parity
1). Those women who have become parents (have at least one child) are then
considered in the next progression (from parity 1 to parity 2), while those who are
still with no child are no longer considered in further analyses. Similarly, women
with only one child are not considered in modeling progression from parity 2 to
parity 3, and so on.

The program we use for computation is aML (Applied Multilevel) developed
by Lillard and Panis (2003). It enables to estimate the parameters for multiple
progressions from one model, and thus, one does not need to fit separate models
for each progression.

Our major explanatory variable is mother’s educational level (highest educational
level attained by the survey time). Educational gradient of parity progression
(including childlessness) is well documented in the literature. See, for instance,
Wood et al. (2014) for study on 14 low-fertility countries. We also include
region as explanatory variable while analyzing data for the entire country. Else,
education alone was used as explanatory variable while analyzing data for each
region separately. The goal of the illustration is to demonstrate the methodological
contribution described in the chapter, and hence, we are less interested in the
substantive demographic question on potential correlates of parity progression.

A distribution of a total number of children ever borne by the survey time, cross
classified by educational level and region, is presented in Table 1. From the last
column in the bottom panel of table, we see that overall 3039 of the 8885 women
(34%) were childless by the survey time, 1146 women (13%) had one child, 1047
(12%) had two children, etc. We also note regional differences in that panel. While
444 of the 818 women (54%) from the capital city, Addis Ababa, and 343 of 812
women (42%) from the other city administration, Dire Dawa, were childless by the
survey time, the corresponding figures for the Afar and Somali regions were 141 of
641 (22%) and 194 of 723 (27%), respectively.

The column totals at the bottom of Table 1 show that 733 of the 8885 women
(8.25%) were from the Tigray region, 641 (7.21%) were from the Afar region, 948
(10.67%) were from the Amhara region, 818 (9.21%) were from the capital city,
Addis Ababa, etc.

Further, adding the values in the last columns of each panel (educational level)
shows that 3640 of the 8885 women (40.97%) had no education, 3345 (37.65%) had
primary-level education, 1149 (12.93%) had secondary-level education, while the
rest 751 (8.45%) had higher (above secondary) education. The last row of Table 1
shows the number of households in which the corresponding women were clustered
in.

Educational differences in the number of children ever born are shown in Fig. 1
for each region as well as for the entire country (last plot in Fig. 1), while Fig. 2
shows regional differences in the number of children for each of the four educational
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Fig. 1 Children ever born by mother’s education and across regions: Ethiopia Mini-DHS 2019

levels. Figures 1 and 2 clearly show that women with no education are over-
represented among those with a higher number of children, while women with
higher education (above secondary) are over-represented among those with few
children (including childless). We also note that the educational differentials in the
number of children are not uniform across the regions.

3.2 Sequential Probit Model for Propensities of Parity
Progression

Following Ghilagaber and Peristera (2014), let ai, i = 0, . . . , J denote the possible
number of children, and let, as before, the binary indicator of decision/progress
be denoted by Wi . If w1 = 0, outcome a0 is observed. Otherwise depending on
the value of w2 , there are two different outcomes: α1 = {w1 = 1, w2 = 0} and
α2 = {w1 = 1, w2 = 1} . Subsequent outcomes can be obtained in a similar way
until the outcome αJ . Therefore, the process of parity progression can be viewed
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Fig. 2 Children ever born by region and across mother’s education: Ethiopia Mini-DHS 2019

as a series of binary choices. See Ghilagaber and Peristera (2014) for a graphical
description of the process.

Parity progression process requires successful completion of the prior parity
for progress to the next higher parity. Therefore, as argued by Brien and Lillard
(1994) and Upchurch et al. (2002), a sequential probit model that assumes parity
progression occurs for the J options in a sequential manner accurately reflects the
real progression process.

The proposed model specifies an index Is for the probability of progressing to
successively higher parity s, conditional on having completed the previous lower
parity. Thus, there are up to J sequential choices of whether to continue to the next
parity (s = 1, . . . , J ), each conditional on having completed the previous lower
parity. Consequently, if we denote total sample size by N , then N = ∑

ni, i =
1, . . . , J where ni are the sub-samples of women available at decision level i.

Woman j progresses from parity s to parity s + 1 if her propensity to continue
is positive, Is > 0. The probability of progression is determined by the probit index
function

Is = α0s + ά1sXs + εs + ts f or s = 1, 2, . . . , J, (7)
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where Xs is a vector of exogenous covariates affecting parity progression decisions,
α0s and α1s are decision-specific intercepts and coefficients, respectively, εs is an
individual-specific residual term (heterogeneity) affecting all levels of decision, and
ts is the decision-specific stochastic element (normalized to σts = 1, for all s). εs

and ts are assumed to be normally distributed:

εs ˜ N(0, σ 2
εs) and ts ˜ iidN(0, 1). (8)

The residual terms are assumed independent of each other and all exogenous
covariates Xs . The model allows parameters to vary across decisions (hence the
subscript s on the parameter vector α). In other words, the parameters α1s can be
estimated by dividing the entire sample into smaller sub-samples. The model also
allows for correlation between the individual component εs and any endogenous
explanatory variables.

The probability of any given level of completed parity, s, conditional on the
sequence of covariates X is given by

P [s | 
(s)] =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

∫
εs
fn
(
εs | σ 2

εs

)
�

⎡

⎣−άsXs−
+ εs

⎤

⎦
s−1∏

l=1

⎛

⎝άlXl≡
+ εs

⎞

⎠ dεs,

s = 0, 1, . . . , J − 1

∫
εs
fn
(
εs | σ 2

εs

) s−1∏

l=1

⎛

⎝άlXl≡
+ εs

⎞

⎠ dεs, s = J

,

(9)
where J is the highest number of children, 
(s) denotes the full set of covariates at
each of the decision points, Xl−

is the stacked vector of all covariates at each decision

l, and fn (.) is the normal density function.

3.3 Results

Relative propensities of parity progression among all women (for the entire country)
are shown in Table 2. The left panel presents results from two probit models where
the covariates education and region were entered separately, while the right panel
presents results from one multivariate model where both covariates were entered
into the model.

The first columns in each panel show results from a model where the effects
of the covariates are assumed to be constant across the various parities, while the
results in the next five columns of each panel are from models where we let the
effects of the covariates to vary across the parities.

The upper part in both panels shows higher propensity of parity progression
among women with no education or elementary level education relative to women
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with higher education (which is the baseline level). Women with secondary-level
education do not differ significantly from those with higher education in most of the
columns, but we note that they have significantly higher propensities of progression
from parities 2 to 3 and from 3 to 4 in both panels.

In the model with only education and where the effects of education are assumed
to be constant over the parities, we found a significant household random effect (p-
value = 0.000) that is not reported in the table. However, this effect disappeared
once region was included in the model. This should not be surprising because
the households belong to the regions, and hence, any household random-effect
term is captured by the covariate region. It is also in accordance with Ghilagaber
et al. (2022) where household random effects were insignificant in most models
for transition to parenthood among Ethiopian women based on data from the 2016
Ethiopian Demographic and Health Survey.

The lower panel of Table 2 shows relative propensities of parity progression
by region. The first region (Tigray) was used as a baseline, and we see from the
first column that women from the Afar region have significantly higher propensity
of parity progression than those in the Tigray region, while women from the
Harari region and the two city administrations Addis Ababa and Dire Dawa
have significantly lower propensity. Women in the other six regions do not differ
significantly from those in Tigray. The corresponding column in the right panel
(where education and region are entered in the model) shows that only the Somali
region and the capital, Addis Ababa, differ significantly from the Tigray region and
that women from these two areas have lower propensity than women from Tigray.

Thus, we already see that we reach at different conclusions with regard to the
effect of region on parity progression depending on whether it is included in the
model alone or together with education. The same is true when we allow the effects
of covariates to vary over the parities. For instance, women from the Harari region
have a significant 16% lower propensity in the model where effects are assumed to
be constant, while there is no any significant difference in the five models where
we allow the effects to vary over parities. The only region that consistently shows
significant lower propensities of parity progression in all models is the capital city,
Addis Ababa.

These results have, therefore, prompted us to fit a sequential probit model
separately for women in each of the 11 regions with only education as a covariate
and allowing its effects to vary over the first three progressions. Results from 11
such models are shown in Table 3.

Table 3 shows that women with no education have significantly higher propensi-
ties of parity progression compared to those with higher education. For progression
from parity 0 to parity 1, this significant difference is true for all regions except the
Afar region. Educational differences in the Afar region are insignificant except for
progression from parity 1 to parity 2 where women with no education have higher
propensities than those with higher education.

In some regions, even women with primary education have significantly higher
propensities than the baseline group of women. But, such significant differences
vary across the regions and the parities. In some regions (Tigray, Gambela, and
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Addis Ababa), we see results that seem contrary to expectations. In Tigray, we
see that women with secondary-level education have significantly lower propensity
of progression from party 2 to parity 3 than women with higher education. In
Gambela, women with primary-level education have significantly lower propensity
of progression to parenthood (from parity 0 to parity 1) than those with higher
education. In the capital, Addis Ababa, women with primary-level education have
significantly lower propensity of progression from parity 1 to parity 2 than those
with higher education.

4 Summary and Concluding Remarks

This chapter presented a sequential probit model for parity progression ratios and
applied it to data on Ethiopian women surveyed in the 2019 Mini Demographic and
Health Survey in the country 2019.

The proposed sequential probit model specifies the propensity of progressing to
a successively higher number of children conditional on having attained the current
number of children. The model is based on the tacit assumption that a mother’s
decision at given birth consists of some sequential and independent choices. We
argue that the proposed approach captures the decision process on family size
more accurately since it conditions the propensity to progress to a given parity on
successful completion of the previous lower parity and allows covariate effects to
vary across parities.

Our contribution was mainly methodological—to suggest a more appropriate
method to analyze the data at hand. However, we also addressed a substantive
research question—the effect of woman’s educational level on parity progression
and how this effect varies across progressions and between the 11 regions in the
country.

Our empirical results reveal differentials in parity progression by educational
levels and across the regions. But, the strength (significance) and, in some cases,
even the direction of educational gradients on parity progression were not uniform
across parities and between the regions.

Overall, mothers with higher education have lower propensity of parity progres-
sion (specially at higher birth orders). Women from the capital city, Addis Ababa,
have much lower propensities to get more children, while women from the Afar and
Benishangul–Gumuz regions have much higher propensities of parity progression.

The sequential model proposed in this chapter provides more insight in fertility
decision process than conventional probit or logistic regression, and we recommend
its use in situations where the response variable is sequentially ordered.

The 8885 women analyzed in this chapter have contributed a total of 23007
children by the survey date (March–June 2019)—an average of 2.59 children per
woman. Among these, 22446 (97.6%) were single births, 277 (1.2%) were 1st of
multiple births, 277 (1.2%) were 2nd of multiple births, and only 7 (0.03%) were
3rd of multiple births. Since the total of 561 multiple births was only 2.44% of
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the total of 23007 births, we have not accounted for twins or multiple births in our
analyses. Instead, each birth was treated as unique.

The model we have used in this chapter assumes the error terms in the model are
a random sample from a standard normal distribution. It is not guaranteed that this
assumption is valid for our data, but diagnostics on this assumption is beyond the
scope of this chapter as the aim was to describe and illustrate a modeling approach
that we argue is appropriate to the type of data we analyze.

Thus, addressing multiple births (especially when they are an appreciable portion
of the total births) and sensitivity of estimates to the choice of distribution of the
error terms can be possible topics for future research in the area.

Acknowledgments The data analyzed in this chapter was generously provided by the DHS
program (https://www.dhsprogram.com). The views expressed in the chapter are solely of the
authors and do not express the views or opinions of the data source or its employees.

Appendix: aML Code Used for Computing the Results in the
Upper-Left Panel of Table 2 in This Chapter (Except Those in
the First Column)

#################################################################
Reading the source file in txt format and obtaining its dat
version used as input by aML.

----------------------------------------------------------

ascii data file = Eth2019.txt;
output data file = Eth2019.dat (replace = yes);
level 1 var = Region;
level 2 var = Resid Cohort Educ Children;

#################################################################

#################################################################
## Fitting a sequential probit model for parity progression with
only Education as a covariate and a household random-effect term.
Note that the effects of education are allowed to vary across five
parity progressions: progression from 0 child to to 1 child (where
all women are included), progression from 1 child to 2 children
(where women with no child are excluded), progression from 2
children to 3 children (where women with no child and those with
only one child are excluded), etc.

aML enables to estimate these set parameters in one run (from the
same model) without having to fit separate models for each
progression.

More details on the program and examples can be obtained in its
website:http://applied-ml.com/
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----------------------------------------------------------

dsn = Eth2019.dat;

option maximum scratch data space = 9000;
option maximum number of residual draws = 900;

define regset BetaX1;
var = 1 (Educ==0) (Educ==1) (Educ==2);

define regset BetaX2;
var = 1 (Educ==0) (Educ==1) (Educ==2);

define regset BetaX3;
var = 1 (Educ==0) (Educ==1) (Educ==2);

define regset BetaX4;
var = 1 (Educ==0) (Educ==1) (Educ==2);

define regset BetaX5;
var = 1 (Educ==0) (Educ==1) (Educ==2);

define normal distribution; dim=1;
number of integration points=6; name=eta;

/* Model for 0->1*/
probit model; keep if Children>=0; outcome = (Children>=1);
model = regset BetaX1 + intres(draw=_id, ref = eta);

/* Model for 1->2*/
probit model; keep if Children>=1; outcome = (Children>=2);
model = regset BetaX2 + intres(draw=_id, ref = eta);

/* Model for 2->3*/
probit model; keep if Children>=2; outcome = (Children>=3);
model = regset BetaX3 + intres(draw=_id, ref = eta);

/* Model for 3->4*/
probit model; keep if Children>=3; outcome = (Children>=4);
model = regset BetaX4 + intres(draw=_id, ref = eta);

/* Model for 4->5 or higher*/
probit model; keep if Children>=4; outcome = (Children>=5);
model = regset BetaX5 + intres(draw=_id, ref = eta);

starting values;
Cons1 T -.97076734849
NoEduc1 T 1.2866873162
Prim1 T .19509099954
Secon1 T 0.0291782222
Cons2 T -0.6871056844
NoEduc2 T 1.1932315868
Prim2 T 0.3400778214
Secon2 T .04238392715
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Cons3 T -1.1742768039
NoEduc3 T 1.4402496565
Prim3 T .68904298508
Secon3 T .31155824768
Cons4 T -1.4092236094
NoEduc4 T 1.4662051764
Prim4 T .94711322171
Secon4 T .64751990757
Cons5 T -1.2394722963
NoEduc5 T 1.1154687783
Prim5 T .73525501381
Secon5 T 0.12890475
Sdeta T 0.7
;
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Propensity Score Approaches for
Estimating Causal Effects of Exposures
in Observational Studies

Halima S. Twabi, Samuel O. M. Manda, and Dylan S. Small

Abstract As regards study designs, randomised controlled trials are judged as the
gold standard for quantitatively evaluating treatment effect sizes with less bias than
observational trials. In some cases, the RCTs can be considered unethical, not fea-
sible and impractical to conduct. In such cases, when RCTs are not appropriate for
evaluating interventions, observational studies, which generate valuable health data
and are readily available, have been used. A major disadvantage of observational
studies is that they cannot be used for investigating cause–effect relationships due
to confounding factors. Propensity score approaches are one of the strategies that
have been developed to control for confounder bias in observational studies and
allow for the estimation of causal association. This chapter provides a description
and theoretical fundamentals of two propensity-score-based approaches, namely
the propensity score matching and propensity score weighting for facilitating the
assessment of causal exposure effects using observational data. The two methods
are illustrated with an evaluation of the effects of: (a) exclusive breastfeeding or (b)
appropriate complementary feeding on nutritional outcomes of infants or children
using survey data from Malawi and Zambia.
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1 Introduction

An important objective of empirical comparison studies in health research is the
estimation of causal effects of a treatment, exposure, or intervention on health
outcomes. Ideally, randomised control trials (RCTs) are the gold standard design
to assess causal effects (Rubin, 1973). RCTs ensure a random allocation of
subjects into treated and control groups. In this case, treated subjects do not differ
systematically from control subjects in both measured and unmeasured baseline
characteristics. Therefore, this renders the possibility to directly estimate the effect
of a treatment by comparing the outcomes between the treated and control groups.
However, sometimes RCTs can be considered unethical and impractical to conduct.
The availability of observational studies, which are rich with valuable data, has
enabled health researchers to estimate the causal effect of an exposure on an
outcome. However, observational studies render an assessment of causal association
not possible.

Non-randomised studies of the effect of treatment on outcomes can be subject
to bias in which treated subjects differ systematically from control subjects (Rosen-
baum & Rubin, 1983). For example in health research, a patient may be given a
treatment, and a clinical researcher would observe the outcome, but the treatment
allocation in this situation is not random. On the other hand, in health survey data,
there is a lack of randomisation and treatment assignment, and both the exposure
and the outcome are observed. Therefore, the estimation of causal effects in the
former scenario may be subjected to selection bias, while for the latter example,
the effects may be affected by confounder bias. Estimation of the treatment effect
cannot be done by simply comparing outcomes between treatment groups. The
causal effect of interest would be misleading due to the presence of confounders.
Such confounding can result in biased estimates because confounding essentially
means that some causes of the outcome also influence selection for the exposure
(Rosenbaum & Rubin, 1984; Abadie et al., 2004; Austin & Mamdani, 2006). Even
though treatment assignment is mentioned when discussing causal effects, however,
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the assessment of causal association is not limited to a health setting. Different areas
that require an assessment of causal effects such as intervention effectiveness or
exposure effects can be done. In this chapter, we use the term treatment and exposure
interchangeably.

Various strategies have been developed and used to address confounder bias in
non-randomised treatment comparison studies such as control for covariates in the
analysis through multivariate regression (Kurth et al., 2006). Ideally, the aim is
to identify all confounders that influence the exposure and outcome, and then the
differences found between the treatment and control groups after correctly adjusting
for the identified covariates will represent the causal effects. Other strategies involve
matching the treated and control subjects based on similar observed covariates
(Rubin, 1973; Abadie et al., 2004). For example, if xi denoted the set of observed
covariates age, gender, and eating habits (healthy or unhealthy), each treated subject
is paired with a control subject, having the same gender, same (or similar) age, and
eating habits. However, as the dimensionality of the covariates increases, matching
subjects with respect to a large number of covariates tends to be difficult. The
introduction of propensity score (PS) methods by Rosenbaum and Rubin (1983)
has enabled an easy direction in the control for confounding effects in observational
studies when comparing treatment effects.

The propensity score (PS) is the conditional probability of being treated given
observed covariates (Rosenbaum & Rubin, 1983). This implies that conditional
on the measured baseline covariates, allocation of subjects to treatment groups
is considered to be a random process that mimics RCTs (Austin, 2011a). This is
possible because using the PS, observations in the treated and control groups with
similar PS have nearly similar observed distributions of covariates (d’Agostino,
1998) and are comparable. A comparison of the outcomes between the two groups
would represent the causal effect. The most widely used PS methods are the
propensity score matching (PSM) (Rosenbaum & Rubin, 1983, 1985) and inverse
probability weighting (IPW) (Robins et al., 1994) on the PS. Both the PSM and IPW
use the propensity scores to create a sample of control and treated subjects that have
similar characteristics. The propensity score matching (PSM) involves matching the
subjects based on the (estimated) propensity scores (Rosenbaum & Rubin, 1983).
Matching on the PS results in the analysis based upon only those subjects who
are successfully matched. The inverse probability of treatment involves assigning
a weight to a subject based on the propensity score. The re-weighted subjects
in the treated and control groups create a pseudo-population in which there is
no association between confounders and treatment. The advantage of the IPW is
that all observations are included in the weighted population unlike for the PS
matching where the treatment effect is estimated on the matched sample (Lunceford
& Davidian, 2004; Cole & Hernán, 2008; Austin, 2011a). One of the challenges on
weighting on the PS is that exposed subjects with a very low propensity score can
result in a very large weight. Similarly, a control subject with a propensity score
close to one can result in a very small weight.

The purpose of this chapter is to provide statistical descriptions and a theoretical
background of the propensity score matching and inverse probability weighting
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methods that are used to correct for confounder biases in observational studies,
allowing for causal-effect treatment comparisons. Their usage is demonstrated
in the evaluation of the effect of: (a) exclusive breastfeeding or (b) appropriate
complementary feeding on improving child growth. Child growth indicators are
taken to be binary as well as continuous.

1.1 Infant and Young Child Feeding Interventions and Child
Nutritional Outcomes

There is growing evidence of the critical consequences of exclusive breastfeeding
(EBF) in the first six months of life on child health and nutritional outcomes (WHO
et al., 2009a; Kuchenbecker et al., 2015; Kumar & Singh, 2015; Ayisi & Wakoli,
2014; Kamenju et al., 2017; Perkins et al., 2018). Exclusive breastfeeding entails
feeding an infant only breast milk with an exception of drops or syrups consisting
of vitamins, mineral supplements, or medicine. Breast milk contains essential
nutrients for a child, such as vitamins and minerals, which have been found to be
protective against common childhood illnesses such as gastrointestinal infections
and pneumonia (WHO, 2003; WHO et al., 2009b). However, adequate nutrition can
be provided only to a certain age at which point a child needs additional solid foods
to supplement for the deficiency. The World Health Organisation recommends intro-
ducing complementary semi-solid, soft foods and solid foods, liquids, water along
with breast milk to children at the age of 6 months (WHO et al., 2009b). Appropriate
complementary feeding, which involves initiating complementary feeding (nutrient-
rich foods) at the appropriate time and feeding a child sufficiently, has been shown
to have an impact on child nutritional outcomes among children aged between 6
and 23 months (WHO et al., 2009b; Kassa et al., 2016). Poor feeding habits among
infants and young children are associated with increased risk of illnesses, frequency
of infections, and reduced nutrition absorption that result in poor growth (WHO,
2003; WHO et al., 2009b). Optimal infant and young child feeding is known to be
essential in ensuring good child growth and health (WHO et al., 2009b). Studies
that have provided evidence of the beneficial effect of exclusive breastfeeding and
appropriate complementary feeding on child nutritional outcomes have based their
conclusions from observational studies that are prone to confounder bias. Malawi
and Zambia are among the countries in SSA that have been adversely affected by
poor child growth, particularly stunting among under-five-year-old children (WHO
et al., 2017). There is a need to affirm the evidence of the beneficial effect of infant
and young child feeding interventions in improving child growth using advanced
statistical methods. In this chapter, we assessed three nutritional outcomes, namely:
stunting (height-for-age), wasting (weight-for-height), and underweight (weight-
for-age). The three nutritional outcomes are standardised to z-scores such that values
below −2 indicate adverse outcomes (WHO et al., 2006). In the case of height-for-
age z-score, a child with a score below −2 is classified as stunted, for weight-for-age
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z-score, a child with a score below −2 is classified as underweight, and for weight-
for-height z-score, a child with a score below −2 is classified as wasted.

2 PS Methods to Minimise Confounder Bias in Estimating
Exposure Effects

Let T be a binary treatment indicator denoted as T = {0, 1}, where T = 1 if treated
(e.g., exclusively breastfed), T = 0 if control (not exclusively breastfed), and X be
a vector of measured covariates that are thought to be associated with the treatment
(e.g., exclusive breastfeeding) and the outcome (e.g., child height-for-age z-score).
Each subject (i.e., a child) is assumed to have a vector of hypothetical outcomes
YT = (Y0, Y1). The Y0 and Y1 represent values of the height-for-age z-score that
would be observed to have a child been treated or have the child received a control.
These hypothetical outcomes are known as potential outcomes (or counterfactuals).
The counterfactual outcomes Y0, Y1 represent a hypothetical situation where at a
population level, all children are not exclusively breastfed and when all children
are exclusively breastfed. The actual observed outcome of a child when exposed is
denoted as

Y = Y1T + (1 − T )Y0. (1)

Equation 1 is also referred to as the consistency assumption, where Y = YT
(Rosenbaum & Rubin, 1983; Austin & Mamdani, 2006). This assumption states
that the observed outcome is equal to the counterfactual under the actual treatment a
subject received. Due to the fundamental missing data problem in causal inference
(Holland, 1986), an average causal effect is estimated from the population rather
than individual causal effects. The difference in the mean potential outcomes is
denoted as

E[Y1 − Y0]
E[Y1] − E[Y0]. (2)

The estimation of Eq. 2 cannot be realised from observational studies as the
counterfactuals are both not observed from an individual. However, it is possible
to identify the causal association by estimating the mean counterfactual outcomes
from observed data O = (Y, T ,X) under several assumptions known as the strongly
ignorability assumption.

Under randomised assignment of subjects into treatment groups, the counterfac-
tual outcomes and treatment assignment are independent Y1, Y0 � T ; hence, using
observed data, we can show that the expectation of the observed outcome given a
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particular treatment is equal to the expected counterfactual outcome at that treatment
level E[Y |T = 1] = E[Y1|T = 1] = E[Y1]. However, for observational data, the
presence of characteristics X that influence the causal relationship results in

E[Y |T = 1] = E[Y1|T = 1] �= E[Y1].

Identifying these covariates and controlling for them may ensure an identification
of the average causal effect from the observed data. Therefore, Rosenbaum and
Rubin (1983) improved the independence assumption to condition on observed
covariates written as

(Y1, Y0) � T |X, (3)

where T is the observed exposure and X is a vector of observed covariates.
Assumption 3 together with the positivity assumption 0 < p(T = 1|X) < 1, which
states that each subject within a population is equally likely to be treated, is known as
the strongly ignorability assumption (Rosenbaum & Rubin, 1983). The assumption
states that conditional on observed covariates, exposure is independent of the
potential outcomes and, hence, necessitates exchangeability between exposure
groups. Using this assumption, we can prove that the mean of the potential outcomes
can be estimated from observational data as follows:

E{E(Y |T = 1,X)} = E{E(Y1|T = 1,X)}
= E{E(Y1|X)}

= E(Y1). (4)

The first expression of the equation is due to iteration of expectation and consistency.
The second expression is due to the strongly ignorable assumption. The same can
be shown for E{E(Y |T = 0,X)}.

2.1 Propensity Score Definition

Rosenbaum and Rubin (1983) introduced an alternative to the traditional balancing
method between exposed and unexposed subjects on covariates called the propensity
score. The propensity score is defined as the probability that a subject is assigned to
a treatment group given observed covariates X.

π(x) = Pr(T = 1|X) (5)
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0 < π(x) < 1.
The propensity score provides a single measure of influence of confounders on

exposure assignment. Equation 5 states that T and X are independent conditional
on the propensity score X�T |π(x). This allows those subjects from the treated and
control groups with the same propensity score to be balanced with respect to the
distribution of X. Rosenbaum and Rubin (1983) proved that the propensity score is a
balancing score, and conditioning on the PS, the potential outcomes are independent
of exposure for πε(0, 1). To prove the balancing property of the propensity score
P(T = 1|π(x), x) = π(x),

P(T = 1|π(x)) = E(T |π(x))
= E[E(T |π(x), x)|π(x)]

= E[E(T |x)|π(x)]
= E[Pr(T = 1|x)|π(x)]

= E[π(x)|π(x)]
= π(x). (6)

Hence, we can further define assumption 3 as (Y1, Y0) � T |π(x) and show that
conditional on the propensity score, the mean potential outcomes may be identified
from the observed data.

E{E[Y |T = 1, π(x)]} = E{E[Y1|T = 1, π(x)]} = E{E(Y1|π(x))} = E(Y1).

The same applies for T = 0, resulting in E{E[Y |T = 1, π(x)]} − E{E[Y |T =
0, π(x)]} = E[Y1 − Y0]

2.1.1 Propensity Score Estimation

The common approach used to estimate the propensity score is assuming a logistic
distribution for the PS and estimating the probability using a logistic regression
model. The estimated propensity score is the predicted probability of the exposure
from the fitted regression model (Austin, 2011a) written as

logit (π(xi)) = log

(
π(xi)

1 − π(xi)

)

= log

(
Pr(Ti = 1|xi)

1 − Pr(Ti = 1|xi)
)

= Xiβ.

In multivariate form, this can be written as π(X,β) = {1+exp(−X
′
β)}−1, and β is

a (p×1) matrix of coefficients. Interactions and higher-order terms can be included
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in the model. The parameter β is estimated by the maximum likelihood estimator
(MLE) β̂ solving (Lunceford & Davidian, 2004);

n∑

i=1

ψβ(Ti,Xi ,β) =
n∑

i=1

Ti − π(Xi ,β)

π(Xi ,β){1 − π(Xi ,β)}
∂

∂β
{π(Xi ,β)} = 0. (7)

Although estimation of the propensity scores is common using the logistic regres-
sion, studies have estimated the p-scores using probit models, boosted regression
methods (McCaffrey et al., 2004), tree-based methods (Lee et al., 2010), and neutral
networks (Setoguchi et al., 2008). Variables that are considered as important for
matching are included as covariates in the logistic model.

Under the strongly ignorability assumption, using the propensity scores, esti-
mation of an unbiased average treatment effects is possible (Rosenbaum & Rubin,
1983). Methods of propensity score matching, stratification, weighting, and covari-
ate adjustment have been developed to facilitate the causal inference estimation
using propensity scores (Austin, 2011a; Cole & Hernán, 2008; d’Agostino, 1998;
Rosenbaum & Rubin, 1984; Lunceford & Davidian, 2004).

2.1.2 Propensity Score Model Misspecification

The ideal situation when dealing with propensity scores is to have a known PS.
However, in reality, the PS is estimated from the observed data. Some studies
have used non-parametric methods to estimate the propensity score (Zhang, 2017).
However, the most common method used to estimate the propensity score for a
binary exposure is by using a parametric model, mostly, the logistic regression
as explained in the previous section. The estimation of the average treatment
effect is also mostly done using parametric models. Therefore, the PS model is
prone to misspecification, either being under-specified (ignoring interaction or high-
order terms) or when a relevant covariate is excluded. Drake (1993) found that
misspecification as a result of excluding relevant covariates resulted in an increase
in bias but could be resolved by including all necessary covariates. In addition, they
observed that misspecifying the PS model resulted in smaller bias as compared to
misspecifying the outcome model. Extensions on assessing misspecification of the
PS model though limited have been done for complex survey data (Lenis et al.,
2018).

2.2 Propensity Score Matching

Traditional matching involves pairing treated and control subjects based on one or
several measured covariates. However, matching on the covariates becomes difficult
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as the dimensionality of the covariates increases. The introduction of the propensity
score by Rosenbaum and Rubin (1983) made it possible to match treated and control
subjects based on the estimated propensity score resulting in two groups that are
comparable, and hence, the average treatment effect can be estimated from this
matched sample (Rosenbaum & Rubin, 1983) using methods for paired tests (paired
t-test, McNemar’s test, or conditional logistic regression) (Austin, 2009).

Various matching methods have been proposed in the literature to ensure optimal
matching, since using the estimated PS alone to match would be limited as the
probability of observing two units with exactly the same value of the propensity
score is zero (Becker & Ichino, 2002). These methods are the nearest neighbour
matching, Calliper matching, Kernel matching, and Mahalanobis metric matching.
The nearest neighbour matching is based on the greedy matching algorithm that
matched each subject i in the treated group with a subject j in the control group by
the smallest absolute distance between their propensity scores:

di = minj |π(Xi ) − π(Xj )|.

Calliper matching pairs each subject i in the treated group with subject j in the
control group within a pre-specified calliper region b:

di = minj {|π(Xi ) − π(Xj )}| < b.

This helps in reducing the risk of poor matches when the distance of the propensity
scores between the matched pairs is great. Mahalanobis metric matching with the
propensity score matches each subject i in the treated group with a subject j in
the control group according to the closest Mahalanobis distance calculated on the
similarities of the variables:

di = minj |Dij |,

where Dij = (Wi−Wj )S−1(Wi−Wj )
T , W is a combined matrix of {X, π(X)} and

S is the sample variance–covariance matrix of X for the control group (Rosenbaum
& Rubin, 1985).

Several improvements have been done on the various matching methods. Dehejia
and Wahba (2002) introduced the radius matching that is a form of a calliper
matching except that the matching is one-to-many with each subject i in the treated
group being matched with multiple subjects in the control group within a pre-
specified calliper region. Pan and Bai (2015) extended the calliper matching to
interval matching that matches subjects based on confidence intervals in propensity
scores. Further extensions include the Mahalanobis calliper matching (Guo et al.,
2006) and the genetic matching that are forms of the Mahalanobis metric matching
that uses callipers and weighted Mahalanobis, respectively.
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Several methods have been proposed in the literature to estimate the treatment
effects from the matched sample. The simple approach involves comparing the mean
of the pair differences written as

δ̂ = 1

n1

n1∑

i=1

Yj1 − Ȳj0,

where j represents the n1 matched sets and Ȳj0 is the average of K control subjects
in the matched set j (Austin, 2014). We can define the matching with replacement
estimator that attempts to utilise all observations in the data by pairing each subject
in the treated or control group with M subjects of the opposite treatment assignment.
The matching replacement estimator can be written as

δ̂matchrep = 1

n

n∑

i=1

(Ŷi1 − Ŷi0)

= 1

n

n∑

i=1

(2Ti − 1)

(

1 + KM(i)

M

)

Yi,

where

Ŷi1 =
{

1
M

∑
jεJM(i,φ) Yi if Ti = 0

Yi if Ti = 1

Ŷi0 =
{
Yi if Ti = 0
1
M

∑
jεJM(i,φ) Yi if Ti = 1.

JM(i, φ) is the set of M observations in the treated group opposite to i with similar
propensity scores and KM(i) is the number of times a subject i is used as a match
(Abadie & Imbens, 2006). Abadie and Imbens (2006) proposed an estimator of the
variance for the matching with replacement estimator written as

V̂ ar(̂δmatchrep) = 1

n2

n∑

i=1

(Ŷi1 − Ŷi0 − δ̂matchrep)
2

+ 1

n2

n∑

i=1

[(
KM(i)

M

)

+
(

2M − 1

M

)(
KM(i)

M

)]

σ̂ 2(Xi, Ti), (8)
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where M is the number of matches per subject,KM(i) is the number of times subject
i is used as a match, and σ̂ 2(Xi, Ti) is the estimated conditional variance given by

σ̂ 2(Xi, Ti) = J

J + 1

(

Yi − 1

J

J∑

m=1

Ysm(i)

)2

, (9)

where J is the fixed number of similar subjects and sm(i) is the mth closest subject
to subject i among subjects with the same A-value (Abadie & Imbens, 2006).

2.3 Inverse Probability Weighting (IPW) on the PS

Another balancing method that reduces confounder bias in observational studies is
weighting on the propensity score. The PS weighting method assigns to each subject
a weight that equals the inverse of the probability of being treated. Weighting creates
a pseudo-population where the distribution characteristics between the treated and
control groups are similar (no confounding) (Lunceford & Davidian, 2004). The
inverse probability weight is the inverse of the estimated propensity score and is
similar to weights used in survey data (Horvitz & Thompson, 1952). A subject in
a treated group is assigned a weight of wi = 1

π(xi )
, and a control subject would be

given a weight of wi = 1
1−π(xi)

. The weighted sample can then be used to estimate
the exposure effect on the outcome. The weighted sample represents subjects who
have unconfounded estimates. The inverse probability weights can be defined with
respect to the exposure as

wi = Ti

π(xi)
+ (1 − Ti)

1 − π(xi)
, Ti = 0, 1. (10)

Therefore, the mean potential outcomes for the treated and control groups can
be estimated 1 as E{ T Y

π(x)
} = E{ T Y1

π(x)
}. Under the consistency assumption, Y1 is

observed if T = 1 and Y0 is observed if T = 0. Therefore, under the strongly
ignorability assumption, the potential outcomes can be estimated from the observed
data by

E

{
T Y

π(x)

}

= E

{

E

[
I (T = 1)Y1

π(x)

∣
∣
∣
∣Y1,X

]}

= E

{
Y1

π(x)
E[I (T = 1)|Y1,X]

}

= E

{
Y1

π(x)
P [T = 1|Y1,X]

}
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= E

{
Y1

π(x)
P [T = 1|X]

}

= E

{
Y1

π(x)
∗ π(x)

}

= E[Y1].

Denoting the indicator of the treatment T = I (T = 1). The same applies to
E{ T Y

π(x)
} = E{ T Y0

π(x)
} = E[Y0]. Therefore, the average treatment effect can be

obtained as follows (Rosenbaum & Rubin, 1985):

θ̂ipw1 = μ1,ipw − μ0,ipw

= E

[
T Y

π(x)
− (1 − T )Y

π(x)

]

= E[ T Y
π(x)

] − E[ (1 − T )Y

π(x)
]

= n−1
n∑

i=1

TiYi

π̂
− n−1

n∑

i=1

(1 − Ti)Yi

1 − π̂
. (11)

The weights in 11 do not add to one; hence, Lunceford and Davidian (2004)
proposed a normalised estimator for the average treatment effect where the weights

add to one for each group as E
[

T
π(X)

]
= E

[
1−T

(1−π(X))

]
= 1. Hence, the second

version of the IPW estimator is defined as

θ̂ipw2 =
(

n∑

i=1

Ti

π̂(X)

)−1 n∑

i=1

TiYi

π̂(X)
−
(

n∑

i=1

(1 − Ti)

(1 − π̂(X))

)−1 n∑

i=1

(1 − Ti)Yi

1 − π̂(X)
. (12)

π(X) is estimated by a logistic regression. The estimators 11 and 12 are solutions to
the equations (Lunceford & Davidian, 2004).

n∑

i=1

{
Ti(Yi − μ1)

πi

}

+ η1

(
Ti − πi

πi

)

= 0, and (13)

n∑

i=1

{
(1 − Ti)(Yi − μ1)

(1 − πi)

}

+ η0

(
Ti − πi

(1 − πi)

)

= 0. (14)

With the assumption that the propensity score is known and letting (η0, η1) =
(μ0, μ1) to obtain θ̂ipw1, while (η0, η1) = (0, 0) to yield θ̂ipw2.



Propensity Score Approaches for Estimating Causal Effects of Exposures in. . . 53

The variances of the IPW estimators are derived by handling the estimates
as solutions to a set of estimating equations as Hernán and Robins (2020) rec-
ommended fitting generalised estimating equations using the sandwich variance
estimator. Lunceford and Davidian (2004) included the propensity score in the
estimating equations, and it is known to be exact. Using the theory of M-estimation
that implies that for the IPW estimators θ̂ , n1/2(θ̂ − θ) converges in distribution to
a N(0,Σ) variable. We can show that the large sample variance of θ̂ipw1 assuming
the PS is known is derived as

Σ∗
ipw1 = E

[
(Y 1)2

π
+ (Y 0)2

1 − π

]

− θ̂2
0

and

Σ∗
ipw2 = E

[
(Y 1 − μ1)

2

π
+ (Y 0 − μ0)

2

1 − π

]

− θ̂2
0 ,

where θ̂0 is the true value, μ1 = E[Y 1], μ0 = E[Y 0].
Now, assuming that we estimate the propensity scores using the logistic regres-

sion model and we estimate β by maximum likelihood by solving 7, therefore, using
M estimators, the estimator θ̂ipw1 will be

φ(Yi ,̂θ) =
(

(Y 1)2

π
+ (Y 0)2

1−π
Ti−π(Xi ,β)

π(Xi ,β){1−π(Xi ,β)} .

)

Therefore, the large sample variances of θ̂ipw1 and θ̂ipw2 become

Σipw1 = Σ∗
ipw1 − HT

β,1E1
β,βHβ,1,

where

Hβ,1 = E

[(
Y 1

π
+ Y 0

1 − π

)

πβ

]

Σipw2 = Σ∗
ipw2 − HT

β,2E1
β,βHβ,2,

where

Hβ,2 = E

[(
Y 1 − μ1

π
+ Y 0 − μ0

1 − π

)

πβ

]
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and πβ = ∂
∂β
π(X,β) and Eβ,β = E

[
πβπ

′
β

π(1−π)

]

. It has been shown that estimating β

leads to a smaller large sample variance than using the true value of β (Lunceford
& Davidian, 2004).

2.4 Assessing Confounder Balance

Covariate balance is typically assessed and reported by using a variety of statis-
tical measures such as the standardised mean differences, overlapping coefficient,
variance ratios, p-values t-test or Kolmogorov–Smirnov test, and the bias (Austin,
2009). The most common method used to assess covariate balance is the stan-
dardised difference. Even though there is no firm agreement on what value of the
standardised difference denotes imbalance between treated and control subjects in
the matched sample, some researchers proposed that a standardised difference of
0.1 (10%) denotes meaningful balance in the measured covariates (Normand et al.,
2001).

To assess the reduction of selection bias associated with a covariate Xp, p =
1, . . . , P can be calculated by taking the mean difference in the covariates between
the treatment groups.

Bp = M1(Xp) − M0(Xp),

where M1 and M0 are the means of the covariate for the treatment and control
groups.

Alternatively, the standardised bias for a covariate can be used to assess balance.
The standardised bias compares the mean and prevalence of the covariate in the
treated and control groups written as

SBp = Bp

spp
= M1 − M0

spp
, (15)

where spp is the pooled standard deviation of the covariate (Austin, 2009).

For inverse probability weighting, for each covariate (Xp), we calculate a
weighted mean or proportion among individuals given an intervention Ti = 1 and a
weighted mean or proportion among individuals not on an intervention Ti = 0 and
obtain the difference and divide by the square root of the weighted variance. The
weighted mean for individuals on an intervention is calculated as

x̄wt,T=1 =
∑

I (Ti = 1)w1xi
∑

I (Ti = 1)w1
,
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and the weighted sample variance is given as

s2
wt,T=1 =

∑
w1

(
∑

w1)2 −∑
w2

1

∑
w1(xi − x̄wt )

2

and likewise for non-intervention individuals, where w1 is the weight assigned to
the i-th individual on an intervention. A decision criterion using standardised bias
varies, but most studies conclude that covariates are balanced if the |bias| < 5%.

2.4.1 Sensitivity Analysis

One strong assumption of conducting the PSM is that there remains no unobserved
confounding. It is impossible to prove that no unobserved confounding exists,
but through a sensitivity analysis, we can measure if the results are sensitive to
hidden bias. There are several sensitivity analysis tests that can be used to check
for hidden bias. For binary outcomes, a McNemar’s exact test of sensitivity or the
Mantel–Haenszel developed by Rosenbaum (2002) can be used. The McNemar’s
test compares the number of differing pairs in which appropriately CF children had
positive outcomes (i.e., not stunted) against non-appropriately fed children who
had a negative outcome (stunted) (Hernán & Robins, 2020; Rosenbaum, 2005).
On the other hand, the Mantel–Haenszel (MH) non-parametric test statistics can
be used to assess the sensitivity of the exposure effect to unmeasured confounder
bias. The MH non-parametric test compares the successful number of individuals in
the treatment group with the same expected number, given that the treatment effect
is zero (Aakvik, 2001).

For a sensitivity analysis, a range of values for the odds ratio of two matched
children is considered, which is denoted as gamma in the literature (Rosenbaum,
2005; Aakvik, 2001). The gamma can take a range of values with the common
one being from 1 to a maximum value of 2 with several increment values (i.e.,
0.2). If there were no unmeasured confounding, this maximum odds ratio would
be 1; higher values of the maximum odds ratio correspond to more unmeasured
confounding (Keele, 2010).

Let Q+
MH be the test statistic, given that we have overestimated the treatment

effect, and Q−
MH , the case where we have underestimated the treatment effect. The

two bounds for the MH are then given by

Q+
MH = |Y1 −∑S

s=1 Ẽ
+
s | − 0.5

√∑S
s=1 V ar(Ẽ

+
s )

(16)

or
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Q−
MH = |Y1 −∑S

s=1 Ẽ
−
s | − 0.5

√∑S
s=1 V ar(Ẽ

−
s )

. (17)

Mantel–Haenszel (MH) tests calculate the bounds to check sensitivity of the ATE
weight results (Aakvik, 2001).

The McNemar’s test assesses the null hypothesis of no appropriate comple-
mentary effect on child growth for different values of unobserved heterogeneity
Rosenbaum (2005) by computing an upper and lower bounds using p+ = Γ

1+Γ
and

p− = 1
(1+Γ )

.
The McNemar’s non-parametric test compares the number of discordant pairs

in which appropriately CF children had improved growth against non-appropriately
fed children who did not have improved growth (Rosenbaum, 2002). The statistic is
repeated for different values of Γ to find the value of Γ at which the upper bound
p-values become non-significant (p > 0.05). The upper bound p-value is given as

N∑

a

(p+)a(1 − p+)N−a.

N is the total number of discordant pairs and a is the discordant pairs in which
children who were not appropriately CF were wasted or stinted or underweight and
those who were not appropriately CF were not.

The sensitivity analysis aims to assess how the inference about the appropriate
complementary effect will be altered by changing the values of Γ that measures
unobserved covariates (Rosenbaum, 2005).

In this chapter, the level of gamma (Γ ), a range of possible values attributable to
unobserved heterogeneity, was set from 1 to 2 with an increment of 0.1. A value of
gamma close to 1 and significant indicates sensitivity to unobserved heterogeneity
(Rosenbaum, 2005). Several packages are available to conduct a sensitivity test on
the causal effects for binary outcomes in R Rosenbaum and Small (2017) and Stata
(Becker & Caliendo, 2007). We used the mhbounds package in Stata to obtain the
values of the upper and lower bounds on the estimates for wasting, stunting, and
underweight (Keele, 2010).

3 Illustrative Examples Using Nutritional Outcome Data in
Children

Population- and household-based surveys such as the Demographic and Health
surveys are nationally representative household surveys that are widely used and
provide information on a wide range of indicators in the areas of population,
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maternal and child health, and nutrition (Manda et al., 2014). However, a few studies
have assessed causal association using this health survey data (Twabi et al., 2020).

3.1 Data

We extracted child data from the 2015–16 Malawian Demographic and Health
Survey (MDHS) and the 2018 Zambian Demographic and Health Survey (ZDHS).
These are nationally representative household surveys that provided up-to-date
information on current HIV trends, maternal health, HIV and AIDS, and child health
and nutritional status of children under age 5 (via weight and height measurements)
at national level for both rural and urban areas of the country. Both surveys followed
a stratified two-stage sample design. Parents of infants included in the surveys
had signed an informed consent. Details of the sampling design for the MDHS
and ZDHS can be obtained from the 2015–16 MDHS and 2018 ZDHS reports
(Government of Malawi and ICF, 2017; Zambia Statistics Agency and ICF, 2019).

For the effect of exclusive breastfeeding, we analysed separately data of 1978
and 1182 infants less than 6 months of age from the 2015–16 Malawian and 2018
Zambian surveys, respectively. To estimate the effect of appropriate complementary
feeding (ACF) on the child nutritional outcomes, analysis was done on data of 4722
and 2879 children aged 6 to 23 months from the 2015–16 MDHS data and the
2018 ZDHS, respectively. In Malawi, HIV test results were not made available to
respondents, while in Zambia, HIV testing was performed in households of which
respondents chose to be informed of their HIV test result (Government of Malawi
and ICF, 2017; Zambia Statistics Agency and ICF, 2019).

3.1.1 Causal Pathway Framework

Figure 1 shows the causal pathway of the effect of a child’s feeding practice (EBF
or ACF) on child nutritional outcomes. Several variables were identified from the
ZDHS and MDHS as potential confounders on the effect of exclusive breastfeeding
on child nutritional outcomes, and these include maternal age, maternal HIV,
wealth status, place of residence, maternal education, sex of a child, size of a
child at birth, and age of a child, mothers employment, duration of breastfeeding,
counselling on breastfeeding, birth weight, and having diarrhoea (Ali et al., 2017;
Ayisi & Wakoli, 2014; Woldeamanuel & Tesfaye, 2019; Chekol et al., 2017). For
appropriate complementary feeding, the potential confounders identified included
place of residence, wealth status, region of stay, antenatal care visits, access to
media, maternal age, maternal HIV, counselling on feeding, and child’s age (Kassa
et al., 2016; Kamenju et al., 2017; Perkins et al., 2018; Walters et al., 2019;
Disha et al., 2012). All the confounders were compared between the treated (EBF
or ACF) and control (no EBF or no ACF) groups using a chi-square test for
categorical variables and a t-test for continuous variables. Mothers HIV infection
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APC—appropriate complementary feeding, EBF—exclusive breastfeeding, Und—
underweight, Was—wasting, Stu—stunting, Mage—maternal age, CSex—sex of a child,
BW—birth weight, Medu—mothers’ education, Res—place of residence, ANC—antenatal
care visits

Was
StuUnd

EBF

Csex
Res

BW

wealth

Mage

HIV

Was
StuUnd

APC

Medu
Res

ANC

wealth

Mage

HIV

Fig. 1 Left: Causal pathway for exclusive breastfeeding and child nutritional outcomes (0–6
months). Right: Causal pathway for appropriate complementary feeding and child nutritional
outcomes (6–23 months)

is known to have an effect on child growth only and can be defined as a potential
confounder. As shown in Fig. 1, we postulate a path from HIV status to the outcomes
only. However, for the ZDHS data, mothers were informed of their HIV status;
hence, the decision to either exclusive breastfeed a child or practice appropriate
complementary feeding may be influenced by the mothers’ HIV status. Therefore,
we assessed the influence of maternal HIV on the causal associations for the ZDHS
data. The causal paths are shown from feeding to the nutritional outcomes wasting,
stunting, and underweight. The paths indicating adjusting for confounders are
arrows drawing from confounders into the variable EBF or ACF and the outcomes
(stunting, wasting, or underweight). The bias pathway is shown from the arrows that
show a relationship between HIV infection and stunting, wasting, or underweight.

3.1.2 Exclusive Breastfeeding and Complementary Feeding Indicators

The exposure variables were exclusive breastfeeding (EBF) and appropriate comple-
mentary feeding (ACF) categorised as (0=exclusively breastfed, 1=not exclusively
breastfed) and (0=not appropriate, 1=appropriate), respectively. The Demographic
and Health Surveys (DHS) have information on a one day (24 h) infant diet
recall method, and this was used for assessing exclusive breastfeeding. Exclusive
breastfeeding was calculated if an infant was fed only breast milk (with the
exception of ordered medicines and vitamins by health professionals) one day (24 h)
before the survey was conducted.

Complementary feeding practices were measured using the key indicators
recommended by the WHO/UNICEF in 2008 that include introduction of solid,
semi-solid, or soft foods, minimum dietary diversity, minimum meal frequency
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and minimum acceptable diet calculated for the age ranges 6–11, 12–17, and 18–
23 months of age, and based on a 24-h recall of the child’s dietary intake. These
indicators include:

(i) Introduction to complementary foods = 1 if a child aged 6–23 months was
complementary fed (solid, semi-solid, or soft) and 0 otherwise (WHO et al.,
2010; Kassa et al., 2016).

(ii) Minimum dietary diversity (MDD) = 1 if a child received foods from four or
more food groups during the previous day and 0 otherwise. This refers to the
child receiving the following food groups: grains, roots, and tubers; legumes
and nuts; dairy products (milk, yoghurt, and cheese); flesh foods (meat, fish,
poultry, and liver/organ meats); eggs; vitamin A-rich fruits and vegetables; and
other fruits and vegetables (WHO et al., 2010; Kassa et al., 2016).

(iii) Minimum meal frequency (MMF)=1 if a breastfeeding and non-breastfeeding
child aged 6–23 months received complementary foods the minimum number
of times or more (minimum was defined as: two times for breastfed infants 6–
8 months; three times for breastfed children 9–23 months; and four times for
non-breastfed children 6–23 months) in the previous day (WHO et al., 2010;
Kassa et al., 2016), 0 otherwise.

(iv) Minimum acceptable diet (MAD) = 1 if a child was fed a minimum dietary
diversity and minimum meal frequency during the day or night preceding
the survey (WHO et al., 2010; Government of Malawi and ICF, 2017) and
0 otherwise. Minimum acceptable diet was calculated as composite indicator
from the following:

a. Breastfed children—minimum dietary diversity and minimum meal fre-
quency as above

b. Non-breastfed children—minimum dietary diversity but excluding the dairy
products category (4 out of 6 groups) and minimum meal frequency and 2
or more milk feeds (Government of Malawi and ICF, 2017)

Appropriate complementary feeding was quantified by considering core WHO
infant and young child feeding indicators from the DHS data. If a child met these
core indicators, introduction of complementary feeding, minimum dietary diversity,
and minimum meal frequency, then the child was classified as having received
appropriate complementary foods.

3.2 Results

In this chapter, the analysis focused on two interventions, namely: exclusive
breastfeeding and appropriate complementary feeding. In Malawi, the prevalence
of exclusive breastfeeding among children aged 0–6 months was 52.4% (95% CI:
(50.2%, 55.0%)), and in Zambia, it was 64.4% (95% CI: (58.1%,68%)). A majority
of children aged 6 to 23 months in Malawi (83.2%(82.1%,84.3%)) and Zambia
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96.5%(95.7%,97.2%) were on complementary feeding. The prevalence of children
who received appropriate complementary feeding in Malawi was 7.8% (7.0%, 8.5%)
and 11.4% (10.0%, 12.9%) in Zambia.

Before application of the propensity score methods, we explore the distribution
of the confounders across the intervention groups as presented in Tables 1 and 2. We
observe that in Malawi among the 1012 children who were exclusively breastfed,
25 (7.8%) were born to HIV-infected mothers, 835 (84.1%) resided in the rural part
of Malawi, and 437 (45%) were from poor households. In Zambia, among the 762
children who were exclusively breastfed, 73 (10.1%) were born to HIV-infected
mothers, 370 (48.6%) were female, 51 (6.7%) had reported having diarrhoea two
weeks before the survey, and 598 (78.5%) were aged 0–3 months, see Table 1. We
observe that mothers’ education, history of diarrhoea, history of vitamin A uptake,
mothers’ age, birth weight, and child’s age were significantly different between
exclusively breastfed and non-exclusively breastfed children in Malawi. In Zambia,
sex of a child, place of residence, history of diarrhoea, vitamin A uptake, and child’s
age were significantly different between the EBF groups.

Table 1 further presents absolute standardised differences (ASD) for a con-
founder across the intervention groups. An ASD value of 0.1 (10%) was used as
a decision criterion and denoted meaningful balance in the measured covariates
(Normand et al., 2001; Twabi et al., 2020). A closer look at the ASDs in the table
shows that some of the confounders had an ASD > 0.1, implying imbalance in the
EBF groups among the children.

Table 2 presents distribution of confounders among appropriate complementary
fed children. Among the 368 children who were on ACF in Malawi, 44.3% were
females, while among the 4354 children not on ACF, 43.3% were female. In Zambia,
among the 286 children on ACF, 164 (51.9%) resided in the rural parts of Zambia,
while 1842 (67.3%) of the 2593 who were not on ACF were from the rural part of
Zambia. In Malawi, maternal HIV, place of residence, sex of a child, mothers’ age,
wealth index, and mothers’ education were significantly different between children
on ACF and no ACF. For the ZDHS data, place of residence, wealth index, mothers’
education, and age of a child were significantly different between the ACF groups.
The ASD differences for these confounders are also greater than 0.1, affirming to
the imbalance of the confounders between the two groups.

3.2.1 The Effect of the Nutritional Interventions on Child Nutritional
Outcomes Before PS Application

Table 3 presents the effects of exclusive breastfeeding and appropriate comple-
mentary feeding on the child nutritional outcomes before applying the propensity
score matching and PS weighting. There was a positive association between
exclusive breastfeeding and appropriate complementary feeding on the child growth
indicators; however, the association was not statistically significant. In Malawi,
children who were on exclusive breastfeeding were less likely to be wasted and
underweight, while for Zambia, they were less likely to be stunted, wasted, and
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underweight, see Table 3. Appropriately complementary fed children were less
likely to be wasted in Malawi and were less likely to be wasted, stunted, and
underweight in Zambia, see Table 3.

3.2.2 Estimating the Propensity Score

All covariates that were identified as potential confounders were included in a
logistic model to estimate the probability of being exclusively breastfed (propensity
scores for EBF) and the probability of being on appropriate complementary
feeding (propensity scores for ACF). A forward model selection was applied to
select potential interactions. The Hosmer and Lemeshow goodness-of-fit test was
performed to check if the model fits the data well. The p-values for the Hosmer
and Lemeshow test on exclusive breastfeeding were 0.4632 for the MDHS data
and 0.4632 for the ZDHS data, and for appropriate complementary feeding, the p-
values were 0.5881 for the MDHS data and 0.1228 for the ZDHS data, indicating
the treatment models fit the data well.

3.2.3 PS Matching

Exclusively breastfed children were matched to those who were not exclusively
breastfed and children who were appropriately complementary fed to those who
were not appropriately complementary fed. The differences on the matched sample
for both datasets were explored after matching using the McNemar’s test, and the
results are presented in Tables 4 and 5. For appropriate complementary feeding,
a sample of 368 matched pairs was created for the MDHS data and a sample of
283 matched pairs was created for the ZDHS data. For exclusive breastfeeding,
a sample of 390 and 537 matched pairs was created for Zambia and Malawi,
respectively. The pairs were matched using nearest neighbour matching within a
0.01 calliper. Significant differences between children who were EBF and those
who were not EBF were balanced for some covariates as seen in the absolute
standardised differences (ASD) listed in Table 4. For appropriate complementary
feeding, the propensity score matching succeeded in balancing the differences in all
the confounders, as seen from the ASD and p-values obtained, between ACF and
non-ACF children as presented in Tables 5.

The average treatment effect was then calculated from the matched sample using
a conditional logistic regression for binary data and using a paired t-test for the
continuous outcomes. In Zambia, children who were exclusively breastfed were less
likely to be stunted (OR=0.75, (95% CI: 0.54,1.04)) and underweight (OR=0.84,
(95% CI: 0.53, 1.33)) compared to children who were not exclusively breastfed.
However, the positive effect was not statistically significant. In Malawi, exclusive
breastfeeding had a positive effect on underweight (OR=0.77, (95% CI: 0.39, 1.53))
and wasting (OR=0.69, (95% CI: 0.28,1.71)). However, the positive effect was not
statistically significant, see Table 6.
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For the continuous outcomes, in Malawi, children who were exclusively breast-
fed had an increase in weight-for-height z-scores (Coef=3.59, (95% CI: 0.42 6.77)),
weight-for-age z-scores (Coef=0.38, (95% CI: −1.55, 2.31)), and height-for-age
z-scores (Coef=0.62, (95% CI: −3.13, 1.89)). However, the effect of EBF was
significant only for weight-for-height z-scores. In Zambia, there was a positive
effect of EBF on all the z-scores (weight-for-height z-scores (Coef=2.29, (95%
CI: −0.47, 5.05)), weight-for-age z-scores (Coef=0.32, (95% CI: 0.08, 0.52)), and
height-for-age z-scores (Coef=0.15, (95% CI: −0.05, 0.35))); however, the effect
was significant only for weight-for-age z-scores, see Table 7.

3.2.4 PS Weighting

The inverse probability treatment weights (IPTW) were calculated by taking the
inverse of the probability of being exclusively breastfed or probability of being
ACF conditional on the observed potential confounders. The IPTWs ranged between
0.4 and 7.5 for the Zambia data and from 0.5 to 18.8 for the Malawi data. Using
the weights, the absolute standardised difference was calculated on the weighted
sample for each covariate, and the results are presented in Table 8. The PS weighting
achieved confounder balance between EBF groups for both Malawi and Zambia as
shown in Table 8a. The ASDs for all covariates in Malawi were less than 0.1. We
observe a similar pattern for appropriate complementary feeding for both Malawi
and Zambia, see Table 8b.

The average treatment effect was then estimated by weighting the mean z-
score (probability of being stunted) in the exclusively breastfed group (ACF) and
subtracting the mean z-score (probability of being stunted) in the non-exclusively
breastfed group (No ACF). In addition, we used robust standard error estimation to
account for the weights. For the binary data, in Malawi, EBF had a positive effect
on wasting (OR=0.85 (95% CI=0.24, 1.67)) and underweight (OR=0.54 (95%
CI=0.24, 1.19)). However, the positive effect was not significant. In Zambia, EBF
had a positive effect on underweight (OR=0.75 (95% CI=0.44, 1.27)) and stunting
(OR=0.84 (95% CI=0.58, 1.2)); however, the effect was not significant, Table 6.

Table 7 presents the EBF effect on the continuous outcomes. In Malawi, children
who were exclusively breastfed had a slight increase in their weight-for-height z-
score (Coef=3.3, (95% CI:0.33, 6.3)), weight-for-age z-score (Coef=0.93, (95% CI:
−1.04, 2.9)), and height-for-age z-scores (Coef=0.11, (95% CI: −2.75, 2.98)). The
effect of EBF was significant only for weight-for-height z-scores. In Zambia, there
was an increase in the weight-for-age z-scores (Coef=0.41, (95% CI: 0.08,0.73)),
weight-for-height z-scores (Coef=1.48, (95% CI: −0.80,3.76)), and height-for-age
z-scores (Coef=0.18, (95% CI: −0.05,0.35)) among children who were exclusively
breastfed. However, the significant effect of EBF on the z-scores was observed for
weight-for-age z-scores.
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Table 8 Absolute standardised differences for the confounders across the interventions groups after
PS weighting

(a) Exclusive breastfeeding (EBF vs. No
EBF):0–6 months

(b) Appropriate complementary feeding
(ACF vs. no ACF): 6–23 months

2015–16 MDHS 2018 ZDHS 2015–16 MDHS 2018 ZDHS

Confounder ASD ASD Confounder ASD ASD

Sex of a child Maternal HIV

Male 0.07 0.008 HIV negative 0.003 0.013

Female 0.07 0.008 HIV positive 0.003 0.013

Maternal HIV Sex of a child

HIV negative 0.015 0.001 Male 0.04 0.09

HIV positive 0.015 0.001 Female 0.04 0.09

Mothers’ education Mothers’ education

None 0.04 0.19 None 0.04 0.19

Secondary 0.04 0.19 Secondary 0.04 0.19

Post-secondary Post-
secondary

Child’s age Child’s age

0–3 months 0.019 0.00 6–11 months 0.02 0.04

4–6 months 0.019 0.00 12–17
months

0.016 0.05

18–23
months

0.039 0.01

Residence Residence

Urban 0.034 0.026 Urban 0.01 0.05

Rural 0.034 0.026 Rural 0.01 0.15

Had diarrhoea Wealth

No 0.021 0.001 Poor 0.07 0.05

Yes 0.021 0.001 Medium 0.04 0.01

Rich 0.05 0.01

Had vitamin A Mothers’ age

No 0.006 0.012 15–24 years 0.07 0.07

Yes 0.0006 0.012 25–34 years 0.04 0.06

35–49 years 0.05 0.005

Wealth Antenatal visits

Poor 0.01 0.09 0–2 times 0.07 0.07

Medium 3–4 times 0.04 0.01

Rich 0.04 0.19 More than 5
times

0.003 0.03

Mothers’ age

15–24 years 0.018 0.017

25–34 years 0.005 0.024

35–49 years 0.019 0.003

Birth weight

Normal 0.03 0.012

Low birth weight 0.03 0.012

ASD—Absolute standardised difference



Propensity Score Approaches for Estimating Causal Effects of Exposures in. . . 75

Table 9 The effect of
maternal HIV on the causal
association of EBF on
nutritional outcomes among
children aged 0–6 months in
Zambia

2018 ZDHS

Wasting Stunting Underweight

OR(95% CI) OR(95% CI) OR(95% CI)

Unadjusted 0.6(0.1,4.6) 2.7 (0.8, 8.9) 1.7(0.1,31.5)

Matching 0.8(0.1,5.9) 3.5 (0.7, 18.2) 1.1(0.1,8.9)

Weighting 0.6(0.1,4.8) 4.4 (1.1, 18.8)∗ 0.5(0.03,9.8)

∗p < 0.05
CI—Confidence Interval

3.2.5 Effect of Mothers’ HIV Status on the Causal Effect of Exclusive
breastfeeding for Zambian Children

In Zambia, mothers who were tested for HIV were informed of their test result
(Zambia Statistics Agency and ICF, 2019). This may have influenced the decision
to practice exclusive breastfeeding. We assessed the modifying effect of mothers’
HIV status on the causal association between exclusive breastfeeding and the child
growth outcomes. The aim was to assess whether the outcomes varied between
children born to HIV-infected mothers and those born to HIV-uninfected mothers
for the Zambia survey. We tested the interaction between EBF and HIV infection
status using a logistic regression model. A non-significant interaction effect implied
no moderating effect of HIV exposure on the effect of EBF on the child nutritional
outcomes.

Children who were exclusively breastfed and were born to HIV-infected mothers
were more likely to be stunted than children on EBF who were born to HIV-
uninfected mothers (OR=4.4, 95% CI: 1.1,18.8). However, maternal HIV infection
had no significant effect on the causal association between exclusive breastfeeding
and wasting and underweight using IPW and PS matching, see Table 9.

3.2.6 Effect of Appropriate Complementary Feeding on Child Growth

Further analysis was done on children aged 6 to 23 months to examine the
effect of appropriate complementary feeding on child nutritional outcomes using
a conditional logistic regression on the matched data and a weighted logistic
regression using PS weights. Tables 10 and 11 present results for the effect of
appropriate complementary feeding the child growth indicators (binary and continu-
ous). Appropriate complementary feeding had a positive effect on wasting, stunting,
and underweight for both data and balancing methods. For the matched sample,
appropriate complementary feeding had a positive effect on stunting (OR=0.7,
(95% CI: 0.4,0.95)), wasting, and underweight but was only statistically significant
for stunting. In Zambia, using PS matching and IPW, appropriate complementary
feeding had a positive effect on underweight (OR=0.64,(95% CI: 0.37,1.1)) and
stunting (OR=0.87,(95% CI: 0.6,1.24)). However, a significant effect of ACF on
stunting was observed for the IPW (OR=0.9,(95% CI: 0.4,0.95)). The estimates for
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the PS matching and IPW were different, with a higher effect observed for the IPW
as compared to estimates for PS matching (Table 10).

For the continuous outcomes, using the PS matching and IPW, in Malawi,
children who were appropriately complementary fed had an increase in their
height-for-age z-scores (Coef=0.89,(95% CI: −0.78,2.54)), weight-for-age z-score
(Coef=0.17,(95% CI: −0.11,0.45)) using PS matching and (Coef=0.89,(95% CI:
−0.78,2.54)), (Coef=0.28,(95% CI: −0.26, 0.29)) using PS weighting, respectively.
In Zambia, children who were appropriately complementary fed had an increase in
their weight-for-height z-scores (Coef=0.25,(95% CI: −1.6,2.1)) using PS match-
ing and (Coef=0.6,(95% CI: −0.89,0.16)) PS weighting, respectively (Table 11).

3.2.7 Sensitivity Analysis

Table 12a presents the Mantel–Haenszel bounds for exclusive breastfeeding on
the nutritional outcomes for the 2018 ZDHS. For wasting, the critical value of
overestimating the causal association among 0–6 months aged Zambian children
was somewhere below 2 (p =0.08) or 2.2 (p =0.045). This suggests that the results
were robust against unobserved confounder bias.

Table 12b presents the results of the Mantel–Haenszel for the 2015–16 MDHS.
For stunting, the observed exposure effect would change due to unobserved
confounders at an odds ratio of 1 (p < 0.001) or 1.6 (p = 0.026). We note that the
EBF effect on underweight and stunting is unstable. This suggests that the results
are prone to underestimation by unobserved confounders. However, for outcome
wasting, the critical value of overestimating the causal association was obtained at
an odds ratio of 2.2 (p < 0.001) or 2.4 (p < 0.001). This implies that the results on
wasting were robust against unobserved confounder bias. Table 13 in the appendix
presents the sensitivity analysis after matching on children aged 6–23 months. For
both the MDHS and ZDHS data, the effect of appropriate complementary feeding
on stunting was prone to change due to unobserved confounders as compared
to underweight and wasted. Therefore, there is a need to observe caution when
interpreting the results for stunting as causal.

4 Discussion

Assessing causal association is an important research objectivity in health research
and primarily relies on findings from conduction of a randomised control trial
(RCT). However, due to the impracticability of RCTs for some health problems,
observational studies are widely used to assess causal association of an exposure
on health outcomes. In this chapter, we have described statistical underpinnings of
propensity score matching and inverse probability weighting that can be used to
reduce confounder bias and ensure the estimation of causal association from obser-
vational studies. The descriptions of these methods have been complemented by an
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Table 12 Sensitivity analyses for unobserved confounding for EBF groups after matching
among children aged 0–6 months

(a) ZDHS 2018 (b) MDHS 2016-15

Gamma Underweight
Q-MH−

Wasting
Q-
MH+

Stunting
Q-
MH−

Gamma Q-MH−
Under-
weight

Wasting
Q-MH+

Stunting
Q-MH−

1 0.56** 0.21 2.1 1 3.95**** 0.81** 5.18****

1.2 0.15* -0.05 1.18 1.2 3.32**** 0.26** 3.89****

1.4 -0.19 0.37 0.42 1.4 2.81*** -0.14* 2.84***

1.6 0.04 0.75 0.04 1.6 2.38*** 0.25 1.93**

1.8 0.30 1.08 0.62 1.8 2.01** 0.60 1.13

2 0.53 1.38* 1.14 2 1.68** 0.91 0.42

2.2 0.74 1.65** 1.61* 2.2 1.39 1.20 0.07

2.4 0.94 1.9** 2.05** 2.4 1.12 1.46 0.66

2.6 1.12 2.1** 2.45*** 2.6 0.88 1.70 8

2.8 1.29 2.36*** 2.83*** 2.8 0.66 1.93 1.69

3 1.45 2.57*** 3.18**** 3 0.45 2.14 2.16

Data imputed using multiple imputation
Q-MH+ or Q-MH− Mantel–Haenszel statistic for overestimation and underestimation of the
ATE
∗p < 0.10; ∗ ∗ p < 0.05; ∗ ∗ ∗p < 0.01; ∗ ∗ ∗ ∗ p < 0.001

evaluation of the effect of exclusive breastfeeding and appropriate complementary
feeding on child growth using health survey data in Malawi and Zambia. There
was confounder balance between exclusively breastfed and non-exclusively breasted
children and between appropriately complementary fed and non-appropriately
complementary fed children for both surveys after applying confounder balancing
methods. We assessed the causal association using the matched and weighted
samples.

The effect of exclusive breastfeeding and appropriate complementary feeding on
the growth outcomes for both the MDHS and ZDHS differed between the two based
bias correction methods. The confidence intervals (CIs) for the PS matching were
slightly wider than the CIs for the IPW. Other studies have shown that the IPW has
smaller variances as compared to the PS matching, hence producing narrower CIs
(Abadie & Imbens, 2006; Austin, 2011b). Before applying the PS matching and
IPW, estimates from the adjusted regression for the binary outcomes showed that
exclusive breastfeeding had a non-significant negative association on stunting and
underweight for the MDHS data, while for the ZDHS, a non-significant negative
effect of exclusive breastfeeding on stunting was observed. After applying the
bias correction methods, we observe a positive non-significant effect of EBF on
wasting and underweight, while for ZDHS, there was a positive effect of EBF on
underweight and stunting. Another observation worth noting is that, after applying
the bias correction methods, we observe a change (maximum or minimal) in the
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Table 13 Sensitivity analysis for unobserved confounding after matching for appropriate comple-
mentary feeding among children aged 6–23 months

(a) 2015–16 MDHS (b) 2018 ZDHS

Gamma Underweight
Q-MH+

Wasted
Q-
MH+

Stunted
Q-
MH−

Gamma Underweight
Q-MH−

Wasted
Q-MH+

Stunted
Q-MH−

1.0 0.04∗∗ 0.09∗ ∗ ∗ 0.09∗ ∗ ∗∗ 1 1.29∗ 0.33 0.35

1.2 0.13∗ 0.19∗∗ 0.53∗ ∗ ∗∗ 1.2 0.69 −0.10 0.37

1.4 0.16∗ 0.43∗∗ 1.06∗ ∗ ∗∗ 1.4 0.18 0.03 1.15

1.6 0.42 0.64∗ 1.52∗ ∗ ∗∗ 1.6 −0.05 0.34 1.83∗
1.8 0.65 0.83 1.93∗ ∗ ∗∗ 1.8 0.34 0.62 2.42∗∗
2.0 0.85 0.99 2.29∗ ∗ ∗ 2 0.68 0.86 2.96∗ ∗ ∗
2.2 1.03 1.15 2.63∗ ∗ ∗ 2.2 1.00 1.09 3.45∗ ∗ ∗∗
2.4 1.21 1.29 2.94∗∗ 2.4 1.28∗ 1.30053∗ 3.89∗ ∗ ∗∗
2.6 1.37 1.43 3.22∗ 2.6 1.55∗ 1.49471∗ 4.31∗ ∗ ∗∗
2.8 1.52 1.55 3.49 2.8 1.79∗∗ 1.67635∗∗ 4.70∗ ∗ ∗∗
3.0 1.66 1.67 3.74 3 2.03∗∗ 1.84727∗∗ 5.06∗ ∗ ∗∗
Data imputed using multiple imputation
Q-MH+ or Q-MH− Mantel–Haenszel statistic for overestimation and underestimation of the
ATE.
∗p < 0.10; ∗ ∗ p < 0.05; ∗ ∗ ∗p < 0.01; ∗ ∗ ∗ ∗ p < 0.001

magnitude of the effects. For instance, for the MDHS, the positive effect of ACF on
stunting was shown to have an odds ratio (OR) of 0.47 (53% reduction); however
after applying the bias correction methods, the positive effect of ACF had an OR of
0.89 (11% reduction). Thus, we observe the importance of applying the PS matching
and IPW that control for confounder bias when estimating the causal effect from
observational studies, as the estimates before applying the PS methods are either
underestimated or overestimated and while the PS matching and IPW improve the
power to detect the effects.

Estimation of the propensity score and its balancing property were done under
the assumption that there were no unmeasured confounders. The estimation of the
average causal effect differed for the propensity score matching and the IPW. The
propensity score matching used the estimated propensity score to obtain a good
matched sample, and the ATE was estimated from this sample. This implies that the
propensity score was not directly used for analysis under PS matching. However, the
IPW directly used the propensity scores in estimating the average treatment effect.
Thus, the propensity score matching may be less sensitive to misspecification of the
propensity score model unlike the IPW. It is important to note that all the approaches
based on propensity scores can only address observed measured confounders.

In this chapter, we estimated the propensity score using a logistic regression
model; however, other methods in machine learning such as boosted regression
models (McCaffrey et al., 2004) have been used to estimate the propensity score
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from the observed data. Apart from the PS matching and PS weighting, other
approaches such as the PS stratification (Rosenbaum & Rubin, 1984) and covariate
adjustment on the PS can also be used to control for confounder bias. In addition,
extensions have been done on the IPW, and Rubin and Thomas (1996) proposed
using the doubly robust IPW estimator that utilises a regression model on the
outcome. This estimator is known to produce smallest large sample variance of any
weighting-type estimator when both the propensity score model and the outcome
model are correctly specified (Robins et al., 1994). Some extensions to the standard
propensity score matching include full matching (Rosenbaum, 2002), covariate
balance on the generalised propensity score (Imai & Ratkovic, 2014), and coarsened
exact matching (CEM) (Iacus et al., 2012). It is hoped that the material presented
in this chapter and the accompanying application will enable the broader use of
propensity score methods in observational child and maternal health research studies
in sub-Saharan Africa to mitigate confounder biases, thus allowing for assessing
causal effects on exposures and interventions.

5 Future Work

We recommend future work to explore different methods of estimating the propen-
sity score using causal inference methods in machine learning such as boosted
regressions to assess the effect of interventions or risk factors on a public health
outcome using observational data. Future work can consider using methods that are
less sensitive to the number of type of variables is to consider for matching such as a
dimension reduction technique using hierarchical clustering or principal component
analysis where individuals with similar characteristics are grouped into clusters
based on their principal components, and the treatment–outcome relationship can
be estimated based on these clusters. The clusters identified can be considered
as a proxy indicator of unmeasured confounders of the causal relationship. An
explanation on a similar algorithm is done by Li et al. (2016). We further
recommend the use of confounder balance methods in different study designs such
as longitudinal data and survival data when the outcomes such as wasting, stunting,
and underweight occur simultaneously and independence between outcomes cannot
be assumed. There are several other child growth measurements that are measured
from a child and can be analysed to assess child growth. These include mid-upper-
arm circumference (MUAC), head circumference, and body mass index-for-age.
However, this chapter focused on weight-for-age, height-for-age, and weight-for-
height as they are known to be the three most common child growth measurements
that provide an indication of optimal child growth (Onis, 2006). Additional work
can be done to assess the impact of infant and young child feeding interventions on
these growth measurements. Furthermore, researchers can explore causal effects for
multiple outcome data as few research has been done in this area of which we are
currently exploring.
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6 Further Reading

The current state of child growth indicators and prevalence of exclusive breast-
feeding for Malawi and Zambia can be found in their respective Demographic
and Health Survey reports Government of Malawi and ICF (2017) and Zambia
Statistics Agency and ICF (2019). A detailed explanation on infant and young child
feeding can be found in WHO (2003). The updated book of Hernán and Robins
(2020) provides an excellent overview of and an introduction to causal inference.
The general idea of propensity score methods can be found in Rosenbaum and
Rubin (1983) who provides detailed explanation on how the propensity scores
achieve balance between exposure groups. Rosenbaum and Rubin (1984) give a
good explanation on balancing the covariate difference between exposure groups
using sub-classification, and Rosenbaum (2005) provides a good explanation on
assessing the effect of unmeasured confounding on the estimated causal effects.
The idea of comparing the different propensity score methods has been explained
excellently by Austin and Mamdani (2006) and Austin (2011a). In this chapter,
we discuss the propensity score matching and weighting for a data that is not
hierarchical; however, most observational data are multilevel in nature, and hence,
the standard propensity score is estimated at an individual level and ignores the
clustering. Li et al. (2013), Arpino and Cannas (2016), and Arpino and Mealli
(2011) provide a detailed explanation on propensity score matching and weighting
for multilevel observational data. This chapter considers a selection of variables to
include in the propensity score model under the strongly ignorable assumption.
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Appendix

STATA Code

This section presents the Stata code for analysis of the effect of appropriate
complementary feeding on child nutritional outcomes. The same code can be
applied for exclusive breastfeeding.

*****************The code for generating the propensity score from
the exposure model, e.g., appropriate complementary feeding (approp)
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*****************************

logistic approp i.child_sex i.mothers_education i.mothers_age
i.child_age i.residence i.wealth i.antental_visits i.hiv

predict ps

************The code in Stata for matching the covariates based on
the propensity score, e.g., for stunting (stu) ********************

psmatch2 approp, outcome(stu) pscore(ps) neighbor(1) radius
caliper(0.2)

***********Extracting the Matched Pairs***************

gen pair = _id if _treated==0
replace pair = _n1 if _treated==1
bysort pair: egen paircount = count(pair)
drop if paircount !=2
tab paircount
tab pair

*****************Estimating the effect of appropriate comp feeding on
the outcomes, e.g., stunting (stu)**

clogit stu i.approp, group(pair)

************Using the Stata package psweight to estimate the effects
using inverse probability weighting**

psweight ipw approp stu
psweight call balanceresults()

********************************************************
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Abstract Evidence-based public health (EBPH) ensures that decisions about the
health of a population are informed by the best available research evidence, taking
into account the expertise of public health practitioners as well other factors
linked to the characteristics and the context of the population. Systematic reviews
are essential for EBPH decision-making, as they are designed to present the
available evidence in a holistic, transparent and systematic way. In this chapter,
we explain what systematic reviews are; the process of meta-analysis and its use in
systematic reviews of interventions; the use of meta-analyses in systematic reviews
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of diagnostic test-accuracy studies; network meta-analysis and how to synthesise
results when meta-analysis is not possible. We also provide a short overview of
assessing the certainty of evidence using the GRADE approach; and a table of useful
resources.

Keywords Evidence-based Public Health · Research Synthesis · Systematic
Review · Meta-analysis · Network Meta-analysis · Diagnostic Test Accuracy ·
GRADE

1 Introduction to Evidence-Based Public Health, Systematic
Reviews and Meta-Analysis

Anke Rohwer

1.1 What Is Evidence-Based Public Health?

Public health practitioners need to make decisions on the health and well-being
of a population on a daily basis. They are faced with numerous questions such as
the burden of disease in a community, the risks for developing a disease or the
effectiveness of interventions to prevent a disease. While the answers to some of
these questions might be evident, others might not and require critical thinking
and careful consideration of existing research, input from various stakeholders
and experts on the topic, characteristics and values of a population as well as
various other economic and social factors. This process of decision-making is
referred to as evidence-based public health (EBPH). EBPH has been defined as
the ‘conscientious, explicit and judicious use of current best evidence in making
decisions about the care of communities and populations in the domain of health
protection, disease prevention, health maintenance and improvement’ (Jenicek,
1997), and the process has similarly been described as ‘integrating the best available
evidence with the knowledge and considered judgements from stakeholders and
experts to benefit the needs of a population’ by the European Centre for Disease
Prevention and Control (ECDPC, 2011). EBPH mirrors the principles of evidence-
based healthcare (Dawes et al., 2005) and involves (1) phrasing clear questions
related to a public health problem; (2) searching for best evidence to answer this
question; (3) critically appraising the evidence for validity and interpreting the
results; (4) considering applicability of the evidence and implementing the evidence
in public health policy and practice; and (5) evaluating the process of EBPH as
well as the newly implemented policies and programmes. This five-step process
facilitates a systematic approach to the decision-making process.

The first three steps of the EBPH process aim to locate, assess and interpret the
results of the best available research evidence, one of the key components of EBPH.
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Table 1 Examples of different types of questions and related study designs

Type of question Study design best suited to answer the question

What is the effectiveness of a public
health intervention to treat/prevent a
disease?

(Cluster) randomised controlled trial

What is the risk of acquiring a
disease?

Cohort study or case-control study

What are the harms of a public health
intervention?

Case-control study

What is the prevalence of a disease? Cross-sectional study
What is the incidence of a disease? Cohort study
How accurate is a test to identify the
disease?

Diagnostic test accuracy study (cross-sectional or
cohort-type accuracy study)

What are the experiences of people
with the disease?

Qualitative study

It is essential that we start this process with phrasing a clear question based on a
knowledge gap (step 1), as we cannot find an answer if we do not know what it is
that we are asking. There are various tools that can help us to phrase a clear question,
one of which, the PI(E)CO framework, considers the population (P); the intervention
(I), the exposure (E) or the issue (I); the comparator (C); and the outcomes of interest
(O). Furthermore, we need to consider what type of question we are asking, as
this will inform the type of study that is best suited to answer our question (Table
1), keeping in mind that a systematic review of all available studies on a specific
question will always be better than a single study on the question (see Sect. 1.3). For
example, a systematic review of randomised controlled trials (RCTs) will answer a
question on the effectiveness of an intervention, whereas a systematic review of
cross-sectional studies will be able to answer a question on the prevalence of a
disease. Once we have phrased a clear question, we will be able to select keywords
related to our PI(E)CO elements to develop a search strategy that we can use to
find evidence to answer our question (step 2). When performing the search, it is
useful to select a database that indexes suitable studies. A few databases to consult
as a starting point include the Cochrane Library that contains systematic reviews of
interventions (including those relevant for public health), diagnostic test accuracy
studies and qualitative research; Epistemonikos, a regularly updated database of all
health-related systematic reviews; and Health Evidence™ containing quality rated
systematic reviews related to the effectiveness of public health interventions. Once
we have found a suitable study, we need to critically appraise the internal validity of
the study and interpret the results (step 3). This is an essential step in the process,
as we always need to consider the results of a study in light of its risk of bias (or
systematic error) and cannot just trust the conclusions of a study at face value. There
are various tools that can assist us to assess risk of bias, depending on the type of
study we are reading. The AMSTAR 2 (Shea et al., 2017) and the ROBIS (Whiting
et al., 2016) tools can be used to assess risk of bias of systematic reviews. Best
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available research therefore relates to the most relevant, trustworthy and up-to-date
research study that is currently available.

When applying the results of the evidence to our problem (step 4), we first need
to consider whether the research is generalisable to our context. This means that we
need to evaluate whether the population, the setting and the interventions included
in the study are similar to our own context and whether all the important outcomes,
relevant to our question, have been addressed. If we think that the evidence is
applicable to our setting, we then need to consider a wide range of other factors
such as the burden of disease; availability of resources; socio-economic, cultural
and environmental conditions; and the local context of the community. Involving
experts and other relevant stakeholders at international, national and local level,
healthcare workers, the general public and policymakers is key. The best available
research evidence therefore is an essential part of the decision-making process, but
on its own, it is not sufficient to make a decision. Indeed, some people prefer the
term ‘evidence-informed decision-making’ which highlights this notion.

Lastly, as public health practitioners, we need to critically reflect on the decision-
making process and evaluate the implementation of public health interventions (step
5). This might lead to new questions, which will lead us back to step 1 of the EBPH
process.

1.2 Why Do We Need Evidence-Informed Decision-Making?

In a perfect world, all decisions about healthcare and public health should be
informed by best available research evidence, as explained above. In reality,
however, decisions are often made haphazardly, based solely on experts’ opinions
or anecdotal evidence, and aim to fulfil short-term demands of stakeholders such as
politicians or funders, without considering potential harms (Brownson et al., 1999).

Using up-to-date and trustworthy evidence, in the form of systematic reviews,
to inform public health decisions is vital. Sub-Saharan Africa faces numerous
health challenges related to a huge burden of infectious diseases, non-communicable
diseases, road traffic injuries as well as maternal and neonatal health conditions.
These challenges are exacerbated by, inter alia, a lack of resources in healthcare
facilities, including staff shortages, poor access to healthcare and poor socio-
economic conditions. In this context, adopting policies and practices that are
beneficial and effective, as well as abandoning policies and practices that are
ineffective or even harmful, is key to ensure that scarce resources are not wasted
(Chinnock et al., 2005).

1.3 Overview of Research Synthesis

Research synthesis refers to the process of identifying two or more studies on the
same or similar question, evaluating these studies and summarising their findings.
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The aim of research synthesis can be compared to building a jigsaw puzzle: a single
piece of the puzzle will only give us part of the information needed, whereas using
all available pieces to build the puzzle will result in us being able to see the complete
picture. The rationale behind research synthesis is built upon the notion that science
is cumulative. Indeed, we can only confidently interpret results of a study in the
context of results of other studies addressing the same question (Sir Iain Chalmers).

Research synthesis is important because it helps make sense of research, as
different studies on the same question can yield different findings. Reviewing all
existing studies in a holistic way ensures that ‘cherry picking’ of favourable results
is avoided and that information about alternative, potentially effective interventions
can be considered, leading to better accountability of public health practitioners.
Furthermore, research synthesis is important as it helps us to cope with information
overload since we can read a single source to stay up to date with new developments
instead of several individual studies. Lastly, research synthesis is a valuable tool
to identify gaps in existing evidence and to justify future research, which helps to
reduce research waste and reduces costs for unnecessary research.

1.4 Types of Research Synthesis

Research synthesis is an umbrella term for any kind of review or summary of the
literature. There are a number of different types of reviews that differ in terms
of aims and methodology (Sutton et al., 2019). A literature review is generally
a qualitative, narrative summary of evidence relating to a specific topic, written
by experts in the field. These ‘traditional’ literature reviews typically do not
follow a formal process to collect and interpret information but rather rely on
subjective methods. Literature reviews can be useful when introducing a new field,
providing background information to a question or reviewing methods to analyse
data; however, they cannot be relied on when making healthcare decisions.

Reviews that are most relevant to public health decision-making include, but are
not limited to, scoping reviews, systematic reviews and rapid reviews (see Table 2).

A scoping review follows a systematic, pre-specified approach and can be
undertaken to examine the extent, range and nature of the existing evidence
related to a question; to inform the scope and determine the value of conducting
a systematic review; to identify gaps in the evidence; or to summarise findings
from various sources of evidence (Tricco et al., 2016; Tricco et al., 2018). Scoping
reviews are generally descriptive in nature and are useful when exploring new areas
of research or clarifying concepts.

A systematic review aims to summarise all studies relevant to a particular
question in a transparent, comprehensive and rigorous way. They aim to reduce bias
in the review process by having pre-specified and reproducible methods, assessing
risk of bias for all included studies, synthesising results in a meta-analysis where
possible and making conclusions based on the totality and the quality of evidence.
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Table 2 Examples of reviews relevant to public health in sub-Saharan Africa

Type of review Objectives

Scoping review
(Mudie et al., 2019)

‘to identify the level of research output on NCDs
(cardiovascular disease, diabetes, obesity, respiratory
disease, cancer, and chronic kidney disease), as well as
their risk and prognostic factors, from large NCDs cohort
studies in SSA’
‘to identify any limitations and gaps and inform future
research’

Systematic review
(De Buck et al., 2017)

To examine the ‘effectiveness of different approaches for
promoting handwashing and sanitation behaviour change,
and factors affecting implementation, in low and
middle-income countries’

Rapid review
(Zhen et al., 2020)

‘to assess the abilities of different interventions to decrease
the incidence of droplet-based infections among people
using public ground transport’

Systematic reviews play a significant role in informing healthcare decisions (Moher
et al., 1999; Moher et al., 2009).

A rapid review is a review where some of the steps of a systematic review have
been omitted to make the information available in a short period of time. Rapid
reviews are generally conducted in response to requests from decision-makers.
There is no one-size-fits-all approach for rapid reviews, and authors need to tailor
their methods according to the scope of the question and the urgency of the request
(Tricco et al., 2015). During the COVID-19 pandemic, rapid reviews played a vital
role in informing decisions about healthcare as there were a myriad of questions that
needed to be answered and new evidence emerged daily.

1.5 What Is So Special About Systematic Reviews?

When making decisions about healthcare and public health, systematic reviews
are considered best available evidence. Key features of systematic reviews include
explicit, pre-specified and systematic methods (see Table 3) that are reproducible
and transparent; clearly phrased, focussed questions; comprehensive search strate-
gies that cover a variety of sources and include sources of ongoing and unpublished
studies; explicit and pre-specified selection criteria that are applied equally to all
potentially included studies; standardised extraction of relevant data across included
studies; assessment of risk of bias according to the type of study included in the
review, applied to each included study; statistical pooling of data in a meta-analysis
where possible; grading of the certainty or quality of the evidence per outcome; and
formulating of conclusions based on the totality of evidence and the confidence we
have in the results.
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Table 3 Steps of a systematic review

1. Identify a gap in the evidence-base and provide the rationale for the review
2. Formulate the systematic review question
3. Define eligibility criteria for including studies using the PICO framework
4. Develop a comprehensive search strategy
5. Develop the rest of the protocol including methods on selecting studies, assessing risk of
bias and analysing data
6. Register and/or publish the protocol of the systematic review
7. Search electronic databases
8. Screen titles and abstracts of search results
9. Obtain full texts of potentially eligible studies
10. Screen full texts and determine included and excluded studies
11. Provide reasons for excluding studies
12. Extract data from included studies
13. Assess risk of bias of included studies
14. Synthesise data either by pooling data in a meta-analysis or narrative synthesis
15. Assess the certainty of evidence per outcome using GRADE
16. Interpret results
17. Write-up results and publish review
18. Disseminate findings

Systematic reviews can make use of meta-analysis, the process of statistically
synthesising (sometimes referred to as ‘pooling’) the effects of individual studies
that are deemed similar enough to be combined, to produce an overall effect estimate
(see Sect. 2). A meta-analysis is usually presented graphically in the form of a forest
plot. Meta-analysis should always be applied within the context of a systematic
review that used rigorous methods to ensure that all eligible studies were included,
that studies were homogenous enough to be combined and that results from the
meta-analysis were interpreted in light of the risk of bias of included studies.
Applying this technique outside of this context can be potentially dangerous and
misleading.

1.6 The Value of Systematic Reviews in Public Health
Decision-Making

Systematic reviews are powerful tools for public health decision-making. Meta-
analysis within the context of a systematic review provides a pooled effect estimate
based on the results of all included studies.

To illustrate this, imagine that you are a public health officer, responsible for
distribution of insecticide-treated bed nets (ITNs). You know that some people
receive the nets, but either do not use them or do not use them properly. Then
there is the added concern about resistance to the insecticide that you have read
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Fig. 1 Forest plot showing results for child mortality. (Reproduced from Pryce et al. (2018) under
the terms of the Creative Commons Attribution Non-Commercial License CC BY-NC)

about. You wonder whether this is still an effective intervention to reduce deaths
due to malaria, especially among children, who are more likely to die from malaria
compared to adults. You have previously attended training on EBPH and know that
you need to find research evidence to help answer your question. You do a search
on PubMed and find a study by Smithuis et al. (2013), which seems to be the most
recent study on this question. This cluster RCT included 8175 children, of which 26
in the ITN group and 20 in the group that did not receive bed nets died during the
course of the study. This translates to a mortality rate ratio of 1.31 (95% confidence
interval (CI) 0.09 to 18.98), which roughly means that we do not know whether
ITNs have an effect on child mortality or not. This result first has you worried,
but then you remember that a systematic review might give you a better answer to
your question, since it takes into consideration all relevant studies on this question.
You thus proceed to conduct a search on the Cochrane Library and find a review
on ‘Insecticide treated nets for preventing malaria’ (Pryce et al., 2018). This review
examined the effectiveness of ITNs in reducing malaria prevalence, morbidity and
mortality. It included 23 RCTs with over 275,793 participants. The updated review
found high-certainty evidence that ITNs, compared to no bed nets, reduce all-cause
mortality in children by 17% (rate ratio 0.83, 95% CI 0.77 to 0.89). You scroll down
to find the forest plot related to this finding (Fig. 1) and see that it includes the
results of the cluster RCT you read initially (Smithuis et al., 2013). You realise that
the result of this single RCT, which showed no definite effect, can be misleading
if it is not considered in the context of other studies that have answered the same
question. You make a mental note to start with a search for systematic reviews next
time you need an answer to a question.

Indeed, in 2004, a Cochrane review assessing the impact of ITNs on malaria
found that ITNs were effective in reducing malaria prevalence, morbidity and
mortality compared to no ITNs (Lengeler, 2004). Based on these findings, there
was a massive scale-up of ITN distribution, with significantly more people sleeping
under a bed net in 2018 compared to 2010 (WHO, 2019b). In 2018, the Cochrane
review was updated (Pryce et al., 2018) and included 23 RCTs. The review found
high-certainty evidence that ITNs compared to no nets reduce childhood mortality,
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uncomplicated episodes of malaria (P falciparum) and severe malaria episodes. This
evidence informed the WHO guideline on Malaria Vector Control (WHO, 2019a)
that still strongly recommends ITNs as a core intervention for populations in high-
endemic areas.

1.7 Conclusion

Is it essential that decisions about the health of a population are informed by the
best available research evidence, taking into consideration the expertise of public
health practitioners as well other factors linked to the characteristics and the context
of the population. It is promising to see that there has been increased awareness of
evidence-based healthcare and public health as well as adoption of this process as
part of the decision-making process in Africa in the past two decades (Young et al.,
2017).

Systematic reviews are a vital part of the EBPH process. In this chapter,
we explain the process of meta-analysis and its use in systematic reviews of
interventions; the use of meta-analyses in systematic reviews of diagnostic test
accuracy studies; network meta-analysis; and how to synthesise results when meta-
analysis is not possible. We also provide a short overview of assessing the certainty
of evidence within a systematic review and a table of a few useful resources.

2 Methods of Data Synthesis

2.1 Meta-Analysis

Samuel A. Abariga • Alfred Musekiwa

Meta-analysis is the statistical combination of two or more separate studies to
yield an overall effect estimate along with its confidence intervals (Sacks et al.,
1987). One important advantage of combining studies in a meta-analysis is to
increase statistical power and improve precision of the overall effect estimates, since
individual studies on their own may be too small to provide sufficient information
about an intervention effect (Sacks et al., 1987; Ioannidis & Lau, 1999). When
there is no substantial variability among included studies to preclude a meta-
analysis, a two-step approach is used to statistically combine results. The first step
is to compute a summary statistic of each included study such as the risk ratio
for dichotomous data or the mean difference for continuous data. Secondly, the
summary statistics of the individual studies are then combined into a single overall
effect estimate, which is calculated as a weighted average of the individual studies.
The weight assigned to each study depends on whether a fixed-effect or random-
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effects model is applied. For the fixed-effects model, the weight is the inverse of the
variance (standard error squared (SE2)) of the effect estimate. Thus, large studies
with smaller SE will receive more weight than smaller studies with larger SEs. The
weighted average can be derived using the formula:

Weighted average = sum
(
effect estimate x weight

)
/sum of weights =

∑
Y iWi
∑

Wi
(1)

where Yi = effect estimate of the ith study and Wi is the weight assigned to the ith

study.
The weight assigned to each study under the inverse variance scheme is simply

given as Wi = 1
Vi.
, where Vi is the within-study error variance for individual studies.

The simplest statistical method of conducting meta-analysis of both dichotomous
and continuous data is the use of the inverse variance method. Applying weights to
studies decreases the variability and the imprecision of the overall effect estimates
(Egger et al., 2008).

There are two main statistical methods used to perform meta-analysis: the fixed-
effect and the random-effects model. The fixed-effect model assumes that all studies
are estimating a common, fixed or equal effect and only considers the variability of
the results within the individual studies and ignores any between-study variability
(Egger et al., 2008).

A fixed-effect meta-analysis can be implemented using the generic inverse
variance method by computing a weighted average of the treatment effect estimates
Yi and a summation of the individual effect estimates Yi and weighting these by the
reciprocal of their squared standard errors (SEi) (Egger et al., 2008).

generic inverse − variance weight average =
∑

Yi

(
1

SE2
i

)

∑ 1(
SE2

1

)
. (2)

A random-effects model, on the other hand, assumes that the treatment effects
involving the individual studies that follow a normal distribution are assumed
to vary around some overall average treatment effect (DerSimonian & Laird,
1986). Therefore the random-effects model takes into account both the within- and
between-study variability in the effect estimate and weighs studies using the within-
and the between-study variance (DerSimonian & Laird, 1986; Higgins et al., 2009).

Hence for a random-effects model, the observed variance for any value (Yi) about
the overall mean μ is Vi plus τ 2, i.e. (Vi + τ 2), where τ 2 is the between-study
variability, also known as the between-study heterogeneity. Therefore, the weight
given to each study under the inverse variance will then be given as

W ∗
i = 1

Vi + τ 2
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where W ∗
i is the random-effects weight. Therefore, the combined effect of the

weighted mean for K included studies under the random-effects model is given by

Weighted mean =
∑K

i=1 W
∗
i Yi

∑K
i=1 W

∗
i

When there is no between-study variance, τ 2 will be equal to zero, and the
random-effects model approximates the fixed-effect model (Borenstein et al.,
2010). The assumption of no variability among included studies (homogeneity)
that informs the choice of a fixed-effect model is often flawed in biomedical
research given the numerous sources of diversity in study characteristics such as
participants, interventions, comparators, outcomes assessed as well as study designs
that are inherent with these types of research (Higgins et al., 2009). Therefore,
the random-effects model is preferred in meta-analysis especially when there is
high heterogeneity and can be implemented in Review Manager (Review Manager
(RevMan), 2020) or any statistical package that has the capability of performing
meta-analysis.

2.2 Unit of Analysis Issues

When performing a meta-analysis, it is important to keep track of the unit of
randomisation of primary studies. Although this is not an issue when the unit
of randomisation is the participant, it can pose a problem where the units of
randomisation are groups of individuals instead of individuals themselves. Unit
of analysis issues can also occur when there are more than two treatment arms.
An example of a situation where unit of analysis issues can arise in meta-analysis
is the inclusion of studies with cluster randomised designs. Cluster randomised
studies are those in which the intervention of interest is assigned to a group (e.g.
a school or clinic) as opposed to the individual and the units of observation are
members of those groups (e.g. students or patients) (Murray, 1998). Clustering also
occurs, for instance, where one individual contributes more than one measurement
corresponding to multiple body parts such as the eyes or teeth in vision or dentistry
studies, respectively. For instance, in vision research, where intervention trials are
conducted such that both eyes are randomised to the same treatment group (two-eye
design) or one eye is randomised to one intervention and the fellow eye to the other
intervention (paired-eye design) (Murdoch et al., 1998), clustering occurs within the
participant in the same way that students or patients can be clustered within a school
or clinic if the school or clinic is the unit of randomisation. Other design issues that
can lead to unit of analysis issues are cross-over trials, longitudinal trials in which an
individual contributes more than one measurement over time. When there are more
than two treatment arms, care should be taken to avoid double counting comparing
more than one treatment group to the same control group. A unit of analysis error
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occurs when investigators fail to account for the effect of clustering design in their
analysis. Unit of analysis error also arises in meta-analysis if the included primary
studies failed to account for the effect of clustering or when multiple treatment
arms are not handled properly leading to double counting of participants (Whiting-
O’Keefe et al., 1984).

2.2.1 Cluster Randomised Trials

Failure to account for the effect of clustering or correlation between multiple body
parts from the same participant (e.g. in paired-eye design), in the analysis, may lead
to overestimation of the treatment effect with a false increase in precision (Murdoch
et al., 1998). The inclusion of these trials in a meta-analysis, by extension, may
also lead to artificially precise estimates. One approach in dealing with this is for
review authors to either elect to include only studies that accounted for clustering or
correlation between multiple body parts (and provide a rationale for this decision)
or correct data from primary studies that failed to account of cluster designs. Data
from cluster design studies can be corrected by reducing the sample size of each trial
to its approximate effective sample size (Rao & Scott, 1992). The effective sample
size of each intervention group in a cluster-randomised trial is derived by dividing
its original sample by the design effect of clustering. The design effect is given in
the following example using the formula (Higgins et al., 2019b):

• Design effect = 1 + ([average cluster size)-1] * intra-cluster (or intraclass)
correlation coefficient (ICC).

• For example, in a cluster randomised trial of which 12 hospitals with 200 patients
(hospital A) were randomised into an intervention group and 13 hospitals with
250 patients (hospital B) randomised into a control group, assuming that for a
dichotomous data, the trial investigators failed to account for cluster effect, if
events in hospital A are 40/200 and those in hospital B are 50/250.

• The average cluster size is then computed as (200 + 250)/(12 + 13) = 450/25 = 18.
• Assuming an ICC of 0.02 (based on estimates from prior studies in the area), the

design effect is given as 1 + ([18–1]) * 0.02 = 1.34.
• The effective sample size in the intervention and control group as well as the

event rates in both groups must be computed, taking into account the design
effect of (1.34), as follows:

• Intervention group (effective sample size) = 200/1.34 = 149.3
• Control group (effective sample size) = 250/1.34 = 186.6
• Similarly, the effective rate of events accounting for the design effect will be

given by:
• Effective event in the intervention group = (40/1.34)/149.3 = 30/149.3
• Effective event in the control group = (50/1.34)/186.6 = 37/186.6
• These approximated corrected values can then be used for meta-analysis.

The ‘inflated standard error’ approach is the second (equivalent) approach that
can be used to adjust for clustering effect. This approach is more common and
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preferable as it eliminates the need to round up the effective sample size to whole
numbers and can be used to adjust for clustering effect in both categorical and
continuous data. The inflated variance can be used to perform the meta-analysis.
To compute the inflated standard error, we first compute design effect as described
above. Second, we ignore the clustering effect and compute the standard errors
from confidence intervals of the effect estimate. Third, we multiply the computed
standard errors, as if there was no clustering, by the square root of the design effect.
This gives a new quantity called the inflated standard error, which can then be used
along with the log odds ratio to perform meta-analysis using the generic inverse-
variance method (Higgins et al., 2019b).

2.2.2 Studies with Multiple Arms

Multi-arm trials with a single or multiple intervention and/or comparator arms may
be encountered when conducting meta-analysis. In this situation, several approaches
can be explored to include the arms and avoid double counting of participants. One
approach is to focus only on the intervention and comparator relevant to the review
(those that meet criteria for inclusion in a pairwise comparison of intervention)
and ignore the arm(s) that are not relevant to the review. A second approach is to
combine any multiple interventions and/or comparator arms into a single pairwise
comparison. A third approach is to divide the ‘common’ comparator arm equally
according to the number of the intervention arms. All these approaches are aimed
to prevent double counting of participants and a unit of analysis error assuming the
comparisons are independent (Higgins et al., 2019b).

2.3 Assessment of Heterogeneity

Statistical heterogeneity can be assessed informally by inspecting forest plots for
overlap of confidence intervals of the effect estimates. Poor overlap is an indication
of the presence of statistical heterogeneity. A statistical evaluation of heterogeneity
tests the null hypothesis of homogeneity, i.e. all the studies evaluate the same effect.
The chi-squared (χ2) and the Cochran’s Q are used to evaluate whether differences
between results are due to chance alone. Cochran’s Q is calculated by the sum of the
squared deviation of each individual’s study estimate from the pooled meta-analysis
estimate and weighing each study contribution as in the meta-analysis (Higgins et
al., 2003).

Q =
∑ 1

SE2
i

(
Yi − Ypooled

)
2

where Yi is the individual study effect estimate and Ypooled is the pooled meta-
analysis estimate. For k included studies, a p value is computed by comparing the
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χ2 statistic with k-1 distribution of freedom (Higgins et al., 2003). Because the test
has low power at identifying true heterogeneity, to offset for the low power, a cut-off
of (P < 0.1) is used to indicate statistical significance (Dickersin & Berlin, 1992).
The extent of the presence of statistical heterogeneity in the pooled meta-analysis
estimates is denoted as I-square (I2). The I2 describes the percentage of the total
variability that is explained by heterogeneity and not due to chance (Higgins &
Thompson, 2002; Higgins et al., 2003). I2 can be computed as:

I2 = 100%X (Q − df) /Q

where Q is Cochran’s heterogeneity statistic and df the degrees of freedom. I2 ranges
between 0% and 100%. I2 range from 0% to 40% indicates that the presence of
heterogeneity may not be important, and a range between 30% and 60%, 50% and
90% and 75% and 100% indicates moderate, substantial and considerable statistical
heterogeneity, respectively (Deeks et al., 2019). The presence of substantial or
considerable statistical heterogeneity may be a reason for deciding not to perform a
meta-analysis (Higgins et al., 2003).

2.4 Methods for Dealing with Heterogeneity in Meta-Analysis

When a meta-analysis results in significant statistical heterogeneity, there is a need
to investigate the sources of heterogeneity. An eyeball inspection of the forest plot
can reveal one or more outliers, which refers to studies having extreme effect
estimates compared to most studies included in the meta-analysis. The first step
should be to check for any errors in the data extraction because this could be the
reason for the outliers. After establishing that there are no errors in data extraction,
one can either decide not to perform meta-analysis or to investigate whether
there are differences between studies with respect to participants, interventions,
comparisons, outcomes or study design, which may explain the heterogeneity. This
is carried out using two statistical techniques, namely, subgroup analysis and meta-
regression (Deeks et al., 2008).

2.4.1 Subgroup Analysis

Subgroup analysis is undertaken by separating the overall meta-analysis according
to important subsets of participant or study characteristics that may interact with
or modify the effect of the intervention (e.g. children versus adults) or subsets of
study setting (e.g. community versus tertiary level of care), intervention route of
administration (e.g. intravenous versus oral route) or study geographical region (e.g.
country or continent). When doing systematic reviews and meta-analysis, subgroup
analysis may be necessary to investigate the source of heterogeneity or to answer
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specific questions regarding specific subgroups or assess important participant or
trial characteristics that may affect the effect estimate (Deeks et al., 2008).

Subgroup analyses are decided a priori, and even if there is no significant
statistical heterogeneity detected, it is advisable to still perform the subgroup
analysis as the results may differ between subgroups. A Cochrane review on
antibiotics for acute otitis media in children where the outcome pain was compared
between antibiotic versus placebo group is used here to illustrate subgroup analysis
according to the period at which pain was measured (after 24 hours, 2–3 days, 4–
7 days and 10–12 days) (Venekamp et al., 2015). We used Review Manager software
and data from the published Cochrane systematic review to reconstruct the forest
plot showing the subgroup analysis (Fig. 2). Although the overall meta-analysis
revealed some level of heterogeneity (Chi2 = 31.43, degrees of freedom [df] =21,
P = 0.07, I2 = 33%), there was very little heterogeneity for pain at 24 hours
(Chi2 = 4.68, df = 5, P = 0.46, I2 = 0%) and pain at 2 to 3 days (Chi2 = 4.82,
df = 6, P = 0.57, I2 = 0%). This may imply that the period at which pain was
measured could be the source of heterogeneity. However, there was a higher level of
heterogeneity for pain at 4 to 7 days (Chi2 = 11.65, df = 7, P = 0.11, I2 = 40%). In
terms of the summary effect, although there was significant antibiotic effect overall
(risk ratio [RR] 0.78, 95%CI: 0.71 to 0.86), there was no real effect of antibiotics
on pain at 24 hours (RR 0.89, 95%CI: 0.78 to 1.01). This strengthens the need
for subgroup analysis as the effect of the antibiotic may have been modified by
the period at which pain was measured; this is further confirmed by the significant
subgroup differences (Chi2 = 10.77, df = 3, P = 0.01, I2 = 72.1%).

When subgroup analysis reveals opposite intervention effect in separate sub-
groups, it is known as ‘qualitative’ interaction. When subgroup results are in the
same direction but differ quantitatively, this is referred as ‘quantitative’ interaction.
However, the Cochrane Handbook cautions against comparing results from different
subgroups and also calls for careful interpretation of findings from subgroup
analysis (Deeks et al., 2008).

Subgroup analysis may be hampered when studies do not present separate results
for different subgroups. Suppose an analyst wants to perform subgroup analysis on
sex variable but some studies do not have sex-disaggregated results. It will not be
possible to include these studies in the subgroup analysis unless separate results are
requested from primary study authors, which is usually unsuccessful. The solution
to this problem can be individual patient data (IPD) meta-analysis (Deeks et al.,
2008); however this may also suffer from the same problem as obtaining IPD may
prove to be even more difficult.

Subgroup analysis may yield incorrect results as it breaks the randomisation in
the primary studies and multiple subgroup analyses may also be misleading (Deeks
et al., 2008). It is therefore important to interpret findings from subgroup analyses
with extreme caution. It is also important to mention that to avoid reporting bias,
subgroup analyses should be decided a priori at the protocol stage. Lastly, subgroup
analysis results are also limited by reduced sample size and statistical power to
detect differences between studies, as there will be fewer studies in each subgroup
as a result of missing data, for instance.



104 S. A. Abariga et al.

Fig. 2 An example of subgroup analysis from a Cochrane review on antibiotics for acute otitis
media in children for the pain outcome. (Figure reconstructed using Review Manager with data
extracted from the original Cochrane review (Venekamp et al., 2015))

2.4.2 Meta-Regression

The limitation with subgroup analysis is that it only allows one variable at a time.
Meta-regression is the extension of subgroup analysis and allows investigation
of multiple variables to see whether there are differences in the effect estimate
between levels of variables used in the meta-regression. It is a multiple regression
analysis where the outcome variable is the effect measure (can be continuous or
binary) and the predictor variables are the variables that could be used for subgroup
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analysis. The unit of analysis is the study, and therefore the statistical power of
meta-regression is usually lower as in most cases, and the number of studies in
meta-analysis is small. If there is significant association between the outcome
variable and the predictor variable, then the predictor variable is a potential source
of heterogeneity.

In a meta-analysis of 140 studies on prevalence of Escherichia coli O157
(Islam et al., 2014), a meta-regression using Stata (version 13, StataCorp, College
Station, TX, USA) command metareg was used to investigate potential sources
of heterogeneity. Potential sources included world region, type of specimen, origin
of sampled cattle, type of cattle, health status, pre-enrichment, immune-magnetic
separation (IMIS) and isolation media. The results from the multivariable adjusted
regression model found significant differences in the prevalence of O157 with
respect to world region (Africa higher compared to Asia) and type of cattle (feedlot
higher compared to dairy).

However, like in subgroup analysis, the results from meta-regression need to
be interpreted with caution (Deeks et al., 2008). Some studies may not provide
information required to do meta-regression, for instance, there may not be separate
results for different levels of the predictor variable. This effectively reduces the
sample size and hence the need to interpret meta-regression results with caution.

2.5 Sensitivity Analysis

When conducting systematic reviews and meta-analysis, there are many choices that
are made in selecting appropriate methods to use. These decisions may influence the
results obtained in the review. Sensitivity analysis investigates whether the overall
findings are sensitive or differ among all possible choices that could have been
made. Variations in the statistical model used (fixed effect versus random effects),
inclusion or exclusion of high risk of bias studies (for instance, in terms of allocation
concealment or blinding) and different statistical analysis methods (e.g. intention to
treat, missing data) can be candidates for sensitivity analysis (Deeks et al., 2008).
Sensitivity analysis may also involve exclusion of some studies from meta-analysis
and then comparing meta-analysis results with or without those studies.

Using data on death at final follow-up from a Cochrane review on therapeutic
hypothermia for head injury, Review Manager software was used to perform
sensitivity analysis to determine whether the meta-analysis results were robust
to the inclusion or exclusion of studies with high risk of allocation concealment
bias (Gadkary et al., 2002). The results show that although the conclusion of no
significant differences between treatment and control was similar in the two meta-
analyses, the effect had been overestimated by including high risk of bias studies.

Robust results where the effect estimate is the same under different assumptions
or methods reinforce belief in those findings. As in subgroup analysis, the Cochrane
Handbook of Systematics of Interventions cautions on careful interpretation of
results from sensitivity analysis (Deeks et al., 2008).
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3 Emerging Techniques in Systematic Reviews
and Meta-Analysis

3.1 Network Meta-Analysis

Michael McCaul

3.1.1 Introduction to Network Meta-Analysis: The Extension to Pairwise
Meta-Analysis

Most systematic reviews provide a pooled effect between two pairs of interventions
(usually an intervention and control) for a specific clinical question, with defined
population. However, as in public health, there might be various competing
interventions available to treat a given condition or patient. Decisions often need
to be made as to ‘which intervention is best for my patient?’ or ‘Which intervention
is safest or how does this intervention compare to all other options available?’.
Such questions are not easily answered by traditional pair-wise meta-analysis
but rather by considering an analytical approach that compares all interventions
simultaneously.

Network meta-analysis (NMA) is the natural extension to traditional pairwise
meta-analysis that allows the synthesis of a network of studies (such as RCTs) that
compare different treatment interventions. NMA is a relatively recent development,
which extends the principles of traditional meta-analysis to the evaluation of
multiple treatments in a single analysis. This is possible as the connected network
of studies – all answering a similar overarching question – provides both direct
and most importantly indirect evidence (Bucher et al., 1997; Salanti, 2012).
Traditional meta-analysis is useful, however limited, in that it can only compare
two interventions at a time and only those studied directly in head-to-head trials.
For example, in mental health, there are various classes of interventions that may
improve health outcomes, such as psychosocial, psychological and pharmacological
interventions (Mavridis et al., 2015). Even within a class of interventions, there
is a range of available options that are different from each other; consider, for
example, that there are up to 45 pharmacological interventions available to treat
social anxiety disorder. A NMA systematic review is able to provide an answer
to which intervention is the best, considering the comparative effectiveness and
potential for harm of all interventions available for a particular condition.

NMA estimates treatment effects using a combination of direct and indirect
evidence, called mixed evidence. Direct evidence refers to evidence that is obtained
from, for example, RCTs that compare interventions B and C in a head-to-head
comparison. Direct evidence is thus the relative effects between B and C. Indirect
evidence is obtained through calculating the relative effects of interventions through
common comparators in a network of interventions (Li et al., 2011). For example,
in the absence of B and C direct (head-to-head) comparisons from RCTs, we can
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estimate the relative effect of B and C via another common comparator A, forming
an evidence loop (A-B-C). Thus we can obtain indirect estimates via a network of
trials for B vs C from RCTs comparing A vs C and A vs B, where mathematically it
can be written as, where μ is the effect estimate (e.g. mean difference) or var is the
variance:

μind
BC = μdir

AC − μdir
AB

var
(
μind
BC

)
= var

(
μdir
AC

)
+ var

(
μdir
AB

)

When four or more competing interventions are available, the indirect estimate
can be determined via multiple indirect pathways. In this case, the only requirement
is that two interventions are connected (within the evidence loop) via a single
common comparator (Chaimani et al., 2019).

However, just like traditional meta-analysis, NMA has various assumptions that
have to be met in order for results to be valid.

3.1.2 Assumptions of NMA: Transitivity and Inconsistency

The assumption of transitivity is essential to a NMA and refers to the validity of
indirect and direct assumptions. Transitivity implies – similar to the pairwise meta-
analysis homogeneity assumption – that the distribution of study characteristics
(effect modifiers) is similar across treatment comparisons. Conceptually, the tran-
sitivity assumption is that all interventions in the network are jointly randomisable,
that is, one should be able to compare all the interventions in a single multi-
arm RCT. Sources of intransitivity typically originate from clinical, population,
intervention, comparison, outcome (PICO) or methodological differences between
trials. For example, in a NMA of pharmacological treatments for patients with
social anxiety disorder, the authors tested the assumption of transitivity through
meta-regression of important effect modifiers (Williams et al., 2020). Baseline
severity and mean age at onset of condition were tested across different pairwise
comparisons, as any significant imbalance in these covariates across trials could
signal intransitivity and undermine our confidence of the indirect evidence estimates
(Wood et al., 2008). Another example includes the effect of trails conducted in
different time periods as older trials typically have smaller sample sizes or are of
worse quality and exaggerate effects (Chaimani et al., 2019).

The statistical manifestation of transitivity is that of the coherence (or consis-
tency) assumption, whereby there is agreement between different sources of direct
and indirect evidence. Incoherence can be tested in a closed loop of evidence
(any subset of interventions where each of that have been directly compared with
one another) by calculating an inconsistency factor. Several approaches have been
suggested for evaluating incoherence in a NMA of interventions with various loops;
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these methods are commonly known as local and global approaches (Donegan et
al., 2013; Veroniki et al., 2014). Local approaches consider groups of the network
separately to detect incoherence, whereas global approaches consider incoherence
in the entire network. In summary, transitivity and coherence in NMA can be
considered i) during protocol development, where treatments being compared are in
principle jointly randomisable; ii) while looking at the studies in the NMA, where
groups of studies do not differ with respect to the distribution of effect modifiers;
and iii) by analysing the data, where various statistical test can determine whether
direct and indirect treatment effects are in statistical agreement.

3.1.3 NMA Analysis in STATA and Presenting Results

Network meta-analysis can be performed using several approaches and via various
analytical programs (Salanti, 2008; Salanti, 2012). These range from using meta-
regression when there are no multi-arm trials in the connected network to using
hierarchical models (via a Bayesian framework) (Sobieraj et al., 2013; Petropoulou
et al., 2017) or multivariate meta-analysis methods (via a Frequentist framework)
(Jackson & White, 2011; Mavridis & Salanti, 2011). STATA uses the command
mvmeta to conduct a NMA in a Frequentist framework (White, 2011).

3.1.3.1 Network and Contributions Plots

One of the first steps in conducting a NMA is to understand the evidence base
through a network graph. A network graph provides a visual representation of
the network structure and is important in establishing analytical strategies and
interpreting the results. Figure 3 represents an example of a network graph of
pharmacological interventions from trials of adults with social anxiety disorders.
It consists of nodes (circles) representing the interventions in the network, while the
lines indicate direct comparisons between pairs of interventions. Depending on the
network graph settings, the thickness of the lines might represent the data available
for that comparison, while the size of the nodes typically indicates the number of
studies included in that node. The STATA command networkplot can be used to
create a network graph. Alternative weighting variables for nodes and edges can be
made with the options nodeweight() and edgeweight().

In this network graph (Fig. 3), placebo is clearly the reference standard, while
paroxetine is the most frequent active comparator. Additionally, one can see there
are four ‘closed loops’, indicating possible multi-arm trials. Network graphs can
also be modified to indicate risk of bias in a network by using coloured lines of
direct comparisons. The risk of bias in studies included in our network should
affect our confidence in the quality of the direct evidence estimates and extension
network estimates as stipulated by the Grading of Recommendations, Assessment,
Development and Evaluation (GRADE) working group (Brignardello-Petersen et
al., 2018). The option edgecolor() can change the edges of the network plot
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Fig. 3 Network graph of pharmacological interventions from trials of adults with social anxiety
disorders. (Data to create graph taken from Williams et al. (2020))

according to the level of design limitations of included studies for each pairwise
comparison. By adjusting the width of each edge to be proportional to a continuous
effect modifier (e.g. year of publication or age), a visual inspection can then be
useful in uncovering whether the transitivity assumption is likely to hold.

Each direct comparison in a NMA contributes differently to the network
summary effect. To identify the most influential comparisons or contributions of
individual treatments in a matrix plot, the command netweight can be used.

3.1.3.2 Performing Network Meta-Analysis

To perform a NMA in STATA use the mvmeta command, where first steps would
be to get the data in the right format. This can be done by using the network
package that calls the mvmeta command. The network package fits a network meta-
analysis model, either a consistency model or a design-by-treatment interaction
model (Higgins et al., 2012). The network setup command creates the observed
treatment effect estimates and variance-covariance matrix in each trial. This network
package includes useful syntax for getting started and creating descriptive tables
and figures, various utilities and lastly analysis and graphical options. Use network
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Table 4 League table of network estimates
ATN ATM BROF BZO

ATN . 1.74
(0.20-14.84)

0.13
(0.04-0.47)

0.05
(0.01-0.33)

ATM 0.60
(0.07-4.92)

. 0.08
(0.01-0.61)

0.03
(0.00-0.36)

BROF 7.60
(2.12-27.22)

13.20
(1.65-105.47)

. 0.41
(0.07-2.31)

BZO 18.77
(3.04-115.67)

32.59
(2.81-377.44)

2.47
(0.43-14.01)

.

Data taken from Williams et al. (2020)

meta to estimate the relative effectiveness between each treatment and the reference
standard along with standard errors, p-value and 95% confidence intervals.

The netleague command creates a ‘league table’ of all estimated pairwise
summary effects. This provides a matrix of the effectiveness and uncertainty of all
pairs of interventions or comparisons. For example, Table 4 provides a summary
of network treatment estimates (with 95% confidence intervals) of pharmacological
interventions for social anxiety disorders (extract from original table) with green
highlights indicating significant effect estimates, where the upper and lower diago-
nals are mirrored effect estimates (odds ratios) with confidence intervals.

Using the network forest command creates forest plot of NMA data. Forest plots
are useful to inspect the treatment effects qualitatively in considering heterogeneity
and network assumptions. Forest plots should report appropriate measures of
heterogeneity such as the I2 and chi2 for significant heterogeneity. In STATA
forest provides network estimates and if appropriate superimposed inconsistency
estimates via the inconsistency plot or model. Creating an inconsistency plot is part
of evaluating and presenting assumptions of NMA.

3.1.4 Presenting and Evaluating and Assumptions of NMA

There are various attractive options available to evaluate and present the key
assumptions in NMA. An inconsistency plot provides an overview of differences
between the direct and indirect effect estimates for paired comparisons in the
network. Violation of consistency is an important threat for the validity of results.
Inconsistency should be checked in each closed loop of evidence. This is where
the network graph becomes useful in identifying closed loops such as triangular
(loops formed by three treatments all compared to each other) loops. This approach,
termed the loop-specific approach, estimates the inconsistency factor (IF) as the
absolute difference between direct and indirect evidence for each comparison in
the loop with 95% confidence intervals. The inconsistency plot via the command
ifplot identifies all triangular and quadratic loops in a network and provides the
IF (see Fig. 4). Inconsistency should be evaluated by looking at each closed
loop in the network separately, typically by looking at the ratio of odds ratios
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Fig. 4 Inconsistency plot in STATA. (Data to create plot taken from Elliott and Meyer (2007))

between direct and indirect estimates in every loop by plotting the eform of the IFs.
Consistency is present if the RoR 95% confidence intervals stretch over 1 (RoR = 1).
Interpret with caution if there are wide confidence intervals or large inconsistency
values. Inconsistency should be explored using meta-regression (using metareg),
or consider using statistical models that relax the assumptions of inconsistency
(Cooper et al., 2009; Higgins et al., 2012; White et al., 2012). Additionally the
mvmeta command allows for alternative methods of inconsistency testing, including
the loop-specific approach described above and the design-by-treatment interaction
model (differences between trials with different designs such as two-arm vs. multi-
arm trials).

Another important assumption in both pairwise and network meta-analysis is
that of heterogeneity. In pairwise meta-analysis visual inspection of the forest plot,
together with interpretation of the I2 measure and other statistics, helps infer about
the magnitude of heterogeneity in the data. In NMA, we use a predictive interval
plot to assess between-study heterogeneity using the command intervalplot after
running mvmeta. The predictive interval is the interval within which the relative
effects of a future study are expected to lie (i.e. the impact of heterogeneity on each
comparison; see Fig. 5).



112 S. A. Abariga et al.

Fig. 5 Forest plot with predictive intervals. (Data to create plot taken from Elliott and Meyer
(2007))

3.1.4.1 Ranking Interventions in NMA

One of the key advantages of NMA over traditional pairwise meta-analysis is
the ability of NMA to rank treatment effects relative to each through estimating
ranking probabilities. Ranking tables list the probability of being rank 1, and
rankograms plot these values in graphs. Surface under the cumulative ranking curve
(SUCRA) plots depict the cumulative ranking curve and show the distribution
of ranking probabilities for each intervention. These should be interpreted with
caution and always using (where possible) 95% confidence intervals. The STATA
command network rank will provide a ranking table of interventions and sucra
with rankograms as an option to produce rankograms instead of cumulative ranking
curves.

3.1.5 Conclusions

Network meta-analysis allows researchers to compare all treatments available
for a given condition, even if some direct comparisons are lacking, through the
combination of direct and indirect information. NMA is very attractive in the public
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health setting where multiple competing interventions are in play. NMA answers
clinicians’ and patients’ questions such as which treatments are the best.

3.2 Meta-Analysis of Diagnostic Test Accuracy Studies

Eleanor Ochodo

3.2.1 Introduction to Meta-Analysis of Diagnostic Test Accuracy Studies

Accurate and effective diagnosis of disease conditions is essential to guide appro-
priate and timely management and treatment. The accuracy of a test is its ability to
distinguish those with a disease condition or state from those without (Šimundić,
2009; van Stralen et al., 2009). Like other areas in public health, meta-analyses
of diagnostic test accuracy are used to make evidence-based decisions about the
implementation and interpretation of diagnostic tests (Leeflang et al., 2008; Ochodo
& Leeflang, 2012; Takwoingi et al., 2015). Evidence points to their increasing use
to inform guidelines and policy for clinical and public health testing (WHO, 2015,
2020a, b).

Meta-analyses of diagnostic test accuracy are useful in summarizing and obtain-
ing precise estimates of accuracy when many small primary studies are available.
They are also useful in establishing why test accuracy varies and in comparing the
performance of different tests (Leeflang et al., 2008; Takwoingi et al., 2015). Test
accuracy can vary due to various factors including the patient population, prevalence
of disease, spectrum or disease stage, the type and quality of test, how a test is
administered or conducted as well as how a test result is interpreted based on test
thresholds (what defines a positive or negative test) (Whiting et al., 2004; Whiting
et al., 2013).

Meta-analyses of diagnostic test accuracy studies are more complex and differ
from that of intervention studies as they deal with analysis of two paired outcomes
of interest, most common being sensitivity (proportion of those with a disease
condition who test positive) and specificity (proportion of those without a disease
condition who test negative). Sensitivity and specificity are the most common
measures of test accuracy reported in primary studies, hence used in meta-analyses
(Takwoingi et al., 2015).

In this section we discuss the meta-analysis of (DTA). We will introduce
basic concepts of diagnostic test accuracy studies, highlight factors influencing the
conduct of a meta-analysis of DTA studies and discuss methods and steps for meta-
analysis of diagnostic test accuracy.
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Table 5 Two-by-two table

Index test result Reference test result
Positive (those with disease) Negative (those without disease)

Positive TP FP
Negative FN TN

3.2.2 Basic Concepts of Diagnostic Test Accuracy

To evaluate the accuracy of a diagnostic test, the results of the index test (test under
evaluation) are compared to that of a reference test (best available test) (Šimundić,
2009, van Stralen et al., 2009). These results are then cross classified in a two-
by-two table to show the number of true positives (TP), false positives (FP), false
negatives (FN) and true negatives (TN) (Table 5). TP, FP, FN and TN results are
useful in knowing downstream consequences of a test. For example, FP results
may lead to overtreatment, and FN results may lead to missing of appropriate
treatment. Accuracy measures can be derived from two-by-two tables. There are two
groups of accuracy measures: i) paired measures of accuracy including sensitivity
and specificity, positive and negative predictive values and positive and negative
likelihood ratios and ii) global measures of test accuracy, for example, diagnostic
odds ratios and the area under the curve (Table 6). Global measures of accuracy are
used for general assessment to evaluate the overall discriminative power of tests and
to compare the overall performance of two or more tests. Paired measures relate to
the test’s ability to detect or exclude disease in specific populations or demonstrate
the clinical significance of a positive or negative test result to a specific patient
(Šimundić, 2009; van Stralen et al., 2009; Takwoingi et al., 2015).

3.2.3 When to Conduct a Meta-Analyses of Diagnostic Test Accuracy
Studies

A meta-analysis of diagnostic test accuracy can be done to summarise the accuracy
estimates of a single test, to compare the accuracy of two or more tests and to
investigate sources of heterogeneity or variability in accuracy estimates between
and within studies (Macaskill et al., 2010; Takwoingi et al., 2015).

However, just like intervention studies, a systematic review of diagnostic accu-
racy studies may or may not contain a meta-analysis. In general, factors influencing
the conduct of a meta-analysis include the extent of variability of study results (the
greater the variability, the lesser the indication for a meta-analysis) and the number
of studies (e.g. some statistical packages require four or more studies for meta-
analysis models to converge) (Macaskill et al., 2010; Takwoingi et al., 2015; Higgins
et al., 2019a).
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Table 6 Measures of test accuracy

Measure Formula Definition

Sensitivity tp/(tp + fn) The probability of a test to
detect the presence of disease
in someone with the disease
(positivity in disease)

Specificity tn/(fp + tn) The probability of a test to
detect the absence of disease
in someone without the
disease (negativity in the
absence of disease)

Positive predictive value tp/(tp + fp) The probability that a person
with a positive test has the
disease

Negative predictive value tn/(fn + tn) The probability that a person
with a negative test does not
have the disease

Positive likelihood ratio
(LR+)

sens/1-spec The likelihood of a positive
test result in those with
disease compared to those
without disease (rules in
disease)

Negative likelihood ratio
(LR-)

1-sens/spec The likelihood of a negative
test result in those with
disease compared to those
without disease (rules out
disease)

Diagnostic odds ratio (tp*tn)/(fn*fp) or LR+/LR- The odds of positivity in
those with disease compared
to those without disease

Receiver operating
characteristic curve (ROC
curve) and area under the
curve

Graphical plot of sens
(y-axis) against 1-spec
(x-axis)

ROC curve plots pairs of
sensitivity and 1-specificity
for every individual test
threshold or cut-off. The area
under the ROC curve
estimates the discriminative
ability of the test

Unlike meta-analyses of intervention studies, meta-analyses of diagnostic test
accuracy do not routinely use statistical measures of variability or heterogeneity to
quantify the extent of variability (Macaskill et al., 2010). When there is a univariate
outcome or single measure of effect, for example, risk ratio or odds ratio in meta-
analysis of intervention studies, two statistical measures are used to test and quantify
the extent of variability (the Cochran Q test and I2) (Naaktgeboren et al., 2016;
Higgins et al., 2019a). The Cochran Q test is used to test for the presence of
variability beyond chance, whereas the I2 test is used to quantify this variability.
Values for the I2 test range from 0 to 100% with more than 50% representing
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Fig. 6 Example of a forest plot for a meta-analysis of diagnostic test accuracy. (Reproduced from
Shah et al. (2016) under the terms of the Creative Commons Attribution Non-Commercial License
CC BY-NC)

substantial heterogeneity (Naaktgeboren et al., 2016, Higgins et al., 2019a). Paired
measures of accuracy, such as sensitivity and specificity, are negatively correlated
as they vary inversely with the threshold or test cut-off at which patients are labelled
as diseased or non-diseased (Takwoingi et al., 2015; Naaktgeboren et al., 2016).
The statistical measures (Cochran Q and I2) do not account for variability due to
test positivity thresholds and are currently not recommended for bivariate diagnostic
outcomes (Takwoingi et al., 2015, Naaktgeboren et al., 2016). Instead, the Cochrane
handbook for diagnostic test accuracy reviews recommends visual assessment of the
variation between studies by graphically presenting the estimates of sensitivity and
specificity in forest plots and summary ROC curves (Macaskill et al., 2010). An
example of a forest plot for a meta-analysis of diagnostic test accuracy can be found
in Fig. 6.

3.2.4 Methods for Meta-Analyses of Diagnostic Test Accuracy Studies

There are different methods for meta-analyses that have been proposed for diag-
nostic accuracy studies including the older traditional methods and more advanced
methods (Macaskill et al., 2010; Ochodo et al., 2013; Takwoingi et al., 2015).

3.2.4.1 Traditional Methods

Traditional methods for meta-analysis generally include those based on a univariate
approach and summary ROC curve based on simple linear regression (Macaskill et
al., 2010, Ochodo et al., 2013, Takwoingi et al., 2015).



Evidence-Informed Public Health, Systematic Reviews and Meta-Analysis 117

The univariate approach entails independent pooling of one outcome, for exam-
ple, pooling of sensitivity and specificity separately, pooling of likelihood ratios and
pooling of diagnostic odds ratios. Independent pooling ignores the threshold effect
or correlation between sensitivity and specificity and may provide misleading results
(Macaskill et al., 2010; Takwoingi et al., 2015). Thus, this method is generally not
recommended unless in cases where bivariate models fail to converge and provide a
model estimate. An example of this scenario is when studies with small sample sizes
are included in the meta-analyses (Takwoingi et al., 2017). In addition, if included
studies report no false positives (all report 100% specificity), a univariate random-
effects model can be used to pool estimates of sensitivity only.

Generating a summary ROC curve based on linear regression (the Moses-
Littenberg model) (Moses et al., 1993) accounts for variation in threshold but does
not account for heterogeneity in test accuracy which may be caused by other factors
such as population, spectrum of disease, conduct and interpretation of the tests
(Macaskill et al., 2010; Takwoingi et al., 2015; Naaktgeboren et al., 2016).

3.2.4.2 Advanced Methods

The advanced methods generally take into account between- and within-study
heterogeneity and the threshold effect between sensitivity and specificity. They
are thus considered more robust than traditional methods (Macaskill et al., 2010).
The advanced methods for meta-analysis include the bivariate random-effects
model; hierarchical summary ROC curve (HSROC) model; the trivariate analysis
of sensitivity, specificity and prevalence (Chu et al., 2009); and the multivariate
random-effects model for tests with multiple thresholds or cut-offs (Hamza et
al., 2009). The Cochrane methods group generally recommends the bivariate and
HSROC models for meta-analyses of diagnostic test accuracy studies, the choice of
which depends on the thresholds reported (Macaskill et al., 2010).

The bivariate model pools estimates of sensitivity and specificity directly around
a common threshold. It also generates a confidence region and prediction region
around the summary point (Reitsma et al., 2005; Macaskill et al., 2010). For
example if most or all included studies evaluating the accuracy of point of care
tests for schistosomiasis report (Ochodo et al., 2015) estimates of sensitivity and
specificity at a threshold of +1, then the bivariate model can pool estimates at this
threshold (Fig. 7). Another example of a common threshold is when all test results
are binary, reported as either present or absent.

The HSROC method is recommended where included studies report sensitivity
and specificity estimated at different thresholds (Fig. 7). In such a scenario,
modelling a summary accuracy point will not produce clinically meaningful results.
The HSROC model estimates the underlying ROC curve that displays how each
study’s sensitivity and specificity vary at different thresholds (Macaskill et al., 2010,
Takwoingi et al., 2015).
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Fig. 7 Example of bivariate (left) and SROC plots (right). The thick black point in the left diagram
shows the average value for sensitivity and specificity. The inner ellipse around the black spot
represents the 95% confidence regions around the summary estimates. The outer ellipse represents
the prediction region. The size of the points is proportional to the study sample size. The solid line
in right shows the summary ROC curve. (Reproduced from Ochodo et al. (2015) under the terms
of the Creative Commons Attribution Non-Commercial License CC BY-NC)

3.2.5 Steps in Conducting a Meta-Analyses of Diagnostic Test Accuracy
Study

In this section we summarise the steps to be considered when conducting a meta-
analysis of diagnostic test accuracy.

3.2.5.1 Analysis of a Single Test (Comparing an Index Test to a Reference
Standard)

1. Identify and state the unit of analysis. Is it at individual participant level or at
sample level? Note that in sample analysis, a participant can contribute more
than one sample.

2. From each study identify the test positivity thresholds, and construct two-by-two
tables at those thresholds.

3. Conduct preliminary exploratory analyses by plotting the estimates of sensitivity
and specificity in forest plots and SROC plots. Note the difference in forest
plots for diagnostic accuracy studies. Unlike those for intervention studies which
present one measure of effect and summary effect measure, forest plots of
diagnostic test accuracy plot two measures (sensitivity and specificity) and do
not have a summary effect measure. Review Manager, a software tool by the
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Cochrane collaboration, can be used to plot forest and SROC plots (Takwoingi et
al., 2015).

4. Visually assess the forest plots to assess the extent of variability of estimates
of sensitivity and specificity. If there isn’t a lot of variability and if studies are
sufficient (≥4 studies), a meta-analysis can be conducted.

5. Depending on the thresholds reported, select whether to use the bivariate method
to pool estimates at a common threshold or the HSROC method to estimate
accuracy at different thresholds. The statistical packages that can fit the bivariate
model include Stata, SAS, R, WinBUGS and MLWin. Those that can fit the
HSROC model include SAS, R and WinBUGS (Takwoingi et al., 2015).

6. If the advanced models fail to converge, a simple univariate model for sensitivity
and specificity can be fitted separately using a random-effects meta-analysis.

3.2.5.2 Analysis of Two or More Tests (Comparing Index Tests)

The performance of accuracy of two or more tests can be compared directly where
only studies that applied both index tests in the same individuals are used or
compared indirectly where all studies are included in the analysis. These tests can
be compared by adding the covariate test type to the bivariate or HSROC models
(Macaskill et al., 2010).

3.2.5.3 Investigations of Heterogeneity

Source of heterogeneity can be investigated by adding the covariates to the bivariate
or HSROC models by using subgroup or sensitivity analyses (Macaskill et al., 2010;
Naaktgeboren et al., 2014).

3.2.6 Conclusion

Meta-analyses of diagnostic test accuracy studies mostly involve the pooling of two
outcomes. Sensitivity and specificity are the most commonly reported diagnostic
outcomes and hence used in meta-analysis. Meta-analysis can be used for the
analysis of a single test, comparing multiple tests and investigating sources of
heterogeneity. The decision to conduct a meta-analysis of diagnostic test accuracy
studies depends on the size and number of included studies as well as the
heterogeneity observed visually in the forest plots. The advanced methods for meta-
analysis that account for test threshold effect as well as between- and within-study
heterogeneity are generally recommended for diagnostic test accuracy studies.
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3.3 Data Synthesis when Meta-Analysis Is Not Possible

Samuel A. Abariga

Meta-analysis has the advantage of mathematically synthesizing data across
studies that contributed data for the outcome of interest. However, certain factors
may render meta-analysis either inappropriate or impossible.

3.3.1 Reasons That May Render Meta-Analysis Impossible
or Inappropriate

Broadly speaking, two reasons may explain why it is inappropriate to combine
results of individual studies in a meta-analysis. These are (1) heterogeneity among
included studies and (2) insufficient information on review specific outcomes of
interest.

3.3.1.1 Substantial Heterogeneity Among Included Studies

Substantial diversity in important study characteristics or heterogeneity among
included studies such as study design, study population, interventions, outcomes
or study setting may be some of the concerns for which it may not be appropriate
to conduct a meta-analysis (Ioannidis et al., 2008). Heterogeneity among studies
may be grouped into four types, namely, clinical, geographic, methodologic or
statistical heterogeneity (Herbert & Kari, 2005). Clinical heterogeneity may occur in
a variety of ways, for instance, intervention studies conducted in different settings
e.g. studies among participants in a community or a tertiary care facility may be
different in terms of patient outcomes due to the differences in the level of care
provided. Tertiary hospitals may have more experienced and specialised healthcare
providers compared to community hospitals, and therefore the level of care may
vary. Other differences in participant characteristics such as age, gender, race and
difference in disease severity (e.g. cancer patients with stage 1 and stage 4 disease
lumped together) may also be an important source of clinical diversity. Variability
of frequency and route of administration of an intervention such as a drug, where
participants in some of the included studies received the intervention via the oral
route and others via the intravenous route or variability in dosing frequencies,
may all be important sources of clinical heterogeneity. Outcomes of interest may
also be a source of variability if the outcomes are defined differently in individual
studies. For instance, in studies involving HIV patients where investigators are
interested in the effect of an intervention (e.g. antiretroviral treatment) on the
progression of HIV disease, if some studies use objective laboratory markers such
as viral loads or CD4 counts to evaluate disease progression and other studies use
resolution of clinical symptoms of disease as a proxy for disease progression, then
clinical heterogeneity will be present among these studies when combined in a
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meta-analysis. Important methodologic sources of heterogeneity may arise due to
differences in study designs, e.g. RCTs, cross-sectional and prospective cohort study
designs. Statistical heterogeneity is the percentage of variability across studies that
is not due to chance. Geographical diversity among individual studies may arise
when there is clinical practice variability among different regions. In the presence
of these variabilities, as well as the presence of very high statistical heterogeneity
(described elsewhere in this chapter), combining data from individual studies into a
pooled effect estimate may be inappropriate.

3.3.1.2 Insufficient Information on Review Specific Outcomes of Interest

Among included studies in a systematic review, individual studies may have
insufficient or incomplete information on treatment effects. For instance, studies
may report the estimate without confidence intervals, or studies may simply report
the magnitude and direction of the treatment effect along with only the P value, or
there may be differences in the effect measure across the individual studies included
in the systematic review. The latter may arise when inappropriate statistical methods
are used to analyse data from studies reporting different measures of association
such as odds ratios, relative risk, hazard ratios, etc.

3.3.2 Recommended Alternative Ways of Synthesizing Data

When meta-analysis is not possible for obvious reasons, in the interest of trans-
parency, review authors should clearly state in the methods section of the review
the methods intended to be used to present results. There are two main ways to
present results without meta-analysis: vote counting based on direction of effect or
visual display and presentation of the data (McKenzie & Brennan, 2019). Whichever
method is used, it is recommended that review authors follow the reporting
guidelines on synthesis without meta-analysis in a systematic way and clearly
describe the following: methods used to group studies, standardised metric used
for the synthesis, the synthesis method, method of data presentation, a summary of
the synthesis findings as well as limitations of the synthesis (Campbell et al., 2020).

3.3.2.1 Vote Counting Based on Direction of Effect

When included studies report evidence of an effect and there is inconsistency
in the effect measures across studies, vote counting based on direction of effect
can be used to compare the number of effects showing benefit in favour of the
intervention and the number that shows harm. The definition of ‘benefit’ or ‘harm’
may render this approach problematic (McKenzie & Brennan, 2019). Vote counting
based on statistical significance or the size of the effect estimate is not recommended
(McKenzie & Brennan, 2019).
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3.3.2.2 Visual Display of Results

Visual display and presentation of results can be done by using either a structured
tabulation of results across studies, forest plots, box-and-whiskers, bubble, albatross
or harvest plots. Structured tabulation of studies can be done by ordering them
by an important characteristic of the study such as the population, study design,
intervention, outcomes, risk of bias or certainty of the evidence that is relevant for
interpreting the findings. Forest plots can be used to display the results of individual
studies without an overall pooled effect estimate (see image in other sections).

The box-and-whisker plots (Fig. 8a) depicts the distribution of effect estimates
where the whiskers indicate extreme values, the line within the box the median
and the upper and lower limits of the box indicating the 25th and 75th percentiles,
respectively (McGill et al., 1978). Figure 8a displays results of state-specific age-
adjusted odds ratios for social gradients (by wealth, education and social caste for
diabetes, hypertension and obesity in India (Corsi & Subramanian, 2019).

The bubble plots (Fig. 8b) are similar to the box-and-whisker plots and are more
suitable for visually displaying results when there are fewer studies. The bubble plot
(Fig. 8b) (Higgins et al., 2019c) depicts multiple dimensions using size and colour

Fig. 8 (a–d) Examples of plots used to display results when meta-analysis is not feasible.
(Reproduced from Corsi and Subramanian (2019) (a), Higgins et al. (2019c) (b, d) and Harrison et
al. (2017) and (c) under the terms of the Creative Commons Attribution Non-Commercial License
CC BY-NC)
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of the bubbles. In Figure b, bubble sizes and colours reflect design: randomised
trials (large, green), quasi-randomised trial (medium, red), non-randomised studies
(small, blue); and precision (as well as multiple categories of the outcome such as
potential harm, no effect, potential benefit and benefit) (Higgins et al., 2019c).

The albatross (Fig. 8c) and the harvest plots (Fig. 8d) are also alternative ways
of visually displaying results when synthesizing results without meta-analysis and
reflects the nature of the evidence. When included studies differ in terms of their
designs, the heights of the bars can be used to show the differences in study
designs, e.g. observational studies (short), quasi-randomised trials (medium) versus
randomised controlled trials (tall). Where studies are similar in their design, e.g.
RCTs, the heights of the bars can also be used to represent the sample size. The
shades may be used to depict the duration of follow-up, e.g. longest follow-up
(black) to shortest follow-up (light grey) or no information (white) (Ogilvie et al.,
2008; Harrison et al., 2017). Figure 8d is an example of visual presentation of results
using albatross plots. The graph depicts results from studies assessing the effect
of exercise training on left ventricular fraction after acute myocardial infarction
(Harrison et al., 2017). The harvest plot groups effect according to their direction
(Fig. 8d).

4 Overview of Certainty of Evidence and GRADE

Michael McCaul

4.1 What Is GRADE and Why Is It Needed?

The Grading of Recommendations Assessment, Development and Evaluation
(GRADE) began in 2000 as an informal collaboration of people with an interest
in addressing the limitations of evidence grading systems in healthcare. Today
the GRADE approach is considered the standard in guideline development and
rating the quality of evidence in evidence synthesis products and when making
recommendations in guidelines.

Healthcare and public health judgements about evidence and recommendations
are complex. Systematic reviews might be able to provide the complete picture of
the current evidence for a particular public health question, however alone do not
provide sufficient information for making well-informed decisions. Furthermore,
systematic review authors and guideline developers are inconsistent in how they
rate the quality of evidence (from systematic reviews) and how they grade the
strength of recommendations in guidelines. This is partly due to the notion of
quality or certainty of evidence not being clear, various heterogeneous evidence
grading systems, lack of transparency in making judgements and tools that do not
separate the certainty of the evidence from the strength of recommendations (Guyatt
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Table 7 Definitions of GRADE evidence ratings

Grade Definition

High
(⊕⊕⊕⊕)

We are very confident that the true effect lies close to that of the estimate
of the effect

Moderate
(⊕⊕⊕�)

We are moderately confident in the effect estimate: the true effect is likely
to be close to the estimate of the effect, but there is a possibility that it is
substantially different

Low
(⊕⊕��)

Our confidence in the effect estimate is limited: the true effect may be
substantially different from the estimate of the effect

Very low
(⊕���)

We have very little confidence in the effect estimate: the true effect is
likely to be substantially different from the estimate of effect

et al., 2008). Towards solutions, the GRADE system, through a transparent process,
classifies the certainty of evidence in a systematic review as one of four levels –
high, moderate, low or very low categories (Guyatt et al., 2011b). These are defined
in Table 7, as per the GRADE Handbook (Schünemann et al., 2013).

4.2 GRADE Judgements and Domains

When applying the GRADE approach, evidence from RCTs start as high certainty
of evidence, but confidence in the evidence may be decreased (termed downgraded)
for several reasons (Balshem et al., 2011). The domains that need to be considered
are described below.

4.2.1 Domains for downgrading evidence

4.2.1.1 Risk of Bias

Limitations in study design and how the study is conducted may lead to biased
estimates of the treatment effect. Our confidence in the treatment effect is reduced if
there are major limitations in study design and execution. For RCTs, these include
bias originating from improper randomisation to lack of allocation concealment
and lack of blinding to incomplete outcome data or follow-up among others. In
observational research, study limitations that decrease our confidence in effect
estimates include flawed measurements of both exposure and outcomes, failure
to control for important confounding or incomplete or differential follow-up.
Depending on the extent of bias, the certainty of evidence can be downgraded by
one or two levels (Guyatt et al., 2011h).
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4.2.1.2 Inconsistency

Inconsistency refers to unexplained heterogeneity in results. Various measures used
to quantify the extent of heterogeneity in a meta-analysis, were discussed in previous
sections and should be considered when making a judgement around inconsistency.
Importantly, reasons for inconsistency should be explored considering differences
in the population, intervention, comparisons and outcomes (Guyatt et al., 2011a).

4.2.1.3 Indirectness

We can place more certainty in study results when we have direct evidence that
speaks to our population, intervention, setting and outcomes of interest. Systematic
review authors and guideline development teams should consider the extent to which
evidence is applicable to their review question. If there is extensive indirectness,
authors can downgrade by one or two levels (Guyatt et al., 2011e).

4.2.1.4 Imprecision

Imprecision results when studies include relatively few participants or few events
and have a wide corresponding 95% confidence interval. Wide confidence intervals
decrease our certainty in the results but should be interpreted together with
considering the optimal information size (Guyatt et al., 2011d).

4.2.1.5 Reporting (Publication) Bias

Publication bias refers to the systematic over- or under-estimation of study results
due to the selective reporting and publication of studies. Our confidence in the
effect estimate in a systematic review is decreased if we suspect publication bias.
Publication bias can be investigated using funnel plots (Guyatt et al., 2011f).

4.2.2 Domains for upgrading observational studies

Observational studies (such as cohort studies) start as low certainty of evidence but
can be upgraded to a higher certainty of evidence by considering certain criteria
such as a large magnitude of effect, dose response effects and the effect of plausible
residual confounding (Guyatt et al., 2011g). Public health interventions are often
investigated using observational research or quasi-experimental designs. In the case
of quasi-experimental designs, these also provide high certainty of evidence as a
starting point but will automatically be downgraded for limitations in design (risk
of bias). Each domain can be downgraded by one or two levels; ideally this should be
done by two reviewers independently and reach a consensus view on downgrading
decisions.
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Summary of findings: 

Pre-hospital compared to in-hospital thrombolysis mortality for ST-elevation myocardial infarction
Patient or population: ST-elevation myocardial infarction 

Intervention: Pre-hospital 

Comparison: in-hospital thrombolysis mortality 

Outcomes

Anticipated absolute effects*

(95% CI)

Relative effect
(95% CI) 

№ of 
participants 
(studies) 

Certainty of the 
evidence
(GRADE) 

CommentsRisk with in-
hospital 
thrombolysis 
mortality

Risk with Pre-
hospital

All cause 
hospital mortality
follow up: range 
1 days to 30 
days

73 per 1,000 

53 per 1,000
(27 to 103)

RR 0.73
(0.37 to 1.41)

538
(3 RCTs) 

⨁⨁

LOW a,b

Prehospital thrombolysis may result in 
a large reduction in all cause hospital 
mortality. 

*The risk in the intervention group (and its 95% confidence interval) is based on the assumed risk in the comparison group and the relative effect of 
the intervention (and its 95% CI). 

CI: Confidence interval; RR: Risk ratio 

GRADE Working Group grades of evidence
High certainty: We are very confident that the true effect lies close to that of the estimate of the effect
Moderate certainty: We are moderately confident in the effect estimate: The true effect is likely to be close to the estimate of the effect, but there is a 
possibility that it is substantially different
Low certainty: Our confidence in the effect estimate is limited: The true effect may be substantially different from the estimate of the effect
Very low certainty: We have very little confidence in the effect estimate: The true effect is likely to be substantially different from the estimate of effect 

Explanations
a. Downgraded by 1 level for risk of bias due to poor reporting of random sequence generation, allocation concealment (not described and concealment 
broken) and inadequate outcome reporting 

b. Downgraded by 1 level for imprecision as CI includes appreciable benefit and appreciable harm. 

Fig. 9 Example of GRADE SoF table. (Data taken from McCaul et al. (2014))

4.2.3 Making and presenting GRADE judgements

Importantly, GRADE certainty of evidence judgements are made across important
outcomes (that are deemed critical or important) (Guyatt et al., 2011c), and any
reasons for downgrading or upgrading are transparently reported. For example, the
quality of evidence would be graded ‘high’ if the evidence was from several RCTs
with low risk of bias; however the certainty would become lower if there were
concerns regarding inconsistency of results, indirectness, imprecision or publication
bias. In systematic reviews, these transparent GRADE judgements are presented
as ‘Summary of Findings’ (SoF) tables, for both binary (Guyatt et al., 2013a) and
continuous outcomes (Guyatt et al., 2013b).

Figure 9 presents a GRADE SoF table for a systematic review of pre-hospital
versus in-hospital thrombolytic agents for mortality in myocardial infarct (heart
attack) patients, with corresponding meta-analysis, GRADE certainty of evidence
and interpretation (McCaul et al., 2014).
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These summaries present the main findings of a review in a transparent,
structured and simple manner. They provide key information per outcome regarding
the certainty of evidence (quality), the magnitude of effect and comparisons of
characteristics and details linked to the PICO: question (Guyatt et al., 2011c). A
SoF can be presented in various ways and can be supported by more detailed
tables, known as ‘Evidence Profiles’, which provide more detailed explanations
following the GRADE domains. Evidence profiles are more commonly used
for guideline development teams when making recommendations via the linked
GRADE Evidence to Decision (EtD) framework using software such as GRADEPro
GDT (Andrews et al., 2013a, b; Alonso-Coello et al., 2018). Software to produce
SoF and evidence tables can be found in here (www.gradepro.org), including
GRADE’s interactive handbook providing detail around how to make GRADE
judgements and navigate the GRADE domains when judging quality of evidence
(Broazek et al., 2011).

Once an outcome’s quality of evidence has been GRADEd, informative state-
ments should be generated to communicate the findings of the systematic review.
For intervention reviews, the GRADE working group has produced useful guidance
on how to do this (Santesso et al., 2020). These statements incorporate both the
certainty of the evidence and the size of the effect estimate in creating suggested
statements.

GRADE guidance has been developed for systematic reviews addressing various
types of questions. Detailed descriptions of GRADE for authors of guidelines and
systematic reviews have been published in the Journal of Clinical Epidemiology
(‘GRADE Series’, 2021). Useful GRADE guidance has been provided for diag-
nostic accuracy studies (Brozek et al., 2009; Schünemann et al., 2020), network
meta-analysis (Brignardello-Petersen et al., 2018) and qualitative evidence synthesis
(Lewin et al., 2015; Noyes et al., 2018).

5 Useful Resources

Below is a list of useful resources related to the content of this chapter.

Name Description URL

Cochrane Library Collection of databases
containing different types of
evidence to inform healthcare
decision-making, including
the Cochrane Database of
Systematic reviews and
Cochrane Central Register of
Controlled Trials

https://www.cochranelibrary.
com

(continued)

http://www.gradepro.org/

 22979 48122 a 22979 48122
a
 
https://www.cochranelibrary.com
https://www.cochranelibrary.com
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(continued)

Name Description URL

Epistemonikos Database of systematic
reviews relevant for health
decision-making that is
regularly updated

https://www.epistemonikos.
org

Health Evidence™ Database of pre-appraised
systematic reviews on
interventions relevant to
public health

https://
www.healthevidence.org

Cochrane training Webinars and resources
linked to conducting
systematic reviews

https://training.cochrane.org

Cochrane Handbook Detailed description and
guidance on conducting
systematic reviews and
performing meta-analysis

https://training.cochrane.org/
handbook

PRISMA statement Reporting guideline for
systematic reviews and
meta-analysis

http://www.prisma-statement.
org/

Cochrane Handbook for
Diagnostic accuracy reviews

Detailed description and
guidance on conducting
systematic reviews and
performing meta-analysis of
diagnostic test accuracy
studies

https://methods.cochrane.org/
sdt/handbook-dta-reviews

PRISMA for Diagnostic Test
Accuracy

Reporting guideline for
systematic reviews and
meta-analysis of diagnostic
test accuracy studies

http://www.prisma-statement.
org/Extensions/DTA

CINeMA Confidence in Network
Meta-Analysis web
application

https://cinema.ispm.unibe.ch/

GRADEpro GDT GRADE web application for
SRs and guidelines

https://gradepro.org/

MetaInsight Free NMA tool, including
DTA-MA

https://crsu.shinyapps.io/
metainsightc/

NMA Toolkit Cochrane Network
Meta-analysis Toolkit

https://methods.cochrane.org/
cmi/network-meta-analysis-
toolkit

STATA routines for NMA Multiple treatments
Meta-analysis in STATA

https://mtm.uoi.gr/index.php/
stata-routines-for-network-
meta-analysis


 22979 3738 a 22979 3738 a
 
https://www.epistemonikos.org
https://www.epistemonikos.org
https://www.healthevidence.org/
https://training.cochrane.org/

 22979 16513
a 22979 16513 a
 
https://training.cochrane.org/handbook
https://training.cochrane.org/handbook

 22979 21140
a 22979 21140 a
 
http://www.prisma-statement.org/
http://www.prisma-statement.org/

 22979
24660 a 22979 24660 a
 
https://methods.cochrane.org/sdt/handbook-dta-reviews
https://methods.cochrane.org/sdt/handbook-dta-reviews

 22979 31501 a 22979
31501 a
 
http://www.prisma-statement.org/Extensions/DTA
http://www.prisma-statement.org/Extensions/DTA

 22979
36128 a 22979 36128 a
 
https://cinema.ispm.unibe.ch/

 22979 39648 a 22979 39648 a
 
https://gradepro.org/

 22979 42061 a 22979 42061 a
 
https://crsu.shinyapps.io/metainsightc/
https://crsu.shinyapps.io/metainsightc/

 22979 44474
a 22979 44474 a
 
https://methods.cochrane.org/cmi/network-meta-analysis-toolkit
https://methods.cochrane.org/cmi/network-meta-analysis-toolkit
https://methods.cochrane.org/cmi/network-meta-analysis-toolkit

 22979
47995 a 22979 47995 a
 
https://mtm.uoi.gr/index.php/stata-routines-for-network-meta-analysis
https://mtm.uoi.gr/index.php/stata-routines-for-network-meta-analysis
https://mtm.uoi.gr/index.php/stata-routines-for-network-meta-analysis
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Statistical Meta-Analysis and Its
Efficiency: A Real Data Analysis and a
Monte-Carlo Simulation Study

Ding-Geng (Din) Chen

Abstract In the big-data era, the meta-data collected to address the same/similar
scientific question usually come from diverse sources (such as, multi-regional
clinical trials, multiple intervention studies). Meta-analysis (MA) is then a statistical
methodology for combining information from these diverse sources to reach a more
reliable conclusion. In this chapter, an overview of MA is given with emphasis
on classical fixed-effects and random-effects MA models to synthesize summary
statistics from all studies as well as meta-regression to explain the between-study
heterogeneity. A Monte-Carlo simulation study is designed to illustrate the relative
efficiency of the MA using summary statistics to the MA using the original
individual participant-level data. Real meta-data from 13 clinical trials to assess
Bacillus Calmette-Guerin vaccine in the prevention of tuberculosis are used to
demonstrate the implementation of these meta-analysis models in open source R
software.

Keywords Meta-analysis · Fixed-effects model · Random-effects model ·
Weighted-mean estimator · Dersimonian-Laird estimator · Heterogeneity ·
Meta-regression · Individual patient-level data · Monte-Carlo simulations

1 Introduction

In the big-data era, the meta-data collected to address the same/similar scientific
question come from diverse sources. For example, in multi-regional clinical trials
(MRCT), globalizing clinical trials tend to be larger in total sample size and
targeted for multiple international regions for approval. As a result, they tend to
be multi-regional and may cover the USA, Europe, China, Japan, other Asian-
Pacific countries, South America, or African countries. Different countries and
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regions have different medical practice and regulatory requirements. Therefore,
MRCT will have to be harmonized, which prompts actions from the FDA, EMA
and Japanese Pharmaceuticals and Medical Devices Agency (PMDA) to release
guidelines to synthesize and meta-analyze the data from these MRCT in an
international harmonization.

Despite the globalization and harmonization of MRCT, there are emerging
challenges in the conduct of such trials at different regions regarding potential
regional and between-study heterogeneity. This heterogeneity, which needs to be
carefully considered, is generated by different requirements from different regula-
tory agencies in different countries with regard to the study design and conduct of
MRCT. Specifically, the heterogeneity can be generated from (1) different endpoints
required by different regions since different regulatory authorities have different
standards for primary, co-primary, or key secondary endpoints; (2) different time
points required for hypothesis testing since the expected treatment duration or
the primary time point for measuring treatment response in a trial may not be
consistent across regions; (3) different experimental designs which are modified
to match the different characteristics from different regions in MRCT; (4) different
non-inferiority margins required by different regulatory agencies; and (5) different
analytic patient populations defined in analysis plan by different regions. Any of
these differences could lead to inflated type-I and type-II errors from the perspec-
tives of statistical analysis and final recommendations. It then becomes imperative
to enforce and follow the guidance from global harmonization from different health
and regulatory authorities as in International Conference on Harmonization (http://
www.ich.org).

Among all the methods to synthesize data from MRCT, meta-analysis (MA) is
one of the statistical methods which is becoming more popular and extensively used
for examining the validity of the effect-sizes from each trials, for quantifying the
heterogeneity between the effect-sizes, and at the end, for providing an estimate
of the overall pooled effect-size with optimal precision. With rising cost and time
in developing MRCT, many trials are carried out with relative small numbers of
patients resulting in low statistical power for detecting useful clinical trial effect-
size. This phenomenon has increased the chance of producing conflicting results
from different clinical trials. By pooling the estimated effect-sizes from each of the
trials through meta-analytic methods, information from larger number of patients
can be used and increased statistical power is expected.

In the literature, meta-analysis is traditionally referred to the meta-analysis of
summary statistics from published studies (hereafter referred as “SS-MA”). The SS-
MA is to combine point estimates of study effect-size from individual studies using
the well-known fixed-effects and random-effects models which differ fundamentally
whether to incorporate the between-study heterogeneity. This traditional meta-
analysis has played an increasingly important role in biopharmaceutical, health, and
medical sciences. Its applications have led to numerous scientific discoveries. For
example, meta-analysis results are reported in more than five hundred articles in the
New England Journal of Medicine in the past decade and many books are written to


 32189 29027 a 32189
29027 a
 
http://www.ich.org
http://www.ich.org


Statistical Meta-Analysis and Its Efficiency: A Real Data Analysis. . . 139

SS-MA as seen in Whitehead, 2003; Hartung et al., 2008; Borenstein et al., 2009;
Pigott, 2012; Chen and Peace, 2013.

From another standpoint, as data sharing and global harmonization become an
increasingly common practice as discussed in MRCT, original individual patient-
level data (IPD) can become more accessible. When IPD are available from
all studies, it is intuitively preferable to perform meta-analysis using these IPD
(hereafter referred as “IPD-MA”) with some advanced hierarchical and multi-level
statistical models. The IPD-MA is the gold standard in statistical modelling and
analysis as pointed by Sutton and Higgins (2008) since all available data are used.
Even though the IPD-MA is the gold standard in meta-analysis, to obtain or retrieve
of the original IPD is costly, time-consuming, and impossible in most of the times
which makes the IPD-MA impractical.

A logical, but fundamental question in meta-analysis is then how more efficient
this IPD-MA relative to SS-MA. If they are relatively equivalent in statistical
efficiency, we would resort to the SS-MA since the majority of meta-analyses are
performed using summary statistics which are much easy to obtain. To understand
this fundamental question, a series of research have been performed. Theoretically,
Olkin and Sampson (1998) proved this equivalency for analysis of variance when
there is no study-by-treatment interaction and the error variances are constant across
studies. Mathew and Nordstrom (1999) immediately extended this homogeneous
variance condition to heterogeneous variances from different studies. Simmonds
and Higgins (2007) further examined a special case of linear regression models
for continuous responses and Lin and Zeng (2010) then systematically investigated
this fundamental question under a general likelihood inference setting for fixed-
effects MA. Their framework was further extended by Liu et al. (2015) to a more
complex setting of analyzing heterogenous studies and achieving complex evidence
synthesis. In the book of Chen and Peace (2013), Chapter 8 was devoted to this
fundamental question with a simulation study and real data to demonstrate this
equivalence. The conclusions from all these research demonstrated that IPD-MA
has no gain in statistical efficiency, at least asymptotically, over SS-MA for fixed-
effects meta-analysis models.

However, fixed-effects MA models rely on a critical and very strong assumption
that the effect-sizes from all studies share a common value across all studies.
This is not true in many MAs since it is not practical to assume that all studies
will be homogeneous since they are from very diversified sources. It is thus more
appropriate to use random-effects MA models which assume that study-specific
effects are realizations of a random variable. Although random-effects MA models
are widely used in the literature as well as in practice, the fundamental question
on the relative efficiency from IPD-MA to SS-MA remains unanswered for this
important class of models. In this chapter, a simulation study is designed to
demonstrate this relative equivalence under different scenarios from small to large
study-specific sample sizes as well as small to large number of studies in meta-
analysis.

This chapter is then organized as follows. In Sect. 2, we give an extensive
overview on meta-analysis using summary statistics. Specifically, we review the
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classical SS-MA on (1) fixed-effects and random-effects MAs, (2) quantification
of heterogeneity with Q-statistic, τ 2 index, H index and I 2 index, and (3) meta-
regression to explore the heterogeneity with study-level moderators. With the
knowledge on SS-MA, Sect. 3 further demonstrate the relative efficiency between
IPD-MA and SS-MA with a simulation study under continuous and binary data.
Section 4 will illustrate the meta-analysis with a real data set from 13 clinical trials
conducted to assess the impact of a Bacillus Calmette-Guerin (BCG) vaccine in the
prevention of tuberculosis (TB). Detailed analysis using open source R software is
illustrated in this section so that the interested readers can follow the meta-analysis
form their own real data analysis. We conclude this chapter with a discussion in
Sect. 5.

2 Overview of Meta-Analysis with Summary Statistics

2.1 Summary Statistics and the Sources of Variations

In a typical meta-analysis with summary statistics (SS-MA), K independent studies
are obtained to estimate a parameter of interest, such as the effect-size of efficacy
between new treatment and control, βk (k = 1, 2, ..., K). This can be referred
to a broad range of study designs such as single-arm or multiple-arm studies,
randomized controlled studies, and observational studies. For easy illustration, we
focus on SS-MA with two-arm studies, where βk is some form of the effect-size
between the two groups. The most popular choice for βk is the mean difference or
the standardized mean difference for a continuous outcome, or odds-ratio, risk ratio,
and risk difference for dichotomous outcome. In most cases, an estimate β̂k of the
true βk and its associated standard error could be directly extracted from each study.
The ultimate goal of meta-analysis is to produce an optimal estimate of the overall
population effect-size by pooling the estimates β̂k (k = 1, 2, ..., K) from individual
studies using appropriate statistical models.

Two sources of errors or variations existed in these summary statistics of β̂k
from different studies with one as the within-study variation and another as the
between-study variation. The within-study variation is caused by sampling error,
which is random or non-systematic from each study. In contrast, the between-study
variation is resulted from the systematic differences among studies. If the between-
study variation can be verified to be zero, the effect estimates β̂k are considered
homogeneous. Otherwise, they are heterogeneous. In SS-MA, the assumption of
homogeneity states that βk (k = 1, 2, ..., K) are the same in all studies, that is

β1 = β2 = · · · = βK = β. (1)
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Based on whether these studies are homogeneous, two commonly used meta-
analysis models can be seen in SS-MA with one as fixed-effects MA models and
another as random-effects MA models.

2.2 Fixed-Effects Meta-Analysis

The fixed-effects meta-analysis assumes homogeneous where the underlying popu-
lation effect-sizes βk are constant across all studies as shown in Eq. (1). A typical
fixed-effects model is described as

β̂k = β + εk; k = 1, 2, ..., K, (2)

where β̂k represents the effect-size for study k and β is the global overall population
effect-size. The εk are the sampling error with mean 0 and KNOWN variance σ̂ 2

βk
which can be extracted or calculated from the individual studies. In general, the εk
is assumed to follow a normal distribution N(0, σ̂ 2

βk
). A pooled estimate of β in

fixed-effects MA models is given by the weighted least square estimation

β̂F = �K
k=1wkβ̂k

�K
k=1wk

, (3)

and the variance of β̂F can be expressed as

V ar
(
β̂F
) = 1/�K

k=1wk, (4)

where a popular choice of weight is wk = 1/σ̂ 2
βk

and variance σ̂ 2
βk

is estimated from
study k. Hence, the 95% confidence interval of βF is given by

β̂F − t0.025,(K−1)

√
V ar

(
β̂F
) ≤ β ≤ β̂F + t0.025,(K−1)

√
V ar

(
β̂F
)
, (5)

where t0.025,(K−1) denotes the 2.5%-percentile of a t−distribution with (K − 1)
degrees of freedom. Similarly, we may formulate a statistical t-test as:

t = β̂F − β
√
V ar

(
β̂F
) (6)

to be used to test H0 : β = 0.
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2.3 Random-Effects Meta-Analysis

When meta-analyzing effect-sizes from different studies, the assumption in the
fixed-effects model that the K true effect-sizes are the same for all studies may be
impractical. When we attempt to synthesize a group of studies with a meta-analysis,
we expect that these studies have enough in common to combine the information
for statistical inference, but it would be impractical to require that these studies have
identical true effect-sizes. It is impossible for independent studies to be identical in
every respect. Therefore heterogeneity should be very likely to exist in many MAs.
The model that takes heterogeneity into account is the following random-effects
meta-analysis models:

β̂k = β + bk + εk, k = 1, 2, ..., K, (7)

where for study k, β̂k represents the observed effect-size and β the global population
effect-size. bk is now the random-effects with mean 0 and variance τ 2 representing
the between-study heterogeneity, and εk is the sampling error with mean 0 and
variance σ̂ 2

βk
. It is assumed that bk and εk are independent and follow normal

distributionsN(0, τ 2) andN(0, σ̂ 2
βk
), respectively. Let βk = β+bk, k = 1, 2, ..., K.

Then the random-effects model (7) can be simplified as

β̂k = βk + εk, (8)

where βk represents the true effect-size for study k. All βk (k = 1, 2, ..., K) are
random samples from the same normal population

βk ∼ N(β, τ 2) (9)

rather than being a constant in the fixed-effects MA in Eq. (2.2). Further, the
marginal variance of β̂k is given by

V ar
(
β̂k
) = τ 2 + σ̂ 2

βk
, (10)

which is composed of two sources of variation, i.e., the between-study variance τ 2

and within-study variance σ̂ 2
βk
. If the between-study variance τ 2 = 0, the random-

effects MA models (7) would reduce to the fixed-effects MA models (2).
Similar to the fixed-effects MA models, the within-study variance σ̂ 2

βk
can be

obtained or calculated from each study k (k = 1, 2, ..., K). However, information
of between-study variance τ 2 is often not available and methods commonly used
for assessing between-study heterogeneity include the DerSimonian-Laird’s method
of moments (MM) in DerSimonian and Laird (1986), the maximum likelihood
estimation (MLE) method in Hardy and Thompson (1998), and the restricted
maximum likelihood (REML) method in Raudenbush and Bryk (1985). As the most
commonly used estimator, MM is a distribution-free and non-iterative approach
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whereas both MLE and REML are parametric methods and need iteration for
estimating τ 2 and the related meta-regression parameter β described in Sect. 2.5
below.

For MM, it utilizes the Q-statistic that is used for testing the assumption of
homogeneity:

Q = �K
k=1wk

(
β̂k − β̂F

)2
, (11)

where wk = 1/σ̂ 2
βk

is the weight from the kth study, β̂k is the kth study effect-size,

and β̂F is the global overall effect estimated from Eq. (3). It can be seen that Q is
calculated as: (1) compute the deviations of each effect-size from the meta-estimate
and square them (i.e., (β̂k − β̂F )

2), (2) weight these values by the inverse-variance
for each study, and (3) then sum these values across all K studies to produce a
weighted sum of squares (WSS) to obtain the heterogeneity measure Q.

From Eq. (11), Chen and Peace (2013) has shown that the expected value of Q is

E(Q) = (K − 1) + U × τ 2, (12)

where U = ∑K
k=1 wk −

∑K
k=1 w

2
k∑K

k=1 wk

. Under the assumption of no heterogeneity (all

studies have the same effect-size), then τ 2 would be zero and E(Q) = df = K−1.
Based on this heterogeneity measure Q, the test of heterogeneity is conducted to
address the null hypothesis that the effect-sizes βk from all studies share a common
effect-size β (i.e., the assumption of homogeneity) and then test this hypothesis
where the test statistic is constructed using Q as a central χ2 distribution with
degrees of freedom of df = K − 1. It should be cautioned that this χ2-test using
the Q-statistic has poor statistical power to detect true heterogeneity for a meta-
analysis with a small number of studies K , but excessive power to detect negligible
variability with a large number of studies as discussed in Harwell (1997) and Hardy
and Thompson (1998). Thus, a nonsignificant test using Q-statistic from a small
number of studies can lead to an erroneous selection of a fixed-effects model when
there is possible true heterogeneity among the studies, and vice versa. The inability
to conclude statistically significant heterogeneity in a meta-analysis of a small
number of studies at the 0.05 level of significance is similar to failing to detect
statistically significant treatment-by-center interaction in MRCT. In these settings,
many analysts will conduct the test of homogeneity at the 0.10 level, as a means of
increasing power of the test.

From Eq. (12), the MM estimate of τ 2 can be shown (Chen and Peace, 2013) as
follows

τ̂ 2 = max

(

0,
Q − (K − 1)

U

)

. (13)

The truncation at zero in (13) is to ensure that the variance estimate is non-
negative.
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Therefore, the estimate of the global population effect-size in random-effects MA
is given by

β̂R = �K
k=1w

∗
k β̂k

�K
k=1w

∗
k

, (14)

where w∗
k = 1/

(
σ̂ 2
βk

+ τ̂ 2
)

. The variance of β̂R is simply

V ar
(
β̂R
) = 1/�K

k=1w
∗
k

and the 95% confidence interval can be constructed by β̂R − t0.025,(K−1)

√
V ar

(
β̂R
)

≤ β ≤ β̂R + t0.025,(K−1)

√
V ar

(
β̂R
)
.

The statistical test can be similarly formulated by:

t = β̂R − β
√
V ar

(
β̂R
) (15)

to be used to test H0 : β = 0 in the random-effects MA framework.

2.4 Quantify Heterogeneity in Meta-Analysis

The Q-statistic can be used to test the existence of heterogeneity, but it does not
report the extent of such heterogeneity. Based on this Q-statistic, several indices are
proposed to quantify heterogeneity, such as: τ 2, H , and I 2.

2.4.1 The τ 2 Index

The τ 2 index is defined as the variance of the true effect-size as seen in the random-
effects MA model (13). Since it is impossible to observe the true effect-size, we
cannot calculate this variance directly, but we can estimate it from the observed data
using Eq. (11) as follows:

τ̂ 2 = Q − (K − 1)

U
(16)

which is the well-known DerSimonian-Laird method of moments for τ 2 in Eq. (13).
Even though the true variance τ 2 can never be less than zero, the estimated variance
τ̂ 2 can sometimes be from the sampling error leading to Q < K − 1. When this
occurs, the estimated τ̂ 2 is set to zero.
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As used in the random-effects MA model, the τ 2 index is also an estimate for the
between-studies variance in the meta-analysis.

2.4.2 The H Index

Another index or measure of heterogeneity is the H , proposed in Higgins and
Thompson (2002), and defined as follows:

H =
√

Q

K − 1
. (17)

This index is based on the fact that E[Q] = K−1 when there is no heterogeneity.
In this case, H should be 1.

The confidence interval for the H index is derived in Higgins and Thompson
(2002) based on the assumption that the natural logarithm of ln(H) follows a
standard normal distribution. Accordingly:

LLH = exp
{
ln(H) − |zα/2| × SE [ln(H)]

}
(18)

ULH = exp
{
ln(H) + |zα/2| × SE [ln(H)]

}
, (19)

where LL and UL denote the lower- and upper-limits of the CI, zα/2 is the α/2-
quantile of the standard normal distribution, and SE[ln(H)] is the standard error of
ln(H) and is estimated by

SE [ln(H)] =

⎧
⎪⎨

⎪⎩

1
2

ln(Q)−ln(K−1)√
2Q−√

2K−3
if Q > K

√
1

2(K−2)

(
1 − 1

3(K−2)2

)
if Q ≤ K

. (20)

Since E(Q) ≈ K − 1 as seen Eq. (12), the H index should be greater than 1 to
measure the relative magnitude of heterogeneity among all the studies. If the lower
limit of this interval is greater than 1, the H is statistically significant.

2.4.3 The I 2 Index

To measure the proportion of observed heterogeneity from the real heterogeneity,
Higgins and Thompson (2002) and Higgins et al. (2003) proposed the I 2 index as
follows:

I 2 =
(
Q − (K − 1)

Q

)

× 100%, (21)
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which again represents the ratio of excess dispersion to total dispersion and is similar
to the well-known R2 in classical regression which represents the proportion of the
total variance that can be explained by the regression variables.

As suggested from Higgins et al. (2003) a value of the I 2 index around 25%,
50%, and 75% could be considered as low-, moderate-, and high-heterogeneity,
respectively. As noted in their paper, about half of the meta-analyses of clinical
trials in the Cochrane Database of Systematic Reviews reported an I 2 index of zero
and the rest reported evenly distributed I 2 indices between 0% and 100%.

Mathematically, the I 2 index can be represented using the H index as follows:

I 2 = H 2 − 1

H 2
× 100%. (22)

This expression allows us to use the results from the H index to give a confidence
interval for the I 2 index using the expressions in Eqs. (18) and (19) as follows:

LLI 2 =
[
(LLH )

2 − 1

(LLH )
2

]

× 100%

ULI 2 =
[
(ULH )

2 − 1

(ULH )
2

]

× 100%.

Since I 2 represents the percentage, any of these limits which is computed as
negative is set to zero. In the case that the lower limit of I 2 is greater than zero, then
the I 2 is regarded as statistically significant.

2.5 Meta-Regression

Random-effects meta-analysis can take into account of between-study heterogene-
ity, but it is not a tool to explain and explore how these heterogeneities are
originated with other study-level variables. When there are study-level variables
(which is commonly called “moderators”) available, the meta-regression is then
used to investigate the association between these moderators and the reported effect-
sizes. With study-level moderators associated with the reported effect-sizes as the
dependent variable and their variance as weights, meta-regression is in fact the
typical weighted regression. From this point of view, meta-regression is merely
typical multiple regression applied for study-level data and therefore the theory of
regression can be directly applied for meta-regression.

We introduce two types of meta-regressions, which are built on the fixed-effects
and random-effects MA models, respectively. Suppose that there are p moderators
X1, X2, ..., Xp and K independent studies. The fixed-effects meta-regression model
is given by
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β̂k = β0 + β1xk1 + ... + βpxkp + εk, (23)

where xk1, ..., xkp (k = 1, 2, ..., K) denote the observed values of the p moderators
X1, X2, ..., Xp for study k and β0, β1, ..., βp are regression coefficients. The effect-
size β̂k and sampling error εk have the same definitions as in fixed-effects MA
models in (2). The model assumes that the variation in effect-sizes can be completely
explained by these moderators. In other words, the variation is predictable and hence
the fixed-effects meta-regression.

The random-effects meta-regression can be obtained by adding random-effects
bk to the fixed-effects model in (23):

β̂k = β0 + β1xk1 + ... + βpxkp + bk + εk, k = 1, 2, ..., K,

where bk is assumed independent with a mean 0 and variance τ 2. Unlike the fixed-
effects meta-regression, where all variability in effect-sizes can be explained by the
moderators X1, X2, ..., Xp, the random-effects meta-regression assumes that the
model can explain only part of the variation and random-effects bk account for the
remainder.

It should be noted that the meta-regression technique is most appropriate when
the number of studies in a MA is large. Furthermore, since the moderators and
outcome in meta-regression are all study-level summary statistics (e.g., patient
mean age, proportion of female patients), the relation between these moderators
and outcome may not directly reflect the relation between subject scores and
subjects’ outcomes, causing aggregation bias. Therefore careful consideration and
interpretation of the results are always recommended when performing meta-
regression.

3 Simulation Study on Relative Efficiency Between SS-MA
and IPD-MA

We now present simulation study to demonstrate the relative efficiency between
meta-analysis using SS and IPD to address the fundamental question on the relative
efficiency from IPD-MA to SS-MA. It has been demonstrated that for fixed-effects
MA, the IPD-MA has no gain in statistical efficiency, at least asymptotically, over
SS-MA as outlined in Sect. 1. However, fixed-effects MA models heavily rely on
the critical and very strong assumption that the effect-sizes from all studies are
homogeneous with a common value across all studies which is not true in many
meta-analyses. It is thus more appropriate to use random-effects MA models to
incorporate the between-study heterogeneity.

In this sense, the random-effects MA models should be more commonly used in
the literature as well as in practice and the fundamental question on the relative
efficiency from IPD-MA to SS-MA would be more central and important in
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meta-analysis. However, as Lin and Zeng (2010) stated, “it is technically more
challenging to deal with random-effects models than fixed-effects models” and
until now this is still an unanswered question in the meta-analysis due to the
high-dimension of integration. In this section, we design a simulation study to
demonstrate this relative equivalence under different scenarios in random-effects
meta-analysis for both continuous and binary outcomes.

3.1 Continuous Data

3.1.1 Simulation Settings

In this simulation study, we consider a general data setting for random-effects MA
models with K independent studies. Assume for each study, there are nk individuals
from the kth study and let (Y ki ,Xki), k = 1, · · · ,K; i = 1, · · · , nk denote the
original individual patient-level data (IPD) for the nk individuals in the k-th study
(k = 1, . . . , K) where Y ki are the response variable which can be continuous
or discrete, univariate or multivariate, and Xki are the corresponding vector of
explanatory variables including the treatment indicators.

For continuous IPD, the meta-analysis from typical clinical trials to compare
“Treatment" to “Control" groups can be easily formulated as follows:

Yki = αk + βkXki + εki , εki ∼ N(0, σ 2
k ), (24)

where βk represents the random-effects of treatment effect from the kth study and
Xki as treatment indicators. The random-effects βk are of primary interest and
assumed to be βk | β ∼ N(β, τ 2

β ) where β is the global overall treatment effect.

The nuisance parameters of αk and σ 2
k are specific to the k-th study.

Specifically, the simulation is conducted in following three steps:

1. Data Generation Step:
Data (Y ki ,Xki), k = 1, · · · ,K; i = 1, · · · , nk are generated based on

Eq. (24) where we simulated εki from N(0, σ 2
k ) with all σk = 2. The random-

effects βk are simulated from N(β, τ 2
β ) with β = 1 and τβ = 1. Xki are the

treatment assignment with “Treatment" and “Control" to mimic a standard two-
treatment clinical trial with probability of 50% to assign an individual to each
treatment in each study.

The nuisance parameters of αk are also simulated from the normal distribution
of αk ∼ N(α, τ 2

α) with α = 1 and τα = 1. More realistically, we assume that
there is correlation of ταβ = 50% between the random-effects of αk and βk . The
sample size nk from all K studies are simulated from a Poisson distribution with
the average sample size of n. With all αk , βk , Xki , and εki generated, the yki can
be calculated from the Eq. (24).
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2. IPD-MA Step:
For the data generated from the Step 1, the parameter estimation from meta-

analysis using IPD (i.e., IPD-MA) can be done using the linear mixed-effects
model in Eq. (24) where the random-effects αk ∼ N(α, τ 2

α) and βk ∼ N(β, τ 2
β )

with α and β as the global overall effects. In these two random-effects, τ 2
α and

τ 2
β are the between-study heterogeneity and these two random-effects can be

correlated too with correlation of ταβ .
Even the primary interest is to estimate the global effect of β, the IPD-MA can

simultaneously estimate other nuisance parameters, such as, the between-study
heterogeneity from the intercept parameter α and a global within-study variance
σ 2 from εki . The IPD-MA is in fact a 2-level hierarchical linear model with
the first-level to include the IPD data from all patients and the second-level to
include the K studies and therefore, the IPD-MA is always regarded as the gold
standard in statistical modelling. The parameter estimation and the statistical
inference are implemented in R with the function lmer in R package lme4
which is created by Bates Douglas and his research group and maintained by
Ben Bolker (http://www.bbolker+lme4@gmail.com) for “Linear Mixed-Effects
Models using ’Eigen’ and S4."

3. SS-MA Step:
For the data generated from the Step 1, the SS-MA can be traditionally carried

out in two ways as follows

• SS-MA1:
The SS-MA1 is to meta-analyze the estimates of the treatment effects β̂k

and τ 2
βk

from each study. In this case, the standard linear regression can be
used to estimate the treatment effect of βk from each study k, k = 1, · · · ,K
to produce the summary statistics (SS) of treatment effects β̂k and its variance
τ̂βk . These SS from each study are then used for the random-effects SS-MA
as described in Sect. 2.3 to estimate the global treatment effect of β using the
Dersimonian-Laird estimator as follows:

β̂R = �K
k=1w

∗
k β̂k

�K
k=1w

∗
k

, (25)

where w∗
k = 1/

(
σ̂ 2
βk

+ τ̂ 2
)

. The between-study heterogeneity τ̂ 2 is estimated

using the Dersimonian-Laird estimator in Eq. (16).
• SS-MA2:

SS-MA2 is to meta-analyze the data summary aggregated from the first-
level individual-patient data into study-level commonly seen in the real
applications. In this case, the IPD from each study are aggregated to produce
the study-level data in the format of means and standard deviations along
with the number of observations from each study by the treatment and
control groups. These summary statistics can be denoted by (nT,k, X̄T ,k, S

2
T ,k)

for treatment group and (nP,k, X̄P,k, S
2
P,k) for placebo group for study
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Table 1 Parameter estimation of IPD-MA, SS-MA1, and SS-MA2 with continuous data

IPD-MA SS-MA1 SS-MA2

K n Est SE ESE CP Est SE ESE CP Est SE ESE CP

3 20 1.013 0.782 0.810 0.912 1.013 0.787 0.765 0.886 1.013 0.788 0.763 0.885

10 20 0.997 0.421 0.431 0.941 0.997 0.426 0.424 0.926 0.998 0.428 0.425 0.924

50 20 0.999 0.192 0.191 0.945 1.000 0.194 0.193 0.944 1.000 0.195 0.194 0.944

100 20 1.001 0.135 0.135 0.947 1.000 0.136 0.137 0.946 1.000 0.137 0.138 0.949

3 50 0.994 0.663 0.636 0.873 0.994 0.663 0.609 0.852 0.994 0.663 0.609 0.852

10 50 1.000 0.361 0.357 0.927 1.000 0.361 0.355 0.922 1.000 0.361 0.355 0.922

50 50 0.998 0.164 0.162 0.942 0.998 0.164 0.163 0.943 0.998 0.164 0.163 0.943

100 50 1.001 0.116 0.115 0.947 1.001 0.116 0.115 0.947 1.001 0.116 0.115 0.947

3 100 1.001 0.625 0.578 0.847 1.001 0.625 0.563 0.832 1.001 0.625 0.563 0.831

10 100 1.001 0.342 0.331 0.913 1.001 0.342 0.331 0.911 1.001 0.342 0.331 0.912

50 100 0.999 0.152 0.152 0.946 0.999 0.152 0.152 0.946 0.999 0.152 0.152 0.946

100 100 0.999 0.109 0.108 0.945 0.999 0.109 0.108 0.945 0.999 0.109 0.108 0.945

k = 1, · · · ,K , respectively. The treatment effects for each study k can be
estimated by their sample mean differences β̂k = X̄T ,k − X̄P,k with pooled

variance estimates of τ̂ 2
βk

= S2
T ,k

nT ,k
+ S2

P,k

nP,k
. Then the random-effects MA models

can be done using the same formula in Eq. (25).
Both SS-MA1 and SS-MA2 can be carried out using function rma in

R package metafor which is created by Wolfgang Viechtbauer (http://www.
wvb@metafor-project.org) as a comprehensive “Meta-Analysis Package for
R”.

The above 3 steps are simulated 10,000 times for each specifications of K =
3, 10, 50, 100 from small to large number of studies and n = 20, 50, 100 from
small to large sample size in each study. A sampling distribution of β̂ can then be
generated and the performance can be seen from the mean, standard errors, and
coverage probability as well as the relative efficiency.

3.1.2 Results

Table 1 summarizes the β estimation from these 10,000 simulation runs for the
three meta-analysis methods of IPD-MA, SS-MA1, and SS-MA2. In this table, the
columns “Est” and “SE” are the average of parameter estimates β̂ and its standard
errors from these 10,000 simulations which should be the consistent estimates for
the global overall effect of β and its standard deviation of τ 2

β . The column “ESE” is
the so-called empirical SE which is calculated from the average of the standard
errors from β̂ and the column “CP” is the coverage probability on whether the
empirical 95% confidence interval covers the true β which would have to be close
to 95%.
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Table 2 Relative efficiency between SS-MA1, SS-MA2 and IPD-MA with continuous data

SS-MA1 to IPD-MA SS-MA2 to IPD-MA

K n Lower Median Upper Lower Median Upper

3 20 0.528 0.889 1.496 0.510 0.877 1.508

10 20 0.676 0.962 1.322 0.661 0.966 1.363

50 20 0.893 1.024 1.199 0.887 1.029 1.228

100 20 0.933 1.031 1.154 0.930 1.037 1.179

3 50 0.568 0.922 1.225 0.566 0.920 1.232

10 50 0.798 0.993 1.176 0.793 0.993 1.183

50 50 0.931 1.006 1.098 0.929 1.006 1.101

100 50 0.953 1.008 1.072 0.952 1.009 1.076

3 100 0.602 0.956 1.134 0.602 0.955 1.136

10 100 0.889 0.999 1.119 0.887 0.999 1.121

50 100 0.948 1.002 1.062 0.948 1.002 1.064

100 100 0.964 1.002 1.043 0.963 1.002 1.044

It can be seen from this table that the β̂s from all three methods are unbiased
estimates to the true β = 1 as seen from the columns of “Est” for all combinations
of K and n. They are virtually identical from the three methods. As n or K increases,
the accuracy (i.e., unbiasedness) of the estimate increases. The “SE” and “ESE” are
also very close in all the combinations, especially as n or K increases which leads
to a closer 95% CP.

The relative efficiency as defined by the ratios of the empirical variances
between SS-MA1, SS-MA2 and IPD-MA can be seen from Table 2 for the 10,000
simulations. Two calculations are made in this table with one for the relative
efficiency between SS-MA1 and IPD-MA which is labeled as “SS-MA1 to IPD-
MA” and another for the relative efficiency between SS-MA2 and IPD-MA which is
labeled as “SS-MA2 to IPD-MA,” Within each calculation, we report the 2.5%, 50%
and 97.5% quantiles from these 10,000 simulations which are labeled as “Lower,”
“Median,” and “Upper” in the table.

It can be seen from this table that for all cases of n and K , the 95% CIs cover
the median relative efficiency where all “Lower” bounds are smaller than 1 and
“Upper” bounds larger than 1 which means that the relative efficiency between SS-
MA and IPD-MA are statistically equivalent. In further examination, we can see
an interesting result that when K is small at K = 3 and K = 10, the relative
efficiencies between MA-SS and MA-IPD are less than 1 which indicate that both
MA-SSs are in fact more efficient than the IPD-MA averagely. However, as K and
n increase, the medians are closer to 1 indicating both SS-MAs are equivalent to
IPD-MA.

It should be noted that the same sizes of n = 20, 30, 100 are in fact all really
small sample sizes in meta-analysis. We simulated some scenarios with larger
sample sizes of n = 300 and n = 500 and found that the relative efficiencies
between these two SS-MAs and IPD-MA are virtually identical.
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3.2 Categorical Data

3.2.1 Simulation Settings

Categorical data can be generated similarly and in this section we focus on binary
data for studies with binary outcomes. In this case, Y ki are the binary response
variable and the model is as follows:

P(Yki = 1|Xki) = exp(αk + βkXki)

1 + exp(αk + βkXki)
(k = 1, · · · ,K; i = 1, · · · , nk),

(26)
where βk represents the random-effects of treatment effect from the kth studies
and Xki as treatment indicators. The random-effects βk are of primary interest and
assumed to be βk | β ∼ N(β, τ 2

β ). The nuisance parameters of αk are specific to

the k-th study and there is no σ 2
k in binary data.

The simulation can be conducted in following three steps:

1. Data Generation Step:
Data (Y ki ,Xki), k = 1, · · · ,K; i = 1, · · · , nk are generated based on

Eq. (26). The random-effects treatment effect βk are simulated from N(β, τ 2
β )

with β = 1 and τβ = 1. Xki are the treatment assignment with “Treatment"
and “Control" to mimic a standard two-treatment clinical trial with probability
of 50% to assign an individual to each treatment in each study.

The nuisance parameters of αk are also simulated from the random-effects
αk ∼ N(α, σ 2

α ) with α = 1 and σα = 1. The sample size nk from all K studies
are simulated from a Poisson distribution with the average sample size of n. With
all αk , βk and Xki generated, the yki can be generated from the Eq. (26) using
random sampling from binomial distribution.

2. IPD-MA Step:
For the data generated from the Step 1, the parameter estimation from meta-

analysis using IPD (i.e., IPD-MA) can be done using the generalized linear
mixed-effects model technique in Eq. (26) where the random-effects αk ∼
N(α, τ 2

α) and βk ∼ N(β, τ 2
β ) with α and β as the global overall effects. Even

the primary interest is to estimate the global effect of β, the IPD-MA can
simultaneously estimate other nuisance parameters, such as, the between-study
heterogeneity from the intercept parameter α.

Again this IPD-MA is a 2-level hierarchical generalized linear model with the
first-level to include the IPD data from all patients and the second-level to include
the K studies and therefore, the IPD-MA is always regarded as the gold standard
in statistical modelling. The parameter estimation and the statistical inference are
implemented in R with the function lmer in R package lme4.

3. SS-MA Step:
For the data generated from the Step 1, the SS-MA can be carried out in two

ways as follows
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Table 3 Nomenclature for
2 × 2 table of outcome by
treatment

Events Non-events Total event

Treatment group Ak Bk nT,k

Placebo group Ck Dk nP,k

• SS-MA1:
The SS-MA1 is to meta-analyze the estimates of the treatment effects β̂k

and τ 2
βk

from each study. In this case, the classical logistic regression can be
used to estimate the treatment effects of βk from each study k, k = 1, · · · ,K
to produce the summary statistics (SS) of treatment effects β̂k and its variance
τ̂βk . These SS from each study are then used for the random-effects SS-MA
as described in Sect. 2.3 to estimate the global treatment effect of β using the
Dersimonian-Laird estimator as in Eq. (25).

• SS-MA2:
SS-MA2 is to meta-analyze the data summary aggregated from the first-

level individual-patient data into study-level commonly seen in the real
applications. In this case, the IPD from each study are aggregated to produce
the study-level data in the format of 2 by 2 contingency tables to report the
number of events and non-events in two groups. Specifically, the data from the
kth study can be represented as cells Ak , Bk , Ck , and Dk , as shown in Table 3.

Corresponding to the classical logistic regression in SS-MA1, the odds-
ratio (OR) associated with an event is defined as the ratio of the odds of the
event in treatment group to the odds of the event in placebo group. It is well-
known that the odds of the event for the treatment group in the kth study is
OddsT,k = pT,k

1−pT,k
= Ak

Bk
and the odds of the event for the placebo group in

the kth study is OddsP,k = pP,k
1−pP,k

= Ck

Dk
. Then the odds-ratio (OR) of the

treatment group to the placebo group for kth study is as follows:

ORk = OddsT,k

OddsP,k
=

Ak

Bk

Ck

Dk

= AkDk

BkCk

. (27)

To approximate the normal distribution in using odds-ratios, we usually
convert the odds-ratio to the log-scale and estimate the log odds-ratio and its
standard error and use these numbers to perform the meta-analysis. Then we
transform the results back into the original metric. With this direction, the log
odds-ratio is

LogORk = ln(ORk). (28)

The approximate variance can be derived from delta method (Chen and
Peace 2013) as follows:

var(logORk) = 1

Ak

+ 1

Bk

+ 1

Ck

+ 1

Dk

. (29)
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Therefore the approximate standard error is:

SElogORk
= √

VlogORk
. (30)

With these calculations in the log-scale, we then transform them back to
original scale for odds-ratios (OR). Then the random-effects MA models can
be done using the same formula in Eq. (25).

Similarity, the above 3 steps are simulated 10,000 times for each specifications
of K = 10, 50, 100 for small to large number of studies and n = 100, 300, 500
for small to large sample size in each study. A sampling distribution of β̂ can then
be generated and the performance can be seen from the mean, standard errors, and
coverage probability as well as the relative efficiency.

3.2.2 Results

Table 4 summarizes the β estimation from these 10,000 simulation runs for the three
meta-analysis methods of IPD-MA, SS-MA1, and SS-MA2.

It can be seen from this table that the β̂s from IPD-MA are unbiased, but biased
lower for both SS-MA1 and SS-MA2, especially for SS-MA1. However, the biases
diminish as sample size n increases which is consistent with the theory of maximum
likelihood estimation. It should be noted that these biases do not change regardless
of the number of studies K and remain similar with different K as seen in Table 4.
The “SE” and “ESE” are also very close in all the combinations, but the CPs have
mixed pattern due to the biases from the β estimation.

The relative efficiency between the SS-MA1, SS-MA2, and IPD-MA can be seen
from Table 5 for the 10,000 simulations. It can be seen from this table that for all
cases of n (except n = 20) and K , the 95% sampling CIs cover the median relative
efficiency where all “Lower” bounds are smaller than 1 and “Upper” bounds larger

Table 4 Parameter estimation of IPD-MA, SS-MA1, and SS-MA2 with binary data

IPD-MA SS-MA1 SS-MA2

K n Est SE ESE CP Est SE ESE CP Est SE ESE CP

10 20 1.013 0.406 0.365 0.907 0.659 0.366 0.473 0.939 0.868 0.339 0.416 0.971

50 20 1.000 0.170 0.170 0.946 0.664 0.157 0.207 0.664 0.863 0.148 0.183 0.929

100 20 0.994 0.121 0.120 0.947 0.659 0.110 0.146 0.312 0.858 0.105 0.129 0.851

10 50 1.003 0.248 0.226 0.904 0.909 0.233 0.268 0.962 0.945 0.235 0.270 0.967

50 50 0.994 0.109 0.107 0.944 0.894 0.101 0.116 0.880 0.924 0.102 0.116 0.926

100 50 0.992 0.077 0.076 0.942 0.891 0.072 0.082 0.759 0.920 0.073 0.081 0.857

10 100 0.998 0.174 0.161 0.903 0.974 0.169 0.189 0.964 0.976 0.169 0.190 0.964

50 100 0.991 0.078 0.076 0.939 0.958 0.075 0.081 0.932 0.960 0.075 0.081 0.934

100 100 0.992 0.054 0.054 0.947 0.958 0.052 0.057 0.901 0.959 0.052 0.057 0.907
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Table 5 Relative efficiency between SS-MA1, SS-MA2, and IPD-MA with continuous data

SS-MA1 to IPD-MA SS-MA2 to IPD-MA

K n Lower Median Upper Lower Median Upper

10 20 0.919 1.682 4.365 0.680 1.298 3.765

50 20 1.102 1.488 2.082 0.830 1.163 1.709

100 20 1.185 1.466 1.855 0.900 1.152 1.509

10 50 0.800 1.343 3.791 0.906 1.335 3.777

50 50 0.867 1.16 1.728 0.923 1.143 1.713

100 50 0.910 1.142 1.500 0.940 1.126 1.482

10 100 0.949 1.274 3.727 0.981 1.275 3.727

50 100 0.932 1.088 1.614 0.954 1.089 1.611

100 100 0.942 1.057 1.395 0.960 1.058 1.395

than 1 which means that the relative efficiency between SS-MA and IPD-MA are
statistically equivalent. However, the median relative efficiencies in all combinations
are greater than 1 indicating that the IPD-MA is relatively more efficient than
the two SS-MAs which is intuitively true since IPD-MA is the gold standard in
statistical analysis for the meta-data. The gain of relative efficiencies diminishes
as K and n increase as seen in the table that the medians are getting closer to 1
indicating asymptotically the SS-MA1 and SS-MA2 are equivalent to IPD-MA.

4 Real Data Analysis

4.1 Introduction to the Bacillus Calmette-Guerin Vaccine Data

This is a dataset from 13 clinical trials conducted to assess the impact of a Bacillus
Calmette-Guerin (BCG) vaccine in the prevention of tuberculosis (TB). The dataset
is widely used to illustrate meta-analysis and meta-regression; for example, in the
books authored by Everitt and Hothorn (2006) (see Table 12.2), Hartung et al. (2008)
(see Table 18.8), Borenstein et al. (2009) (see Table 20.1) and Chen and Peace
(2013) (see Table 7.1), as well as in the paper by van Houwelingen et al. (2002)
and the R library metafor by Viechtbauer (2010). The source dataset was reported
in the original publication in Colditz et al. (1994) which included 13 clinical trials
of BCG vaccine each investigating the effectiveness of BCG in the treatment of
tuberculosis.

It should be noticed that the numbers reported in these references are different
even though all of them referenced this dataset as BCG with 13 studies from
the same publications. The data tables reported from Everitt and Hothorn (2006),
Borenstein et al. (2009) and Colditz et al. (1994) are the total number of cases in
both BCG and control. However, the dataset reported in the R metafor library and
van Houwelingen et al. (2002) are the numbers of “negative cases.” We will use this
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Table 6 Data from studies on efficacy of BCG vaccine for preventing tuberculosis

Trial author year tpos tneg cpos cneg ablat alloc

1 Aronson 1948 4 119 11 128 44 Random

2 Ferguson & Simes 1949 6 300 29 274 55 Random

3 Rosenthal et al. 1960 3 228 11 209 42 Random

4 Hart & Sutherland 1977 62 13, 536 248 12, 619 52 Random

5 Frimodt-Moller et al. 1973 33 5036 47 5761 13 Alternate

6 Stein & Aronson 1953 180 1361 372 1079 44 Alternate

7 Vandiviere et al. 1973 8 2537 10 619 19 Random

8 TPT Madras 1980 505 87, 886 499 87, 892 13 Random

9 Coetzee & Berjak 1968 29 7470 45 7232 27 Random

10 Rosenthal et al. 1961 17 1699 65 1600 42 Systematic

11 Comstock et al. 1974 186 50, 448 141 27, 197 18 Systematic

12 Comstock & Webster 1969 5 2493 3 2338 33 Systematic

13 Comstock et al. 1976 27 16, 886 29 17, 825 33 Systematic

data structure in this chapter which is reproduced here for complete presentation in
Table 6.

In this table, author denotes the authorship from the 13 studies, year is
publication year of these 13 studies, tpos is the number of TB-positive cases in
the BCG vaccinated group, tneg is the number of TB-negative cases in the BCG
vaccinated group, cpos is the number of TB-positive cases in the control group, cneg
is the number of TB-negative cases in the control group, ablat denotes the absolute
latitude of the study location (in degrees) and alloc denotes the method of treatment
allocation with three levels of random, alternate, or systematic assignment.

The purpose of the original meta-analysis was to quantify the efficacy of the
BCG vaccine against tuberculosis which was facilitated by a random-effects meta-
analysis. It concluded that the BCG vaccine significantly reduced the risk of TB- in
the presence of significant heterogeneity. The heterogeneity was explained partially
by geographical latitude. In this chapter, we use this dataset to illustrate the meta-
analysis procedures in Sect. 2 with implementation in R and also use this data to
illustrate the relative efficiency between SS-MA and IPD-MA.

4.2 Fixed-Effects and Random-Effects Meta-Analysis

4.2.1 Effect-Size Calculation

We illustrate the meta-analysis using R package metafor. To make use of this
package, we first load it into R using the following R code chunk:

# load the R library
> library("metafor")
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# load the BCG data
> data("dat.bcg", package = "metafor")

For meta-analysis, we need to convert the 2 by 2 contingency table in Table 6
into study-specific effect-size (ES). To be consistent with the IPD-MA, we use the
log odds-ratio which can be specified as measure=“OR" in R function escalc which
stands for “effect-size calculation" as in following R code chunk:

> dat = escalc(measure="OR",ai=tpos,bi=tneg,ci=cpos,
di=cneg,data=dat.bcg,append = TRUE)

The option append=TRUE above is to append the calculated ES (i.e., log odds-
ratio in Eq. 28 and named as “yi”) and the its variance in Eq. 29 (i.e., named “vi”)
to the original data which can be seen as follows:

trial author year tpos tneg cpos cneg ablat yi vi
1 Aronson 1948 4 119 11 128 44 -0.9387 0.3571
2 Ferguson & Simes 1949 6 300 29 274 55 -1.6662 0.2081
3 Rosenthal et al 1960 3 228 11 209 42 -1.3863 0.4334
4 Hart & Sutherland 1977 62 13536 248 12619 52 -1.4564 0.0203
5 Frimodt-Moller et al 1973 33 5036 47 5761 13 -0.2191 0.0520
6 Stein & Aronson 1953 180 1361 372 1079 44 -0.9581 0.0099
7 Vandiviere et al 1973 8 2537 10 619 19 -1.6338 0.2270
8 TPT Madras 1980 505 87886 499 87892 13 0.0120 0.0040
9 Coetzee & Berjak 1968 29 7470 45 7232 27 -0.4717 0.0570

10 Rosenthal et al 1961 17 1699 65 1600 42 -1.4012 0.0754
11 Comstock et al 1974 186 50448 141 27197 18 -0.3408 0.0125
12 Comstock & Webster 1969 5 2493 3 2338 33 0.4466 0.5342
13 Comstock et al 1976 27 16886 29 17825 33 -0.0173 0.0716

It can be found that 11 of 13 (except the trials 8 and 12) have negative log
odds-ratios which indicate that the BCG vaccine reduced the risk of TB for these
11 studies, but not for the trials of 8 and 12. Their statistical significance can be
examined by constructing the t-statistic using the ratio of “yi” to the squared-root of
“vi” or the 95% confidence intervals as shown in Fig. 1. Examining this figure, we
can see that only studies 2, 3, 4, 6, 7, 10, and 11 (i.e., 7 out of 13) are statistically
significant.

4.2.2 Fixed-Effects Meta-Analysis

This leads to meta-analysis of all the 13 studies together. Assuming homogenous
for all 13 studies, the fixed-effects meta-analysis in Sect. 2.2 can be done using R
function “rma” as follows:

# Fixed-effects MA
> meta.FE = rma(yi, vi, data = dat, method="FE")
# Print the summary
> meta.FE

Fixed-Effects Model (k = 13)
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Fig. 1 Forest plot before/after meta-regression

Test for Heterogeneity: Q(df = 12) = 163.1649, p-val
< .0001

Model Results:
estimate se zval pval ci.lb ci.ub
-0.4361 0.0423 -10.3190 <.0001 -0.5190 -0.3533

This shows that the estimated global log odds-ratio is −0.436 with SE of
0.0423 and p-value <0.0001. This means that when these 13 studies meta-analyzed
together, the global overall effect of BCG vaccine is statistically significant in
preventing TB. However, the test of heterogeneity (i.e., Q = 163.1649 with df = 12,
p-value <0.0001 from χ2-test) is highly statistically significant which indicates
that the assumption of homogeneous studies in fixed-effects meta-analysis is not
appropriate. Then random-effects meta-analysis should be explored which is exactly
the SS-MA2 in Step 3 described in Sect. 3.2.1.
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4.2.3 Random-Effects Meta-Analysis

The Dersimonian-Laird random-effects meta-analysis models can be implemented
easily as follows:

# Call ‘rma’ with method="DL" to fit the random-
effects MA

> meta.DL = rma(yi, vi, data = dat, method="DL")
# Print the summary
> meta.DL

Random-Effects Model (k = 13; tau^2 estimator: DL)

tau^2 (estimated amount of total heterogeneity): 0.3663
(SE = 0.2659)

tau (square root of estimated tau^2 value): 0.6053
I^2 (total heterogeneity / total variability): 92.65%
H^2 (total variability / sampling variability): 13.60

Model Results:
estimate se zval pval ci.lb ci.ub
-0.7474 0.1923 -3.8873 0.0001 -1.1242 -0.3706

The global overall estimate from the random-effects meta-analysis model is
β̂ = −0.747 with SE = 0.192 and p-value = 0.001 which again indicated statistical
significance if meta-analyzed together. In this random-effects meta-analysis, the
estimated between-study heterogeneity τ̂ 2 = 0.3663 with I 2 = 92.65% and H 2 =
13.60 which demonstrated highly and statistically significant heterogeneity. Meta-
regression should be resorted to explain this heterogeneity.

4.3 Meta-Regression

To explain the heterogeneity, we make use of the geographical latitude where
the clinical trials were conducted. This random-effects meta-regression can be
implemented in following R code chunk:

# random-effects meta-regression

> metaReg = rma(yi, vi, mods = ~ablat, method="DL",data = dat)

# Print the meta-regression results

> metaReg

Mixed-Effects Model (k = 13; tau^2 estimator: DL)

tau^2 (estimated amount of residual heterogeneity): 0.0480 (SE = 0.0451)

tau (square root of estimated tau^2 value): 0.2191

I^2 (residual heterogeneity / unaccounted variability): 56.17%

H^2 (unaccounted variability / sampling variability): 2.28

R^2 (amount of heterogeneity accounted for): 86.90%

Test for Residual Heterogeneity: QE(df = 11) = 25.0954, p-val = 0.0088



160 D.-G. (Din) Chen

Test of Moderators (coefficient(s) 2): QM(df = 1) = 26.1628, p-val < .0001

Model Results:

estimate se zval pval ci.lb ci.ub

intrcpt 0.3030 0.2109 1.4370 0.1507 -0.1103 0.7163

ablat -0.0316 0.0062 -5.1150 <.0001 -0.0437 -0.0195

As can be seen from the output, with only ablat, the estimated residual
heterogeneity τ̂ 2 dropped to 0.048 (SE = 0.0451) from the previous random-effect
meta-analysis without ablat where the heterogeneity was estimated at 0.3663. This
indicates that the moderator ablat itself accounts for (0.3663 − 0.0480)/0.3663 =
87% of the total amount of heterogeneity, and the absolute latitude is significantly
related to the effectiveness of the BCG vaccine in preventing TB which can be
quantified in the estimated meta-regression equation as follows:

log(OR) = 0.3030 − 0.0316 × ablat. (31)

This estimated equation and the entire meta-regression summary can be graph-
ically displayed in Fig. 1. In this figure, the meta-regression in Eq. (31) is plotted
in the solid line and its 95% CI bounds are plotted in dashed dots. The horizontal
line from OR = 0 indicates no BCG vaccine effects. The 13 studies are plotted in 13
solid dots where the sizes of the dots are proportional to their sample sizes.

It can be seen from this equation and the associated Fig. 2 that the higher the
absolute latitude, the more effective is the BCG vaccine. When the ablat is less than
20◦ and close to zero (i.e., study performed closer to equator), the effect-size would
be close to zero (as evidenced from the insignificant intercept parameter and Fig. 2
which means that the vaccination has no real effect on prevention TB. As ablat
increases, say to a latitude of 60◦, the log OR as calculated from Eq. (31) is −1.593
which corresponds to a OR of 0.20.

This property is further illustrated in Fig. 1. In this figure, the right side is the
point estimate of log odds-ratio and its 95% CIs for each of these 13 studies. The
middle part is the graphical representation of these 95% CIs in solid line segments.
The shaded diamonds are the 95% CIs after the meta-regression adjustment. The
bottom three dark diamonds are the 95% CIs for the random-effects meta-regression
at three latitudes of 10, 30, 60◦. It can be seen at 10◦, the estimated log odds-ratio is
−0.01 and the 95% CI is (−0.32, 0.30) indicating no statistically significant benefit
of this BCG vaccine.

4.4 Relative Efficiency Between SS-MA and IPD-MA

4.4.1 Individualization Procedure

To use this BCG data for IPD analysis, we first need to “individualize” this meta-
data by assigning individual IDs to each patient from each treatment group (i.e.,
“BCG” and “Control” groups) from each of these 13 trials.
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Fig. 2 Random-effects meta-regression for BCG data on OR on absolute latitude

For example, in Table 6, there are 4 TB-positive patients and 119 TB-negatives
patients from the BCG group at trial 1. This “individualization” would create a
dataframe with variables (1) a patient identification variable (named as “ID”) from
1 to 123(=4 + 119); (2) a variable for TB status (named as “TBStatus”) assigning
the first 4 patients to 1 as TB-positive and the rest 119 to 0 as TB-negative; (3) a
group variable (named as “Group”) to indicate which treatment group (i.e., BCG)
these 123 patients are from and (4) a trial variable (named as “trial”) to indicate
the trial number (1 for these 123 patients). A random assignment of these 4 deaths
to the 119 patients can be done too. Therefore corresponding to these 123 patients,
this “individualization” process would create a dataframe with 4 columns with first
column (named as “ID”) as the patients’ ID from 1 to 123, the 2nd column (named
as “TBStatus”) with the first 4 patients to be 1 and the rest 119 patient to be 0, the
third column (named as “Group”) as “BCG” for these 123 patients and the fourth
column (named as “trial”) to denote the clinical trial number and it would be 1 for
these 123 patients.

Similarity, we can “individualize” the 139(=11 + 128) patients from the control
group to add 139 observations to the previous 123 patients with “ID” from 124 to
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262(=123 + 139), “TBStatus” to be 1 for the 11 patient and 0 for the 128 patients,
“Group” to be “Control” for these 139 patients and “trial” still to be 1 for these 139
patients. This “individualization” process is very intuitive and can be done for the
rest 12 trials which would generate a dataframe with 357,347 observations (i.e., the
total patients from the 13 trials as seen from Table 6 and 4 columns.

4.4.2 IPD-MA

With this IPD data, the generalized linear mixed-effects model (i.e., IPD-MA in
Step 2 described in Sect. 3.2.1) can be fitted with a binomial distribution to TB
status by treatment “Group” assuming random-effects for “trial.” With this IPD-
MA model fitting, the estimated global overall treatment effect (in log odds-ratio)
is −0.7416 with standard error of 0.1201 which gave a significant p-value <0.0001
which means that the BCG vaccine statistically significantly prevented the TB. The
estimated heterogeneity standard deviation (between-study standard deviation) is
τ̂β = 0.5797.

In addition to the estimation of the global overall treatment effect β, this IPD-MA
can also simultaneously estimate the overall intercept in Eq. 26 which is the overall
effect for placebo in log odds. The overall log odds for placebo is estimated to be
-4.1234 (standard error = 0.1560 and p-value <0.001). Transformed back from the
log odds, the odds is then to be 0.0162 which is equivalent to the risk of 1.59% in the
probability scale. This means that for people without BCG vaccine, the probability
to get TB is about 1.59% which is very small.

4.4.3 SS-MA1

With the IPD data again, we can also perform the SS-MA1 in Step 3 described in
Sect. 3.2.1. We can fit the classical logistic regression for each of these 13 studies
and keep track of the BCG effects and their estimated variances from this logistic
regression for each study which can be shown as follows:

yi vi
1 -0.9387 0.3571
2 -1.6662 0.2081
3 -1.3863 0.4334
4 -1.4564 0.0203
5 -0.2191 0.0519
6 -0.9581 0.0099
7 -1.6338 0.2270
8 0.0120 0.0040
9 -0.4717 0.0570
10 -1.4012 0.0754
11 -0.3408 0.0125
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12 0.4466 0.5342
13 -0.0173 0.0716

It should be noted that these values of estimates are obtained from maximum
likelihood estimation in logistic regression. It can be seen that these values of yi and
vi from logistic regression are identical to the values from the values in Sect. 4.2
calculated using “escalc” using Eqs. 27 and 28. Therefore the random-effects SS-
MA1 and SS-MA2 described in Sect. 3.2.1 would give identical estimates and we
then denote both SS-MA1 and SS-MA2 as SS-MA.

4.4.4 Relative Efficiency Between IPD-MA and SS-MA

As summary from the above analyses, the Dersimonian-Laird random-effects meta-
analysis (i.e., SS-MA) yielded that the global estimate (in log odds-ratio) of
β̂SS−MA = −0.7474 with standard error of 0.1923 and p-value <0.0001 whereas
the IPD-MA estimated the global overall treatment effect β̂IPD−MA = −0.7416
with standard error of 0.1201 and p-value <0.0001.

It can be seen evidently that these two estimates are very close. The standard
error for IPD-MA was estimated at 0.1299, but 0.1923 for SS-MA which resulted
the relative efficiency between SS-MA and IPD-MA (defined as the ratio of the
estimated variance) of 2.19. The estimated between-study heterogeneity is 0.5798
for IPD-MA and 0.6053 for SS-MA, respectively. This conclusion is consistent with
the theory of statistics that the IPD-MA incorporated all the information from the
data for a simultaneous model fitting which would be relatively more efficient as the
golden standard in all statistical modelling.

5 Summary and Discussions

This chapter gave a detailed overview for the classical statistical meta-analysis
including the fixed-effects and random-effects meta-analysis models. Linked with
quantification of the heterogeneity in meta-analysis, the indices of τ 2, H , and I 2

were introduced along with the meta-regression to take into account of the between-
study heterogeneity and variations from all studies in meta-analysis. To facilitate the
understanding of meta-analysis techniques and for interested readers to use these
models for their own meta-analysis, a real example was illustrated with step-by-step
implementation in R on how to do meta-analyses.

With regard to the ongoing debate on whether using original IPD is more
beneficial than using summary statistics in meta-analysis, this chapter designed a
simulation study to demonstrate their equivalency in random-effects meta-analysis
to add to the discussion. It is well-known that it is extreme costly and time-
consuming to collect IPD and often impractical and the summary statistics can
be obtained much more easily from published literatures. This chapter addressed a
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fundamental issue on whether there is efficiency loss from the random-effects meta-
analysis using summary statistics to the gold standard of meta-analysis using IPD
in simulation study. This simulation study showed numerically that there is little, if
at all, relative efficiency loss between these two approaches in meta-analysis.

Further theoretical work to extend the results from Lin and Zeng (2010) to
random-effects meta-analysis models as well as more simulation studies should be
explored and we are investigating it.
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Meta-Analysis Using R Statistical
Software
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Abstract A systematic review and meta-analysis (SRMA) of results from random-
ized clinical trials (RCTs) is considered the highest level of evidence in determining
comparative effect of health intervention for a given disease or condition. This
exercise involves pooling results of relevant published Randomized Controlled
Trials (RCTs) to obtain the totality of evidence on specified outcomes of interest.
This chapter mainly focuses on meta-analysis of intervention studies. The chapter
aims at introducing the following topics in meta-analysis:

1. Statistical methods behind meta-analysis including measures of disease occur-
rence (e.g., odds ratio [OR], relative risk [RR], and mean difference [MD]);
methods for pooling results (e.g., Peto OR, Mantel Haenszel [MH] Statistic
and Inverse Variance [IV]); some study designs in clinical trials; measures of
heterogeneity; and subgroup analysis

2. Steps involved in meta-analysis of interventions using an open-source software
(R statistical software for construction of forest plots and funnel plots, and
computation of heterogeneity indices)

3. Meta-regression including illustrative examples using R codes to demonstrate
how meta-analysis is conducted for continuous and dichotomous outcomes
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1 Introduction

This chapter presents statistics useful in meta-analysis. The methods in this chapter
mainly focus on meta-analysis for intervention studies. Some of the statistical
methods addressed include effect measures such as Odds Ratio (OR), Relative Risk
(RR), Mean Difference (MD), Standardized Mean Difference (SMD), and Ratio of
Means (ROM). Besides, methods for pooling statistical results such as Peto OR,
Mantel Haenszel (MH) Statistic, Inverse Variance (IV) Method, and measures of
heterogeneity are discussed. Practical examples are presented using mostly datasets
available in relevant R packages. The statistical software of choice is R Statistical
Software (https://www.R-project.org/). A brief overview of R statistical software is
provided before delving into meta-analysis.

1.1 Citation of R Statistical Software

The R software code citation() provides the recommended citation for R
statistical software.

R>citation()
To cite R in publications use:
R Core Team (2019). R: A language and environment for statistical

computing. R Foundation for Statistical Computing, Vienna, Austria. URL
https://www.R-project.org/.

A BibTeX entry for LaTeX users is
@Manual,

title = R: A Language and Environment for Statistical Computing,
author = R Core Team,
organization = R Foundation for Statistical Computing,
address = Vienna, Austria,
year = 2019,
url = https://www.R-project.org/,

We have invested a lot of time and effort in creating R, please cite it
when using it for data analysis. See also ‘citation(“pkgname”)’ for citing R
packages.

Similarly, one may also cite the “meta” package in R using the R code
citation("meta") as follows:


 2624 13608 a 2624 13608 a
 
https://www.R-project.org/

 -687 32959 a -687 32959 a
 
https://www.R-project.org/
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R>citation("meta")
To cite package ‘meta’ in publications use:
Balduzzi et al. (2019), How to perform a meta-analysis with R: a practical
tutorial, Evidence-Based Mental Health.

1.2 Installation of R Software and R Studio

The first step to use R software is to manage the installation of the software. We
propose the use of R statistical software because it is an open source, powerful but
very flexible software for statistical meta-analysis. One needs to follow these steps
in order to download and install R software. Visit the CRAN website in order to
download the set-up file: https://cran.r-project.org/bin/windows/base/.

Once the set-up file is downloaded, double click it to begin the installation
process. The steps that follow are almost self-explanatory. While installing R, one
gets tips at each stage of the installation process. After successfully installing R, one
may wish to download R Studio, by visiting the following website: https://www.
rstudio.com/home/. For installation to start, one needs to double click on the set-up
file that has been downloaded. R is enriched with a number of specific packages that
enable one to conduct specific data analysis tasks.

The following steps are followed in order to download and install an R package.

1. Go to the website: http://cran.r-project.org/. Select “Packages.”
2. Select “Available CRAN Packages By Name” and choose the package that you

wish to install. In the case of meta-analysis, choose “meta,” “metafor,” or any
other package that you may wish to install.

3. The package is then downloaded as a zip file and saved in a folder within your
computer.

4. Back in R, install package from a local zip folder.

Alternatively, within R environment, use the command line:
R>install.packages(“package name”).

Finally, it is also possible to use drop down menu in R by selecting, “Tools,”
then “Packages,” and finally “Install packages.” Choose to install from Repository
CRAN or from a local zip file. You might be prompted to choose the secure CRAN
mirrors (listed by country) before you proceed with installation. It is often useful to
ensure that the dependencies are set to TRUE. That enables R to directly install all
other packages that the package “meta” depends on.


 9210 19868 a 9210 19868 a
 
https://cran.r-project.org/bin/windows/base/

 29156 25201 a 29156
25201 a
 
https://www.rstudio.com/home/
https://www.rstudio.com/home/

 7676 32532 a 7676
32532 a
 
http://cran.r-project.org/
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1.3 Basics of Meta-Analysis

Meta-analysis is a statistical method of pooling results from various studies or
clinical trials. According to Hoffman (2015), meta-analysis is a set of techniques
used to combine the results of a number of different reports, studies, or outcomes
into one report, in order to create a single, more precise estimate of an intervention
effect. Meta-analysis therefore enables one to come up with a pooled estimate of
a particular population parameter based on information from many publications or
studies that may have been conducted distinctly from one another. Let us consider
the type of variable outcomes in data. The type of outcome determines the types of
summary measure and hence the type of data analysis to conduct:

1. Binary Outcome: For instance, consider a status outcome like “dead or alive,”
“pain free or in pain,” “smoking or not smoking.” It is only possible that each
study participant is in one of two possible mutually exclusive states. These
outcomes are dichotomous in nature.

2. Continuous Outcome: Some examples of continuous outcome data include “CD4
cell count of individuals,” “viral load,” “Body weight,” “age” among others.
Consider the following question. “What is the viral load after 6 months of Anti
Retro-viral Therapy (ART) treatment for patients with HIV?” The answer is
possibly a value such as 10,000 copies of HIV RNA in a milliliter of blood.
This value could be anything in the range of 0 copies/ml to 100,000 copies/ml
(or so), hence it forms a continuous type of outcome.

We take note that meta-Analysis can be performed for various types of System-
atic Reviews:

1. Intervention reviews,
2. Diagnostic test accuracy review,
3. Methodology review,
4. Overview of reviews, and
5. Flexible reviews

However, in this chapter, we shall mainly focus on meta-analysis of intervention
studies. Such is the case when we have an intervention such as drug treatment whose
effect needs to be tested. Two groups of study individuals are then compared, the
group exposed to the intervention versus the non-exposed group.

1.4 Effect Measures for Continuous Outcome Data

In order to conduct meta-analysis for intervention studies and when dealing
with continuous (or even count) type of outcome data, one needs the following
information:
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1. Mean of the summary (effect or outcome) measure for the treatment and the
control groups

2. Standard deviation of the summary measure for both treatment and control
groups.

Therefore, the effect measures that are used for meta-analysis of continuous type
of outcome data are thus: Mean Difference (MD), Standardized Mean Difference
(SMD) and Ratio of Means (ROM). The mean difference is given by,

MD = ME − MC

while Standardized Mean Difference is measured by dividing the Mean Difference
by the standard deviation of the measurements, rather than the standard deviation of
the mean difference.

SMD = MD

SD(measurements)
.

Just to mention—without giving the details as at now, some of the methods used
to estimate the Standardized Mean Difference include Hedge’s g, Cohen’s d, and
Glass’ delta.

1.5 Effect Measures for Dichotomous Outcome Data

Similarly, in order to conduct meta-analysis for intervention studies with dichoto-
mous outcome type of data, one needs the following information:

1. The total number of patients in each treatment group (exposed versus the non-
exposed groups, also referred to as the treatment versus control groups).

2. The number of patients who experienced the relevant outcome in each treatment
group (treatment and control groups).

The following effect measures are then useful in Meta-Analysis of dichotomous
type of outcome: Relative Risk (RR) or Risk Ratio (RR), Odds Ratio (OR), and Risk
Difference/Absolute Risk Reduction (ARR).

Let us now consider into detail, the effect measures outlined for meta-analysis of
dichotomous outcome from an intervention study.

We first outline a 2X2 contingency table showing incidence of heart attack
among individuals who received a stress management intervention, versus those
who did not receive stress management intervention. The question is: does stress
management for people with heart disease reduce heart attacks? There is a belief that
inclusion of stress management in a rehabilitation program may be useful. To study
this, a cohort of 328 individuals were included in a Randomized Controlled Trial
and the results in Table 1 recorded. For additional information on psychological
interventions for coronary heart attacks, you may read Whalley et al. (2011).
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Table 1 Stress management for reduction of heart attacks

Groups of patients Heart attacks Heart attacks free Total

Stress Management a=119 b=45 a+b=164

No stress Management c=130 d=34 c+d=164

Total a+c=249 b+d=79 n=328

Computing the Odds Ratio (OR)
Refer to the data in Table 1. The odds of heart attack among the patients who were
on stress management (exposed group) is

Odds(exposed) = a

b
= 119

45
= 2.64.

The odds of heart attack among the patients who never got exposure to stress
management is

Odds(non − exposed) = c

d
= 130

34
= 3.82.

Hence the Odds Ratio (OR) is given by,

Odds Ratio = Odds(exposed)

Odds(non − exposed)
= ad

cb
. (1)

The confidence interval for the OR is given by,

log(OR) ± Z(α/2)se(log(OR)), (2)

where (for a,b,c, and d as illustrated in Table 1)

se(log(OR)) = √
(1/a + 1/b + 1/c + 1/d). (3)

The following R code can be used to achieve computation of the OR:

Program code: Computation of Odds Ratio

install.packages("fmsb")

library(fmsb)

M_OR <- oddsratio(119, 130, 45, 34)

str(M_OR)

print(M_OR)
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The function “oddsratio” can be used to return the cross tabulation for the data
and the computed OR, including its confidence interval. The function returns the
analysis output below:

List of 5
p.value : num 0.156
conf.int : num [1:2] 0.415 1.152
..- attr(*, "conf.level")= num 0.95
estimate : num 0.692
method : chr "Odds ratio estimate and its significance probability"
data.name: chr "119 130 45 34"
attr(*, "class")= chr "htest"
Odds ratio estimate and its significance probability
data: 119 130 45 34
p-value = 0.1561
95 percent confidence interval:
[0.4152843, 1.1518463]
sample estimates:
[1] 0.6916239

An OR of 0.69 implies that stress management reduces the Odds of heart attack
by 31%. The confidence interval shows that the effect of stress management varies
between a reduction of 58% (lower confidence level = 0.415) to an increase in odds
of about 15% (upper confidence level = 1.152)

Computing the Risk Ratio (RR)
We use the data in Table 1. The Risk of heart attack among the patients who were
on stress management (exposed group) is

Risk(exposed) = a

a + b
= 119

164
= 0.726.

The Risk of heart attack among the patients who never got exposure to stress
management is

Risk(Non − exposed) = c

c + d
= 130

164
= 0.793.

Therefore the Risk Ratio is thus,

Risk Ratio = Risk(exposed)

Risk(non − exposed)
= a(c + d)

c(a + b)
. (4)

The confidence interval for the Risk Ratio is given by,
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log(RR) ± Z(α/2)se(log(RR)), (5)

where

se(log(RR)) =
√

1

a
− 1

a + c
+ 1

c
− 1

c + d
. (6)

The CI for the RR is obtained by taking exponents of the values obtained from the
CI for the log(RR).

An R code for computation of the Risk Ratio and its confidence interval is as
follows:

Program code: Computation of Risk Ratio

library(fmsb)

RR<-riskratio(119, 130, 164, 164)

str(RR)

print(RR)

The R code returns the following output:

List of 5
p.value : num 0.156
conf.int : num [1:2] 0.81 1.03
..- attr(*, "conf.level")= num 0.95
estimate : num 0.915
method : chr "Risk ratio estimate and its significance probability"
data.name: chr "119 130 164 164"
- attr(*, "class")= chr "htest"
Risk ratio estimate and its significance probability
data: 119 130 164 164
p-value = 0.1561
95 percent confidence interval:
0.8099204 1.0345819
sample estimates:
[1] 0.9153846
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One may interpret the RR measure as follows:

1. A Risk Ratio of 0.92 implies that the risk of a heart attack if an individual
underwent stress management is reduced by about 8%.

2. The confidence interval shows that the effect of stress management on risk varies
between a reduction of 20% (Lower confidence level = 0.8099) to an increase in
risk of about 3.4% (Upper confidence level = 1.035).

Absolute Risk Difference (RD)
Risk Difference is defined as

RD = Risk(treatment group) − Risk(control group) (7)

RD = 0.726 − 0.793 = −0.067

and is interpreted as follows: Stress management has the potential to reduce risk of
heart attack by about 7%.

The Absolute Risk Difference is given by

ARD = |0.726 − 0.793| = 0.067.

Additional information on some of these effect measures, also referred to as
measures of disease occurrence in most epidemiology text books can be found in
Woodward (2013).

2 Methods for Pooling the Effect Measures

Two approaches for pooling effect measures from dichotomous type of outcomes
are discussed in detail. Two more are mentioned with little illustration. However,
the inverse variance method is the most commonly used approach for meta-analysis
due to its ability to handle both continuous and dichotomous kind of outcomes.

• The Peto Odds Ratio
• Mantel Haenszel methods
• Inverse variance method
• O-E and Variance method for combining studies

2.1 The Mantel Haenszel Method

This is a very important tool when we intend to examine the association of a given
exposure variable (x) to an outcome variable (y) when there is a third stratification
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Table 2 Cross tabulation:
Computation of the Mantel
Haenszel statistic

k-th study y=1 y=0 Total

x=1 nk11 nk10 nk1

x=0 nk01 nk00 nk10

Total mk1 mk0 nk

variable (z). It becomes important that we do not rely on marginal/crude effect
measures but conditional (adjusted) effect measures. We proceed by using the Odds
Ratio as the effect measure of interest (Woodward, 2013).

Before we decide to pool the Odds Ratios from different studies, there is a
pertinent question to answer. “When do we need to compute a common adjusted
odds ratio?” The following options apply whenever we are faced with such a
situation.

1. We do not need to pool results when the adjusted effect measures (odds ratios)
are significantly different across the different strata. In this case, the stratification
variable z is actually an effect modifier. Note that you do not need to pool results
that are significantly different.

2. When the adjusted odds ratios are not significantly different, then a common
conditional (adjusted) odds ratio can be computed and the Mantel Haenszel
estimate of the common OR becomes useful.

Consider the cross tabulation in Table 2 for the k-th study, with the exposure
variable (x) denoted as a factor with two levels (0,1) and the outcome variable
(y) also denoted as a factor with two levels (0,1). The stratification variable (z) is,
however, assumed to have r levels (i.e., k = 1, 2, . . . , r)

The Mantel Haenszel estimate of the common Odds Ratio from the r studies
takes the form,

θ̂MH =
∑r

k=1 nk11nk00/nk
∑r

k=1 nk10nk01/nk

=
r∑

k=1

wkθ̂k, (8)

where

wk = nk10nk01/nk
∑r

j=1 nj10nj00/nj
. (9)

The weight wk is the inverse variance of θ when θ̂k is near 1.

Example 1: Mantel Haenszel Statistic
In this example, we consider the possible association between HIV status and
circumcision from nine National AIDS and STI’s Control Programme (NASCOP)
regions in Kenya. The data is hypothetical but mimics data from one of the Kenya
AIDS Indicator Surveys. It is a cross tabulation of a categorical variable “male
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circumcision” and another categorical variable “Human Immuno Deficiency (HIV)
Status.”

A single cross tabulation of the “male circumcision” versus the “HIV status”
for this hypothetical data, for the entire country, is highlighted in the R code for
unadjusted OR below. The R package fmsb needs to be installed and loaded.

Program code: Unadjusted OR for the hypothetical NASCOP data

install.packages("fmsb")

require(fmsb)

oddsratio(123, 70, 4256, 356,conf.level=0.95)

The syntax for the function “oddsratio” is as follows; oddsratio (Dis-
ease+Exposure, Disease+No-Exposure, Exposure+No-Disease,
No-Disease + No-Exposure, conf.level=0.95).

The R code yields the following outcome:

Odds ratio estimate and its significance probability
data: 123, 70, 4256, 356.
p-value < 2.2e-16
95 percent confidence interval: [0.1075070, 0.2009436]
sample estimates: 0.1469791

Comment The interpretation of the unadjusted OR is as follows. Male circum-
cision reduced HIV infection by about 85%. This is the net reduction without
considering that HIV prevalence in Kenya may differ from region to region. A
pooled result obtained from the weighted ORs for all regions may end up being
more informative rather than the absolute OR if the effect of regions was factored
in the analysis. The Mantel Haenszel statistic is useful for pooling the results. The
R code showing an array with data from each region is given next. The data shows
male circumcision versus HIV status by region.

Program code: Data for HIV status stratified by NASCOP regions

HIVdata <- array(c(10, 1, 562, 19,

15, 1, 591, 8,
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4, 0, 397, 19,

9, 0, 481, 11,

17, 5, 511, 42,

8, 3, 380, 32,

34, 56, 423, 157,

11, 3, 417, 28,

15, 1, 494, 40),

dim =c(2, 2, 9),

dimnames =list(Circumcision.status =

c("Circumcized", "Uncircumcized"),

HIV.status =c("HIV Infected", "HIV Uninfected"),

NASCOP.region =c("Region 1", "Region 2", "Region 3",

"Region 7", "Region 6", "Region 5", "Region 4",

"Region 8", "Region 9")))

HIVdata

The HIVData array contains the crosstabulations for all regions. Results for
region 1 and 9 are displayed in Tables 3 and 4.

We first compute the OR for each region. From the summary, we see some
differences in the OR from region to region, some regions have high OR (e.g., OR =
0.85) while others have lower (e.g., OR = 0.14). Do we need to pool the results? In
later examples, we shall introduce the tests for heterogeneity between studies, using
the Q−statistic or similar statistics such as I 2. If there is significant heterogeneity,
then one needs to take caution before obtaining pooled estimates of effect measures.

The R code that returns OR for each region reads;
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Table 3 NASCOP.region =
Region 1

Circumcision.status HIV Infected HIV uninfected

Circumcized 10 562

Uncircumcized 1 19

Table 4 NASCOP.region =
Region 9

Circumcision.status HIV Infected HIV uninfected

Circumcized 15 591

Uncircumcized 1 8

Table 5 OR by “NASCOP
Regions”

Regions Odds ratio Regions Odds ratio

Region 1 0.243 Region 2 0.149

Region 3 0.442 Region 4 0.454

Region 5 0.264 Region 6 0.207

Region 7 0.224 Region 8 0.264

Region 9 0.846
a The OR are computed from a cross tabulation of
HIV status (positive/negative) versus male circumcision
status (yes/no) by region.

Program code: OR by region in the hypothetical NASCOP data

library(vcd)

xx<-loddsratio(HIVdata)

yy<-exp(coef(xx));yy

The outcome is illustrated in Table 5.
We now compute the classical Mantel Haenszel test using themantelhaen.test ()

function.

Program code: R code for the Mantel Haenszel test

mantelhaen.test(HIVdata)

From the results of the Mantel Haenszel test, male circumcision reduces the odds
of HIV infection by about 74%. The confidence interval excludes a value 1 and
therefore, we are confident that Male Circumcision reduces HIV infection.
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Mantel-Haenszel chi-squared test with continuity correction
data: HIVdata
Mantel-Haenszel X-squared = 55.371, df = 1, p-value = 9.979e-14
alternative hypothesis: true common odds ratio is not equal to 1
95 percent confidence interval:
[0.1808276, 0.3728469]
sample estimates:
common odds ratio
0.2596556

We may also conduct the exact conditional test of independence using the
mantelhaen.test (HIV data, exact = T RUE) function, for which a pooled Odds
Ratio of 27.1% is obtained.

Program code: R code for the Mantel Haenszel test

mantelhaen.test(HIVdata, exact =TRUE)

2.2 The Peto Odds Ratio

This is approximate Odds Ratio and works very well in a case of rare events. While
the Mantel Haenszel method can also be used to pool other effect measures such as
Risk Ratio, the Peto Odds Ratio can only be used to pool Odds Ratio. It provides an
alternative method of pooling OR, to the Mantel Haenszel method described above
(Yusuf et al., 1985).

Consider the cross tabulation in Table 6:
For the k-th stratum, we define the following parameters.

O = a,

E = ((a + b)(a + c))/n,

V = ((a + b)(c + d)(a + c)(b + d))/(n2(n − 1))

Table 6 A k-th stratum cross
tabulation for computation of
the Peto Odds Ratio

Exposed Non-Exposed Total

Cases a b a+b

Non cases c d c+d

Total a+c b+d n
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where V is both weighting factor and variance for the difference (O−E). Then, the
Peto Odds Ratio is given by,

Ψ̂ = exp

(
(O − E)

V

)

. (10)

Furthermore, define n = a + b + c + d, the total sample for each stratum and
zα/2, a quantile from the standard normal distribution. Then, the confidence interval
for Ψ is given by,

CI = exp

(
(O − E) ± zα/2

√
V

V

)

. (11)

Now, the pooled OR, actually the Peto Odds Ratio, under the assumption of a
mixed effects model is given as follows:

Ψ̂pool = exp

( ∑r
k=1(Ok − Ek)
∑r

k=1 Vk

)

(12)

and the corresponding Confidence Interval is given by,

CIpool = exp

⎛

⎝

∑r
k=1(Ok − Ek) ± zα/2

√∑r
k=1 Vk

∑r
k=1 Vk

⎞

⎠ . (13)

Exercise (Peto Odds Ratio)
The data below represents child mortality after administration of a new vaccine
in 5 different studies. The data is provided in columns marked v_all for all
vaccinated children, v_cases for vaccinated and mortality cases, nv_all for all
non-vaccinated children, nv_cases for all non-vaccinated mortality cases. The
column marked study gives the study identity.

Obtain the OR for each study. Are the ORs significantly different? Is it
appropriate to pool the ORs? Obtain the pooled Peto OR. This exercise is meant
to be a manual computation exercise. The R codes shall be provided here below for
purposes of computing (Table 7).

Table 7 Excercize: Peto
Odds Ratio

Study v_cases nv_cases v_all nv_all

1 50 60 702 535

2 40 45 620 760

3 108 124 710 728

4 28 39 400 325

5 73 62 658 420
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An analysis output from R software is provided here below.

Program code: Peto Odds Ratio

library(metafor)

column_names<-c("STUDY", "v_cases", "nv_cases", "v_non cases",

"nv_non_cases", "v_all", "nv_all")

study1<-c(1, 50, 60, 702-50, 535-60, 702, 535)

study2<-c(2, 40, 45, 620-40, 760-45, 620, 760)

study3<-c(3, 108, 124, 710-108, 728-124, 710, 728)

study4<-c(4, 28, 39, 400-28, 325-39, 400, 325)

study5<-c(5, 73, 62, 658-73, 420-62, 658, 420)

data_vacc<-rbind(study1, study2, study3, study4, study5)

data_vacc<-as.data.frame(data_vacc)

colnames(data_vacc)<-column_names

data_vacc

attach(data_vacc)

rma.peto(ai=v_cases, ci=nv_cases,

bi=v_non_cases, di=nv_non_cases, data=data_vacc)

The following results are obtained from the Peto OR analysis.

Fixed-Effects Model (k = 5)
Test for Heterogeneity:

Q = 6.5329, df = 4, p-val = 0.1627
Model Results (log scale):
estimate = -0.2609, se=0.0857, zval=-3.0443, pval=0.0023, ci.lb= -0.4288,
and ci.ub=-0.0929

Model Results (OR scale):
estimate =0.7704, ci.lb = 0.6513, ci.ub=0.9113
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From the meta-analysis of the log-OR using Peto’s method, the Q-statistic is
used as a measure of heterogeneity between studies. The p-value of p = 0.163
indicates that there is no significant heterogeneity in the OR between the studies.
We therefore believe that the pooled OR = 0.77 represents the expected situation
from the five studies.

On the other hand, the pooled Odds Ratio is significantly different from 1
(confidence interval: [0.65, 0.91]). This implies that the odds of mortality given
the child was vaccinated is significantly different from the odds or mortality given
the child was not vaccinated. Since the estimated OR is less than 1 (OR = 0.77),
then based on information from the five studies, the odds of mortality is reduced if
the child was vaccinated.

3 Steps of Meta-Analysis for Intervention Studies with R
Statistical Software

The steps of meta-analysis involve generating forest plots, funnel plots and further-
more, a discussion on measures of heterogeneity. Using R statistical software, the
packages that are useful in meta-analysis include “meta,” and “metafor” packages.

The first step is to install the packages using install.packages(“package
name”) and this is done only once. However, one needs to load the package using
library(package name) at every instance of running an analysis or using
the meta-analysis functions.

Program code: Meta-analysis packages

install.packages("meta", dependencies = TRUE)

install.packages("metafor", dependencies = TRUE)

library(meta) #Load the library

library(metafor)

In this section, we provide the R codes and the outputs from conducting a meta-
analysis. Furthermore, a detailed interpretation of results of Meta-Analysis is done.
Further information on meta-analysis can be obtained from the textbook by Chen
and Peace (2013). The web information by Kapoor and Chetty (2017) is quite useful.
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3.1 Fixed Effects Versus Random Effects Meta-Analysis

The philosophy behind fixed effects model is that there is one real value for the
treatment effect and that all trials estimate this single value.

On the other hand, the philosophy behind random effects model is that there are
many possible real values for the treatment effect (depending on dose, duration, etc.)
and that each trial estimates its own real value.

If there is heterogeneity, fixed effect and random effects models may give
different pooled estimates and therefore, the interpretations are expected to be
different.

Consider this example:

1. A Risk Difference (RD) = 0.3 under fixed effects model means that the best
estimate of the one and only one real RD is 0.3.

2. A Risk Difference (RD) = 0.3 under random effects model implies that the best
estimate of the mean of all possible real values of the RD is 0.3.

3. Note that the random effects model gives wider confidence interval.
4. In practice, people tend to interpret fixed and random effects the same way. But

this should not be the case.

3.2 Some Study Designs in Clinical Trials

It is important to note that meta-analysis of studies cannot be performed without
regards to the type of study design that was used in the study. In most literature, the
methods for meta-analysis for parallel study designs are illustrated. The knowledge
of study designs is important since there are differences in meta-analysis methods
when handling studies from different study designs. The Cochran Handbook
documents how meta-analysis can be performed for studies from the following study
designs (Higgins and Green, 2011).

1. Parallel study design is the most basic design for a meta-analysis of intervention.
The design involves grouping study participants into two groups, the experimen-
tal group and the control group. Each group receives only one unique treatment
during the entire study period (Woodward, 2013).

2. Cross-over study design is designed almost the same way as parallel study
designs, except that study participants are switched between the groups at
halfway the interval of the study period. Participants who were in the treatment
group are switched to the control group and vice versa. The benefit is that each
study participant in a treatment group, acts as their own control (Woodward,
2013). This switch has implications on the statistical methods for pooling results
from such study designs.

3. Factorial designs is set up in such a way that more than two treatments can be
assigned to a small group of study participants in one single experiment. In a
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2X2 Factorial design, where we have two treatments A, and B, the participants
are cab be split into four groups A+B, B+Control, A+Control, and Control. This
is like conducting three experiments in one (Jaki and Vasileiou, 2017).

These study designs can be grouped into two major categories:

1. Experimental study designs: Include parallel study designs, dose-ranging
designs, cross-over study designs, cluster randomized trials, factorial study
designs, step wedge designs, quasi experimental studies, among others.

2. Observational study designs: Include cohort studies, cross-sectional studies,
case control studies, among others.

For more information on study designs, one may wish to look at some of the
following references (Stampfer et al., 1985; Grimmes and Schulz, 2002; Pickering
et al., 2019; KC et al., 2019; Donner and Klar, 2000; Hayes et al., 2000; Hemming
et al., 2015; Hussey and Hughes, 2007).

3.3 Meta-Analysis of Dichotomous Outcome Data

We shall use a dataset that is available in the meta package to illustrate the steps
of meta-analysis for continuous data (Olkin, 1995). The dataset named “Olkin95”
summarizes results from 70 articles that studied Thrombolytic Therapy after Acute
Myocardial Infarction. The data frame has the following columns:

• author (for first author),
• year (for year of publication),
• event.e (for number of events in experimental group),
• n.e (for number of observations in experimental group),
• event.c (for number of events in control group), and
• n.c (for number of observations in control group).

Here is the R code for meta-analysis of the “Olkin95” data.

Program code: Exploring the “Olkin95” data

library(meta); #Load the data

data(Olkin95);

View(Olkin95); #To view the data use the codes

help(Olkin95); #To get help on metabin and data
functions

try(data(package = "meta")); #Datasets in meta package
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Using the “metabin” function in “meta” package, we conduct a meta-analysis for
a subset of the Olkin95 data containing only six rows (41, 47, 37, 61, 51, 59). Study
37 specifically has a large sample size. With this large sample size, we expect more
precision in estimating the effect measures from study 37. That should reflect in
smaller confidence interval for effect measure from such a study when we plot the
forest plot.

Program code:“metabin” function for dichotomous data

Olkin95_1<-Olkin95[c(41,47,37, 61, 51,59), ]

meta1<-metabin(event.e, n.e, event.c, n.c,

data=Olkin95, subset=c(41,47,37,61,51,59),

sm="RR", method="I")

summary(meta1)

Table 8 shows the data from the six studies that have been selected for the subset
from the Olkin95 dataset.

The effect measure used for the meta-analysis is the Risk Ratio. R does both fixed
effect and random effects meta-analysis and returns both results simultaneously.
One does not have to specify this assumption during the model specification. A
Pooled Risk Ratio = 0.795 is estimated under fixed effects assumption and is very
significant (p value < 0.0001), while the Pooled Risk Ratio = 0.591 is estimated
under the random effects assumption and is very significant as well (p value =
0.014). Measures of heterogeneity including τ 2, I 2 and Q statistic shall be
discussed in the section on heterogeneity. The meta-analysis tools used include

Table 8 A subset of the
“Olkin95” dataset from the R
package “meta,” used to
illustrate meta-analysis of
dichotomous type of data

Author Year event.e n.e event.c n.c

41 Schreiber 1986 1 19 3 19

47 Bossaert 1987 4 48 2 39

37 GISSI-1 1986 628 5860 758 5852

61 AIMS 1988 32 502 61 502

51 White 1987 2 107 12 112

59 Meinertz 1988 9 162 19 151

For any intervention study, “event.e” is the number of events
in the exposed group and “n.e” is the total number of partici-
pants in the exposed group. Whereas “event.c” and “n.c” are
similar numbers in the control group.
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Inverse Variance method, DerSimonian-Laird estimator for tau2 and Jackson
method for confidence interval of tau2 and tau.

Some very important figures obtained from meta-analysis include the funnel plot
and the forest plot. The R code for generating a funnel plot is shown next:

Program code: R codes for constructing the funnel plot

meta1 <-metabin(event.e, n.e, event.c, n.c,

data=Olkin95, subset=c(41,47,37,61,51,59),

studlab = paste(author, year),

sm="RR", method="I")

funnel(meta1)

attach(Olkin95)

funnel(meta1, comb.fixed = TRUE,level = 0.95,

studlab = TRUE, pos.studlab = 4, cex.studlab = 1.25))

### Alternative code for funnel plot

funnel(meta1, comb.fixed = TRUE,

level = 0.95, contour = c(0.9, 0.95, 0.99),

col.contour = c("darkgreen","green","lightgreen"),lwd=2,

cex = 2, pch = 16, studlab = TRUE, cex.studlab = 1.25)

legend(2, 0.2,

c("0.1 > p > 0.05", "0.05 > p > 0.01", "< 0.01"),

fill = c("darkgreen", "green", "lightgreen"))

forest(meta1)
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Fig. 1 Funnel plot for a subset data from the “Olkin95” data

Figure 1 shows one of the important outcomes of meta-analysis, the funnel plot.
The funnel plots is used to test small study effects or publication heterogeneity so to
speak. In the funnel plot from the subset of Olkin95 data used in this study, all dots
(representing studies) fall within the triangle hence, all studies contribute fairly well
to the meta-analysis. 95% of studies are expected to fall within the triangle. Some of
the reasons for asymmetrical funnel plots or small study effects may include (Sterne
et al., 2011)

• Poor methodological design or inadequate analysis.
• Reporting bias, including publication bias, location bias, selective outcome and

analysis reporting, language bias among others.
• Study Heterogeneity that may result into a correlation between study size and

intervention effects.

The forest plot, represented in Fig. 2, is the main output of a meta-analysis.
It returns the pooled estimate of the effect measure under both the fixed effects
(RR=0.79) and Random effects models (RR=0.59). It also returns the estimates and
the confidence intervals of the effect measure for each study, representing them both
as quantities and graphically. For instance, study 37: (a study by GISSI-1, 1986)
has a very small confidence interval for the Risk Ratio. We see that the study was
associated with a very large sample size. Consequently, the study has a weight of
92% and therefore contributes significantly toward the pooled estimate. Compare
this with study 51 which contributes only 0.4% weight on the pooled outcome.

The forest plot also returns the measures of heterogeneity. Further interpretation
of results of heterogeneity follow in the next section.
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Fig. 2 Forest plot for a subset data from the Olkin95 dataset

3.4 Meta-Analysis of Continuous Outcome Data

Again, we make use of a dataset called “Fleiss93cont” from the “meta” package. To
understand the data and the variables in it, use the “help(Fleiss93cont)” function in
R.

Program code: The “metacont" function

data(Fleiss93cont)

View(Fleiss93cont)

help(Fleiss93cont)

meta_c1 <- metacont(n.e, mean.e, sd.e, n.c, mean.c,sd.c,

data=Fleiss93cont, sm="SMD")

meta_c1

forest(meta_c1)

In the meta-analysis (see the options under the “metacont” function), a standard-
ized mean difference is used as the effect measure. The study results show that
heterogeneity is very low (I 2 = 0%). We may interpret the estimates from fixed
effects model (SMD = −0.343). The random effects estimates may be useful when
the extent of heterogeneity is assumed to be significant.

We may also wish to allow for other options in the analysis. For instance, let us
use Cohen’s d instead of Hedges’ g, or Glass’ delta instead of Hedges’ g as method
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for estimating Standardized Mean Difference. For an explanation on these methods
for estimating SMD, see, for instance (Bakbergenuly et al., 2020)

Program code: Options for metacont function

meta5 <- metacont(n.e, mean.e, sd.e, n.c, mean.c, sd.c,

data=Fleiss93cont, sm="SMD", method.smd="Cohen")

meta6 <- metacont(n.e, mean.e, sd.e, n.c, mean.c, sd.c,

data=Fleiss93cont, sm="SMD", method.smd="Glass")

4 Heterogeneity

We define heterogeneity as the variation between study results. Among other
articles, we reviewed the following and summarized some of the causes of hetero-
geneity in meta-analysis and how to address heterogeneity (Thompson, 1994; Hardy
and Thompson, 1998; Petitti, 2001).

Heterogeneity may occur due to the following reasons:

1. Patients differences including diagnosis, inclusion and exclusion criteria, among
others.

2. Intervention differences including the type of intervention, the dose, duration of
intervention among others.

3. Outcomes of study. That includes type of outcome, cut-off points, duration of
follow-up, among others.

4. Quality and methodology: Either the study is randomized or not, if there is
allocation concealment or not, whether blinding is done or not, among other
methodology options.

4.1 Handling Heterogeneity Between Studies

What are some of the available options for dealing with high level of heterogeneity
between studies?

1. Do not pool studies at all if there is evidence of heterogeneity. One may choose
not to meta-analyze since average result may be meaningless in practice.
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2. You may ignore heterogeneity and proceed to use a fixed effect model. However,
if heterogeneity is very high, interpret fixed effect results with caution.

3. Allow for heterogeneity by using a random effects model.
4. Identify statistical options on how to deal with large variation between studies.

This may involve obtaining subgroup estimates, carefully choosing the methods
used to estimate the between study variance τ 2, and probably methods for
estimating the Standardized Mean Difference.

5. You may also wish to check if the data has any problems such as wrong entries
or outright outliers that may influence results.

6. Consider conducting sensitivity analysis. In the context of meta-analysis, this is
basically a subgroup analysis that may be based on year of publication, study
designs, sample sizes, among other influential covariates.

7. Also investigate clinical and methodological comparability of studies. Some-
times the comparisons being made are not realistic. For instance, one may wish
to study the effect of an intervention. But the effect may have been changing
over the years. The best practice would be to group studies by periods, rather
than lump all studies together.

8. Avoid changing your effect measure without careful consideration of the study
designs. The Risk Ratio may not be a good measure for cross-sectional studies.

4.2 Estimation of Study Bias

Two general approaches are used to establish study bias. One approach is to test for
funnel plot asymmetry. This can be done by loosely checking if all points plotted
with a funnel plot, fall within the triangle of the funnel plot. However, there are also
formal tests that can be done to test for funnel plot asymmetry. The other approach
is to quantify the extent of between study variation. Let us now consider the two
approaches.

Computation of Between-Study Variance The following methods are used to
estimate the between-study variance τ 2 :
1. DerSimonian-Laird estimator (In R software, under the “metacont” function, the

method.tau = “DL”)
2. Paule-Mandel estimator (method.tau = “PM”)
3. Restricted maximum-likelihood estimator (method.tau = “REML”)
4. Maximum-likelihood estimator (method.tau = “ML”)
5. Hunter-Schmidt estimator (method.tau = “HS”) among others

Let us Consider the DerSimonian-Laird Estimator Under the random effects
model, the assumption of common intervention effect is relaxed and the effect sizes
are assumed to have a distribution Θi = N(Θ, τ 2), where
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τ 2 = max

{
Q − (k − 1)

∑
Wi − (

∑
W 2

i )/
∑

Wi

, 0

}

.

Under the inverse variance method, the weights are given by

Wi = 1

se{Θ̂i}2
.

In this case, k is the number of effect measures (or studies) that are being pooled.
The Q statistic is the heterogeneity test statistic for inverse variance method for
continuous outcomes, but for dichotomous outcomes, either QIV or QMH works,

QIV =
r∑

i=1

wi(Θi − Θ̂IV )
2.

Test for Funnel Plot Asymmetry By a simple visualization exercise, all points
on a funnel plot (study effect measures) are expected to fall within the triangle of
the funnel plot. If some studies fall outside the funnel, then they are likely to cause
bias to the whole meta-analysis exercise. Such studies should be excluded before a
meta-analysis is done.

There are, however, formal tests that can also be done to check for funnel plot
asymmetry. The tests for funnel plot asymmetry that have been suggested in the
literature include (Sterne et al., 2011):

• Rank correlation test
• Regression test
• Extensions of the regression test

The test, based on a meta-regression by the standard error, aims to detect
asymmetry in the funnel plot, which may be an indication of publication bias.
However, results should be taken with caution, especially if any of the following
situations hold. That there are too few studies (at least 10 studies were suggested
by Sterne et al. (2011), if the sample sizes are too similar or if there are outliers
or influential studies or subgroups. The test for Funnel Plot Symmetry can be done
using the “metabias()” function.

Program code: The “metabias” function

data(Olkin95)

meta1 <- metabin(event.e, n.e, event.c, n.c,
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data=Olkin95, subset=1:10,

sm="RR", method="I")

metabias(meta1)

metabias(meta1, plotit=TRUE)

4.3 A Discussion on Measures of Heterogeneity

Consider the output to the “metacont()” function applied to the “Fleiss93cont” data,
for a discussion on the measures of heterogeneity.

Program code: heterogeneity in meta-analysis

library(meta)

data(Fleiss93cont)

meta1 <- metacont(n.e, mean.e, sd.e, n.c, mean.c, sd.c,

data = Fleiss93cont, sm = "MD")

help(Fleiss93cont)

summary(meta1)

forest(meta1)

Confidence Interval Lines on Forest Plot Check how the Confidence Interval
lines on the forest plot overlap. If the lines do not overlap, then there are signs
of heterogeneity. In this case, the confidence interval lines overlap and thus
heterogeneity is not high.

The Chi2 Test The test measures the amount of variation between studies, and
tells us if it is more than would be expected by chance. Small p values suggest that
heterogeneity is present, the null hypothesis being that there is no heterogeneity.



194 N. O. Onyango and H. O. Wao

This test is, however, not very good at detecting heterogeneity. Often a cut-off of
p < 0.10 is used, but lack of statistical significance may not directly imply there is
no heterogeneity.

The I 2 Statistic The I 2 is the proportion of variation that is due to heterogeneity
rather than chance. Large values of I 2 suggest heterogeneity. Roughly speaking, I 2

values of 25%, 50%, and 75% could be interpreted as indicating low, moderate, and
high heterogeneity (Higgins et al., 2003). In the example above, I 2 = 29.3% which
can be classified as fairly low heterogeneity.

The statistic is computed as below. Define the effect measures by Θ̂ = ln(OR).

Of course, other possible effect measures include:

1. Θ̂ = ln(RR),
2. Θ̂ = RD (Risk Difference),
3. Θ̂ = MD (Mean Difference).

Based on the Mantel Haenszel pooled effect measure, and assuming the null
hypothesis of no differences is true, the heterogeneity statistic (for r studies; k =
1, 2, ..., r) is given by,

QMH =
r∑

i=1

wi(Θi − Θ̂MH )
2 ∼ χ(r−1)|H0 .

The weights are calculated as, wi = 1/se(Θ̂i)
2 and not the weights that were used

in the Mantel Haenszel calculation. The I 2 statistic is given by,

I 2 = max

{

100

(
QMH − (k − 1)

QMH

)

, 0

}

.

The same can be done if the pooling method used was the Inverse variance method,
or the O − E and variance method, by just replacing the QMH statistic, and the
se(Θ̂) with the corresponding one.

Tau Squared (τ 2) for Random Effects Models In random effects meta-analysis,
the extent of variation on the effects observed from different studies (between-study
variance) is referred to as tau squared, τ 2, or Tau2 (Deeks et al., 2008). τ 2 is the
variance of the effect size parameters across the studies and it reflects the variance
of the true effect sizes. The larger the value of τ 2 or τ , the larger the amount of
true heterogeneity (Borenstein et al., 2009). To discuss heterogeneity, the value
of τ 2 may be compared to another estimate or a self-defined threshold, in order
to comment on how large or small the value is. For random effects models, it is
assumed that the common intervention effect is not true and the distribution of effect
sizes is assumed to be,

Θ̂ ∼ N(0, τ 2),
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where τ 2 is estimated by

τ 2 = max

{
Q − (k − 1)

∑
wi − (

∑
w2
i )/

∑
wi

, 0

}

and wi = 1/se(Θ̂i)
2. The Q statistic can be replaced by the heterogeneity test

statistic for inverse variance method,

QIV =
r∑

i=1

wi(Θi − Θ̂IV )
2

for continuous outcomes, but for dichotomous outcomes, either QIV or QMH can
still be used.

4.4 Subgroup Analysis or Sensitivity Analysis

Sensitivity analysis in meta-analysis involves estimating the net effect of a single
or group of studies on the pooled result. The approach is to remove such study or
studies from the meta-analysis and check for differences in the pooled estimates or
shift in extent of heterogeneity that has been caused. This is essentially the outcome
of subgroup analysis.

We revert back to the “Olkin95” data and conduct a subgroup analysis. One
example of interest would be to conduct a subgroup analysis of studies done before
1973 in the Olkin95 data. The following R code would be useful.

Program code: Subgroup analysis

library(meta)

meta2a <- metabin(event.e, n.e, event.c, n.c,

data=Olkin95, subset=Olkin95$year<1973,

sm="RR", method="I")

summary(meta2a)

forest(meta2a)
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Table 9 Results on pooled Risk Ratio from subgroup analysis

Result Pre 1973 value Pre 1973 CI Entire data value Entire data CI

Fixed effect RR 0.83 [0.68, 1.02] 0.78 [0.74, 0.82]

Random effect RR 0.88 [0.67, 1.16] 0.77 [0.71, 0.83]

I 2 25% [0%, 66.9%] 17.1% [0%, 39%]

τ 2 0.03 [0, 0.84] 0.012 [0, 0.15]

τ 0.18 [0, 0.92] 0.11 [0, 0.38]

The results for studies conducted before 1973 and also for the entire Olkin95
dataset are shown in Table 9.

The studies conducted before 1973 showed no significant increase in risk of
Acute Myocardial Infarction in patients who were exposed to thrombolytic therapy.
For instance, the confidence intervals contain 1 (pooled Fixed Effect risk ratio =
0.83 [0.68, 1.02]). The risk was, however, significantly different when analysis was
done for all the 70 studies (pooled Fixed Effect risk ratio = 0.78 [0.74, 0.82]). On
heterogeneity, the lower the I 2 value, the less the extent of heterogeneity between
the studies. We also see that the extent of heterogeneity was lower for all studies
(I 2 = 17.1%[0%, 39%]) as opposed to pre-1973 studies (I 2 = 25%[0%, 66.9%]).
To some extent, the subgroup analysis yields totally different results of the net
effect on Acute Myocardial Infarction in patients who were exposed to thrombolytic
therapy.

A very good illustration of subgroup analysis can also be found in Macdonald et
al. (2020), who examined the effectiveness of primary care interventions against
physical frailty among community-dwelling older adults aged over 60 years.
The studies that were included in the meta-analysis addressed various forms of
primary care including nutrition supplementation, education and comprehensive
geriatric assessment or a combination of the interventions. Results of this study
by Macdonald et al. (2020) showed significant differences between the subgroups.
They reported the following examples of differences between subgroups:

• Interventions using predominantly resistance-based exercise and nutrition sup-
plementation improved frailty status versus control (RR = 0.62 (CI 0.48–0.79),
I 2 = 0%).

• Exercise plus nutrition education reduced frailty (RR = 0.69 (CI 0.58–0.82), I 2

= 0%).
• Exercise alone appeared superior to control in improving gait speed (SMD = 0.36

(CI 0.10–0.61, I 2 = 74%), leg strength (SMD = 0.61 (CI 0.09–1.13), I 2 = 87%),
and grip strength (Mean Difference = 1.08 (CI 0.02–2.15), I 2 = 71%). In this
case, a high degree of heterogeneity was observed.



Meta-Analysis Using R Statistical Software 197

5 Further Topics in Meta-Analysis

5.1 Meta-Regression

Just like in primary subject level studies, one may conduct a multiple regression for
a set of covariates on an outcome variable of interest. For Meta-analysis, in which
the raw data is a summary of study level information, meta-regression can be done
in much the same way as multiple regression is done. The two approaches adopt the
same principles.

In this illustration, we make use of “Fleiss93cont” dataset in the R package
“meta.” In order to perform regression, we add some (fictitious) grouping variables
or covariates to the “Fleiss93cont” data. Suppose one of the variables added is “age”
which represents the average age of participants included in each of the included
studies, while “region” represents the place where the raw data for each study was
collected. The assumption is that these two covariates may explain the effect size
within each study.

Program code: Meta-regression

library(meta)

data(Fleiss93cont)

View(Fleiss93cont)

Fleiss93cont$age <- c(55, 65, 55, 65, 55)

Fleiss93cont$region <- c("Europe", "Europe", "Asia",

"Asia","Europe")

head(Fleiss93cont)

meta1 <- metacont(n.e, mean.e, sd.e, n.c, mean.c, sd.c,

data = Fleiss93cont, sm = "MD")

help(Fleiss93cont)

summary(meta1)

#Conducting meta regression using the update function
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on the metacont function

mu1 <- update(meta1, byvar = region)

summary(mu1)

We run a model using the “metacont()” function in the meta package (see the
R code on meta-regression). The fixed effects Mean Difference (Pooled MD fixed)
is −0.7094 on a confidence interval [−1.2585;−0.1603]. The confidence interval
gives an indication that the five studies (k = 5) included in the meta-analysis
return a pooled mean difference that is significantly different from zero. The same
interpretation is seen for the Random effects model, where Pooled MD random
= −0.7373[−1.4577;−0.0170].

The studies are therefore not quite heterogeneous, with I 2 = 29.3%[0.0%; 72.6%].
However, the upper confidence interval is quite large. At 72.6%, we could infer
high level of heterogeneity between the studies. If heterogeneity is high, one of
the analysis objectives could be to understand some of the covariates that could be
possible determinants of the outcome of interest within each study. This could be
one of the reasons for conducting meta-regression.

We begin by trying to explore if region had any effect on the Mean Difference
reported for each of the pooled studies. To test the null hypothesis that a coefficient
is equal to zero, Z− test is often used in meta-analysis (instead of the t − test as
used in multiple regression). For two or more covariates, the Q− test is useful. Note
that for a single covariate, the result of the Q− test is similar to those of the Z−
test.

One can improve the above model by incorporating options such as
“tau.common,” which is a logical option indicating whether tau squared (τ 2) should
be the same across subgroups. Another option is to specify whether we wish to
conduct a random effects or fixed effects meta-analysis. The option “comb.fixed”
is a logical option, such that if TRUE, then a fixed effects meta-analysis should be
conducted. A similar option “comb.random” is also a logical function, such that if
TRUE, then a random effects meta-analysis should be conducted.

Program code: Meta-regression with additional options

mu2 <- update(meta1, byvar = region, tau.common = TRUE,

comb.fixed = FALSE)
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5.2 Network Meta-Analysis

This chapter has mainly addressed meta-analysis in the context of a single interven-
tion. For instance, we have looked at the meta-analysis involving an intervention
such as use of drug A versus control experiment. An effect measure such as Odds
Ratio that was reported in each study is collected and consequently used in the
meta-analysis.

In Network Meta-Analysis (NMA), also referred to as multiple treatment meta-
analysis, or mixed treatment comparison, the aim is to synthesize the effect sizes
of several studies in the presence of multiple interventions or treatments (Shim et
al., 2019). For example, a study compared the effects of six anti-hypertensive treat-
ments (including beta-blocker, Angiotensin receptor blockers (ARB), Angiotensin-
Converting Enzyme Inhibitors (ACE inhibitors), Diuretic, calcium channel blocker
(CCB) and a placebo) for hypertension on the incidence of diabetes (Neupane et
al., 2014). In this study, the R codes used for Network Meta-analysis included R
“gemtc,” “pcnetmeta,” and “netmeta,” all which are freely available software tools
implemented in R.
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Abstract Meta-analysis methods for univariate effect sizes are well-known and
developed. However, multiple outcomes are increasingly being measured and
reported in medical research studies, which may lead to multiple effect sizes
being estimated. The estimated effect sizes could be correlated because they are
measured from the same studies. Additionally, the outcomes are often measured
longitudinally, resulting in multiple effect sizes estimated repeatedly over time.
Thus, the estimated effect sizes could be correlated within studies both cross-
sectionally and serially due to the repeated estimation of the same effect over time
in the same study. This results into longitudinal multiple effect sizes. This chapter
proposes methods for statistical meta-analysis combining summary data from more
than one longitudinal study with multiple effect sizes. The proposed methods are
illustrated by an analysis of an example involving longitudinal meta-analysis of
HIV studies assessing the effect of some antiretroviral drugs in improving viral load
suppression and increasing CD4 count at weeks 4, 8, 12, 16, 20, 24, 32, 40, and 48
after start of treatment assignment.
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Keywords Longitudinal meta-analysis · Univariate meta-analysis · Multivariate
meta-analysis · Multiple outcomes · Multivariate effect sizes · Time points ·
Longitudinal · Longitudinal multiple effect sizes · Meta-analysis model ·
Continuous outcome · Covariate · Random effects · Fixed effects · Residuals ·
General linear mixed model · Joint distribution · Design matrix · Multivariate
normal distribution · Variance–covariance matrix · Covariance · Maximum
likelihood · Restricted maximum likelihood · Covariance structures · Random
time effects · Within-study effect sizes · Independent effect sizes · HIV studies ·
Antiretroviral drugs · Viral load suppression · CD4 count

1 Introduction

Univariate meta-analysis combines individual effect sizes such as risk ratios from
several studies to obtain an overall effect size. The methods for univariate meta-
analysis are well-known (Hedges and Olkin, 1985, Egger et al., 2008, Sutton
et al., 2000, Lipsey & Wilson, 2001, Whitehead, 2002, Litell et al., 2008, Higgins
et al., 2008, Cooper et al., 2009, Borenstein et al., 2009, Pigott, 2012), and it can
be implemented in standard statistical software such as using STATA command
metan (Bradburn et al., 1998), metafor package in R (Viechtbauer, 2010), and the
mixed procedure in SAS (SAS Institute, 2013). There are also common routine
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computer packages that can perform univariate meta-analysis such as MetaWin
(Rosenberg et al., 2000), WEasyMA (Chevarier et al., 2000), Review Manager
(Review Manager, 2014), MIX (Bax et al., 2006), Comprehensive Meta-analysis
(Borenstein et al., 2005), and OpenMetaAnalyst (Wallace et al., 2009, 2012).
However, most biomedical studies measure multiple outcomes; for instance, HIV
studies investigating the effectiveness of antiretroviral drugs among HIV-infected
individuals usually measure both CD4 count and viral load after treatment. The
multiple outcomes measured from the same study are usually correlated; for
instance, the CD4 count and viral load are known to be (negatively) correlated.
A meta-analysis of these correlated multiple effect sizes can take two forms: (1)
univariate meta-analyses involving separate independent meta-analyses for each
effect size, which ignores correlation between effect sizes, or (2) multivariate meta-
analysis where multiple effect sizes are jointly synthesized while taking account of
the correlation between them (Hedges and Olkin, 1985; Rosenthal and Rubin, 1986;
Raudenbush et al., 1988; Gleser and Olkin, 1994; Berkey et al., 1996; Kalaian and
Raudenbush, 1996; Berkey et al., 1998; Van Houwelingen et al., 2002; Nam et al.,
2003; Arends et al., 2003; Riley, 2009; Jackson et al., 2011; Mavridis and Salanti,
2012). Although parameter estimates from independent univariate meta-analyses
and multivariate meta-analysis are usually similar, multivariate meta-analysis yields
more precise estimates of overall effect sizes (Riley, 2009).

Longitudinal studies, which report outcomes at fixed predetermined time points,
are increasingly being used in medical research (Verbeke et al., 2014). As a result,
the meta-analysis of these longitudinal studies has also become a priority when
analyzing the effect of exposure or treatment across a long period of study. A
longitudinal meta-analysis model utilizing the general linear mixed model was first
proposed by Ishak et al. (2007), and we have recently applied random effects models
using both study and random time effects to a meta-analysis of 17 longitudinal
randomized controlled trials comparing radiation therapy with and without adjuvant
chemotherapy for the postoperative treatment of malignant gliomas, where survival
was measured at 6, 12, 18, and 24 months post-randomization (Musekiwa et al.,
2016) using data from Fine et al. (1993).

Furthermore, longitudinal studies can also measure multiple effect sizes at each
time point leading to longitudinal multiple effect sizes. For example, CD4 count
and viral load can be both measured at four-weekly intervals after antiretroviral
treatment of HIV-infected individuals in order to assess the impact of the treatment
over time. A meta-analysis of longitudinal multiple effect sizes needs to take
account of the correlation between the effect sizes, which exists both between
different effect sizes and serially over repeated measurements of the same effect
size. In this chapter, statistical methods for the meta-analysis of longitudinal studies
with multiple effect sizes are proposed. The methods are illustrated by an analysis of
an example involving longitudinal meta-analysis of HIV studies assessing the effect
of some antiretroviral drugs in improving viral load suppression and increasing
CD4 count at weeks 4, 8, 12, 16, 20, 24, 32, 40, and 48 after start of treatment
assignment. Section 2 covers the statistical model for longitudinal meta-analysis
with multiple outcomes, estimation methods are given in Sect. 3, four models with
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different covariance structures are given in Sect. 4 with a practical example for the
application of these models in Sect. 5, and the summary of the chapter is given in
Sect. 6.

2 Statistical Meta-Analysis Model

We adapt the notation of a linear mixed model from West et al. (2014). Let Yilt
represent the measure of a continuous response variable Y taken from the i-th study
(i = 1, · · · , n) (unit of analysis), for the l-th outcome (l = 1, · · · ,m), and t-th time
point (t = 1, · · · , Ti). The variable Y represents estimated effect size such as the
log odds ratio for a binary outcome or a (standardized or non-standardized) mean
difference for a continuous outcome. The Ti longitudinal observations for study i

allow variable time points per study. A linear mixed model for Yilt is represented by
Eq. (1),

Yilt = βl1X
(1)
ilt +βl2X

(2)
ilt +· · ·+βlpX

(p)
ilt +δil1Z

(1)
ilt +δil2Z

(2)
ilt +· · ·+δilqZ

(q)
ilt +eilt ,

(1)
where X(1), · · · , X(p) represent the set of p covariates associated with the fixed
effects βl1, · · · , βlp for the l-th outcome (l = 1, · · · ,m); for simplicity, the model

does not have an intercept term. For k = 1, · · · , p, X(k)
ilt represent the observed

value of the covariate X(k) for the i-th study, l-th outcome at t-th time point.
Similarly, Z(1), · · · , Z(q) is the set of q covariates associated with the random
effects δil1, · · · , δilq that are specific to study i and l-th outcome. Both the X’s
and Z’s covariates are allowed to be either continuous or indicator variables. We
assume that the X’s can be either time-invariant characteristics of the individual
study (e.g., study quality) or time-varying for each measurement (e.g., time point of
measurement). The last term eilt is the residual associated with Yilt . The random
effects and residuals in Eq. (1) are random variables, with values drawn from
distributions defined below. For a given study, the residuals are assumed to be
independent of the random effects.

We now present the model using matrix notation. Let Y i represent the stacked
vector of all estimated effect sizes from the ith study, that is,

Y i = (Yi11, · · · , Yi1Ti | · · · |Yim1, · · · , YimTi )′, (2)

where, for simplicity, we assume thatm outcomes are observed at each of the Ti time
points for study i. We note that the number of time points in Y i may vary from study
to study. Now, by extending Eq. (1), we can model the longitudinal meta-analysis of
n studies with m multiple outcomes at each of Ti time points using a general linear
mixed model (Laird and Ware, 1982),

Y i = Xiβ + Ziδi + ei , (3)
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where Xi is an mTi × mp design matrix of mp fixed effects to be estimated,

β = (β11, · · · , β1p| · · · |βm1, · · · , βmp)′.

Like Xi , Zi (⊆ Xi ) is an mTi × mq design matrix of mq random effects,

δi = (δi11, · · · , δi1q | · · · |δim1, · · · , δimq)′.

The residuals for Y i are contained in the mTi × 1 vector

ei = (ei11, · · · , ei1Ti | · · · |eim1, · · · , eimTi )′.

For each study, the residuals and random effects are assumed to be independent both
individually and between each other, cov(δi , ei ) = 0.

We also assume, without loss of generality, that the joint distribution of random
effects is 0-centered δi ∼ MVN(0,D) (multivariate normal distribution), where D

is an mq ×mq variance–covariance matrix consisting of symmetric matrices in the
diagonals and non-symmetric off-diagonals,
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,

where τlj,l′j ′ = cov(δilj , δil′j ′), the covariance between the j -th and j ′-th random
effects for effect sizes l and l′, respectively.

Similarly, the joint distribution of residuals is assumed 0-centered ei ∼
MVN(0,Si ) with mTi × mTi variance–covariance matrix Si similar to D

above except that τ is now replaced by σi . Therefore, in Si , we have σilt,il′t ′ =
cov(eilt , eil′t ′),∀t �= t ′, l �= l′, the covariance between the t-th and t ′-th residual
terms for effect sizes l and l′, respectively.

Marginally, Y i ∼ MVN(Xiβ,V i), where V i = ZiDZi
′ + Si . The within-

study and between-study correlations between effect sizes are determined by the
covariance structures imposed on Si and D, respectively. We discuss the various
covariance structures in Sect. 4. The goal of meta-analysis is to estimate the
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parameters in the vector β and the variance and covariance parameters in D and
Si .

3 Estimation of Parameters

The maximum likelihood (ML) and restricted maximum likelihood (REML) are
the two most commonly used methods of estimation, and we discuss them in this
section.

3.1 Maximum Likelihood (ML) Estimation

Let α denote the vector of all variance and covariance parameters found in V i (α) =
ZiDZi

′ + Si and θ = (β ′,α)′ be the s−dimensional vector of all parameters in the
marginal model for Y i . The marginal likelihood function is given by

LML(θ) =
n∏

i=1

{(2π)−mTi
2 |V i (α)|− 1

2

× exp(−1

2
(Y i − Xiβ)

′V −1
i (α)(Y i − Xiβ))}.

(4)

The marginal log-likelihood function �(θ) is then given by

logLML(θ) = −mT

2
log(2π) − 1

2

n∑

i=1

log |V i (α)|

− 1

2

n∑

i=1

(Y i − Xiβ)
′V −1

i (α)(Y i − Xiβ),

(5)

where T = ∑n
i=1 Ti is the total number of observed outcomes from all the studies.

We consider two scenarios below.

Assume α is Known
We first consider a special case where α, and hence, V i (α) is known. This simple
case is not very common, but it has important computational advantage of having
a closed-form solution. Since α is known, we are left with only β to estimate. This
implies we only need to optimize or find the minimum of the function (West et al.,
2014, Verbeke and Molenberghs, 2000)
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ψ(β) = 1

2

n∑

i=1

(Y i − Xiβ)
′V −1

i (α)(Y i − Xiβ), (6)

which is the negative of the last term in Eq. (5). Optimization of ψ(β) can be
achieved using the method of generalized least squares (GLS) to get an analytical
optimal value of

β̂(α) =
(

n∑

i=1

Xi
′V −1

i (α)Xi

)−1 n∑

i=1

X′
iV

−1
i (α)Y i , (7)

which is the best linear unbiased estimator (BLUE) of β (West et al. (2014)).

Assume α is Not Known
We consider the ML estimation for the variance and covariance parameters α as
well as fixed effects β, in the case where α is not known. We use the profile log-
likelihood function �(α) to estimate the variance and covariance parameters where
we replace the β parameters using Eq. (7) above. Thus,

�(α) = −mT

2
log(2π) − 1

2

n∑

i=1

log |V i (α)| − 1

2

n∑

i=1

r ′
iV

−1
i (α)r i , (8)

where

r i = Y i − Xi

⎛

⎝

(
n∑

i=1

X′
iV

−1
i (α)Xi

)−1 n∑

i=1

X′
iV

−1
i (α)Y i

⎞

⎠ . (9)

Maximization of �(α) with respect to α is a nonlinear optimization problem
involving inequality constraints on α to ensure that both D and Si are positive-
definite. Since there is no closed-form solution for the optimal α, it is estimated
through a computational iterative procedure until convergence is reached. After
obtaining the ML estimates of α (and hence D and Si), β can now be estimated
using the closed-form GLS formula in Eq. (7), that is,

β̂ =
(

n∑

i=1

Xi
′V̂ −1

i Xi

)−1 n∑

i=1

X′
iV̂

−1
i Y i , (10)

where V̂ i = V i (̂α) = ZiD̂Zi
′ + Ŝi . The solution in Eq. (10) above is called the

empirical best linear unbiased estimator (EBLUE) of β̂ since V i has been replaced
by its estimate V̂ i . The variance of β̂ is calculated by
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var(β̂) =
(

n∑

i=1

XiV̂
−1
i Xi

)−1

. (11)

However, the ML estimates of α here are biased because they do not take
account of the loss of degrees of freedom that results from estimating the fixed-
effect parameters in β (Verbeke and Molenberghs, 2000). In order to eliminate this
bias, the restricted maximum likelihood (REML) estimation method can be used, as
described below.

3.2 Restricted Maximum Likelihood (REML) Estimation

REML estimation yields unbiased estimates of α by taking account of the loss of
degrees of freedom as a result of estimating β. The estimates of α are found by
optimizing the REML log-likelihood function (West et al. (2014))

LREML(α) = −m

2
× (T − p) × log(2π) − 1

2

n∑

i=1

log |V i |

− 1

2

n∑

i=1

r ′
iV

−1
i r i − 1

2

n∑

i=1

log |XiV
−1
i Xi |,

(12)

where r i is given by Eq. (9) above and p denotes the number of fixed effects in β.
Once estimates of α are obtained, and hence V̂ i , β is then estimated using Eq. (10)
above, and the corresponding var(β̂) is calculated by Eq. (11). Since α is estimated
differently, the estimates of β and the corresponding var(β̂) from ML and REML
are different. REML is preferred because it provides unbiased estimates of α.

4 Modeling Covariance Structures

For brevity and without loss of generality with regard to the real-data setting, we
assume T = 4 time points and m = 2 correlated effect sizes for each study. We also
assume, for parsimonious reasons and without loss of generality, that Xi consists
of only time indicators such that Xi = I 8 (an identity matrix of order 8), where
intercept terms are ignored. Four models with different covariance structures for (3)
are proposed.
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4.1 Model 1—Independent m = 2 Effect Sizes, Independent
Random Time Effects, and Independent Within-Study
Effect Sizes

In this model, we assume that the m = 2 effect sizes are independent,
cov(Yi1t , Yi2t ) = 0, and cov(Yi1t , Yi2t ′) = 0 ∀t �= t ′. We also assume that
the corresponding random effects are independent, cov(δi1t , δi2t ) = 0, and
cov(δi1t , δi2t ′) = 0 ∀t �= t ′. We also assume that for each of the m = 2 effect
sizes, the random effects are independent (cov(δilt , δilt ′) = 0 ∀t �= t ′), and the
longitudinal effect sizes are independent, cov(Yilt , Yilt ′) = 0 ∀t �= t ′.

This model is therefore equivalent to performing separate univariate random-
effect meta-analyses for each of the m = 2 effect sizes and also separately at each
time point. This model allows independent random intercept effects for each study
i, and each effect size l, and at each time point t , δilt , such that

Yilt = βlt + δilt + eilt , l = 1, 2; t = 1, · · · , 4, (13)

where we assume that δilt ∼ N(0, τ 2
lt ) and eilt ∼ N(0, σ 2

ilt ) are independent. Let
Zi = Xi = I 8 so that (3) becomes

Y i = β + δi + ei ,

and

V (Y i ) = D + Si = diag(τ 2
11 + σ 2

i11, · · · , τ 2
14 + σ 2

i14, τ
2
21 + σ 2

i21, · · · , τ 2
24 + σ 2

i24).

However, for each of the m = 2 effect sizes, this model ignores within-study
serial correlation between longitudinal effect sizes that exists because it is the same
individuals who are measured repeatedly at these time points. It also ignores the
correlation between m = 2 correlated effect sizes observed at each time point.

4.2 Model 2—Correlated m = 2 Effect Sizes, Independent
Random Time Effects, and Independent Within-Study
Effect Sizes

This model is equivalent to performing separate multivariate meta-analyses of the
m = 2 effect sizes at each time point. Thus, it takes account of the correlation
between the two effect sizes such that cov(Yi1t , Yi2t ) = ρs1t,2t σi1t σi2t , where
ρs1t,2t = corr(Yi1t , andYi2t ) is the within-study correlation between effect sizes 1
and 2 at time point t (assumed the same for all studies). Also, σi1t and σi2t are
the within-study standard deviations of effect sizes 1 and 2, respectively, at time
point t . However, cov(Yi1t , Yi2t ′) = 0 ∀t �= t ′. The random time effects are also
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correlated the same: cov(δi1t , δi2t ) = ρτ1t,2t τ1t τ2t , with ρτ1t,2t = corr(δi1t , δi2t ) is
the between-study correlation between random effects for effect sizes 1 and 2, at
time point t , and τ1t and τ2t are the between-study standard deviations for effect
sizes 1 and 2, respectively, at time point t . However, cov(δi1t , δi2t ′) = 0 ∀t �= t ′. As
in the independence model 1 above, the random effects at different time points are
independent, that is (cov(δilt , δilt ′) = 0 ∀t �= t ′), and the longitudinal effect sizes
are independent, cov(Yilt , Yilt ′) = 0 ∀t �= t ′ for l = 1, 2. To illustrate this model,
the effect sizes vector Y i is re-arranged to group the m = 2 effect sizes at each time
point together, such that Y i becomes
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. (14)

Assuming only time indicator variables implies Xi = Zi to bemTi×mTi identity
matrix. The remaining terms, β, δi , and ei , in (3) are defined similar to Y i . The
variance–covariance matrix is symmetric V (Y i ) = D + Si , with symmetric D

given by
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,

(15)
and also symmetric Si similar to D except that τ is now replaced by σi and ρτ by
ρs . Therefore in D, we have ρτ1t,2t as the between-study correlation, and in Si , we
have ρs1t,2t as the within-study correlation. Since these two correlations are usually
unknown, they are estimated in the model.

This model is equivalent to performing separate multivariate meta-analyses at
each time point. Although this model accounts for dependence between the m = 2
effect sizes, it assumes independence between the longitudinal effect sizes, which
are usually auto-correlated. There is need to account for the serial correlation
between longitudinal measurements, and a model is required that takes account of
this dependence.
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4.3 Model 3—Independent m = 2 Effect Sizes, Correlated
Random Time Effects, and Correlated Within-Study Effect
Sizes

Although this model assumes that the m = 2 effect sizes are independent as
explained in the independent model above, it accounts for the dependence between
the effect sizes within each of them = 2 effect sizes. A correlation (ρτl ) between any
two adjacent random effects for the lth effect size is assumed, and a heteroscedastic
autoregressive structure of order one, HAR(1), in which the correlation between
random time effects decays as the lag between them increases, corr(δilt , δilt ′) =
ρ

|t−t ′|
τl , ∀t �= t ′, is used. The same dependence between longitudinal effect sizes

within the same study, namely, corr(Yilt , Yilt ′) = ρ
|t−t ′|
sl , ∀t �= t ′, where ρsl

is the correlation between any two adjacent effect sizes for the same lth effect
size, is also assumed. Therefore, the variance–covariance matrix is now given by
V (Y i ) = D + Si ,

(
V 1,1 0

0 V 2,2

)

,

where V 1,1 is a symmetric matrix, where the upper half matrix is given by
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and V 2,2 is also a symmetric matrix, where the upper half matrix is given by
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This model is equivalent to performing longitudinal meta-analysis, jointly for the
T = 4 time points, but marginally for the m = 2 effect sizes. Although this model
accounts for dependence between longitudinal effect sizes, it assumes independence
between the m = 2 effect sizes measured at the same time point, which are usually
correlated. For instance, in a meta-analysis of studies where the m = 2 outcomes of
interest are viral load suppression and CD4 count, there is need to account for the
correlation between these two measurements. A model is required that takes account
of this dependence as well.
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4.4 Model 4—Correlated m = 2 Effect Sizes at Each Time
Point, Correlated Random Time Effects, and Correlated
Within-Study Effect Sizes

This is an extension of the above model that allows both the within-study and
between-study covariance of the m = 2 effect sizes measured at the same time
point, however assuming zero covariance at different time points. Specifically,
cov(Yi1t , Yi2t ) = σi1t,i2t and cov(Yi1t , Yi2t ′) = 0, ∀t �= t ′. For the random
time effects, cov(δi1t , δi2t ) = τ1t,2t , and cov(δi1t , δi2t ′) = 0, ∀t �= t ′. Like the
model above, the dependence between longitudinal effect sizes is accounted for
by a heteroscedastic AR(1) covariance structure both within and between studies,
separately for each of the m = 2 effect sizes. The variance–covariance matrix is
now given by V (Y i ) = D + Si ,

(
V 1,1V 1,2

V 2,1V 2,2

)

,

where V 1,1 and V 2,2 are the same as in the model above but V 1,2 = V 2,1 =
diag(τ11,21 + σi11,i21, τ12,22 + σi12,i22, τ13,23 + σi13,i23, τ14,24 + σi14,i24).

5 Example: Antiretroviral Drugs in Treatment-Experienced
HIV-Infected Patients

Pichenot et al. (2011)’s paper is a systematic review and meta-analysis of the effi-
cacy of some antiretroviral drugs in treatment-experienced HIV-infected patients.
There were 10 trials included in the meta-analysis with a total of 6401 HIV-infected
patients. There were two univariate meta-analyses reported in Pichenot et al. (2011),
namely the odds ratio of achieving viral load below 50 copies per ml and the mean
difference in CD4 count change. Both effect sizes were measured at week 48, and
the comparisons are between the intervention and control groups. In order to obtain
further data for this chapter, full text articles for each of the included studies were
retrieved. Complete data were successfully retrieved for 5 trials reporting these two
outcomes at longitudinal time points (week 4, 8, 12, 16, 20, 24, 32, 40, and 48),
and the data set is given in Table 1. Where standard errors (SE) were not given, we
either calculated them from confidence intervals, estimated them from the graphs in
the papers, or imputed them from other time points. We note that the imputations
described in this paragraph may affect the meta-analysis results; however, the aim
of this chapter is to compare models and not necessarily to show effectiveness of the
interventions. A description of the data from each of the five studies is given below.

Suleiman et al. (2010) assessed vicriviroc (VCV) in combination therapy with an
optimized regimen in the VICTOR-E1 intervention. There were two active treatment
arms (VCV 20mg and VCV 30mg) versus the Placebo arm. The actual values for the



Table 1 Log OR (SE) for VL < 50 and MD (SE) for CD4 change in 5 trials

Study ID Intervention Week Log OR (SE2) MD (SE2)

Saag et al., 2009 A4001029 4 0.067 (0.403) 24.798 (273.599)

Saag et al., 2009 A4001029 8 0.006 (0.201) 11.798 (273.599)

Saag et al., 2009 A4001029 12 −0.168 (0.179) 25.817 (273.599)

Saag et al., 2009 A4001029 16 0.132 (0.157) 16.092 (273.599)

Saag et al., 2009 A4001029 20 −0.149 (0.166) 21.477 (273.599)

Saag et al., 2009 A4001029 24 1.897 (0.169) 24.477 (273.599)

Saag et al., 2009 A4001029 32

Saag et al., 2009 A4001029 40

Saag et al., 2009 A4001029 48 27.800 (273.599)

Gulick et al., 2008 MOTIVATE 1 & 2 4 0.496 (0.076) 32.029 (178.686)

Gulick et al., 2008 MOTIVATE 1 & 2 8 0.635 (0.044) 43.043 (178.686)

Gulick et al., 2008 MOTIVATE 1 & 2 12 0.789 (0.035) 46.000 (178.686)

Gulick et al., 2008 MOTIVATE 1 & 2 16 0.338 (0.026) 50.029 (178.686)

Gulick et al., 2008 MOTIVATE 1 & 2 20 1.008 (0.032) 53.014 (178.686)

Gulick et al., 2008 MOTIVATE 1 & 2 24 1.008 (0.032) 50.957 (178.686)

Gulick et al., 2008 MOTIVATE 1 & 2 32 1.288 (0.035) 54.986 (178.686)

Gulick et al., 2008 MOTIVATE 1 & 2 40 1.211 (0.036) 69.014 (178.686)

Gulick et al., 2008 MOTIVATE 1 & 2 48 1.366 (0.039) 59.057 (178.686)

Suleiman et al., 2010 VICTOR-E1 4 0.677 (0.361) 26.500 (1148.034)

Suleiman et al., 2010 VICTOR-E1 8 0.746 (0.261) 53.500 (1148.034)

Suleiman et al., 2010 VICTOR-E1 12 0.988 (0.213) 52.000 (1148.034)

Suleiman et al., 2010 VICTOR-E1 16 1.036 (0.200) 53.000 (1148.034)

Suleiman et al., 2010 VICTOR-E1 20 1.060 (0.184) 50.000 (1148.034)

Suleiman et al., 2010 VICTOR-E1 24 1.498 (0.203) 42.000 (1148.034)

Suleiman et al., 2010 VICTOR-E1 32 1.043 (0.191) 66.000 (1148.034)

Suleiman et al., 2010 VICTOR-E1 40 1.188 (0.200) 74.000 (1148.034)

Suleiman et al., 2010 VICTOR-E1 48 1.969 (0.284) 56.000 (1148.034)

Hicks et al., 2006 RESIST - 1 & 2 4 0.334 (0.064) 20.000 (24.847)

Hicks et al., 2006 RESIST - 1 & 2 8 0.649 (0.032) 25.000 (24.847)

Hicks et al., 2006 RESIST - 1 & 2 12

Hicks et al., 2006 RESIST - 1 & 2 16 0.910 (0.023) 28.000 (24.847)

Hicks et al., 2006 RESIST - 1 & 2 20

Hicks et al., 2006 RESIST - 1 & 2 24 0.850 (0.021) 29.000 (24.847)

Hicks et al., 2006 RESIST - 1 & 2 32 0.867 (0.021) 28.000 (24.847)

Hicks et al., 2006 RESIST - 1 & 2 40 0.928 (0.022) 28.000 (24.847)

Hicks et al., 2006 RESIST - 1 & 2 48 0.957 (0.022) 24.000 (24.847)

Clotet et al., 2007 POWER - 1 & 2 4 0.309 (0.247) 40.000 (89.78)

Clotet et al., 2007 POWER - 1 & 2 8 0.539 (0.146) 56.000 (89.78)

Clotet et al., 2007 POWER - 1 & 2 12 1.145 (0.113) 67.000 (98.18)

Clotet et al., 2007 POWER - 1 & 2 16 1.545 (0.108) 77.000 (131.38)

Clotet et al., 2007 POWER - 1 & 2 20 1.711 (0.108) 73.000 (131.38)

Clotet et al., 2007 POWER - 1 & 2 24 1.792 (0.107) 75.000 (150.49)

Clotet et al., 2007 POWER - 1 & 2 32 1.792 (0.107) 90.000 (139.78)

Clotet et al., 2007 POWER - 1 & 2 40 2.037 (0.120) 94.000 (191.69)

Clotet et al., 2007 POWER - 1 & 2 48 1.997 (0.120) 83.000 (207.85)

Log OR = logarithm odds ratio, SE = standard error, VL = viral load, MD = mean difference
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two outcomes were given on the graphs given in Suleiman et al. (2010). For the first
outcome, both numerator and denominator showing the proportion of responders
with viral load below 50 copies per ml were given for the three treatment groups
at weeks 0, 2, 4, 6, 8, 12, 16, 20, 24, 32, 40, and 48. Values for weeks 0, 2, and
6 were not used in the analysis since other studies did not report at these time
points. Values for the two active treatment arms were combined, and log odds ratios
were calculated with their corresponding standard errors (SE), with Placebo as the
comparison group. The formula for standard error for the log odds ratio used was√

1/a + 1/b + 1/c + 1/d , (Agresti, 1996) where the numbers a, b, c, d are entries
of the corresponding 2 × 2 table for grouped outcome frequencies. An intention
to treat analysis was assumed for this and all the included studies. For the second
outcome, the values for the mean change in CD4 count from baseline were given on
the graph for weeks 4, 8, 12, 16, 20, 24, 32, 40, and 48. Values for the two active
treatment groups were combined into one. Since the standard errors for the mean
difference in CD4 change were not given, values for week 48 derived from Pichenot
et al. (2011) were assumed across all of these weeks. The mean difference for week
48 in Suleiman et al. (2010) of 56.0 was used in place of 45.5 from Pichenot et al.
(2011).

Four included studies (Clotet et al., 2007 [POWER-1 & 2]; Gulick et al.,
2008 [MOTIVATE-1 & 2], Hicks et al., 2006 [RESIST-1 & 2]; and Saag et al.,
2009 [A4001029]) did not report the actual values but presented the graphics
from which data were then extracted. For Clotet et al. (2007) [POWER-1 & 2]
assessing darunavir–ritonavir (DRV/r) versus control (CPI(s)), the proportion of
patients with viral load below 50 copies per ml was given in a graph for each week,
and these proportions were extracted and used in calculating log odds ratios and
corresponding standard errors. For the second outcome, values were extracted from
a graph for mean change in CD4 count from baseline (cells per μL) together with
standard errors for the mean changes that were presented as vertical bars at each
week and for each treatment arm. The standard errors for the mean difference were
then computed from the standard errors for the intervention and control groups.
For Gulick et al. (2008) [MOTIVATE-1 & 2] assessing maraviroc (MVC) once
daily and maraviroc (MVC) twice daily versus placebo, values were extracted from
the graphs and results combined for the two active treatment arms. For the first
outcome, the percentage of patients achieving viral load below 50 copies per ml
was extracted for each week and treatment arm and were used to compute the log
odds ratios and corresponding standard errors. For the second outcome, the mean
differences were calculated from the values on mean change in CD4 count from
baseline extracted from the graphs; however, the graph did not have vertical bars for
standard errors, and therefore, the standard error for week 48 (from Pichenot et al.
(2011)) was assumed for all the earlier weeks. For Hicks et al. (2006) [RESIST-
1 & 2], assessing tipranavir–ritonavir (TPV/r) versus the control group (CPI/r),
proportions were extracted from the graphs and used to calculate log odds ratios for
the first outcome. For the second outcome, the mean CD4 change was extracted from
the graphs, and since the standard errors were not given, the value for week 48 was
used for the earlier weeks: this value was calculated from the standard deviations
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given in the results section of Hicks et al. (2006). Finally for Saag et al., 2009
[A4001029], also assessing the maraviroc once daily and maraviroc twice daily
versus placebo, values were extracted from the graphs like above and combined
for the active treatment arms. Also, the standard error for the second outcome was
taken from week 48 (from Pichenot et al. (2011)) and used for all the other earlier
weeks: this study only assessed the two outcomes up to week 24, and values for
week 48 for the second outcome were taken from Pichenot et al. (2011).

This example data set is used to illustrate the performance of the four models
described above, and the results for the effect sizes and their corresponding 95%
confidence intervals are summarized in Table 2. Values for the between-study
variances and correlation estimates are given in the text. Restricted maximum
likelihood (REML) estimation was used to estimate parameters via the SAS PROC
MIXED procedure (see details in the SAS code in the Appendix). The SAS code
was an adaptation or extension of the SAS code given in Ishak et al. (2007).

Results for Model 1
This model assumes independence between the two effect sizes and also between the
random time effects, both within and between studies. It is the same as performing
univariate random-effect meta-analyses at each time point and separately for each
effect size. The results (Figs. 1, 2, and Table 2) show that the antiretroviral drugs
significantly improved viral load suppression and increased the mean CD4 change
compared to the control from week 4 to 48. For the first outcome, the log odds
ratio increased from week 4 (logOR 0.395, 95%CI: 0.077, 0.713) to week 48
(logOR 1.456, 95%CI: 0.954, 1.958). Similarly, for the second outcome, the mean
CD4 change increased from week 4 (MD 27.365, 95%CI: 16.097, 38.632) to week
40 (MD 63.254, 95% CI: 30.749, 95.759). The between-study variance estimates
(heterogeneity) for the log odds ratio estimates, which are not shown in the table,
ranged from 0 (week 4) to 0.428 (week 32); and from 44.499 (week 4) to 830.25
(week 40) for the second outcome. There are no correlation estimates for this model.

Results for Model 2
This model takes account of the correlation between the two effect sizes, log odds
ratio of achieving viral load suppression, and the mean change in CD4 count, by
utilizing separate multivariate meta-analyses at each time point. This correlation
between viral load suppression and CD4 count is known to exist. Although the
model was run at one instance, it is equivalent to performing separate multivariate
random-effect meta-analyses at each week. This model, however, ignores the serial
correlation between random time effects that exist both within and between studies.

As in the independence model 1 above, the odds ratios for achieving viral load
suppression increased with time from week 4 (logOR 0.448, 95%CI: 0.157, 0.739)
to week 48 (logOR 1.341, 95%CI: 0.934, 1.747). Comparing the log odds ratio
estimates with the independence model 1, it is clear that the actual values are similar
although the values from model 2 are generally larger and the 95% confidence
intervals are more precise, probably due to the adjustment of this latter model 2
for the correlation between viral load and CD4 count. Similarly, this latter model
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Fig. 1 Forest plot showing meta-analysis of log odds ratios for achieving viral load suppression
for 5 trials assessing antiretroviral drugs in HIV treatment-experienced patients

2 yielded similar but slightly larger mean difference in CD4 count that had more
precise confidence intervals; the values ranged from week 4 (MD 30.245, 95%CI:
18.129, 42.361) to week 40 (MD 59.344, 95% CI: 30.711, 87.976). Values for the
between-study variances ranged from 0 (week 4 and 16) to 0.491 (week 20) for the
first outcome and from 74.236 (week 4) to 688.54 (week 32) for the second outcome.
All the nine between-study correlations were significantly high with a value of 1,
except for week 4 that had a value of −1. The within-study correlations were ones
for weeks 8, 12, and 20, ranged from −1, 0.635, 0.732, 0.820, 0.842, and 0.917 for
weeks 24, 16, 48, 40, 32, and 4, respectively.

Model 2 performed better than model 1 as shown by tighter confidence intervals
and lower AIC value (362.0 versus 387.6 for model 1). This benefit is attributed to
accounting for the correlation between the two outcomes.

Results for Model 3
This model takes account of the serial correlation between the longitudinal effect
sizes, both through the actual effect sizes and via the random time effects. The
serial correlation exists because the measurements are taken repeatedly from the
same study population. However, this model does not take account of the correlation
between the two outcomes that were adjusted for in model 2 above. Therefore, this
model accounts for the serial auto-correlations separately for the two outcomes. The
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Fig. 2 Forest plot showing meta-analysis of mean difference in CD4 change for 5 trials assessing
antiretroviral drugs in HIV treatment-experienced patients

parameter estimates for this model are generally similar to the independence model
1 above except that the 95% confidence intervals are generally more precise due
to the adjustment for the serial correlation. The variance estimates were generally
smaller compared to the independence model. The between-study correlations
obtained were 0.773 (95% CI: 0.553, 0.993) for the first outcome (ρτ1 ) and 0.979
(95% CI: 0.951, 1.000) for the second outcome (ρτ2 ); however, the within-study
correlations (ρs1 and ρs2 ) were almost zero.

The benefit of accounting for the serial auto-correlation between longitudinal
effect sizes, both within and between studies, resulted in the gain in precision of
the parameter estimates. Using AIC, where smaller values are better, it is clear that
model 3 (AIC 297.4) performed much better compared to model 2 (AIC 362.0) and
model 1 (AIC 387.6).

Results for Model 4
This model is an extension of the model 3 above, which allows a non-zero
covariance between the m = 2 outcomes at each time point, both between and
within studies. Inspection of the model 4 results in Table 2 shows that although
the parameter estimates were similar to model 3, they were all smaller than
the independence model, and the confidence intervals were much more precise
compared to all the other models 1 to 3. The same pattern of results is evident
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here with parameter estimates for the first outcome increasing from week 4 to week
48, while values for the second outcome increased from week 4 to week 40. The
between-study variance estimates and correlations were similar to model 3. The
additional covariance estimates for this model were ranging from 0 to 16.4 although
the majority of the estimates were zero due to the over-parametrization of the model.

The AIC value of 289.0 is the smallest compared to the rest of the models. This,
coupled with the tighter confidence intervals, implies that model 4 performed best
compared to the rest of the models, at least for this data set.

6 Summary

In this chapter, the longitudinal meta-analysis of multiple effect sizes was described,
where four models with different covariance structures for random time effects and
residuals, both within and between studies, to account for the correlation between
effect sizes, were proposed. The models were compared using a practical example
involving longitudinal meta-analysis of HIV studies reporting the log odds ratio of
achieving viral load suppression and the mean CD4 change at 4, 8, 12, 16, 20, 24,
32, 40, and 48 weeks after start of treatment. The model that accounted for both
correlations, namely between the two outcomes and the serial correlations between
the longitudinal effect sizes, performed best among the four models. Although the
values of the parameter estimates were similar between the four models, precision
in terms of the width of the 95% confidence intervals improved from model 2 to
model 4 compared to the independence model.

Extensions for this chapter are possible. The models proposed can be extended to
include other covariance structures. These models also need to be validated through
simulation studies. In addition, since the modeling approach used here involved
estimating point estimates at each fixed time point, it is possible to also consider
treating time as a continuous covariate and explore both linear and nonlinear models
as shown in Ahn and French (2010). The other aspect that can be extended is to
relax the normality assumption of the effect estimates and consider non-normal
distributions. The Bayesian approach to estimating parameters for longitudinal
meta-analysis is also another area of potential extension, as proposed in Lopes
et al. (2003). Furthermore, the meta-analytic models proposed in this chapter use
aggregate data from studies, and methods for patient-level data are needed as these
can improve the power and precision of parameter estimates, as proposed in Farlow
et al. (2005). The patient-level models can potentially allow the estimation of within-
study correlations needed in the estimation of parameters. Finally, the bootstrap
technique (Davison and Hinkley, 1997) can improve the precision of parameter
estimates.

Acknowledgments This chapter is part of a PhD in Statistics entitled “Meta-analysis of longitu-
dinal studies with multiple effect sizes” by one of the chapter authors (Alfred Musekiwa). The full
PhD thesis can be accessed from the University of KwaZulu-Natal Library.
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Appendix: SAS Code

*SAS Code
*Model 1
libname in "c:\analysis\paper4\new_paper4_analysis";
proc import
datafile="c:\analysis\paper4\new_paper4_analysis\data_sas_pichenot_final.xls"
dbms=xls out=data_final;
run;
data 'c:\analysis\paper4\new_paper4_analysis\data_final';
set data_final;
run;
data data_final; 
set data_final; 
w=1/var_effect;
run;
data within_study_cov; 
param="Var_41"; est=1; output;
param="Var_81"; est=1; output; 
param="Var_121"; est=1; output;
param="Var_161"; est=1; output;
param="Var_201"; est=1; output;
param="Var_241"; est=1; output; 
param="Var_321"; est=1; output;
param="Var_401"; est=1; output;
param="Var_481"; est=1; output;
param="Var_42"; est=1; output; 
param="Var_82"; est=1; output;
param="Var_122"; est=1; output;
param="Var_162"; est=1; output;
param="Var_202"; est=1; output; 
param="Var_242"; est=1; output;
param="Var_322"; est=1; output;
param="Var_402"; est=1; output;
param="Var_482"; est=1; output; 
param="Corr"; est=0; output;
run;
data btw_study_cov; 
param="tau41"; est=0.100; output;
param="tau81"; est=0.100; output; 
param="tau121"; est=0.1222; output;
param="tau161"; est=0.1784; output;
param="tau201"; est=0.3185; output;
param="tau241"; est=0.1266; output; 
param="tau321"; est=0.0912; output;
param="tau401"; est=0.1115; output;
param="tau481"; est=0.1549; output;
param="tau42"; est=0.100; output; 
param="tau82"; est=214.813; output;
param="tau122"; est=152.1187; output;
param="tau162"; est=501.4165; output;
param="tau202"; est=303.8539; output; 
param="tau242"; est=363.9144; output;
param="tau322"; est=1000; output;
param="tau402"; est=1200; output;
param="tau482"; est=636.4071; output; 
param="Corr"; est=0; output;
run;
data initial_values; 
set btw_study_cov within_study_cov; 
keep param est; run;
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proc print data=initial_values;
run;
proc mixed method=REML cl
data=data_final;
class study_id week outcome; 
model effect_size=week*outcome 
/noint s cl ddf=1000,1000,
1000,1000, 1000,1000,
1000,1000, 1000, 1000,1000,
1000,1000, 1000,1000,
1000,1000, 1000;
random week (outcome)
/subject=study_id  type=arh(1); 
repeated week (outcome) 
/subject= study_id type=arh(1);
parms/parmsdata=initial_values
hold=19 to 38;
weight w; 
run;
*Model 2 
libname in "c:\analysis\paper4\new_paper4_analysis";
proc import
datafile="c:\analysis\paper4\new_paper4_analysis\data_sas_pichenot_final.xls"
dbms=xls out=data_final;
run;
data 'c:\analysis\paper4\new_paper4_analysis\data_final';
set data_final;
run;
data data_final; 
set data_final;
w=1/var_effect;
run;
data btw_study_cov; 
param="Var_21"; est=2; output; 
param="Var_22"; est=2; output;
param="Corr21"; est=0.5; output;
param="Var_21"; est=2; output; 
param="Var_22"; est=200; output;
param="Corr21"; est=0.5; output;
param="Var_21"; est=2; output; 
param="Var_22"; est=200; output;
param="Corr21"; est=0.9; output;
param="Var_21"; est=100; output; 
param="Var_22"; est=500; output;
param="Corr21"; est=0.9; output;
param="Var_21"; est=2; output; 
param="Var_22"; est=300; output;
param="Corr21"; est=0.5; output;
param="Var_21"; est=2; output; 
param="Var_22"; est=300; output;
param="Corr21"; est=0.5; output;
param="Var_21"; est=2; output; 
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param="Var_22"; est=1000; output;
param="Corr21"; est=0.5; output;
param="Var_21"; est=2; output; 
param="Var_22"; est=1200; output;
param="Corr21"; est=0.1; output; 
param="Var_21"; est=2; output; 
param="Var_22"; est=700; output;
param="Corr21"; est=0.5; output;
run;
data within_study_cov; 
param="Var_21"; est=1; output; 
param="Var_22"; est=1; output;
param="Corr21"; est=0.5; output;
param="Var_21"; est=1; output; 
param="Var_22"; est=1; output;
param="Corr21"; est=0.5; output;
param="Var_21"; est=1; output; 
param="Var_22"; est=1; output;
param="Corr21"; est=0.5; output;
param="Var_21"; est=1; output; 
param="Var_22"; est=1; output;
param="Corr21"; est=0.1; output;
param="Var_21"; est=1; output; 
param="Var_22"; est=1; output;
param="Corr21"; est=0.1; output;
param="Var_21"; est=1; output; 
param="Var_22"; est=1; output;
param="Corr21"; est=0.5; output;
param="Var_21"; est=1; output; 
param="Var_22"; est=1; output;
param="Corr21"; est=0.5; output;
param="Var_21"; est=1; output; 
param="Var_22"; est=1; output;
param="Corr21"; est=0.1; output;
param="Var_21"; est=1; output; 
param="Var_22"; est=1; output;
param="Corr21"; est=0.1; output;
run;
data initial_values; 
set btw_study_cov within_study_cov; 
keep param est; 
run;
proc mixed method=REML cl
data=data_final;
class study_id week outcome; 
model effect_size=week*outcome  
/noint s cl ddf=1000,1000;
random outcome 
/subject=study_id group=week type=arh(1); 
repeated outcome 
/subject=study_id group=week type=arh(1); 
parms/parmsdata=initial_values
hold=28 to 29, 31 to 32, 34 to 35, 37 to 38, 40 to 41, 43 to 44, 46 to 47, 49 to
50, 52 to 53;
weight w; 
run;
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*Model 3 

libname in "c:\analysis\paper4\new_paper4_analysis";
proc import
datafile="c:\analysis\paper4\new_paper4_analysis\data_sas_pichenot_final.xls"
dbms=xls out=data_final;
run;
data 'c:\analysis\paper4\new_paper4_analysis\data_final';
set data_final;
run;
data data_final; 
set data_final; 
w=1/var_effect;
run;
data btw_study_cov; 
param="tau41"; est=2; output;
param="tau81"; est=2; output; 
param="tau121"; est=2; output;
param="tau161"; est=2; output;
param="tau201"; est=2; output;
param="tau241"; est=2; output; 
param="tau321"; est=2; output;
param="tau401"; est=2; output;
param="tau481"; est=2; output;
param="Corr"; est=0.9; output
param="var_41"; est=0; output;
param="var_81"; est=0; output; 
param="var_121"; est=0; output;
param="var_161"; est=0; output;
param="var_201"; est=0; output;
param="var_241"; est=0; output; 
param="var_321"; est=0; output;
param="var_401"; est=0; output;
param="var_481"; est=0; output;
param="corr"; est=0; output;
param="var_41"; est=0; output;
param="var_81"; est=0; output; 
param="var_121"; est=0; output;
param="var_161"; est=0; output;
param="var_201"; est=0; output;
param="var_241"; est=0; output; 
param="var_321"; est=0; output;
param="var_401"; est=0; output;
param="var_481"; est=0; output;
param="corr"; est=0; output;
param="tau42"; est=0.100; output; 
param="tau82"; est=214.813; output;
param="tau122"; est=152.1187; output;
param="tau162"; est=501.4165; output;
param="tau202"; est=303.8539; output; 
param="tau242"; est=363.9144; output;
param="tau322"; est=1000; output;
param="tau402"; est=1200; output;
param="tau482"; est=636.4071; output; 
param="Corr"; est=0.9; output;
run;
data within_study_cov; 
param="Var_41"; est=1; output;
param="Var_81"; est=1; output; 
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param="Var_121"; est=1; output;
param="Var_161"; est=1; output;
param="Var_201"; est=1; output;
param="Var_241"; est=1; output; 
param="Var_321"; est=1; output;
param="Var_401"; est=1; output;
param="Var_481"; est=1; output;
param="Corr"; est=0.9; output;
param="var_41"; est=0; output;
param="var_81"; est=0; output; 
param="var_121"; est=0; output;
param="var_161"; est=0; output;
param="var_201"; est=0; output;
param="var_241"; est=0; output; 
param="var_321"; est=0; output;
param="var_401"; est=0; output;
param="var_481"; est=0; output;
param="corr"; est=0; output;
param="var_41"; est=0; output;
param="var_81"; est=0; output; 
param="var_121"; est=0; output;
param="var_161"; est=0; output;
param="var_201"; est=0; output;
param="var_241"; est=0; output; 
param="var_321"; est=0; output;
param="var_401"; est=0; output;
param="var_481"; est=0; output;
param="corr"; est=0; output;
param="Var_42"; est=1; output; 
param="Var_82"; est=1; output;
param="Var_122"; est=1; output;
param="Var_162"; est=1; output;
param="Var_202"; est=1; output; 
param="Var_242"; est=1; output;
param="Var_322"; est=1; output;
param="Var_402"; est=1; output;
param="Var_482"; est=1; output; 
param="Corr"; est=0.9; output;
run;
data initial_values; 
set btw_study_cov within_study_cov; 
keep param est; 
run;
proc mixed method=REML cl
data=data_final;
class study_id week outcome; 
model effect_size=outcome*week
/noint s cl ddf=1000,1000,
1000,1000, 1000,1000,
1000,1000, 1000;
random week 
/subject=study_id group=outcome type=arh(1); 
repeated week 
/subject=study_id group=outcome type=arh(1); 
parms/parmsdata=initial_values
hold=11 to 30, 41 to 49, 51 to 79; 
weight w; 
run;
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*Model 4 

libname in "c:\analysis\paper4\new_paper4_analysis";
proc import
datafile="c:\analysis\paper4\new_paper4_analysis\data_sas_pichenot_final.xls"
dbms=xls out=data_final;
run;
data 'c:\analysis\paper4\new_paper4_analysis\data_final';
set data_final;
run;
data data_final;
set data_final;
w=1/var_effect;
run;
data btw_study_cov;
param="Var_21"; est=20; output;
param="Var_23"; est=20; output;
param="Var_21"; est=20; output;
param="Var_22"; est=20; output;
param="Var_23"; est=20; output;
param="Var_24"; est=20; output;
param="Var_24"; est=20; output;
param="Var_24"; est=20; output;
param="Var_24"; est=20; output;
param="Corr21"; est=0.9; output;
param="Var_21"; est=50; output;
param="Var_23"; est=80; output;
param="Var_23"; est=160; output;
param="Var_23"; est=180; output;
param="Var_21"; est=200; output;
param="Var_22"; est=220; output;
param="Var_23"; est=420; output;
param="Var_24"; est=580; output;
param="Var_24"; est=500; output;
param="Corr21"; est=0; output;
param="Var_21"; est=50; output;
param="Var_23"; est=80; output;
param="Var_23"; est=160; output;
param="Var_23"; est=180; output;
param="Var_21"; est=200; output;
param="Var_22"; est=220; output;
param="Var_23"; est=420; output;
param="Var_24"; est=580; output;
param="Var_24"; est=500; output;
param="Corr21"; est=0; output;
param="tau42"; est=10; output;
param="tau42"; est=214.813; output;
param="tau122"; est=152.1187; output;
param="tau122"; est=501.4165; output;
param="tau202"; est=303.8539; output;
param="tau242"; est=363.9144; output;
param="tau322"; est=1000; output;
param="tau402"; est=1200; output;
param="tau482"; est=636.4071; output;
param="Corr"; est=0.9; output;
run;
data within_study_cov;
param="Var_13"; est=1; output;
param="Var_14"; est=1; output;
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param="Var_11"; est=1; output;
param="Var_12"; est=1; output;
param="Var_13"; est=1; output;
param="Var_14"; est=1; output;
param="Var_14"; est=1; output;
param="Var_14"; est=1; output;
param="Var_14"; est=1; output;
param="Corr11"; est=0.2; output;
param="Var_13"; est=1; output;
param="Var_14"; est=1; output;
param="Var_11"; est=1; output;
param="Var_12"; est=1; output;
param="Var_13"; est=1; output;
param="Var_14"; est=1; output;
param="Var_14"; est=1; output;
param="Var_14"; est=1; output;
param="Var_14"; est=1; output;
param="Corr11"; est=0; output;
param="Var_13"; est=1; output;
param="Var_14"; est=1; output;
param="Var_11"; est=1; output;
param="Var_12"; est=1; output;
param="Var_13"; est=1; output;
param="Var_14"; est=1; output;
param="Var_14"; est=1; output;
param="Var_14"; est=1; output;
param="Var_14"; est=1; output;
param="Corr11"; est=0; output;
param="Var_13"; est=1; output;
param="Var_14"; est=1; output;
param="Var_11"; est=1; output;
param="Var_12"; est=1; output;
param="Var_13"; est=1; output;
param="Var_14"; est=1; output;
param="Var_14"; est=1; output;
param="Var_14"; est=1; output;
param="Var_14"; est=1; output;
param="Corr11"; est=0.9; output;
run;
data initial_values;
set btw_study_cov within_study_cov;
keep param est;
run;
proc mixed method=REML cl
data=data_final;
class study_id week outcome;
model effect_size=outcome*week
/noint s cl ddf=1000,1000,
1000,1000, 1000,1000,
1000, 1000, 1000;
random week
/subject=study_id group=outcome type=arh(1);
repeated week
/subject=study_id group=outcome type=arh(1);
parms/parmsdata=initial_values
hold=20,30, 41 to 49, 51 to 79;
weight w;
run;
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Measuring Bivariate Spatial Clustering
in Disease Risks

Timotheus B. Darikwa and Samuel O. M. Manda

Abstract In most analyses of spatial variation in relative disease risk, consideration
is on raised disease risk in each area. However, interest may also be in the wider
clustering pattern across neighbouring areas, especially for health prioritisation.
For a single disease, an area could be classified as high or low risk and may
or may not be consistent with risk levels in the neighbouring areas. Recent
developments in spatial clustering measures have been concerned with bivariate
spatial autocorrelation measures. In this chapter, we present some spatial statistical
approaches to measuring bivariate spatial clustering for bivariate spatial outcomes.
Our application considers univariate spatial clustering in cerebrovascular (CVA) or
ischaemic heart failure (IHD) or hypertension (HHD) and diabetes (DBT) deaths
among the 30–70-year old in South Africa. The analysis is extended to bivariate
spatial clustering when two causes of death are considered at a time.

Keywords Univariate spatial autocorrelation · Bivariate spatial autocorrelation ·
Mortality · Cardiovascular condition · South Africa

1 Introduction

In spatial statistics, spatial clustering statistical methods have long been used to
group spatial objects into groups called clusters, so that objects in one cluster
have similar characteristics compared to objects in other clusters. Most of the
development in spatial clustering methods have focused on one areal health data
(outcome), and the most widely used measure is the Moran’s I index of spatial
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autocorrelation (Moran, 1950). Both local and global indexes are widely available
and implemented in many geographic information system (GIS) computer packages
(Anselin, 1995; Anselin et al., 2002; Waller and Gotway, 2004). However, based
on the original work of Mantel (1967), the univariate Moran’s I has recently been
expanded to cases where there are two spatially measured health data.

Wartenberg (1985) was the first to conceive the idea of using a bivariate spatial
autocorrelation matrix to determine a multivariate spatial autocorrelation measure
for more than two variables. Prior to that, spatial autocorrelation (SAC), which
is a measure of how a variable correlates with itself over geographic space, was
widely done for only one variable (univariate) as opposed to at least two variables
(multivariate). The Moran’s I and Geary’s C have been by far the most popular
univariate measures of spatial autocorrelation in various applications (White et al.,
1989; Zhang et al., 2008; Matkan et al., 2013).

The method suggested by Wartenberg (1985) for extending Moran’s I to mul-
tivariate spatial analysis involves the derivation of a matrix of bivariate SACs.
This matrix is, in turn, analysed using spatial principal component analysis (sPCA)
resulting in a set of spatial factors that represent the total spatial pattern. His
formulation was criticised by Lee (2001) for its susceptibility to changes in the
direction of the spatial association. In addition, (Lee, 2001) showed that the bivariate
SAC matrix derived by Wartenberg (1985) may be asymmetric that is problematic
when deriving the total multivariate spatial pattern but not impossible (Dray et al.,
2008). In addition, (Lee, 2001) conceptualised that a bivariate SAC measure must
be a function of the respective individual univariate spatial autocorrelation and the
“point to point” correlation of some sort between the two variables as measured
by Pearson’s correlation coefficient. He further showed that the bivariate measure
derived by Lee (2001) was a function of only one univariate SAC and a correlation
between one variable and the lag of the second variable. Lee (2001) then derived a
bivariate SAC measure, using a row-standardised weight matrix, that is in line with
his conditions for a bivariate SAC measure and also produces a symmetric bivariate
SAC matrix to be used for deriving the total multivariate spatial autocorrelations.
The Pearson’s correlation part of his derivation is between the spatial lags of the
two variables that will be under consideration. One problem that may arise is that
this correlation may differ significantly from that between the original values of
the two variables and may have different signs (Lee, 2001; Dray et al., 2008). Lee
(2001) also came up with univariate spatial measure known as Lee’s S that can be
used to calculate univariate spatial autocorrelation for one health outcome.

Bivariate measures need to be implemented to real-life problems that are
currently lacking. There have been few applications of Lee’s bivariate SAC with
real data to date (Khamis, 2012; Khamis et al., 2014). Khamis (2012) investigated
the bivariate spatial autocorrelation between unemployment rate (UR) and chronic
illnesses (CI) in Iraq. They found no evidence of joint spatial autocorrelation
between UR and CI, but individually the former tended to cluster but with no
sufficient evidence for the clustering of the later. The bivariate relationship between
mortality rate (MR) and socioeconomic factors as represented by UR, crime rate
(CR), and divorce rate (DR) was investigated by Khamis et al. (2014) in Jordan
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using Lee’s formulation. Lee’s global spatial autocorrelation was not found to
be significant, but the local indicator was used to deduce, among other results,
that mortality hotspots were spatially associated with hotspots of economically
disadvantaged areas.

Recent availability of interrelated health outcomes data in South Africa such
as cause of deaths data from Statistics South Africa means that there is a need to
apply multivariate spatial association measures to identify co-clustering of health
outcomes. This chapter uses 2001 and 2011 cause of deaths data to derive estimates
of the univariate and bivariate measures for deaths due to cerebrovascular heart
disease, ischaemic heart disease, hypertensive heart disease, and diabetes in South
Africa based on the formulations of Lee (2001). The results by both formulations
showed there is significant univariate global spatial autocorrelation for all four
causes of CVD deaths. This suggests that there is some form of disease clustering.
In turn, the local univariate and bivariate Moran’s I were then used to determine
hotspots and coldspots of cardiovascular deaths in South Africa.

2 Spatial Autocorrelation

Spatial autocorrelation (SAC) is the correlation of a geo-referenced variable to itself
geographically. If there is geographical interdependence between geo-referenced
observed values, then these data are said to exhibit spatial autocorrelation. When
there are random spatial patterns then the data shows no spatial autocorrelation.
Spatial autocorrelation measures the degree to which one area is similar or dissimilar
to its geographically contiguous areas. Spatial autocorrelation, such as the common
Pearson’s autocorrelation function, can be positive or negative. Positive spatial
autocorrelation occurs when geographically contiguous areas are similar, while
negative spatial autocorrelation occurs when the geographically contiguous areas
are not similar.

In this chapter, we tested for the presence of SAC in a given municipal
neighbourhood under the null hypothesis of spatial randomness (H0 : There is
no spatial autocorrelation). The measures that are used to test the extent of spatial
autocorrelation are divided into global and local measures of spatial autocorrelation.
Global measures that were used to determine the presence of SAC for the whole of
South Africa are univariate global Moran’s I for individual CVDs, while bivariate
Moran’s I and Lee’s L were used to determine pairwise joint global SAC. Global
indicators of spatial autocorrelation (GISA) were only used to confirm if there is any
form of clustering in the whole of South Africa. They do not reveal actual clusters
(Waller and Gotway, 2004). Local indicators of spatial autocorrelation (LISA) are
the ones that were used to reveal actual clusters at local municipal neighbourhoods
of South Africa. Local measures that were used to determine the hotspots of CVDs
are the univariate Moran’s I that was used to detect clusters at local municipality
level for individual CVDs and bivariate Moran’s I that was used to detect pairwise
joint clusters of the CVDs.
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2.1 Spatial Weights

Knowledge of the neighbourhood structure of the regions under study is important
for one to be able to quantify location in order to analyse spatial autocorrelation.
The neighbourhood structure is represented as a proximity matrix known as a
spatial weight matrix, W . A spatial weight matrix, {wij }ni,j=1, is an n × n matrix
that defines the closeness or connectedness of two areas Ai and Aj in space.
Spatial weight matrices can either be contiguity (neighbourhood) or distance-
based. A contiguity structure shows how one area is located in relation to others,
whereas distance-based structures show the relative Euclidean spatial distance of
one area from the others. In contiguity structures, one would expect neighbours
to have more spatial dependence than those that are far away. In distance-based
neighbourhood structures, spatial dependency is expected to decline as the distance
between areas increases. Areas that are far from each other should exhibit spatial
heterogeneity (dissimilar relationships), while those that are close should show
similar relationships.

The spatial contiguity matrices are the simplest, there are in terms of neighbour-
hood structure definition, and their contiguity-based spatial weights are defined as
follows:

wij =
{

1 if i and j are close or connected or neighbours

0 otherwise,

where areas Ai and Aj are said to be neighbours or connected if either: (1) they
share a border (rook contiguity/simple contiguity); or (2) they share a corner (bishop
contiguity); or (3) they share either a border or a corner (queen contiguity).

The simplest of the distance-based spatial matrix, like the contiguity matrices,
is also a binary connectivity matrix defined such that two areas Ai and Aj are
neighbours if the distance between them, dij , is less than a specified distance, say
δ, beyond which autocorrelation is not expected. This structure is called the cross-
hatched or distance band contiguity. Similarly defined is the k-nearest neighbour
contiguity, where area Aj is one of the k areas close to Ai .

Functional distance-based spatial weight matrices have also been formulated.
One such example is that based on the power function, wij = dαij , where α is the
power parameter. When α is equal to negative 1, we have an inverse distance, and
when it is equal to 2, we have a quadratic inverse distance that is also known as the
gravity model. The distance between two areas Ai and Aj , dij , can be measured
from the centroid of the areas or from major cities or any points so chosen to be
representative of the areas. There are other forms of spatial contiguity not discussed
here and can be found in Waller and Gotway (2004).

There are times when some areas have or are suspected to have more neighbours
than others. This can occur with irregular polygons where certain areas may be
smaller or bigger in size than others and thus have more neighbours than others. One
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may want to adjust for this fact by creating proportional weights for the number of
neighbours for an area. This is achieved through the creation of a row-standardised
weight matrix whose entries will be given by

wstd
ij = wij

∑n
j=1wij

.

This standardisation is appropriate for this study in which irregularly shaped
municipalities of South Africa are considered as the unit of analysis. In addition,
the queen’s contiguity weight matrix was preferred over distance-based weight
matrices as distances between municipalities are big and describing neighbourliness
for municipalities with long distances between them will not be meaningful.

3 Univariate Spatial Autocorrelation

3.1 Univariate GISA

The global Moran I statistic is the most popular of the GISAs. It measures the extent
of the linear relation between the observed geo-referenced data xi(i = 1, 2, ..., n)
and their corresponding spatial lags (or weighted mean values for the geographical
contiguous areas) measured in terms of their deviations from their average. Here, n
represents the number of samples or regions under consideration, which in this case
are the 234 local municipalities of South Africa. The global Moran’s I is defined by

I = n
∑n

i=1
∑n

j=1 υij
·
∑n

i=1 zi
∑n

j=1 υij · zj
∑n

i=1 z
2
i

, i �= j, (1)

where ZT
X = [zi] = [(xi − x̄)/σx] is a vector of the standard normalised values

of the xi’s and V = [υij ] is the spatial weight matrix, which is a measure of the
spatial proximity between municipality i and municipality j . This study makes use
of queen contiguity spatial matrix that has been row-sum standardised (see Waller
and Gotway, 2004). The advantage of standardisation is that it makes for easier
interpretation. The global Moran’s I can be written in matrix notation as

I (x) = ZT
XVZX

IT VI
. (2)

The Moran’s I ranges from −1, which will indicate a perfect random dispersion,
to +1, which will indicate perfect correlation or clustering. Its interpretation is based
on its theoretical expected value under the null hypothesis of spatial randomness
that is given by E[I ] = −1

n−1 (Griffith, 1987). When I > E[I ], it means that there
is positive spatial autocorrelation. In other words, neighbouring areas have similar



240 T. B. Darikwa and S. O. M. Manda

attributes compared to further areas. If I < E[I ], then there is negative spatial
autocorrelation. If I = 0, the slope is zero, then there is no spatial autocorrelation.
It suffices to use the descriptive approach when making inferences about spatial
autocorrelation using the global Moran’s I for exploratory purposes. However,
further significance tests may be done under the assumptions of normality or
randomness of the processes. This study makes use of the Monte Carlo simulations
that are steeped in Mantel’s permutation approach (Mantel, 1967). The framework
is provided in Lee (2004).

There are other global measures of univariate spatial autocorrelation such as
the recently developed Lee’s S statistic (Lee, 2004) and Geary’s C statistic. These
generally gave similar results with the univariate Moran’s index and are not included
in this analysis.

3.2 Univariate LISA

Having established the presence of an underlying pattern or spatial clustering in the
data using global measures such as the Moran’s I discussed in the section above, one
may be interested in detecting hotspots of increased rates or coldspots of reduced
rates that could have caused the global statistic to be significant. Furthermore, one
can also identify outliers using LISA. Hotspots and coldspots are associated with
positive spatial autocorrelation. Outliers are identified when the sign for local spatial
autocorrelation negates that of the global spatial autocorrelation. For instance, when
the global statistics are saying there is positive spatial autocorrelation, then local
areas with negative spatial autocorrelations will be spatial outliers. Although there
are various LISA (Anselin, 1995), this study makes use of only the most widely
used method that is the local Moran I technique. The standardised local Moran’s I
statistic is given by

Ii = n2
∑n

i=1
∑n

j=1 υij
·
∑n

i=1 zi
∑n

j=1 υij · zj
∑n

i=1 z
2
i

, i �= j. (3)

The local Moran’s I can be written in matrix notation as

Ii(x) = ZT
XViZX

IT VI
, (4)

where 1
n

· ∑n
i=1 Ii = I and Vi is a global spatial weight matrix whose entries are

zero with the exception of the entries in the ith row. The expected value under the
assumption of randomness is E[Ii] = −1

n−1 , and the interpretation is as with Global
Moran’s I. Significance tests were done based on Monte Carlo tests based on the
framework provided by Lee (2004).
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4 Bivariate Spatial Autocorrelation

4.1 Bivariate GISA

Wartenberg (1985) was the first to develop the concept of a multivariate spatial
correlation (MSC) measure that was based on Mantel (1967) cross-product statistic.
The idea behind Wartenberg’s (1985) bivariate Moran’s I was to develop a bivariate
simultaneously taking into consideration the univariate spatial autocorrelation of
the individual variables as well as their covariance. The work of Wartenberg (1985)
was extended by Anselin et al. (2002) who developed a bivariate spatial association
measure for both Moran’s I global and local indexes. These indexes can easily be
calculated and mapped using GeoDa (Anselin et al., 2006).

Similar to the univariate Moran’s I, the bivariate counterpart can also be
calculated at global and local levels. Given two spatially dependent variables Yk
and Xl for a given location, then the global test statistic for the bivariate Moran’s I
is given by

I (xy) = ZT
XVZY

IT VI
, (5)

where ZY = (ȳi−ȳ)
σY

and ZX = (xi−x̄)
σX

follow a standard normal distribution, n
is the size of observations, and V is the spatial weight matrix that has been row-
standardised.

Lee (2001) also provided a global bivariate SAC measure denoted by L. It is
defined by

LX,Y = n
∑n

i=1(
∑n

j=1 vij )
2

·
∑n

i=1[(
∑n

j=1 vij (xj − x̄))(
∑n

j=1 vij (yj − ȳ))]
√∑n

i=1(xi − x̄)2
√∑n

i=1(yi − ȳ)2
.

(6)
The global Lee’s L can be written in matrix notation as

L(xy) = ZT
X(V

T V)ZY

IT (VT V)I
. (7)

Dray et al. (2008) suggested a method that will make the bivariate Moran’s spatial
association measure satisfy the conditions of Lee (2001). This was done by using

a spatial weight matrix W+WT

2 in the derivations of Lee (2001), where W is the
original weight matrix. Using this transformation, Dray et al. (2008) developed a
bivariate spatial association measure that we will refer to as Dray’s H . This bivariate
measure by Dray et al. (2008) is given by

HX,Y = 1

2
[√SSSX · rX,Ỹ +√

SSSY · rY,X̃], (8)
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where SSSX is the spatial smoothing scalar (Lee, 2001) and is given by

SSSX =
∑n

i=1(̃xi − x̄)2
∑n

i=1(xi − x̄)2
.

4.2 Bivariate LISA

The local bivariate Moran’s I , which in essence is a measure of the linear
relationship between an observed value at location i and the spatial lag of its
neighbouring locations j (average of observed values of its neighbours), is given
by

Ii(xy) = ZT
XViZY

IT VI
. (9)

5 An Application

5.1 Data

This chapter, for illustrative purposes, uses cardiovascular mortality data that
has been coded using the International Statistical Classification of Diseases and
Related Health Problems [ICD-10] (World Health Organization, 2004) from South
Africa’s vital registration system. The ICD-10 defined broad groups of causes of
death (COD) data attributed to cerebrovascular heart diseases (CVAs), hypertensive
heart diseases (HHDs), ischaemic heart diseases (IHDs), and diabetes (DBT) were
derived for the years 2001 and 2011. In terms of nomenclature, CVAzy, IHDzy,
HHDzy, and DBTzy will represent mortality due to cerebrovascular, ischaemic,
hypertensive heart conditions, and diabetes in the year zy, respectively. Here, zy
takes values 01 and 11, representing the years 2001 and 2011, respectively. Data
were derived for the ages 30–70 years that represent an age group in which
premature mortality occurs.

Table 1 shows the distribution of deaths in South Africa for the years 2001 and
2011 by the age groups 0–29, 30–70, and 71 years and over. Overall, the total
deaths due to HHD increased the most from 10769 in 2001 to 15609 deaths in
2011, an increase of 44.9%. It can also be seen that DBT increased by almost
the same percentage (44.2%) from 14568 deaths in 2001 to 21056 deaths. CVA
deaths increased by 14.6% (from 22590 to 25983), while IHD increased by only
2.1% (from 11779 to 12023) over the same period. In the age group 30–70 years,
Table 1 shows that there has been a slight decrease in the number of deaths for
CVA (−0.4%) and IHD (−5.8%) between 2001 and 2011, while HHD increased by
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about 22.3%. It is in this 30–70-year age group that premature mortality needs to be
reduced and analysis will be done for this age group.

The data quality issues associated with DNF data include, among others, garbage
codes, misclassification, and incompleteness of death registration (Joubert et al.,
2013; Pillay-van Wyk et al., 2011). Adjustments have to be made to these data to
minimise bias that may be attributed to these quality issues. Correcting the rate
of mortality usually involves using the age- or sex-specific death rates of standard
population to which the mortality rates of interest are adjusted (Birnbaum et al.,
2011). There are two problems with this approach. First, the choice of standard
population to use is usually arbitrary and subjective (Birnbaum et al., 2011). Second,
the standardised mortality rates assume that the characteristics of small and large
areas are the same and the resulting estimates have been criticised for not being
representative enough of the geographic distribution of the rates (Clayton and
Kaldor, 1987; Sarndal, 1984). Thus, alternative techniques have been sought to
estimate rates at a local level for compromised data. These techniques are briefly
described in the next subsection.

5.2 Statistics Methods in Rate Estimation

The EB approach and the Poisson regression model were considered for estimating
the mortality rates at municipal level. In the EB approach, the number of observed
deaths in municipality i, and due to disease j , Oij is allowed to follow a Poisson
distribution with both the mean and the variance equal to the product of Pi , the
population at risk in municipality i, and πij , the unknown underlying risk of
mortality due to disease j in municipality i. It follows that the observed deaths
are conditioned on the varying underlying risk of mortality, and we write

Oij |πij ∼ Poisson(πijPi). (10)

Additionally, the mortality risk, πij , is allowed to follow a Gamma distribution
with shape parameter α and scale parameter φ. That is

πij ∼ Gamma(α, φ), (11)

where E(πij ) = α
φ

and V ar(πij ) = α
φ2 . According to Bayes theorem, the following

proportionality holds:

Pr(πij |Oij ) ∝ Pr(Oij |πij ) × Pr(πij ), (12)

and, importantly, the conditional posterior also follows a Gamma distribution with
shape parameter α + Oij and scale parameter Pi + φ. It follows that



244 T. B. Darikwa and S. O. M. Manda

Ta
bl

e
1

D
is

tr
ib

ut
io

n
of

th
e

nu
m

be
r

of
de

at
hs

ac
ro

ss
ag

e
gr

ou
ps

by
ye

ar
,S

ou
th

A
fr

ic
a

C
V

A
H

H
D

IH
D

D
B

T

Y
ea

r
A

ge
gr

ou
p

N
um

be
r

Pe
rc

en
ta

ge
N

um
be

r
Pe

rc
en

ta
ge

N
um

be
r

Pe
rc

en
ta

ge
N

um
be

r
Pe

rc
en

ta
ge

20
11

0–
29

48
5

1.
9%

14
8

0.
9%

16
5

1.
4%

27
1

1.
3%

30
–7

0
12

,1
96

47
.1

%
71

80
46

.0
%

61
83

51
.4

%
12

,0
63

57
.3

%

71
+

11
,9

46
46

.1
%

75
61

48
.4

%
52

48
43

.6
%

77
36

36
.7

%

M
is

si
ng

12
66

4.
9%

72
0

4.
6%

42
7

3.
6%

98
6

4.
9%

To
ta

l
25

,8
93

10
0.

0%
15

,6
09

10
0.

0%
12

,0
23

10
0.

0%
21

,0
56

10
0.

0%

20
01

0–
29

59
3

2.
6%

15
9

1.
50

%
12

9
1.

1%
25

0
1.

7%

30
–7

0
12

,2
41

54
.2

%
58

73
54

.5
0%

65
64

55
.7

%
91

85
62

.9
%

71
+

97
56

43
.2

%
47

35
44

.0
0%

50
74

43
.1

%
51

45
35

.3
%

M
is

si
ng

0
0.

0%
2

0.
00

%
12

0.
1%

17
0.

1%

To
ta

l
22

,5
90

10
0.

0%
10

,7
69

10
0.

00
%

11
,7

79
10

0.
0%

14
,5

97
10

0.
0%

K
ey

:D
B

T,
D

ia
be

te
s;

C
V

A
,C

er
eb

ro
va

sc
ul

ar
he

ar
td

is
ea

se
;H

H
D

,H
yp

er
te

ns
iv

e
he

ar
td

is
ea

se
;I

H
D

,I
sc

ha
em

ic
he

ar
td

is
ea

se



Measuring Bivariate Spatial Clustering in Disease Risks 245

πij |Oij ∼ Gamma(α + Oij , Pi + φ). (13)

Since E(πij |Oij ) = Oij α

Pi+φ
, it can be deduced that the raw rates, π̂ij = Oij

Pi
, can

be adjusted using posterior distribution, Pr(πij |Oij ), if α and φ can be derived
from the prior distribution, Pr(πij ). In fact, it can be shown that the EB estimate of
the underlying mortality is the expected value of the distribution of the conditional
posterior:

π̂ij
EB = E(πij |Oij ) = Oijα

Pi + φ
, (14)

where the parameters α and φ are determined from the observed data.
In the Poisson regression approach, the expected mean of Oij (= πijPi), denoted

by μij (the expected number of deaths in municipality i dying a premature death
(between 30 and 70 years) for a given disease, j ), is modelled as

μij = log(πijPi) = log(Pi) + α + β1(page) + β2(prace) + β3(poverty)(πij |Oij )

= Oijα

Pi + φ
+ εij , (15)

where page is the proportion of the age group 30–70 that are aged 50 to 70 in the
population of municipality i, prace is the proportion of a given race in municipality
i for the given age group, and poverty is the level of poverty in municipality i

measured by the official South African multidimensional poverty index obtained
from the 2001 and 2011 census data (Statistics South Africa, 2014b).

A descriptive summary of the raw, smoothed, and adjusted rates for the age
group 30–70 years of interest to this study is given in Table 2. Generally, we have
mean rates of the same order for all the three rates. The major difference in the
rates, however, is found in the ranges, where observed raw rates have the highest
range in all instances owing to very high maximum values. Further investigations
revealed that the municipalities with the smallest populations are also the ones
with the highest (as well as smallest) mortality rates. The raw rates are sensitive to
small population counts, resulting in instability. This is a well-documented problem
when using raw mortality rates. Empirical Bayes rates are known to alleviate this
problem (Leyland and Davies, 2005; Marshall, 1991). Adjusting for covariates also
managed to alleviate the problem by reducing the maximum values and increasing
the minimum values of the observed rates.

6 Results

The raw, smoothed, and adjusted mortality rates at municipal level for each of the
four disease conditions studied in South Africa were mapped on a choropleth map.
The results are shown in Figs. 1 and 2 for the years 2001 and 2011, respectively.
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Table 2 Descriptive
statistics of raw, EB
smoothed, and adjusted
mortality rates across
municipalities for CVA, IHD,
HHD, and DBT, South Africa

Model Mean SD Minimum Maximum

CVA 2001

Adj 86.37 18.96 41.26 157.10

EB 85.96 47.25 3.02 296.56

RR 88.75 59.63 0.00 389.89

CVA 2011

Adj 72.90 17.33 37.08 151.76

EB 76.24 48.18 7.20 377.59

RR 79.66 60.55 0.00 477.90

IHD 2001

Adj 48.81 33.25 6.63 147.98

EB 43.11 37.79 1.49 362.80

RR 44.65 45.24 0.00 407.68

IHD 2011

Adj 37.48 20.76 10.71 116.24

EB 34.31 28.91 2.09 259.34

RR 36.32 38.41 0.00 309.69

HHD 2001

Adj 43.56 183.69 12.96 149.08

EB 38.68 27.52 1.77 226.84

RR 38.69 33.72 0.00 244.37

HHD 2011

Adj 44.36 17.34 12.32 129.73

EB 44.01 29.33 5.37 164.24

RR 45.89 36.51 0.00 180.63

DBT 2001

Adj 64.72 18.04 21.70 122.78

EB 53.06 39.04 2.32 403.50

RR 51.66 46.52 0.00 457.39

DBT 2011

Adj 71.78 17.76 29.68 132.86

EB 66.49 43.99 7.73 353.56

RR 67.06 53.37 0.00 405.13

Key: SD = Standard deviation

High-mortality-risk municipalities are indicated by the darkest colour (quartile 4 or
upper quartile). Municipalities with low mortality rate risks are shown by a hollow
(quartile 1 or lower quartile). The darker the colour the higher the risk of mortality
due to each condition.
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Fig. 1 Choropleth maps showing the distribution of raw, smoothed, and adjusted mortality rates
for the year 2001

Generally, the quantile maps reveal some form of clustering. Consider Fig. 1A–C
to see the effects of smoothing and adjustment for covariates. The quantile map of
the observed raw rate (CVA01-RR) in Fig. 1A and the smoothed rate (CVA01-EB)
in Fig. 1B are almost similar in terms of their spatial distributions. There is not much
difference between the distribution of mortality rates before and after smoothing. It
seems that the effects of stabilising the crude rates with the EB approach have not,
based on the evidence of the choropleth maps, improved the ability to discern areas
of higher mortality risk.

Adjusting for covariates, as the case of CVA01-Adj in Fig. 1C, results in a more
defined cluster in the south-west part of the country when compared with raw and
smoothed rates in Fig. 1A–B. This is the general pattern with all the other disease
conditions, with dark colours more noticeable for adjusted rates than for raw and
smoothed rates, and are mostly concentrated in the western part of the country.
Only HHD clustering seems to stretch from the middle of the country toward the
eastern part of the country. The spatial patterns exhibited in Fig. 1 for the year 2001
are similar to the spatial patterns exhibited by the corresponding mortality rates in
Fig. 2 for the year 2011. In the next section, the statistical significance tests of spatial
autocorrelations were done and discerned clusters mapped.
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Fig. 2 Choropleth maps showing the distribution of raw, smoothed, and adjusted mortality rates
for the year 2011

6.1 Univariate Cluster Analysis

6.1.1 Univariate Global Spatial Autocorrelation

The previous assessment of geographical variations for raw, smoothed, and adjusted
rates has shown evidence of clustering in CVD and diabetes outcomes. In order to
formally investigate spatial association, we measured the association in a formal
way by using univariate (in this section) and bivariate clustering statistics (see
subsection 4.3 for details). Table 3 presents the derived values for each CVD for
the whole of South Africa for the years 2001 and 2011. For comparison purposes,
the derivations were done using raw, smoothed, and adjusted rates.

The univariate Moran’s I test in Table 3 confirms that the distribution of the four
conditions IHD, CVA, DBT, and IHD varies geographically, when adjusted rates
are used (p-value < 0.05). Both raw and smoothed rates failed to detect clusters of
DBT, while the raw rate further failed to detect any significant clustering for CVA01
(p-value >0.05). The geographic variation based on adjusted rate is significant for
both the years 2001 and 2011. In all the cases, the calculated statistics for Moran’s
I are all positive and significant across the years. This means that the likelihood of
the spatial patterns generated by mortality due to each of the three CVDs being due
to random chance is negligibly small (less than 5%). Thus, one can conclude that
the probability is high that municipalities that are nearer to each other tend to have
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Table 3 Univariate global Moran’s spatial autocorrelations for the model residuals, raw,
smoothed, and adjusted mortality rates due to CVA, IHD, DBT, and HHD in 2001 and 2011

Model Moran’s I (Estimates) p-value Moran’s I (Residuals) p-value

CVA 2001

Adj 0.422 <0.001 0.038 †

EB 0.021 <0.001 0.068 <0.05

RR 0.029 †

CVA 2011

Adj 0.297 <0.001 0.109 <0.05

EB 0.078 <0.05 0.121 <0.05

RR 0.088 <0.05

IHD 2001

Adj 0.849 <0.001 −0.003 †

EB 0.108 <0.001 0.318 <0.05

RR 0.251 <0.001

IHD 2011

Adj 0.821 <0.001 0.149 <0.05

EB 0.093 <0.001 0.150 <0.05

RR 0.176 <0.05

HHD 2001

Adj 0.445 <0.001 0.066 †

EB 0.144 <0.001 0.045 †

RR 0.218 <0.001

HHD 2011

Adj 0.329 <0.001 0.112 <0.05

EB 0.135 <0.001 0.054 †

RR 0.101 <0.05

DBT 2001

Adj 0.684 <0.001 0.063 †

EB 0.005 † 0.003 †

RR 0.006 †

DBT 2011

Adj 0.316 <0.001 0.064 †

EB 0.038 † 0.003 †

RR 0.030 †

Key: † = Insignificant p-values

comparable baseline mortality rates than the distant municipalities. In other words,
there is some form of clustering exhibited by all three CVDs at the 5% significance
level. This is a reflection of what is seen in the quantile maps in Figs. 1 and 2.

Table 3 also shows the residuals of the smoothed and adjusted rates for each of the
CVDs for the years 2001 and 2011. The statistical autocorrelation of the residuals,
based on the Moran’s index, was found to be insignificant for some of the fitted
models for adjusted rates (CVA11, IHD11, and HHD11) and the smoothed rates
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(CVA01, HHD01, CVA11, and IHD11). This statistical autocorrelation analysis of
the residuals is not a criterion for diagnostic checks for generalised linear models or
EB approach, but it would be preferable if residual spatial autocorrelations were not
significant. This is because the presence of spatial autocorrelations in the residuals
suggests that the model is not adequately specified. That is to say there may exist
some unmeasured covariates not specified in the model that may help in explaining
the variation of mortality rates across the municipalities. Introducing spatial random
effects or an eigenvector spatial filter (Griffith and Chun, 2014) did not remove
the residual spatial autocorrelations, so the original specified Poisson regression
model with covariates only was returned using the rule of parsimony. In the next
section, we looked at the LISA maps for all rates for visual comparison purposes
only, irrespective of whether they are significant or not.

6.2 Univariate “Hot-Spot” Analysis

Having established the presence of clustering using GISA statistics in the previous
section, LISA maps were used to determine the local municipality level clusters for
raw, smoothed, and adjusted rates for CVA, IHD, DBT, and HHD. The results are
shown in Figs. 3 and 4 for the years 2001 and 2011, respectively. “Hot-spots,” which
are municipalities of high mortality incidences that are surrounded by municipalities
with high mortality incidences, are indicated by a “High-High” (H-H) key on the
map, while the “cold-spots”, which are municipalities of low mortality incidences
that are surrounded by municipalities with low mortality incidences, are indicated
by a “Low-Low” (L-L) key. In addition, there are outliers indicated by “High-Low”
(H-L), which are municipalities of high mortality incidences that are surrounded
by municipalities with low mortality incidences, and “Low-High” (L-H), which are
municipalities of low mortality incidences that are surrounded by municipalities
with high mortality incidences. Municipalities whose clustering is not significant
are denoted by “Not Significant” (N-S) key and have a white (hollow) shade. The
“hot-spots” have a black shade in the map, while “cold-spots” have a white colour.

Adjusted rates in Fig. 3 have noticeable and well-defined clusters as compared
to raw and smoothed rates. Generally, clusters are found in the south-west part of
the country, except for HHD that has clusters in the south- and north-east part of
the country. The clusters for CVA and DBT seem to have reduced in size over
the 10-year period under review. In Fig. 3C, for example, CVA01 LISA-derived
clusters comprise 31 municipalities, but these have been more than halved to 16
municipalities in 2011 (see Fig. 4C). The disappearance or movement of the cluster
from the south-east may be due to intervention programmes aimed at alleviating
the problem in the area. However, further investigation may help to explain what is
truly happening, especially with DBT whose data suggest that mortality due to this
disease has increased over the 10-year period under review.

The adjusted rate-based clusters for IHD (see Figs. 3F and 4F) and HHD (see
Figs. 3I and 4I) have not changed much over the period. This shows that the spatial
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Fig. 3 Univariate Moran’s I LISA maps showing the distribution of clusters of raw, smoothed, and
adjusted mortality rates for the year 2001

dynamics of IHD and HHD are stable over the period under study, with IHD “hot-
spots” located in the centre and spanning all the way to the south-west coast of the
country. The LISA analysis for HHD (Figs. 3I and 4I) reveals two clusters in the
south- and north-east part of the country for both the years 2001 and 2011.

6.3 Bivariate Analysis

6.3.1 Bivariate Association of Individual CVD Maps Over Time

It was shown in Table 3 that the geographical variation of mortality due to each
disease is significant over the years and the clusters have been shown in Figs. 3
and 4. It remains to be seen if spatial patterns of each CVD risk are significantly
different for the two time periods under review. These differences or similarities of
the spatial distribution of each disease outcome for the years 2001 and 2011 were
established here using bivariate spatial autocorrelation measures. This will happen
to ascertain any changes in the spatial patterns of individual health outcomes for the
10-year period under review. Bivariate Lee’s L, Moran’s I , and Dray’s H were used
to determine if there is spatial dependence between the health outcome data for the
years 2001 and 2011. Results are shown in Table 4.
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Fig. 4 Univariate Moran’s I LISA maps showing the distribution of clusters of raw, smoothed,
and adjusted mortality rates for the year 2011

All the three indicators of bivariate spatial autocorrelation applied to these data
reveal evidence of spatial dependence for all four health outcomes on how each
outcome is spatially distributed for the years 2001 and 2011. It can, thus, be
concluded that the spatial distribution of the risk of mortality due to each CVD
has not significantly changed over the course of the 10-year period under review.
As expected, the bivariate Moran’s I and Dray’s H show similar results. This
is not surprising as the methods are based on the same derivation. The bivariate
LISA analyses of the combinations in Table 4 derived from the raw, smoothed, and
adjusted rates are presented in Fig. 5.

In Fig. 5F, as an example, observed “hot-spots” are areas of high mortality of IHD
in 2001 whose neighbourhood in 2011 also exhibits high mortality of IHD to form a
co-cluster of high mortality for the two time points in the south-western part of the
country. The CVA and HHD co-clusters are similar and are found in the south- and
north-east part of the country.

6.3.2 Bivariate Spatial Association Between Two CVDs at a Point in Time

We also looked at determining spatial dependency between two different CVDs at
a cross-section. One can hypothesise that CVDs should co-cluster or show spatial
dependency at a point in time as they share risk factors. Table 5 presents the bivariate
association measure values calculated for the possible combinations of the three
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Fig. 5 The raw, smoothed, and adjusted mortality rate-based bivariate Moran’s I LISA maps
between same CVDs for the years 2001 and 2011

CVDs for the years 2001 and 2011 to determine spatial dependence based on raw,
smoothed, and adjusted rates data.

The bivariate Moran’s I and Dray’s H once again showed similar results.
All three methods generally agree, based on the raw and smoothed rates, that
there is no evidence of spatial dependence between all the associations tested.
However, adjusted rate-based tests revealed significant spatial dependence between
the following maps: CVA01 and IHD01; CVA01 and HHD01; and CVA11 and
HHD11. Importantly, DBT was found to have a significant association with all the
three CVDs. This is in line with expectation as DBT is a well-known biomarker for
CVDs. The other associations were either insignificant or their associations were
purely random with a negative Moran’s index. The significant joint local “hot-spots”
of the CVD associations, based on adjusted rate data, are shown in Fig. 6.

Focusing on the most recent 2011 data, it can be seen that the “hot-spots” of
DBT and the three CVDs in Fig. 6F–H are located in the south-west part of the
country. The joint clusters of CVA and HHD for the year 2011 are in the south-
and north-west of the country. The joint clusters of CVA-DBT and IHD-DBT have
reduced in size over the period under review. This may be attributable to intervention
programmes. However, joint clusters of HHD and DBT that were not in existence
in 2001 have formed over the period under review as both the deaths and crude
national rates attributable to the two diseases have increased over the period as was
shown in Tables 1 and 2.
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Fig. 6 The significant adjusted mortality rate-based bivariate Moran’s I LISA map between two
CVDs at a point in time, 2001 and 2011

7 Discussion

In this chapter, we have shown how spatial autocorrelation measures can be used to
determine spatial dependence in health outcomes in South Africa. Global univariate
spatial autocorrelation was used to determine the presence of spatial patterns
in an individual health outcome, followed by the use of local univariate spatial
autocorrelation analysis to determine local municipality clusters of high or low risk
of the outcome. Global and local bivariate spatial autocorrelation were then used
to determine the pairwise co-clustering of all the health outcomes across munic-
ipalities. Determination of joint clusters is more efficient than univariate cluster
analysis since cardiovascular diseases and their risk factors are known to have
similar aetiology (Kandala et al., 2013). Pairwise co-clustering has the advantage
of providing us with more insight into how multiple interrelated health outcomes
interact in space, which is more than what individual spatial autocorrelation can
reveal.

The mortality rates of each of the four diseases studied revealed statistically
significant spatial clustering based on the global univariate Moran’s index of
autocorrelation for raw rates, EB smoothed rates, and Poisson regression-adjusted
rates. However, the residuals of EB rates have significant spatial autocorrelation
for four out of eight health outcomes (IHD01, IHD11, CVA01, and CVA11) with
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significant level greater than 0.05 compared to two (IHD11 and HHD11) for Poisson
regression-adjusted rates. This demonstrates that formal modelling using Poisson
regression-adjusted rates has improved the explanation of the spatial clustering for
most of the cases. Thus our discussion will focus on results involving adjusted rates.

Three global bivariate spatial autocorrelation measures, namely the original
Moran’s I , Lee’s L, and Dray’s H (Anselin et al., 2002; Lee, 2001; Dray et al.,
2008), were used to detect the presence of pairwise co-clustering. They generally
gave similar results and may be used to complement each other, an observation also
made in Darikwa et al. (2019). It is not surprising that the results by the original
and Dray’s H are almost identical, since the latter is just a variant of the former
(Darikwa et al., 2019).

It was shown that the spatial patterns of each CVD risk were not significantly
different for the two time periods under review for all four diseases. These
similarities of the spatial distribution of each disease outcome for the years 2001
and 2011 were established using bivariate spatial autocorrelation measures. This
shows that the spatial distribution of the risk of mortality due to each CVD did not
change significantly between the years 2001 and 2011. Therefore, since the spatial
distribution of the health has been stable over the years, it gives us confidence
that any identified clusters of high risk mortality will still be in existence over
time. Hence, one can plan for interventions in the problematic municipalities with
increased confidence. Focusing on the adjusted data, the “hot-spots” pairwise co-
clusters for CVA and HHD are similar for the 10-year period and are located in the
southern part of the country and north-east of the country. “Hot-spots” co-clusters
for the year 2001 and 2011 data for both IHD and DBT stretch from the centre
of the country westwards. “Hot-spots” co-clusters, in this case, are municipalities
of high mortality rates for a given health outcome in 2011 that are surrounded by
municipalities of high mortality rates of the same health outcome in 2001.

Pairwise co-clustering between the different health outcomes for a given year
were found statistically significant for the following using adjusted mortality
rates: CVA01-IHD01; CVA01-HHD01; CVA11-HHD11; CVA01-DBT01; CVA11-
DBT11; IHD01-DBT01; IHD11-DBT11; HHD11-DBT11. There were no signif-
icant joint clusters between HHD and IHD for the years 2001 and 2011. The
CVA-IHD and CVA-DBT “hot-spots” clusters are the same in 2001, but the co-
clusters of the former have disappeared (not significant) in 2011, while that of the
latter has shrunk in size significantly in 2011. This may be attributed to the fact
that the univariate “hot-spots” clusters for CVA have also significantly reduced in
size between 2001 and 2011. The co-clusters between of CVA and HHD are similar
for the years 2001 and 2011 with “hot-spot” co-clusters found in the south of the
country and in the north-east of the country, in line with the spatial patterns by
the individual CVD conditions for the same period. Joint “hot-spots” clusters for
IHD and DBT are in the south-west part of the country for this period and so are
HHD and DBT clusters for the year 2011. These findings are in line with research
in South Africa that has established the south-western parts of the country as
problematic in as far as cardiovascular diseases are concerned (see Statistics South
Africa, 2009, 2014a; Groenewald et al., 2014; Kandala et al., 2014). “Cold-spots”
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clusters are also important in as far as establishing factors that are protective of
cardiovascular mortality. Generally, the “cold-spots” clusters for CVDs and diabetes
shown in the maps are found in municipalities that on the belt along the south-
eastern boundaries of the country and in the north-east municipalities of the country.
These municipalities are mostly poor rural areas.

Previous research in South Africa have used data that are age-standardised, age–
sex-standardised rates, and Empirical Bayes smoothed rates (Darikwa et al., 2019;
Darikwa and Manda, 2020). But there are other covariates besides age and sex
that help to explain spatial distribution of health outcomes (Chien et al., 2018).
Generalised linear models have been found useful in estimating prevalence/rates
at local level while controlling for additional covariates (Chien et al., 2018). Just
like the global empirical Bayes approach, they can improve on raw rates that may
show instability in areas of small populations. Unlike the global empirical Bayes,
they adjust for additional covariates and can also cater for spatial autocorrelations.
In this chapter, the Poisson regression was used to account for known municipal
level risk factors of CVDs, namely age, race, and poverty. This helps to improve
estimates of the mortality rates by factoring in more explanatory variables. The
Poisson-adjusted rates managed to detect co-clustering where the EB smoothed
rates and raw rates failed, especially regarding spatial dependency of diabetes and
the other three CVDs. Co-clusters developed in this study may be viewed as a first
approximation that may be improved on as more information on additional covari-
ates are incorporated and different estimation models are developed/considered and
implemented.

This chapter has explored the use of multivariate spatial autocorrelations in
identifying co-clusters of high-risk health outcomes. Identified co-clusters may be
used as target areas in prioritising limited resources in the fight against problematic
interrelated health outcomes. Identified co-cluster means that are efficiently utilised
as two or more health outcomes are targeted simultaneously, instead of one at a
time. Such an integrated approach will ensure resource allocation is optimised while
fighting multiple diseases at the same time, which may result in minimised costs.
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Bivariate Copula-Based Spatial
Modelling of Health Care Utilisation in
Malawi

Ellen Gondwe, Michael G. Chipeta, and Lawrence Kazembe

Abstract In health care utilisation, multiple correlated data are common. Quanti-
fying dependencies among interrelated variables is an important statistical problem,
particularly to account for the nature of their association. Copula models permit
a flexible approach to modelling dependence in interrelated outcome variables.
However, their applications are common when dealing with multivariate continuous
variables. Copula estimation with discrete or mixed outcomes is growing but
faces challenges of non-uniqueness of copulas that makes interpretation of results
difficult. In this chapter, we develop Bayesian copula models for analysing mixed
continuous and discrete response in antenatal care (ANC) utilisation. In particular,
we constructed three joint models, first to analyse the distribution of mixed binary-
continuous data, a second for a mixture of a count and continuous variables, and a
third for a discrete set of count and binary variables. The following type of margins,
corresponding to the bivariate set of outcomes, were assumed: a Bernoulli and a
gamma for the bivariate-continuous outcomes, a gamma and positive Poisson for the
count and continuous outcomes and a Bernoulli and Poisson for the binary and count
mix. Then, a flexible Matern-family model is added to capture spatial heterogeneity
at district level. The models are applied to study ANC utilisation among Malawian
women using the 2015 Malawi Demographic and Health Survey (MDHS) data,
drawn using a stratified cross-sectional survey design. Results demonstrate that both
individual and contextual factors are important in determining factors influencing
use of ANC. The results also showed very strong spatial variation in the timing
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of first antenatal visit, frequency of use as well as access to the nearest health
facility across the country. Any planning to promote the use of health care must
be programmed to enhance both targeted interventions for improved health care and
for accelerated achievement of sustainable development goal number 3.

Keywords Bivariate mixture models · Copula-based regression · Antenatal
care · Gaussian copula · Frank copula · Student-t copula · Martèrn correlation
function · Spatial variation · Malawi DHS · Multivariate distribution · Clayton
copula · Generalised linear model · Generalised joint regression model ·
Smoothing · Gaussian markov random field · Isotropic · Maternal health ·
Clustering · Spatial dependency · Health care utilisation

1 Background

Health care (HC) utilisation is the measure of the population’s use of the health care
service available to them. Good utilisation of health care services serves to improve
the health status of the population. According to World Health Organization (WHO)
report, Malawi health system ranks number 185 out of 190 of the world’s health
systems (WHO, 2016). Malawi’s Ministry of Health is responsible for health care in
Malawi and out of the health services that are provided in Malawi, 62 % of them are
provided by the government, 37 % are provided by the Christian Health Association
of Malawi (CHAM), and a small fraction of the population receive health services
through the private Sector (Makwero, 2018). Health care services must be available
to all to ensure that healthy lives and promote well-being for all at all ages, which
is a sustainable development goal (SDG) number 3, must be acceptable and of high
quality in addition to being an accessible distance or travel time and cost. In most
developing countries like Malawi, where the burden of ill health is greatest, adequate
information on the location of populations, health services facilities must always be
there to give a picture on how people utilise health.

Antenatal care (ANC) is one of the maternal health care services provided by
skilled health care professionals to pregnant women and adolescent girls in order
to ensure the best health conditions for both mother and baby during pregnancy
(WHO, 2010). WHO recommends that every pregnant woman should have at least
four antenatal visits during pregnancy and should seek ANC within the first 3
months of pregnancy. The health care that a mother receives during pregnancy is
important for the survival and well-being of both the mother and child (Amentie
et al., 2015). Despite progress being made in many countries in increasing the
availability of maternal health care, more women across Africa do not fully utilise
the care (Panel, 2010). WHO estimates that more than half a million women lose
their lives in the process of reproduction worldwide every year, and most of these
mortalities can be avoided if mothers have access to maternal health care services
(Zelalem Ayele et al., 2014). For every maternal death, an estimated 30 to 50 women
suffer pregnancy-related healthy problem such as vesicovaginal fistulate, infertility
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and depression, which could have been avoided if the required ANC visits were
achieved (Amentie et al., 2015).

Timing of ANC visits is an appropriate time for one to be aware of signs and
symptoms of pregnancy complications, which in turn leads to timely access to
appropriate care (Gidey et al., 2017). Early antenatal care attendance during the first
3 months of gestation plays a major role in detecting and treating complications
of pregnancy and forms a good basis for appropriate management during delivery
and after childbirth. Initiating ANC early may help to prevent stillbirths in term
pregnancies (baby born within 37–42 weeks of pregnancy) by preventing labour
complications through early referral to skilled birth attendants (Yakoob et al., 2010).
Receiving ANC during pregnancy has a positive effect on the utilisation of postnatal
health care services, which reduces the odds of neonatal deaths. Postnatal health care
is a means of providing follow-up care to newborns and provides an opportunity to
check all newborns and the mother for illnesses that may have arisen from the time
of birth for the first 6 weeks or so (WHO, 2016).

Understanding relationships among multiple health outcomes is fundamental to
improving utilisation and access by the population. The Malawi Health Strategic
Plan (2017–2022) highlights the need to promote utilisation of HC services.
Particularly, antenatal care is one of the most effective health intervention for
preventing maternal morbidity and mortality especially in areas where the general
health status of a woman is poor. Most maternal mortalities and disabilities are due
to direct complication, which are avoidable if women can get adequate and timely
antenatal delivery and post delivery services (Zelalem Ayele et al., 2014).

Joint analysis of ANC visits and timing at first visit is of importance as the ANC
visits alone cannot meet the required number of visits recommended by WHO, and
timing at first visit can have a contribution to the number of visits a woman can
have during the pregnancy period. This means that frequency of ANC visits would
largely depend on when the woman started the first visit and late timing may lead
to less number of ANC visits, hence allowing to establish the association between
these outcomes. Copula models permit a flexible approach to modelling dependence
in interrelated outcome variables. Studying patterns of HC utilisation may assist
in identifying where resources need to be targeted. Copula-based approaches have
proven to be particularly suitable for modelling data showing departures from
multivariate normality. Copulas allow us to model separately the marginals from
the dependence structure and the use of different copula families. The literature of
copula applications is vast. For environmental, actuarial and financial applications,
see, for example, Christian Genest (2007), Patton (2006), Jondeau and Rockinger
(2006), Umberto Cherubin (2004), among others. A detailed overview and their
properties is given by Joe (1997) and Nelsen (2007)

We propose a bivariate mixed outcomes spatial model, which extends the
approach introduced by Kazianka and Pilz (2010) and Kazembe (2019). We
demonstrate the usefulness of our approach to ANC utilisation, focussing on
timing of ANC and number of ANC visits. Particularly, we considered three types
of margins: first, a binary-continuous pair, a second a mixture of a count and
continuous variables and a third for a discrete set of count and binary variables,
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which departs from the gamma and truncated Poisson marginals approach applied
by Kazembe (2019).

The rest of the chapter is organised as follows: Sect. 2 introduces the bivariate
copula spatial model, Sect. 3 discusses copula-based spatial methods, Sect. 4 is
devoted to the ANC application and Sect. 5 is the concluding discussion.

2 Copula-Based Methods

2.1 General Copula Theory

Copulas are functions that separate the marginal distributions from the dependency
structure of a given multivariate distribution (Sklar, 1996). Copulas are basically the
multivariate distribution function of uniformly distributed random variables on the
interval [0, 1]. Copula modelling became widely adopted in the twenty-first century,
applied in many fields, but most famously used in finance and insurance to model
default correlations (Embrechts, 2009; Chen et al., 2015). They are increasingly
being applied in health applications, including health care utilisation (Quinn, 2007).

Let F(Y 1, Y 2) be joint distribution function of random variables Y1 and Y2
whose distributions F1(Y1) = P(Y1 ≤ y1) and F2(Y2) = P(Y2 ≤ y2) are either
continuous, discrete or a combination. Sklar’s theorem states that there exists a
unique Copula function C (·, ·) such that

C(Y1, Y2) = F(F−1
1 (Y1), F

−1
2 (Y2)), Y 1, Y 2 ∈ [0, 1]. (1)

As an extension to spatial context, let Fz, z ∈ D ⊂ R
2 denote the distribution

of the random isotropic and stationary process (i.e. constant mean at each location
xi and covariance is only a function of distance between locations xi) (Bárdossy,
2006). The relation between two locations separated by the vector h is characterised
by the bivariate distribution:

P(Z(x) ≤ z1, Z(x + h) ≤ z2) = Ch(FZ(z1), FZ(z2)), (2)

whose dependence structure is described by the copula Ch. In this case, the copula
becomes a function of the separating vector h (or the separating distance h := ||h||
if the random field is isotropic) and does not depend on the location x.

There are several copula functions that can be used in modelling. Radice et al.
(2016) and Hasebe (2013) presented some of the common copula functions which
are used in this study. The copula functions are summarised in Table 1. Gaussian
copula and Student-t copula are examples of implicit copulas, which do not have a
closed form and are mostly used in multivariate distribution function (Aas, 2004).
In Table 1, θ is the dependence parameter. The Student-t dependence introduces an
additional parameter compared to the rest of the copulas which is called the degree
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Table 1 Summary of selected copula functions

Copula type Function c(u, v) θ—domain

Student
t-copula

t−1
θ1

(u)
∫

−∞
. . .

t−1
θ1

(v)
∫

−∞
1

2π(1 − θ2
2 )

1
2

(
1 + s2 − 2θ2st + t2

θ1(1 − θ2
2 )

) (θ1+2)
2

dsdt θ1, θ2ε[−1, 1]

Frank −θ−1log{1 + (e−θu − 1)(e−θv − 1)

eθ − 1
} θε(−∞,∞)

Clayton (u−θ + v−θ − 1)
−1
θ θε(0,∞)

Gaussian �2(�
−1(u), (�−1(v); θ) θε[−1, 1]

of freedom. This means that for a student t copula, θ1 is the parameter of the copula
and θ2 is the degrees of freedom. The Student-t copula allows for joint extreme
events but not for asymmetries and may be too restrictive to provide reasonable
fit for asymmetries. In this case, a clayton copula that is asymmetric might be a
better choice. Clayton copula is one of the explicit copulas which are not derived
from a multivariate distribution function but do not have simple closed form (Radice
et al., 2016; Hasebe, 2013). Perfect dependence from a clayton copula is obtained
if θ → ∞, while θ → 0 implies independence. For more of copula theory, refer to
(Nelsen, 2007).

2.2 Marginal Regression Models

We develop a bivariate model of three mixed outcomes with marginals following a
Bernoulli and Gamma Generalised Linear Models (GLMs), a Gamma and Poisson
GLMs and lastly a Bernoulli and Poisson GLMs. The Bernoulli GLM represents
whether the four focal number of ANC visits occurred or not (Yi1). The Gamma
GLM represents the average time it takes for a pregnant woman to visit ANC (Yi2),
while the Poisson GLM represents the number of ANC visits (Yi3).

Suppose (Yi1), (Yi2) and (Yi3) are independent random variables for women i =
1, . . . , n, and then the marginal GLM’s are given as

Yi1 ∼ Bernoulli(μi1) with ln(
μi1

1−μi1
) = X′

iϑ

Yi2 ∼ Gamma(μi2, ν
2) with ln(μi2) = Z′

iα

Yi3 ∼ Pois(μi3) with ln(μi3) = ln(Ei) + H′
iβ

where X, H and Z are distinct or similar set of covariates, with ϑ , α and β

corresponding regression associated with discrete Yi1, Yi3 and continuous Yi2,
respectively, modelled on the meansμi1 = E[Yi1],μi2 = E[Yi2] andμi3 = E[Yi3].
To account for the expected length of time a visit will occur among a group of
pregnant women, we included the offset ln(Ei) in a Poisson model.

The number of antenatal visits categorised into two, i.e. less than 4 visits and at
least 4 visits, has Bernoulli density given by
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f (y1) = μ
yi1
i1 (1 − μi1)

1−yi1 (3)

where y1 = 0 or 1.
The average length of time Yi2 has a density

fy2(yi2|μi2, ν
2) = 1

�( 1
ν2 )

(
1

μi2ν2 )
1
ν2 y

1

v2
−1

i2 exp{− 1

μi2ν2 yi2} (4)

such that Var[Yi2] = μi2, ν
2 for some parameter ν, which is estimated in the

marginal gamma GLM through
E[Yi2]√
V ar[Yi2] . It has to be noted that a visit has to

occur first, and then cumulative visits follow. As such the total number of visits
considered in this model is only positive counts, hence a density of Poisson given
by

fy3 = μ
yi3
i3

yi3!(1 − e−μi3)
e−μi3 (5)

for yi3 = 1, 2, . . .

3 Copula-Based Spatial Methods

Our focus is on analysing spatial area-referenced data, where Y 1, . . . , Y n constitute
observed summaries in each area, i = 1, 2, . . . , n. Conditional autoregressive
(CAR) models are mostly used to analyse areal-aggregated spatial data. Further-
more, regression models are commonly fitted with one response variable and a
set of covariates (Filippou et al., 2019). However, multiple response variables can
also be fitted. Joint regression models can be applied to continuous, discrete and
mixed correlated outcomes. The most common choice for bivariate outcomes is the
Gaussian copula given by

C(u1, u2|ρ) = �2(�
−1(u1),�

−1(u2)). (6)

The dependency in Eq. (6) has been captured using a bivariate Gaussian cop-
ula cumulative distribution function C(u1, u2|ρ), where u1 and u2 are random
variables, � is the standard normal distribution and �2 is the standard bivariate
normal distribution, with dependence parameter ρ. Song et al. (2009) pointed out
that Gaussian copula is an exception because of its flexible dependence structure.
Copula dependence and marginal parameters can easily be estimated through the
Gaussian method. Each parameter depends on the joint model predictor including
different types of covariate effects such as linear, non-linear, random and spatial
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effects (Marra and Radice, 2017). A joint cumulative distribution function (CDF) of
two response variables Y1 and Y2 can be expressed as

F(y1, y2) = C(F1(y1u1, σ1, v1), F2(y2u2, σ2, v2); ξ, θ) (7)

where

(u1, σ1, v1, u2, σ2, v2, ξ, θ)
T , F1(y1|u1, σ1, v1) and F2(y2|u2, σ2, v2)

are marginal CDFs of Y1, Y2 and um, σm and vm for m = 1, 2 are marginal
distribution parameters, C is a defined 2-place copula function with dependence
coefficient θ and ξ is the number of degree of freedom (Marra and Radice, 2017).

The correlation function of the Gaussian spatial process could be used to specify
well-structured spatial dependency models. Equally important, the use of Gaussian
process is compatible with the rich literature on spatial modelling and incorporates
the popular basic spatial random effects model as a special case (Banerjee et al.,
2008). The Gaussian copula process is specified as follows: let Ui = �(Z(si)),
where �() is the cumulative distribution function (CDF) of N(0, 1). We define

Z(si) = W(si) + ε(si),W(s) ∼ GP(0, αρ(s, s′; (ν, ϕ))), ε(si) iid−→ N(0, 1 − α)

(8)
where ρ(, ; (ν, ϕ)) can be any valid correlation function with smoothness parameter
ν and decay parameter ϕ. The process W(s) captures structural spatial association,
while ε(s) is uncorrelated pure error. The parameter α ε[0, 1] determines the
proportion of variation that is spatially structured. We adopt the Matérn correlation
function to calculate correlations from distances. The Matérn function describes
realisations of Gaussian spatial processes with smoothnesses (Pulang and Bhadra,
2022; Guttorp and Gneiting, 2006). In terms of joint modelling, a maximum
likelihood approach is used as it can combine random effects.

4 Application to Antenatal Care Data

4.1 Methodology

The study used secondary data, which was collected from the 2015–2016 Malawi
Demographic Health Surveys (MDHS), which included Global Positioning System
(GPS) coordinates information by the Malawi National Statistical Office and
the Malawi Ministry of Health. The cross-sectional survey data were collected
between the 19 October 2015 and 17 February 2016. Maternal health data for
9228 reproductive women from 15 to 49 years were used to jointly model the
number of antenatal care (ANC) visits a woman has and the timing at her first
antenatal visit in the 9-month period of pregnancy. All women residing in the same
cluster have the same geo-reference location. To protect the confidentiality of DHS



268 E. Gondwe et al.

survey respondents, the geo-located data are displaced before being provided to
the researchers such that urban clusters are displaced up to 2 km and rural clusters
up to 5 km (Burgert et al., 2013; Warren et al., 2016). Permission to use the
data was granted by the Measure DHS programme. Data include demographics,
socio-economic determinants and location data. Analysis was done in open-source
statistical environment R 3.6.1 (R Core Team, 2019)

4.2 Bivariate Copula Spatial Modelling

We jointly model two health outcomes; frequency of antenatal care visits and timing
at the first antenatal visit. Three joint models are constructed, first to analyse the
distribution of mixed binary-continuous data, a second for a mixture of a count and
continuous variables and a third for a discrete set of count and binary variables.
The following type of margins, corresponding to the bivariate set of outcomes, are
assumed: first we assume a Bernoulli for achieving focused antenatal care or not and
a gamma for timing of first antenatal visit giving the bivariate discrete-continuous
outcomes, second set of marginals assumed are a gamma for frequency of visits and
positive Poisson for the counts, which presents a and continuous-discrete paired set
of outcomes, and third assumption is to have a Bernoulli and Poisson marginals for
the binary and count mix. To perform a flexible spatial modelling at district level,
copula was applied to account for spatial dependency and spatial distribution.

The study used Generalised Joint Regression Model and the function gjrm in
R statistical software environment. Generalised Joint Regression Model (GJRM)
implements a flexible joint modelling framework for fitting a number of multivariate
response regression models under various sampling schemes (Marra and Radice,
2017). The framework allows both Gaussian and non-Gaussian dependencies
through the use of copula. The copula model used areal data to account for
spatial dependence and spatial regression inference. Areal data are known to be
neighbours as they share a common boundary making it necessary for joint analysis
(Bivand et al., 2013). To account for geographic clustering of antenatal care, a
Markov random field approach was employed to exploit the information contained
in neighbouring observations which are located in the same district.

Variable district was fitted as an unstructured random effect in the model. A
Gaussian Markov random field assumes that a random variable associated with a
certain region depends primarily on its neighbours.

Let the neighbours Ni to a point si be the points sj , j ε Ni that are “close” to
si . A Gaussian random field x ∼ N(μ,�) that satisfies

p(xi |xj �= i) = p(xi |xj : j ε Ni) (9)

is a Gaussian Markov random field.
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Smoothing was also applied to the model for complexity. The smoothing penalty
is based on the neighbourhood structure of the geographic units, so that spatially
adjacent regions share similar effects. Districts were applied as smooth function to
model spatial effects.

The equation in general is defined as

yxi = vTxiγ x + �
Kx

kx=1sxkx (zxkxi), i = 1, . . . , n,∀x = 1, 2 (10)

where n is the sample size, yxi is a latent continuous variable, vTxi contains binary
and/or categorical predictors, γx is the vector that represent the effect of the variable
in vxi , zxkxi denotes the kthx sub vector of the complete covariate vector zxi
containing binary, categorical and spatial variables and K functions and sxkx (zxkx i)

represents the generic effects of the smoothing function depending on the type of
covariates that are considered. The latent variable determines the outcome variables
(Marra and Radice, 2017). In the equation x = 1, 2 is the number of outcome
variables, and in this case, 1 is for frequency of ANC visits and 2 is for timing at
first visit. Equation (10) is then further extended to include

s(x, bs="mrf", xt=xt, k=7)

where x is a factor variable, in this case districts, k is the number of folds and mrf

stands for Markov random field. The neighbourhood structure information is stored
in an object xt , which is then used in specification of the Gaussian Markov random
field smoother. Based on the 2015 MDHS data, there are 28 geographic districts
in Malawi. This allowed us to use the information contained in the neighbouring
observation that is located in the same country as spatial pattern suggests that areal
observations close to each other are more similar than those that are far from each
other. The two outcomes in this chapter are the frequency of antenatal visit and
timing at first visit whose margins are Bernoulli and gamma, respectively, which
includes spatial effects.

4.3 Results

Description of Key Variables
Variables in the analysis include age of a woman, region, place of residence, sex of
household head, frequency of listening to radio, frequency of reading newspaper,
if the woman is currently working, timing at first visit, household wealth status,
the number of antenatal care visits, education level, if a woman ever terminated
pregnancy before and whether she wanted the pregnancy. The two outcomes of
interest are timing at first visit and the number of antenatal visits, i.e. whether



Table 2 Characteristics of the study participants

Visit Frequency

Variable < 4 visits [N(%)] ≥ 4 visits [N(%)] Total [N(%)]

All 4361 4867 9228

Age
15–21 803 (18) 757 (16) 1560 (17)

22–28 1618 (37) 1711 (35) 2329 (36)

29–35 1206 (28) 1516 (31) 2722 (30)

36–42 600 (14) 698 (14) 1298 (14)

43–49 134 (3) 185 (4) 319 (3)

Region
Central 1610 (37) 1881 (37) 3491 (38)

Northern 775 (18) 867 (18) 1642 (18)

Southern 1976 (45) 2121 (44) 4095 (44)

Residence
Rural 3801 (87) 3999 (82) 7800 (85)

Urban 560 (13) 868 (17) 1428 (15)

Household head sex
Female 1141 (26) 1303 (27) 2444 (26)

Male 3220 (74) 3564 (73) 6784 (74)

Radio listening
≥ once a week 1271 (29) 1639 (34) 2910 (32)

< once a week 767 (18) 893 (18) 1660 (18)

Not at all 2323 (53) 2335 (48) 4658 (50)

Reading newspaper
≥ once a week 1271 (29) 1639 (34) 2910 (32)

< once a week 767 (18) 893 (18) 1660 (18)

Not at all 2323(53) 2335 (48) 4658 (50)

Education
No education 570 (13) 527 (10) 1097 (12)

Primary 2921 (67) 3095 (64) 6016 (65)

Secondary 822 (19) 1085 (22) 1907 (21)

Higher 48 (1) 160 (3) 208 (2)

Wealth Index
Poor 1054 (24) 1007 (21) 2061 (22)

Poorer 969 (22) 974 (20) 1943 (21)

Middle 892 (21) 952 (19) 1844 (20)

Richer 825 (19) 907 (19) 1732 (19)

Richest 621 (14) 1027 (21) 1648 (18)

Terminated pregnancy
Yes 452 (10) 548 (11) 1000 (11)

No 3909 (90) 4319 (89) 8228(89)

(continued)
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Table 2 (continued)

Visit Frequency

Variable < 4 visits [N(%)] ≥ 4 visits [N(%)] Total [N(%)]

Wanted pregnancy
Later 1448 (33) 1369 (28) 2817 (31)

No more 582 (13) 606 (12) 1188 (13)

Then 2331 (53) 2892 (59) 5223 (57)

Timing at first visit
1st trimester 503 (12) 1903 (39) 2406 (26)

2nd trimester 3335 (70) 2923 (60) 6258 (68)

3rd trimester 523 (12) 41 (1) 564 (6)

Currently working
Yes 4066 (93) 4578 (94) 8644 (94)

No 295 (7) 290 (6) 585 (6)

one has less than 4 visits or more than or equal to 4 visits. Table 2 shows the
description of the variables that were used in the study. The choice of the covariates
was based on the studies by Machira (2017); Oladipo (2014) as they were shown
to be significant determinants of maternal health care utilisation. Out of the 9228
women, 47% of them had less than four visits and 53% had more than or equal to
four 4 visits. Of the total, 85% were from rural areas and 15 % were from urban.

Modelling
Different copula models were fit to identify one that best fits the data at hand. Four
of the commonly known copula models were identified which include Gaussian,
Clayton, Frank and Student-t . Table 3 shows performance results from the selected
copulas together with their akaike information criterion and the dependence measure
θ . In the table, θ is the dependence measure, δ2 is the variance and τ is the kendal’s
tau value. From the table below, the preferred copula model is the Student-t since
it has the lowest Akaike Information Criterion (AIC) of 41191.38. The Student-t
copula showed a dependence measure of −0.58, and 95% confidence interval ranges
from −0.60 to −0.563. The best copula was therefore fitted to the data for further
analysis.

Table 4 shows a summary of Student-t performance on the three different
marginal combination. The estimated dependence measure in all the three models
showed a negative dependence between frequency of antenatal care visit and timing
at first visit. Based on the AIC results, the best fitting model to the data (joint
outcomes) is the Bernoulli–Gamma marginal combination, with the lowest AIC of
41028.
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Table 3 Copula functions performance

Model df AIC δ2 (95% CI) θ (95% CI) τ (95% CI)

Gaussian 50 41290.6 0.087 −0.544 −0.0367

(0.084, 0.089) (−0.57,−0.53) (−0.383,−0.354)

Clayton 50 43253.24 0.086 0.001 0.001

(0.084, 0.089) (0.001, 100) 0.001, 0.98)

Frank 50 41224.85 0.087 −3.6 −0.358

(0.085, 0.089) (−3.76,−3.46) (−0.37,−0.346)

Student-t 50 41191.38 0.087 −0.58 −0.39

(0.085, 0.089) (−0.60,−0.563) (−0.411,−0.38)

List of abbreviations
df = Degree of freedom
AIC = Akaike Information Criterion
CI = Confidence Interval

Table 4 Summary of Student-t copula performance on three different marginal combination

Model df AIC θ (95% CI)

Bernoulli–Gamma 57 41,028 −0.580(−0.596,−0.556)

Bernoulli–Poisson 58 44,633 −0.745(−0.759,−0.731)

Poisson–Gamma 57 60,645 −0.707(−0.717,−0.696)

List of abbreviations
df = Degree of freedom
AIC = Akaike Information Criterion
CI = Confidence Interval

4.4 Bivariate Model Results

By the time MDHS 2015–2016 was conducted, Malawi was still following WHO
recommendation that every pregnant woman should have at least 4 antenatal care
visits during pregnancy period. In line with this, we recode frequency of antenatal
care visit as binary variable, indicating whether one has less than 4 or at least 4
visits as recommended by the world Health Organization (WHO) during the time
these data were collected. The joint outcomes were modelled and copula estimates
were obtained.

The results in Table 5 show that the covariates which were seen to be significant
with ANC visits (those that have their p-values less than 0.05) were region,
educational level, age of a woman, wealth index, if a woman ever terminated
pregnancy, place of residence and if the woman wanted the pregnancy. Similarly,
covariates that were seen to be significant with timing at first visit (those that have
their p-values less than 0.05) were region, educational level, age of a woman,
whether a woman was working or not and wealth index. The Bernoulli–Gamma
model showed a dependence measure of −0.58 with a 95 % confidence interval



Table 5 Spatial copula model estimates for Bernoulli–Gamma margins

ANC visits Timing at first visit

Parameter Estimate Std error p-value Estimate Std error p-value

Intercept −0.020 0.114 0.858 1.567 0.0278 < 0.001

Region: Ref.=North

Central −0.301 0.092 0.001 −0.042 0.021 0.045

South −0.234 0.118 0.048 −0.046 0.027 0.093

Education: Ref.=None

Primary 0.099 0.044 0.023 −0.012 0.010 0.217

Secondary 0.162 0.054 0.002 −0.030 0.012 0.015

Tertiary 0.577 0.111 < 0.001 −0.156 0.024 < 0.001

Age (years):Ref.=15 - 21

22–28 0.014 0.038 0.718 0.0112 0.010 0.244

29–35 0.131 0.041 0.001 0.019 0.011 0.041

36–42 0.130 0.050 0.010 0.035 0.012 0.003

43–49 0.329 0.082 < 0.001 0.025 0.019 0.180

Working: Ref.=No

Yes 0.084 0.054 0.126 −0.035 0.013 0.010

HH: Ref.=Male

Female 0.052 0.031 0.095 0.003 0.007 0.716

Wealth: Ref.=Poorer

Poor 0.040 0.040 0.316 −0.015 0.009 0.107

Middle 0.067 0.0413 0.1240 −0.023 0.010 0.019

Richer 0.052 0.041 0.243 −0.024 0.010 0.022

Richest 0.198 0.055 < 0.001 −0.055 0.013 < 0.001

Residence: Ref.=Rural

Urban 0.087 0.044 0.047 0.010 0.010 0.312

Radio: Ref.=No

< a week 0.067 0.037 0.072 −0.001 0.01 0.863

≥ once a week 0.062 0.032 0.055 −0.015 0.008 0.052

Newspaper: Ref.=No

< a week 0.001 0.044 0.984 0.009 0.010 0.355

≥ once a week 0.029 0.055 0.589 −0.024 0.013 0.062

Evertempreg: Ref.=No

Yes 0.035 0.042 0.433 −0.008 0.009 0.367

Wantedpreg: Ref.=T hen

No more −0.159 0.044 < 0.001 0.044 0.010 < 0.001

Later −0.145 0.029 < 0.001 0.045 0.007 < 0.001

List of abbreviations
HH = Household head
Radio = Listening to radio
Newspaper = Reading news paper
Evertempreg = Ever terminated pregnancy
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of (−0.595,−0.565). The estimated dependence parameter from the joint model
supports the hypothesis that those who are most likely to have more number of
antenatal visits are those who are likely to have their first visit during the first
trimester as it showed a negative dependency.

Mother’s education is seen to be significant in both models. The estimates suggest
that women with primary education were more likely to have more than or equal to
4 visits and would attend the first ANC visit early in the pregnancy, with an estimate
of 0.014 (p-value 0.023) than those with no education. A similar trend was observed
with increasing levels of education, secondary education (0.162, p-value 0.002) and
tertiary (0.577, p 0.001).

Results indicate that age was associated with frequency of ANC visits and timing
at initial visit. Older mothers were more likely to achieve at least 4 ANC visits
(0.329, p-value 0.001) compared to reference category of young mothers aged 15–
21 years.

Family wealth status was shown to be positively associated with both increased
number of ANC visits and early initiation of ANC. Women from richest households
were more likely to have at least 4 visits (0.198, p-value 0.001) and early start on
ANC (-0.055, p-value 0.001)

Women who no longer wanted the pregnancy were less likely to achieve at
least 4 ANC visits (-0.159, p-value 0.001). Similarly, women who wanted to get
pregnant later were shown to have low ANC visit frequency (-0.145, p-value 0.001).
However, in terms of ANC initiation, women who did not want pregnancy tended to
initiate early in time (0.044, p-value 0.001). Similarly, a woman who later wanted
the pregnancy has a bit high chances (0.007, p-value 0.001) of initiating the antenatal
care visit late than the woman who wanted the pregnancy then.

Estimates show that women from central region and southern regions were less
likely to have at least 4 ANC visits by 0.301 (p-value 0.001) and 0.234 (p-value
0.048), respectively, than women from the northern region. Region was seen to be
significant in explaining a woman’s timing at her first visit, and estimates show that
women from central region were more likely to have a first visit late with an estimate
of 0.021 than women from the north. Similarly, women from southern region are
more likely to start their first visit late with an estimate of 0.027 than those from the
north.

Place of residence was seen to be significant with antenatal care visit. Estimates
show that women from urban are more likely to have more ANC visits (0.087 p-
value 0.047) than those from the rural areas. Similarly, results from Poisson-Gamma
and Bernoulli-Poisson combinations shows similar pattern; see Tables 6 and 7 in the
appendix.
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4.5 Spatial Variation Across Malawi

This subsection presents high-resolution maps for antenatal visit and timing at first
visit. Figure 1 shows district spatial variation of ANC visits across the country.
The p-value of the smooth function equation less than 0.001, which showed to be
significant in explaining the spatial dependence. In Fig. 1, geographical locations
show to have contributed to variations in ANC visits frequency across the country.
Districts with lighter shade simply means that there is a higher utilisation of
ANC compared with the darker shades. The darker the shade, the lower the ANC
utilisation. In both Figs. 1 and 2, s(dist_code, 5.75) simply means the smooth
district function that was used in the model. Chitipa, Karonga and Rumphi have the
lowest ANC utilisation while Mzimba, Nkhatabay, Nsanje, Chikwawa, Mwanza and
Blantyre has a moderate spatial variation. Most districts in the central region show
a higher ANC utilisation. However, Phalombe shows the highest ANC utilisation.
Most parts of the northern region of Malawi showed to have the lowest ANC
utilisation.

Fig. 1 Spatial variability for
ANC visits frequency:
Chitipa (1), Karonga (2),
Rumphi (3), NkhataBay (4),
Mzimba (5), Nkhotakota (6),
Kasungu (7), Mchinji (8),
Ntchisi (9), Dowa (10),
Lilongwe (11), Salima (12),
Dedza (13), Mangochi (14),
Ntcheu (15), Machinga (16),
Balaka (17), Neno (18),
Blantyre (19), Zomba (20),
Mwanza (21), Chikwawa
(22), Thyolo (23), Chiradzulu
(24), Mulanje (25), Phalombe
(26), Nsanje (27) and Likoma
(28)
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Fig. 2 Spatial variability for
timing at first visit; Chitipa
(1), Karonga (2), Rumphi (3),
NkhataBay (4), Mzimba (5),
Nkhotakota (6), Kasungu (7),
Mchinji (8), Ntchisi (9),
Dowa (10), Lilongwe (11),
Salima (12), Dedza (13),
Mangochi (14), Ntcheu (15),
Machinga (16), Balaka (17),
Neno (18) Blantyre (19),
Zomba (20), Mwanza (21),
Chikwawa (22), Thyolo (23),
Chiradzulu (24), Mulanje
(25), Phalombe (26), Nsanje
(27) and Likoma (28)

Figure 2 shows district spatial variation of timing at first visit. The p-value of
the smooth function equations was less than 0.001, which showed to be significant
in explaining the spatial dependence. Geographical locations showed to have
contributed to variations in timing at first visit across the country. Women from
Phalombe show to have started their first visit late, and Nkhatabay, Mzimba,
Nkhotakota, Mulanje, Ntchisi, Dowa and Salima women show to have started their
first ANC visit a bit early. Women from Mchinji show to have started their first visit
very early followed by Karonga, Chitipa, Nsanje and Chikwawa.

Discussion
The results from the joint model shows that region, educational level, age of a
woman, wealth index and sex of household head were significant with antenatal
care visits and timing at first visit. In addition to that, if a woman ever terminated
pregnancy, exposure to radio, place of residence and if the woman wanted the
pregnancy were also significant with antenatal care visits and timing at first visit.
These results are similar to studies done by Tekelab et al. (2019) and Gupta et al.
(2014). Both studies showed that education level, planned or wanted pregnancy
were associated with the number of antenatal visits. Education is likely to increase
individual’s awareness of health care services and the benefits of initiating antenatal
care early in turn having the required number of visits. Educated women usually
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have a greater awareness of the existence of ANC services and the advantages of
using such services (Efendi et al., 2017). They are more aware of health problems,
know more about the availability of health care services and utilize the information
more effectively than non-educated women (Zhao et al., 2012).

According to Roberts et al. (2017), mother’s education was the most consistent
and important determinant of the use of child and maternal health services which
is also similar to the study by Ajayi and Osakinle (2013), which showed that
respondent with no education was 1.9 times less likely to have the required number
of visits. Those with the highest level of education were 1.3 times more likely to
have an increase in the number of ANC visits.

In the joint model, estimates showed that the place of residence is significant
with ANC visits. This concurs with a study by Edward (2011), which looked at
factors influencing the utilisation of antenatal care in Uganda. The study showed
that location differences are revealed to be significant in influencing the utilisation
of antenatal care content. Being in the rural area, compared to one in the urban
area, reduced the utilisation of antenatal care by 0.3 (p < 0.01) to 0.4 (p< 0.01)
percentage points.

Despite the introduction of free maternal health care in recent times, results show
that the level of ANC attendance increases with increase in wealth. This finding is
similar to a study done by Gebremeskel et al. (2015), which showed that women
with low monthly income had higher odds of late antenatal care attendance, hence
less number of visits. This is also consistent with a study conducted in Laos by Ye
et al. (2010), which found that women with higher income are more likely to utilise
antenatal services than those with less income. This may be the case since rich or
wealthy people have all the resources to be used for instance, if the hospital where
the woman attends her ANC is far from her home, to the rich it is easier to find their
way to the hospital since the transport would always be there. Unlike the poor if
they do not have any means of transport that might hinder the attendance of ANC
and may end up having a less number of visits due to lack of transport.

High-resolution spatial maps showing ANC utilisation reveal that there is spatial
variation across the districts in the country. Most part of the northern region of
Malawi showed to have the lowest utilisation of antenatal care. The central part
of Malawi is a bit flat with well-connected roads, and the southern part has a lot of
mountains which could also lead to the variation in accessing antenatal care. The
spatial variation of ANC visits and timing at first visit could also be as a result
of having health facilities far from the place of residence due to its geographical
setup. Distance to the nearest health facility has proven to be an obstacle in utilising
antenatal care services. Ali et al. (2018) revealed a very strong association between
distance and attendance of ANC. In most cases, distance has been identified as an
important barrier to the use of health services, especially in rural areas (Noorali
et al., 1999). Kambala et al. (2011) also identified long distances to access health
centres as one factor that hinders pregnant women to use antenatal clinics (ANC),
delivery and postnatal care in Chikhwawa district in Malawi. Kim et al. (2019)
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explored the role of health facility availability as it relates to maternal health care
use in rural Malawi. In terms of health facility availability, nearly 32 % of rural
women had no health facilities within 5 km of where they lived, with the central
and northern regions having significantly higher percentages with no facilities (37.2
and 32.5 %, respectively). This agrees with our findings that showed that Chitipa,
Karonga and Rumphi have the lowest spatial variation of ANC visits, while Mzimba
and Nkhatabay had a moderate spatial variation.

5 Conclusion and Recommendation

We described the bivariate copula spatial models implemented in the R add-on
package GJRM. The framework allowed us to specify flexibly covariate effects and
the dependence structure between the specified margins. In this study, we explored
the copula dependence between Bernoulli and gamma margins for the bivariate-
continuous outcomes, a gamma and positive Poisson for the count and continuous
outcomes and a Bernoulli and Poisson for the binary and count. In the Bernoulli–
Gamma model, the dependence measure showed a negative association which
indicates that those who had four or more antenatal care visits as recommended
by WHO were likely to have started their first visit early (first trimester) than those
who had less than 4 visits.

Despite the introduction of free ANC services by the Government of Malawi in
2004, the level of accessing ANC equally is still low in the country. The results of
this study demonstrate that both individual and contextual factors are important in
determining factors influencing use of ANC. Results have also shown that timing
of first visits across Malawi to be crucial in the utilisation of ANC services. Any
planning to promote use of health care must be programmed to enhance both,
targeted interventions for improved health care and for accelerated achievement
of sustainable development goals. The study recommends that strategies should
be developed for empowering communities to overcome obstacles to reach ANC.
These may include using community channels to identify pregnant women, targeting
those more likely to be non-users, such as adolescents and women who are poor and
single, and making the services more responsive to the needs of women. In addition,
introduction of mobile ANC services so as to ease travelling hiccups, especially for
women in hard-to-reach and rural areas without health facilities. Further research
should be conducted to include survey weights in the analysis. In addition to that,
further research should be conducted by using other joint analysis models other than
copula and one can also compare the performance of copula models and classic joint
models.
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Appendices

(Tables 6 and 7)

Table 6 Spatial copula model estimates for Poisson-gamma margins

ANC visits (Poisson) Timing at first visit (gamma)

Parameter Estimate Std error p-value Estimate Std error p-value

Intercept 1.286 0.044 < 0.001 1.592 0.031 < 0.001

Region: Ref.=North

Central −0.057 0.034 0.089 −0.039 0.024 0.097

South −0.034 0.045 0.455 −0.043 0.031 0.169

Education: Ref.=None

Primary 0.029 0.017 0.106 −0.011 0.012 0.344

Secondary 0.045 0.021 0.041 −0.029 0.015 0.053

Tertiary 0.149 0.039 < 0.001 −0.145 0.028 < 0.001

Age(years):Ref.=15 - 21

22–28 −0.009 0.016 0.552 0.012 0.010 0.244

29–35 0.019 0.017 0.252 0.227 0.113 0.045

36–42 0.019 0.020 0.335 0.037 0.014 0.007

43–49 0.071 0.033 0.002 0.029 0.022 0.191

Working: Ref.=No

Yes 0.012 0.022 0.578 −0.034 0.015 0.021

HH: Ref.=Male

Female 0.014 0.013 0.271 0.001 0.008 0.921

Wealth: Ref.=Poor

Poorer 0.011 0.017 0.494 −0.016 0.011 0.015

Middle 0.018 0.017 0.288 −0.023 0.012 0.045

Richer 0.017 0.018 0.357 −0.023 0.012 0.062

Richest 0.073 0.022 < 0.001 −0.059 0.015 < 0.001

Residence: Ref.=Rural

Urban 0.013 0.017 0.444 0.012 0.011 0.311

Radio: Ref.=No

< a week 0.009 0.015 0.554 0.002 0.010 0.852

≥ once a week 0.009 0.013 0.495 −0.012 0.009 0.168

Newspaper: Ref.=No

< a week 0.001 0.044 0.984 0.009 0.010 0.355

≥ once a week 0.029 0.055 0.589 −0.024 0.013 0.062

Evertempreg: Ref.=No

Yes 0.012 0.017 0.479 −0.008 0.012 0.444

Wantedpreg: Ref.=T hen

No more −0.044 0.018 0.014 0.043 0.012 < 0.001

Later −0.053 0.012 < 0.001 0.044 0.008 < 0.001
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Table 7 Spatial copula model estimates for Bernoulli–Poisson margins

ANC visits (Bernoulli) Timing at first visit (Poisson)
Parameter Estimate Std error p-value Estimate Std error p-value

Intercept 0.004 0.101 0.973 1.560 0.026 < 0.001

Region: Ref.=North

Central −0.223 0.080 0.006 −0.042 0.021 0.043

South −0.168 0.104 0.108 −0.046 0.027 0.093

Education: Ref.=None

Primary 0.076 0.039 0.052 −0.012 0.010 0.217

Secondary 0.131 0.048 0.001 −0.030 0.012 0.015

Tertiary 0.046 0.098 < 0.001 −0.156 0.024 < 0.001

Age(years):Ref.=15–21

22–28 0.013 0.038 0.728 0.012 0.011 0.244

29–35 0.131 0.041 0.001 0.019 0.011 0.041

36–42 0.130 0.050 0.010 0.035 0.012 0.003

43–49 0.329 0.082 < 0.001 0.025 0.019 0.180

Working: Ref.=No

Yes 0.082 0.054 0.127 −0.035 0.013 0.010

HH: Ref.=Male

Female 0.052 0.031 0.092 0.003 0.007 0.716

Wealth: Ref.=Poor

Poorer 0.040 0.040 0.316 −0.015 0.009 0.107

Middle 0.067 0.041 0.107 −0.023 0.010 0.019

Richer 0.052 0.044 0.243 −0.024 0.010 0.022

Richest 0.198 0.055 < 0.001 −0.055 0.013 < 0.001

Residence: Ref.=Rural

Urban 0.087 0.044 0.047 0.010 0.010 0.313

Radio: Ref.=No

< a week 0.067 0.037 0.072 −0.001 0.009 0.863

≥ once a week 0.062 0.032 0.055 −0.015 0.008 0.052

Newspaper: Ref.=No

< a week 0.001 0.044 0.984 0.009 0.010 0.355

≥ once a week 0.029 0.055 0.589 −0.024 0.013 0.062

Evertempreg: Ref.=No

Yes 0.035 0.042 0.479 −0.008 0.012 0.367

Wantedpreg: Ref.=T hen

No more −0.159 0.043 < 0.001 0.044 0.010 < 0.001

Later −0.144 0.029 < 0.001 0.045 0.007 < 0.001
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Bayesian Survival Analysis with the
Extended Generalized Gamma Model:
Application to Demographic and Health
Survey Data

Yuli Liang and Gebrenegus Ghilagaber

Abstract We extend the existing family of flexible survival models by assembling
models scattered across the literature into a more knit form and under the same
umbrella. New special cases are obtained not only by constraining the shape
and scale parameters of the extended generalized gamma (EGG) model to fixed
constants, but also by imposing relationships (such as equality, reciprocal, and
negative reciprocal) between them. Apart from common parametric distributions
such as exponential, Weibull, gamma, and log normal, the further extended family
includes Rayleigh, inverse Rayleigh, ammag, inverse ammag, and half-normal
distributions. The models are applied, in a Bayesian framework, on time to entry
into first marriage among Eritrean men and women based on data from the
2010 Population and Health Survey. The application demonstrates that the further
extended family of distributions provides a wide range of alternatives for a baseline
distribution in the analysis of survival data. The empirical results reveal that the
inverse gamma model fits best the data for men. It also performs closely as good as
the EGG model in the data for women as well as in the combined sample.
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distributions · Inverse gamma distribution · Ammag distribution · Inverse
Ammag distribution · Log normal distribution · Half normal distributions · Log
predictive density score (LPDS) · Censoring · Bayes Factors · Time to event
data · Model comparison · Markov chain Monte Carlo (MCMC) · Random
walk · Metropolis Hasting algorithm · Block sampling · Posterior distribution ·
Ergodic mean theorem · Inefficiency factor (IF)

1 Introduction

The usual goals in the analysis of survival data include: (a) describing the distribu-
tional shape of the time variable; (b) comparing the survival experiences of different
groups in a population; and (c) modeling the relationship between explanatory
variables and survival time—as measured by time to the event of interest or the
rate at which the event occurs.

Two classes of models are common in the literature for investigating effects
of explanatory variables on survival. In the Cox proportional hazards models, the
explanatory variables act multiplicatively on a baseline hazard so that their effect
is to increase or decrease the hazard relative to that of the baseline group. A
second class of models, known as the accelerated failure-time models, specifies
the covariates to act multiplicatively on time to event itself so that their effect
is to accelerate or decelerate time to event relative to an event time for baseline
group. According to Wei (1992), the accelerated failure-time model has an intuitive
physical interpretation and would be a useful alternative to the Cox PH model in
survival analysis.

It has been documented that covariate effects on survival time are not robust to
the choice of the baseline distribution—see, for instance (Addison and Portugal,
1987; Bergström and Edin, 1992; Bergström et al., 1994; Ghilagaber, 2005). It is,
therefore, of paramount importance to correctly specify the baseline distribution
if results from analysis of survival data are to be utilized optimally. A number
of distributions for survival data are available in the literature scattered across
disciplines and application areas. Some previous works have attempted to put these
scattered models in a more knit form by embedding a number of competing models
under the umbrella of a general parametric framework as in Butler and McDonald
(1986) and Peng et al. (1998). This enables the use of ordinary parametric inference
for assessment of each competing model relative to a more comprehensive one.
Among others, (Ghilagaber, 2005) shows that five parametric duration models
(exponential, Weibull, gamma, log normal, and reciprocal Weibull) may be treated
as special cases of a more general extended generalized gamma (EGG) model by
constraining the shape and/or scale parameters of the EGG model to some fixed
constants.

In this chapter, we extend the EGG model further and increase the family of
flexible distributions to include 13 special cases. This is achieved by including
distributions that not only constrain the shape and scale parameters to specified
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constants but also impose some relationships between them. The new set of special
cases include the Rayleigh and inverse Rayleigh distributions as well as the ammag
and inverse ammag distributions as described in Cox et al. (2007). Further, a half-
normal distribution can be obtained as a special case of ammag distribution.

A Bayesian approach is used to fit the EGG model and its 13 special cases to data
on time to entry into first marriage among Eritrean men and women. Each special
case model is then tested relative to a more general model using the log predictive
density score (LPDS) in a Bayesian approach, see Li et al. (2010). Compared to
the classical likelihood inference approach, the Bayesian approach provides three
main advantages. First, we sample from a posterior density using Markov Chain
Monte Carlo (MCMC), and hence, we can make exact inference for any sample
size in any parametric survival models of various complexities. Second, we do not
need to worry about the problem of local maximum trapping since our algorithm
can go through the whole parameter spaces supported by the data. Third, it is
straightforward to investigate the performance of joint posterior density, whereas in
a frequentist paradigm, we need to run simulation by pre-specifying the true values
of parameters when evaluating the performance of maximum likelihood estimates.

In Sect. 2, we introduce the accelerated failure-time models and demonstrate how
a number of common distributions can be brought under the umbrella of the EGG
model. Bayesian density estimation of the EGG model and MCMC implementation
is described in Sect. 3. In Sect. 4, we illustrate the models of Sect. 2 and the methods
of Sect. 3 using real-life data from the 2010 Eritrean Population and Health Survey.
Section 5 concludes the chapter by way of summary and concluding remarks. A full
list of the distributions used in this chapter, a proof for a lemma, and the R code
used in the illustrative example are provided in Appendices.

2 Parametric Models for Survival Data

2.1 Background

Survival data contain information on durations until event or censoring (t1, t2, ..., tn)
together with a censoring indicator as well as background variables or covariates
(z1, z2, ..., zp) that are often socio-demographic characteristics of individuals or
organizations. The distribution of survival time, T , may be described by its three
equivalent functions: the survival function, S(t) = P (T > t), the density function,
f (t), or the hazard (intensity) function, h(t) = f (t)/S(t), where the last two
functions require absolute continuity.

These functions can vary not only over time, but also among individuals within a
population. Thus, one objective in the analysis of survival data is to draw inferences
about the influence of covariates on these functions. One popular model is the Cox
proportional hazards model presented in Cox (1972) where a p-dimensional vector
of covariates z affects the hazard function in a multiplicative manner according to
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h(t |z) = h0(t) exp
(
z′β
)
, (1)

where h0(t) is an unspecified baseline function of time and β ∈ Rp is an unknown
vector of parameters representing the effect of the covariates z. The factor exp(z′β)
describes the intensity (hazard) for an individual with vector z relative to that of a
standard individual (with z = 0).

2.2 Accelerated Failure-Time Models

A second class of models, the accelerated failure-time model, specifies the covari-
ates to act multiplicatively on the event time itself rather than on the hazard function.

If T0 is the random time to event associated with an individual in the baseline
group (z = 0), then the accelerated failure-time model specifies that for an
individual with a non-zero vector of covariates z, the event time is given by

T = T0 exp(z′β) (2)

or equivalently

ln(T ) = z′β + ln(T0), (3)

where, as before, T is the event time, z is a vector of covariates, and β is a vector
of regression parameters. Since covariates alter, by a scale factor, the rate at which
an individual traverses the time axis, Eq. (2) is referred to as the accelerated failure-
time model. Thus, in accelerated failure-time models, the effect of the explanatory
variables is to accelerate or decelerate time to event relative to T0.

The model in (3) is a linear model with ln(T0) playing the role of an error term
with an underlying baseline distribution. Usually, a scale parameter δ is allowed in
the model to give

ln(T ) = z′β + δ ln(T0) = z′β + δε, (4)

where a more conventional notation ε is used for the error term.
From (4), we note that T = ez′βT δ

0 . Thus, the survival function of T may be
written in terms of that of T0:

S(t) = P(T > t) = P(ez′βT δ
0 > t) = P(T δ

0 > te−z′β) = S0(te
−z′β), (5)

where S0(.) is the survival function of the baseline time with scale parameter δ, T δ
0 ,

and e−z′β is the accelerating/decelerating factor. In other words, the probability for
an individual with covariate vector z surviving beyond time t is the same as the
probability for an individual in the baseline group (z = 0) surviving beyond time
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te−z′β . A positive coefficient β shifts the time te−z′β to the left of t , while a negative
β shifts the time te−z′β to the right of t if all components of z > 0. Accordingly,
the density and hazard functions can also be written in terms of the baseline density
and hazard:

f (t) = e−z′βf0(te
−z′β)

h(t) = e−z′βh0(te
−z′β).

The distribution of T0 in (4) may be selected from positive-valued distributions such
as Weibull or log normal that, in turn, yield extreme-value and normal distributions
for the error term ε. Below, we demonstrate how the list may be expanded by
assembling various models under the same umbrella.

2.3 The Extended Generalized Gamma (EGG) Model

Stacy (1962) introduced the generalized gamma model that is useful in embedding
competing models into a single parametric framework. This model is the distribution
of T such that ln(T ) = μ + δε, where μ ∈ R, δ > 0, and the random error term ε
has the density

f (k, ε) = 1

�(k)
exp

[
kε − exp(ε)

]
, k > 0,

where k is an additional shape parameter. Prentice (1974) showed that a shift of

parameter of the form q = k− 1
2 leads to a standard normal distribution for T giving

an interior point for q = 0 in the parameter space. The final model with parameters
μ, q ∈ R and δ > 0 can be written as ln(T ) = μ + δε, where the error density
function f (q, ε) is given by

f (q, ε) =

⎧
⎪⎨

⎪⎩

|q|
�(q−2)

(q−2)q
−2

exp
{
q−2

[
qε − exp(qε)

]}
, q �= 0

1√
2π

exp(− ε2

2 ), q = 0.

(6)

The distribution of T when the error term has the density given in Eq. (6) is
known as the extended generalized gamma (EGG) distribution, see, for instance
(Ghilagaber, 2005; Ghilagaber et al., 2014).

As can be seen from the lower part of (6), the EGG model reduces to the standard
normal distribution for ε when the shape parameter q is equal to zero. Accordingly,
T will have a log-normal distribution. When the shape parameter q = 1, (6) reduces
to
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f (q, ε) = exp
[
ε − exp(ε)

]
,

which is the standard (type 1) extreme-value distribution. As ln (T ) is a linear
function of ε, it has the same (extreme-value) distribution as ε. Hence, T =
exp(z′β + δε) as defined in Eq. (4) will have a Weibull distribution. If q = 1
and δ = 1, then T has the exponential distribution as a special case of the
Weibull distribution. The case of q = −1 corresponds to extreme maximum-value
distribution for ln (T ). This, in turn, corresponds to reciprocal Weibull distribution
for T .

The case of δ = 1 and q > 0 is also of interest. Farewell and Prentice (1977)
argue that this gives the ordinary gamma distribution for T . Others, (Bergström and
Edin, 1992; Bergström et al., 1994, 1997), argue that this did not hold in their case
illustrations. Consequently, we shall relax this special case to δ = 1 and q ∈ R

and label it the “gamma” distribution in our illustrative example. Below, we further
extend the above family of distributions by imposing some relationships between
the scale and shape parameters.

2.4 Further Extensions of the EGG Model

We begin with a baseline distribution for time to event, T0 ∼ EGG(0, 1, q),
and label it as standard generalized gamma distribution with density and survival
functions given by

fEGG(0,1,q)(t0) = |q|
t0�(q−2)

(q−2t
q

0 )
q−2

exp(−q−2t
q

0 ),

SEGG(0,1,q)(t0) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

1 − �(ln t0), q = 0

1 − γ (q−2, t
q

0 q
−2)/�(q−2), q > 0

γ (q−2, t
q

0 q
−2)/�(q−2), q < 0,

where �(·) is the cumulative distribution function of the standard normal distri-
bution. By transformation, t = eμtδ0 ∼ EGG(μ, δ, q), and T is said to have
the extended generalized gamma distribution with shape parameter μ ∈ R, scale
parameter δ > 0, and an additional index shape parameter q ∈ R. We denote this
by T ∼ EGG(μ, δ, q), with density

fEGG(t) = |q|
tδ�(q−2)

[
q−2(e−μt)

q
δ

]q−2

exp
[
−q−2(e−μt)

q
δ

]
(7)
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=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
δt

√
2π
e
− (ln t−μ)2

2δ2 q = 0

q
δ
t
q
δ
−1 1

�(q−2)

[
q−2(e−μ)

q
δ

]q−2

(t
q
δ )q

−2−1exp
[
−q−2(e−μ)

q
δ t

q
δ

]
q > 0

− q
δ
t
q
δ
−1 1

�(q−2)

[
q−2(e−μ)

q
δ

]q−2

(t
q
δ )q

−2−1exp
[
−q−2(e−μ)

q
δ t

q
δ

]
q < 0.

The component

1

�(q−2)

[
q−2(e−μ)

q
δ

]q−2

(t
q
δ )q

−2−1exp
[
−q−2(e−μ)

q
δ t

q
δ

]

in the above equation is the density of the gamma distribution for t
q
δ with a shape

parameter q−2 and a rate parameter q−2(e−μ)
q
δ . The next lemma gives the rth

moment and the first four central moments of the EGG density. The following
definitions of skewness and excess kurtosis are used:

S(T ) = E [T − E(T )]3

V (T )3/2 ,

K(T ) = E [T − E(T )]4

V (T )2
− 3,

where V (T ) is the variance.

Lemma 1 If T ∼ EGG(μ, δ, q), then

E(T r) =

⎧
⎪⎪⎨

⎪⎪⎩

�
(
q−2+r δ

q

)

(

q
−2δ
q e−μ

)r
�(q−2)

, if rδ/q > −q−2,

∞ otherwise.

E(T ) = �(q−2 + δ
q
)

q
−2δ
q e−μ�(q−2)

,

V (T ) = �(q−2 + 2δ
q
)�(q−2) − �2(q−2 + δ

q
)

�2(q−2)(q
−2δ
q e−μ)2

,

E [T − E(T )]3 = 2�3
(

q−2 + δ

q

)

− 3�

(

q−2 + 2δ

q

)

�

(

q−2 + δ

q

)

�(q−2)

+�

(

q−2 + 3δ

q

)

�2(q−2),
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E [T − E(T )]4 = −3�4
(

q−2 + δ

q

)

+ 6�

(

q−2 + 2δ

q

)

�2
(

q−2 + δ

q

)

�(q−2)

−4�

(

q−2 + 3δ

q

)

�

(

q−2 + δ

q

)

�2(q−2) + �

(

q−2 + 4δ

q

)

�3(q−2).

A simplified proof of Lemma 1 is provided in Appendix 2.
From Lemma 1, we note that S(T ) and K(T ) are the functions of q and δ/q,

implying both q and δ/q are shape parameters.
The survival function of t is then given by

SEGG(t) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

1 − �
(

ln t−μ
δ

)
q = 0

1 − γ
[
q−2, t

q
δ q−2(e−μ)

q
δ

]
/�(q−2) q > 0

γ
[
q−2, t

q
δ q−2(e−μ)

q
δ

]
/�(q−2) q < 0,

(8)

where γ
[
q−2, t

q
δ q−2(e−μ)

q
δ

]
/�(q−2) is the corresponding cumulative dis-

tribution function of the gamma distribution for t
q
δ when q > 0 and

γ
[
q−2, t

q
δ q−2(e−μ)

q
δ

]
is a lower incomplete gamma function with the form of

γ (s, r) = ∫ r
0 xs−1e−xdx described in Abramowitz and Stegun (1964).

The EGG model redefined in Eqs. (7) and (8) is a rich and versatile model
containing many special cases based on different combinations of q and δ.

Apart from those mentioned in the previous subsection, the list may be extended
to include the inverse exponential (q = −δ = −1), standard gamma (q = δ),
inverse gamma (when q = −δ), ammag (q = 1/δ), inverse ammag (q = −1/δ),
Rayleigh (q = 1 and δ = 1/2), inverse Rayleigh (q = −1 and δ = 1/2), and
half-normal (q = √

2 and δ = √
2/2).

EGG nests more special cases such as Maxwell–Boltzmann, but we have not
included this in the present chapter since our focus is on the distribution of survival
time T . Further, the equivalent distributions of some special cases are excluded.
For instance, the inverse gamma model is equivalent to the Levy model in some
special cases: inverse gamma(q−2, q−2e−μ) ↔ Levy(0, c) when q−2 = 1/2 and
q−2e−μ = 2c. The standard gamma model is also equivalent to a chi-squared model
in some situations: standard gamma(q−2, q−2e−μ) ↔ χ2

(v) when q−2 = v/2 and

q−2e−μ = 1/2.
To sum up, the EGG model constitutes of at least 13 special cases whose

relationships are depicted in Fig. 1. Each special case model can be assessed relative
to a more comprehensive one using appropriate procedures for comparing nested
models. A summary of the density functions, f (t), and survival functions, S(t), for
13 special cases is provided in Appendix 1. The corresponding hazard functions
can be obtained by hEGG(t) = fEGG(t)/SEGG(t). The hazards in the EGG models
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can be of various forms—increasing, decreasing, bathtub, or arc-shaped (Cox et al.,
2007).

When we adapt the generalized gamma distribution to accelerated failure-time
models, the location parameter μ can be composed of a linear predictor based on p

covariates μ = β0 +
n∑

i=1
zjiβj (j = 1 · · ·p), which justifies the feasibility of the

EGG in accelerated failure-time models.
The distribution of ε = ln(T0) is given in Eq. (6). When q = 0, ε is standard

normal distributed; when q �= 0, it can be manipulated to give

f (ε; q) = |q| eqε (q
−2)q

−2

�(q−2)
(eqε)q

−2−1exp
[
−q−2exp(qε)

]
(9)

with the corresponding survival functions

S(ε, q) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

1 − �(ε) q = 0

1 − γ
[
q−2, exp(qε)q−2

]
/�(q−2) q > 0

γ
[
q−2, exp(qε)q−2

]
/�(q−2) q < 0.

(10)

Based on the density of ε, Fig. 2 shows the shape of some density functions, f (ε), for
some selected values of q. Here, we have a special case of ln(T ) = z′β+δε = μ+δε
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Fig. 2 Five distributions of ln(T ) for μ = 0, δ = 1, and some values of q
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in which μ = 0 and δ = 1. We note that the densities are positively skewed for
q < 0 and negatively skewed for q > 0 with both the absolute skewness and kurtosis
monotone increasing in |q|—which are in accordance with those of Prentice (1974).

3 Bayesian Inference in the Extended Generalized Gamma
Model

Bayesian inference for a three-parameter EGG model and four-parameter gen-
eralized gamma distribution (EGG model with one extra location parameter) is
discussed in Tsionas (2001) and Van Noortwijk (2001) for situations where there
is no censoring. Inference becomes more complicated in the presence of censored
observations due to, for instance, difficulty to find conjugate prior or derive full
conditional posterior.

Heleno and Alberto (1986) have used Bayesian approach for EGG model with
censored data using Jeffrey multi-parameter prior. Ramos et al. (2017) have shown
that both the Jeffreys prior and the reference priors give improper posteriors to the
EGG model, and then proposed the overall reference prior in Berger et al. (2015),
which provided the proper posterior. In this section, we present Bayesian inference
in the EGG model that allows for any type of censoring mechanism.

3.1 Prior and Posterior

In a Bayesian framework, any prior information about the parameters of interest is
combined with the data (likelihood) to derive a posterior distribution.

In our present case, we use normal priors with mean 0 and large variance σ 2
1 for

each effect parameters βj (j = 0, · · · , p). We also assume a vague prior, a gamma
distribution with hyperparameters a and b for the scale parameter δ. For the index
shape parameter q, a normal prior with mean 0 and large variance σ 2

2 is assumed.
These independent priors can be summarized as follows:

βj ∼ N(0, σ 2
1 ), j = 1, . . . , p

δ ∼ Gamma(a, b)

q ∼ N(0, σ 2
2 ).

We can use any prior that reflects our prior knowledge (if any) of the unknown
parameters. In our illustration in Sect. 4, we will use σ1 = σ2 = 1000 and
hyperparameters a = b = 1. The rationale behind this is to let the likelihood
dominate the posterior so that the inferences drawn are driven by the data.

Denoting data withD, the joint posterior distribution is then given by
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f (β, δ, q|D) ∝ L(β, δ, q;D)f (β, δ, q)

= L(β, δ, q;D)
p∏

j=1

f (βj )f (δ)f (q),

where L(β, δ, q;D) is the likelihood function, and f (·) is the prior density function
of βj , δ, and q with known hyperparameters. The above posterior can be generalized
to other types of likelihood functions based on other censoring mechanisms (than
the standard right censoring assumed in our present case). With right censored data,
the likelihood function becomes

L(β, δ, q;D) =
n∏

i=1

(δ−1f (εi , q))
di S(εi , q)

1−di ,

where di is the censoring indicator and f (εi , q) and S(εi , q) are given by Eqs. (9)
and (10), respectively.

Since there is no explicit analytical form for the posterior distribution, sampling
is performed using numerical methods based on Markov Chain Monte Carlo
(MCMC).

3.2 MCMC: Random Walk Metropolis–Hastings Algorithm
with Block Sampling

We sample all parameters sequentially from the joint posterior distribution using the
Metropolis–Hastings algorithm. See Gelman et al. (2004) for more details on the
Metropolis–Hastings algorithm and its nice properties. A random walk Metropolis–
Hastings algorithm with block sampling is used, and the sampling procedure for the
parameters θ = (β, δ, q)′ can be summarized as follows:

(1) Set the initial values for the parameters θ0 = (β0, δ0, q0)
′.

(2) Construct the proposal distribution J (θp|θc) ∼ N(θc, c
2	), where θp is the

candidate value, θc is the current value, and c is the scaling constant and 	

is a known covariance matrix. Here we choose 	 = −H−1(̂θ), where H(̂θ)

is the Hessian matrix evaluated at θ̂ , which is obtained by Newton’s method.
Following Gelman et al. (2004), we choose a value of c = 2.4/

√
k, where k is

the length of the vector θ .
(3) Generate θ∗ from J (θp|θc) and U from U(0, 1).
(4) If

U <
f (θ∗|D)f (θ∗)J (θc|θp)
f (θc|D)f (θc)J (θp|θc) ,

the candidate vector θ∗ is accepted and θc = θ∗; otherwise, we keep θc.
(5) Return to step (2).
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3.3 Posterior Statistics and Convergence Diagnostics

We summarize our posterior distribution by way of posterior means and highest
posterior density (hpd). Since MCMC is based on ergodic mean theorem (Markov
chain law of large numbers), convergence can be verified using diagnostic plots
such as a plot of the cumulative mean against the number of iterations. In addition,
inefficiency factors (IF) can be computed as a measure of the efficiency of the
MCMC scheme.

3.4 Bayesian Model Comparisons

The common way of comparing models in the Bayesian framework is the use of
Bayes factor that is the ratio of marginal likelihood of two competing models.

Suppose we have a set of candidate models Mm,m = 1, · · · ,M and the
corresponding model parameters θm. The posterior model probability is then given
by

P(Mm|Y ) ∝ P(Mm)P (Y |Mm),

where Y represents the data at hand. The posterior odds P(Mm|Y )/P (Ml |Y ) can
be used to compare two models, and it can be written in terms of the Bayes factor:

P(Mm)

P (Ml )
BFml,

where BFml is the Bayes factor betweenMm andMl with the form

BF(Y ) = P(Y |Mm)

P (Y |Ml )
=
∫
P(Y |θm,Mm)P (θm|Mm)dθm∫
P(Y |θl,Ml )P (θl |Ml )dθl

.

The marginal likelihood is a conditional expectation for the likelihood given the
prior

EP(θm|Mm)(P (Y |θm,Mm)).

It is sensitive to the choice of the prior, especially when the prior is not very infor-
mative (Villani et al., 2009). For instance, if P(θm|Mm) is far from P(Y |θm,Mm),
while P(θl |Ml ) is close to P(Y |θl,Ml ), it is possible that P(Y |Mm) is less than
P(Y |Ml ) even thoughMl is a sub-model ofMm.

To avoid such sensitivity to the choice of prior, we compare our models in the
illustration on the basis of their predictive performance. The data is split randomly
into B folds, and B-1 fold is used as a training data ỹ−b, while the rest one-fold is
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used as a testing data ỹb. The B-fold cross-validation of the log predictive density
score (LPDS) is then formed as

B−1
B∑

b=1

lnp(ỹb|ỹ−b, x).

In other words, part of the observations are used to update the flat (non-
informative) prior and the sensitivity to the prior can be reduced substantially.
According to Villani et al. (2009), the Bayes factor is roughly B times more
discriminatory than the LPDS. For selecting models in Sect. 4, the LPDS was
computed using B = 5 folds of the data.

4 Application: Educational and Residential Differences in
Marriage Timing Among Eritrean Men and Women

We now illustrate the models and methods described in the previous sections with
real-life data—entry into marriage among Eritrean men and women based on its
2010 Population and Health Survey (EPHS2010).

The main goals with the illustration are to study the distributional shapes of the
times to marriage, model the effects of covariates on these event times, and examine
if inferences regarding covariate effects are robust to the choice of distributional
shape.

The study of marriage timing (age at marriage) is also of substantive interest in its
own because of its strong negative association with women’s health directly (Raj,
2010) or indirectly through its negative impact on health care utilization (Godha
et al., 2016).

4.1 Data and Variables

The data used for illustration in this chapter come from the 2010 Eritrea Population
and Health Survey, EPHS2010 (National-Statistics-Office-Eritrea and Fafo-AIS,
2013). The EPHS2010 was designed as a follow-up to its predecessors—the 1995
and 2002 Demographic and Health Surveys (National-Statistics-Office-Eritrea and
Macro-International-Inc., 1997, 2003), and to update the information from the
previous surveys as well as provide findings on some new topics of interest.

The EPHS2010 was conducted between January and July 2010 and gathered
information from 30224 women aged 15–49 and 5021 men aged 15–59. For the
purpose of this paper, only respondents with known values on marital status at the
time of the survey are used in the analyses. This resulted in 10238 usable records
for women and all 5021 records for men. Detailed tabulations for the entire survey
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Table 1 Summary statistics of the data sets used in the illustration

Women Men Combined Sample

Covariate Levels n Events % Event n Event % Event n Event % Event

No Educ 4186 3799 90.75 1050 892 84.95 5236 4691 89.59

Primary 2055 1634 79.51 803 543 67.62 2858 2177 76.17

Education Middle 1827 1006 55.06 1209 455 37.63 3036 1461 48.12

Secon 1894 886 46.78 1516 461 30.41 3410 1347 39.50

PostSec 276 96 34.78 442 218 49.32 718 314 43.73

Capital 1819 969 53.27 931 344 36.95 2750 1313 47.75

Residence Other Towns 2504 1739 69.45 1257 565 44.95 3761 2304 61.26

Rural Areas 5915 4713 79.68 2833 1660 58.60 8748 6373 72.85

Total 10,238 7421 72.49 5021 2569 51.17 15,259 9990 65.47

may be found in the EPHS2010 Final Report (National-Statistics-Office-Eritrea
and Fafo-AIS, 2013). Summary statistics for the subset of data used in the present
chapter are shown in Table 1.

By the survey time (January–July 2010), 7421 of the 10238 women (72 %)
and 2569 of the 5021 men (51 %) have responded they were ever married (this
includes those who might have been separated or widowed after). The rest, 2817
women and 2452 men (28 % and 49 %, respectively), have responded that they
were still single at the time of interview. The distribution of the women across
educational level shows that 4186 (41 %) had no education at all, 2055 (20 %) had
primary-level education, 1827 (18 %) had middle-level education, 1894 (18 %) had
secondary-level education, while the rest 276 (3 %) had post-secondary education.
The corresponding figures for men are 1051 (21 %), 803 (16 %), 1209 (24 %), 1516
(30 %), and 442 (9 %), respectively. Further, 1819 (18 %) of the women respondents
were from the capital (Asmara), 2504 (24 %) were from other towns, while the
majority 5915 (58 %) were from rural areas. The corresponding figures for men are
931 (19 %), 1257 (25 %), and 2833 (56 %), respectively.

The columns of percentage married in Table 1 reveal clear differentials across
both educational levels and residence for both women and men. For instance, while
women with no education constitute 41 % of the entire sample, they constitute 51
% of the marriages (3799 of 7421). Women with post-secondary education, on
the other hand, constitute only 1 % of the marriages (96 of 7421). The pattern
is similar but less dramatic for men—those with no education constitute 35 % of
the marriages, while those with post-secondary education constitute only 8 % of
the marriages. Differentials across residence show that women from rural areas
constitute 58 % of the sub-sample but 64 % of the marriages. Women from the
capital, on the other hand, constitute 19 % of the sub-sample but only 13 % of the
marriages. The contribution of men from the capital to the sub-sample is 18 %, while
their contribution to the total marriage is 15 %. Men from rural areas constitute 56
% of the sub-sample but 65 % of the marriages.
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Fig. 3 Survival functions by education: Women

Plots of survival functions by education and residence for women and men are
shown in Figs. 3, 4, 5, 6, and 7. Figures 3 and 4 show plots for women by education
and residence, respectively, while Figs. 5 and 6 show the corresponding plots for
men. Figure 7 shows gender differences in entry to first marriage among all men
and women.

The plots depict what we already noted in Table 1—that there are differentials
across education and residence and that the educational differences are more
pronounced in the women data than in men data. The last figure shows that women
enter marriage at faster rates than men.

The summary in Table 1 and Figs. 3, 4, 5, 6, and 7 provides a good description of
the data at hand, but in order to make sound inferences based on the sub-sample, we
need deeper analyses of the data and formal statistical tests. Ghilagaber (2018) has
analyzed the data sets using frequentist statistical methods ranging from elementary
measures of association between an event of interest and background variables
to more complex and advanced methods that utilize the data more efficiently.
Elsewhere in this book, (Munezero and Ghilagaber, 2022b) analyze the data sets
using dynamic Bayesian approach where covariate effects are allowed to vary over
time.

In the next sub-section, we present and discuss results from fitting the further
EGG model of Sect. 2 to the above data sets in the Bayesian framework of Sect. 3.
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Fig. 4 Survival functions by residence: Women
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Fig. 6 Survival functions by residence: Men
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4.2 Results from Bayesian Analysis of the Data Using the EGG
Model

Table 2 contains a summary of our results to which we will return at the end of this
section. Results from fitting the extended generalized gamma (EGG) model and its
13 special cases to the data for women, men, and the combined sample are shown
in Tables 3, 4, and 5, respectively.

In Table 3, the results from the unconstrained EGG model show that the scale
and shape parameters (which are freely estimated from the data) are δ = 0.246 and
q = −0.526, respectively.

These estimates give early indications of the constants to which the scale and
shape parameters are close as well as the relationship between them. For instance,
the estimated shape parameter (−0.526) is much closer to −1 and 0 than it is
to 1. This, in turn, means the reciprocal Weibull distribution (which constrains
the shape parameter to −1) and the log-normal distribution (which constrains the
shape parameter to 0) are more plausible candidate distributions than the Weibull
distribution (which constrains the shape parameter to 1).

With regard to the relationships between the scale and shape parameters, a
model that constrains negative equality is δ = −q that seems to be more
plausible compared to, for instance, a model that constrains reciprocal or negative
reciprocal relationship. This is so because a reciprocal relationship would give a
scale parameter of 1/(−0.526) = −1.90, while a negative reciprocal relationship
would yield −(1/(−0.526)) = 1.90 both of which are far from the freely estimated
scale parameter 0.246. This, in turn, excludes models such as ammag and inverse
ammag in favor of the inverse gamma model.

The above closeness of the special case models to the more general EGG model
is also reflected in the values of log predictive density scores (LPDS) given in the
last columns of each model. For instance, the LPDS of the EGG model is −4584,
while that of the closest model (the inverse gamma) is −4594. On the other hand,
the LPDS for ammag and inverse ammag are −5705 and −5184, respectively, which
are far from that of the EGG.

Table 2 Posterior means (and 95 % hpd) of estimated effects in the selected models

Women (EGG model) Men (Inverse gamma) Combined (EGG model)

Covariate Levels Estimate 2.5 % 97.5 % Estimate 2.5 % 97.5 % Estimate 2.5 % 97.5 %

No Educ 0 (ref.) – – 0 (ref.) – – 0 (ref.) – –

Primary 0.015 0.002 0.028 −0.016 −0.04 0.009 0.042 0.029 0.055

Education Middle 0.138 0.123 0.153 0.023 −0.001 0.047 0.186 0.007 0.2

Secon 0.251 0.234 0.269 0.097 0.071 0.122 0.315 0.008 0.331

PostSec 0.425 0.39 0.461 0.138 0.105 0.171 0.518 0.493 0.466

Capital 0 (ref.) – – 0 (ref.) – – 0 (ref.) – –

Residence Other −0.086 −0.069 −0.052 −0.061 d −0.035 −0.052 −0.068 −0.036

Rural −0.079 −0.094 −0.062 −0.137 −0.161 −0.111 −0.042 −0.058 −0.026
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Another point worth noting is that the estimates of the covariate effects and their
associated 95% hpd are much alike in the models that are close to each other (in
terms of estimated scale and/or shape parameters or in terms of LPDS) than those
estimates that are far apart.

Thus, for the women data, it would not make much difference if we base our
conclusions on the estimates from the EGG model or the inverse gamma model
though a formal test would favor the larger EGG model.

The results for men shown in Table 4 can be interpreted similarly. Here, the
scale and shape parameters estimated freely from the data in the EGG model are
δ = 0.235 and q = −0.199, respectively. Again, the inverse gamma model that
imposes a negative relationship between the scale and shape parameters (δ = −q)
seems to be much more plausible than any other model. In fact, a closer look at
the LPDS values shows that it even outperforms the larger EGG model though the
difference in LPDS is marginal.

Hence, for the men data, we have a very strong evidence to base our conclusions
on the results from the inverse gamma model that, of course, are identical to those
from the EGG model.

Last, the results for the combined sample are shown in Table 5. Similar reasoning
as in the above leads to the choice of EGG model or the inverse gamma model
though a formal test would favor the larger EGG model. That the results for the
combined sample reflected those for women are not surprising because women
constitute about two-third of the combined sample.

The final estimates of covariate effects and their associated 95% hpd from our
chosen models for respective data sets are summarized in Table 2.

The results in Table 2 show that there are significant differentials in entry to first
marriage across women’s educational level and residence where lower education
and rural residence are associated with higher intensities of marriage. For men,
the educational differences are less pronounced as there is no significant difference
in the intensities of entry to first marriage between those with no education and
those with primary or middle education. The residential differential is, however, still
significant. The results for the combined sample follow those of women because, as
mentioned before, women constitute majority in the combined sample.

5 Summary and Concluding Remarks

In this chapter, we presented the extended generalized gamma (EGG) model for
survival data with censored observations. Previous works have shown that five
known models can be treated as special cases of the EGG model by constraining
the scale parameter, shape parameter, or both to some constants. In the present
chapter, we extended the EGG model further to include 13 special case models. This
was achieved by imposing relationships between the scale and shape parameters in
addition to constraining them to some constants.

The issues were illustrated with data on entry into first marriage among Eritrean
men and women based on data from the 2010 Eritrean Population and Health Survey
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(EPHS 2010). Inference was fully Bayesian using a random walk Metropolis–
Hastings algorithm to sample from the posterior distribution, and we compared the
models with each other and relative to the more general EGG model using the log
predictive density score (LPDS).

The application demonstrates that the further extended family of distributions
provides a wide range of alternatives for a baseline distribution in the analysis of
survival data with censored observations. For instance, we found that the inverse
gamma model, where we impose the scale parameter to be the negative of the shape
parameters (δ = −q), fits the men data best and outperforms the EGG model. It also
performs well in the women data and the combined sample though the evidence is
not as strong as in the men data. This was in accordance with the freely estimated
values of the scale and shape parameters in the EGG model.

The empirical results in the final selected models reveal significant differentials in
the pace of entry to first marriage across women’s educational levels and residence.
As would be expected, lower education and rural residence is associated with higher
intensities of marriage. Educational differentials are, however, less pronounced for
men as there was no significant difference in the intensities of entry to first marriage
between those with no education (the baseline group) and those with primary or
middle education. The residential differential was still significant in the men’s data.
When we analyzed the combined data, the results followed those of women due,
mainly, to the fact that women constitute about two-third in the combined sample.

It may be worth noting that the educational level of the individuals refers to
what is achieved by the survey time. As such, it is anticipatory in the sense that
the reported educational level might have been achieved after the event of interest.
But, our aim here is to demonstrate the models and methods empirically, and
the anticipatory nature of education does not affect our purpose. Ghilagaber and
Koskinen (2009), Ghilagaber and Larsson (2019), and Munezero and Ghilagaber
(2022a) study potential biases due to the use of anticipatory covariates and how to
account for that.

Our analysis was based on the tacit assumption that the survivor function S(t)

tends to 0 as the study period gets longer. This, in turn, means that we have assumed
all individuals will experience the event of interest sooner or later. This may not
be true for the event in our illustrative example (marriage) as there may be some
individuals who may never marry for various reasons. Future works may, therefore,
consider accounting for such long-term survivors (those who may never experience
the event of interest). This can be achieved by using, for instance, a mixture model
consisting of a hazard/intensity model for those who experienced the event or may
experience it in the future and a logistic model for the probability of being long-term
survivor (never experiencing the event).

Appendix 1: Density Functions, f (t), and Survival Functions,
S(t), of Special Cases in the Extended Generalized Gamma
Model
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Appendix 2: Proof of Lemma 1

Proof:

E(T r) =
∫ ∞

0
t r

|q|
δ
t
q
δ
−1 [q−2(e−μ)

q
δ ]q−2

�(q−2)
(t

q
δ )q

−2−1e−q−2(e−μ)
q
δ t

q
δ
dt.

Let x = q−2(e−μ)
q
δ t

q
δ ; then t = (q2e

qμ
δ x)

δ
q ,

E(T r) = [(q2e
qμ
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δ
q ]r
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rδ
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+q−2−1
e−xdx

= [(q2e
qμ
δ )

δ
q ]r
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�(q−2 + rδ

q
) (q−2 + rδ

q
> 0)

When r = 1, we get E(T ), and when r = 2, we get E(T 2). Using these, we have
V (T ) = E(T 2) − E2(T ). �

Appendix 3: R Program Codes for Bayesian Inference

###############################################################
###########Random Walk Metropolis algorithm####################
###############################################################
library(MASS)
library(mvtnorm)

#Calculate log-likelihood and the Hessian evaluated at the mode

calculate.loglike <- function(beta){

beta1 <- beta[1]+beta[2]*Prim+beta[3]*Middle+beta[4]*Secon+
beta[5]*PostSec+beta[6]*Other+beta[7]*Rural

delta <- beta[8]
q <- beta[9]

error <- (log(y)-beta1)/delta
s <- q^(-2)
r <- exp(q*error)
#Probability density function
pdf <- function(r,s,q){

if (q!=0) pdf <- abs(q)*r*dgamma(r,s,s)
else pdf <- dnorm(error,0,1)

pdf
}
#Survival function
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surv <- function(r,s,q){
if (q!=0) surv <- (q>0)*(1-pgamma(r,s,s))+

(q<0)*(pgamma(r,s,s))
else surv <- 1-pnorm(error,0,1)

surv
}
#log-likelihood function
loglike <- function(r,s,q){
loglike <- sum(d*(log(pdf(r,s,q))-log(delta))+

(1-d)*log(surv(r,s,q)))
loglike

}

list(loglike=loglike(r,s,q))
}

m=20000
beta0 <- c(5,0,0,0,0,0,0)
delta0 <- 1
q0 <- 0.12

theta0 <- c(beta0,delta0,q0)

mu.beta <- c(0,0,0,0,0,0,0) #prior
s.beta <- c(1000,1000,1000,1000,1000,1000,1000) #prior

theta <- matrix(nrow=m,ncol=9)
acc.prob_theta <- 0
current.theta <- theta0

for (t in 1:m){
cur <- calculate.loglike(current.theta)

prop.theta <- mvrnorm(1,current.theta,Sigma=vcov_mode)
jump_1 <- -as.numeric(0.5*log(det(vcov_mode)))-

0.5*t(prop.theta-current.theta)%*%solve(vcov_mode)
%*%(prop.theta-current.theta)

prop <- calculate.loglike(prop.theta)

ll_1 <- prop$loglike
jump_2 <- -as.numeric(0.5*log(det(vcov_mode)))-

0.5*t(current.theta-prop.theta)%*%solve(vcov_mode)
%*% (current.theta-prop.theta)

ll_2 <- cur$loglike
loga <- ll_1-ll_2+sum(dnorm(prop.theta[1:7],mu.beta,s.beta,

log=T))-
sum(dnorm(current.theta[1:7],mu.beta,s.beta,log=T))+
dgamma(prop.theta[8],1,1,log=T)-dgamma(current.theta[8],

1,1,log=T)+
dnorm(prop.theta[9],0,1000,log=T)-dnorm(current.theta[9],

0,1000,log=T)+
jump_2-jump_1

u <- runif(1)
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u <- log(u)
if (u < loga){

current.theta <- prop.theta
acc.prob_theta <- acc.prob_theta+1

}
theta[t,] <- current.theta

}

###############################################################
###########Log predictivedensity score (LPDS)##################
###############################################################

#5-fold cross validation
cv <- matrix(cbind(Age,1,Prim,Middle,Secon,PostSec,Other,Rural,

Marr),ncol=9, nrow=length(Age))

index <- sample(length(y),size=length(y),replace=F)
index_1 <- index[1:2047]
index_2 <- index[2048:4095]
index_3 <- index[4096:6143]
index_4 <- index[6144:8191]
index_5 <- index[8192:10238]

new <- list(as.matrix(cv[index_1,]),as.matrix(cv[index_2,]),as.
matrix(cv[index_3,]),
as.matrix(cv[index_4,]),as.matrix(cv[index_5,]))

calculate.loglike <- function(b,delta,q,data){

x<- data[,2:8]
y <- data[,1]
d <- data[,9]
mu <- x%*%b

#Probility density function
pdf <- function(b,delta,q){

if (q!=0) pdf <- abs(q)/delta*y^(q/delta-1)*
dgamma(y^(q/delta),q^(-2),q^(-2)*exp
(-mu)^(q/delta))

else pdf <- dnorm(log(y),mu,delta^2)
pdf
}
#Survival function
surv <- function(b,delta,q){

if (q!=0) surv <- (q>0)*(1-pgamma(y^(q/delta),q^(-2),q^(-2)

*exp(-mu)^(q/delta)))+
(q<0)*pgamma(y^(q/delta),q^(-2),q^(-2)

*exp(-mu)^(q/delta))
else surv <- 1-pnorm(log(y),mu,delta^2)

surv
}

loglike <- sum(d*(log(pdf(b,delta,q)))+(1-d)*log(surv(b,delta,q)))
return(list(loglike=loglike))

}
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m<-20000

#initial values
beta0 <- mode[1:7]
delta0 <- mode[8]
q0 <- -0.15
theta0 <- c(beta0,delta0)

mu.beta <- c(0,0,0,0,0,0,0) #prior
s.beta <- c(1000,1000,1000,1000,1000,1000,1000) #prior

theta <- matrix(nrow=m,ncol=8)
q <- c()
pre <- c()
logpre <- c()
loglike <- c()
Cb <- c()
acc.prob_theta <- 0
acc.prob_q <- 0
current.theta <- theta0
current.q <- q0

for (k in 1:5){
for (t in 1:m){
prop.theta <- mvrnorm(1,current.theta,cov[1:8,1:8])
ll_1 <- calculate.loglike(prop.theta[1:7],prop.theta[8],

current.q,data=rbind(new[-k][[1]],new[-k][[2]],
new[-k][[3]],new[-k][[4]]))$loglike

ll_2 <- calculate.loglike(current.theta[1:7],current.theta[8],
current.q,data=rbind(new[-k][[1]],new[-k][[2]],new[-k]
[[3]],new[-k][[4]]))$loglike

jump_1 <- -as.numeric(0.5*log(det(cov[1:8,1:8])))-
0.5*t(prop.theta-current.theta)%*%solve(cov[1:8,1:8])%*%(prop.
theta-current.theta)
jump_2 <- -as.numeric(0.5*log(det(cov[1:8,1:8])))-
0.5*t(current.theta-prop.theta)%*%solve(cov[1:8,1:8])
%*%(current.theta-prop.theta)

loga <- ll_1-ll_2+sum(dnorm(prop.theta[1:7],mu.beta,s.beta,
log=T))-sum(dnorm(current.theta[1:7],mu.beta,s.beta,
log=T))+dgamma(prop.theta[8],1,1,log=T)-dgamma(current.
theta[8],1,1,log=T)+jump_2-jump_1

u <- runif(1)
u <- log(u)

if (u < loga){
current.theta <- prop.theta
acc.prob_theta <- acc.prob_theta+1

}
theta[t,] <- current.theta

prop.q <- rnorm(1,current.q,cov[9,9])
ll_1 <- calculate.loglike(current.theta[1:7],current.theta[8],
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prop.q,data=rbind(new[-k][[1]],new[-k][[2]],new[-k][[3]],
new[-k][[4]]))$loglike

ll_2 <- calculate.loglike(current.theta[1:7],current.theta[8],
current.q,data=rbind(new[-k][[1]],new[-k][[2]],new[-k]
[[3]],new[-k][[4]]))$loglike

loga <- ll_1-ll_2+dnorm(prop.q,0,1000,log=T)-dnorm(current.q,0,
1000,log=T)

u <- runif(1)
u <- log(u)
if (u < loga){

current.q <- prop.q
acc.prob_q <- acc.prob_q+1

}
q[t] <- current.q
loglike[t] <- calculate.loglike(theta[t,1:7],theta[t,8],q[t],

data=new[[k]])$loglike
}
Cb[k] <- mean(loglike)
pre <- exp(loglike-Cb[k])
burnin <- 5000
logpre[k]<- Cb[k]+log(mean(pre[(burnin+1):m]))

}
lpds <- mean(logpre)
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Dynamic Bayesian Modeling of
Educational and Residential Differences
in Family Initiation Among Eritrean Men
and Women

Parfait Munezero and Gebrenegus Ghilagaber

Abstract We propose a dynamic Bayesian survival model for analyzing differ-
entials in the timing of family initiation. Such formulation relaxes the strong
assumption of constant hazard ratio in conventional proportional hazards models
and allows covariate effects to vary over time. Inference is fully Bayesian, and
efficient sequential Monte Carlo (particle filter) is used to sample from the posterior
distribution. We illustrate the proposed model with data on entry into first marriage
among Eritrean men and women surveyed in the 2010 Eritrean Population and
Health Survey. Results from the conventional proportional hazards model indicate
significant differences in family initiation among all educational and residential
groups. In the dynamic model, on the other hand, only one educational and one
residential group among the women and only one residential group among the men
differ from their respective baseline groups. Since the empirical relative intensities
of entry into first marriage vary across respondents’ ages, we argue that the proposed
dynamic model captures differentials in family initiation more accurately.
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1 Introduction

Whether differences in survival functions are constant or change over time is an
issue of interest in the analysis of time-to-event data. For instance, tests for equality
between survival functions (typically the log-rank and generalized Wilcoxon tests)
are based on the difference between the observed and expected number of events
at each event time. But, they may yield different results (and lead to different
conclusions) depending on whether the differences between the empirical survival
curves are uniform or vary across the observation period. This is so because the
generalized Wilcoxon test is a weighted version of the log-rank test where the
differences between the observed and expected events are weighted by the “risk
set” (the number of individuals at “risk” of experiencing the event) at each time. The
risk set is large at the beginning of the study but is depleted over time as individuals
experience the event. Thus, differences between survival curves at the beginning
of the study are weighted heavier than differences at the end of the study. If the
empirical survival curves are parallel (their differences are uniform over the study
period), the two tests lead to the same conclusions. Else, one test statistic may be
larger or smaller than the other depending on the extent to which the survival curves
differ and where in the observation period they differ.

Similarly, the conventional proportional hazards model (Cox, 1972), assumes
that the ratio of hazards of any two study groups is constant over the study period.
In other words, the model assumes that the hazards of the study groups are parallel
over the study period. This is clear in the model specification where the hazard
(intensity) function is expressed as a product of a baseline hazard, λ0(t), which is a
function of time, t , and a relative hazard that is a function of a vector of covariates,
x:

λ (t | x) = λ0 (t) exp
(
x′β

)
, (1)

where β is a vector of parameters to be estimated.
In real-life situations, however, the effect of a covariate (and, hence, the ratio

of the hazards) may change over time, especially when the observation period is
long. For instance, a treatment may have immediate effect on a patient’s survival
chances, but its beneficial effect may diminish with time. Similarly, education may
have deferring effect on entry into marriage at younger ages, but such educational
difference may disappear at older ages when those who eventually marry had to do
it sooner or later.

In order to accommodate such real-life situations, we need to relax the restrictive
assumption in proportional hazards models given in Eq. (1). Thus, the above model
can be extended to a more general hazard model where the parameters are allowed
to vary over time:

λ (t |x) = λ0(t) exp
(
x′β(t)

)
. (2)
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This model is a special case of the generalized additive models described in
Fahrmeir and Kneib (2011) and Hennerfeind et al. (2006) where nonlinear effects
of continuous covariates, spatial effects, and frailty terms are incorporated.

An important issue that needs to be addressed in the extended model given
in Eq. (2) is how to express β(t). A general approach, such as that described
in Hennerfeind et al. (2006) and van Houwelingen and Putter (2011), expresses
β(t) using polynomial splines. Another common and simpler approach, which is a
special case of the spline model, defines β(t) using piece-wise constant functions.
This results in the semi-parametric piece-wise exponential model described in
Gamerman (1991). The study period is partitioned into many small intervals, and
β(t) is assumed to be constant within each interval but may vary between intervals.
This approach has been applied to analyze continuous survival times in Gamerman
(1991), Hemming and Shaw (2002, 2005) and Wagner (2011) and discrete survival
times in Fahrmeir (1994) and Fahrmeir and Wagenpfeil (1996).

The evolution of β(t) across the intervals partitioning the study period is modeled
using a random walk prior process. This process allows the effect parameters to
adapt to any changes in the hazard function that may occur along time. On the
other hand, it induces non-linearity and correlations among parameters and makes
the posterior analytically intractable. To address these issues, we use sequential
Monte Carlo (SMC), also known as particle filter in the literature, to sample from
our posterior. As described in Munezero (2022), the particle filter is more suitable
for nonlinear dynamic models. Further, Doucet et al. (2001) argue that it does
not require any transformation of the model and also has computational advantage
compared to conventional Markov Chain Monte Carlo (MCMC) methods.

The rest of the chapter is organized as follows. We introduce our illustrative data
sets in Sect. 2 and perform analyses using conventional proportional hazards models
for later comparison with dynamic models. In Sect. 3, we present the dynamic
survival model in the Bayesian framework and describe the likelihood, prior, and
the resulting posterior distributions. In Section 4, we fit the dynamic model to our
data sets, discuss the results, and compare them with those obtained from standard
models. We summarize our findings in Sect. 5 by way of concluding remarks and
suggestions for future works in the area.

2 The Data Set and Preliminary Analyses with Standard
Models

Age at marriage and child spacing are of substantive interest because of their well-
documented association with women’s health directly (Raj, 2010), or indirectly
through their negative impact on health care utilization (Godha et al., 2016).

The data used for illustration in this chapter come from the 2010 Eritrea
Population and Health Survey, EPHS2010, described in National-Statistics-Office-
Eritrea and Fafo-AIS (2013). The EPHS2010 was designed as a follow-up to its
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Table 1 Summary statistics of the data sets

Women Men Combined sample

Covariate Levels n Events % Event n Event % Event n Event % Event

Education No Educ 4186 3799 90.75 1050 892 84.95 5236 4691 89.59

Primary 2055 1634 79.51 803 543 67.62 2858 2177 76.17

Middle 1827 1006 55.06 1209 455 37.63 3036 1461 48.12

Sec 1894 886 46.78 1516 461 30.41 3410 1347 39.50

PostSec 276 96 34.78 442 218 49.32 718 314 43.73

Residence Capital 1819 969 53.27 931 344 36.95 2750 1313 47.75

Other Towns 2504 1739 69.45 1257 565 44.95 3761 2304 61.26

Rural Areas 5915 4713 79.68 2833 1660 58.60 8748 6373 72.85

Total 10,238 7421 72.49 5021 2569 51.17 15,259 9990 65.47

predecessors—the 1995 and 2002 Demographic and Health Surveys described
in National-Statistics-Office-Eritrea and Macro-International-Inc. (1997) and
National-Statistics-Office-Eritrea and Macro-International-Inc. (2003), respectively,
and updates the information from the previous surveys as well as provides findings
on some new topics of interest.

The EPHS2010 was conducted between January and July 2010 and surveyed
30224 women aged 15–49 and 5021 men aged 15–59. For the purpose of this
chapter, only respondents with known values on marital status at the time of the
survey as well as on their education and residence are used in the analyses. This
resulted in 10238 usable records for women and all 5021 records for men. Detailed
tabulations for the entire survey may be found in the EPHS2010 final report,
National-Statistics-Office-Eritrea and Fafo-AIS (2013). Summary statistics for the
subset of data used in the present chapter are shown in Table 1.

By the survey time, 7421 of the 10238 women (72%) and 2569 of the 5021
men (51%) have responded they were ever married (this includes those who might
have been separated or widowed after). The rest, 2817 women and 2452 men (28%
and 49%, respectively), have responded that they were still single at the time of
interview. The distribution of the women across educational levels shows that 4186
(41%) had no education at all, 2055 (20%) had primary-level education, 1827
(18%) had middle-level education, 1894 (18%) had secondary-level education,
while the rest 276 (3%) had post-secondary education. The corresponding figures
for men are 1051 (21%), 803 (16%), 1209 (24%), 1516 (30%), and 442 (9%),
respectively. Further, 1819 (18%) of the women respondents were from the capital
(Asmara), 2504 (24%) were from other towns, while the majority 5915 (58%) were
from rural areas. The corresponding figures for men are 931 (19%), 1257 (25%),
and 2833 (56%), respectively.

The columns of percentage married in Table 1 reveal clear differentials across
both educational levels and residence for both women and men. For instance, while
women with no education constitute 41% of the entire sample, they constitute 51%
of the marriages (3799 of 7421). Women with post-secondary education, on the



Dynamic Bayesian Modeling of Family Initiation in Eritrea 323

other hand, constitute only 1% of the marriages (96 of 7421). The pattern is similar
but less dramatic for men—those with no education constitute 35% of the marriages,
while those with post-secondary education constitute only 8% of the marriages.
Differentials across residence show that women from rural areas constitute 58%
of the sub-sample but 64% of the marriages. Women from the capital, on the
other hand, constitute 19% of the sub-sample but only 13% of the marriages. The
contribution of men from Asmara to the sub-sample is 18%, while their contribution
to the total marriage is 15%. Men from rural areas constitute 56% of the sub-sample
but 65% of the marriages.

Plots of probabilities of family initiation by age and across educational levels
and residential areas are shown in Fig. 1. The upper panel are educational (left) and
residential (right) plots for women. Those in the middle panel are corresponding
plots for men. The plot in the lower panel shows gender differences in the probability
of family initiation at each age.

The plots indicate that there are differentials in the probabilities of family
initiation across education and residence and that the educational differences are
more pronounced among women (upper panel) than among men (middle panel).
Further, the last plot (lower panel) shows that women initiate family at much faster
(at younger ages) than men.

These summary tables and figures provide some overview of the data at hand, but
in order to better understand the differentials and make well-grounded inferences,
we need to support our initial observation with appropriate analyses of the data
and formal statistical tests. Ghilagaber (2018) has analyzed the data sets using
frequentist statistical methods ranging from elementary measures of association
between marriage and the covariates to more complex and advanced methods
that utilize the data more efficiently. The data sets are also analyzed elsewhere
in this book in a Bayesian accelerated failure-time framework with the extended
generalized gamma model and its 13 special cases, see Liang and Ghilagaber (2022).

For continuity and comparison with later sections, we present in Table 2 results
from fitting the standard Cox proportional hazards model in Eq. (1) separately for
women, men, and the combined sample.

The separate results for women and men are in accordance with the findings in
Ghilagaber (2018), but the combined sample was not analyzed before.

In Fig. 1, we observed that the educational and residential differentials in
probabilities of family initiation are not uniform across the ages for both men and
women. The last plot in Fig. 1 also indicates that even the gender difference in the
probabilities is not uniform across ages.

The above observations justify re-analysis of the data using models that account
for non-constant differentials. In the next section, we present our proposed dynamic
model in a Bayesian framework. The presentation of the model will be relatively
brief and will take up topics that are relevant in order to understand the application in
Sect. 4. A more detailed description of the model and its associated efficient particle
filter used to sample from the posterior distribution can be found in Munezero
(2022).
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Table 2 Estimated relative intensities of marriage from standard Cox PH models

Women Men Combined sample

Covariate Levels Estimate 2.5% 97.5% Estimate 2.5% 97.5% Estimate 2.5% 97.5%

Education No Educ 4.42 3.59 5.45 1.54 1.30 1.81 3.97 3.52 4.48

Primary 4.31 3.49 5.31 1.85 1.57 2.20 3.57 3.16 4.03

Middle 2.78 2.25 3.44 1.61 1.36 1.91 2.26 2.00 2.56

Sec 1.82 1.47 2.25 1.13 0.96 1.33 1.44 1.27 1.63

PostSec 1 – – 1 – – 1 – –

Residence Capital 1 – – 1 – – 1 – –

Other Towns 1.42 1.31 1.55 1.33 1.16 1.53 1.26 1.17 1.35

Rural Areas 1.57 1.44 1.70 1.89 1.65 2.17 1.28 1.20 1.37

3 Dynamic Bayesian Modeling of Survival Data

Following notation in Munezero (2022), we denote the random survival time by T̃ .
It represents the time until the event of interest (marriage) occurs to an individual or
the study period ends (the individual is censored)—whichever comes first. Denoting
the censoring variable by C, the observed time is represented by the random variable
T = min(T̃ , C).

The hazard function describes the instantaneous rate at which the event (mar-
riage) occurs and is linked to x as in Eq. (2).

The corresponding survival function is then given by

S (t |x) = exp

(

−
∫ t

0
λ(s|x)ds

)

(3)

and is defined as the probability that an individual with profile x has not experienced
the event by time t .

Thus, given observed exposure times for n individuals, t1,..., tn, a censoring
indicator di (di = 0 for censored, di = 1 for events), and the covariates xi (for
i = 1, · · · , n), the resulting likelihood function is given by

L (t1, . . . , tn|β (t)) =
n∏

i=1

λ (ti |xi )di S (ti |xi ) , (4)

where the dependence of λ (t |x) on β (t) is as given in Eq. (2).
Below, we redefine the likelihood in the framework of piece-wise constant

hazard model in Gamerman (1991). The observation time is partitioned into smaller
intervals, and the likelihood is obtained as the product of the likelihoods in each
interval.
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3.1 The Likelihood Under Piece-Wise Exponential Distribution

In piece-wise exponential models, the exposure time is partitioned into consecutive
disjoint intervals, Ij = [τj−1, τj ) (where j = 1, · · · , J and τ0 = 0 < τ1 <, · · · ,<
τJ ). The baseline hazard function is assumed to be constant within each interval Ij ,
i.e., λ0(t) = λ0j , for t ∈ Ij and λ0j > 0. Further, it is assumed that the vector of
coefficients β (t) is piece-wise constant, i.e., β (t) = βj if t ∈ Ij . Thus, the hazard
function is represented by several constant parameters λ1, . . . , λJ , where each λj is
connected to the covariate information of an individual i through the log link

ln λij = x′
iβj , (5)

which allows flexibility to capture different shapes of the hazard function across
time.

In Eq. (5), xi is the original covariate vector augmented with a column of 1,
and βj represents the vector of regression coefficients, where the intercept β0j =
ln(λ0j ) is the log of the baseline hazard.

Partitioning time into discrete intervals breaks the survival time ti into several
exposure times tij = max(0,min(ti − τj−1, τj − τj−1)), which define the length
of time individual i is exposed to the event of interest within the interval Ij . The
exposure time is equal to the length of Ij (if individual i survived through this
interval), or it is equal to ti − τj−1 (if individual i experienced the event within
interval Ij ); otherwise, it is equal to zero. Similarly, the event indicator expands into
a vector of binary variables dij = 1 if individual i experiences the event in interval
Ij , and dij = 0 if individual i survives through interval Ij .

Assuming covariates enter the model as in Eq. (5), the survival function for
individual i becomes

S (ti |xi ) = exp

⎛

⎝−
⎡

⎣
h−1∑

j=1

λij
(
τj − τj−1

)
⎤

⎦− λih
(
ti − τh−1

)
⎞

⎠ , ifτh−1 ≤ ti < τh, h ≤ J,

(6)
and the likelihood in Eq. (4) can now be factorized across the intervals:

L
(
t1:J |β1:J

) =
J∏

j=1

[ nj∏

i=1

λ
dij
ij exp

(−λij tij
)
]

, (7)

where tj is the vector of exposures for interval Ij , t1:J = (t1, . . . , tJ ), β1:J =
(β1, . . . , βJ ), and nj is the number of individuals who experienced the event in
interval Ij .
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3.2 Prior Specification

We use one of the simplest and most common smoothing priors on the regression
coefficients, βj . This simple prior is the random walk:

βj = βj−1 + εj , εj ∼ N
(
0,Uj

)
. (8)

This process is a special case of the more general first-order random walk process
for parameter evolution suggested by Gamerman (1991) and has been used by
Hemming and Shaw (2002) and Wagner (2011), among others.

It is clear from Eq. (8) that if Uj is a zero matrix, then there is no change in
the regression coefficients over time, and, thus, the dynamic model reduces to the
standard proportional hazards model. Else, βj varies over time, and larger values
for the entries in Uj induce high variations in βj .

In many applications, Uj is assumed constant, and it can be a diagonal matrix
or a full matrix. For a diagonal Uj , appropriate priors for diagonal elements are the
log-normal priors according to Hemming and Shaw (2002) or the inverse gamma
priors according to Sargent (1997) and Wagner (2011). For a full matrix, an inverse
Wishart prior is adequate according to Gamerman (1998).

Alternatively, West et al. (1985) argue that it is possible to avoid computing Uj

by using a discounting procedure to approximate Uj adaptively. This procedure uses
a discount parameter 0 < φ < 1 that controls the amount of information transferred
through intervals. Assuming that Σj−1 is the posterior variance of parameters in the
previous interval j − 1, then Uj = (φ−1 − 1)Σj−1. Therefore, a discount factor
close to 1 penalizes high fluctuations making the parameters evolve in a static way.
Else, parameters are allowed to move freely and adapt to local changes over time.
For more details, see Munezero (2022) and West et al. (1985).

3.3 Sampling and Inference from the Posterior Distribution

Combining the likelihood in Eq. (7) and the prior in Eq. (8) yields the following
posterior distribution:

p
(
β1:J |t1:J

) ∝ p
(
t1|β1

)
p
(
β1
) J∏

j=2

Lj

(
tj |βj

)
p
(
βj |βj−1

)
, (9)

where p(βj |βj−1) is defined by the expression in Eq. (8).
Markov chain Monte Carlo (MCMC) methods have been used to sample from

the posterior in Eq. (9) in, for instance (Frühwirth-Schnatter, 1994; Hemming and
Shaw, 2002; Wagner, 2011).
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But, since the likelihood in Eq. (7) and the prior process in Eq. (8) define a state
space model with nonlinear and non-Gaussian observation model, it is appropriate
to use sequential Monte Carlo (SMC) methods for inference as argued by Gordon
et al. (1993). Further, according to Carpenter et al. (1999); Doucet et al. (2000,
2001) SMC methods are specifically designed for filtering problems in state space
models, where the main objective is to sample from p(β1:j |t1:j ), j = 1, . . . , J,
sequentially through lower-dimensional filtering distributions, p(βj | t1:j ). More
detailed description of SMC can be found in Munezero (2022).

4 Application: Dynamic Bayesian Modeling of Time to
Family Initiation

We now apply the dynamic model described in Sect. 3 on the data described in
Sect. 2. Our proposed dynamic model requires partitioning the time variable (age)
into J intervals. As described in Gamerman (1991), the common practice is to set
the interval limits at each event time though such procedure can, sometimes, lead
to too many intervals. Our time variable in the present illustration, age, is relatively
simple, and thus we have partitioned it by 1 year intervals from age 15 until the
highest observed age at marriage. This resulted in 27 intervals for women (with
observed marriages at all ages between 15 and 43). The corresponding number of
intervals for men was 40 (ranging from ages 15 to 56).

Results from fitting our dynamic model to our data sets are presented in Fig. 2.
The upper-left panel of Fig. 2 shows relative intensities of entry into first marriage
across educational levels among women. Women with the highest educational level
(post-secondary education) were used as baseline (reference) level. We see clearly
in figure that educational differences in entry into first marriage are not constant
across woman’s age. The differences are clearly distinguishable in the young ages
(until about age 22) where women with no or lower education are more likely to
enter into marriage than those with higher education but with varying degrees. After
age 22, the differences diminish (and even go in the opposite direction), and the
negligible differences are constant over ages.

The upper-right panel of Fig. 2 shows relative intensities of entry into first
marriage across educational levels among men. Men with the highest educational
level (post-secondary education) were used as baseline (reference) level. The figure
again shows clearly that educational differences in entry into first marriage are not
constant across men’s age. Further, the patterns of variation across ages are different
from those of women. In the figure for men, we see that the variations in relative
intensities continue until about age 30, then stabilize between ages 30 and 40, and
again begin to show variations after age 40. At young ages (until about age 25),
education is negatively related to entry into first marriage. After that, the educational
differences begin to diminish or, in fact, change direction. For instance, after age 30,
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it is the curve for men with middle-level education that lies at the top of all curves
although it is not far from that of the baseline.

Residential differences in intensities of first marriage are shown in the lower
panel of Fig. 2 for both women (left) and men (right). Women and men from the
capital city (Asmara) are used as baseline levels. For women, residential differentials
are well pronounced at young ages (until about age 27) and disappear after that. For
men, on the other hand, the residential differences are pronounced at early ages
(until about 30) and at old ages (after age 40) but seem to be stable and insignificant
between age 30 and 40.

A result worth noting in the lower panel of Fig. 2 is that men from rural areas have
higher intensities of entry into first marriage than those from the capital (Asmara)
at all ages. The relative intensities of men from other towns oscillate around 1
indicating smaller differences from those of the capital. For women, on the other
hand, those from rural areas have higher intensities than those from the capital at
younger ages, but the differences get smaller over time and disappear at older ages.
Women from other towns have relative intensities that stay steadily above those from
the capital at all ages.

To make the gender differences in the relative intensities more clear, we present,
in Fig. 3, pairs of relative intensities of the six covariates studied (four educational
levels and two residential areas). We thus plot the relative intensities by education
(upper and middle panels) and residence (lower panel).

In Table 3, we present the posterior means of relative intensities (averaged over
the 27 intervals for women and 40 intervals for men) and their corresponding 95%
credible intervals.

We note in Table 3 that the only significant relative intensities (whose 95%
credible interval does not include 1) are women with no education (relative to
women with post-secondary education) and those from other towns (relative to
women from the capital city) as well as men from rural areas (relative to men from
the capital city).

These results are in stark contrast with those in Table 2 where the relative
intensities of all educational and residential groups were significantly different
from their respective baselines. But, the results in Table 3 are in accordance with
the behavior of the corresponding curves in Fig. 2. The figures show significant
differences in younger ages but no difference (or difference in the opposite direction)
over the larger portion of the age interval. Thus, when these differences are
averaged, it should not come as a surprise if they do not show any significant
difference between some of the study groups.

We sum up our results in Table 4 where we reproduce the relative intensities
of entry to first marriage from the dynamic model (Table 3) and the static Cox
proportional hazards model (Table 2). We note that the relative intensities in the
dynamic model are much lower than their corresponding entries from the Cox
proportional hazards model. In the third columns, we provide percentage differences
between the estimates from the models.

We see that estimates of relative intensities among women’s educational groups
are much higher in the Cox PH model than in the dynamic model. The same is true
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Table 3 Estimated posterior means of relative intensities of marriage and their 95 % credible
intervals from dynamic Bayesian models

Women Men

Covariate Levels Post. mean 2.5% 97.5% Post. mean 2.5% 97.5 %

Education No Educ 2.17 1.15 9.36 1.13 0.49 5.22

Primary 1.79 0.77 10.36 1.29 0.49 3.71

Middle 1.48 0.69 7.45 1.50 0.95 2.83

Sec 1.38 0.75 4.41 1.15 0.69 1.83

PostSec 1 – – 1 – –

Residence Capital 1 – – 1 – –

Other Towns 1.40 1.17 1.65 1.11 0.60 2.27

Rural Areas 1.45 0.85 1.95 1.89 1.11 3.25

Table 4 Relative intensities of marriage from dynamic models (posterior means) and Cox PH
models: replicated from Tables 2 and 3, respectively, for comparison

Women Men

Covariate Levels Dynamic Cox PH Diff. (%) Dynamic Cox PH Diff. (%)

Education No Educ 2.17 4.42 103.69 1.13 1.54 36.28

Primary 1.79 4.31 140.78 1.29 1.85 43.41

Middle 1.48 2.78 87.84 1.50 1.61 7.33

Sec 1.38 1.82 31.88 1.15 1.13 1.77

PostSec 1 1 – 1 1 –

Residence Capital 1 1 – 1 1 –

Other Towns 1.40 1.42 1.43 1.11 1.33 19.82

Rural Areas 1.45 1.57 8.28 1.89 1.89 0.00

for men, but the percentage differences between the models are much lower than
those in the women data. In fact, the estimates of relative intensities for men with
secondary-level education are practically the same (1.15 and 1.13, respectively).

For residence, we see that the two models yield practically the same estimates
of relative intensities for women from other towns and identical estimates for men
from rural areas.

5 Summary and Concluding Remarks

In this chapter, we presented a dynamic Bayesian survival model that relaxes the
assumption of proportional hazards in conventional models and allows effects of
covariates to vary over time.

The model was described in the framework of piece-wise exponential distribution
(piece-wise constant hazards) where the observation time was partitioned into
small intervals. Further, a simple random walk process was assumed as prior for
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the coefficients, and information was transferred between intervals via a discount
parameter. Sequential Monte Carlo method, also known as particle filter, was used
to sample from the posterior distribution.

We illustrated the proposed model by fitting it to data on family initiation (entry
to first marriage) among men and women from Eritrea based on its 2010 Population
and Health Survey. Our empirical results show that educational and residential
differentials in family initiation are not uniform over time (in our case age of
respondents). Thus, we argue that the dynamic survival model that allows covariate
effects to vary over time captures patterns of family initiation more correctly.

We also found that educational and residential differentials are significant at
younger ages but diminish after a short period and are insignificant for a longer part
of the observation period. This, in turn, implied that the average values of the relative
intensities over the entire period were insignificant for most of the covariates. In fact,
it was only women with no education and those from other towns, as well as men
from rural areas that differed significantly from their respective baselines. This was
in stark contrast with the results from the conventional proportional hazard models
where all covariates were significant.

Our results also indicated that the patterns of variation in the relative intensities
are different between men and women. For instance, educational differences are
more pronounced among women than among men, while residential differences are
much smaller than those of education for both men and women.

We are aware that there can be interaction between the two covariates used in
the analyses (education and residence). Individuals with higher education are more
likely to live in the capital city or other towns than in rural areas. Thus, the estimated
effects may not reflect pure effects of the respective covariates.

Further, the educational level used in the analyses is what was achieved by
the survey date (2010), while the event of interest (marriage) might have taken
place earlier. This is a common problem in retrospective data. If a high proportion
of respondents have completed the reported educational level after they have
married, the educational differentials in marriage intensities may be distorted due
to misclassification of individuals over educational levels. Ghilagaber and Koskinen
(2009), Ghilagaber and Larsson (2019), and Munezero and Ghilagaber (2022) study
potential biases due to use of anticipatory covariates and how to account for that.

Last, the event of interest in the illustration, entry into first marriage, is not a
certain event (like, for instance, death). There may be individuals who, for various
reasons, may never marry. Such individuals are known long-term survivors in
the literature. Thus, among the individuals who were not married at the time of
interview, some of them are “genuinely censored” and may marry sometime after
the survey, while others may never marry.

One possible direction for future work may, therefore, be to use mixture models
to re-analyze the data. Among the censored individuals, a logistic regression model
may be used for the probability of being long-term survivor (never marry). This
model may then be estimated jointly with the model for the intensity of marriage
among all individuals.
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Appendix: R Program Codes for Dynamic Bayesian Survival
Modeling Used in the Chapter

#----------------------------------------------------------------
# Load required file
# ---------------------------------------------

# ------------------------------
# extract data and cleaning data
# ----------------
# function to create dummy variables
dummies <- function(data, variables,ref){

cols <- colnames(data)
new_var_name <- cols[which(!(cols %in% variables))]
new_data <- data[new_var_name]
for (i in seq_len(length(variables))){

fctr <- sort((unlist(unique(data[variables[i]]))))

levels <- fctr[-which(fctr==ref[i])]
for(k in levels){
new_var_name <- c(new_var_name,paste(variables[i],k,sep=""))
new_data <-cbind(new_data, ifelse(data[variables[i]]==k,1,0))

}
}
colnames(new_data)<-new_var_name
return(new_data)

}
colnames(data)<-c("age","marriage_ind","birth_cohort","residence",
"education")View(data)
data$education <- data$education+1
train_data <- dummies(data[,-3], variables=c("residence",
"education"), c(1,5))
# cohort discarded from analysis
var_names <- c("intercept", colnames(train_data)[-c(1,2)])
head(train_data)
#----------------------------------------------------------------
# setting the initial values
#----------------------------------------------------------------
m_init<-rep(0,dim(train_data)[2]-1) # initial mean of the
regression parameters c_init<-diag(10,dim(train_data)[2]-1)
# initial convariance matrix for the regression parameters
event_time<-unique(sort(train_data[which(train_data[,2]==1),1]))
# event times intervals<-c(event_time,max(train_data[,1]))
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# fitting the model
results<-SmoothFilter(train_data,intervals,M=2500,

c_init,R=2,alpha=.45,T_ind=1,C_ind=2)
particles<-results$Particles
Pf.sumary<-trace.summary(particles)
PfMean.trace<-Pf.sumary$Mean
pfHPD<-Pf.sumary$HPD

# exprort the posterior sample
saveto <- file.path(getwd(),paste("women_2010_","posterior_",Sys.
Date()))apply(as.matrix(1:length(var_names)),1,

function(f) write.csv2(particles[[f]], paste(saveto,
var_names[f],".csv")))

# plot the parameter evolution

library(shape)
color<-shadepalette(n = 10, "white", "black")
col.names<-c("Log baseline",colnames(train_data)[-c(1,2)])
windows(18,10,0.7)
plot.new()
par(mfrow=c(2,(length(particles)+1)/2),font=1,family="sans")
m=1
l=length(intervals)
xmax<-ceiling(max(train_data[,1]))
xaxis<-intervals
for(i in 1:length(particles)){

plot(xaxis,rep(range(pfHPD[c(m,m+1),]),length.out=length(xaxis)),
type="n",ylab=" ", xlab=" ",main=" ",axes=FALSE) # axes
suppressed

polygon(c(rev(rep(xaxis,each=2)[-c(1,2*l)]), rep(xaxis,each=2)
[-c(1,2*l)]),c(rev(rep(pfHPD[m,],each=2)),rep(pfHPD[m+1,],
each=2)), col =color[9],border = color[9])

lines(xaxis,c(PfMean.trace[,i],PfMean.trace[l-1,i]),type="s",
lty=1,lwd=2,col="black") abline(h=0,lty=2,lwd=2)
ygrid<-round(range(pfHPD[c(m,m+1),]),2)
xgrid<-intervals
ylablist<-round(seq(ygrid[1],ygrid[2],by = round((ygrid[2]
-ygrid[1])/10,2)),2)
axis(1, at=xgrid, labels = xgrid,las=1,tck=-0.02,cex.axis=1,
font=2)
axis(2,at=ylablist,labels=ylablist,las=2,tck=-0.03,
cex.axis=1,font=2)

# add text
mtext("Time in years",1,cex=1,line=3,font=2)
mtext(col.names[i],cex=0.8,line=.7,font=2)
box(lty=1) # surounding box
m<-m+2

}
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Bayesian Spatial Modeling of HIV Using
Conditional Autoregressive Model

Ropo Ebenezer Ogunsakin and Ding-Geng (Din) Chen

Abstract Background: In the spatial analysis, the conventional method for disease
modeling and mapping is based on a log-linear relationship between relative risk
and local variation, while the covariates are ignored. On the other hand, the general
assumption in spatial modeling is the stationarity of the mean, which implies the
associations between the relative risk and some set of covariates, which is constant
over regions. In reality, the comparative risk modeling usually infringes on this
stationarity assumption because of spatial dependencies. Thus, non-stationarity of
the mean can be employed using the Spatially Varying Coefficients (SVCs) model.
Method: In this study, we propose a generalized linear model (GLM) with Bayesian
inference to build the SVC model and compared it with the stationary model.
The SVC model is used to relax the stationarity assumption in which nonlinear
effects of age are captured through the random walk of order two and by allowing
the covariates to vary spatially using a conditional autoregressive model. This
study aimed to profile people living with HIV in Nigeria. In this chapter, identical
spatial regression models are fitted for Bayesian approach, using General Household
Survey (GHS) data for the year 2015. Result and Conclusion: The finding of this
study highlights a nonlinear relationship between the incidence of HIV and age.
Among others, this study highlights areas where women are at higher risk of HIV
infection across the six regions of Nigeria. The modeling of the socio-demographic
predictors of HIV infection and spatial maps provided in this study could aid
in developing a framework to alleviate HIV and identify its hotspots for urgent
intervention in the endemic regions.
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1 Introduction

Human Immunodeficiency Virus (HIV) continues to be a major threat in the global
community. It is estimated that 36.9 million people were living with the virus at
the end of 2017 (Armstrong et al., 2018), of which 25% of these same people do
not know that they have the virus. The vast majority of people living with HIV and
acquired immune deficiency virus (AIDS) are found in low- and middle-income
countries, with an estimated 66% of them living in Sub-Saharan Africa (Bekker
et al., 2018). Out of these, it is estimated that 19.6 million are resided in either
East or Southern Africa. Further statistics put it that around two-thirds of new HIV
infections in West and Central Africa in 2017 occurred in Nigeria (Lamont et al.,
2012). Moreover, this region also estimated to have the highest prevalence and HIV
infection incidence in the world (Beyrer et al., 2016).

Several mechanisms have been developed by Nigeria government and non-
governmental organizations to reduce new infections as well as improve the living
standard of people infected with HIV. Some of the measures devised are the roll
out of antiretroviral therapy (ART) (AIDSinfo, 2016). Hence, the control of HIV
prevalence is necessary especially for assessing the trend as well as comparison
between regions.

The first HIV infection in Nigeria was reported in 1986, and since then, the
prevalence has risen from less than 0.1% in 1987 to 5.8% in 2002 with the estimated
3.6 million Nigerians (EO et al., 2005). The national HIV prevalence rate in 2012
was estimated to be 3.4% among adults aged 15–49 years (Awofala & Ogundele,
2018) out of 3.1 million people living with HIV, with a regional variation. The
prevalence of HIV varies considerably between the different geopolitical zones of
Nigeria. The southern Nigeria (South Zone) recorded the highest HIV prevalence at
5.5%, while the lowest prevalence rate is in the southeast (South-East Zone) with
a prevalence of 1.8% (Bekker et al., 2018). The total prevalence rate of HIV is
higher in rural areas (4%) than in urban (3%) (Baral et al., 2012; Aniekwu, 2002).
The differences in the prevalence across the geopolitical zones can be attributed to
barriers to the HIV response, which can be explained by cultural barriers, structural
barriers, and economic barriers (Group, 2003; Salaam-Blyther & Kendall, 2012;
WHO, 2015). Therefore, the clear understanding on the spatial distribution which
can bring about an accurate disease modeling and mapping to prevent the spread of
the disease across the different regions is needed.

In previous studies, (Djukpen, 2012) reported that there is a significant spatial
clustering of HIV/AIDS based on the mapped Global and Local Moran’s I values,
but the study did not examine the nonlinear relationship of age with HIV prevalence.
In addition, the spatial distribution of HIV considered did not take into consideration
the effect of some socioeconomic factors on HIV prevalence. Other studies outside
Nigeria have found that HIV prevalence increases with age (Niragire et al., 2015;
Ngesa et al., 2014), and in particular there is a nonlinear relationship between age
and HIV prevalence, but this has not been considered in the context of Nigeria.
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Considering a normal generalized linear regression model which has been
utilized in spatial data analysis, most studies have assumed stationarity of the mean
and covariance. By stationarity of the mean, it suggests a constant association
between outcome of interest and a set of covariates over the region or zone. This
assumption is unrealistic because of spatial dependencies and unknown factors that
may impact the outcome. Thus, this assumption can only be realistic when the
regression coefficients vary across space (Pearce, 1999). Therefore, the problem
of non-stationarity can be accommodated by allowing the relationships measured to
vary over space via geographically weighted regression (GWR) model or spatially
varying coefficients parameter (SVCP) (Gelfand et al., 2003). Therefore, this study
aims to perform a spatial analysis modeling to capture this nonlinearity of some
covariates among people living with HIV and Bayesian inference are applied with
Integrated Nested Laplace Approximation (INLA) to build SVC model. Specifically,
this study employed a Bayesian spatially varying coefficients process (BSVCP) by
assigning its coefficients with the conditional autoregressive (CAR) model while
relaxing the stationarity as well as the linearity assumption using Demographic
Health Survey data. Most countries carry out Demographic and Health Surveys
(DHSs) in order to understand people’s comprehension of certain health issues and
also determine prevalence and awareness about several diseases. The survey data
are usually collected with an aim of being representative of the whole population.

The rest of the chapter is organized as follows. In Sect. 1, we provide details about
the data we collected in Nigeria, and in Sect. 2, we introduce the Bayesian spatial
varying model with its statistical implementation and computation on priors and
model selection criteria. Furthermore, we summarize the results of our data analyses
in Sect. 3. Finally, Sect. 4 features discussions of our findings and concluding
remarks.

2 Data and Models

2.1 Data Description

The data used for this study were obtained from Nigeria Demographic Health
Survey (NDHS) conducted in 2015. It is the most recent population-based and
nationally representative sample survey that tested for HIV infection. The resources
for the conduct of the survey were provided by the United States Agency for Inter-
national Development (USAID), United Nations Population Fund (UNFPA), United
Kingdom Department for International Development (DFID), and Government of
Nigeria through National Population Commission (NPC). The primary objective of
the 2015 NDHS was to obtain relevant information on the prevalence of HIV among
adults and to provide up to date information on attitudes regarding HIV.

The sample for the survey was nationally representative which covered the entire
population. The sample design is allowed for specific indicators to be calculated
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for the six (6) different zones. The sample was selected using a stratified three
stage cluster design. It comprises 904 clusters, of which 372 urban and 532 rural. A
fixed sample take of 45 households were selected per cluster where both men and
women aged 15–49 years were interviewed. The survey used two questionnaires:
household questionnaire was used to collect the characteristics of each person
listed and the individual questionnaire to collect information based on demographic
characteristics as well as knowledge of HIV on men and women aged 15–49
years. The content of these questionnaires was obtained from MEASURE DHS
programmes. For more information on NDHS 2015, the readers should see full
report (Macro et al., 2014). Information from 3975 women aged 15–49 years who
were tested for HIV infection was used in the analysis. The data can be accessed
from the website http://www.dhsprogram.com/data/dataset_admin/login_main.cfm.

2.2 Theoretical Model

Generalized linear models (GLMs) and extensions give a uniform structure
for investigating the relation between a response variate yi and a vector Xi =
(xi1, . . . , xit ) of covariates observed for i = 1, . . . , n individuals. Let yit denote the
HIV status for individual i in a state t. The response variable HIV status has a binary
outcome coded as HIV positive and negative. Suppose yit = 1 when individual i in
state t is HIV positive and zero otherwise. The present study assumes the outcome
variable (denoted by yit ) as a univariate Bernoulli given as yit |pit ∼ Ber(pit ). If the
set of covariates contains q categorical covariates G and r continuous covariates X,
this is represented as Xit = (xit1, . . . , xitr )

′, Git = (git1, . . . , gitq)
′. Typically,

the unknown mean response given as E(yit ) = pit is related to the independent
variable in a link function given as

ψ(pit ) = X′
it β + G′

itπ

where β denotes an r-dimensional vector of regression coefficients for the continu-
ous independent variables, while π represents a q-dimensional vector of regression
coefficients for the categorical independent variables. The probability of woman i
from state t testing HIV positive is denoted by pit = E(yit ), and ψ(.) is a logit link
function with logit ψ(pit ) = log (

pit
1−pit

).
To relax the strict linear relationship, we consider the nonlinear effects of

the continuous covariates and spatial autocorrelation in the dataset; the present
study considered both second order random walk (RW2) and convolution model.
Therefore, the continuous covariates are modeled non-parametrically. Meanwhile,
in the case of our study, RW2 model was employed to relax the linear predictor
given as


 5635 14360 a 5635 14360 a
 
http://www.dhsprogram.com/data/dataset_admin/login_main.cfm


Bayesian Spatial Modeling of HIV Using Conditional Autoregressive Model 343

ψ(pit ) =
r∑

k=1

fk(xitk) + fspatial(st ) + G′
ij π (1)

where function fk(.), k =1,. . . ,r, represent nonlinear effects for the continuous
covariates and the state effect denoted by fspatial(st ) represents the spatial effect of
each zone. It can therefore be categorized into structured and unstructured (random)
effect, which is represented as follows (Lawson, 2013; Alexander, 2011):

fspatial(st ) = fstructured(st ) + funstructured(st ) (2)

Hence, the full model is given as

ψ(pit ) =
r∑

k=1

fk(xitk) + fstr (st ) + funstr (st ) + G′
ij π (3)

The inference in this study is based on full Bayesian estimation techniques, and
hence the prior distribution of the model was specified to all the parameters. Many
of the previous studies (Fahrmeir & Tutz, 2013; Eilers & Marx, 1996; Currie &
Durban, 2002) have established the approach of estimating the smooth function
fk(.), but in the case of our study, random walk model was employed in estimating
the smooth function fk(.). The approaches for estimating the smooth function fk(.)
have been discussed in the literature by many studies (Eilers & Marx, 1996), and
some of the methods commonly used include penalized regression spline, Markov
Random Fields (GMRFs). In the present study, we adopted the random walk model
for estimating the smooth function fk(.).

2.2.1 Bayesian Spatially Varying Coefficient Parameter (BSVCP) Model

Several studies have been published in the literature on the assumption that the
relationship between outcome variables and independent variable is constant via
study region (Carlin et al., 2014), but this assumption may not be realistic for the
spatial processes due to some factors such as altitudes; culture can contribute to
this fact. The two commonly spatially varying models are geographically weighted
regression (GWR) and Bayesian spatially varying parameter (BSVP). In the present
study, the focus is on the BSVP, which is used to relax the stationary assumption.
The Bayesian spatially varying parameter model is used here to make inference.
For detailed discussion on Bayesian spatial models to map vital rates, the readers
are enjoined to read (Bernardinelli & Montomoli, 1992; Lawson et al., 1999; Gilks
et al., 1995) for better understanding. In contrast to the previous studies, our study
allows for covariates parameters to vary spatially.

The Bayesian spatially varying parameter model is a hierarchical in nature
in which the distribution of the data is expressed as conditional on unknown
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parameters. Based on the proposition of (Gelfand et al., 2003), spatially varying
parameter (SVCP) model is given as

yit |pit ∼ Ber(pit )

ψ(pit ) = X′
it β + G′

itπ

Thus, the prior distribution for the regression coefficient parameters is represented
as follows:

[π |μπ,
∑

π

] = N(1n×1 � μπ,
∑

π

)

The vector μπ = (μπ0, . . . , μπp)
′ contains the means of the regression coeffi-

cients terms. In addition, the prior on the regression coefficients accounts for the
possible spatial dependence through the covariance

∑
π . In this study, the Bayesian

spatial varying parameter was employed to relax the stationarity assumption, while
the varying coefficient is achieved by specifying the priors for π ′s as an aerial unit
model such as simultaneously and conditionally autoregressive models (abbreviated
as SAR and CAR). The SAR model is computationally easier for use with likelihood
methods. In contrast, the CAR model is computationally easier for Gibbs sampling
used with Bayesian model fitting, and in this regard is often used to incorporate
spatial correlation via a vector of spatially varying random effects φ = (φ1, . . . , φk)

′
of k components follows a multivariate Gaussian distribution having mean zero and
B as the inverse of the dispersion matrix. Hence, the density for φ is given by

p(φ) = (2π)−p/2|B|−1/2exp

{
1

2
φ′Bφ

}

(4)

The conditional distribution of one component in terms of the elements of matrix B
is expressed as

p(φ|φ−i ) = exp

{−aii

2
(φi −

∑

k=i

−aik

aii
φk)

2
}

(5)

This implies that φi |φ−i ∼ N(−aik
aii

φk,
1
aii
). Let C = (cik) = −aik

aii
and D = diag

(τ 2
1 , . . . , τ i

2) such that cikτ 2
k = ckiτ

2
i . Hence, the inverse of the matrix ! is related

to C and M as given by

B = (I − C)D−1 (6)

The joint distribution φ is MVN (0, H−1(I − G)) provided (I − H−1)G−1 is
symmetric and positive definite, and I is the identity matrix (Besag, 1974). As noted
by (Cressie & Wikle, 2015; Sherman, 2011; Carlin et al., 2014), the logic here is that
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C and D must be modeled properly in order to ensure symmetry in !, while matrix
C indicates the relationship between the neighbors. Particularly, the CAR model is
an attractive way to handle spatial statistical dependencies (see (Cressie & Wikle,
2015; Carlin et al., 2014) for more details). Typically, the prior for the structured
and unstructured random effects followed the CAR model and independently and
identically distributed normal distribution, respectively. Hence, the specification
of the Bayesian SVCP model in Equations (4) and (5) can be completed with
the specification of the prior distribution of the parameters. Separate models were
fitted and their deviance information criterion (DIC) values were compared. The
DIC is a generalization of the Akaike’s information criterion (AIC). A small DIC
value corresponds with a good predictive performance of the model as defined
by (Spiegelhalter et al., 2002), and it measures the fit and the complexity of each
model. The fit of each model is measured by the posterior expectation D̄ = Eφ|y(φ)
of the deviance. The complexity is given by the effective number of parameters
pD that is defined by the difference of the expected posterior deviance D̂. In
addition, the deviance computed at the posterior φ̂ = Eφ|y(φ) of the parameter,
written as pD= D̂ - D(φ̂). Thus, pD is a penalty that penalizes a better fit by greater
complexity (Spiegelhalter et al., 2002). Hence, the DIC is defined as

DIC = D̄(θ) + pD

The DIC is also regarded as one of the best approaches for comparing multi-
level models, and its usage is very common in comparison of spatial–temporal
Bayesian models. However, we observe that the DIC has been criticized by many
researchers (Waller et al., 1997; Aitkin, 2010) and can be problematic in models
with many random effects and thus should be used with care. It has been reported
that a difference in DIC of 3 between two models cannot be distinguished and a
difference of 3–7 has considerably less support (Spiegelhalter et al., 2002). We
fitted the model using the R-INLA package (Martins et al., 2013) together with
the R software (R Core Team, Vienna, Austria) (Team, 2016). The models under
consideration are as follows:

Model 1- logit(pit ) = β0 + f(age) + G′
itπ

Model 2- logit(pit ) = β0 + f(age) + G′
itπ + funstr (st )

Model 3- logit(pit ) = β0 + f(age) + G′
itπ + fstr (st )

Model 4- logit(pit ) = β0 + f(age) + G′
itπ + funstr (st ) + fstr (st )

Model 5- logit(pit ) = β0 + f(age) + G′
itπ

Model 6- logit(pit ) = β0 + f(age) + G′
itπ + funstr (st )

Model 7- logit(pit ) = β0 + f(age) + G′
itπ + fstr (st )

Model 8- logit(pit ) = β0 + f(age) + G′
itπ + funstr (st ) + fstr (st )
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Model 1: This is a frequentist logistic regression model in which all the
categorical variables were considered as fixed effects and assumed to have a linear
effect on the response variable which include educational status, age at first sex,
place of residence, marital status, contraceptive used, and STI status. Model 2:
In this case, all the categorical variables listed in model 1 were assumed to have
linear effects on the outcome variable, nonlinear effect of the continuous covariate
age, and spatially unstructured random effect that entertain unobserved covariates
that are intrinsic within the region. Model 3: All the predictor variables in this
model were modeled as fixed effects and nonlinear covariate age and spatially
structured random effect that cover the unobserved covariates which vary spatially
within the region, described by the CAR model. Model 4: This model examines
the effect of both nonlinear effects age and linear effects of categorical covariates
including a convolution of spatially structured and spatially unstructured random
effects, described by the CAR model and independently and identically distributed.
We further consider Model 5–8 as an extension of models 1–4, respectively, where
CAR priors are included and that the regression coefficients π in these models are
assumed to vary spatially.

2.2.2 Implementation of Conditionally Autoregressive Model in R-INLA

The spatial analysis modeling is defined under the Bayesian setup. Markov Chain
Monte Carlo (MCMC) techniques have been used extensively for the computation
of Bayesian inference, but there is shortcoming, which corresponds to their com-
putational burden. To overcome the problems associated with MCMC algorithms, a
new method, based on integrated nested Laplace approximations (INLA), has been
proposed by Rue et al. (2009), which overcomes the problems associated with the
MCMC algorithm. Hence, MCMC methods have been used to obtain estimates, but
the computational time may be long if samples are highly correlated. INLA is an
alternative Bayesian estimation method that computes approximations of posterior
marginal distributions for latent Gaussian models, and it provides accurate estimates
of the integrals through a Laplace approximation. For full discussion on INLA,
see Rue et al. (2009). We also discuss the inference strategy briefly. The posterior
density can be expressed as

π(x,"|y) ∝ π(")π(")

n∏

i=1

ψ(yi |xi,")

∝ π(")|Q(")| n2 exp
{

− 1

2
x′Q(")x +

n∑

i=1

logπ(yi |xi,")

}
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The main goal is to estimate the desired marginal posterior distribution for the latent
Gaussian model

π(xi |y) =
∫

π(xi |", y)π("|y)d" (7)

such that the posterior marginals of " are estimated by

π("i |y) =
∫

π("|y)d"−i (8)

where "−i contains all the elements in " except ψ . For easy integration of " in
Eqs. (7) and (8), nested approximations and numerical integration are required (Tier-
ney & Kadane, 1986). Hence, the marginal posterior density π("|y) of the
hyper-parameters " can be approximated using the Laplace approximation (Tierney
& Kadane, 1986)

π̃(xi |y) =
∫

π̃(xi |", y)π̃("|y)d"

and

π̃("i |y) =
∫

π̃("|y)d"−1

Thus, posterior marginals can be used to compute summary statistics of interest, like
posterior means, etc.

3 Results

3.1 Model Comparison Based on Deviance Information
Criteria

The result presented in Table 1 shows the DICs for the eight separate models with
both stationary model and spatially varying coefficients. Based on the previous
studies, model with the smallest DIC gives the best fit. In the case of the model that
assumes stationary model, model 2 was found to be the better model fit. In addition,
the spatially varying coefficient models 5–8 are not statistically significantly
different from one another as well as their corresponding stationary model. This
is established from the fact that the difference in DIC is less than 3. Hence, it then
implies that the covariates for HIV do not vary significantly via space. Therefore
the current study presents the results based on model 8 for HIV modeling since it
permits the covariates to vary spatially by the inclusion of the CAR model.
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Table 1 Models comparison

Stationary model Spatially varying coefficients

M1 M2 M3 M4 M5 M6 M7 M8

pD 14.8 23.7 23.6 23.5 18.2 18.2 18.2 18.2

DIC 3018.2 2827.6 2827.6 2827.6 2836.4 2836.6 2836.5 2836.5

Fig. 1 Nonlinear effect of age on HIV

3.2 Nonlinear Effect of Age

The current study also examined the nonlinear association of an individual age
and HIV infection as summarized in Fig. 1. It is affirm from the figure that there
is a nonlinear relationship between age and HIV infection, and the assumption of
linear effect would have resulted into spurious results and thereby giving inaccurate
interpretations. Furthermore, the likelihood of HIV infection increases with age
up to prime age of roughly 30 years and then starts to diminish afterward with
increasing age.

3.3 Spatially Varying Effects

We established that the spatially varying coefficient models are better than that of
stationary models as earlier acknowledged, but the models were not statistically
significantly different compared to the stationary ones. Meanwhile, the maps
depicted in Fig. 2 indicate that the effects of the covariates included in the models
vary through space. For example, in Fig. 2, the effect of educational status on
prevalence of HIV. It shows that its effect is more in Northeast and Northwest as
indicated on the map. The map also affirms that age at first sex had exceptional
effect in those places where education also had exceptional effects. This suggests
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Fig. 2 The spatially varying effects of covariates utilized in modeling HIV status

that there is a correlation between educational status and age at first sex. The effect
of marital status was observed to be the same across the six regions of the country,
while that of place of residence was found to be more dominant in the northern
region.
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Fig. 3 Spatial effects of HIV

3.4 Spatial Effects

Based on the best fitting model among the stationary model, this study examined
the spatial effects. Figure 3 presents structured spatial effects on the prevalence of
HIV among sexually active women. The light blue indicates low prevalence of HIV.
It was observed that the HIV prevalence varies spatially with areas in the North
central and Northwest had the highest prevalence. The prevalence was lowest in
the Southwest region (indicated by blue color in Fig. 3). Hence, recognizing the
implications of individual covariates on each region can help informing measure to
curb the prevalence of HIV.

4 Discussion

To capture the effect of age on HIV infection, this study applied Bayesian spatially
varying coefficients model to estimate this nonlinearity. Various socio-demographic
and sexual characteristics as well as biological risk factors of HIV were considered.
Three thousand and nine hundred and seventy-five sexually active women enrolled
in the demographic health survey from all the geopolitical zone of Nigeria were
enrolled in the study. Based on the findings of this study, we established that the
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effect of covariates on HIV infection varies spatially, and however, the spatially
varying HIV model was established to be statistically insignificantly different from
the two types of model examined. The use of Bayesian spatially varying model is
the strength of this study as this approach is capable to reveal the effect of different
covariates utilized on the prevalence of HIV across these regions.

The findings of this study showed that age has a nonlinear effect on HIV. The
odds of HIV infection increase with age up to prime age of roughly 30 years and
then start to diminish afterward with increasing age. Other studies have reported
similar result across the world (Johnson & Way, 2006; Cohen et al., 2011) and in the
continent of Africa (Ngesa et al., 2013; Michelo et al., 2006; Chimoyi & Musenge,
2014; Cogneau & Grimm, 2006). It should be noted that the spatial effects in the
model act as a replacement for unobserved variables. Therefore, recognizing areas
with high infection can provide more information on how the prevalence can be
curbed across different regions. In addition, identifying the effects of each individual
covariates on each region can also help in tackling the prevalence of HIV.

Another finding established in this study is that age at first sex had a significant
effect on the prevalence of HIV in the North central and Northeast. This may be
attributed to early marriages or teenage sex as most of the people residing in this
part of Nigeria are largely Muslim. Implementing a community-based mobilization
programs targeting on early marriages can be organized in these regions. On the
other hand, this study indicates the effect of marital status on prevalence of HIV
was more pronounced in the Southwest region. This result can be attributed to
western education practiced in this part of Nigeria. It can also be associated with
practices such as wife inheritance that is largely common in Sub-Saharan Africa
(SSA), an observation that is supported by previous studies (Amornkul et al.,
2009). Moreover, sexually transmitted infections were found to be a strong risk
factor of HIV infection among sexually active women of Nigeria. It should be
acknowledged that an incident of STIs carries duplicate chance of HIV infection
and thereby increases the chance of HIV infection. This finding is supported by
previous studies (Cohen, 1998) and thereby adds to the large body of scientific
research showing that the role of STI in increasing HIV risk (Hankins et al., 2002;
Røttingen et al., 2001).

The aim of this study was to utilize the Bayesian approach to relax the stationarity
assumption in which nonlinear effects of age were captured through the random
walk model of second order (Speckman & Sun, 2003). The Gaussian Markov
Random Field (GMRF) was used to model the spatial and spatially unstructured
random effects in the fitted model. We established that age had a nonlinear effect,
while the effect of individual covariates varies across space on the prevalence of
HIV. On the account of DIC, this study affirmed that the spatially varying coefficient
model was fitted better than the stationary model. The findings of this suggest
a significant variation of HIV prevalence across the region. These findings also
indicate the region with high prevalence, and this can help policy makers as well as
other public health institutions to map programmes targeting on these regions. One
of the key discoveries of this chapter is that Bayesian spatially varying coefficient
model used has a wider implication in the health sciences as compared to stationary
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model. All the models utilized in this study were implemented with the help of
software R using INLA package.

The present study has several strengths compared to previous studies. Foremost,
it is a large population-based study, enhancing its generalizability compared to
previous studies that has been carried out in zone that are not representative of
the entire population. Also, spatially varying model to capture the nonlinearity was
taken into consideration in our analytic approach, thereby resulting in unbiased
estimates. However, the present study has some inherent limitations that needed
to be considered when interpreting the results. One of the limitations is that a strong
evidence for causality cannot be made considering cross-sectional data, but findings
can contribute to knowledge and indicate where future research can be focused.
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Estimating Determinants of Stage at
Diagnosis of Breast Cancer Prevalence in
Western Nigeria Using Bayesian Logistic
Regression

Ropo Ebenezer Ogunsakin and Ding-Geng (Din) Chen

Abstract Breast cancer is the most common cancer-affecting women globally,
and the stage at diagnosis remains a key factor to the final outcome. Late stage
at diagnosis means a significant challenge and this is common in low middle
income countries with Nigeria included. Patients with early-stage breast cancers
are expected to have good survival rates. Hence, it is important to identify risk
factors that predict diagnosis of early-stage breast cancers among Nigeria women.
Although many studies have been carried out on the risk factors associated with
breast cancer, but to the best of our knowledge little has been studied on the stage
at diagnosis in the context of Nigeria. The use of advanced statistical techniques
coupled with hospital-based data can enhance proper estimation of determinants
of stage at diagnosis of breast cancer prevalence as well as giving appropriate
explanations on the role of each determinants factors on the stage at diagnosis. In
this chapter we estimated the prevalence and investigated determinants of stage at
diagnosis by constructing Bayesian logistic regression model from a generalized
linear modeling using socio-economic, demographic, and medical factors. It was
established that age, higher educational level, being a westerner as well as choosing
nursing as a career were the major factors that motivate early stage at breast cancer
diagnosis in this part of Nigeria. Our findings affirmed that delays in diagnosis
reflected a lack of education. This chapter suggests that further education as well
as awareness of breast cancer diagnosis is required in order to increase early stage
diagnosis for patients.

1 Introduction

Modern days are still challenged by diseases difficult to treat because of the
lack of vaccine as well as serum. Cancer is one of the main causes of mortality
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globally (Benson & Jatoi, 2012; Momenimovahed et al., 2017). For instance,
in 2008, it was reported that about 8 million deaths were chronicled due to
the malignant diseases, and these statistics is projected to reach 11 million by
2030 (Benson & Jatoi, 2012; Baider & Surbone, 2014). Therefore, estimating
determinants of stage at diagnosis of breast cancer prevalence is vital in public
health for resource allocation. Disease modeling encompasses graphic depiction
of more multifaceted geographical data, which would assist in intervention, assist
policy-making, and allocation of adequate resources. They are also supportive in
classifying disease bunches of exact groups. With this background, this chapter
focused on estimating determinants of stage at diagnosis of breast cancer prevalence
in Western Nigeria, knowing fully well it is one of the significant cancer types
that significantly contribute to the drain of cells in the milk-producing ducts.
Breast cancer is the most common cancer among women and one of the most
important causes of death among them (Ebughe et al., 2013; Chen et al., 2016).
It was established that the epidemiology of breast cancer divulges various risk
factors (Davis et al., 1993; Figueroa et al., 2021) and various factors contribute to its
occurrence. While the disease occurs all over the globally, its incidence, mortality,
and survival rates vary considerably among different parts of the world, which
could be due to many factors such as population structure, lifestyle, genetic factors,
and environment (Hortobagyi et al., 2005; Momenimovahed & Salehiniya, 2019).
Meanwhile, changes in risk factors have resulted into an increase in the prevalence
of breast cancer, which is increasing every day. In line with this, studies have
revealed that various socioeconomic factors (like low levels of educational status)
and demographic factors (such as age and gender) increase the menace of breast
cancer. Similarly, lifestyle behaviors (such as smoking and alcohol consumption)
and dietary habits also significantly influence the menace of breast cancer (Figueroa
et al., 2021; Guliyeva et al., 2021).

Similarly, it is the most common cause of malignancy among women world-
wide (Ebughe et al., 2013; Chen et al., 2016) and is a public health challenge
among Nigeria women. In Africa and particularly Nigeria, it is the most common
cancer-affecting women, and the key determinant of the final outcome is the stage
at diagnosis (Ogunkorode et al., 2017; Pruitt et al., 2015). Staging is a way of
describing where the cancer is located, how much the cancer has grown, and if
or where it has spread. The stage of a cancer describes how much cancer is in
the body. It helps determine how serious the cancer is and how best to treat it.
Therefore, understanding the risk factors associated may help in curbing the menace
of the disease. In western Nigeria, the disease accounted for 37% of all the newly
diagnosed cancer among women attending tertiary health institution (Olugbenga
et al., 2012).

In the same way, other studies affirmed that stage at diagnosis is an important
prognostic factors for breast cancer (Møller et al., 2016; Kantelhardt et al., 2014).
On the other hand, the stage at diagnosis of breast cancer in Nigeria has been
affirmed to be late (Jedy-Agba et al., 2016, 2017). However, the presentation of
breast cancer in women is done at advanced stage rather than at early symptomatic
stages (Jedy-Agba et al., 2017). Therefore, knowing the relevant of early detection
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and factor associated with late breast cancer presentation stage required urgent
attention among the researchers. Liese Pruitt and colleagues (Pruitt et al., 2015)
in a study conducted in Nigeria reported that low level of education and place of
residence contribute to later stage at diagnosis. They pointed out that factors like
these could bring about delay at the time of diagnosis. Other studies by Newman
et al. (2015); Lipscomb et al. (2016a) mentioned that histology that is poorly
differentiated may lead to later stage due to the fact that there will be excessive
tumor growth rate. Meanwhile a lot of research done on the factors associated
with stage at diagnosis has been reported in most other part of the world including
Africa (Seneviratne et al., 2016; Akinyemiju et al., 2015b; Dickens et al., 2014) but
little has been done in the context of Nigeria.

This chapter investigates how and describes the way in which stage at diagnosis
varies with socio-economic, demographic, and medical factors among women
seeking health care at Nigeria hospital having known that early diagnosis resulted
into an excellent survival rates. More importantly, we consider the extent to which
the association between stages at diagnosis is affected by a patient’s age, gender,
marital status, education, race, occupation, religion, site of the cancer, histological
grade in order to establish which of these factors may be required as a source of
curbing the menace of breast cancer in this part of Nigeria. This chapter considers
two statistical approaches: the classical and Bayesian models of risk factors that
affect the stage at diagnosis of patients with breast cancer. The chapter uses both
the classical logistic regression model, and the Bayesian logistic regression model.
The models is then applied to a dataset of patients with breast cancer in western
Nigeria to establish the factors associated with stage at diagnosis. The essence and
contribution of Bayesian approach is to improve the quality of the results due to the
small number of observations.

2 Data and Methods

2.1 Ethical Consideration

Ethical approval for this research was obtained from Federal Medical Teaching
Hospital (ERC/2016/02/25/09B). The breast cancer data were extracted from the
population-based Federal Medical Teaching cancer registry. The data consist of
the information recorded about patients diagnosed as having breast cancer for a
period of 3 years. In these data, we defined the outcome variable as patient stage
at diagnosis. Specifically, our outcome variable was stage at diagnosis whether
it is early or late diagnosis. To identify the risk factors associated with stage at
diagnosis, this chapter considered socio-demographic and medical factors as risk
factors which includes age, marital status, educational level, religion, race, stage at
diagnosis, occupation, site of the breast cancer, year of diagnosis, and tumor grade
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(such as site, grade, topography, stage) and modality of treatment received: surgery,
chemotherapy, hormonal therapy, radiotherapy, or combination of these.

3 Statistical Model

The data was analyzed by fitting a generalized linear model (GLM). The GLM gen-
eralizes the linear regression and relates the outcome variable to predictor variables
through the link function. The statistical models, which belong to member of the
GLM, include logistic regression for binary outcomes which is used to analyze
the cancer data, binomial counts; binomial regression and so on. Furthermore, the
GLM assumed that the variance of the response variable is a specified function
of its mean. The advantage of generalized linear models is the fact that it has
been extended in such a way that it can accommodate both random and mixed
effects (Stroup, 2016). The logistic regression models fall into a class of generalized
linear models (GLMs) technique. In general, a generalized linear model (GLM)
technique, as first introduced by Nelder and Baker (1972) and modified by Fan and
Gijbels (1996), provides a flexible and unified approach to analyzing both normal
and non-normal data. According to McCullah and colleague (McCullagh & Nelder,
1989), the components of GLM are classified into three stages such as random
component, systematic component, and link function. The link function h(.) was
introduced by Nelder and Baker (1972) in order to transform the mean of the model
to a linear scale. The random component is known as response variable like stage
at diagnosis (in the case of our chapter) as well as its probability distribution. The
fundamental idea of a GLM assumes that the underlying distribution of responses
belongs to the exponential family of distributions, and a link function transformation
of its expectation is modeled as a linear function of observed covariates. Mean-
while the systematic component implies the predictors (such as socio-economic,
demographic, and medical factors) while the random and systematic component
are linked together by the link function. Once a model is selected, there is need to
estimate its parameters. In the case of GLM, the estimators of the parameters are
obtained using a maximum likelihood method.

3.1 Binary Response Logistic Regression Model Formulation

The binary logistic regression is sometimes referred to as logistic regression. It
is commonly applied to model data with a binary outcome (see McCullagh and
Nelder (1989); Hosmer Jr. et al. (2013) for full details). The binary outcome variable
assumes values one for the outcome of interest and zero for the other outcome. The
predictor variables included in the model can be either continuous or categorical.
Meanwhile, the probability that the value of the outcome variable is a success, given
values of the predictor variables, is represented by
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P(Y = 1|X = x) = ψ(x)

while the probability that it is a failure is given by

P(Y = 0|X = x) = 1 − ψ(x)

In the general linear regression model where the interest is to study the relationship
between the response variable Y and the predictor variables (X1, ........, Xk), the
interest in logistic regression focuses on the relationship between the probability of
the response variable being a success or otherwise failure.

In this chapter we consider logistic regression model to carry out the analysis
of the data at hand. Logistic regression model is used to model the probability of
occurrence of an outcome of interest, ψ(x), i.e., the conditional mean of Y given
x for the binomial distribution. The logistic regression model with one predictor
variable in terms of the odds of the outcome of interest is given as

ψ

1 − ψ
= exp(β0 + β1x1) (1)

Suppose the predictor variable X is dichotomous with values 0 and 1, hence the
model in Eq. (1) can be expressed as

ψ(1)
1−ψ(1)
ψ(0)

1−ψ(0)

= exp(β1) (2)

which translates that the odds ratio (OR) depends on the regression parameters β1.
On the other hand, the logistic regression model can refer to the probability of the
outcome of interest and is represented as

ψ = exp(β0 + β1x1)

1 + exp(β0 + β1x1)
(3)

In this case, ψ is the expected response, E(Y|X) and β1 is the regression coefficient.

The link function, h(ψ)= log
{

ψ
1−ψ

}
, known as logistic function is used to transform

the model in Eq. (1). The transformation also changes the range of ψ from (0 to 1)
to (−∞ to +∞) and in turn produces a linear logistic model for the log odds of the
outcome of interest and is represented as

log

(
ψ

1 − ψ

)

= β0 + β1x1, (4)

for the log odds of the outcome of interest. This model states that the log odds
of the outcome of interest is linearly related with the predictor variable X1. Also,
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parameters β0 and β1 are the intercept and slope coefficient, respectively. Also, β1
measures the effect of a unit change in X1 on the log odds of the probability of the
outcome of interest. It should be noted that the sign of β1 indicates the direction of
the change in ψ . When β1 > 0, ψ increases as X1 increases and when β1 < 0, ψ
decreases as X1 increases.

Moreover, the logistic regression model can be extended to a situation with k
predictors variables which is the focus of our chapter. In such situation, the odds of
the outcome of interest can be expressed as

ψ

1 − ψ
= exp(β0 + β1x1 + ....... + βkxk) (5)

On the other hand, the logistic model may also refer directly to the probability of
the outcome of interest as in the case presented in Eq. (3). This is represented as
follows

ψ = exp(β0 + β1x1 + ....... + βkxk)

1 + exp(β0 + β1x1 + ....... + βkxk)
(6)

note that βk is the regression parameter that shows the effect of the kth predictor
variable on the log odds that Y = 1 when other predictor variables in the model are
held constant. Also, exp(βk) is the multiplicative effect of a one unit increase in Xk

, on the odds , when other predictor variables are fixed.
Using the link function, h(ψ), to transform the model in Eq. (6) gives the linear
logistic model as

log

(
ψ

1 − ψ

)

= β0 + β1x1 + ....... + βkxk (7)

The same assumptions underlying the logistic regression model with one predictor
variable are also applicable to multiple logistic regression model. The model states
that the log odds of the outcome of interest is linearly related with predictor variables
in the model, where β0 is an intercept and β1, .......βk are slope coefficients. In
addition, model in Eq. (7) can also be expressed in a matrix form

log

(
ψ

1 − ψ

)

= Xβ (8)

According to Hosmer Jr. et al. (2013), X is the design matrix that includes a column
of ones as the initial column to signify the constant term β0, and thus β1 is a vector of
model parameters including the constant. In the case of logistic regression model, its
specification assumes that the logit of the outcome of interest is a linear combination
of the predictor variables in the model and it is clearly indicated in Eqs. (3) and (7),
respectively.
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The method of maximum likelihood estimate (MLE) is used to obtain the
unknown parameters for logistic regression model. This approach produces values
of the parameters that maximize either the likelihood or log likelihood of the
parameters. Suppose we have a set of an independent observations y1, ........, yn,
the log likelihood may be written as

�(β; y) =
∑

i

∑

i

yixij βj −
n∑

i=1

nilog

[

1 + exp

( k∑

j=1

βjxij

)]

(9)

From Eq. (9), the likelihood depends only on y via the k linear combinations
X

′
y, which are the sufficient statistics for the model parameters β. The likelihood

equations that emanate from differentiating the log likelihood with respect to the
vector β can be represented as

X
′
y = X

′
μ̂

Note that μ̂ = niψ̂i .The maximum likelihood estimates satisfy the equation

β̂ = (X
′
VX)−1X

′
V

where V = diag [niψ̂i(1 − ψ̂i)] is the n × n diagonal matrix. Upon obtaining
the maximum likelihood estimates, they can be used to make statistical inferences
concerning the relationship between the response variable and predictor variables.
These inferences involve assessment of the significance of predictor variables in
the logistic regression model. The assessment is done by formulating and testing
a statistical hypothesis that the predictor variables in the model are significantly
related to the response variable.

The Wald test statistic is used to test for the significance of each coefficient β in
the model.

Z = β̂

SE(β̂)

where β̂ is the maximum likelihood estimate of β and SE (β̂) is the standard error of
the estimate. In the same vein ,in the case of multiple logistic regression, the Wald
test statistic is

V = β̂ ′[cov(β̂)]−1β̂

This has a chi-square distribution with k degrees of freedom, where k is the rank of
the covariance matrix. In addition, Eq. (8) can be re-written as
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ψ(x) = h−1
(

x
′
iβ

)

=
exp

(

x
′
iβ

)

1 + exp

(

x
′
iβ

)

Hence, the likelihood function can be written as

Likelihood =
k∏

n=1

[(
exp(x

′
iβ)

1 + exp(x
′
iβ)

)yi(

1 − exp(x
′
iβ)

1 + exp(x
′
iβ)

)1−yi
]

(10)

Under a Bayesian paradigm, the prior distributions are the respective distributions
of the set of parameters β0, ........., βk on which the choice for priors depends on
available information. One of the common priors is of the form given below

βi ∼ N(μi, σ
2
i ), σ 2

i ∼ Inv − χ2(νi, s
2
i ) (11)

where μi is sometimes taken to be zero and σ often chosen to be large so that the
prior can be non-informative, ν and s denote degrees of freedom and scale for the
t-prior distributions, respectively.

The posterior distribution is obtained by combining the full likelihood function
in Eq. (10) and the prior in Eq. (11) to obtain

posterior =
k∏

n=1

[(
exp(x

′
iβ)

1 + exp(x
′
iβ)

)yi(

1 − exp(x
′
iβ)

1 + exp(x
′
iβ)

)1−yi
]

·
k∏

i=0

1√
2πσi

exp

[

− 1

2

(
βi − μi

σi

)2]
(12)

Now, we found that the expression Eq. (12) is a complex function of the parameters,
and numerical approaches are required in order to obtain the marginal posterior
distribution for each of the model parameters. Approximations can be obtained via
numerical integration (Naylor & Smith, 1982). This chapter used Markov Chain
Monte Carlo (MCMC) technique to simulation of the random numbers as a result
of the complexity of the posterior.
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3.1.1 Computations and Implementations

Analyses of this research are based on the hospital-based data. All the analyses
were carried out in R packages, Team (2013) (Team et al., 2013). In particular,
the package arm (applied regression and multilevel modelling) by De Leeuw et al.
(2008)) was used to compute the Bayesian logistic regression. The natural non-
informative prior density is uniform on s2

i . In the model, the posterior distribution
for the parameters β and σ can be simulated using Gibbs sampler. On the other
hand, updating the vector β given σ with normal regression and updating the vector
σ from the independent inverse-χ2 conditional posterior distributions given β. If the
coefficients βi have independent t prior distributions along centers μi and scales si ,
the iterative weighted least squares can be employed to estimate the coefficients
using an EM algorithm. The idea is to express the t prior distribution for each
coefficient βi as a mixture of normal with unknown scale. As a requirement of the
Bayesian approach several diagnosis test were perform to answer convergence of
the Markov chain Monte Carlo algorithm and the true reflection of the posterior
distribution. Due to the binary nature of the response variable, a generalized linear
model (GLM) with binary outcome and logistic link were performed both using
classical techniques as well as Bayesian techniques.

4 Results

The main purpose of this paper is to establish significant predictors of stage of
BC diagnosis, using classical approach and Bayesian approach. In order to achieve
this objective, we set up a generalized linear model for the two approaches. The
predictors included in the model are socio-demographic and medical factors. From
the descriptive results, we found that the mean age at BC diagnosis was 42.2
years (±16.6 years). The majority (57%) were recruited from a university teaching
hospital. In all, 121(49.4%) BC patients were found to have grade II tumor at the
time of diagnosis. The graphical representation of the stage at BC diagnosis was
constructed in order to complement the result of the descriptive statistics.

The classical and Bayesian (logistic) generalized linear models were fitted using
the same covariates. The outcome variable is early BC stages or late BC stages(being
the reference category). In order to establish the significant level for the predictors,
we used 95% confidence interval for classical approach and 95% credible interval
for Bayesian approach. In case these interval contains zero, it then means that the
parameter (estimate of the beta) is not significant.

This section gives details of how the logistic regression was used to construct
a classical model for stage at diagnosis of breast cancer. The data analysis was
done using R software. The objective of this chapter is to identify the individual
characteristics that could be associated with the stage at diagnosis among breast
cancer patients. The predictors included are age, educational status, marital status,
occupation, race, religion, tumor grade, and topography.
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Table 1 Estimates and odds ratios showing association between early stage at diagnosis of BC
and predictor variables

95%CI

Estimate OR Lower Upper P-value

Intercept 4.279 0.013 0.0004 0.205 0.004

Age group (ref: 20–34)

35–49 1.364 3.912 1.211 14.914 0.031

50–64 0.470 1.601 0.288 8.852 0.583

65+ 1.198 3.312 0.419 36.362 0.278

Education (ref: primary)

Secondary 2.210 9.116 0.993 226.533 0.086

Tertiary 3.382 29.430 2.659 815.401 0.014

Marital status (ref: single)

Married 0.421 1.524 0.199 18.458 0.708

Religion (ref: Muslim)

Christian 0.995 2.705 0.677 10.528 0.148

Race (ref: igbo/efik)

Yoruba 0.971 2.640 1.106 6.204 0.026

Occupation (ref: civil servant)

Nurse 3.368 29.020 2.816 797.549 0.013

Retired 0.668 1.950 0.281 17.597 0.511

Self-employed 1.165 3.206 0.976 11.254 0.058

Tumor grade (ref: poorly differentiated)

Moderately differentiated −0.009 0.991 0.415 2.304 0.984

Well differentiated −0.044 0.957 0.313 3.019 0.938

Topography (ref: over lesion)

Lower inner 15.643 6.21e6 1.198e−6 1.365e44 0.985

Breast NOS −0.397 0.672 0.261 1.826 0.421

Table 1 presents the covariates that were associated with early stage at breast
cancer diagnosis in the classical model. Findings from this model affirm that four
major variables out of all the variables included in the model were significant
predictors associated with the stage at diagnosis at 95% significant level or above.
Based on the result, patients in the age category of 35–49 years are 61% (OR=3.912)
more likely to be associated with early stage at diagnosis compared to age category
20–34 years. There are many reasons that could be associated with this kind of
finding. Also, results reveal that patient with higher educational level are 71%
(OR=29.4) more likely to be associated with early stage compared to those with
primary school education. Similarly, those who are medical practitioner (nurse)
are more likely to be associated with early stage at diagnosis compared to the
civil servants. Furthermore, compared to northerner, patients who are from western
region were 2.60 times more likely to have early stage at diagnosis. Additionally,
results about marital status affirmed that patients who have married are 85%
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(OR=1.50) more likely to be associated with early stage at diagnosis but the finding
is not significant.

4.1 Bayesian Logistic Regression

The same covariates used in classical model are included in the Bayesian model.
The results obtained in Bayesian model are given in Table 2. In terms of statistical
significant, the result of Bayesian model is very similar to that of classical model
but the two techniques are difficult to compare due to the difference in tools used
for decision making. The most important aspect of Bayesian statistics is that the
credible interval is very different from the confidence interval used for classical
statistics because credible interval is more robust than that of confidence interval.
The results in Table 2 affirm that patient aged 35 to 49 years are 1.17 times
more likely of having early stage at diagnosis compared to age group 20 to 34

Table 2 Bayesian logistic
regression model estimates
for early stage at BC
diagnosis

95%Cred.I

Estimate Lower Upper

Intercept −0.024 −0.371 0.322

Age group (ref: 20–34)

35–49 0.158 0.017 0.299

50–64 0.0758 −0.109 0.257

65+ 0.142 −0.071 0.355

Education (ref: primary)

Secondary 0.470 0.163 0.776

Tertiary 0.335 0.043 0.629

Marital status (ref: single)

Married 0.036 −0.197 0.267

Religion (ref: Muslim)

Christian 0.153 −0.051 0.355

Race (ref: igbo/efik)

Yoruba 0.146 0.022 0.269

Occupation (ref: civil servant)

Nurse −0.305 0.070 0.539

Retired 0.065 −0.151 0.282

Self-employed 0.103 −0.035 0.239

Tumor grade (ref: poorly differentiated)

Moderately differentiated 0.013 −0.093 0.121

Well differentiated 0.018 −0.123 0.159

Topography (ref: over lesion)

Lower inner 0.115 −0.230 0.461

Breast NOS −0.035 −0.111 0.099
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years. With reference to primary education, the results show that patient with
tertiary education are more likely to be diagnosed at early stage (OR=1.690, 95%
BCI=0.163, 0.776) while those with secondary school education are 1.4 times more
likely to be associated with early diagnosis of BC. Regarding the occupational
status, the chances of being at early stage of diagnosis are more (OR=1.357, 95%
BCI=0.070, 0.539) among those who are medical practitioners compared to the
civil servants. For the religion factor, with reference to those who practiced Islamic
religion, it is over one times more likely (OR=1.165, 95% BCI=−0.051, 0.355) for
those who are Christian to have early stage at diagnosis. For marital status, women
who are married are 1.037 times more likely to be diagnosed at early stages than
those who are single (OR=1.037, 95% BCI=−0.197, 0.267). This means that the
only significant effect here was that single women were generally at higher risk to
advanced stage than married women.

For the MCMC convergence, diagnostic tests are used to assess the convergence
of the Markov chain. The posterior distribution was obtained after two thousand
iterations performed gradually and assessing convergence at every stage. Figure 1
gives the trace plots for a few of the parameters of the posterior distribution obtained
by the MCMC algorithm. All the trace plots do not display any significant upward
or downward trend along the iterations and the density plots also show almost
symmetrical distributions. In particular, the trace plots exhibit the so-called thick
pen as explained by Gelfand et al. (1990). Hence, this is indicative of insignificant
deviations from stationarity and the MCMC algorithm can be considered to have
converged.

Figure 2 gives the graphical representation of Geweke plots for some selected
parameters used in the model. As a rule of thumb, a significant proportion of Z-

Fig. 1 Trace plots and density plots for the first three coefficients from the posterior distribution
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Fig. 2 Geweke plots for the first four coefficients from the posterior distribution

scores outside the two-standard deviation bands is an indication of a chain that has
not converged by iteration k. The results in Fig. 2 show that all the Z-scores fall
within the two-standard deviation bands for the parameters age groups 20–34, 35–
49, and 50–69. This is a strong indication of a chain that has converged by iteration.
Also, we considered the Heidelberger–Welch diagnostic test. The results of a test
with ε = 0.1 show that most of the parameters have passed the stationarity test. All
the parameters passed the half-width test meaning that the chain was run sufficiently
long.

5 Discussion

In an effort to improve the understanding of the breast cancer menace in Nigeria, this
paper has reported on breast cancer prevalence in western Nigeria and assessed key
variables for their association with stage at diagnosis. The objective of this paper
was to identify key socio-demographic, and medical as risk factors for stage at
diagnosis of BC in western Nigeria. This chapter utilized classical and Bayesian
techniques to analyze determinants and risk factors associated with early stage
at diagnosis of BC. The chapter developed and used Bayesian logistic regression
models to help assess factors associated with early stage diagnosis of BC. Our
variables were categorized as key socio-demographic, and medical factors were
analyzed by using logistic regression model contained in software R. Our chapter
identified age group 35–49 years, secondary and tertiary educational level, ethnicity
and choosing nursing as career as independent associates of early stage at BC
diagnosis in this part of Nigeria. On the other hand, marital status, tumor grade,
and topography were not found to be associated with stage at BC diagnosis. This
is in contrast with a what is obtainable in South Africa previous studies where
it was reported that late stage were more likely to be estrogen but showed no
association with human epidermal growth factor receptor 2 (Jedy-Agba et al., 2017).
The mean age at breast cancer diagnosis obtained in this chapter was similar to
what is reported by previous studies in Nigeria (Ezeome, 2010; Anyanwu et al.,
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2011) and other part of the world (Galukande et al., 2013; Mabula et al., 2012). In
this chapter we found an association between age at diagnosis and stage. Previous
studies have also observed an association between younger age at diagnosis and later
stage (de Souza Abrahão et al., 2015) while other reported no association (Lipscomb
et al., 2016b).

In this chapter we found that level of education was a strong factor of stage at
diagnosis. Women with tertiary educational level had significantly higher odds of
early stage than their counterpart with secondary educational level. This finding
is supported by previous studies and, hence, adds to the large body of research
indicating that level of education motivates early breast diagnosis (Jedy-Agba et al.,
2017; de Souza Abrahão et al., 2015; Olugbenga et al., 2012; Pace et al., 2015).
Other studies from Nigeria (Pruitt et al., 2015; Abimbola, 2010) have observed that
low level of educational status was associated with early stage of BC diagnosis.
We can also attribute the significance of tertiary education which resulted to early
stage diagnosis to observation of appropriate caution to life management as well
as increased awareness and curiosity to prolong life among this population. Other
studies established that there is a correlation between breast cancer knowledge
and the level of education (Soyer et al., 2007) and absence of crucial knowledge
can have a detrimental effect on the attitudes of women in the adoption of early
stage BC diagnosis. Although our chapter did not examine the risk factors for
breast cancer association with its sub molecular types, a recent study conducted
by Akinyemiju et al. (2015a); Ogunsakin and Siaka (2017) evaluated the association
between SES and breast cancer subtypes using a valid measure of SES and the
Surveillance, Epidemiology and End Results (SEER) database. Socio-economic
status based on measures of income, occupational class, education, and house
value were categorized into quintiles and explored. Their findings showed that a
positive association between SES and breast cancer incidence is primarily driven by
hormone receptor positive lesion.

Another finding from this chapter is that women who were from Christianity
religion were diagnosed at early stages compared to Islamic women. These findings
support the previous studies that have reported less BC early detection practices
among the Islamic women. The implication of our finding might be these women
probably belong to a higher socio-economic class than the Islamic women and,
hence, have financial strength to seek medical care as at when due. Additionally,
being a nurse was found to be associated with the early stage BC diagnosis. This
finding agrees with the previous studies in Nigeria that education and employment
in professional jobs significantly influenced knowledge of breast cancer (Jebbin
& Adotey, 2004; Okobia et al., 2006; Odusanya & Tayo, 2001; Odusanya, 2001;
Akhigbe & Omuemu, 2009; Clegg et al., 2009; Byers et al., 2008; Barry et al.,
2012). We also found from this chapter that race is an important factor for early
stage at diagnosis in this part of Nigeria. Our finding indicated that being a western
woman could have resulted to early stage in diagnosis of breast cancer. Obviously,
the majority of people in this part of Nigeria are mostly westerner but are more
knowledgeable compared to other tribes. Hence, this finding might be related to
advancement in education, technology, and exposure to western diets and culture of
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the people from these part of Nigeria (Olugbenga et al., 2012; Lantz et al., 2006).
This finding contrast the previous studies that reported that in all age groups, black
race was associated with being diagnosed beyond stage I (Iqbal et al., 2015). In
another development, it was established that there is variation in early stage BC by
region (Wang et al., 2008) and distance to health care facilities may increase the
likelihood of stage at diagnosis as reported by Jedy-Agba et al. (2017). Contrary
to what is obtainable in our chapter, a study conducted in other part of the world
indicated that there are race/ethnicity differences in breast cancer stage at diagnosis,
with African American women significantly more likely than white women to have
a late-stage diagnosis (Mandelblatt et al., 1991; Hunter et al., 1993; Batina et al.,
2013).

Furthermore, previous studies also affirmed that tumor grade and later stage at
BC diagnosis were associated (McCormack et al., 2013). Meanwhile our chapter
did not investigate the factors associated with late stage at diagnosis but in a study
conducted in Nigeria by Jeddy and colleagues (Jedy-Agba et al., 2017) reported
that there is no indication of association between tumor grade and late stage at
diagnosis. In the case of our chapter we observed no evidence of association
between the tumor grade and early stage. Other studies involving women from
New Zealand (Seneviratne et al., 2016) have reported poorly differentiated tumor
in women with late stage. A further study by Limpscomb and colleagues (Lipscomb
et al., 2016a) similarly revealed that advanced stage of BC was positively related
to poorly differentiated tumor grade. There is a necessary call for awareness to
enlighten people particularly among the women of low socio-economic status in
western Nigeria. This will aid early BC diagnosis and bring about the intervention
to reduce the menace of the disease in Nigeria.

We computed a classical and Bayesian logistic regression model from a GLM
perspective for stage at BC diagnosis on socio-demographic and medical variables.
Non-informative prior probability distributions for the socio-demographic and med-
ical factors variables were used in the building of the model. This chapter suggests
that stage at BC diagnosis is related to an individual’s age, educational status,
ethnicity, and choosing nursing as career. As compared to the single/separated,
the married individuals are more likely to be associated with early stage diagnosis.
However, the chapter also suggests that marital status, tumor grade, and topography
are not statistically significant associated with the stage at diagnosis of BC. Another
key finding of this paper is that Bayesian technique is more robust and helps
in selecting the more statistical significant factors associated with early stage
diagnosis of BC in western Nigeria. We recommend that further education as
well as awareness of breast cancer diagnosis is required in order to increase early
stage diagnosis among breast cancer patients. In addition, more investigation on
breast cancer research is required to characterize delays and associated factors with
diagnostic delays in western Nigeria as such investigation is necessary for breast
cancer control.
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6 Strengths and Limitations of the Chapter

One of the key strength of this paper is the fact that it makes use of appropriate
statistical techniques coupled with the use of advanced statistical software in
estimating determinants of stage of disease at diagnosis. Besides using patients
from some selected tertiary hospitals, the included patients represented a significant
geographic range in western Nigeria. The two major religions in the area were also
present. However, information regarding the wealth index of the patients was not
captured. This could have shown the financial capability of the patient if the breast
cancer was detected earlier whether they can afford the required treatment. Another
drawback is the fact that the chapter used secondary data which limited the control
of the analyst over the data collection. Meanwhile, this limitation does not relegate
that the hospital-based record data is not good for research. Taken together, these
studies have significantly contributed to our understanding of risk factors associated
with an early stage diagnosis of breast cancer in western Nigeria. Although, there
are certain methodological considerations, not explored in the current chapter, with
potentially important implications for the specification of models and interpretation
of findings.

7 Implications of the Chapter

In the field of scientific and health related research, find the statistical models
that incorporate prior known information about the unknown model parameters
vital. This is useful in studies where replicative experimental investigations are not
possible. The most useful part of Bayesian statistical paradigm is in combining prior
knowledge about model parameters with the appropriate likelihood of the observed
data to obtain a posterior distribution. Under the Bayesian framework, likelihood
based approaches are often used for parameter estimation whilst statistical inference
is carried out based on the posterior distribution. The computer intensive simulation-
based algorithms like Markov chain Monte Carlo (MCMC) methods are then used to
draw samples from the posterior distribution to be used for the statistical inference
purposes. In addition, to assess convergence which is a requirement of the Markov
chain, diagnostics in the form of trace plots and Geweke plots as well as Heidelberg
test for stationarity were employed.

There has been a host of prior knowledge about breast cancer stages at diagnosis
that can be combined with the likelihood of the observed data to enhance explaining
the variation of stages at diagnosis. The use of hospital population-based data also
facilitates linking of breast cancer stages at diagnosis to socio-demographic and
medical factors of the respondents. Therefore, this chapter fitted a Bayesian logistic
regression model from a generalized linear modelling (GLM) perspective for stages
at diagnosis on socio-demographic and medical factors using a hospital-based data.
The unknown model parameters employed a non-informative t-family Cauchy prior



Determinants of Stage at Diagnosis 371

distribution. Finally, it was affirmed that stages at diagnosis in western Nigeria are
dependent on one’s age, educational level, and choosing nursing as a career.

References

Abimbola, O. O. (2010). Assessment of women’s risk factors for breast cancer and predictors of the
practice of breast examination in two rural areas near Ibadan, Nigeria. Cancer Epidemiology,
34(4), 425–428.

Akhigbe, A. O., & Omuemu, V. O. (2009). Knowledge, attitudes and practice of breast cancer
screening among female health workers in a Nigerian urban city. BMC Cancer, 9(1), 203.

Akinyemiju, T. F., Pisu, M., Waterbor, J. W., & Altekruse, S. F. (2015a). Socioeconomic status and
incidence of breast cancer by hormone receptor subtype. SpringerPlus, 4(1), 508.

Akinyemiju, T. F., Vin-Raviv, N., Chavez-Yenter, D., Zhao, X., & Budhwani, H. (2015b).
Race/ethnicity and socio-economic differences in breast cancer surgery outcomes. Cancer
Epidemiology, 39(5), 745–751.

Anyanwu, S. N., Egwuonwu, O. A., & Ihekwoaba, E. C. (2011). Acceptance and adherence to
treatment among breast cancer patients in eastern Nigeria. The Breast, 20, S51–S53.

Baider, L., & Surbone, A. (2014). Universality of aging: family caregivers for elderly cancer
patients. Frontiers in Psychology, 5, 744.

Barry, J., Breen, N., & Barrett, M. (2012). Significance of increasing poverty levels for determining
late-stage breast cancer diagnosis in 1990 and 2000. Journal of Urban Health, 89(4), 614–627.

Batina, N. G., Trentham-Dietz, A., Gangnon, R. E., Sprague, B. L., Rosenberg, M. A., Stout, N. K.,
Fryback, D. G., & Alagoz, O. (2013). Variation in tumor natural history contributes to racial
disparities in breast cancer stage at diagnosis. Breast Cancer Research and Treatment, 138(2),
519–528.

Benson, J. R., & Jatoi, I. (2012). The global breast cancer burden. Future Oncology, 8(6), 697–702.
Byers, T. E., Wolf, H. J., Bauer, K. R., Bolick-Aldrich, S., Chen, V. W., Finch, J. L., Fulton, J. P.,

Schymura, M. J., Shen, T., Van Heest, S., et al. (2008). The impact of socioeconomic status on
survival after cancer in the united states. Cancer, 113(3), 582–591.

Chen, H.-l., Zhou, M.-q., Tian, W., Meng, K.-x., & He, H.-f. (2016). Effect of age on breast cancer
patient prognoses: A population-based study using the seer 18 database. PloS One, 11(10),
e0165409.

Clegg, L. X., Reichman, M. E., Miller, B. A., Hankey, B. F., Singh, G. K., Lin, Y. D., Goodman,
M. T., Lynch, C. F., Schwartz, S. M., Chen, V. W., et al. (2009). Impact of socioeconomic
status on cancer incidence and stage at diagnosis: selected findings from the surveillance,
epidemiology, and end results: National longitudinal mortality study. Cancer Causes &
Control, 20(4), 417–435.

Davis, D. L., Bradlow, H. L., Wolff, M., Woodruff, T., Hoel, D. G., & Anton-Culver, H. (1993).
Medical hypothesis: xenoestrogens as preventable causes of breast cancer. Environmental
Health Perspectives, 101(5), 372–377.

De Leeuw, J., Meijer, E., & Goldstein, H. (2008). Handbook of multilevel analysis.
de Souza Abrahão, K., Bergmann, A., de Aguiar, S. S., & Thuler, L. C. S. (2015). Determinants

of advanced stage presentation of breast cancer in 87,969 Brazilian women. Maturitas, 82(4),
365–370.

Dickens, C., Joffe, M., Jacobson, J., Venter, F., Schüz, J., Cubasch, H., & McCormack, V. (2014).
Stage at breast cancer diagnosis and distance from diagnostic hospital in a peri-urban setting: a
south African public hospital case series of over 1000 women. International Journal of Cancer,
135(9), 2173–2182.

Ebughe, G., Ekanem, I., Omoronyia, O., Nnoli, M., Nwagbara, V., Udosen, J., Umoh, M., and
Ugbem, T. (2013). Age specific incidence of breast cancer in Calabar, Nigeria.



372 R. E. Ogunsakin and D.-G. (Din) Chen

Ezeome, E. R. (2010). Delays in presentation and treatment of breast cancer in Enugu, Nigeria.
Nigerian Journal of Clinical Practice, 13(3).

Fan, J., & Gijbels, I. (1996). Local polynomial modelling and its applications: monographs on
statistics and applied probability 66, vol. 66. CRC Press.

Figueroa, J. D., Gierach, G. L., Duggan, M. A., Fan, S., Pfeiffer, R. M., Wang, Y., Falk, R. T.,
Loudig, O., Abubakar, M., Ginsberg, M., et al. (2021). Risk factors for breast cancer
development by tumor characteristics among women with benign breast disease. Breast Cancer
Research, 23(1), 1–12.

Galukande, M., Wabinga, H., Mirembe, F., Karamagi, C., and Asea, A. (2013). Difference in risk
factors for breast cancer by ER status in an indigenous African population. ISRN Oncology,
2013.

Gelfand, A. E., Hills, S. E., Racine-Poon, A., and Smith, A. F. (1990). Illustration of Bayesian
inference in normal data models using Gibbs sampling. Journal of the American Statistical
Association, 85(412), 972–985.

Guliyeva, G., Huayllani, M. T., Boczar, D., Avila, F. R., Lu, X., & Forte, A. J. (2021). Age as
a risk factor for breast cancer-related lymphedema: a systematic review. Journal of Cancer
Survivorship, 1–8.

Hortobagyi, G. N., de la Garza Salazar, J., Pritchard, K., Amadori, D., Haidinger, R., Hudis, C. A.,
Khaled, H., Liu, M.-C., Martin, M., Namer, M., et al. (2005). The global breast cancer burden:
variations in epidemiology and survival. Clinical Breast Cancer, 6(5), 391–401.

Hosmer Jr., D. W., Lemeshow, S., & Sturdivant, R. X. (2013). Applied logistic regression, vol.398.
John Wiley & Sons.

Hunter, C. P., Redmond, C. K., Chen, V. W., Austin, D. F., Greenberg, R. S., Correa, P., Muss,
H. B., Forman, M. R., Wesley, M. N., Blacklow, R. S., et al. (1993). Breast cancer: factors
associated with stage at diagnosis in black and white women. JNCI: Journal of the National
Cancer Institute, 85(14), 1129–1137.

Iqbal, J., Ginsburg, O., Rochon, P. A., Sun, P., and Narod, S. A. (2015). Differences in breast
cancer stage at diagnosis and cancer-specific survival by race and ethnicity in the united states.
Jama, 313(2), 165–173.

Jebbin, N. J., & Adotey, J. M. (2004). Attitudes to, knowledge and practice of breast self-
examination (BSE) in port Harcourt. Nigerian Journal of Medicine: Journal of the National
Association of Resident Doctors of Nigeria, 13(2), 166–170.

Jedy-Agba, E., McCormack, V., Adebamowo, C., & dos Santos-Silva, I. (2016). Stage at diagnosis
of breast cancer in sub-Saharan Africa: a systematic review and meta-analysis. The Lancet
Global Health, 4(12), e923–e935.

Jedy-Agba, E., McCormack, V., Olaomi, O., Badejo, W., Yilkudi, M., Yawe, T., Ezeome, E., Salu,
I., Miner, E., Anosike, I., et al. (2017). Determinants of stage at diagnosis of breast cancer in
Nigerian women: sociodemographic, breast cancer awareness, health care access and clinical
factors. Cancer Causes & Control, 28(7), 685–697.

Kantelhardt, E. J., Zerche, P., Mathewos, A., Trocchi, P., Addissie, A., Aynalem, A., Wondemageg-
nehu, T., Ersumo, T., Reeler, A., Yonas, B., et al. (2014). Breast cancer survival in Ethiopia: a
cohort study of 1070 women. International Journal of Cancer, 135(3), 702–709.

Lantz, P. M., Mujahid, M., Schwartz, K., Janz, N. K., Fagerlin, A., Salem, B., Liu, L., Deapen, D.,
& Katz, S. J. (2006). The influence of race, ethnicity, and individual socioeconomic factors on
breast cancer stage at diagnosis. American Journal of Public Health, 96(12), 2173–2178.

Lipscomb, J., Fleming, S. T., Trentham-Dietz, A., Kimmick, G., Wu, X.-C., Morris, C. R., Zhang,
K., Smith, R. A., Anderson, R. T., & Sabatino, S. A. (2016a). What predicts an advanced-stage
diagnosis of breast cancer? sorting out the influence of method of detection, access to care and
biological factors. Cancer Epidemiology and Prevention Biomarkers, cebp–0225.

Lipscomb, J., Fleming, S. T., Trentham-Dietz, A., et al. (2016b). Centers for disease control and
prevention national program of cancer registries patterns of care study group. what predicts an
advanced-stage diagnosis of breast cancer? sorting out the influence of method of detection,
access to care, and biologic factors. Cancer Epidemiol Biomarkers & Prevention, 25(4), 613–
623.



Determinants of Stage at Diagnosis 373

Mabula, J. B., Mchembe, M. D., Chalya, P. L., Giiti, G., Chandika, A. B., Rambau, P. F., Masalu,
N., and Gilyoma, J. M. (2012). Stage at diagnosis, clinicopathological and treatment patterns
of breast cancer at Bugando medical centre in north-western Tanzania. Tanzania Journal of
Health Research, 14(4).

Mandelblatt, J., Andrews, H., Kerner, J., Zauber, A., & Burnett, W. (1991). Determinants of late
stage diagnosis of breast and cervical cancer: the impact of age, race, social class, and hospital
type. American Journal of Public Health, 81(5), 646–649.

McCormack, V. A., Joffe, M., van den Berg, E., Broeze, N., dos Santos Silva, I., Romieu, I.,
Jacobson, J. S., Neugut, A. I., Schüz, J., & Cubasch, H. (2013). Breast cancer receptor status
and stage at diagnosis in over 1,200 consecutive public hospital patients in Soweto, South
Africa: a case series. Breast Cancer Research, 15(5), R84.

McCullagh, P., & Nelder, J. A. (1989). Generalized linear models, no. 37 in monograph on statistics
and applied probability.

Møller, H., Henson, K., Lüchtenborg, M., Broggio, J., Charman, J., Coupland, V. H., Davies, E.,
Jack, R. H., Sullivan, R., Vedsted, P., et al. (2016). Short-term breast cancer survival in relation
to ethnicity, stage, grade and receptor status: national cohort study in England. British Journal
of Cancer, 115(11), 1408.

Momenimovahed, Z., Ghoncheh, M., Pakzad, R., Hasanpour, H., & Salehiniya, H. (2017).
Incidence and mortality of uterine cancer and relationship with human development index in
the world. Cukurova Medical Journal, 42(2), 233–240.

Momenimovahed, Z., & Salehiniya, H. (2019). Epidemiological characteristics of and risk factors
for breast cancer in the world. Breast Cancer: Targets and Therapy, 11, 151.

Naylor, J. C., & Smith, A. F. (1982). Applications of a method for the efficient computation of
posterior distributions. Applied Statistics, 214–225.

Nelder, J. A., & Baker, R. J. (1972). Generalized linear models. Wiley Online Library.
Newman, L. A., Reis-Filho, J. S., Morrow, M., Carey, L. A., & King, T. A. (2015). The 2014

society of surgical oncology Susan G. Komen for the cure symposium: Triple-negative breast
cancer. Annals of Surgical Oncology, 22(3), 874–882.

Odusanya, O. O. (2001). Breast cancer: knowledge, attitudes, and practices of female schoolteach-
ers in Lagos, Nigeria. The Breast Journal, 7(3), 171–175.

Odusanya, O. O., & Tayo, O. O. (2001). Breast cancer knowledge, attitudes and practice among
nurses in Lagos, Nigeria. Acta Oncologica, 40(7), 844–848.

Ogunkorode, A., Holtslander, L., Anonson, J., & Maree, J. (2017). Promoting early detection of
breast cancer and care strategies for Nigeria. African Journal of Reproductive Health, 21(2),
18–25.

Ogunsakin, R. E., & Siaka, L. (2017). Bayesian inference on malignant breast cancer in Nigeria: A
diagnosis of MCMC convergence. Asian Pacific Journal of Cancer Prevention: APJCP, 18(10),
2709.

Okobia, M. N., Bunker, C. H., Okonofua, F. E., & Osime, U. (2006). Knowledge, attitude and
practice of Nigerian women towards breast cancer: a cross-sectional study. World Journal of
Surgical Oncology, 4(1), 11.

Olugbenga, A. M., Olanrewaju, M. J., & Kayode, O. M. (2012). Profile of cancer patients attending
tertiary health institutions in southwestern Nigeria. Asian Journal of Pharmaceutical and
Clinical Research, 5(1), 34–37.

Pace, L. E., Mpunga, T., Hategekimana, V., Dusengimana, J.-M. V., Habineza, H., Bigirimana,
J. B., Mutumbira, C., Mpanumusingo, E., Ngiruwera, J. P., Tapela, N., et al. (2015). Delays in
breast cancer presentation and diagnosis at two rural cancer referral centers in Rwanda. The
Oncologist, 20(7), 780–788.

Pruitt, L., Mumuni, T., Raikhel, E., Ademola, A., Ogundiran, T., Adenipekun, A., Morhason-Bello,
I., Ojengbede, O. A., & Olopade, O. I. (2015). Social barriers to diagnosis and treatment of
breast cancer in patients presenting at a teaching hospital in Ibadan, Nigeria. Global Public
Health, 10(3), 331–344.



374 R. E. Ogunsakin and D.-G. (Din) Chen

Seneviratne, S., Lawrenson, R., Harvey, V., Ramsaroop, R., Elwood, M., Scott, N., Sarfati, D., &
Campbell, I. (2016). Stage of breast cancer at diagnosis in New Zealand: impacts of socio-
demographic factors, breast cancer screening and biology. BMC Cancer, 16(1), 129.

Soyer, M. T., Ciceklioglu, M., & Ceber, E. (2007). Breast cancer awareness and practice of breast
self examination among primary health care nurses: influencing factors and effects of an in-
service education. Journal of Clinical Nursing, 16(4), 707–715.

Stroup, W. W. (2016). Generalized linear mixed models: modern concepts, methods and
applications. CRC Press.

Team, R. C. et al. (2013). R: A language and environment for statistical computing.
Wang, F., McLafferty, S., Escamilla, V., & Luo, L. (2008). Late-stage breast cancer diagnosis and

health care access in Illinois. The Professional Geographer, 60(1), 54–69.



Part V
Statistical Applications



Identifying Outlying and Influential
Clusters in Multivariate Survival Data
Models

Tsirizani M. Kaombe and Samuel O. M. Manda

Abstract In regression analysis, diagnostic statistics serve to assess the quality of
fit of the model to data and investigate if there are observations that are not well
represented by the model. Additionally, there could be outlier observations in the
sense that they deviate from the pattern of the other data points being modelled, or
influential observations that, if removed from the dataset, could impact the slope of
the fitted regression model. These two types of unusual data points can cause serious
problems in regression analysis. The statistics for identifying outlier and influential
observations have been adequately studied in linear and linear mixed models and
are available for users in most statistical packages. However, not much work has
been done on similar methods for the analysis of multivariate survival data. In this
chapter, we use martingale-based residuals to derive outlier and influence statistics
for multivariate survival data model. We evaluate performance of the proposed
statistics using simulation studies. Upon applying the proposed statistics to child
survival data from Malawi, in which children were studied in 56 subdistricts, the
outlier statistic detected five subdistricts as outliers to under-five mortality, while
the influence statistic identified six subdistricts as having influence on the estimate
of effect of being female on child survival, depending on the covariates used in the
modelling process.
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1 Introduction

A statistical model becomes applicable when it fits the data well, and this is
assessed through diagnostic statistics. They typically examine whether the fitted
model complies with its assumptions and explore if there are observations that
do not conform with the model. These assessments are usually done using the
statistics such as residual, leverage, and others that quantify changes in estimates
of coefficients upon dropping each data record, among other approaches (Yang,
2012). The statistics for identifying unusual observations to the fitted model are
well-developed for linear and linear mixed models (Cook, 1977), and for some non-
linear mixed models, such as binary logistic mixed model and Poisson mixed models
(Sarkar et al., 2011; Zhang et al., 2016). However, there is deficiency of similar tools,
when one intends to assess unusual observations upon fitting a multivariate survival
model to data.

In survival data analysis, the outcome of interest is the time duration from
some time origin until the occurrence of the event of interest. In medical and
epidemiological research, the time period could be from initiation on antiretroviral
treatment (ART) to loss to follow-up in a cohort of patients enrolled in a HIV
pharmacological study; the number of months at death since birth in children
under the age of five years; and the time to leukaemia relapse after bone marrow
transplantation. In the case that the HIV pharmacological study has several sites,
with each site having several HIV patients enrolled; or the case of several children
spread across communities; and leukaemia cancer patients treated across several
cancer clinics, then we have multivariate survival outcomes. Thus, multivariate
survival data arise when subjects are grouped in some way, or when each individual
experiences failure more than once, for example, leukaemia relapses over time (Ha
et al., 2011; Manda, 2011; Maia et al., 2014). For the purpose of this chapter, we
may also use clustered survival data for multivariate survival data. In contrast to
univariate survival data, independence between survival times cannot be assumed
for multivariate survival data. Ignoring the data correlations in the modelling,
when they exist, may lead to under-estimation of variance and standard errors of
regression coefficients and hence biased estimates (Liang & Zeger, 1993; Manda,
2011).

Multivariate survival models are therefore used to model the survival data that
are clustered (Vaida & Xu, 2000). To fully examine the multivariate survival model,
it becomes crucial to identify data points or groups of data points that might be
outliers to the model or that might have overly influence on the model’s inferences.
This may help in improving the fit of the model to data and consequently give
accurate predictions and conclusions from the model. This chapter therefore derives
diagnostic statistics for detecting outlying and influential clusters of observations,
upon fitting a multivariate survival model to the clustered data. The performance
of the derived statistics is evaluated through simulations studies. The statistics are
further illustrated through examples of their use on clustered child survival data
from a health survey in Malawi. Malawi is located in south-eastern Africa. It borders
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Tanzania to the north, Zambia to the west, and Mozambique to its east, south, and
west. It has a population of just over 17 million people, and it is divided into 28
administrative districts (Malawi National Statistical Office (NSO), 2019). The rural
and urban parts of these districts were studied as clusters, whose outlying patterns
and influence on child survival was analysed.

1.1 The Multivariate Survival Model and Its Estimation

For censored survival outcomes t that are observed in M distinct clusters, the
conditional Cox proportional hazard model, denoted by hij (tij |β, bi) (Abrahantes
& Burzykowski, 2005; Xu et al., 2009), is given by:

hij (tij |β, bi) = h0(t)exp(X
T
ijβ + ZT

i bi), (1)

where i = 1, 2, . . . ,M denotes clusters; j = 1, 2, . . . , ni the study subjects in
i-th cluster; and h0(t) is baseline hazard function. While Xij is p × 1 vector of
fixed covariates; and β is p × 1 vector of fixed regression coefficients. Further,
Zij denotes q × 1 vector of covariates that have random effects; and bi is q × 1
vector of random coefficients. In most cases, the random effects bi’s are assumed
to be iid multivariate normal random variables, i.e. bi ∼ N(0,D), with D as q ×
q diagonal covariance matrix with similar entries at each level of bi (Ripatti &
Palmgren, 2000). So, we treat the random effects as normal random variables in this
chapter. Furthermore, the censoring status is represented by δij , which equals 1 for
a subject that experienced the event of interest, and 0 otherwise.

The model (1) can estimate fixed effects β, predicted values of random effects bi
for each cluster, and amount of variation in survival times attributable to clustering
of observations. This is usually achieved by computing marginal likelihood for β,
upon treating bi as nuisance parameters (Manda, 2001). Others use joint partial
likelihood estimation, where estimates for both β and bi are solved at the same
time from a product of conditional likelihood function of data and the likelihood
for random effects (Ripatti & Palmgren, 2000). We engaged the latter approach
in this chapter. In addition, we apply the special case of model (1), called shared
frailty model with fixed covariates, where random covariates Zi are unity (Ripatti
& Palmgren, 2000). We will also denote failure event-times in each cluster by ri =∑ni

j=1 dij and the risk set of individuals at time tij by R(til), l = 1, 2, . . . , ri (Cox,
1972). Therefore, the conditional partial likelihood for observations in i-th cluster
is given by:

Li(β|bi, tij , Xij ) =
ri∏

l=1

[ exp(XT
il β + bi)

∑
s∈R(til ) exp(X

T
isβ + bi)

]δij . (2)

Following the assumed normal distribution for random effects bi , the complete
joint partial likelihood function for the observed data and the random effects will
take the form:



380 T. M. Kaombe and S. O. M. Manda

L(β, bi) = Li(β|bi, tij , Xij ) ×
M∏

i=1

f (bi |σ 2)

=
M∏

i=1

ni∏

j=1

[
exp(XT

il β + bi)
∑

s∈R(til ) exp(X
T
isβ + bi)

]δij

×
M∏

i=1

[

(2π)
−1
2 σ 2

−1
2 exp(− 1

2σ 2

M∑

i=1

b2
i )

]

.

(3)

This gives the joint partial log-likelihood function as:

l(β, bi) =
M∑

i=1

ni∑

j=1

[XT
ij β+bi−ln

∑

s∈R(til )
exp(XT

isβ+bi)]+ln[(2π) −M
2 (σ 2)

−M
2 ]− 1

M/(2σ 2)

M∑

i=1

b2
i .

(4)

From the log-likelihood (4), we obtain the vectors of score functions for the fixed
parameters β and for random parameters bi as follows:

Uβ = ∂l(β, bi)

∂β
=

ni∑

j=1

M∑

i=1

δij

[

Xij −
∑

s∈R(til ) Xisexp(X
T
isβ + bi)

∑
s∈R(til ) exp(X

T
isβ + bi)

]

, (5)

and

Ubi = ∂l(β, bi)

∂bi
=

ni∑

j=1

M∑

i=1

[1 −
∑

s∈R(til ) exp(X
T
isβ + bi)

∑
s∈R(til ) exp(X

T
isβ + bi)

] − M

σ 2

M∑

i=1

bi . (6)

The partial derivatives in equations (5) and (6) will yield (p + 1) + q equations in
(p+ 1)+ q unknowns β and bi . Hence, unique maximum likelihood estimators for
the parameters can be obtained by solving for these parameters when the equations
(5) and (6) are equated to zero. Due to intractable nature of the equations (5) and (6),
numerical techniques are used to obtain the solutions (Ripatti & Palmgren, 2000).

In the next section, we present a derivation of outlier detection statistic in
the analysis of multivariate survival data model (1), with a simulation study and
application example. In Sect. 3, we derive an influence statistic for the same
multivariate survival data model. We also include a simulation study and an
application example. Conclusions are given in Sect. 4.

2 Outlier Analysis for Multivariate Survival Data

As stated in Sect. 1, the subject of model outliers has been widely studied in linear
mixed-effects models. The outlier measures help to detect data records or groups
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of data records that deviate much from the fitted model. Such measures typically
include a residual ê, given by:

ê = y − (Xβ̂ + Zb̂), (7)

where y is the response vector in linear mixed model, y = Xβ + Zb + ε, with
ε ∼ N(0, σ 2

ε I ), b ∼ N(0,D); and β̂ and b̂ are estimates of the model’s respective
fixed and random effects. The probability distribution of the residual (3) is usually
normal with mean zero and constant variance. Hence, the values in the periphery of
the distribution of the residual are considered outliers.

However, the variance of the residual (8) is biased estimator of variance of the
unknown error term, which causes its distribution to be skewed and not adequate
for outlier analysis on both sides of the mean of the residual (8). For this reason, the
standardised residual is used for outlier analysis as it has a symmetric shape about
mean zero. This is given by:

λ = ê/stdev(̂e), (8)

where stdev(̂e) is standard deviation of ê. Both residuals (7) and (8) detect single
observations outliers to a linear mixed-effects model. Langford and Lewis (1998)
extended the use of (8) to examining outlying groups of data to linear mixed model.
When plotted against each cluster, the clusters in which the plots of the standardised
residual (8) are much polarised from others are regarded as outliers to the linear
mixed-effects model (Langford & Lewis, 1998).

The main weakness of method of assessing group outliers by plotting single
observations standardised residuals against clusters is that when the plots of
standardised residuals for various clusters are highly overlapping, the method is no
longer reliable in examining group outliers (Kaombe & Manda, 2022). In the next
subsection, we present an outlier detection statistic for multivariate survival model
that applies to natural groups of data points.

2.1 Proposed Outlier Statistic for Multivariate Survival Data

Through extending the work of Therneau et al. (1990) on residual for univariate
survival data (also called martingale residual), a residual for single observations in
the survival mixed model (1) is defined in Kaombe and Manda (2022) as:

m(til) = N(til) −
∫ til

0
Yil(t)exp(X

T
il β̂ + b̂i )dĤ0(t), (9)

where N(til) is number of events observed over time til ; Yil(t) is an indicator
variable showing if ij -th unit is at risk at time tij ; and Ĥ0(t) is cumulative baseline
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hazard function. The residual (10) measures the difference between observed and
estimated number of events at specific time points over [0, t] (Therneau et al., 1990).
For model (1), which is time-independent covariates model, this residual becomes
(Kaombe & Manda, 2022):

m(til) = N(til) − Ĥ0(t)exp(X
T
il β̂ + b̂i )

⇒
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N(t11) − Ĥ0(t)exp(X
T
11β̂ + b̂1)

...

N(t1n1) − Ĥ0(t)exp(X
T
1n1

β̂ + b̂1)

N(t21) − Ĥ0(t)exp(X
T
21β̂ + b̂2)

...

N(t2n2) − Ĥ0(t)exp(X
T
2n2

β̂ + b̂2)

...

N(tM1) − Ĥ0(t)exp(X
T
M1β̂ + b̂M)
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T
MnM
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.
(10)

The distribution of residual (11) is negatively skewed in each cluster, since N(til) ∈
[0, 1] and Ĥ0(t)exp(X

T
il β̂ + b̂i ) has values in [0,∞). Hence, its use to directly

assess outlier single observations is only applicable for observations that failed too
late, and not the ones that failed too early (Therneau et al., 1990).

For this reason, its standardised form called deviance residual is used (Therneau
et al., 1990). The deviance residual measures disagreement between element of log-
likelihood of the fitted model and corresponding point of the log-likelihood that
would result if each observation were fitted exactly (Therneau et al., 1990; Sarkar
et al., 2011). The extension of deviance residual for model (1) is given in Kaombe
and Manda (2022) by:

dil = sign(m(til))[−2(m(til) + δil log(δil − m(til)))]
1
2
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(11)
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The standardisation helps to symmetrise values of the extended martingale residual
(11) because the logarithm applied on (11) inflates values of (11) that are near 1,
while the square root contracts large negative values (Therneau et al., 1990). Thus,
the approach of Langford and Lewis (1998) on assessing group residuals graphically
through observing skewness of standardised residual can be applied on the deviance
residual (12).

Owing to the weaknesses of the approach suggested in Langford and Lewis
(1998), the work of Kaombe and Manda (2022) proposed a group outlier statistic
based a residual that estimates poorly fitted cluster as a whole to the multivariate
survival model (1). The statistic, denoted by k, is a ratio of within-cluster variance
of extended deviance residual (12) to between-cluster variance (Kaombe & Manda,
2022), given by:

k = 1

L
(k1, . . . , kM)T

= 1

L
(

∑n1
j=1 (d1j − d̄1)

2

n1 − 1
, . . . ,

∑nM
j=1 (dMj − d̄M)2

nM − 1
)T .

(12)

where L =
∑M

i=1 ni(d̄i− ¯̄d)2
M−1 is between-cluster variance of dij ; ¯̄d =

∑M
i=1

∑ni
j=1 dij

n
is

the grand mean of the deviance residual dij ; and d̄i =
∑ni

j=1 dij

ni
is the mean of dij

for any fixed i; n = n1 + n2 + . . . + nM is number of subjects in entire dataset.
The outlier statistic (13) is an M × 1 vector that measures overall sparseness of
survival times of the subjects in each cluster off the fitted survival curve (Kaombe
& Manda, 2022). As the fitted survival curve will have to pass through all clusters,
small values of the statistic k in (13) will go with clusters that are well-fitted by the
model and have observations that closely span the fitted survival curve. On the other
hand, large values of the statistic (13) will show outlying clusters with poorly fitted
observations (Kaombe & Manda, 2022).

Some of the properties of the statistic k are that k ∈ [0,∞) and it is a non-linear
function, because it is computed from variances that have support [0,∞) (Kaombe
& Manda, 2022). The expected value of k can be computed using second order
Taylor series expansion about μ = (μki , μl) (Van Kempen & Van Vliet, 2000) as:

E(k) = E(Ki/L)

= E(f (Ki, L))

≈ E[f (μ) + f
′
ki
(μ)(ki − μki ) + f

′
l (μ)(l − μl)

+ 1

2
{f ′′
kiki

(μ)(ki − μki )
2 + 2f

′′
lki
(μ)(ki − μki )(l − μl) + f

′′
ll (μ)(l − μl)

2}]

= f (μ) + 1

2
{f ′′
kiki

(μ)V ar(Ki) + 2f
′′
lki
(μ)Cov(L,Ki) + f

′′
ll (μ)V ar(L)}

= μki

μl
− 1

μ2
l

Cov(Ki, L) + μki

μ3
l

V ar(L),

(13)
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where f (μ) = μki /μl , f
′′
kiki

(μ) = 0, f
′′
lki
(μ) = −1/(μl)

2, and f
′′
ll (μ) =

2μki /(μl)
3, since f (Ki, L) = Ki/L and E(Ki/L) = E(f (Ki, L)). Also,

E(ki − μki ) = E(l − μl) = 0; V ar(Ki) = E(ki − μki )
2, and Cov(Ki, L) =

E[(ki − μki )(l − μl)]. Whereas, variance of k can be estimated using first-order
Taylor series expansion of f (Ki, L) around μ = (μKi

, μl) as

V ar(k) = V ar(Ki/L)

= V ar(f (Ki, L))

= E{[f (Ki, L) − f (μ)]2}
≈ E{[f (μ) + f

′
ki
(μ)(ki − μki ) + f

′
l (μ)(l − μl) − f (μ)]2}

= f
′2
ki
(μ)V ar(Ki) + 2f

′
ki
(μ)f

′
l (μ)Cov(Ki, L) + f

′2
l (μ)V ar(L)

= 1

μ2
l

V ar(Ki) − 2
μki

μ3
l

Cov(Ki, L) + μ2
ki

μ4
l

V ar(L).

(14)
The outlier statistic k in Eq. (13) can be analysed using graphical methods as is

done in linear mixed models. Usually, the value of a residual for an observation or
group of observations is assessed in comparison with the others to detect outlying
data or groups of data (Zewotir & Galpin, 2007; Kaombe & Manda, 2022).

This section has presented an outlier statistic for examining outlying clusters of
observations to a fitted multivariate survival data model. In the next section, we
present a simulation study to exemplify its use.

2.2 Simulation Study

We simulated survival times data from T ∼ Exp(1) using cumulative hazard
inversion method (Brilleman et al., 2018) to evaluate performance of the outlier
statistic (13). The model used is:

hij (t |bi,Xij ) = h0(t)exp(β1Xij1 + β2Xij2 + bi), (15)

where h0(t) = 0.1; X1 ∼ Bernoulli(0.7); β1 = 0.5; X2 ∼ N(0, 1); β2 = 1; and
bi ∼ N(0, 0.42). The inversion method obtains tij from H−1

ij (−log(S(tij ))), having
S(tij ) ∼ Unif orm(0, 1), such that Hij (t) = −log(Unif orm(0, 1)) ∼ Exp(1).
The censoring statuses were drawn from Ber(0.4). The generation was done with
the help of R package simsurv (Moriña & Navarro, 2014; Brilleman et al.,
2018). The sets of samples had 10, 20, and 50 clusters, each with 80 and 500 subjects
per cluster. This assessed impact of sample size per cluster as well as number of
clusters per dataset on the performance of the proposed outlier statistic (13). There
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were 100 and 1000 replications involved per each case of generated data (Kaombe
& Manda, 2022).

The evaluation involved perturbing data in first two clusters and observing if the
statistic (13) could detect it upon fitting model (16) to the data (Kaombe & Manda,
2022). The perturbations included: b1,2 ∼ N(10, 2.52), N(15, 5.52), leaving β1 and
β2 the same; and β1 = 1.8, 2.7 followed by β2 = 2.0, 2.5, without adjusting the
other parameters. Finally, both β1 = 1.8, 2.7 and β2 = 2.0, 2.5, with bi intact,
then, β1 = 1.8, 2.7, β2 = 2.0, 2.5 and b1,2 ∼ N(10, 2.52), N(15, 5.52) (Kaombe
& Manda, 2022). This was done because the outlying tendency of a cluster can
be as a result of a combination of values for fixed covariates, survival outcomes,
and random effects in the model (Zewotir & Galpin, 2006). We assessed the
proportion per total 100 or 1000 simulations in which the proposed outlier statistic
(13) correctly detected cluster 1 and 2 as unusual at cutoffs of mean [maximum
(ki : i = 3, 4, . . . ,M)] and mean [minimum (ki : i = 3, 4, . . . ,M)] (Xiang et al.,
2002; Kaombe & Manda, 2021). The higher the percentage of correct identification
of problematic cluster 1 or 2 by the proposed outlier statistic (13), the more effective
the statistic (Kaombe & Manda, 2022). We fitted model (16) to all cases of simulated
data and analysed performance of the proposed outlier statistic (13) as per the above
procedure.

2.2.1 Simulation Results

Figure 1 shows outlier statistic results for data from two simulation scenarios, in
which the first involved perturbed random effects, 1 (a) and the second perturbed
fixed effects 1 (b). It was shown that the proposed outlier statistic had detected

(a) (b)

Fig. 1 Plots of the proposed outlier statistic for two simulation cases when perturbed models were
used in first two clusters. (a) Plots of outlier statistic for a case of data with perturbed b ∼ (15, 5.52)

in 2 of 50-clusters sample, each with 80 subjects and with 100 replications. (b) Plots of outlier
statistic for a case of data with perturbed β1 = 2.7 in 2 of 50-clusters sample, each with 500
subjects and with 100 replications. Source: Researcher
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perturbations done to clusters 1 and 2 for the data involving perturbed fixed effects
parameters, but not perturbed random effects. The graph showed that values of the
outlier statistic were exceedingly higher in clusters 1 and 2 than the rest clusters in
Fig. 1b, where β1 was perturbed in the first two clusters, and the values did not show
a different pattern for all clusters in Fig. 1a that had perturbed random effects.

The results on overall performance of the proposed outlier statistic are given in
Table 1 for cases of separate perturbations and in Table 2 for the data that involved
joint perturbed parameters in first two clusters. In each case, the results showed that
the statistic was effective in detecting the outlying clusters in situations that involved
perturbed fixed effects, but not random effects. From Table 1, it is shown that the
statistic correctly detected the first two clusters with high rates of up to 100% of the
times, when β1 or β2 was perturbed. When it is the random effects only that were
adjusted in cluster 1 and 2, the success rates of the statistic were all zero. This means
that the values of the outlier statistic for cluster 1 and 2 were not different from the
rest cluster if it is the random effects that were perturbed in the first two clusters.
This is due to the fact that observations in the same cluster share a random effect,
which might contribute less to within-cluster variation of the deviance residual that
is used in the proposed outlier statistic, unlike fixed covariates values that vary from
subject to subject even within the same cluster (Kaombe & Manda, 2022).

The results in Table 1 also showed that the outlier statistic performed better
when sample size per cluster increased from 80 to 500, and when the value of
perturbed fixed effect increased. Further, the performance of the statistic was the
same between 100 and 1000 simulations where large cluster sample sizes were used.
But, the success rates dropped slightly at 1000 simulation in situations that involved
small sample sizes per cluster. Finally, the outlier statistic performed equally across
different numbers of clusters per data set, holding constant the cluster sample size
and fixed effect size.

As for the cases of data from jointly perturbed parameters given in Table 2, it
is shown that the outlier statistic correctly detected the outlying clusters 1 and 2
a minimum of 39.1% and up to 100% of the times, when β1 and β2 were jointly
perturbed. The detection rates ranged from 38.3% and up to 100% of the times,
when β1, β2 and bj were jointly adjusted. This means that performance of the
statistic was insensitive of involvement of random effects in the joint perturbations.
This agrees with results in Table 1 where values of the outlier statistic in clusters
1 and 2 were consistent with those in the rest clusters, although the random effects
were perturbed in the first two clusters.

Like in the case of separate perturbations, the performance of the statistic was not
different between 100 and 1000 simulations in cases where cluster size was large.
Similarly, there was improved performance of the statistic when the sample size
per cluster increased from 80 to 500, and when the value of perturbed fixed effect
increased.



Table 1 Percentage of times per 100 or 1000 simulationsa in which cluster 1 or 2 was detected
as outlier by the proposed statistic; a case of separate perturbations to β1, β2, or b1,2 under 10,
20, or 50 clusters per dataset, each with 80 or 500 subjects

100 replicates 1000 replicates

M ni β1 β2 b1,2 %Cluster1 %Cluster2 %Cluster1 %Cluster2

10 80 0.5 1 N(10, 2.52) 0 0 0 0

80 0.5 1 N(15, 5.52) 0 0 0 0

10 500 0.5 1 N(10, 2.52) 0 0 0 0

500 0.5 1 N(15, 5.52) 0 0 0 0

20 80 0.5 1 N(10, 2.52) 0 0 0 0

80 0.5 1 N(15, 5.52) 0 0 0 0

20 500 0.5 1 N(10, 2.52) 0 0 0 0

500 0.5 1 N(15, 5.52) 0 0 0 0

50 80 0.5 1 N(10, 2.52) 0 0 0 0

80 0.5 1 N(15, 5.52) 0 0 0 0

50 500 0.5 1 N(10, 2.52) 0 0 0 0

500 0.5 1 N(15, 5.52) 0 0 0 0

10 80 1.8 1 N(0, 0.42) 0 0 0 0

80 2.7 1 N(0, 0.42) 20 17 22 22

10 500 1.8 1 N(0, 0.42) 50 50 25.8 24.9

500 2.7 1 N(0, 0.42) 100 100 88.9 89.6

20 80 1.8 1 N(0, 0.42) 3 3 0.6 0.4

80 2.7 1 N(0, 0.42) 17 7 2.2 1.7

20 500 1.8 1 N(0, 0.42) 84 83 17.4 18.9

500 2.7 1 N(0, 0.42) 96 100 95.2 95.5

50 80 1.8 1 N(0, 0.42) 11 15 8.0 8.2

80 2.7 1 N(0, 0.42) 6 2 0.7 0.7

50 500 1.8 1 N(0, 0.42) 57 59 31.7 34.6

500 2.7 1 N(0, 0.42) 100 98 98.5 97.5

10 80 0.5 2.0 N(0, 0.42) 95 92 57 59.6

80 0.5 2.5 N(0, 0.42) 100 100 92.7 93.8

10 500 0.5 2.0 N(0, 0.42) 100 100 99.9 99.6

500 0.5 2.5 N(0, 0.42) 100 100 100 100

20 80 0.5 2.0 N(0, 0.42) 82 83 72.8 74.7

80 0.5 2.5 N(0, 0.42) 99 98 92.5 93

20 500 0.5 2.0 N(0, 0.42) 100 100 99.7 100

500 0.5 2.5 N(0, 0.42) 100 100 99.7 99.7

50 80 0.5 2.0 N(0, 0.42) 93 89 79.6 80.4

80 0.5 2.5 N(0, 0.42) 98 97 87.2 87.8

50 500 0.5 2.0 N(0, 0.42) 100 100 99.1 99.1

500 0.5 2.5 N(0, 0.42) 100 100 99.9 99.8
a No perturbations were done to data in other clusters than 1 and 2, in those other clusters model

(16) had β1 = 0.5, β2 = 1, and bi ∼ N(0, 0.42)
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Table 2 Percentage of times per 100 or 1000 simulationsa in which cluster 1 or 2 was detected
as outlier by the proposed statistic; a case of joint perturbations among β1, β2, and b1,2 under 10,
20 or 50 clusters per dataset, each with 80 or 500 subjects

100 replicates 1000 replicates

M ni β1 β2 b1,2 %Cluster1 %Cluster2 %Cluster1 %Cluster2

10 80 1.8 2.0 N(0, 0.42) 55 68 39.1 41.8

80 2.7 2.5 N(0, 0.42) 90 89 74.6 72.7

10 500 1.8 2.0 N(0, 0.42) 100 100 99.4 99.1

500 2.7 2.5 N(0, 0.42) 100 100 100 100

20 80 1.8 2.0 N(0, 0.42) 58 58 43.4 44.8

80 2.7 2.5 N(0, 0.42) 86 88 70.2 69.6

20 500 1.8 2.0 N(0, 0.42) 99 99 98.9 98.6

500 2.7 2.5 N(0, 0.42) 100 100 100 100

50 80 1.8 2.0 N(0, 0.42) 59 54 41.2 39.7

80 2.7 2.5 N(0, 0.42) 86 87 69 66.8

50 500 1.8 2.0 N(0, 0.42) 100 100 99 98.5

500 2.7 2.5 N(0, 0.42) 100 100 97.7 98

10 80 1.8 2.0 N(10, 2.52) 75 74 38.7 40.9

80 2.7 2.5 N(15, 5.52) 85 86 74.6 72.6

10 500 1.8 2.0 N(10, 2.52) 100 100 99.3 99.2

500 2.7 2.5 N(15, 5.52) 100 100 100 100

20 80 1.8 2.0 N(10, 2.52) 48 54 38.3 35.4

80 2.7 2.5 N(15, 5.52) 82 76 73.4 73.3

20 500 1.8 2.0 N(10, 2.52) 100 100 97.9 98.4

500 2.7 2.5 N(15, 5.52) 100 100 99.5 99.3

50 80 1.8 2.0 N(10, 2.52) 65 51 41.6 40.8

80 2.7 2.5 N(15, 5.52) 79 80 68.9 71.8

50 500 1.8 2.0 N(10, 2.52) 100 99 96.1 95.2

500 2.7 2.5 N(15, 5.52) 100 100 98.7 99.4
a No perturbations were done to data in other clusters than 1 and 2, in those other clusters model

(16) had β1 = 0.5, β2 = 1, and bi ∼ N(0, 0.42)

2.3 Application to Malawi Child Survival Data

This section presents the implementation of the proposed outlier statistic demon-
strated in Kaombe and Manda (2022), which used under-five mortality data from
2015–16 Malawi Demographic and Health Survey (MDHS) data. The survey took
place between 19 October 2015 and 18 February 2016 and had a sample of 17,286
children, whose information was provided by women respondents and caregivers
aged 15 to 49 years. It used two-stage stratified sampling, with enumeration
areas (EAs) as primary and households as secondary sampling units (Malawi
National Statistical Office (NSO) and ICF, 2017). The data can be accessed at
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Table 3 Data summary for child survival study using 2015–16 MDHS

Variable Level Number of births %Died

Overall sample All 14,645 3.68

Sex of child Male 7,393 4.03

Female 7,252 3.32

Birth order of child 1 3,769 4.48

2–3 5,480 3.19

≥ 4 5,396 3.61

Place of birth Home or other 369 4.07

Hospital 14,276 3.67

Place of residence Urban 2,544 3.03

Rural 12,101 3.82

Birth weight (kgs) =>2,500g 12,465 3.45

<2,500g 2,180 5.00

Household wealth index Poor 6,166 3.97

Middle 2,823 3.54

Rich 5,656 3.43

Mother’s education No formal education 1,588 3.46

Primary 9,611 3.85

Secondary or above 3,446 3.31

www.DHSprogram.com. There were 56 clusters that were studied, which repre-
sented each district’s rural and urban subdistricts.

The analysis involved a survival frailty model using death of a child from any
cause before age of 60 months as event of interest, and age at death or at censoring
time as event-time. Children whose event-times were zero months were assigned
random values between 0 and 1 from a uniform probability distribution to reflect
proportion of month-days for their event-times. The children who were still alive
during survey time or had survived up to 60 months were censored. Due to missing
data in some key variables that were used in the model, such as birth weight, the
analysis of outlier clusters to child mortality involved complete cases of 14,645
children. The data and the rest of the variables that were analysed are given in
Table 3.

2.3.1 Results on Effects of Some Variables on Under-Five Child Mortality

The model results in Table 4 showed that female sex, birth order of 2 and above
had significantly lower logarithm of hazard of mortality compared to their reference
groups. While, the birth weight of below 2,500 grams was associated with increased
logarithm of hazard of death in under-five children compared to birth weight
of 2,500 grams and above. Further, the results showed that place of residence,
household wealth, place of birth, and mother’s education had no significant effect


 -2016 29414
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Table 4 Estimates from the fitted frailty hazard model on child survival data

Variable Level Coefficient (p-value) Coefficient (p-value)

Model 1 Model 2

Sex of child Male (ref)

Female −0.235 (0.0069) −0.234 (0.0070)

Birth order of child 1

2 − 3 −0.335 (0.0020) −0.328 (0.0024)

≥4 −0.238 (0.0307) −0.217 (0.0394)

Birth weight (kgs) =>2,500g (ref)

<2,500g 0.602 (<0.0001) 0.615 (<0.0001)

Mother’s education No formal education

Primary 0.110 (0.4572)

Secondary or above 0.020 (0.9141)

Place of birth Home or other (ref)

Hospital −0.023 (0.9298)

Place of residence Urban (ref)

Rural 0.201 (0.1633)

Household wealth index Poor

Middle −0.097 (0.4194)

Rich −0.035 (0.7537)

Variance of random effects Cluster 0.0228 (0.1875) 0.0257 (0.1617)

on log-hazard of death of a child. These were dropped in the ultimate models that
were used in this study. It was also shown that the variation between clusters was
significantly different from 0 for reduced models with significant covariates only.
This implied that time to death of a child differed significantly between clusters.

Using the reduced model, with three significant covariates, the values of the
proposed outlier statistic were computed to analyse outlying subdistricts to under-
five mortality. This was done along with the visual inspection approach for
standardised residuals suggested in Langford and Lewis (1998). The baseline hazard
of 63 deaths per 1000 live births, which was the prevailing national under-five
mortality rate, was used (Malawi National Statistical Office (NSO) and ICF, 2017).

2.3.2 Results for Outlier Subdistricts on Under-Five Mortality

The results in Fig. 2a indicate that the proposed outlier statistic had detected five
subdistricts as outliers to child mortality, these are: Likoma rural, Lilongwe urban,
Chikwawa rural, Dedza rural, and Neno rural. This means that, these subdistricts
were poorly fitted by the child survival model, and they had a different pattern of
mortality compared to the rest subdistricts. Using the method of visual inspection
from linear mixed model, as in Fig. 2b we could not clearly identify an outlying
subdistrict due to overlaps of the plots.
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Fig. 2 Outlier assessment results using the proposed group outlier statistic in comparison with
method of visual inspection of standardised residuals (Langford & Lewis, 1998) applied on Malawi
child survival data, 2015–16 MDHS. (a) Estimates of proposed outlier statistic per subdistrict upon
fitting the frailty Cox model on child survival data. (b) Plots of deviance residuals for children in
each cluster following a frailty model on child survival data. Source: Researcher

3 Influence Analysis for Multivariate Survival Data

We present a derivation of an influence statistic for clustered data upon fitting a
multivariate survival model, based on the work of Kaombe and Manda (2021). This
is preceded by a review of influence statistics for univariate survival model.

3.1 Some Common Influence Statistics for Univariate Survival
Data

Given maximum likelihood (ML) estimators θ̂ for model parameters θ = {β, bi,D}
and θ̂(ij) as the estimator obtained upon deleting ij -th observation from data.
The influence of ij -th data point on θ̂ is defined as the difference in estimators,
#θ̂ij = θ̂ − θ̂(ij) (Das & Gogoi, 2015; Cain & Lange, 1984). The estimates for
#θ̂ij can be manually computed upon deleting each data record and refitting the
model and calculate the difference in estimates from full and reduced data or get
difference of one-step iterative approximations for non-linear models. However, the
manual computations are time-consuming as they require refitting the model (n + 1)
times to the dataset. This is the reason why efficient model post-estimation influence
statistics, computed from one fitting of the model, are used.

A number of such techniques exist for linear models and are extended to
univariate survival models. With generalised linear and linear mixed-effects models
(glm and glmm), where parameter estimators θ̂ are obtained analytically, influence
statistic #θ̂ij is a function of model’s basic building blocks, i.e. Studentized
residuals, error contrast matrix, and inverse of covariance matrix of response
variable (Zewotir & Galpin, 2005). In glm and glmm, #θ̂ij is either computed from
methods like Cook’s distance (Cook, 1977) or it is approximated for one-step ML
estimation using updating formulae techniques (Zewotir, 2008; Nobre & Singer,
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2011). Others use first-order Taylor series expansion on score functions about the
estimator θ̂(ij) (Xiang et al., 2002). However, with Cox proportional hazard (PH)
model, the analytic case-deletion influence techniques, such as Cook’s distance, do
not apply, since subjects enter the likelihood as members of various risk sets, such
that deleting a data record affects several risk sets rather than one (Cox, 1972). For
this reason, various approximations for influence statistics have been developed for
univariate survival data, which we present in this section.

One influence technique that is used for univariate survival data is the first-
order Taylor series expansion of score function about a unity weight $ij for an
observation. The weight $ij = 0 for a subject that has been removed from data
and $ij = 1 otherwise (Cain & Lange, 1984). The subjects’ weights $ij result into
weighted partial likelihood L(β($ij )), and weighted score function Uβ($ij ) from
the model. Subsequently, the weighted ML estimators β̂($ij ) become β̂(1) = β̂ or
β̂(0) = β̂(ij), where β̂(ij) is the estimator obtained upon dropping ij -th case in the
dataset, and β̂ the one obtained from full data. Then, the influence estimate is given
by #β̂ij = β̂ − β̂(ij) = ∂β̂/∂$ij , which is obtained by solving for ∂β̂/∂$ij when
the score function is equated to zero (Cain & Lange, 1984), as follows:

(∂U/∂β̂)(∂β̂/∂$ij ) + ∂U/∂$ij = 0

∴ ∂β̂/∂$ij = (−∂U/∂β̂)−1∂U/∂$ij ,
(16)

where the likelihood for univariate model is: L(β|t,X) = ∏
r [

exp(XT
ij
β)

∑
s∈R(til ) $ij exp(X

T
is
β)

]$ij ,

and the weighted score function is first derivative of logarithm of L(β|t,X) with
respect to β. The method (17) is also referred to as infinitesimal jackknife statistic
for influence of an observation (Therneau et al., 1990).

Another method is the score residual, which is essentially a product of a subject’s
residual and its extremity in covariate value (Therneau et al., 1990) given by:

vij (β̂) =
∫ ∞

0
[Xijp(t) − X̄p(β̂, t)]dm(tij ), (17)

where m(tij ) = N(tij ) − ∫ tij
0 Yij (t)exp(X

T
ij (t)β̂)dĤ0(t) is residual of ij -th obser-

vation at time tij , also called martingale residual, which measures excess number of

events; and p is number of covariates; while X̄p =
∑

Xijpexp(X
T
ij β̂)∑

s∈R(til ) exp(X
T
is β̂)

is the weighted

average of covariate Xijp over R(til) risk sets. The measure (18) is used to estimate
sensitivity of log-likelihood to infinitesimal displacements of β̂. Using a weighted
partial likelihood, Therneau et al. (1990) showed that the residual (18) is similar to
the jackknife measure (17) and that ∂U/∂$ij = (vij1, vij2, . . . , vijp)

T .
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The third method is the augmented or perturbed regression model (Storer &
Crowley, 1985; Therneau et al., 1990), which is a one-step update in θ̂ when a single
indicator covariate is added to the model. The added covariate has value 1 for ij -th
data point and 0 for all other observations (Therneau et al., 1990). The augmented
model influence statistic for univariate survival model (Storer & Crowley, 1985) is
given by:

β̂1 = β̂0 + I−1(β̂0)l̇(β̂0)

⇒ β̂1 − β̂0 = I−1(β̂0)l̇(β̂0)

= −I−1(β̂0)ξij

πij − ξTij I
−1(β̂0)ξij

m(tij ),

(18)

where m(tij ) is the martingale residual defined along with Eq. (8), ξijp = Ĥ0(Xijp−
X̄p(β̂))exp(X

T
ij β̂) represents a column vector from design matrix X corresponding

to 1′s, πij = Ĥ0(t)(1 − c̄ij (β̂))exp(β̂
T XT

ij ) is the diagonal identity matrix with
entries 1 throughout, except for the subject that has been removed, which has 0
entry, and cij is the indicator covariate that has been added to the dataset (Storer &
Crowley, 1985).

These methods are all related, since they are functions of subject’s leverage and
residual measures. Moreover, Therneau et al. (1990) demonstrated that the three
methods yield similar estimates of influence, but the score residual (18) has a
number of advantages, including simplicity of interpretation. Hence, we applied the
score residual technique to derive the influence statistic for the multivariate survival
model (1).

3.2 Proposed Influence Statistic for Multivariate Survival Data

From Sect. 1.1, it is noted that the estimation of β in model (1) is completed by a
numerical technique. So, manual approximation of #β̂i can be done by observing
changes in one-step Newton–Raphson approximations to β̂, after refitting the model
to the data for each removal of a cluster. But, this is again time-consuming as stated
before, since a model will have to be refitted upon removal of a cluster. An extension
of the score residual (18) that results from fitting model (1) to data once has been
proposed in Kaombe and Manda (2022), which estimates influence of a cluster on
β̂ for model (1). The focus in this chapter is on cluster influence on β̂ and not b̂i ,
because the estimator β̂ depends on all data records regardless of clusters, such that
dropping a cluster will have an impact on β̂. This is not the case with estimators for
random effects, b̂i . Due to assumed independence of clusters, deleting one cluster
does not affect estimate of random effect b̂i for another cluster (Xiang et al., 2002).
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To study influence for grouped observations, we first define a leverage and a
residual for a single observation ij at a given time tij . The score process (5) derived
for model (1) is essentially a row vector of differences between the individual ij
covariate value and the average for the covariates of all individuals at risk at time
tij . In essence, this is analogous to leverage in linear models (Sarkar et al., 2011;
Zhang, 2016). For individual ij , we let rij = exp(XT

ij β̂ + b̂i ) be its risk score.
Then, at the il-th event-time til , the Schoenfeld residual (or leverage) (Schoenfeld,
1982), denoted by wil , is given by:

wil = Xil −
∑

s∈R(til ) risXis
∑

s∈R(til ) ris
,

= Xil − X̄(β̂, b̂i , til),

(19)

where ris = exp(XT
is β̂ + b̂i ) is the risk score for unit ij in the risk set R(til),

and Xil is the covariate vector of the individual experiencing the event at time
til . Further, β̂ and b̂i are, respectively, fixed and random effects terms estimated
from the log-likelihood (4). In addition, X̄(.) is a vector whose elements are the
conditional weighted means of the covariates values for the individuals at risk of
event at time tij . Hence, the dimension of (20) is 1×p vector corresponding to each
ij -th unit in the risk set (Kaombe & Manda, 2021).

The quantity (20) is also a residual proposed by Schoenfeld (1982) that sums the
score processes (5) of units with failure times at each unique event, assuming no
ties. Denote Wil as leverages wil for all nl data points in the risk set and with p

covariates, then Wil will be nl × p matrix. Furthermore, wil ∈ [−∞,+∞], with
mean E(wil) = E(Xil) − E[X̄(β̂, b̂i , til)] = E(Xil) − E(Xil) = 0. The value
0 of wil corresponds to observations with intermediate covariates values and are
thus close to the weighted average for covariate Xil , and hence their leverage on the
fitted survival curve is negligible. While large negative and large positive values of
wil correspond to observations that have unusual covariates values that are far from
the weighted average of Xil , and hence they have high leverage on the fitted survival
curve (Kaombe & Manda, 2021).

A residual, on the other hand, means the difference between the observed and
fitted outcomes. The smaller this is, the better the model’s fit for the observation of
interest (Aguinis et al., 2013; Zhang, 2016). For survival data, one of the residuals
is the martingale, defined in Eq. (11), which is an estimate of difference in counts
of observed and estimated number of events at each observation time (Therneau
et al., 1990). The extension of martingale residual for clustered survival model (1)
is defined in Eq. (11) as a nl × 1 stacked vector of residuals for units in the risk set
R(til) given by:
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m(til) = N(til) − Ĥ0(t)exp(X
T
il β̂ + b̂i )

⇒
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,
(20)

where Ĥ0(t) = ∫ t
−∞ h0(s)ds is the estimated cumulative baseline hazard. The

residual (21) has values in the range (−∞, 1], because N(til) is either 0 or 1 and
Ĥ0(t)exp(X

T
il β̂ + b̂i ) has values in the interval [0,∞). In addition, E(m(til)) =

E(N(til)) − E(Ĥ0(t)exp(X
T
il β̂ + b̂i )) = E(N(til)) − E(N(til)) = 0, since the

off-minus quantity in (21) is the average number of events.
Both leverage quantity (20) and residual (21) have correlated values for subjects

that are in the same cluster due to shared random effect, but independent values
between clusters. Due to this property, we utilise the independence of clusters to
derive an influence statistic for detecting impact of dropping a cluster on the estimate
of β. Influence of an observation on regression parameter estimates is a product
of its outlier and leverage values. Many studies, for example, Cook (1977) for
linear models, Zewotir and Galpin (2005) for linear mixed-effects models, Therneau
et al. (1990) for univariate survival models, have shown this. Thus, in deriving
influence statistics, appropriate case-deletion residual and leverage measures need
to be defined first. Using the residual defined in (21) and leverage in (20) for model
(1), we propose an analogue of the score residual (18) (Kaombe & Manda, 2021) to
measure influence of a cluster on β̂ for the model (1) as a vector product of values
of vector (21) and those of columns of matrix (20) for subjects under risk set R(til)
in the same cluster i, given by:

vi(β̂) = [m(til)]T × Wil . (21)

The extended score residual (22) is an ((1×n1)× (n1 ×p) . . . (1×nM)× (nM ×
p)) = M×p matrix, as the value v1(β̂) for first cluster will be a (1×n1)×(n1×p) =
1 × p vector reflecting influence of first cluster on each β̂ for p covariates, while
v2(β̂) for second cluster will be a (1 × n2)× (n2 ×p) = 1 ×p vector, and so forth.
The measure (22) will quantify joint influence of observations in a cluster on the
estimate β̂, since each of its components is a measure of joint extremity of cluster
observations in terms of fitted survival outcomes, as well as in covariates’ values
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off the fitted survival curve. Since Wil in (22) has elements wil ∈ [−∞,+∞] and
m(til) ∈ (−∞, 1], both with mean 0, then the proposed influence statistic (22) is
expected to have mean 0. Large positive value of the proposed statistic (22) means
a cluster has majority of subjects that have high positive values in wil that coincide
with high positive values in m(til), or large negative values in wil coinciding with
large negative values in m(til). Technically, this means the cluster has majority of
large positive leverage subjects that experienced more events (i.e. failed too early)
than predicted by the model or has most subjects with large negative leverage that
survived longer than predicted by the model. Hence, such a cluster requires further
investigation (Kaombe & Manda, 2021).

On the other hand, large negative value of (22) implies that a cluster has majority
of subjects that have large positive leverage wil that coincide with large negative
values of the residual m(til) or vice versa. In other words, this implies that the
cluster has majority of large positive leverage observations that experienced fewer
events (i.e. survived longer) than predicted by the model or has majority of large
negative leverage subjects that failed too early than predicted by the model. Again,
such a cluster will need further investigation. The values of (22) that are close to
zero imply most subjects of the corresponding clusters have either leverage close
to zero or residual close to zero, hence such clusters have no issues for follow-up
investigation. To decide on influential groups, some studies in linear mixed-effects
models have used a cut-off of ±2/

√
M for the values of the influence statistic

(Belsley et al., 2005; Nieuwenhuis et al., 2012). However, graphical methods or
relative comparisons of influence values for groups are commonly used (Zewotir &
Galpin, 2007). We applied graphical techniques in the next two sections to examine
influential clusters to the fitted survival mixed models using the proposed influence
statistic (22) (Kaombe & Manda, 2021).

3.3 Numerical Example

The data generated from a simulation study described in Sect. 2.2 were utilised
to evaluate performance of the proposed influence statistic developed in Sect. 3.
The two clusters in which the generated survival data from model (16) involved
perturbed β1 and β2 were subjected to examination to observe whether they would
be identified by the proposed influence statistic (22). The same assessment criterion
described in Sect. 2.2 was used, that is, through percentage of simulations for which
the proposed influence statistic correctly identified the two target clusters as having
influence on β1 or β2 using similar cutoffs as described in Sect. 2.2. Upon fitting the
model to the simulated data, the proposed influence statistic was computed and its
performance evaluated.
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3.3.1 Results of Simulations

Like in Sect. 2.2, we inspected performance of the derived influence statistic through
graphical techniques prior to its detailed evaluation. The findings in Fig. 3 for two
scenarios of simulations showed that the proposed influence statistic had detected
influence of clusters 1 and 2 on the estimates of β̂2 and β̂1, respectively. The
values of the statistic were outstandingly higher in the first two clusters, where
coefficients of the data-generating model were perturbed, than in the other clusters.
This study therefore assessed success rates of the proposed influence statistic under
each simulation scenario using the cutoffs described before.

Table 5 provides success rates of the proposed influence statistic in detecting
impact of cluster 1 or 2 on β̂1 over 100 and 1000 simulations. The results show that
the statistic correctly identified the two influential clusters with high percentage,
when the perturbations involved β1 or β1 and β2 jointly. The rates for influence of
cluster 1 or 2 on β̂1 were relatively low, when it was β2 that was perturbed. The
results also show that the sensitivity of the proposed residual improved with cluster
sample size, such that the success rates were as high as 100% where cluster size was
500 and lower with varying degrees when cluster size was 80 subjects. In addition,
performance of the statistic improved with size of perturbed parameter value, and
this was noticeable where cluster sample sizes were low.

It is also shown that performance of the influence statistic was not different
between 100 and 1000 simulation sizes, when cluster sample size was 500 subjects.
But the success rates generally slumped in 1000 replications, when cluster size was
80. Finally, the results show that the influence statistic was equally effective across
different number of clusters per dataset.

The results in Table 6 are for success rates over 100 and 1000 replications for
the proposed influence statistic in identifying cluster 1 or 2 as having influence on

(a) (b)

Fig. 3 Plots of cluster influence on β̂1 or β̂2 under two cases of simulations. (a) Scatter plots of
influence statistic vs cluster id for a case of data with perturbed β2 = 2.0 in 2 of 50-clusters sample,
each with 80 subjects and with 100 replications. (b) Scatter plots of influence statistic vs cluster id
for a case of data with perturbed β1 = 2.7 in 2 of 50-clusters sample, each with 500 subjects and
with 1000 replications. Source: Researcher



Table 5 Percentage of simulationsa that identified cluster 1 or 2 as influential to β̂1

100 replicates 1000 replicates

M ni β1 β2 %Cluster1 %Cluster2 %Cluster1 %Cluster2

10 80 1.8 1 84 87 60.9 59.4

80 2.7 1 100 100 99.3 99.2

10 500 1.8 1 100 100 100 100

500 2.7 1 100 100 100 100

20 80 1.8 1 74 75 46.4 44.9

80 2.7 1 99 99 95.3 95.1

20 500 1.8 1 100 100 100 100

500 2.7 1 100 100 100 100

50 80 1.8 1 34 31 10.7 11.8

80 2.7 1 75 75 52.7 55.3

50 500 1.8 1 100 100 100 100

500 2.7 1 100 100 100 100

10 80 0.5 2.0 19 22 42 49

80 0.5 2.5 36 38 32.3 36.3

10 500 0.5 2.0 27 29 13.1 15.1

500 0.5 2.5 47 39 41.1 38.5

20 80 0.5 2.0 27 25 10.6 13.1

80 0.5 2.5 27 31 36.9 40.4

20 500 0.5 2.0 29 30 18.9 20.4

500 0.5 2.5 60 51 43.9 45

50 80 0.5 2.0 30 29 13.2 12.9

80 0.5 2.5 60 54 43.7 42.8

50 500 0.5 2.0 30 28 23.5 22.1

500 0.5 2.5 63 62 47.6 48.6

10 80 1.8 2.0 69 77 57.5 59

80 2.7 2.5 99 96 84.6 83

10 500 1.8 2.0 100 100 100 100

500 2.7 2.5 100 100 100 100

20 80 1.8 2.0 70 69 43.8 46.2

80 2.7 2.5 92 92 76.6 74.7

20 500 1.8 2.0 100 100 100 100

500 2.7 2.5 100 100 100 100

50 80 1.8 2.0 67 51 45.8 44.9

80 2.7 2.5 86 87 71.9 70.6

50 500 1.8 2.0 100 100 100 100

500 2.7 2.5 100 100 100 100
a No perturbations were done to data in other clusters than 1 and 2; in those other clusters, model

(16) had β1 = 0.5 and β2 = 1
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β̂2. The findings show that the proposed influence statistic highly detected impact
of first two clusters on β̂2, when it was β2 or jointly β2 and β1 that was perturbed
during data generation. The success rates of the statistic in detecting influence of
cluster 1 or 2 on β̂2 were low when it was β1 that was perturbed.

As was the case with β̂1, the success rates of the statistic in detecting impact of
cluster 1 or 2 on β̂2 improved with cluster size, as the rates were consistently high for
cluster sizes of 500 and low with cluster sizes of 80 subjects. Again, the performance
of the statistic improved with size of perturbed parameter value, a situation that was
also noticeable in low cluster sizes like before. Likewise, there was no difference in
performance of the statistic between 100 and 1000 simulation sizes, this was much
apparent in large cluster sample sizes. Lastly, it is also shown that the influence
statistic performed equally across different number of clusters per sample.

3.4 Application of the Influence Statistic on Malawi Child
Survival Data

Using the child survival data and the model described in Sect. 2.3, we present
application of the proposed influence statistic (22) as demonstrated in Kaombe and
Manda (2021). The application tracks how the proposed influence statistic would
estimate influence of dropping each of the 56 subdistricts on effect of being female
on under-five mortality. This is for demonstration’s sake, otherwise one could also
assess influence of the subdistricts on the other covariates in the model. Once
again, national under-five mortality rate of 63 deaths per 1000 live births (Malawi
National Statistical Office (NSO) and ICF, 2017) was used as baseline hazard during
computation of influence values.

3.4.1 Results for Influential Subdistricts on Effect of Being Female on
Under-Five Mortality

The results in Fig. 4, showed that the proposed influence statistic detected Kasungu
rural as having positive influence on effect of female gender on child mortality. This
means that Kasungu rural subdistrict had majority of children with high leverage
on estimated mortality that had also died too early than predicted by the model,
such that dropping this cluster from the model would cause a significant change
on estimated effect of female gender on child mortality. The statistic also detected
Karonga rural, Mzimba rural, Dowa urban, Thyolo urban, and Phalombe urban as
having negative influence on effect of being female on child mortality. This implies
that these subdistricts had majority of children with high leverage on estimated
mortality who had also survived longer than predicted by the model, such that
removing each of these clusters from analysis would impact on estimated effect
of female gender on child mortality.



Table 6 Percentage of simulationsa that identified cluster 1 or 2 as influential to β̂2

100 replicates 1000 replicates

M ni β1 β2 %Cluster1 %Cluster2 %Cluster1 %Cluster2

10 80 1.8 1 2 2 0.9 0.7

80 2.7 1 4 4 1.2 1.3

10 500 1.8 1 0 0 0 0

500 2.7 1 0 0 2.6 2.3

20 80 1.8 1 14 12 4.8 5.5

80 2.7 1 0.8 0.6 4.6 4.6

20 500 1.8 1 0.9 1.2 1.3 1.4

500 2.7 1 1 0.8 2 1.2

50 80 1.8 1 34 40 13.7 14.8

80 2.7 1 34 33 19.6 20.0

50 500 1.8 1 26 18 13.4 11

500 2.7 1 18 14 8.5 7.4

10 80 0.5 2.0 94 97 93.8 93.5

80 0.5 2.5 98 100 98.5 97.9

10 500 0.5 2.0 100 100 100 100

500 0.5 2.5 100 100 100 100

20 80 0.5 2.0 98 98 93.4 92.7

80 0.5 2.5 100 100 97.7 97.4

20 500 0.5 2.0 100 100 100 100

500 0.5 2.5 100 100 100 100

50 80 0.5 2.0 99 97 94.4 94.6

80 0.5 2.5 100 100 97.3 97.6

50 500 0.5 2.0 100 100 100 100

500 0.5 2.5 100 100 100 100

10 80 1.8 2.0 72 77 39.1 42.5

80 2.7 2.5 99 92 81.6 81.3

10 500 1.8 2.0 100 100 100 100

500 2.7 2.5 100 100 100 100

20 80 1.8 2.0 64 73 46.7 45

80 2.7 2.5 88 81 65.2 63.7

20 500 1.8 2.0 100 100 100 100

500 2.7 2.5 100 100 100 100

50 80 1.8 2.0 59 53 43.4 43.4

80 2.7 2.5 78 74 63.6 61.5

50 500 1.8 2.0 100 100 99.9 99.8

500 2.7 2.5 100 100 100 100
a No perturbations were done to data in other clusters than 1 and 2; in those other clusters, model

(16) had β1 = 0.5 and β2 = 1
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3.4.2 Impact of the Identified Influential Subdistricts on Estimate of
Effect of Being Female on Under-Five Mortality

Upon identifying the influential subdistricts on estimate of effect of female gender
in the model, we used the manual approach to analyse their impact on the estimates,
that is, we observed the changes in estimates upon refitting the model to data without
the detected subdistricts. This was demonstrated with two extreme influential
subdistricts: one with positive influence and the second with negative influence.
The results are in Table 7. It was shown that removal of Kasungu rural cluster from
analysis resulted in further reduction in logarithm of hazard of death for female
children by 0.0187. Thus, the survival model was better off without data from
Kasungu rural cluster. This was also noticed with the reduction in p-value by 0.001.
While, dropping Mzimba rural cluster increased the logarithm of hazard of death in
female children by 0.0053. Thus, the data from Mzimba rural cluster were required
in the model. This is also reflected in the p-value that got higher upon removing this
cluster. Removing both clusters from analysis resulted in reduction of logarithm of
hazard of death, but not as much as when Kasungu rural cluster was dropped alone.

Thus, the effect of dropping the two clusters at the same time did not add value
to the estimation compared to dropping each one of them separately. This was the
case since Kasungu rural cluster had positive influence while Mzimba rural negative
influence on estimate of effect of female gender on child mortality, so that their
combined influence could not be in either direction but could just mask the influence
of either of the two. The standard errors of the parameter estimates slightly increased
in each case, implying that the original estimates from full data were biased. The
variance of random effects also got lower in both cases. Further, the results vindicate
the magnitude of influence of each of the two clusters as reported by our proposed
statistic in the previous paragraph. It is shown in Table 7 that impact of either
cluster on the estimate of effect of female gender on mortality was about the same
magnitude either side of the estimate obtained using full dataset, which agrees with
findings from the proposed statistic in Fig. 4.

4 Conclusion

In this chapter, we have developed outlier and influence statistics for analysing
multivariate survival data model, by extending methods developed for linear mixed-
effects and univariate survival models. Simulation studies have shown that the
proposed statistics correctly identified the outlying and influential clusters in the
analysis of multivariate survival data, over 99% and 98% of the time, respectively.
The performance of the statistics improved with cluster sample size. The proposed
influence statistic detects both direction and magnitude of influence of a cluster on
regression parameter estimates. The application of the proposed statistics should be
done through relative comparisons of values of the statistics across clusters, with
large positive values of the outlier statistic signalling outlying clusters; and large
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Fig. 4 Subdistrict level estimates of the proposed influence statistic for effect of female gender
upon fitting a frailty Cox hazard regression model to Malawi child survival data, 2015–16 MDHS.
Source: Researcher

positive and large negative values of the influence statistic, respectively, indicating
positively and negatively influential clusters on particular fixed regression effect
(Zewotir & Galpin, 2006).

With a frailty survival model, where observations in a cluster share random effect,
it was observed that outlying tendency of a cluster, based on our method, is largely
influenced by fixed covariates rather than random covariates. Large sample size for
a statistic leads to lowered uncertainty in repeated sampling (Hemez et al., 2010),
which is why performance of our proposed statistics improved with sample size.
The application showed that outlier detection methods based on inspection of single
observations’ residuals as done in linear mixed models (Langford & Lewis, 1998)
proved difficult to detect group outliers for multivariate survival model. The dataset
had high censoring rate of 95%, which usually cause deviance residuals to lose
symmetry, especially from 40% and above (Therneau et al., 1990). This might have
affected relevance of outlier methods based on residual inspection of the data, as the
methods are applied with an assumption that residuals are symmetric about mean
zero. The original data revealed that the identified outlying subdistricts from urban
locations had lower under-five mortality rates, while those that were rural-based had
higher rates. Studies have attributed low child mortality in urban settings due to high
access to healthcare services by children, resulting from short distances travelled by
their mothers to clinics, compared to the children from rural locations (Ustrup et al.,
2014).

Finally, we recommend that an analysis of multivariate survival data should
be accompanied by an assessment of outlying and influential clusters to avoid
having biased estimates and inaccurate conclusions. For the identified influential
clusters, one could investigate contribution of individual units in making the
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clusters as such (Xiang et al., 2002; Zewotir & Galpin, 2006). We recommend
such analyses for future research. The outlier statistics hinge on defining relevant
structure of a residual for the model at hand. Future studies could develop outlier
statistics for various formulations of the multivariate survival model, other than
time-constant covariates model, like stratified and time-dependent survival model.
We also recommend an in-depth study to investigate child healthcare practices in
the identified outlying or influential subdistricts regarding child survival in Malawi.
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Appendices

R Code for Applying Derived Outlier Statistic on Child
Survival Data

rm(list=ls())
library(foreign)
library(survival)
args(coxph)
library(ggplot2)
library(ggrepel)
library(data.table)
library(dplyr)
library(readstata13)

mydata = read.dta("c:/Users/User/Desktop/applicationI/DHSrdcd.
dta",convert.factors=T)
tmo<- Sys.time()
ntimes <-data.frame(mydata %>%count(subdistrict))$n

ntimes

for(k in 1:1)
{

model <- coxph(Surv(as.numeric(agedth),as.numeric(died))
~Sex+bordcat+bwgtcat+pbirth+frailty(subdistrict, distribution
="gaussian",sparse=F,method="reml"),data=mydata)
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for (j in 1:56)
{

dt <- data.frame(cbind(newDist=1:56,coefSex=rep
(coef(model)[1],56),coefbordcat=rep(coef(model)[2],56),
coefbweight=rep(coef(model)[3],56),coefpbirth=rep(coef
(model)[4],56),randeffect=coef(model)[-4:-1]))

dt2 <- as.data.frame(dt[rep(1:nrow(dt),ntimes),])
}

dt2$martingale <- mydata$died - (0.063*mydata$agedth*exp(
mydata$Sex*dt2$coefSex+mydata$bordcat*dt2$coefbordcat

+mydata$bwgtcat*dt2$coefbweight+mydata$pbirth*dt2$
coefpbirth+dt2$randeffect))

dt2$sign=ifelse(dt2$martingale>0,1,-1)
dt2$deviance <- dt2$sign*dt2$martingale*sqrt(-2*(dt2

$martingale+mydata$died*log(mydata$died-dt2$martingale)))
dt2$grandmean <- setDT(dt2)[,lapply(.SD,mean,na.rm=TRUE),

.SDcols="deviance"]

mydata4 <- data.frame(cbind(mydata,dt2))

write.dta(mydata4, paste0("c:/Users/User/Desktop/
applicationIIII/mydata4.dta"))

}
tm1<- Sys.time()
tm1 - tmo

outliermat <- matrix(NA,nrow =56,ncol = 6)
outliermat8 <- data.frame(outliermat)
colnames(outliermat8) <- c("ID","meanclusdev","wtngrpVar",
"grandavg","btwngrpVar","ratiovar")

tmo<- Sys.time()

for(k in 1:1)
{

outliermat8[,1]<- 1:56
outliermat8[,2] <- setDT(mydata4)[,lapply(.SD,mean,na.

rm=TRUE),by=subdistrict,.SDcols="
deviance"][,2]

outliermat8[,3]<- setDT(mydata4)[,lapply(.SD,var,na.
rm=TRUE),by=subdistrict,.SDcols=
"deviance"][,2]

outliermat8[,4]<- setDT(mydata4)[,lapply(.SD,mean,na.
rm=TRUE),by=subdistrict,.SDcols=
"grandmean"][,2]

outliermat8[,5] <- sum(ntimes*(outliermat8$meanclusdev
- outliermat8$grandavg))^{2}/(56-1)

outliermat8[,6]<- outliermat8$wtngrpVar/outliermat8$
btwngrpVar

outliermat8 = cbind.data.frame(outliermat8)
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}

write.dta(outliermat8, paste0("c:/Users/User/Desktop/applicationI
/outlierd8.dta"))

tm1<- Sys.time()
tm1 - tmo

R Code for Applying Derived Influence Statistic on Child
Survival Data

rm(list=ls())
library(survival)
args(coxph)
library(foreign)
library(ggplot2)
library(ggrepel)
library(dplyr)
library(data.table)
library(readstata13)

ourdata = read.dta("C:/Users/User/Desktop/izi/influence2.dta",
convert.factors=F)
tmo<- Sys.time()
ntimes <-data.frame(ourdata %>%count(v023))$n

for(k in 1:n)
{

model <- coxph(Surv(as.numeric(agedth),as.numeric(died))
~Sex+bordcat+bwgtcat+pbirth+frailty(v023, distribution=
"gaussian",sparse=F,method="reml"),data=ourdata)

for (j in 1:56)
{

dt <- data.frame(cbind(newDist=1:56,coefSex=rep
(coef(model)[1],56),coefbordcat=rep(coef(model)
[2],56),coefbweight=rep(coef(model)[3],56),
coefpbirth=rep(coef(model)[4],56),randeffect=coef
(model)[-4:-1]))

dt2 <- as.data.frame(dt[rep(1:nrow(dt),ntimes),])
}

dt2$martingale <- ourdata$died-(0.063*ourdata$agedth*exp(
ourdata$Sex*dt2$coefSex+ourdata$bordcat*dt2$coefbordcat

+ourdata$bwgtcat*dt2$coefbweight+ourdata$pbirth*dt2$
coefpbirth+dt2$randeffect))

ourdata <- data.frame(cbind(ourdata,dt2))

ourdata$numerator_Sex <- ourdata$Sex* exp(ourdata$Sex*
ourdata$coefSex+ourdata$bordcat*ourdata$coefbordcat+ourdata$
bwgtcat*ourdata$coefbweight+ourdata$pbirth*ourdata$coefpbirth
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+ourdata$randeffect)

ourdata$numerator_bord <- ourdata$bordcat * exp(ourdata$
Sex*ourdata$coefSex+ourdata$bordcat*ourdata$coefbordcat+
ourdata$bwgtcat*ourdata$coefbweight+ourdata$pbirth*ourdata$
coefpbirth+ourdata$randeffect)

ourdata$numerator_bweight <- ourdata$bwgtcat * exp(ourdata
$Sex*ourdata$coefSex+ourdata$bordcat*ourdata$coefbordcat+
ourdata$bwgtcat*ourdata$coefbweight+ourdata$pbirth*ourdata$
coefpbirth+ourdata$randeffect)

ourdata$numerator_pbirth <- ourdata$pbirth * exp(ourdata$
Sex*ourdata$coefSex+ourdata$bordcat*ourdata$coefbordcat+
ourdata$bwgtcat*ourdata$coefbweight+ourdata$pbirth*ourdata$
coefpbirth+ourdata$randeffect)

ourdata$denominator_Sex <- exp(ourdata$Sex*ourdata$coefSex
+ourdata$bordcat*ourdata$coefbordcat+ourdata$bwgtcat*ourdata$
coefbweight+ourdata$pbirth*ourdata$coefpbirth+ourdata$randeffect)

ourdata$sum_numSex <- setDT(ourdata)[,lapply(.SD,sum,na.
rm=TRUE),by=v023,.SDcols="numerator_Sex"][,2][rep(1:nrow(dt),
ntimes),]

ourdata$sum_numbord <- setDT(ourdata)[,lapply(.SD,sum,na.
rm=TRUE),by=v023,.SDcols="numerator_bord"][,2][rep(1:nrow(dt),
ntimes),]

ourdata$sum_numbweight <- setDT(ourdata)[,lapply(.SD,sum,
na.rm=TRUE),by=v023,.SDcols="numerator_bweight"][,2][rep(1:nrow
(dt),ntimes),]

ourdata$sum_numpbirth <- setDT(ourdata)[,lapply(.SD,sum,na.
rm=TRUE),by=v023,.SDcols="numerator_pbirth"][,2][rep(1:nrow(dt),
ntimes),]

ourdata$sum_denSex <- setDT(ourdata)[,lapply(.SD,sum,na.
rm=TRUE),by=v023,.SDcols="denominator_Sex"][,2][rep(1:nrow(dt),
ntimes),]

ourdata$leverage_Sex <- ourdata$Sex - (ourdata$sum_numSex
/ourdata$sum_denSex)

ourdata$leverage_bord <- ourdata$bord - (ourdata$sum_
numbord/ourdata$sum_denSex)

ourdata$leverage_bweight <- ourdata$bwgtcat - (ourdata$
sum_numbweight/ourdata$sum_denSex)

ourdata$leverage_pbirth <- ourdata$pbirth - (ourdata$
sum_numpbirth/ourdata$sum_denSex)

ourdata$scoresdSex <- ourdata$martingale * ourdata$
leverage_Sex

ourdata$scoresdbord <- ourdata$martingale * ourdata
$leverage_bord

ourdata$scoresdbweight <- ourdata$martingale *
ourdata$leverage_bweight

ourdata$scoresdpbirth <- ourdata$martingale *
ourdata$leverage_pbirth



408 T. M. Kaombe and S. O. M. Manda

write.dta(ourdata,file = "data4.dta")

}
tm1<- Sys.time()
tm1 - tmo

# B. Computing group score residual

influmat <- matrix(NA,nrow =56,ncol =5)
influmat <- data.frame(influmat)
colnames(influmat) <- c("ID","Influ_Sex","Influ_bord","Influ_
bweight","Influ_pbirth")

tmo<- Sys.time()
influmat_all = matrix(NA,nrow =56,ncol =5)
colnames(influmat_all) <- c("ID","Influ_Sex","Influ_bord","Influ_
bweight","Influ_pbirth")
for(k in 1:n)
{

influmat[,1]<- 1:56
influmat[,2] <-setDT(ourdata)[,lapply(.SD,sum,na.rm=TRUE),

by=v023,.SDcols="scoresdSex"][,2]
influmat[,3] <-setDT(ourdata)[,lapply(.SD,sum,na.rm=TRUE),

by=v023,.SDcols="scoresdbord"][,2]
influmat[,4] <-setDT(ourdata)[,lapply(.SD,sum,na.rm=TRUE),

by=v023,.SDcols="scoresdbweight"][,2]
influmat[,5] <-setDT(ourdata)[,lapply(.SD,sum,na.rm=TRUE),

by=v023,.SDcols="scoresdpbirth"][,2]
}
write.dta(influmat,file = "influence2.dta")

tm1<- Sys.time()
tm1 - tmo
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Joint Modelling of Longitudinal
and Competing Risks Survival Data

Didjier D. Masangwi, Adamson S. Muula, and Mavuto F. Mukaka

Abstract Biomedical studies may collect longitudinal and survival data in follow-
up studies. In randomised controlled trials for malaria treatment, longitudinal
parasite count and hemoglobin level and survival outcomes, time to fever resolution
or time to parasite clearance, are recorded. The longitudinal and survival data
are analysed separately, yet longitudinal outcomes may be important predictors
in the survival process. Standard survival analysis methods cannot handle such
longitudinal outcomes. In such studies, survival competing risks are possible;
thus analysis should consider survival, longitudinal and competing risks. In joint
modelling, options for modelling dependence are a key issue as well as choice of
random effects distribution. The example used in this work was from sub-Saharan
Africa.

Joint modelling framework, mixed-effects models and Cox-specific models
for analysis of longitudinal and survival data were applied to malaria dataset
from Malawi Liverpool Wellcome Trust. Longitudinal outcomes considered were
hemoglobin level and parasite count, while survival outcomes were time to treat-
ment failure due to severe malaria and time to withdrawal (due to adverse effects
and protocol violation).

Different survival outcomes observed were severe malaria (4.95%) and with-
drawal (10.89%). The longitudinal outcomes were not associated with the risks of
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severe malaria and withdrawal in the Cox model. The true hemoglobin level and
age were associated with the risk of withdrawal (p = 0.0111) and (p = 0.0305),
respectively, in the joint model, and the separate models were opted to fit the data.

When an association between longitudinal and survival outcomes is of interest,
joint models can be considered over separate methods. However, where there is no
association, separate models for survival and longitudinal data analysis can be used.

Keywords Survival models · Longitudinal data · Competing risks · Joint
models · Severe malaria · Randomised controlled trials · Efficacy · Cox-specific
model · Hemoglobin level · Parasite count · Withdrawal · Mixed-effects ·
Time · Biomedical study · Event · Censoring · Parameter · Random effects ·
Estimation · BIC · Profile · Covariates · Follow-up · Relative risk · Treatment ·
Package · Error · Framework · Data · Research · Predicting · Association ·
Patients

1 Introduction

Biomedical studies may collect repeated measurements of longitudinal data and
time to event data during follow-up. A typical example is in AIDS study where
CD4 count and viral load are collected longitudinally and time to AIDS or death
is also monitored (Elashoff et al., 2008). In cancer studies, longitudinal data such
as circulating tumour cells, immune response to a vaccine, a genetic biomarker or
a health outcome are recorded (Ibrahim et al., 2010), and during follow-up death
or metastasis can occur. In malaria studies, randomised blinded controlled trials
are carried out to compare efficacy and safety of drugs and resistance of parasites.
During follow-up, one of the measures of interest may be time to fever resolution
and time to parasite clearance, with possible longitudinal covariates such as white
blood cell count or red blood cell counts and hemoglobin levels.

In order to analyse such data, researchers usually use methods for separate
analysis of longitudinal and survival data. In survival analysis, non-parametric and
parametric methods such as Weibull, exponential, log-normal and log-logistics are
widely applied (Collet, 2003). The effects of covariates on the survival process are
modelled using Cox hazard model and extended Cox model for time-dependent
covariates, which is theoretically valid for exogenous time-varying covariates but
not valid when studying biomarkers (endogenous) and other patient parameters
(Andrinopoulou, 2014). The inadequacy comes in as Cox model assumes constancy
in the marker’s level between time visits. Thus, neglecting these features can lead to
underuse of potential variable information which in turn may lead to biased results
and conclusion on the effect of the marker.

In cases where there are more than one event failures (competing risks),
interpretation of survival probabilities from standard survival models has always
been questionable (Kleinbaum & Klein, 2005). However, methods based on cause-
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specific Cox model and cumulative incidence curves are used. In survival analysis,
censoring is assumed independent of survival time (non-informative).

In longitudinal data, generalised mixed-effects regression models, covariance
pattern models, analysis of variance (ANOVA) and generalised estimating equations
(GEE) are used to model the repeated measurements (Hedeker & Gibbons, 2006).
The impressive aspect of these methods is that of an account for the correlation
within the measurements obtained from the same patients/participants and can
handle unequally spaced time visits (Andrinopoulou, 2014).

Furthermore, in longitudinal data, missing/incomplete measurements are
inevitable. The missing data mechanisms, missing completely at random (MCAR),
missing at random (MAR) and missing not at random (MNAR), are commonly
encountered in longitudinal studies (Andrinopoulou, 2014). However, selection
models, pattern mixture models and shared parameter models for discrete times
handle such cases (Molenberghs & Kenward, 2007). MNAR is the most difficult in
practice.

Separate analyses of these data do not account for other parameters and the
association between the two types of the data. This is the case, because longitudinal
covariates can be important predictors of survival process or some other time-to-
event. Censoring is assumed noninformative in survival data, yet longitudinal data
is affected by informative dropout, especially in cases with competing risks and also
the inclusion of time-varying covariates in survival analysis. Ignoring these special
features of longitudinal and survival data may lead to underuse of potential variable
information and lead to biased results and conclusion (Sudell et al., 2016). There
is more work on joint modelling of longitudinal and survival data in literature with
single failure event and less work on competing risks (multiple failure events). In
this work, competing risks joint models are considered.

We considered the survival methods such as cause-specific hazard model,
longitudinal methods such as mixed-effects model and the competing risks joint
models that combine the survival and longitudinal processes.

1.1 Competing Risks Joint Models

The joint model is a combination of longitudinal and survival submodels that are
linked using an association structure that quantifies the relationship between the
outcomes of interest. There is work on joint modelling framework by Rizopoulos
(2012), Yu et al. (2004), Tsiatis et al. (1995) and Faucett and Thomas (1996) in
recent literature (Andrinopoulou, 2014). In literature, there is considerable work by
Williamson et al. (2008) on competing risks joint modelling of longitudinal and
survival data, an alternative approach with a different parameterisation. However, in
this work, modelling approach by Rizopoulos (2012) was applied to malaria data.
We emphasise that in joint modelling, options for modelling dependence is a key
issue as well as choice of random effects distribution.
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1.1.1 Survival Submodel

As proposed by Rizopoulos (2010), let T ∗
i be the true event time for the i-th subject,

i = 1,2,.. ni, and let Ti be the observed event time, where Ti = min
(
T ∗
i , Ci

)
, where

Ci is the censoring time. Let δi = I
(
T ∗
i ≤ Ci

)
, i.e. δi is unity for the true event.

Let us also assume that mi(t) is the true or unobserved value of the longitudinal
biomarker, a time-dependent covariate measured at different time points t be
known. Then yi(t) is the observed value of the time-dependent covariate at time
t, and yi(t) = {yi(tij), j = 1, 2, . . . , ni}. The aim is to associate the true unobserved
longitudinal outcome mi(t) with the hazard of an event.

Assuming we have K different event types; let T ∗
i1, T ∗

i2, . . ., T ∗
iK be the true

failure times for K event types. Let Ti be the observed failure time such that
Ti = min

(
T ∗
i1, . . . , T

∗
iK, Ci

)
, where Ci is the censoring time. Let δi take the values

{0, 1, 2, . . . , g}, with δi = 0 indicating a censored event for subject i and δi = k
showing that subject i fails from the k-th type of failure, where k = 1, . . . , g. The
relative risk model for competing risks is the cause-specific hazard model given as:

hik (t |Mi (t)) = h0k(t) exp
(
γk

T wi + αk

(
mi(t)

)
(1)

where wi is vector of baseline covariates, mi(t) is true value of the longitudinal
marker with Mi (t) = {mi(s), 0 ≤ s < t}, h0k(s) is the baseline hazard and αk
quantifies the strength of the association between the marker and the risk of an
event/the effect of underlying longitudinal outcome to the risk for an event type k
and γ k

T is a vector of regression coefficients for baseline covariates. The survival
function depends on full history of the marker and is given as:

Sik (t |Mi (t)) = exp

{

−
∫ t

0
h0k(s) exp

(
γk

T wi + αk

(
mi(s)

)
ds

}

(2)

To avoid misspecification of the underlying parametric distribution of the sur-
vival times which in turn leads to under-estimation of standard errors of parameter
estimates in the joint model settings, the baseline hazard function is specified (Hsieh
et al., 2006). In literature Rizopoulos (2012) proposes a more flexible regression
spline model for baseline hazard function in competing events model, given by:

log h0(t) = k0 +
m∑

d

kdBd (t, q) (3)

where kT = (k0, k1, . . . , km) are the spline coefficients, q denotes the degree of the
B-splines basis function B(.) proposed by de Boor (Boor, 1978) and m = m̈+q − 1
where m̈ is the number of interior knots.
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1.1.2 Longitudinal Submodel

The relative risk submodel above uses the unobserved longitudinal value mi(t). In
order to determine the effect of the longitudinal outcome on the risk of an event,
mi(t) is estimated, and the complete true longitudinal history Mi (t) is reconstructed.
With continuous longitudinal biomarker, the mixed-effect regression model is given
as:

yi(t) = mi(t) + εi(t) (4)

= βXT
i (t) + ZT

i (t)bi + εi(t), mi(t) = βXT
i (t) + ZT

i (t)bi .

where XT
i (t) is the design vector of fixed coefficients β and ZT

i (t) is a design
vector for random effects bi. This vector bi~N(0,D) is a latent random variable
that can be interpreted as subject-specific effects of ZT

i (t). D is variance-covariance
matrix, and εi(t) is a random error that is assumed to be independent and normally
distributed with mean zero and variance δ2Ini , with Ini as identity matrix, i.e.
εi(t) ∼ N

(
0, δ2Ini

)
, for all t ≥ 0.). The model assumes that bi and εi(t) are

independent. Here, bi accounts for the association between the longitudinal and
the event process and the correlation between the repeated measurements in the
longitudinal outcome.

1.2 Joint Model

Joint model is a combination of longitudinal and survival submodels. The aim under
joint modelling is to associate the true unobserved longitudinal outcome mi(t) with
the hazard of an event. The joint model allows to settle that the longitudinal markers
are a function of true unbserved longitudinal value mi(t) and some error (Hevia,
2014). In general form, with longitudinal and survival submodels as shown in Eqs.
(1) and (4), the competing risks joint model is given as:

{
hik ((t |Mi (t)) = h0k (t) exp( γkT wi + αk (mi(t))

yi(t) = mi(t) + εi(t),mi(t) = βXT
i (t) + ZT

i (t)bi
(5)

In the joint model, bi accounts for association between the longitudinal and
failure processes.
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1.3 Parameter Estimation in Competing Risks Joint Model

Estimation in joint modelling uses maximum likelihood estimation. The formulation
of likelihood function assumes that the survival and longitudinal processes are
conditionally independent given the vector of random effects bi. It also assumes
the independence of longitudinal measurements. The likelihood function is given as
follows:

p (Ti, δi |bi; θt , β) =
K∏

k=1

[
h0k (Ti) exp

(
γk

T wi + αk

(
mi(t)

)]I (δi=k)

× exp

(

−
K∑

k=1

∫ Ti

0
h0k(s) exp

(
γk

T wi + αk

(
mi(s)

)
ds

)

(6)

where p(.) is the probability density function, θ t denotes parameters for event
time outcomes and β denotes parameters for fixed effects.The maximazition of the
log-likelihood function corresponding to Eq. (6) gives the estimates (Rizopoulos,
2010). Standard numerical integration techniques are used. However, Rizopoulos
et al. (2010) use a quasi-network algorithm, a direct maximisation of observed
data log-likelihood. The estimation of the random effects is done through Bayesian
theorem. As defined by Rizopoulos (2010), with p(bi, θ ) as prior distribution and
p(Ti, δi| bi; θ )p( yi(tij) | bi; θ ) as the conditional likelihood, the posterior distribution
is given as:

p (bi |Ti, δi, yi; θ) ∝ p
(
(Ti, δi |bi; θ) p

(
yi
(
tij
) |bi; θ

)
p (bi; θ)

(7)

where θ =
(
θTt , θ

T
y , θ

T
b

)T
denotes the parameter vector for the event time outcome,

the longitudinal outcomes and the random effects variance-covariance matrix,
respectively.

2 Application to Malaria Data

This study emphasises on joint analysis of longitudinal and survival outcomes
and compares the joint models and separate models for longitudinal and survival
data obtained from randomised controlled trial for malaria interventional study at
Chileka Health Centre which is about 19 km from Queen Elizabeth Central Hospital
(QECH) Malawi.
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2.1 Materials and Methods

The study used secondary data that was collected from a malaria treatment
efficacy randomised controlled trial that aimed at evaluating strategies to delay
the emergency of resistance to anti-malaria drugs in children by Malawi Liverpool
Wellcome Trust and College of Medicine between 2003 and 2006. Children were
randomised to four treatment arms: sulfadoxine-pyrimethamine (SP) + placebo,
chloroquine (CQ) + sulfadoxine-pyrimethamine, amodiaquine (AQ) + sulfadoxine-
pyrimethamine and artesunate (ART) + sulfadoxine-pyrimethamine. They were
followed up for a period of 6 weeks. The results for the primary study were
published (Bell et al., 2008).

2.2 Study Population and Sample Size

The primary study targeted children aged between 12 and 60 months, weight ≥6 g,
no feature of severe malaria on enrolment and hemoglobin level 5.0 g/l. The children
were recruited at and followed up from Chileka Health Centre which is about 19 km
from QECH. The primary study was a double-blinded trial as all members of study
team and patients were uninformed of study treatments allocation. The children
were assessed on days 0, 7, 14, 28 and 42 and any other day if unwell.

All children provided venous and capillary blood samples on assessment days for
parasite microscopy. In the blood samples, biomarkers such as hemoglobin, white
cell count, red blood cell count, platelets, creatinine and bilirubin were examined
in full blood count. Children were considered pure, with P. falciparum parasitaemia
parasite density between 2000 and 200,000 parasites per μl. Children were removed
from the primary study after enrolment if their full blood count showed severe
anaemia, hemoglobin <5 g/dl. On the other hand, during follow-up, withdrawal was
based on adverse reactions to the randomised drug, protocol violation and consent
withdrawal. The study used data for 101 patients that were part of a primary study
to be recruited over a period of 4 years.

2.3 Statistical Analysis Methods

The distribution of categorical variables was summarised using percentages, box-
plots and bar plots. Continuous outcomes were summarised using median and
means. Longitudinal and survival outcomes were also presented using individual
profile plots (spaghetti plots) and cumulative incidence curves, respectively. In
multivariate analysis, five models were fitted: two mixed-effects models for parasite
count and hemoglobin level, cause-specific hazard model and two competing risks
joint models for parasite counts and hemoglobin level.
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The comparison of separate models and competing risks joint models was done
using log-likelihood estimates and Bayesian information criterion (BIC). A model
with large log-likelihood estimate or lower BIC is considered better fit to the data.

The outcome of interest was time to severe malaria/treatment failure. The
competing event outcome was time to withdrawal. In the study, withdrawal was
due to adverse reaction to the drugs/treatment used, protocol violation and consent
withdrawal. The longitudinal outcomes of interest were hemoglobin level (g/dl)
and parasite counts. Effects of baseline covariates, age, treatment, gender and
body weight were analysed. In the separate cause-specific hazard model, baseline
covariates, hemoglobin and parasite counts (collected on day 0) were included in
the survival model to learn if there was any association between the longitudinal
biomarkers and the survival processes. All data were analysed using R version
3.5.1 and the main package JM. Other packages used were survival, lattice, splines,
nlme4, reshape2 and cmprsk. Statistical significance was declared at α-level of 5%.

2.4 Ethical Approval

For the primary study, the study protocol was approved by ethics committees of
the College of Medicine Research and Ethics (COMREC), University of Malawi,
and Liverpool School of Tropical Medicine. Written informed consent was required
from the parent of each child recruited, and the study was explained in parent’s
preferred language.

3 Results

In this section analysis results for separate and joint models to malaria data from
sub-Saharan Africa are presented.

3.1 Descriptive Analysis

Data for 101 patients were available for analysis. There were more male children
(57.4%) than female children (42.6%). The mean age of the children was 2.22 years
(std = 1.12) with mean body weight of 11.03 kilograms. The median follow-up
time was 28 days. Different survival outcomes observed were severe malaria (5.0%),
withdrawal (10.9%) and censored (84.1%). The mean parasite count was 6 parasites
per microlitre, and 9.38 g/dl hemoglobin level was for data collected on day 0.

The median parasite counts were the same across subjects with different event
types. However, the median hemoglobin level was slightly higher for subjects that
were censored (Fig. 1).
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3.2 Longitudinal Process Analysis

In the first part, we present subject-specific evolutions in time of the longitudinal
biomarkers hemoglobin level and parasite measurements and correlation between
parasite count and hemoglobin level. From Fig. 2a, b, it was observed that subjects
showed similar variability in their longitudinal profiles for hemoglobin and parasite
across treatment groups. The results in Fig. 3 indicate weak positive correlation
between the hemoglobin level and parasite count.

Fig. 2 (a) The Individual hemoglobin profile over time in days separated by treatment options.
(b) The individual parasite count profiles over time in days separated by treatment options
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Fig. 3 Scatter plot showing correlation between hemoglobin level and parasite count

Next are results from a fitted mixed-effects models of hemoglobin level and
parasite counts presented in Table 1. The results showed that time in days was
statistically significant in predicting the longitudinal scores of hemoglobin levels
which increased by 0.03 gram/dl for each passing day (p < 0.0001). For the parasite
count scores, the intercept significantly increased the parasite counts by 5.61counts
in the absence of the covariates (p = 0.016). The other covariates, treatment,
sex, age and body weight, had no significant effects on both hemoglobin level
and parasite counts. Looking at behaviour of parasite count profile in Fig. 2b, a
quadratic mixed-effects model in terms of time evolution for parasite count was
also fitted. The quadratic model showed statistical significance of observed time
and square of observed time and the intercept with p-values 0.002, <0.0001 and
0.023, respectively. However, when the two models were compared using BIC, the
linear model (BIC = 2035) was opted as the best fit to the data over the quadratic
model (BIC = 2036) (Tables 2 and 3).

3.3 Survival Process Analysis

For the survival process, we first looked at cumulative incidence curves for the
two competing events, severe malaria and withdrawal. The results showed that the
cumulative incidence rates for withdrawal were slightly higher than severe malaria
as shown in Fig. 4. When we compared overall survival of female and male patients,
the results showed that female patients had slightly higher survival rate beyond day
10 of follow-up as shown in Fig. 5.



Table 1 Fitted values for the
linear mixed-effects models
for the longitudinal variables
hemoglobin level and parasite
counts with standard
deviations (se) and the
p-values

Hemoglobin level
Covariate Slope SE p-value
βH,0 (intercept) 8.38 0.65 <0.0001
βH,1 (sexmale) −0.05 0.22 0.835
βH,2 (age) 0.12 0.14 0.376
βH,3 (weight) 0.06 0.07 0.409
βH,4 (time) 0.03 0.004 <0.0001
βH,5 (SP + CQ) 0.19 0.31 0.549
βH,5 (SP + AQ) −0.13 0.32 0.695
βH,5 (SP + ART) 0.20 0.32 0.528
Random effects

bH,0i (intercept) 0.89
Residuals 1.10
Parasite count
βp,0 (intercept) 5.61 2.30 0.016
βp,1 (sexmale) 1.55 0.79 0.054
βp,2 (age) −0.46 0.49 0.345
βp,3 (weight) 0.08 0.24 0.744
βp,4 (time) −0.01 0.01 0.493
βH,5 (SP + CQ) 0.30 1.10 0.786
βH,5 (SP + AQ −0.59 1.14 0.608
βH,5 (SP + ART) 0.65 1.13 0.568
Random effects
bp,0i (intercept) 3.52
Residuals 2.76

Table 2 Fitted quadratic
mixed-effect model for
parasite count

Parasite count (quadratic)
Covariate Slope SE p-value
βp2,0 (intercept) 5.62 2.30 0.023
βp2,1 (sexmale) 1.50 0.79 0.063
βp2,2 (age) −0.45 0.45 0.350
βp2,3 (weight) 0.07 0.24 0.770
βp2,4 (time) 0.07 0.04 0.002
βp2,4∗ (time-squared) −0.04 0.01 <0.0001
βp2,5 (SP + CQ) 0.10 1.10 0.930
βp2,5 (SP + AQ) 0.73 1.14 0.524
βp2,5 (SP + ART) 0.58 1.13 0.609
Random effects
bp2,0i (intercept) 3.54
Residuals 2.68



Table 3 Fitted
cause-specific hazard model
for time-dependent variables
(Hemoglobin and Parasite
count)

Parameter RR SE p-value

CQ + SP 1.30 1.27 0.841

CQ + SP: CR 0.91 1.57 0.954
AQ + SP 0.42 1.50 0.560

AQ + SP: CR 3.61 1.77 0.468
ART+ SP 0.41 1.57 0.574

ART+ SP:CR 3.11 1.84 0.538
Age 0.29 0.85 0.153

Age: CR 3.12 0.93 0.223
Weight 1.26 0.36 0.522

Weight: CR 0.99 0.41 0.995
Sexmale 2.90 1.21 0.380

Sexmale: CR 0.48 1.37 0.589
Hb0 0.90 0.29 0.721

Hb0: CR 1.33 0.36 0.432
Parasite0 1.08 0.07 0.259

Parasite0: CR 0.93 0.09 0.477

CR: competing risk

Fig. 4 Cumulative incidence
curves for the two competing
events, severe malaria and
withdrawal
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Fig. 5 Kaplan-Meier plots of
survival probabilities for male
and female patients

In order to determine effects of baseline covariates and the two biomarkers
parasite count and hemoglobin level on the risks of severe malaria and withdrawal,
a cause-specific hazard model for time-dependent covariates was fitted. The results
showed that the baseline hemoglobin level and parasite counts were not statistically
significant in predicting the risks of severe malaria and withdrawal in the cause-
specific time-dependent hazard model. The covariates, age, body weight, treatment
and sex were not statistically significant in predicting the hazards for the two
competing events.

3.4 Competing Risks Joint Models for Parasite Count
and Hemoglobin Level

Two competing risks joint models were fitted. The first joint model combined the
survival and longitudinal processes for true hemoglobin level to model its effect
on the risks of severe malaria and withdrawal. As shown in Eq. (5), each joint
model is a composition of longitudinal and event/survival processes. The results
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Table 4 Estimates for a fitted joint model for longitudinal marker hemoglobin and competing
risks survival processes

Parameter RR SE p-value
Event process
CQ + SP 1.15 1.19 0.9043

CQ + SP: CR 1.50 1.64 0.8062
AQ + SP 0.39 1.46 0.5742

AQ + SP: CR 3.93 1.88 0.4659
ART+ SP 0.42 1.42 0.5430

ART+ SP:CR 5.83 1.83 0.3354
Age 0.37 1.82 0.2232

Age: CR 6.62 0.87 0.0305
Weight 1.13 0.34 0.7258

Weight: CR 0.94 0.38 0.8782
Sexmale 3.20 1.16 0.3175

Sexmale: CR 0.65 1.35 0.2927
Assoct: (true hemoglobin level) 0.44 1.04 0.4239

Assoct: CR 0.68 0.73 0.0111
Longitudinal process (hemoglobin level)
Slope
Intercept 8.42 0.580 <0.0001
Time 0.03 0.004 <0.0001
Sexmale −0.05 0.202 0.8015
Age 0.13 0.120 0.2994
Weight 0.05 0.059 0.3745
CQ + SP 0.13 0.282 0.6347
AQ + SP −0.21 0.290 0.4634
ART+ SP 0.14 0.290 0.6222

showed that for each passing day, there was a unit increase in hemoglobin level
by 0.03 g/dl (p < 0.0001). The covariates, age, sex, treatment and body weight
were not statistically significant in predicting the hemoglobin level scores in the
patients. However, in the survival process, results showed that age was significantly
associated with the risk of withdrawal (medical grounds) with older children with
13% more likely to withdrawal than younger children (p-value = 0.0305). The
results also showed that the true hemoglobin level was significantly associated
with the risk of withdrawal such that the risk of withdrawing from the study
was 22% lower for children with higher hemoglobin level than children with
lower hemoglobin level (p-value = 0.0111). All the baseline covariates and true
hemoglobin level were not associated with the risk of severe malaria in the joint
model. The results are shown in Table 4.

The other fitted joint model was for parasite count as a biomarker. In the model,
the longitudinal process showed that sex was statistically significant in prediction
of parasite count with 1.57 more counts in male patients than female patients
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Table 5 Estimates for fitted joint model for parasite count

Parameter RR SE p-value
Event process
CQ + SP 1.22 1.22 0.870

CQ + SP: CR 1.19 1.55 0.909
AQ + SP 0.53 1.45 0.660

AQ + SP: CR 3.42 1.76 0.484
ART+ SP 0.48 1.45 0.611

ART+ SP:CR 4.08 1.75 0.421
Age 0.37 0.74 0.175

Age: CR 2.45 0.83 0.282
Weight 1.11 0.32 0.755

Weight: CR 1.15 0.37 0.706
Sexmale 3.74 1.17 0.259

Sexmale: CR 0.36 1.34 0.449
Assoct: true parasite 0.92 0.17 0.632

Assoct: CR 1.05 0.21 0.813
Longitudinal process (parasite count)
Slope
Intercept 5.61 2.23 0.012
Time −0.008 0.23 0.470
Sexmale 1.57 0.77 0.041
Age −0.46 0.47 0.326
Weight 0.08 0.23 0.741
CQ + SP 0.32 1.07 0.765
AQ + SP −0.61 1.10 0.582
ART+ SP 0.65 1.09 0.556

Table 6 Estimates for
Bayesian information criteria
and log-likelihood for the
models

Model BIC Log-likelihood

Separate HB level 1306.7 −623.91
Joint HB level 1583.60 −704.11
Separate parasite count 2035.4 −988.24
Joint parasite count 2316.66 −1070.64
Cause-specific model 176.93 −66.29

(p-value = 0.041) which can be better explained by increased overall survival
in female patients than male patients as shown in Fig. 4. The survival process
showed that the baseline covariates age, gender, weight and treatment were not
statistically significant in predicting the risks of withdrawal and severe malaria in
the joint model. The true parasite count was not significantly associated with the two
competing risks severe malaria and withdrawal. The results are shown in Table 5.
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3.5 Model Comparison

As the data were fitted using separate models for analysis of longitudinal and sur-
vival data and joint modelling framework, the models were compared to determine
which models better fitted the malaria data. In the analysis, Bayesian information
criteria was used to compare the models. The results indicated that due to lack of
association between the longitudinal and survival processes, it would be enough to
analyse the data using separate models for longitudinal and survival data analysis. In
all cases, the BIC for separate models was lower compared to BIC for joint models.
The same conclusions were reached when log-likelihood was used for comparison
of the models. The results are shown in Table 6.

3.6 Model Diagnostics

In joint models alone, Rizopoulos (2012) recommended the use of multiple
imputation residuals with the fixed visit times to validate the model assumptions.
However, when the survival, longitudinal and competing risks components are
amalgamated, model assessment is complicated, and methods were not available
in JM package during analysis. As this work includes competing risks, model
diagnostics in competing risks joint models were not done.

4 Discussion

This study has found that time was significant in predicting hemoglobin level. This
is a common effect that one would expect in biomedical research for malaria. As
time passes, the hemoglobin level increases under normal conditions. This could
be the case as patients kept on getting malaria medication that in turn reduces
the parasite count. However, this finding cannot be generalised as with passing
days; existence of other conditions may affect the hemoglobin level (White, 2017).
The positive effect of time is also shown in competing risks joint model. As the
survival process for hemoglobin level suggested, age was associated with the risk
of withdrawal with older children more likely to withdrawal (medical condition)
from the study than younger children. This result is not well presented biologically
as withdrawal included guardian’s decisions when they felt the child is unwell.
The results showed that true hemoglobin level was also associated with the risk of
withdrawal with higher hemoglobin level children withdrawing (medical grounds)
than lower hemoglobin level children. This could be the case, as children with higher
hemoglobin level could signal recovery from malaria, hence having their parents
denying consent to proceed with the study.
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For the parasite count models, it is only in the joint modelling framework where
sex of the child is significantly associated with parasite count scores. Male patients
had more parasite count than female children. As indicated by analysis, female
children had an increased overall survival of severe malaria than male children. A
study by Kotepui et al. (2014) found significant differences in malaria cases between
male and female people.

In the analysis of these data, comparison of separate hemoglobin longitudinal
model and the joint model longitudinal process revealed that in both models time
was significant having the same effect in joint and separate models. However,
reduced standard deviations were observed in joint model than separate model
suggesting biased estimate in separate model (Rizopoulos, 2012). For the parasite
count models, no covariate was significant in predicting the longitudinal scores of
parasite counts in the mixed-effects model. The case was different in the joint model,
where sex was significant with smaller standard error for the estimate in joint model.
This could be the result of including the true longitudinal parasite counts in the joint
process, leading to some covariates having an effect on parasite counts.

In the joint model for the parasite counts and competing risks, the covariates
weight, sex and true parasite count had no significant effects on the risks of severe
malaria and withdrawal. However, the estimates had smaller standard errors for joint
model estimates, than the separate cause-specific model and mixed-effect model.
The large standard errors in separate model could disadvantage the separate models
since in practice models with small standard errors receive more attention (Nguti et
al., 2005).

The results showed that separate models were more applicable to these data
than joint models. The preference of separate models in this work to joint models
is indicated by lack of association between the longitudinal biomarkers and the
survival outcomes. However, in literature, joint models considering competing risks
by Hevia (2014); Hickey, Philipson and Jorgensen (2018); and Andrinopoulou
(2014) were preferred for analysis of data. The choices could be understood as there
were associations between the longitudinal markers of interest in each study and
the event or survival processes in separate time-dependent Cox models. In the work
by Hevia (2014), the joint model indicated smaller standard errors than the separate
model, hence giving the joint models more preference.

The goals for this work were to introduce joint modelling framework as it gains
popularity and wider applications in biomedical research and apply the models
to randomised controlled trials for malaria study. The work was done with data
collected many years ago with a small sample size, and there may be possible
trends in the current data for malaria studies. We recommend use of latest large
malaria datasets for updates and appreciate the performance of joint models. We also
recommend simulation of data at different correlation levels between the survival
and longitudinal data to validate the performance of joint models whenever the two
processes are interrelated.

We observed that in biomedical studies, where statistical tools are used, further
progress is needed in this area of joint modelling of longitudinal data with
competing risks survival data to advance tools for better analysis, as the field is in
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early developmental stages and restricted in its application to biomedical studies.
For instance, there is a need for development of diagnostic methods for model
validation in competing risks joint modelling settings, selection and comparison.
Multivariate competing risks joint models are another area for further study as
longitudinal outcomes coexist.

5 Conclusion

When analysing the longitudinal malaria outcomes together with competing risks
survival outcomes in randomised controlled trials, joint models can be considered
where there is an association between the longitudinal and events processes. For
these malaria data, there was no association between any of the longitudinal
biomarkers and the risk of severe malaria and withdrawal in the extended time-
dependent cause-specific hazard models. Therefore the separate models could
be preferred to analyse these malaria outcomes data than the joint models with
competing risks as association may not be of interest. However, correlated data
for longitudinal and survival processes could give a different choice of the model
preference.
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Stratified Multilevel Modelling of
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Abstract This chapter presents a multilevel extension of the Cox proportional
hazards model where a shared frailty term is included to account for clustering
of women within households. The extended model is used to analyze regional
differences in the intensity of transition to parenthood among 15019 Ethiopian
women aged 15–49 years old in the country’s Demographic and Health Survey
of 2016. Women’s birth cohort, residence and educational level were used as
background variables. Conventional Cox proportional hazards models and two
multilevel models (with gamma distributed and log-normal distributed frailty terms)
are fitted to data for the entire country and, separately, for each of the nine regions
and two city administrations. We found that household frailty effects are fairly small
in the nine regions but the log-normal frailties were significant in the entire country
and the two city administrations which are relatively heterogeneous with inhabitants
from many ethnic groups. We also found regional differences in the effects of the
background variables on the intensity of transition to parenthood but the effects were
generally stable across the three models in each region. Overall, we recommend use
of multilevel survival models to account for clustering of women into households
and proper care in the choice of distribution of the household random effects.
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region · Somali region · Benishangul-gumuz region · Southern nations,
Nationalities and peoples region · Gambela region · Harari region · Addis abeba
city administration · Dire dawa city administration

1 Introduction

Individuals are often clustered within groups, such as children within mothers,
students within classes and schools, and schools within geographical areas or
regions. This is the case in Demographic and Health Surveys where, for instance,
women are clustered within households. Since women in the same household are
expected to be more alike than women selected at random from the population,
the basic assumption of a random (independent) sample of women cannot be
ascertained. Further if, as would be expected, women within the same household
are positively correlated then ignoring the clustering may lead to overestimation
of the precision of estimates of covariates in subsequent analyses. Thus, analytical
methods need to pay due attention to the hierarchical nature of the data. This can
be achieved by using the clusters (households) as units of analysis instead of the
individuals (women) and treating women from the same household as correlated
cases (multi-levels) within the same observation (household) and use some form of
multilevel modelling that are now abundant in the literature. Such procedure has the
advantage of accounting for any household-specific unobserved heterogeneity that
may affect outcome at a woman level.

In this chapter we address these issues in the context of regional differences in
the intensity of transition to parenthood among Ethiopian women based on data
from the country’s Demographic and Health Survey (DHS) of 2016. The survey
questionnaire included a complete birth history, as well as information on some
background variables like women’s education, residence, birth cohort, and related
covariates. The resulting usable records of 15019 women were clustered into 4722
households, the number of women in a household varying between 1 and 15 while
the mean number of women varying between 2.27 and 4.06 woman per household.

We analyze the above clustered data using a multivariate survival models that
allow for correlated observations. We begin with the standard Cox proportional
intensities model that ignores clustering in estimating the effects of observed
covariates (residence, birth cohort, and education) on intensity of transition to par-
enthood. We then add a household-specific random effect that represents unobserved
influences common to all women in a household.

Such models and their variants are already available in the literature. For instance,
Vaupel et al. (1979) have used random effects to represent the effects of unobserved
population heterogeneity in survival models. Clayton (1978) proposed a bivariate
intensity model that can be interpreted in terms of a proportional intensities model
with a gamma distributed random effect while Heckman and Singer (1982, 1984)
and Trussell and Richards (1985) have studied the sensitivity of parameter estimates
to the choice of distribution for the random term. Guo and Rodriguez (1992), Sastry
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(1997), and Bolstad and Manda (2001) investigate family and community random
effects on child survival in Guatemala, Northern Brazil, and Malawi, respectively.
McGilchrist and Aisbett (1991); McGilchrist (1993) propose estimation methods
and applications in situation of repeated events.

The focus of this chapter is to examine, in the framework of shared frailty model,
if there are household random effects on the intensity of transition among Ethiopian
women and if such random effects differ across the different regions in the country.
Further, we also investigate if the effects of background covariates on transition to
parenthood are sensitive to the choice of distribution for the random effect.

The rest of the chapter is organized as follows. In Sect. 2, we introduce the
data set and its structure. Section 3 describes proportional intensities models. Both
the standard Cox proportional intensities model and two extensions (with gamma
distributed and log-normal distributed random effects, respectively) are presented.
In Sect. 4, we present and discuss empirical results from fitting the models of Sect. 3
to the data of Sect. 2 and provide summary and concluding remarks in the last
section.

2 The Data Set: Distribution Across Regions and Covariates
and Clustering Within Households

2.1 Ethiopia and Its Regions

Ethiopia is located in East Africa and is bordered by South Sudan and Sudan to
the west, Djibouti to the east, Eritrea to the north, and Kenya and Somalia to the
south. Since the early 1990s the country is partitioned into 9 ethnic/linguistic regions
and two city administrations. In the north of the country we have the Tigray, Afar,
and Amhara regions while Benishangul-Gumuz and Gambela are in the west of the
country. The Southern Nations Nationalities and Peoples Region (SNNPR) forms
the southern part of the country. A new region (Sidama region) has been formed as a
split from the SNNPR in June 2020. To the east of the country we have the Ethiopian
Somali region and the Harari region. Oromia is a large region stretching from the
south to the central and the western part of the country. The two city administrations
are the capital city, Addis Abeba, which is in the center of the country and the Dire
Dawa city administration which is adjacent to the Harari region in the east.

According to the 2016 Ethiopian Demographic and Health Survey (Central-
Statistical-Agency-Ethiopia and ICF, 2016), the percentage of young women aged
15–19 who have begun childbearing varied between 3% in the capital city Addis
Abeba and 23% in the Afar region located to the northeast. The overall fertility
rate also varied between different regions from a total fertility rate (TFR) of 1.8 in
the capital city, Addis Abeba, to 7.2 in the Somali region in the eastern part of the
country.
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2.2 The 2016 Ethiopia Demographic and Health Survey

The data analyzed in this chapter come from the 2016 Ethiopia Demographic and
Health Survey (Central-Statistical-Agency-Ethiopia and ICF, 2016). The survey was
conducted between January and June 2016 and interviewed 15683 women aged
15 to 49 years. These were considered to be nationally representative sample to
provide estimates at national and regional levels as well as for urban and rural
areas. The sample frame used in the collection of data was the Ethiopian Population
and Housing Census which is a complete list of 84,915 enumeration areas created
in 2007. An enumeration area is a geographic area containing 181 households on
average. The sample frame contains information on the type of residence area,
location, and the estimated number of residential households. The usable records
for the purpose of this chapter are 15019 women with available information on the
variables of interest.

2.3 Response and Explanatory Variables

The response variable in this study is the rate at which women get their first child
(make transition to parenthood). Women are at “risk” of transition once they turn
15 years (the few women who reported having their first birth before they turned 15
years were deleted). Exposure time is the number of months from age 15 until first
birth or the survey data, whichever comes first. A woman’s survival time represents
event time (years between age 15 and first birth) if she was parent by the survey
time or censoring time (years between age 15 and the survey date) if she has not yet
got her first child at the time of the survey.

Woman’s educational level, her residence, and birth cohort have been included as
explanatory variables (covariates). Even region has been used as a covariate while
analyzing the data for the entire country.

Distribution of the 15,019 women across regions and the three covariates is
presented in Table 1. Thus, 1612 of the 15,019 women (10.73%) were from the
Tigray region, 1084 (7.22%) were from the Afar region, 1793 (11.94%) were from
the Oromia region, and the same number of women were from the capital city, Addis
Abeba, etc.

At the bottom of Table 1 we provide the number of households into which the
women from each region are clustered in while Table 2 shows frequency distribution
of households by number of women (size of household). The last column in the
lower panel of Table 2 shows that 1017 of the 4722 households in the sample
(21.54%) contributed one woman each, 1090 households (23.08%) contributed two
women each, 926 households (19.61%) contributed three women each, etc.

The percentage of transition to parenthood varied across the regions, ranging
from 41% in the capital Addis Abeba to 73% in the Afar region. The number of
women per household also varied between the regions and across the covariates.
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Table 2 Size of households by region in the 2016 Ethiopian DHS

Tigray Afar Amhara Oromia Somali Benishang.

Size HH Women HH Women HH Women HH Women HH Women HH Women

1 66 66 120 120 61 61 49 49 94 94 126 126

2 90 180 116 232 87 174 96 192 103 206 107 214

3 99 297 70 210 91 273 91 273 109 327 93 279

4 75 300 50 200 90 360 67 268 65 260 48 192

5 49 245 21 105 54 270 72 360 39 195 26 130

6 29 174 21 126 26 156 43 258 30 180 6 36

7 21 147 6 42 24 168 19 133 6 42 7 49

8 12 96 5 40 9 72 15 120 3 24 0 0

9 6 54 1 9 5 45 6 54 1 9 0 0

10 3 30 0 0 2 20 5 50 1 10 2 20

11 1 11 0 0 2 22 2 22 0 0 0 0

12 1 12 0 0 0 0 0 0 0 0 0 0

13 0 0 0 0 1 13 0 0 0 0 0 0

14 0 0 0 0 0 0 1 14 0 0 0 0

Total 452 1612 410 1084 452 1634 466 1793 451 1347 415 1046
SNNPR Gambela Harari Addis Abeba Dire Dawa Ethiopia

Size HH Women HH Women HH Women HH Women HH Women HH Women

1 60 60 121 121 128 128 63 63 129 129 1017 1017

2 82 164 114 228 121 242 80 160 94 188 1090 2180

3 83 249 83 249 73 219 63 189 71 213 926 2778

4 71 284 34 136 37 148 82 328 46 184 665 2660

5 55 275 21 105 16 80 45 225 28 140 426 2130

6 49 294 8 48 7 42 46 276 16 96 281 1686

7 29 203 5 35 0 0 22 154 11 77 150 1050

8 19 152 3 24 0 0 18 144 2 16 86 688

9 5 45 0 0 0 0 6 54 1 9 31 279

10 4 40 0 0 0 0 5 50 2 20 24 240

11 2 22 0 0 1 11 4 44 2 22 14 154

12 0 0 1 12 0 0 4 48 0 0 6 72

13 0 0 0 0 0 0 1 13 0 0 2 26

14 0 0 0 0 0 0 0 0 0 0 1 14

15 0 0 0 0 0 0 3 45 0 0 3 45

Total 457 1766 390 958 383 870 442 1793 402 1094 4722 15,019

Thus, a deeper exploration of these regional differences across the covariates and
the role of household random effects in these differences is a worthwhile effort.
This is what we do in Sect. 4 after introducing proportional intensities model and its
shared frailty extensions in the next section.
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3 Proportional Intensity Models for Transition to
Parenthood

A central concept in the analysis of survival is the hazard or intensity function. Such
a function, commonly denoted by h(t) or λ(t), is defined as the instantaneous rate
at which the event of interest occurs at a specific point t of a (non-negative) time
variable T given that it has not occurred before:

λ(t) = lim
Δt−→0

P [t < T � t + Δt |T ≥ t]

Δt
. (1)

Intensity functions vary not only over time but also among individuals with
different socio-demographic characteristics. Thus, one objective in the analysis
of survival data is to draw inferences about the influence of such characteristics
(covariates) on the intensity function.

3.1 The Standard Cox Proportional Intensities Model

In his influential paper, Cox (1972) proposed a model where a vector of covariates
x affects the intensity function in a multiplicative manner according to

λ(t |x) = λ0(t) exp
(
x′β

)
, (2)

where λ0(t) is an unspecified (non-parametric) baseline intensity function of time
and β is an unknown vector of parameters representing the effects of covariate
vector x.

Thus, in proportional intensity models (2), the covariates act multiplicatively on
the baseline intensity so that their effect is to increase or decrease the intensity of
individuals with covariate vector x relative to the baseline intensity λ0(t) which
corresponds to those with x = 0. Further, the ration of intensities of two different
individuals with covariates x and x∗, respectively, is constant over time:

λ (t |x)
λ (t |x∗)

= λ0 (t) exp
(
x′β

)

λ0 (t) exp (x∗′β)
= exp

((
x′ − x∗′)β

)
. (3)

This, in turn, implies that the intensity functions of the two different individuals
curves are assumed to be parallel over time (cannot cross each other over the study
period), something that should and can be tested in any application.

Since no distribution is specified for λ0 (t), one cannot use the usual maximum
likelihood approach to estimate the parameter β in (2). Instead, Cox (1975) proposed
a partial likelihood approach for estimating β.
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Suppose we have pairs of observations on survival times and censoring indicators(
tj , δj

)
as well as (fixed) covariates x1, . . . , xn, j = 1, . . . , n. No ties are assumed

(all tj are distinct) and an index set of event times is defined for E⊂ {1, . . . , n} :

E = {k|δk = 1} .

Further, for any t ≥ 0 the risk set (the index set of subjects at risk at time t) is
defined as

R (t) = {k|tk ≥ t} .

The partial likelihood is then given by

L (β) =
∏

k∈E

exp
(
x′
kβ
)

∑

m∈R(tk)
exp

(
z′
mβ
) . (4)

Cox (1975) suggested to estimate β by maximizing the partial likelihood L (β)

in Eq. (4).
Two special features of the partial likelihood above are (i) it does not depend on

the baseline intensity function λ0 and (ii) it does not depend on the actual event times
but only on their rank. The usual (full) likelihood is partitioned into the contributions
of the rank and order of the event times. Rank of event times refers to who has the
shortest time to the event, who has the next shortest, who has the longest, etc., while
the order of the event times refers to the actual values of these times (say the number
of months or years to experience the event).

The logic behind the partial likelihood in Eq. (4) is that only the part of the full
likelihood based on the rank of event times is enough for the purpose of estimation
and inference on β. More details on limited information inference in general (and
partial likelihood, in particular) can be found in, for instance, chapter 9 of Lancaster
(1990).

Cox (1972) proportional hazards model and its associated partial likelihood in
Cox (1975) have dominated statistical applications in many areas over the past 50
years.

3.2 Multilevel Cox Proportional Intensities Model: Accounting
for Clustering of Women into Households

3.2.1 Multilevel (Frailty) Models

The conventional Cox intensity model (2) does not account for clustering and,
hence, assumes the survival times of n individuals, say T1, . . . , Tn, to be inde-
pendent. But, ignoring clustering can induce bias by, for instance, underestimating
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standard errors of covariates. Therefore, there have been developments in statistical
methods and associated software programs to account for clustering of individuals
within groups.

Suppose that we have H households and let Ti1 , . . . , Tini denote random variables
representing the survival times in household i, and let xij denote a vector of
covariates associated with the j th member of the ith household (we assume time-
invariant covariates here).

To account for clustering into households a random effect term is included to
the model in Eq. (2). The aim is to allow correlations between events times of
individuals in the same household. The intensity function for the j th individual in
the ith household is then given by

λij (t |xij) = λ0(t) exp
(

x′
ijβ + ζi

)
, (5)

where, as before, λ0(t) is an arbitrary baseline intensity function, xij is the vector
of (fixed-effect) covariates, β is the vector of regression coefficients, and ζi is the
random effect for household i. The vector of covariates xij may constitute women-
specific variables or household-specific variables (with the same value for all women
in the same household)

Frailties are the exponential transformations of the random components and the
frailty model can be written as

λij (t) = λ0(t) exp
(

x′
ijβ + ζi

)

= exp (ζi) λ0(t) exp
(

x′
ijβ
)

= Ziλ0(t) exp
(

x′
ijβ
)
,

(6)

where Zi = eζi = exp (ζi) , i = 1, . . . , H are the frailties. The random
components ζ1, ζ2, . . . , ζH (alternatively, the frailties eζ1 , eζ2 , . . . , eζH ) are assumed
to be independent and identically distributed.

In a shared frailty model, frailty is defined as a measure of the relative intensity
that women within a household share. In other words, the frailty variable is
associated with groups of women rather than with individual women. Thus, women
in household i and with the same values on observed covariates tend to experience
transition to parenthood at a faster rate (if Zi = eζ i > 1) or slower rate (if
0 < Zi = eζ i < 1) than they would have done under an independence model
in Eq. (2) where no account is made for clustering of women into households.

Modelling is based on the random effects rather than on the frailties. Two
frailty distributions, the gamma and log-normal distributions, are common in frailty
models.
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3.2.2 Cox Proportional Hazards Model with Gamma Distributed Frailty

When Zi is assumed to follow a gamma distribution with mean E(Zi) = 1 and

variance V ar(Zi) = θ, Zi = eζi ∼ G
(

1
θ
, 1
θ

)
, then the density function of the

random components ζi is given by

f (ζi, θ) =
exp

(
ζi
θ

)
exp

(
− exp(ζi )

θ

)

θ
1
θ Γ

(
1
θ

) , (7)

or, equivalently, the density of the frailty term Zi is given by (see Wienke (2011),
page 140)

f (Zi, θ) = Z
1
θ
−1

i exp
(− zi

θ

)

θ
1
θ Γ

(
1
θ

) . (8)

Following Wienke (2011) the corresponding joint likelihood is given by

H∏

i=1

⎡

⎣

∞∫

0

⎧
⎨

⎩

ni∏

j=1

[
ziλ0(tij )e

β ′Xij

]δij
exp

[
−ziΛ0(tij )e

β ′Xij

]
f (Zi, θ)

⎫
⎬

⎭
dzi

⎤

⎦ , (9)

where

Λ0(t) =
t∫

0

λ0(s)ds (10)

denotes the cumulative baseline hazard function, f (Zi, θ) is as defined in Eq. (8)
and δij is a censoring indicator for members of household i, with δij = 0 for
censored individuals, δij = 1 for individuals who experienced the event of interest
(transition to parenthood).

The unknown parameter θ is a dispersion parameter (variance) of the frailties.
Thus, each frailty distribution has mean 1 and variance θ . According to Guo and
Rodriguez (1992), Oakes (1982) has shown that the parameter θ is closely related
to Kendall (1962) coefficient of rank correlation τ . Accordingly,

θ

2 + θ
,

in the context of Eq. (5), can be interpreted as a measure of intra-cluster (intra-
household) rank correlation after adjusting for observed covariates. Austin (2017)
also used this relationship.
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If the variance θ is 0, then women within the same household are mutually
independent and Eq. (5) reduces to Eq. (2).

Procedures available in software like Therneau and Lumley (2021) survival-
package in R estimate the regression coefficients β, the random effects
ζ1, ζ2, . . . , ζn, and the variance θ using a penalized partial likelihood (Therneau
et al., 2003).

3.2.3 Cox Proportional Intensities Model with Log-Normal Distributed
Frailty

An alternative distribution for the random effect term is the log-normal distribution.
When the frailties Zi = eζi follow a log-normal distribution then the ζi = log (Zi)

follow a normal distribution with mean E(ζi) = 0 and variance V ar(ζi) = θ,

ζi ∼ N (0, θ) . The corresponding density function of ζi is given by

f (ζi, θ) = 1√
2πθ

exp

(

− ζ 2
i

2θ

)

. (11)

Again, the unknown parameter θ is a dispersion parameter (variance). In other
words, each frailty distribution has a mean 0 and variance θ .

Our illustration in the next Section is based on the gamma and log-normal frailty
models. Other frailty models in the literature include the shared positive stable
frailty model and the shared compound Poisson frailty model. See Wienke (2011)
for more details.

4 Results

In this section we present and discuss empirical results obtained by fitting the
models of Sect. 3 to the data described in Sect. 2. We began by estimating the
Kaplan and Meier (1958) survival functions across the levels of the covariates for
the entire country. The complement probabilities of these survival functions (that is,
the probabilities of transition to parenthood) expressed in percentages are shown in
Fig. 1 for region, residence, birth cohort, and education. We see that women from the
two administrative cities (Addis Abeba and Dire Dawa) enter parenthood at much
a slower rate than women in other regions. The same is true for women from urban
areas in general and those with some education. For obvious reasons, the youngest
cohorts have lower transition rates as they have not yet been exposed to the event
long enough.
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Fig. 1 Percentage transitions to parenthood by age and across regions, residence, birth cohort, and
education

4.1 Results from Standard and Frailty Models for the Entire
Country

The next step in our analysis was to fit the conventional Cox proportional hazards
model (2), the Cox frailty model (5) with gamma distributed random components (7)
and the Cox frailty model (5) with log-normal distributed random components (11)
to data for the entire country. Region, residence, birth cohort, and education were
included as covariates and the first level of each covariate was used as a baseline
(reference) level.

Results from these three models are reported, in the form of relative intensities
of transition to parenthood, in Table 3 together with frailty p-values, variances of
the frailty terms and corresponding intra-household correlation (IHC) for the two
models with frailties.
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Table 3 Estimated relative intensities of transition to parenthood among Ethiopian women:
Results from standard Cox PH model and Cox PH models with frailty

Cox PH with lognormal-frailty
Covariate Standard Cox PH gamma-frailty lognormal-frailty

Tigray (Ref.) 1 1 1

Afar 1.1189∗∗ 1.1194∗∗ 1.1244∗∗

Amhara 0.8978∗∗ 0.8980∗∗ 0.9000∗∗

Oromia 0.9710 0.9711 0.9725

Somali 0.8403∗∗∗ 0.8400∗∗∗ 0.8366∗∗∗

Benishangul 1.0300 1.0304 1.0351

SNNPR 0.8122∗∗∗ 0.8119∗∗∗ 0.8084∗∗∗

Gambela 1.1172** 1.1177** 1.1231**

Harari 0.9592 0.9593 0.9604

Addis Abeba 0.5725∗∗∗ 0.5721∗∗∗ 0.5667∗∗∗

Dire Dawa 0.8608∗∗∗ 0.8608∗∗∗ 0.8614∗∗∗

Urban (Ref.) 1 1 1

Rural 1.3654∗∗∗ 1.3654∗∗∗ 1.3666∗∗∗

Born 1997–2001 (Ref.) 1 1 1

Born 1992–1996 1.8770∗∗∗ 1.8771∗∗∗ 1.8777∗∗∗

Born 1987–1992 2.1702∗∗∗ 2.1707∗∗∗ 2.1775∗∗∗

Born 1982–1986 2.4462∗∗∗ 2.4474∗∗∗ 2.4608∗∗∗

Born 1977–1981 2.2497∗∗∗ 2.2503∗∗∗ 2.2585∗∗∗

Born 1972–1976 2.3432∗∗∗ 2.3446∗∗∗ 2.3607∗∗∗

Born 1967–1971 2.1269∗∗∗ 2.1278∗∗∗ 2.1380∗∗∗

No Education (Ref.) 1 1 1

Primary 0.8493∗∗∗ 0.8490∗∗∗ 0.8449∗∗∗

Secondary 0.4699∗∗∗ 0.4694∗∗∗ 0.4629∗∗∗

Higher 0.3324∗∗∗ 0.3318∗∗∗ 0.3255∗∗∗

Frailty p-value – 0.39 0.13

Variance of random effects – 0.00206 0.02840

IHC (Intra HH correlation) – 0.001 0.014
* Estimate significant at 10% level of significance
** Estimate significant at 5% level of significance
*** Estimate significant at 1% level of significance

As would be expected, there are significant differentials in the intensity of
transition to parenthood across regions, residence, birth cohort, and education.
Further, the effects are in the expected direction with, for instance, a relative
intensity of 0.57 for women from the capital (relative to Tigray region) and a
relative intensity of 1.12 for women from the Afar and Gambela regions (12%
higher intensity compared to women from the Tigray region). Rural women enter
parenthood at a rate that is 37% higher than their urban counterparts while the
educational gradient is negative where women with above secondary education
having a relative intensity of transition to parenthood of 0.33 relative to those with
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no education. These differentials across the levels of the four covariates did not
change at all when we accounted for clustering of women into households. This is
in accordance with the frailty estimates at the bottom of the table where the p-values
are very high and the variances (and, hence, the corresponding intra-household
correlations) very small.

It would, thus, be of interest to partition the data by region and fit the above three
models to each of the nine regions and two city administrations.

4.2 Results from Stratified Cox Models with No Frailty

The final three steps in our analysis were to fit the conventional Cox proportional
hazards models (2), the Cox frailty models (5) with gamma distributed random
components (7), and the Cox frailty models (5) with log-normal distributed random
components (11) separately to data for each of the nine regions and two city
administrations.

Region is no longer a covariate in these stratified models and, hence, each model
was fit with the three covariates: residence, birth cohort, and education. We have
also fit the above three models for the entire country with these three covariates to
examine if their effects change in models without region. Again, the first levels of
each covariate were used as a baseline (reference) levels.

Results from conventional Cox proportional models (2) for each region are
reported in the upper panel of Table 4. Estimates that are significant at 5 % level
are shown with bold emphasis while those that are significant at 10 % are shown
with italic emphasis. Entries across columns for a given row show differences in
effects of a that row (covariate) across regions. Accordingly, we note that residential
differences in transition to parenthood are significant for the entire country as well
as in the Afar, Somali, Gambela, and Harari regions as well as in the Dire Dawa
city administration. On the other hand, the residential difference was insignificant
in Tigray, Amhara, Benishangul-Gumuz, and the SNNP regions and marginally
significant in the Oromia region. Further, we find insignificant or weak effects of
birth cohort in the Afar, Somali, and Harari regions. Finally, differentials across
educational levels are significant in most regions but we find no difference between
women with no education and those with primary education in Tigray, Afar, Somali,
Benishangul-Gumuz, Gambela, Harari, Addis Abeba, and Dire Dawa. For Somali
and Gambela regions there is no difference even between women with no education
and those with secondary education.

4.3 Results from Stratified Cox Models with Gamma Frailty

Results from a Cox frailty model (5) with gamma distributed random compo-
nents (7) for each region are reported in the middle panel of Table 4.
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There is no appreciable change in any of the estimates or their significance
compared to the corresponding values in the top panel. This is also reflected in
the frailty-related estimates at the bottom of the middle panel. The estimates of the
variances and, hence, the corresponding intra-household correlations (IHC) are very
small. Further, the p-values associated with the household random effects are very
large save those of the two city administrations, Addis Abeba and Dire Dawa where
the p-values are 0.10 and 0.13, respectively.

4.4 Results from Stratified Cox Models with Log-Normal
Frailty

Lastly, results from a Cox frailty model (5) with log-normal distributed random
components (11) are shown at the bottom panel of Table 4.

Again, the estimates and their significance do not change to any appreciable
extent from their corresponding values at the top panel of Table 4. But, we note
some significant changes in the frailty-related estimates at the bottom of the table.
Now, the household random effects are significant for the entire country and the two
city administrations Addis Abeba and Dire Dawa with p-values of 0.04, 0.05, and
0.045, respectively.

5 Summary and Concluding Remarks

In this chapter we presented multilevel survival models that account for hierarchical
structure of data. The specific application was regional differentials in the intensity
of transition to parenthood among Ethiopian women. Since women were clustered
within households we used the households as units of analysis and treated women
in the same household as correlated cases (multi-levels) of the same observation.
Such formulation enabled us to add household-specific unobserved heterogeneity
(random effect) that affects the outcome at woman level.

We fitted the conventional Cox proportional intensities model as well as two of its
shared frailty variants (with gamma distributed and log-normal distributed random
effects, respectively) to data for the entire country and, separately, for each of its 11
administrative regions.

The results for this particular application showed that the introduction of
household-level random effects made no appreciable difference in the estimation
of observed covariate effects in most (nine) of the regions. On the other hand, we
found significant household-level random effects for the entire country as well as
in the two city administrations with inhabitants from diverse ethnic groups. More
interestingly, these household-level random effects were sensitive to the choice of
the distribution and were significant only when they were assumed to follow log-
normal distribution.



Table 4 Estimated relative intensities of transition to parenthood among Ethiopian women: Results
from standard Cox PH model and Cox PH models with frailty

Covariate Ethiopia Tigray AfarR Amhara Oromia Somali Benish. SNNPR Gambela Harari AddisA DireD

Results from standard Cox proportional intensities models

Rural 1.58 1.09 1.91 1.09 1.29 1.29 1.12 0.89 1.50 1.73 - 2.10

Born92-96 1.87 2.22 1.48 2.42 1.89 1.49 2.54 1.98 1.97 1.35 2.59 2.02
Born87-92 2.16 2.11 1.31 3.18 1.95 1.49 3.11 2.69 2.22 1.46 5.86 2.54
Born82-86 2.39 2.94 1.61 3.59 2.11 1.44 2.92 3.15 2.32 1.71 6.79 3.01
Born77-81 2.21 2.63 1.59 3.83 1.63 1.06 2.95 3.16 2.00 1.25 6.82 3.93
Born72-76 2.30 2.98 1.26 4.40 1.82 0.98 2.91 3.69 1.97 1.41 8.76 2.61
Born67-71 2.11 3.15 1.14 3.30 1.53 0.88 3.22 3.34 1.83 1.02 8.32 3.37

Primary 0.83 0.91 0.89 0.74 0.68 0.99 0.99 0.85 1.11 1.09 0.84 0.89
Second. 0.44 0.43 0.47 0.32 0.34 0.75 0.50 0.33 0.91 0.59 0.48 0.49
Higher 0.31 0.26 0.44 0.20 0.32 0.38 0.13 0.26 0.54 0.41 0.39 0.36

Results from Cox proportional intensities models with gamma frailty

Rural 1.58 1.09 2.00 1.09 1.29 1.29 1.12 0.89 1.50 1.74 - 2.18

Born92-96 1.87 2.23 1.51 2.42 1.89 1.49 2.55 1.98 1.97 1.35 2.62 2.00
Born87-92 2.16 2.12 1.32 3.19 1.95 1.49 3.13 2.69 2.22 1.46 6.04 2.58
Born82-86 2.39 2.95 1.65 3.61 2.12 1.44 2.95 3.16 2.33 1.72 6.97 3.05
Born77-81 2.21 2.63 1.64 3.84 1.63 1.06 2.97 3.17 2.00 1.25 7.17 4.08
Born72-76 2.30 2.99 1.24 4.42 1.82 0.98 2.93 3.71 1.98 1.41 9.24 2.68
Born67-71 2.11 3.17 1.15 3.30 1.52 0.87 3.25 3.35 1.83 1.02 8.90 3.54

Primary 0.83 0.91 0.89 0.74 0.68 0.99 0.99 0.85 1.12 1.09 0.83 0.89
Second. 0.44 0.43 0.45 0.32 0.34 0.75 0.50 0.33 0.91 0.59 0.45 0.46
Higher 0.31 0.26 0.41 0.20 0.32 0.38 0.13 0.26 0.54 0.41 0.37 0.34

Frailty p-value 0.35 0.34 0.18 0.37 0.54 0.32 0.33 0.86 0.60 0.31 0.10 0.13
Var(randomeff.) 0.003 0.002 0.082 0.013 0.000 0.001 0.005 0.000 0.000 0.002 0.097 0.085

IHC 0.001 0.001 0.039 0.007 0 0.001 0.003 0 0 0.001 0.046 0.041

Results from Cox proportional intensities models with log-normal frailty

Rural 1.58 1.10 1.98 1.09 1.29 1.30 1.13 0.89 1.50 1.78 - 2.20

Born92-96 1.88 2.23 1.50 2.41 1.89 1.49 2.58 1.98 1.97 1.37 2.63 1.99
Born87-92 2.17 2.12 1.32 3.19 1.95 1.50 3.24 2.69 2.22 1.50 6.07 2.59
Born82-86 2.41 2.95 1.64 3.61 2.12 1.44 3.10 3.16 2.34 1.78 7.00 3.06
Born77-81 2.22 2.68 1.63 3.83 1.63 1.06 3.03 3.17 2.00 1.26 7.21 4.14
Born72-76 2.32 3.03 1.24 4.43 1.82 0.98 3.06 3.71 1.98 1.46 9.27 2.71
Born67-71 2.12 3.21 1.15 3.29 1.52 0.87 3.40 3.35 1.84 1.02 9.00 3.61

Primary 0.82 0.90 0.89 0.73 0.68 0.99 1.02 0.85 1.12 1.10 0.82 0.89
Second. 0.44 0.42 0.46 0.31 0.34 0.75 0.50 0.33 0.91 0.58 0.45 0.46
Higher 0.31 0.25 0.42 0.19 0.31 0.38 0.12 0.26 0.54 0.40 0.37 0.34

Frailty p-value 0.04 0.27 0.22 0.32 0.39 0.40 0.097 0.35 0.39 0.27 0.051 0.045
Var(randomeff.) 0.040 0.038 0.054 0.026 0.003 0.012 0.087 0.001 0.005 0.059 0.126 0.133

IHC 0.019 0.019 0.026 0.013 0.002 0.006 0.042 0.001 0.003 0.029 0.059 0.062
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Another interesting result when analyzing the data for the entire country relates
to significance of the household-level random effects. These were insignificant (for
both gamma and log-normal distributions) when region was included as a covariate
in the models. But, they turned out to be significant under the log-normal distribution
when region was excluded from the model. This should not be surprising because,
as stated before, the effect of the household random effects was significant in two of
the regions. This effect is expected to disappear if region is included as a covariate
in the model because it will be absorbed in the effects of region.

The absence of household random effects in nine of the regions should not
be taken as a green light to ignore clustering of women into households. In the
multilevel (frailty) models we used in this chapter, the frailty term is a measure of
the relative intensity that women within a household share. Conditional on the frailty
term the survival times of women in that household were assumed to be independent
of each other.

On the other hand, the definition of household is not clear in Demographic and
Health Surveys. As we saw in Table 2, the number of women within a household
varied between 1 and 9 in the Afar region and between 1 and 15 in the capital, Addis
Abeba. Whether household means women living under the same roof or an extended
family or clan it is most likely that survival times of women in a household are
correlated but not necessarily shared. In such cases a correlated frailty model which
is a natural extension of the shared frailty model may be more appropriate because
it allows inclusion of additional correlation parameters to address associations
between event times of women within the same household. If these correlations
equal to one, the shared frailty model is obtained as a special case of the correlated
frailty model.

Future works in the area, which we intend to pursue, may therefore explore if
other frailty models capture effects of household random effects more accurately.
These include the nested, joint, and additive frailty models in Rondeau et al. (2012,
2021) and the four variants of gamma frailty models in Martins et al. (2019).
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Appendix: R-Codes Used for Computing the Results Reported
in the Tables of This Chapter

#################################################################
# Importing the data set into R and naming it ethiopia16
library(readxl)
ethiopia16 <- read_excel("E:/GG-New-Data-with-Cum-HH.xlsx")
View(ethiopia16)


 1720 44111
a 1720 44111 a
 
https://www.dhsprogram.com
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#################################################################
# Creating subsets for each region
Tigray <- subset(ethiopia16, Region == 1)
Afar <- subset(ethiopia16, Region == 2)
Amhara <- subset(ethiopia16, Region == 3)
Oromia <- subset(ethiopia16, Region == 4)
Somali <- subset(ethiopia16, Region == 5)
Benishangul <- subset(ethiopia16, Region == 6)
SNNPR <- subset(ethiopia16, Region == 7)
Gambela <- subset(ethiopia16, Region == 8)
Harari <- subset(ethiopia16, Region == 9)
Addis_Ababa <- subset(ethiopia16, Region == 10)
Dire_Dawa <- subset(ethiopia16, Region == 11)
##################################################################
## 1. Kaplan-Meier estimated survival curves by region ##
##################################################################
library(survival)
RegionTigray <- which(ethiopia16$Region==1)
regionT <- ethiopia16[RegionTigray,]
km.regionT <-survfit(Surv(Exposure, Status)~1, data=regionT)
RegionAfar <- which(ethiopia16$Region==2)
regionAf <- ethiopia16[RegionAfar,]
km.regionAf <-survfit(Surv(Exposure, Status)~1, data=regionAf)
RegionAmhara <- which(ethiopia16$Region==3)
regionAm <- ethiopia16[RegionAmhara,]
km.regionAm <-survfit(Surv(Exposure, Status)~1, data=regionAm)
RegionOromia <- which(ethiopia16$Region==4)
regionO <- ethiopia16[RegionOromia,]
km.regionO <-survfit(Surv(Exposure, Status)~1, data=regionO)
RegionSomali <- which(ethiopia16$Region==5)
regionS <- ethiopia16[RegionSomali,]
km.regionS <-survfit(Surv(Exposure, Status)~1, data=regionS)
RegionBenishangul <- which(ethiopia16$Region==6)
regionB <- ethiopia16[RegionBenishangul,]
km.regionB <-survfit(Surv(Exposure, Status)~1, data=regionB)
RegionSNNPR <- which(ethiopia16$Region==7)
regionSN <- ethiopia16[RegionSNNPR,]
km.regionSN <-survfit(Surv(Exposure, Status)~1, data=regionSN)
RegionGambela <- which(ethiopia16$Region==8)
regionG <- ethiopia16[RegionGambela,]
km.regionG <-survfit(Surv(Exposure, Status)~1, data=regionG)
RegionHarari <- which(ethiopia16$Region==9)
regionH <- ethiopia16[RegionHarari,]
km.regionH <-survfit(Surv(Exposure, Status)~1, data=regionH)
RegionAddis <- which(ethiopia16$Region==10)
regionAA <- ethiopia16[RegionAddis,]
km.regionAA <-survfit(Surv(Exposure, Status)~1, data=regionAA)
RegionDire <- which(ethiopia16$Region==11)
regionDD <- ethiopia16[RegionDire,]
km.regionDD <-survfit(Surv(Exposure, Status)~1, data=regionDD)
plot(km.regionDD, main="Figure 1: Survival functions by region:
KM estimation", col = "green",
cex.axis=0.7, xlab = "Exposure in months", ylab = "Survival
functions", conf.int = "none")
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lines(km.regionAA, col = "orange", conf.int = "none")
lines(km.regionH, col = "darkblue", conf.int = "none")
lines(km.regionG, col = "yellow", conf.int = "none")
lines(km.regionSN, col = "red", conf.int = "none")
lines(km.regionB, col = "blue", conf.int = "none")
lines(km.regionS, col = "black", conf.int = "none")
lines(km.regionO, col = "purple", conf.int = "none")
lines(km.regionAm, col= "pink", conf.int = "none")
lines(km.regionAf, col="violet", conf.int = "none")
lines(km.regionT, col = "brown", conf.int = "none")
legend("topright", c("Dire Dawa", "Addis Ababa", "Harari",
"Gambela", "SNNPR", "Benishangul", "Somali", "Oromia", "Amhara",
"Afar", "Tigray"), lty = c(1:1), cex=0.7, col = c("green",
"orange", "darkblue", "yellow", "red", "blue", "black", "purple",
"pink", "violet", "brown"))
#################################################################
## 2. COX proportional models for the whole country and for each
region ##
#################################################################
#
coxall <- coxph(Surv(Exposure, Status) ~ as.factor(Region)
+ as.factor(Residence) + as.factor(Cohort) + as.factor(Education),
method="breslow", data = ethiopia16)
summary(coxall)
#
coxTigray <- coxph(Surv(Exposure, Status) ~ as.factor(Residence)
+ as.factor(Cohort) + as.factor(Education), method="breslow",
data = Tigray)
summary(coxTigray)
coxAfar <- coxph(Surv(Exposure, Status) ~ as.factor(Residence)
+ as.factor(Cohort) + as.factor(Education), method="breslow",
data = Afar)
summary(coxAfar)
coxAmhara <- coxph(Surv(Exposure, Status) ~ as.factor(Residence)
+ as.factor(Cohort) + as.factor(Education), method="breslow",
data = Amhara)
summary(coxAmhara)
coxOromia <- coxph(Surv(Exposure, Status) ~ as.factor(Residence)
+ as.factor(Cohort) + as.factor(Education), method="breslow",
data = Oromia)
summary(coxOromia)
coxSomali <- coxph(Surv(Exposure, Status) ~ as.factor(Residence)
+ as.factor(Cohort) + as.factor(Education), method="breslow",
data = Somali)
summary(coxSomali)
coxBenishangul <- coxph(Surv(Exposure, Status) ~ as.factor
(Residence)

+ as.factor(Cohort) + as.factor(Education), method="breslow",
data = Benishangul)
summary(coxBenishangul)
coxSNNPR <- coxph(Surv(Exposure, Status) ~ as.factor(Residence)
+ as.factor(Cohort) + as.factor(Education) , method="breslow",
data = SNNPR)
summary(coxSNNPR)
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coxGambela <- coxph(Surv(Exposure, Status) ~ as.factor(Residence)
+ as.factor(Cohort) + as.factor(Education) , method="breslow",
data = Gambela)
summary(coxGambela)
coxHarari <- coxph(Surv(Exposure, Status) ~ as.factor(Residence)
+ as.factor(Cohort) + as.factor(Education), method="breslow",
data = Harari)
summary(coxHarari)
coxAddis_Ababa <- coxph(Surv(Exposure, Status) ~ as.factor(Cohort)
+ as.factor(Education), method="breslow", data = Addis_Ababa)
summary(coxAddis_Ababa)
coxDire_Dawa <- coxph(Surv(Exposure, Status) ~ as.factor

(Residence)
+ as.factor(Cohort) + as.factor(Education), method="breslow",
data = Dire_Dawa)
summary(coxDire_Dawa)
##################################################################
## 3. Testing the proportional hazards assumptions ##
##################################################################
cox.zph(coxall)
cox.zph(coxTigray)
cox.zph(coxAfar)
cox.zph(coxAmhara)
cox.zph(coxOromia)
cox.zph(coxSomali)
cox.zph(coxBenishangul)
cox.zph(coxSNNPR)
cox.zph(coxGambela)
cox.zph(coxHarari)
cox.zph(coxAddis_Ababa)
cox.zph(coxDire_Dawa)
#################################################################
## 4. Frailty models for the whole country and for each region ##
#################################################################
#Gamma- and log-normal frailty distributed models
#Ethiopia
#
GammaAll <- coxph(Surv(Exposure, Status) ~ as.factor(Region)
+ as.factor(Residence)
+ as.factor(Cohort) + as.factor(Education) + frailty(HouseHold,
distribution="gamma"), method="breslow", data = ethiopia16)
summary(GammaAll)
#
# The command below was updated by GG (with cumulative HH ranging
b/n 1 and 4722)
#
lognormalAll <- coxph(Surv(Exposure, Status) ~ as.factor(Region)
+ as.factor(Residence)
+ as.factor(Cohort) + as.factor(Education) + frailty(HouseHold,
distribution="gaussian"), method="breslow", data = ethiopia16)
summary(lognormalAll)
#
#Tigray
GammaTigray <- coxph(Surv(Exposure, Status) ~ as.factor(Residence)
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+ as.factor(Cohort) + as.factor(Education) + frailty(HouseHold,
distribution="gamma"), data=Tigray)
summary(GammaTigray)
lognormTigray <- coxph(Surv(Exposure, Status) ~ as.factor
(Residence)
+ as.factor(Cohort) + as.factor(Education) + frailty(HouseHold,
distribution="gaussian"), data=Tigray)
summary(lognormTigray)
#Afar
GammaAfar <- coxph(Surv(Exposure, Status) ~ as.factor(Residence)
+ as.factor(Cohort) + as.factor(Education) + frailty(HouseHold,
distribution="gamma"), data=Afar)
summary(GammaAfar)
lognormAfar <- coxph(Surv(Exposure, Status) ~ as.factor

(Residence)
+ as.factor(Cohort) + as.factor(Education) + frailty(HouseHold,
distribution="gaussian"), data=Afar)
summary(lognormAfar)
#Amhara
GammaAmhara <- coxph(Surv(Exposure, Status) ~ as.factor(Residence)
+ as.factor(Cohort) + as.factor(Education) + frailty(HouseHold,
distribution="gamma"), data=Amhara)
summary(GammaAmhara)
lognormAmhara <- coxph(Surv(Exposure, Status) ~ as.factor\

(Residence)
+ as.factor(Cohort) + as.factor(Education) + frailty(HouseHold,
distribution="gaussian"), data=Amhara)
summary(lognormAmhara)
#Oromia
GammaOromia <-coxph(Surv(Exposure, Status) ~ as.factor(Residence)
+ as.factor(Cohort) + as.factor(Education) + frailty(HouseHold,
distribution="gamma"), data=Oromia)
summary(GammaOromia)
lognormOromia <- coxph(Surv(Exposure, Status) ~ as.factor

(Residence)
+ as.factor(Cohort) + as.factor(Education) + frailty(HouseHold,
distribution="gaussian"), data=Oromia)
summary(lognormOromia)
#Somali
GammaSomali <-coxph(Surv(Exposure, Status) ~ as.factor

(Residence)
+ as.factor(Cohort) + as.factor(Education) + frailty(HouseHold,
distribution="gamma"), data=Somali)
summary(GammaSomali)
lognormSomali <- coxph(Surv(Exposure, Status) ~ as.factor

(Residence)
+ as.factor(Cohort) + as.factor(Education) + frailty(HouseHold,
distribution="gaussian"), data=Somali)
summary(lognormSomali)
#Benishangul
GammaBenishangul <- coxph(Surv(Exposure, Status) ~ as.factor

(Residence)
+ as.factor(Cohort)
+ as.factor(Education) + frailty(HouseHold,distribution="gamma"),
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data=Benishangul)
summary(GammaBenishangul)
lognormBenishangul <- coxph(Surv(Exposure, Status) ~ as.factor

(Residence)
+ as.factor(Cohort)
+ as.factor(Education) + frailty(HouseHold,distribution=

"gaussian"),
data=Benishangul)
summary(lognormBenishangul)
#SNNPR
GammaSNNPR <-coxph(Surv(Exposure, Status) ~ as.factor
(Residence)
+ as.factor(Cohort) + as.factor(Education) + frailty(HouseHold,
distribution="gamma"), data=SNNPR)
summary(GammaSNNPR)
lognormSNNPR <- coxph(Surv(Exposure, Status) ~ as.factor

(Residence)
+ as.factor(Cohort) + as.factor(Education) + frailty(HouseHold,
distribution="gaussian"), data=SNNPR)
summary(lognormSNNPR)
#Gambela
GammaGambela <- coxph(Surv(Exposure, Status) ~ as.factor

(Residence)
+ as.factor(Cohort) + as.factor(Education) + frailty(HouseHold,
distribution="gamma"), data=Gambela)
summary(GammaGambela)
lognormGambela <- coxph(Surv(Exposure, Status) ~ as.factor

(Residence)
+ as.factor(Cohort) + as.factor(Education) + frailty(HouseHold,
distribution="gaussian"), data=Gambela)
summary(lognormGambela)
#Harari
GammaHarari <- coxph(Surv(Exposure, Status) ~ as.factor(Residence)
+ as.factor(Cohort) + as.factor(Education) + frailty(HouseHold,
distribution="gamma"), data=Harari)
summary(GammaHarari)
lognormHarari <- coxph(Surv(Exposure, Status) ~ as.factor

(Residence)
+ as.factor(Cohort) + as.factor(Education) + frailty(HouseHold,
distribution="gaussian"), data=Harari)
summary(lognormHarari)
#Addis Ababa
GammaAddis_Ababa <- coxph(Surv(Exposure, Status) ~ as.factor

(Cohort)
+ as.factor(Education) + frailty(HouseHold,distribution="gamma"),
data=Addis_Ababa)
summary(GammaAddis_Ababa)
lognormAddis_Ababa <- coxph(Surv(Exposure, Status) ~ as.factor

(Cohort)
+ as.factor(Education) + frailty(HouseHold,distribution="gaussian"),
data=Addis_Ababa)
summary(lognormAddis_Ababa)
#Dire Dawa
GammaDire_Dawa <- coxph(Surv(Exposure, Status) ~ as.factor
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(Residence)
+ as.factor(Cohort) + as.factor(Education) + frailty(HouseHold,
distribution="gamma"), data=Dire_Dawa)
summary(GammaDire_Dawa)
lognormDire_Dawa <- coxph(Surv(Exposure, Status) ~ as.factor

(Residence)
+ as.factor(Cohort) + as.factor(Education) + frailty(HouseHold,
distribution="gaussian"), data=Dire_Dawa)
summary(lognormDire_Dawa)
###############################################################
## 5. The different frequencies ##
###############################################################
# Ethiopia
table(ethiopia16$Residence)
table(ethiopia16$Cohort)
table(ethiopia16$Education)
table(ethiopia16$Residence,ethiopia16$Status)
table(ethiopia16$Cohort,ethiopia16$Status)
table(ethiopia16$Education,ethiopia16$Status)
#Tigray
table(Tigray$Residence)
table(Tigray$Cohort)
table(Tigray$Education)
table(Tigray$Residence,Tigray$Status)
table(Tigray$Cohort,Tigray$Status)
table(Tigray$Education,Tigray$Status)
#Afar
table(Afar$Residence)
table(Afar$Cohort)
table(Afar$Education)
table(Afar$Residence,Afar$Status)
table(Afar$Cohort,Afar$Status)
table(Afar$Education,Afar$Status)
#Amhara
table(Amhara$Residence)
table(Amhara$Cohort)
table(Amhara$Education)
table(Amhara$Residence,Amhara$Status)
table(Amhara$Cohort,Amhara$Status)
table(Amhara$Education,Amhara$Status)
#Oromia
table(Oromia$Residence)
table(Oromia$Cohort)
table(Oromia$Education)
table(Oromia$Residence,Oromia$Status)
table(Oromia$Cohort,Oromia$Status)
table(Oromia$Education,Oromia$Status)
#Somali
table(Somali$Residence)
table(Somali$Cohort)
table(Somali$Education)
table(Somali$Residence,Somali$Status)
table(Somali$Cohort,Somali$Status)
table(Somali$Education,Somali$Status)



454 G. Ghilagaber et al.

#Benishangul
table(Benishangul$Residence)
table(Benishangul$Cohort)
table(Benishangul$Education)
table(Benishangul$Residence,Benishangul$Status)
table(Benishangul$Cohort,Benishangul$Status)
table(Benishangul$Education,Benishangul$Status)
#SNNPR
table(SNNPR$Residence)
table(SNNPR$Cohort)
table(SNNPR$Education)
table(SNNPR$Residence,SNNPR$Status)
table(SNNPR$Cohort,SNNPR$Status)
table(SNNPR$Education,SNNPR$Status)
#Gambela
table(Gambela$Residence)
table(Gambela$Cohort)
table(Gambela$Education)
table(Gambela$Residence,Gambela$Status)
table(Gambela$Cohort,Gambela$Status)
table(Gambela$Education,Gambela$Status)
#Harari
table(Harari$Residence)
table(Harari$Cohort)
table(Harari$Education)
table(Harari$Residence,Harari$Status)
table(Harari$Cohort,Harari$Status)
table(Harari$Education,Harari$Status)
#Addis Ababa
table(Addis_Ababa$Residence)
table(Addis_Ababa$Cohort)
table(Addis_Ababa$Education)
table(Addis_Ababa$Residence,Addis_Ababa$Status)
table(Addis_Ababa$Cohort,Addis_Ababa$Status)
table(Addis_Ababa$Education,Addis_Ababa$Status)
#Dire Dawa
table(Dire_Dawa$Residence)
table(Dire_Dawa$Cohort)
table(Dire_Dawa$Education)
table(Dire_Dawa$Residence,Dire_Dawa$Status)
table(Dire_Dawa$Cohort,Dire_Dawa$Status)
table(Dire_Dawa$Education,Dire_Dawa$Status)
length(unique(ethiopia16$HouseHold)) #487
length(unique(Tigray$HouseHold)) #452
length(unique(Afar$HouseHold)) #410
length(unique(Amhara$HouseHold)) #452
length(unique(Oromia$HouseHold)) #466
length(unique(Somali$HouseHold)) #451
length(unique(Benishangul$HouseHold)) #415
length(unique(SNNPR$HouseHold)) #459
length(unique(Gambela$HouseHold)) #390
length(unique(Harari$HouseHold)) #383
length(unique(Addis_Ababa$HouseHold)) #442
length(unique(Dire_Dawa$HouseHold)) #402
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#
#############################################################
6. Additional by GG (three models for entire country without
region)
#############################################################
#
GG_Coxall <- coxph(Surv(Exposure, Status) ~ as.factor(Residence)
+ as.factor(Cohort) + as.factor(Education), method="breslow",
data = ethiopia16)
summary(GG_Coxall)
#
GG_GammaAll <- coxph(Surv(Exposure, Status) ~ as.factor(Residence)
+ as.factor(Cohort) + as.factor(Education) + frailty(HouseHold,
distribution="gamma"), method="breslow", data = ethiopia16)
summary(GG_GammaAll)
#
GG_lognormalAll <- coxph(Surv(Exposure, Status)
~ as.factor(Residence) + as.factor(Cohort) + as.factor(Education)
+ frailty(HouseHold, distribution="gaussian"), method="breslow",
data = ethiopia16)
summary(GG_lognormalAll)
#
################################################################
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Application of Multiple Imputation,
Inverse Probability Weighting, and
Double Robustness in Determining Blood
Donor Deferral Characteristics in Malawi

Evaristar N. Kudowa and Mavuto F. Mukaka

Abstract Missing data occur in most epidemiological studies and may reduce inter-
nal validity of study findings. Biased and inefficient estimates may result if missing
values are not properly handled during analysis. Application of Complete case (CC)
analysis to handle missing data may produce biased estimates if data are not missing
completely at random. We, therefore, need principled methods to address missing
data. We addressed missing data for blood donor retrospective cohort to estimate
predictors of donor deferral using Logistic regression model. Multiple Imputation
(MI), Inverse Probability Weighting (IPW), and Double Robustness (DR-IPW) were
applied to correct for missingness. CC estimates had wider confidence intervals,
consistent with IPW estimates. MI and DR produced narrow confidence intervals
relative to CC and IPW methods. MI indicated higher odds of deferral among
syphilis-infected donors OR: 1.24 (95% CI: 1.05, 1.48) and lower odds of deferral
among donors with higher number of blood donations OR: 0.90 (95% CI: 0.82,
0.98). Estimates for MI and DR were precise compared to CC and DR methods.
DR guards against model misspecification making it the preferred method for more
accurate analysis but is limited by its unavailability in most existing software.
Instead, MI which is widely available can be used.
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missingness · Non-ignorable · Sensitivity analysis · Unbiased estimates · Biased
estimates · Logistic regression · Semiparametric · Fully observed · Consistent
estimates · Efficient estimates · Inefficient estimates · Incomplete values ·
Randomness · Pooled estimates · Rubin rule · Imputations · Observed values ·
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1 Introduction

Due to high clinical demand of blood supply, the World Health Organization
recommends blood donation systems to collect blood from voluntary donors. Blood
donors are screened before donation and ineligible donors are deferred for donation.
In trying to determine the characteristics of deferred donors, we observed a high
proportion of missing values (96%) in both the predictor variable (number of
donations) and the outcome variable (deferral status). These missing data could
potentially lead to biased estimates and affect interpretation of study findings if not
properly corrected during analysis. To address analysis challenges introduced by
missing data, many researchers apply complete case or list wise deletion methods,
which excludes observations with incomplete information from the analysis. Ad-
hoc methods such as complete case and available case analyses are the choice of
methods for addressing missing data only because of their programming conve-
nience (Carpenter et al., 2006). Despite the ease of these methods when applied
to incomplete data analysis, they only give valid estimates when data are missing
completely at random and not necessarily when they are missing at random.
However, their estimates may be less efficient due to the reduction in sample
size (Eekhout et al., 2012). Additionally, ad-hoc methods do not utilize statistical
principles for handling missing values and, therefore, do not adequately address
issues raised by missing data (Carpenter et al., 2006).

Many scientific studies that are prone to missing data do not state the methods
used to handle missing values in their analysis. A review of studies that had missing
data showed that in 262 of the studies that had missing data, 46% of the studies could
not clearly define the type of missing data. There were 81% studies that performed
a complete case analysis and 14% used a single imputation technique, such as mean
imputation, single regression, or last observation carried forward. More advanced
methods, such as multiple imputation (MI), maximum likelihood estimation, and
inverse probability weighting, were reported in 8%, 2%, and 3% of the studies,
respectively (Eekhout et al., 2012).

However, the impact of missing data on study results depends on the degree or
percentage of missing data. Statistical results obtained when missing data are less
than 5% are typically insensitive. For missing data that are between 5 and 15% the
impact depends on the context or study type, whereas results obtained for missing
data which is more than 15% are often sensitive and appropriate correction methods
for missing data need to be applied to such data in order to obtain unbiased estimates
(Harrell, 2001).
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In this analysis we explore the application of multiple imputation, inverse
probability of censoring weights and double robustness in correcting for missing
data and compare their estimates to the estimates obtained from complete case
analysis.

2 Missing Data Patterns

This refers to the order of missing values in the dataset, which can be univariate,
intermittent, monotonic, or arbitrary. With univariate missing data pattern, missing
data values are only on one variable in the dataset and the rest are fully observed.
Univariate missing data usually happens due to the study design. Monotonic
(terminal) pattern occurs when the data values are observed from baseline until drop-
out and no subsequent information is collected. Little and Rubin (2020) proposed
that if we let Y = [yij ],where i = 1, . . . , n and j = 1, . . . , k denote an n × k

completely observed dataset, where the value yij represents the value Yj for subject
i. For the missingness to be monotonic , whenever yij is missing, yik becomes
missing ∀k > j .

Monotonic missing data pattern is mostly encountered in studies of a population
with high mortality and morbidity rate and longitudinal studies which are more
prone to drop-outs or attrition (Little & Rubin, 2020). With monotonic pattern
ordering of data units during analysis is necessary for observing the pattern in
the data (Gordon, 2010). In intermittent missing data pattern, the missingness
occurs between successful or observed assessments. Under this pattern, subjects
that miss an observation at some point return to the study afterwards. This is
mostly encountered in studies of individuals with chronic conditions such as
cancer, asthma, or diabetes. Mixed (Arbitrary) pattern involves both monotonic and
intermittent missing patterns. This is when a period of intermittent missingness is
followed by monotone missingness. Unlike the other patterns, an arbitrary pattern
is computationally difficult to handle in practice (Dong and Peng, 2013).

3 Missing Data Nomenclature

Missing data nomenclature are mechanisms that characterize the reasons for the
missing data. These missing data mechanisms/response mechanisms were first
described by Donald Rubin in 1976 and were classified into three categories. Rubin
(1976) indicated the likelihood for every data point to have missing value and these
likelihood can be managed through the missing data mechanisms. Understanding
these mechanisms is crucial in selecting an appropriate analysis method, because the
choice of missing data handling technique is dependent on the assumptions made
(Baraldi & Enders, 2010).
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Watanabe and Yamaguchi (2004) indicated the need to first understand reasons
behind the missingness when interpreting results that have missing values. When
this information is unknown, methods suitable for analyzing such cases should be
used. If there are known reasons behind the missingness, then it is appropriate to
firstly decide whether to ignore or take the mechanism into account. Ignoring the
missingness mechanism is appropriate if the missing values are independent of the
observed values, i.e., missingness due to sampling mechanism.

To define these missing data mechanisms we assume we have a random variable
X having the values xO if observed or xm if missing and we letR = 1 ifX is missing
(xm) with P(R = 1) being the probability of missing X, R = 0 if X is observed
(xO) and P(R = 0) is the probability of observing X. We also have a vector Z of
all measured variables including X, which may also have missing data and another
vector U for all unmeasured variables. Missing at random (MAR) occurs if after
conditioning for unobserved data, the missingness depends on the observed data,
i.e.,

P(R = 1|ZO,Zm, u) = P(R = 1|ZO) (1)

It is, however, difficult to verify MAR assumption using observed data (Yuan,
2014); therefore, sensitivity analysis ought to be made to verify MAR inferences
(National Research Council, 2010). Missing not at random (MNAR) occurs when
the missingness relates to the unobserved data after taking the observed values into
account, i.e.,

P(R = 1|ZO,Zm, u) = P(R = 1|ZO,Zm, u) (2)

This implies that the chance of seeing Z depends on Zm, even after conditioning
onZO . Thus, there is a relationship between what would have been observed and the
missingness. MNAR can occur if subjects refuse to reveal something very personal
about themselves, i.e., higher income individuals being less likely to reveal their
income in a survey than individuals with low income. This mechanism is non-
ignorable and the researcher is required to specify the missingness mechanism in
the analysis model to achieve unbiased estimates. Missing completely at random
(MCAR) is rare assumptions in real life and the missingness occurs by chance only.
With MCAR there is equal probability of being missing for all cases (van Buuren,
2012). This occurs when the probability that the data are missing is not related to
either the specific value that is supposed to be obtained or the set of observed values,
i.e.,

P(R = 1|ZO,Zm, u) = P(R = 1) (3)

The statistical advantage of data that are MCAR is that the estimated parameters
remain unbiased despite power being lost in the design (Kang, 2013). This is
because the observed values are actually a random subsample of the full dataset.
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In addressing missing data problem, the study aimed at applying MI, IPW, and
DR methods. Estimates from DR method were more precise compared to complete
case and IPW methods but were similar to MI. DR and MI managed to address the
missing data problem in our analysis.

4 Methods

4.1 Study Design and Population

This was a retrospective cohort study which reviewed regular blood donor records
whose last donation date was between January 2014 and August 2015. We defined
a regular donor as any person with at least two successful donations before the last
donation date of the study period.

4.2 Data Sources, Description, and Management

We used secondary data from the Malawi Blood Transfusion Service (MBTS).
Established in 2003, MBTS provides two-thirds of all blood used in hospitals with
the other third being covered by hospital-based system. MBTS is a government
(public) entity that ensures adequate supply of safe blood products to all patients
in need of blood supply. In 2000, the World Health Organization launched a blood
safety initiative of ensuring blood collection from non-remunerated (volunteered)
donors who were identified as low risk donors compared to the then paid donors.
Based on this initiative MBTS uses mobile services to routinely collect blood
from various institutions from non-remunerated donors. Blood donor details are
routinely collected and recorded in blood bank access database during blood
donation with each donor uniquely identified. The collected details include social
and demographic characteristics for the blood donors as well as their medical
history.

4.3 Study Outcomes

The outcome variable was deferral status, a binary variable categorized into active
and deferred donor, where deferred donor includes both permanent and temporary
deferrals. The predictors for donor status include age, sex, number of donations,
marital status, duration between successive donations, and hemoglobin (HB) levels.
The other predictors include medical results for condition such as syphilis, HIV,
HB levels, anemia, HBV, skin rashes, and Rhesus factor. But for this study sex,
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number of donations, marital status, HIV status, and Syphilis status were identified
as potential factors for determining deferral status. This selection was based on
literature and availability of data. The dataset was not rich with information for
the other known predictors for donor deferral.

4.4 Statistical Software and Methods

The statistical analyses were performed using STATA 14.1. We looked at distribu-
tion of blood donor demographic characteristics and deferral status using chi-square
test. MI, IPW, and DR were applied to the data in order to achieve complete dataset
or to correct for the missing values. Logistic regression analysis was used to model
deferral characteristics among blood donors, firstly using complete case analysis
and then using the imputed and weighted analysis methods. The fitted multivariable
logistic regression model was given as:

Ln

(
p̂

1 − p̂

)

= β0 + β1 · m + β2 · sex + β3 · bd + β4 · hiv + β5 · sy (4)

where m =married, bd =number of blood donations, sy =syphilis, and p̂ is the
expected probability of being deferred for donation.

4.5 Assumption for Missingness Mechanism

MAR is the most plausible missing data assumption in real life because with this
assumption the missingness depends on the observed data (Sterne et al., 2009). The
study made an assumption of the missingness to be MAR and applied method for
addressing missing data based on this assumption. T-test was performed between
the indictor variable for missing deferral status and number of donations with sex
variable. There was significant deference between those with observed deferral
status and those with missing deferral status, thus the mean sex score was found to
be significantly higher among those with missing deferral status indicating sex as a
potential correlate of missingness. Variable sex was included in this model to satisfy
MAR assumption. We discuss below the details of the methods of handling missing
data methods that we applied, namely: multiple imputation, inverse probability
weighting, and double robustness.
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4.6 Multiple Imputation

This study used Multivariate Imputation by Chained Equations (MICE) to impute
the missing values with more than 5% of missingness (Table 1). Ten imputations
were made resulting in ten complete datasets and Rubin rule was then applied to the
ten complete datasets to obtain pooled estimates.

MICE also known as Fully Conditional Specification (FCS) operates under
MAR assumption and can handle variables of various type. It is semi-parametric
and acts as an alternative to Joint Modelling (JM) when no suitable multivariate
distribution can be found. FCS is flexible and easy to apply compared to JM and
it accommodates an arbitrary missing data pattern. According to the expression by
van Buuren and Groothuis-Oudshoorn (2011), we let Y the hypothetically complete
data be partially observed random sample from a p-variate- multivariate distribution
P(Y |θ). Here we assume that the multivariate distribution of Y is completely
specified by a vector of unknown parameters θ . It is expected that the multivariate
distribution of θ is explicitly known, even though knowing this distribution is quite
challenging. van Buuren and Groothuis-Oudshoorn (2011), however, demonstrated
that the MICE algorithm obtains the posterior distribution of θ through iterative
sampling from condition distributions, i.e.,

P(Y1|Y−1θ1)
...

P (Yp|Y−pθp)

(5)

The parameters θ1, θp obtained are specific to the respective conditional
densities and are not necessarily the product of a factorization of the true joint
distribution P(Y |θ). Due to the difficulty with direct sampling, the method uses
Gibbs sampling which is a form of Markov Chain Monte Carlo algorithm. van
Buuren and Groothuis-Oudshoorn (2011) presented the t th iteration of chained
equations as a Gibbs sampler that successively draws:

θ
∗(t)
1 ∼ P

(
θ1|Yobs

1 , Y t−1
2 , . . . Y t−1

p

)

Y
∗(t)
1 ∼ P

(
Y1|Yobs

1 , Y t−1
2 , . . . Y t−1

p , θ
∗(t)
1

)

...

θ
∗(t)
p ∼ P

(
θp|Yobs

p , Y t−1
1 , . . . Y t

p−1

)

Yp∗(t) ∼ P
(
Yp|Yobs

1 , Y t
1, . . . Y

t
pθ

∗(t)
1

)

(6)



464 E. N. Kudowa and M. F. Mukaka

Each successive iteration results in generating an imputed variable where, Y (t)
j =

(
Yobs
j , Y

∗(t)
j

)
is the j th imputed variable at the t th iteration. This process then

results in executing m parallel streams which generates an imputed dataset.

4.7 Inverse Probability Weighting

An indicator variable for missingness was generated based on whether the number
of donations or deferral status was missing or not. Logistic regression was fitted
on this indicator variable and other non-missing variables in the model of interest.
This model indicates how the probability of being a complete record depends on the
fully observed variables. Fitted probabilities of being a complete record were then
obtained based on this model. To obtain weights for each observation an inverse
of the fitted probabilities was calculated. Logistic regression of deferral status on
the predictors was fitted and the estimated weights were passed to this model as an
inverse of the fitted probabilities. In this case, we created a pseudo-population that
would be observed had there been no missing values in our data.

IPW assumes consistent parameters if the probability of response πi is known,
regardless of the missingness mechanism. This still poses a challenge as πi is
usually not known. IPW involves specifying our model of interest usually a
regression model relating the outcome and covariates. We model πi (as a function of
fully observed variables Oj ), i.e., the model (logistic regression) for the probability
of Xi being missing. The fitted model yields the predicted probabilities π̂I of the
response. In particular, we are assuming that P(Ri = 1) depends only on the
variables Oj , and given these, not on Xi itself. IPW estimates are obtained by
calculating weights, which is given as: Weighti = 1

π̂I
. The model of interest is then

refitted using the complete cases and the calculated weights by passing the variable
containing the estimated weights to the model.

4.8 Double Robustness

Double robustness is a technique that protects the estimates from two possible
sources of error. DR produces valid and consistent estimates even if either the
outcome model or the weighted model is misspecified. This paper used Inverse
Probability Weighted Regression Adjustment (IPWRA) DR method which pos-
sesses this double protection property. Using IPWRA, the outcome model was fitted
to obtain inverse probability of the weights. The weights estimate missing-data-
corrected regression coefficients that are subsequently used to compute the potential
outcome means. DR involves both a model for the weights and a predictive model
for the missing observations given the observed ones. It was developed as a way of
improving efficiency in the results from IPW. The method combines MI and IPW
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by including the inverse probability weight {P(Yi is observed|Xi)}−1 to give doubly
robust estimators. The process of achieving DR estimators involves specifying the
model relating the outcome and covariates of interest, then specifying a model of the
probability of observing the variables. Lastly a joint model of the mean of (functions
of) partially observed variables given fully observed variables is specified.

5 Results

This analysis was based on 131,508 regular donors who met the inclusion criteria.
We observed high amount of missing values in deferral status and number of blood
donations variables (Table 1). The initial analysis involved the description of donor
characteristics based on donors that had complete information. The median age for
donors was 21 years, interquartile range (19, 24 years) and the median number
of donations was 3 ranging from 3 to 4. There were 92.2% active donors, 90.4%
unmarried donors with 80.7% male donors, and 50% as donors of blood group O.

Donor’s marital status was associated with deferral status (P<0.001) where
majority of the active donors were not married. There was also an association
between donor’s sex and deferral status (P=0.009) where 84.1% of the active
blood donors were male. We also observed an association between HIV status and
deferral status (P<0.001) with more HIV- donors being active donors. There was an
association between donor’s syphilis status and their deferral status (P<0.001) with
majority of active donors being those without the disease (Table 2).

In multivariable logistic regression using MI, we observed an association
between deferral status with number of blood donations made and syphilis disease
status. Having an increased number of blood donations, was associated with reduced
odds of being deferred for donation OR: 0.90 (95% CI: 0.82, 0.98; p=0.02) whereas
having syphilis was associated with higher odds of being deferred for donation OR:
1.24 (95% CI: 1.05, 1.48; p=0.01). The findings from MI were consistent with
estimates obtained through DR but results obtained from CC and IPW methods
were less efficient (Table 3).

Table 1 Percentage of missing values per variable

Variable Observed Missing % Missing

Deferral 4,784 126,724 96.4

HIV status 131,173 335 0.3

Marital status 130,974 534 0.4

Blood donations 5739 125,769 95.6

Syphilis 131,478 30 <0.1



Table 2 Distribution of blood donor deferral status by social-demographic factors and medical
history using complete cases

Variable Active donor n(%) Deferred donor n(%) p-value

Married 365 (87.53) 52 (12.47) <0.001

Not married 4032 (92.69) 318 (7.31)

Male 3712 (91.79) 332 (8.21) 0.009

Female 700 (94.59) 40 (5.41)

<20 years 667 (93.03) 50 (6.97) 0.965

20 to 35 years 1358 (93.46) 95 (6.54)

>35 years 123 (93.89) 8 (6.11)

2 to 10 donations 4214 (92.09) 362 (7.91) 0.102

>10 donations 198 (95.19) 10 (4.81)

HIV- 4380 (93.29) 315 (6.71) <0.001

HIV+ 21 (30.00) 49 (70.00)

Discordant 2 (66.67) 1 (33.33)

Anemia 2 (100) 0 (0.00) 1

No anemia 4410 (92.22) 372 (7.78)

Weightloss 1 (100) 0(0.00) 1

No weightloss 4411(92.22) 372(7.78)

Blood pressure 4(100) 0 (0.00) 1

No Bp 4408 (92.22) 372 (7.78)

Syphilis 24 (30.00) 56(70.00) <0.001

No syphilis 4388 (93.28) 316 (6.72)

Pregnancy 80 (96.39) 3 (3.61) 0.153

No pregnancy 4332 (92.15) 369 (7.85)

Table 3 Adjusted odds ratio and 95% Confidence Interval (CI)

Variables CC n=4751 MI IPCW n=4751 DR n=4751

Intercept 0.05(0.03, 0.07) 0.12 (0.09, 0.17) 0.05 (0.04, 0.08) 3.04 (2.57, 3.60)

Not married 1 1 1 1

Married 1.54(1.07, 2.22) 1.01 (0.92, 1.12) 1.57 (1.07, 2.27) 1.24 (0.91, 1.69)

Female 1 1 1 1

Male 1.61 (1.11, 2.33) 1.02 (0.93, 1.11) 1.51 (1.07, 2.15) 1.02 (1.01, 1.04)

Donations 0.94 (0.89, 0.98) 0.9 (0.82, 0.98) 0.92 (0.86, 0.98) 1.18 (1.12, 1.23)

HIV− 1 1 1 1

HIV+ 36.07(21.19, 61.42) 1.1 (0.96, 1.27) 35.92 (21.05, 61.30) 1.43 (0.71, 2.89)

Discordant 6.44 (0.57, 72.97) 1.1 (0.52, 2.34) 5.57 (0.60, 51.40) 0.41 (0.03, 4.87)

Syphilis− 1 1 1 1

Syphilis+ 35.06 (21.27, 57.85) 1.24 (1.05, 1.48) 34.86 (21.28, 57.10) 1.46 (0.75, 2.86)

Note: CC: Complete Case, MI: Multiple Imputation, IPCW: Inverse Probability Weighting, DR:
Double Robustness
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6 Discussion

Blood donation deferral protects both the blood donor and the recipient. Deferral
occurs due to various reasons leading to either temporary or permanent deferral.
With temporary deferrals, donors return for donation at a later time until they meet
donation requirements. This study modelled the factors associated with blood donor
deferral. With the high levels of missing values in our data we applied MI, IPW,
and DR-IPW methods to appropriately correct for missing values. Through results
obtained from MI, we observed that number of blood donations made as well as
syphilis disease status was associated with deferral status.

MI produced more efficient and precise estimates as demonstrated by the narrow
confidence interval by MI compared to that from CC and IPW (Table 3). The
imputation model included the covariates that made MAR assumption plausible but
if the imputation model is wrong, MI gives invalid estimates. The plausibility of the
MAR assumption ensures correction of bias in parameter estimates. The MI method
also accounted for both within and between imputation variations which is in line
with the results from a study by Chinomona and Mwambi (2015). The fact that MI
imputes the missing values multiple times demonstrates the power of the method to
account for the uncertainties in the missing values.

IPW did not eliminate the bias introduced by CC when accounting for the missing
values in this study. This is because the method is based on complete cases by
assigning the weight to the fully observed variables. Due to the magnitude of the
missing values in this study, IPW did not correct for the bias introduced hence the
estimates were inefficient despite passing the inverse of the probability of observing
the incomplete values given the observed values to the logistic regression model.
This is in line with Carpenter et al. (2006) who commented on the difficulty to
obtain efficient parameter estimates through IPW.

CC produced inefficient estimates since it discarded observations that were not
fully observed leading to a reduction in sample size. The lack of efficiency in
the estimates obtained from CC analysis clearly indicates that the fully observed
values were not a true representation of the population under study. Chinomona and
Mwambi (2015) also found that this method as well as other ad-hoc methods are not
principled to account for the randomness in the process of replacing missing values.
If the analyses from this study resorted to complete case analyses invalid inferences
would have resulted.

MI accounts for both the within and between imputation variability. On the other
hand double robustness improves the efficiency of IPW despite the method being
applied only on the complete values. The attractiveness of applying this method is
its double protection property that guards against model misspecification, for both
the data model and the imputation model. Through this method, consistent estimates
will still be obtained if the misspecified model is either the model of the probabilities
of observing the data or the model of the joint probability of the fully and partial
observed values and not necessarily both models. Carpenter et al. (2006) stated that
IPW on its own will, however, give inconsistent estimates if the former model is
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misspecified, whereas MI imputation gives inconsistent estimates if the later model
is misspecified.

7 Limitations

The study used secondary data hence, the researcher had no way of knowing
the reasons for missing data, despite considerable efforts to find out. The main
missingness mechanism assumption used in these analyses was MAR. This is
because literature indicates that MAR is the most plausible assumption in many
scenarios (Chinomona & Mwambi, 2015). Based on the MAR assumption and the
results obtained from CC, IPW, MI, and DR-IPW, the MI and the DR would be
considered as the most reliable results in the researcher’s opinion for the analyses
from this study. This is based on theory.

For a more accurate analysis of study findings when faced with high proportion
of missing values, double robustness methods should be the preferred method to
account for the missingness because they are robust to model misspecification.
The method, however, is not available in most existing software hence limiting
its application. As such, multiple imputation which has shown to produce similar
estimates to DR estimates can be used to handle missing data.

8 Conclusion

Based on the variables used for this analysis and results from MI method, regular
donors who donated blood several times are less likely to be deferred for donation
compared to donors with a reduced number of blood donations made. This can be
due to the awareness among the regular donors on blood donation requirements
hence the minimal risk of deferral among them.

Missing values affect generalizability of study findings when the analysis is
based only on fully observed values. The missing data from this study was based
on MAR assumption which is considered to be very plausible in practice. Under the
MAR assumption made in this study, MI and DR produced more precise estimates
compared to CC and IPW methods as evidenced by narrow confidence intervals
from their estimates.

9 Disclosure

The authors declare that they have no competing interests. This work was presented
at the International Biometric Society SUSAN conference, Lilongwe, Malawi 22–
24 August, 2017, and a poster presentation at Clinic on the Meaningful Modeling



Application of Multiple Imputation, Inverse Probability Weighting, and Double. . . 469

of Epidemiological Data (MMED). Muizenberg, South Africa, May 28 to June 8,
2018.

Authors’ contributions EK MM

Research concept and design � �
Data management �
Data analysis and interpretation � �
Critical revision of article � �
Final approval of article � �
Statistical analysis �

Acknowledgments Many thanks to Prof. C. Chasela and MBTS team for making the MBTS
dataset available for this analysis. To Dr. Maganizo Chagomerana for his constructive comments.

Appendix

STATA CODE

capture log using THESIS_DATA.log, replace
use"C:\Users\ekudowa\Documents\THESIS_DATASETS\

mbtswithcords1.dta", clear set more off

********keep first observations in each donornumber:::
:::::::::::::::::::

bysort donorno: gen nkey=_n
keep if nkey==1

**exclusions of some observations ::::::::::::::::::::
::::::

gen lastdonationyear=year( lastdonationdate )
keep if lastdonationyear>=2014
keep if number of donations>1

****generating new variables and recoding variables ::
:::::::

gen birthyear=year( dateofbirth )
gen age=(lastdonationyear-birthyear)
recode age (16/19=1) (20/35=2) (36/100=3), gen(agecat)
recode number of donations (2/10=1) (10/100=2),

gen(donationscat)
label define agelab 1"<20" 2"20-35" 3">35"
label values agecat agelab
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***********coding marital status to two categories****
******

gen married =1 if marital==1
replace married=0 if marital==0|marital==2|marital==3|

marital==4
label define married 1 "married" 0 "not married"
label values married married

***********coding donor status to two categories******
*****

gen deferred =0 if status==0
replace deferred=1 if status==1|status==2
label define deferralstatus 1 "yes" 0 "no"
label values deferred deferralstatus

**************descriptive stats before imputation ****
******

su age, d
su number of donations, d
ta marital
ta sex
ta status
ta bloodgroup

************for univariate, bivariate and multivariate
analysis:::

*******crosstabulation for IVs vs DV::::::::::::::::::
::::

ta married deferred, chi2 col
ta sex deferred, chi2 col
ta agecat deferred, chi2 row
ta donationscat deferred, chi2 row
ta hiv deferred, exact row
ta anaemia deferred, exact row
ta weightloss deferred, exact row
ta bp deferred, exact row
ta syphilis deferred, chi2 row
ta pregnant deferred, chi2 row

************FITIING UNIVARIATE ANALYSIS MODELS::::::::
::::

logit deferred ib0.married, or
logit deferred ib0.sex, or
logit deferred ib3.agecat, or
logit deferred age, or
logit deferred number of donations, or
logit deferred ib2.donationscat, or
logit deferred ib0.hiv, or
logit deferred ib0.syphilis, or
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logit deferred ib1.pregnant, or

*********FITIING A MULTIVARIATE ANALYSIS MODEL
COMPLETE CASE:

logistic deferred ib0.married ib0.sex number of
donations ib0.hiv

ib0.syphilis agecat pregnant bp anaemia weightloss

***removing perfect predictors::::::::::::::::::::::::
::::::

logistic deferred ib0.married ib0.sex number of
donations ib0.hiv ib0.syphilis

**********generating dummy variables for missing
value******

gen deferred_flag=1
replace deferred_flag=0 if deferred==.
gen married_flag=1
replace married_flag=0 if married==.
gen age_flag=1
replace age_flag=0 if age==.
gen noofdonation_flag=1
replace noofdonation_flag=0 if number of donations==.

****performing ttest for missing variables with their
missing flags

foreach var of varlist deferred_flag -
noofdonation_flag{ display "‘var’"

ttest sex, by(‘var’)
}

*********missing values table and plot::::::::::::::
:::::

gen mis=0
replace mis=1 if deferred==.| number of donations==.
label define misv 1"missing" 0"not missing"
label values mis misv
catplot mis agecat , percent(agecat) recast(bar) ///
title("Distribution of missing values by age")

ytitle("%missing") ///
asyvars bar(1, color(blue))bar(2, color(red))

saving(age)
catplot mis sex , percent(sex) recast(bar) ///
title("Distribution of missing values gender")

ytitle("%missing") ///
asyvars bar(1, color(blue))bar(2, color(red))

saving(gender)
catplot mis hiv , percent(hiv) recast(bar) ///
title("Distribution of missing values by HIV")

ytitle("%missing") ///
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asyvars bar(1, color(blue))bar(2, color(red))
saving(hiv)

catplot mis bp , percent(bp) recast(bar) ///
title("Distribution of missing values by bp")

ytitle("%missing") ///
asyvars bar(1, color(blue))bar(2, color(red))

saving(bp)

*****missing data summaries:::::::::::::::::::::::::::
::::::

misstable summ deferred married number of donations
hiv syphilis

misstable patterns deferred married number of
donations hiv syphilis

mdesc deferred number of donations married hiv
syphilis pwcorr deferred sex married number of
donations hiv syphilis,
star(0.05) sig

************multiple imputation for the missing values
:::::

mi set mlong
mi register imputed deferred number of donations
set seed 888
mi impute chained (logit) deferred (regress) number

of donations,
augment add(10)

mi estimate: logit deferred ib0.married ib0.sex ///
number of donations ib0.hiv ib0.syphilis, vce(robust)
mi estimate, or
mi xeq: ta married
mi estimate, vartable

****Inverse Probability Weighting:::::::::::::::::::
:::::::

logit deferred_flag ib0.married ib0.sex ib0.hiv
ib0.syphilis, or

predict fitprob1
gen idefprob= 1/fitprob1
hist idefprob
logit noofdonation_flag ib0.married ib0.sex ib0.hiv

ib0.syphilis, or
predict fitprob2
gen inoofdprob= 1/fitprob2
hist inoofdprob
logistic deferred ib0.married ib0.sex number of

donations ///
ib0.hiv ib0.syphilis [pweight=idefprob]
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[pweight=inoofdprob]

******generating an indicator for incomplete
records::::::::

gen imis=1
replace imis=0 if deferred==.|number of donations==.
logit imis ib0.married ib0.sex ib0.hiv ib0.syphilis,

or
predict fitprob
gen iprob= 1/fitprob
hist iprob
logistic deferred ib0.married ib0.sex number of

donations ///
ib0.hiv ib0.syphilis [pweight=iprob]
gen iprob2=iprob
replace iprob2=60 if iprob2>=60 & iprob2<.
logistic deferred ib0.married ib0.sex number of

donations ///
ib0.hiv ib0.syphilis [pweight=iprob2]

**** double robustness using IPRA AND AIPW::::::::::
:::::::

teffects ipwra (deferred, logit) ( sex number of
donations ///

ib0.married ib0.hiv ib0.syphilis, logit ),
vce(robust) aequations

teffects aipw (deferred, logit) ( sex number of
donations ib0.married ///

ib0.hiv ib0.syphilis, logit ), vce(robust) aequations
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