
The Action of Phytochemicals in the Control
of Pathogenic Biofilms

Mariana Sousa, Inês B. Gomes, Lúcia C. Simões, Manuel Simões,
and Marta Ribeiro

Abstract The treatment of bacterial biofilms has been progressively troubled due to
increasing antibiotic resistance. Biofilms exacerbate the fight against infections as
they provide a protective environment for microbial cells, hindering the penetration
of antimicrobial agents and favoring the uptake of elements necessary for cell
survival like water, oxygen, and nutrients. Indeed, many first-line antimicrobial
agents have become ineffective in treating biofilm-related infections, instigating
the search for new antimicrobial agents. Natural products, particularly plant-derived
compounds known as phytochemicals, have been shown to be effective, with an
excellent broad-spectrum antibacterial profile, even against drug-resistant bacteria.
This chapter addresses the main concepts of biofilm-associated mechanisms that
promote bacterial survival. Moreover, different phytochemicals are described for
biofilm prevention and control, correlating the mode of action of phytochemicals to
the inhibition/alteration of virulence factors and other biofilm mechanisms. The
scientific evidence of a wide variety of phytochemicals being described in this
chapter should support future efforts to fast-track in vitro research to clinical
applications to fight biofilm-related infectious diseases.
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1 Introduction

Since their discovery, antibiotics have been essential for the treatment and preven-
tion of diseases, allowing many previously fatal infections to be treated or controlled
(Nigam et al. 2014; Allen et al. 2019; Micoli et al. 2021). Nevertheless, the improper
use and over-prescription of antibiotics, poor hygiene and sanitation habits, poor
infection control, and the absence of new antibiotics led to a rapid emergence and
spread of resistant microbial strains (Allen et al. 2019; Liu et al. 2021; Hawkings
et al. 2007; Ferri et al. 2017; Barbieri et al. 2017). In fact, antibiotic resistance is one
of the greatest threats to public health, limiting the prevention and treatment of a
large range of previously treatable infectious diseases (Micoli et al. 2021; Jindal et al.
2015; Monte et al. 2014; Levy and Marshall 2004). Antimicrobial resistance (AMR)
is a natural result of the adaptation of infectious pathogens to antibiotics used in a
variety of fields. Moreover, the economic burden associated with these multidrug-
resistant bacteria is massive (Monte et al. 2014; Prestinaci et al. 2015). Since
antibiotic resistance is multifactorial, the WHO recommends a series of coordinated
actions, from preventing the spread of the infection to promoting the research and
development of new treatment strategies (Barbieri et al. 2017; Neu 1992; Ventola
2015). In addition, microorganisms may live in biofilms, which consist of aggregates
of microbial cells attached to biotic or abiotic surfaces and embedded in a self-
produced matrix of extracellular polymeric substances that protect cells from envi-
ronmental stressors. It is well-known that the acquisition of resistance to antibiotics
by bacteria is facilitated when they are present in biofilms (de Carvalho 2018; Yin
et al. 2019; Kostakioti et al. 2013; Bridier et al. 2011). Biofilms are linked to serious
and difficult-to-treat infections and combating them can be unmanageable or
requires high doses of antibiotics (Llor and Bjerrum 2014; Frieri et al. 2017).
Bacteria in biofilms can be up to 1000 times more tolerant to antibiotics than free-
floating bacteria, which severely limits treatment options (Potera 2010; Sharma et al.
2019; Venkatesan et al. 2015).

To find novel antimicrobial agents distinct from antibiotics, plants have been
explored as a source of compounds that show promising effectiveness against a
variety of organisms, including fungi, yeasts, bacteria, and viruses (Monte et al.
2014; Wintola and Afolayan 2015; Cowan 1999). Phytochemicals are non-nutritive
plant secondary metabolites with biological activity (Huang et al. 2016; Jimenez-
Garcia et al. 2018; Liu 2013; Arendt and Zannini 2013; Diep et al. 2015). Different
parts of plants from several species, such as leaves, roots, fruits, seeds, barks, stem
bark, and flowers, are rich in different classes of phytochemicals, which may be a
source of effective, inexpensive, and safe antimicrobial agents (Barbieri et al. 2017;
Aung et al. 2020; Chouhan et al. 2017). They have been shown to inhibit peptido-
glycan synthesis, destroy the structure of microbial membranes, change the hydro-
phobicity of bacterial membranes, and interfere with quorum sensing (QS) (Monte
et al. 2014; Nazzaro et al. 2013). Plant extracts and their phytochemicals have been
highlighted as promising antimicrobial agents due to their cost-effectiveness,
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eco-friendliness, large structural diversity, and the possibility of reducing the resis-
tance to antimicrobial drugs (Sakarikou et al. 2020; Giaouris and Simões 2018).

2 Biofilm-Related Infections

Biofilms are surface-related microbial structures that can be present in a large variety
of environments, either abiotic or biotic (Moshynets and Spiers 2016; Balcázar et al.
2015; Lebeaux et al. 2014). One of the most important characteristics of biofilms is
their capacity to ensure greater protection of bacterial cells and survive in the
presence of external stressors, such as high concentrations of antimicrobials.
Biofilms recalcitrance may lead to treatment failure and infection recurrence
(Lebeaux et al. 2014; Aggarwal et al. 2015; Giulia and O'Toole 2021). Therefore,
even in unfavorable environments, biofilms can promote the survival of pathogenic
microorganisms and facilitate their spread and the recolonization of new niches
(Muhammad et al. 2020; Del Pozo 2018; Roy et al. 2018; Wu et al. 2015; Kostakioti
et al. 2013). Biofilms are also associated with device-related infectious diseases,
which can be responsible for the development of malfunctions of devices and even
chronic infections (Del Pozo 2018; Nandakumar et al. 2013; Khatoon et al. 2018). In
fact, biofilms are responsible for up to 80% of human infections, such as cystic
fibrosis (CFs), endocarditis, osteomyelitis, and sepsis. Thus, given the relevance of
infections caused by biofilms, it is essential to highlight the pathogens considered
most critical, as well as the stages of development of a biofilm, their main specific
tolerance mechanisms, and their respective virulence factors.

2.1 Critical Multidrug-Resistant Pathogens

According to the WHO, certain microorganisms are particularly problematic for
human health, including Gram-negative bacteria, such as Enterobacteriaceae,
Acinetobacter baumannii, and Pseudomonas aeruginosa and ESKAPE pathogens,
i.e. a group of six highly virulent, pathogenic, and antibiotic-resistant pathogens,
including Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae,
Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter spp. These
Gram-positive and Gram-negative bacteria can evade or “escape” commonly used
antibiotics due to the spread of multidrug resistance, being linked to increasing AMR
infections worldwide (Santajit and Indrawattana 2016; Schultz et al. 2020; Mulani
et al. 2019; Skariyachan and Garka 2018; Julian and Blumberg 2017; Karlowsky
et al. 2017). Table 1 shows the main virulence factors associated with some of the
most concerning bacteria, as defined by the WHO. These virulence factors are
correlated with their tolerance to antimicrobial agents, as well as the development
of infection in the host system.
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2.2 Biofilm Formation and Specific Mechanisms

Biofilm formation has been recognized as a multistage process. It is believed that the
biofilm development process occurs through several stages, as schematized in Fig. 1.

For the successful development of a biofilm, specific mechanisms and associated
virulence factors are crucial. Virulence factors are molecules produced by bacteria,
which are needed to enable bacteria to attack eukaryotic cells and cause infections.
They are usually encoded on mobile and integrative genetic elements, namely
plasmids, bacteriophages, conjugative transposons, integrative and conjugative ele-
ments, and pathogenicity islands (Abedon et al. 2009; Sharma et al. 2017; Lami
2019; Boyd 2012). Virulence factors allow the pathogens to evade the host immune
response and facilitate the establishment and long-term survival of biofilms in tissues
(Zhao and Ma 2015; Phillips and Schultz 2012). Besides virulence factors, biofilms
also developed several mechanisms, which are extremely important for their survival
and proliferation in host tissues (summary in Table 2).

Table 1 Main virulence factors of selected pathogens

Bacterium Main virulence factors References

A. baumannii Porins; capsular polysaccharides;
phospholipases; lipopolysaccharides;
outer membrane vesicles; metal acqui-
sition systems; protein secretion
systems.

(Lee et al. 2017; Sarshar et al. 2021;
Aliramezani et al. 2019)

P. aeruginosa Pyocyanin; pyochelin; other pigments;
elastase; phospholipase C; protease A;
exotoxins and cytotoxins; flagella and
pili; QS regulatory system proteins.

(Alonso et al. 2020; Britigan et al.
1992; Cox 1986)

S. aureus Membrane-damaging toxins; toxic
shock syndrome toxin; epidermolytic
toxin; staphylococcal enterotoxins;
pyrogenic exotoxin; exoenzymes;
enterotoxin; panton-valentine
Leukocidin (PVL) toxin; thermostable
nuclease (TNase); adhesins; phenol-
soluble modulins; surface proteins;
capsular polysaccharides; invasins;
surface inhibitors of phagocytosis;
membrane-damaging enzymes.

(Harvey et al. 1999; Tam and Torres
2019; Dinges et al. 2000; Etter et al.
2020; Fisher et al. 2018;
Balasubramanian et al. 2017; Watkins
et al. 2012; Pidwill et al. 2021;
Flannagan et al. 2015)

E. faecium Proteins and carbohydrates; enzymes;
enterococcal surface protein (Esp);
cytolysin; cell wall adhesins efaAfm;
gelatinase (gelE); aggregation sub-
stances (agg).

(Huycke et al. 1998; Mascini et al.
2006; Ike 2017; Mundy et al. 2000;
Barbosa et al. 2010)
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3 Antibacterial Strategies Based on Natural Products
to Target Biofilms

Bacterial resistance mechanisms are specific strategies of microbial evolution
(Simões et al. 2009; Upmanyu et al. 2020; Ray et al. 2017). Thus, it is not surprising
that new antibiotic resistance mechanisms will emerge (Barbieri et al. 2017; Diggle
and Whiteley 2020; Munita and Arias 2016; Sekyere and Asante 2018). Some
phenomena can explain the resistance of microorganisms to antibiotics: (i) cells
can present an intrinsic and natural resistance to drugs, being “genetically
programmed” to resist antibiotics (Holmes et al. 2016; Beceiro et al. 2013);
(ii) microorganisms may suffer some genetic modifications like mutations, which
make them insensitive to antibiotics (Fair and Tor 2014; Beceiro et al. 2013;
Meredith et al. 2015); (iii) cells may become resistant to antimicrobial agents
through the horizontal acquisition of genes that confer resistance to certain antibi-
otics from other microorganisms, which is a very extensive phenomenon and
increases the probability of survival under the selective pressure caused by antibi-
otics (Beceiro et al. 2013; Meredith et al. 2015; Bello-López et al. 2019). Moreover,
bringing a new antibiotic to the market may take up to 10 years and it is very
expensive and time consuming (Barbieri et al. 2017; Spellberg 2014; Power 2006).
Thus, new strategies aiming to fight bacterial infections, especially those caused by
biofilms, are highly necessary (Bi et al. 2021; Srinivasan et al. 2021; Zhang et al.
2020a; Simões et al. 2009). Indeed, natural compounds, especially those obtained
from plants, have become promising candidates for these much-needed treatments
due to excellent antibacterial activity (Barbieri et al. 2017; Ćirić et al. 2019;
Melander et al. 2020; Chassagne et al. 2021; Lahlou 2013).

Fig. 1 Representation of the biofilm development stages (based on Jamal et al. 2018; López and
Soto 2020)
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Table 2 Biofilm-related mechanisms that confer bacterial protection and advantages to survive
under stress conditions

Biofilm mechanisms and their main
characteristics References

Quorum
Sensing
(QS)

•QS allows bacteria to communicate and
modulate the expression of genes
involved in bacterial survival, virulence,
and pathogenicity.
• The production and release of
autoinducers (AIs) allow bacteria to
detect changes in population density and
the interaction of AIs with specific tran-
scriptional regulators leads to
population-dependent changes in gene
expression.
• QS systems in Gram-negative bacteria
are related to a LuxI/R-like system.
LuxI-type proteins are synthase proteins
that catalyze the synthesis of Acyl-
Homoserine Lactones (AHL) while
LuxR type proteins are transcriptional
activator proteins to which AHL binds,
triggering transcriptional modifications.
• In Gram-positive bacteria, peptides are
secreted and detected by the
two-component systems but can also be
actively transported via ABC trans-
porters to bind a cytoplasmic regulator.

(Floyd et al. 2017; Vattem et al. 2007;
Skindersoe et al. 2008; Miller and
Bassler 2001; Rutherford and Bassler
2012; Pena et al. 2019; Smith et al.
2020; Frederix et al. 2011; Harriott
2019; AL-Mamun et al. 2018; Goulden
et al. 2013; Clark et al. 2019)

Adhesion • Adhesion is the first essential step for
biofilm development and it is controlled
by a complex set of chemical and phys-
ical interactions.
• The first adhesion process of a plank-
tonic microorganism is reversible, and it
is dictated by several physicochemical
interactions, being mostly associated
with van der Waals forces and electrical
double layer forces (DLVO theory).
• The adhesion will depend on the net
sum of attractive and repulsive forces
between the surfaces and the microor-
ganism.
• The second stage implies a stronger and
irreversible binding of the microorgan-
ism to the surface through bacterial
adhesins.

(Garrett et al. 2008; Almaguer-Flores
2013; Stones and Krachler 2016;
Abraham et al. 2015; Berne et al. 2018;
Meireles et al. 2015)

Motility • Motility is one of the most dynamic
bacterial phenomena, contributing to
virulence through adhesion and forma-
tion of biofilms.
• Six different categories of bacterial
motility have been identified:

(Monte et al. 2014; Xu et al. 2014;
Harshey 2003; Pollitt and Diggle 2017;
Eberl et al. 1999; Tomada et al. 2016)

(continued)
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Medicinal plants are the most abundant biological resources in traditional and
modern medicine, nutraceuticals, food supplements, folk medicines, pharmaceutical
intermediates, and chemical components of synthetic medicines (Desai et al. 2015;
Saranraj et al. 2016; Pan et al. 2013). The intake of phytochemicals in the diet can
promote health and protect the human body from diseases, being also able to reduce
the risk of some chronic diseases (Jimenez-Garcia et al. 2018; Liu 2013; Yoo et al.
2018; Septembre-Malaterre et al. 2017). Phytochemicals with nutritious and health-
care properties in foods are of great significance due to their beneficial effects on
human health. They are able to prevent and assist in the combat of a large variety of
diseases, such as cancer, coronary heart disease, diabetes, hypertension, inflamma-
tion, microbial, viral, and parasitic infections, psychosis, spastic diseases, ulcers,
osteoporosis and related diseases, among others (Thakur et al. 2020; Zhang et al.
2015; Forni et al. 2019; Guan et al. 2021; Kibe et al. 2017; Visioli et al. 2000; Howes
and Simmonds 2014).

A large variety of well-known phytochemicals have been identified over the
years, such as lycopene present in tomatoes, isoflavones in soybeans, and flavonoids
found in fruits (Zhang et al. 2015; Ghoshal 2018; Waheed Janabi et al. 2020). An
interesting feature of these compounds is their powerful antioxidant potential. In
fact, the regular consumption of fruits, vegetables, and whole grains has shown to
reduce the risk of various diseases related to oxidative damage, acting as free radical
scavengers like hydrogen donors, electron donors, peroxide decomposers, singlet

Table 2 (continued)

Biofilm mechanisms and their main
characteristics References

Swimming, swarming, gliding,
twitching, sliding, and darting.
• Swimming and swarming are depen-
dent on flagella.
• Twitching and some ways of gliding
require type IV pili.
• Sliding/spreading are passive translo-
cation types of motility. Information
about darting is still scarce.

EPS
production

• EPS are organic polymers, namely
exopolysaccharides, proteins, lipids, and
DNA, crucial for the interaction between
bacteria and the environment.
• The extracellular matrix, composed by
water and EPS, is essential for the
establishment and maintenance of the
structure and properties of biofilms.
• The matrix stability is guaranteed by
non-covalent binding between EPS
involving weak physicochemical forces.
• The EPS network confers cohesion and
viscoelasticity to the structure.

(Costerton et al. 1999; Di Martino 2018;
Jiao et al. 2010; Sheng et al. 2010; Gao
et al. 2019; Flemming and Wingender
2010; Costa et al. 2018; Caro-Astorga
et al. 2020; Chiba et al. 2015;
Jachlewski et al. 2015)
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oxygen quenchers, enzyme inhibitors, synergists, and metal chelators (Thatoi et al.
2014; Yu et al. 2021; Chen et al. 2014; Asaduzzaman 2018; Manganaris et al. 2018;
Martínez et al. 2014). Phytochemicals that have significant health benefits belong to
the categories of phenolic compounds, alkaloids, organosulfur compounds,
phytoestrogens, terpenoids, carotenoids, limonoids, and phytosterols. All of these
have shown to be highly effective in preventing and combating a wide variety of
diseases (Huang et al. 2016; Jimenez-Garcia et al. 2018; Thakur et al. 2020; Singh
et al. 2020; Bayir et al. 2019; Andrade et al. 2020; Koche et al. 2018; Patra 2012).
Thus, the exciting properties of phytochemicals, combined with the growing need
for new antimicrobial agents highlight these molecules as potential antibiofilm
strategies of the future.

3.1 Targeting Bacterial Biofilms with Phytochemicals

Phytochemicals can present various mechanisms of action that have the capacity to
harm the establishment and development of biofilms (Simões et al. 2009). These
mechanisms include the inhibition of peptidoglycan synthesis (Monte et al. 2014;
Nazzaro et al. 2013), cytoplasmatic membranes and cell wall damage and disruption
(Suarez et al. 2005; Oussalah et al. 2006; Haraguchi et al. 1996), modification of
hydrophobicity and permeabilization of the bacterial membranes (Cox et al. 2000;
Carson et al. 2002; Trombetta et al. 2005; Melzig et al. 2001; Ultee et al. 1999),
efflux pump inhibition (Aeschlimann et al. 1999; Schmitz et al. 1998; Khan et al.
2006; Micol et al. 2001), inhibition of RNA or DNA synthesis (Mori et al. 1987;
Cushnie and Lamb 2005; Feldberg et al. 1988; Sundar and Chang 1992), inhibition/
interference of enzyme activity and of the electron transport chain (Lin et al. 2005;
Mirzoeva et al. 1997; Sinha Babu et al. 1997; Mandal et al. 2005). Despite the wide
variety of phytochemical molecules that have been described as bioactive and of
potential interest as food supplement or drug, only few were approved by the US
Food and Drug Administration (FDA) (Kongkham et al. 2020).

Phytochemicals with antibiofilm properties include, for example, quercetin,
which can inhibit the production of alginate, leading to a decrease in the adhesion
during the biofilm development (Górniak et al. 2019; Memariani et al. 2019; Lee
et al. 2013). Another example is (+)-usnic acid, which has been used to modify
polyurethane surfaces to evaluate its influence on the development of S. aureus and
P. aeruginosa biofilms (Francolini et al. 2004). The results showed that the forma-
tion of S. aureus biofilms for a period of up to 6 days was inhibited on polyurethane
surfaces with (+)-usnic acid. On the contrary, P. aeruginosa biofilms were able to
develop on surfaces of (+)-usnic acid-treated polymer. In fact, the (+)-usnic acid has
higher antimicrobial activity against S. aureus than against P. aeruginosa, as
translated by the minimum inhibitory concentration (MIC), which was 32 μg/mL
for S. aureus and 256 μg/mL for P. aeruginosa. (+)-usnic acid was also able to affect
the morphology of P. aeruginosa biofilms, since the biofilm was thinner and flat in
the control polymer and in the (+)-usnic acid-treated polymer the biofilm was
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substantially thicker and rougher (Francolini et al. 2004). Another phytochemical
that exhibited very interesting results is emodin, which inhibited the development of
biofilms by P. aeruginosa, E. coli, and S. aureus through the decrease of expression
of key genes involved in biofilm formation. Moreover, several studies also evaluated
the effect of plant extracts on biofilm control, instead of pure and isolated phyto-
chemicals. The use of extracts containing different molecules may result in syner-
gistic interactions, which may explain the positive results obtained with low doses of
active compounds in herbal products. This highlights the hypothesis that the use of
plant extracts may be advantageous in comparison with the use of single phyto-
chemicals (Borges et al. 2016).

The effectiveness of phytochemicals and plant extracts in combating infections
may be justified by alterations caused in specific biofilm mechanisms, as described in
the following sections.

3.1.1 Effects of Phytochemicals in QS Mechanisms

QS is a crucial regulatory mechanism involved in biofilm formation and differenti-
ation (Borges et al. 2014a). It allows bacteria to communicate through the delivery
and sensing of small signal molecules, ensuring relevant advantages for bacteria in
regard to colonization, biofilm development, defense, adaptation, virulence, and
pathogenicity (Rutherford and Bassler 2012; Pena et al. 2019; Li and Tian 2012;
Grainha et al. 2020). Therefore, studying natural molecules with the ability to
interfere with QS and understanding their effects may be an important way to fight
bacterial tolerance and biofilms (Rutherford and Bassler 2012; Borges et al. 2014a;
Lade et al. 2014). In fact, several studies have shown the action of specific phyto-
chemicals on QS and consequently the possibility to retard or avoid biofilm devel-
opment. For instance, the synthetic halogenated furanone, a secondary metabolite
compound derived from furanone present in the Australian macroalgae Delisea
pulchra, has shown great potential in affecting the bacterial signaling QS, as well
as the motility of cells. Based on the structural similarity between D. pulchra
furanone and Acyl-homoserine lactone (AHL) molecules, it is hypothesized that
this furanone may be responsible for interfering with the interaction of the putative
regulatory protein and AHL molecule through its competitive binding to the recep-
tor. Moreover, furanones can also inhibit surface aggregation traits, when in an
ecologically significant concentration (Roy et al. 2018). Hentzer et al. suggested that
rhl system, which is a QS mechanism in P. aeruginosa, is a target to furanone
(Hentzer et al. 2002). This compound can penetrate the biofilm matrix of
P. aeruginosa, interfering with genes related to QS biofilm maturity expression.
Hence, this compound is capable of changing the biofilm structure, which promotes
the detachment of bacteria and leads to the loss of bacterial biomass in the matrix,
also mediating the displacement of AHL molecules from LuxR receptor sites (Roy
et al. 2018; Hentzer et al. 2002; Hentzer and Givskov 2003; Asfour 2018; Alasil
et al. 2015).
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Certain polyphenol compounds, such as epigallocatechin gallate (EGCG), tannic
acid, ellagic acid, gallic acid, and ferulic acid are also promising molecules for
inhibiting biofilm development. Some studies linked the antibiofilm activity of these
polyphenolic molecules to the interference in QS. For instance, Huber et al. dem-
onstrated that polyphenolic compounds, such as gallic acid, (�)-epigallocatechin
gallate, (+)-catechin and tannic acid were capable of interfering with QS mecha-
nisms of E. coli and P. putida through the blockade of the AHL system (Quave et al.
2012; Huber et al. 2003). Quercetin, as well as some others flavonoids, have also
shown to be efficient in affecting the QS mechanisms of several microorganisms,
such as P. aeruginosa, S. aureus, Escherichia coli, Enterococcus faecalis, and
Streptococcus mutans.

Curcumin, from the rhizome of Curcuma longa, showed strong and effective
biofilm inhibitory activity related to the regulation of the expression of genes
involved in QS and associated with the production of alginate and
exopolysaccharides. Curcumin has also shown effects in inhibiting the swimming
and swarming motilities and increasing biofilm susceptibility to antibiotics (Borges
et al. 2016; Packiavathy et al. 2013; Packiavathy et al. 2014). A study performed by
Kali et al. demonstrated that curcumin in combination with ciprofloxacin was
effective against biofilms of Gram-positive bacteria. Moreover, this compound
was also effective against Gram-negative biofilms when combined with the antibi-
otics amikacin, gentamicin (GEN), and cefepime. These results revealed the poten-
tial of using curcumin in a combination therapy (Kali et al. 2016). In addition,
emodin induced the proteolysis of E. coli QS signal receptor TraR and enhanced the
activity of ampicillin against P. aeruginosa. This compound has also been associated
with the downregulation of the cidA gene, which is involved in cell lysis and eDNA
release (Borges et al. 2016; Yan et al. 2017; Harapanahalli et al. 2015; Zhang et al.
2020b).

Regarding the use of plant extracts, Zhang et al. evaluated the antibiofilm and QS
inhibition activity of an extract from Rosa rugosa tea, whose main components are
polyphenols and flavonoids (Zhang et al. 2014). This extract inhibited the production
of violacein, controlled by QS in C. violaceum. Furthermore, this extract also
inhibited the biofilm formation by E. coli and P. aeruginosa, which may be related
not only to its quorum quenching activity, but also to the inhibition of bacteria
swarming motility. Glycosyl flavonoids, such as chlorogenic acid, isoorientin,
orientin, isovitexin, vitexin, and rutin were also capable of inhibiting the QS in
C. violaceum and E. coli. Moreover, there are more plant components with QS
inhibition properties, such as extracts from liverwort Lepidozia chordulifera, where
it is possible to find sesquiterpenoid viridiflorol, triterpenoids, ursolic and betulinic
acids (Zhang et al. 2014). Other relevant and efficient phytochemicals with
antiquorum sensing effects include N-(heptylsulfanylacetyl)-L-homoserine lactone,
extracted from garlic (able to interrupt QS signaling by competitively inhibiting
transcriptional regulators LuxR and LasR), limonoids, and hordenine (Klančnik
et al. 2021). Furthermore, baicalin hydrate, cinnamaldehyde, and hamamelitannin
have been shown to significantly improve the susceptibility of P. aeruginosa,
B. cenocepacia, and S. aureus biofilms, including MRSA, in combination with
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conventional antibiotics. In fact, hamamelitannin can act as a QS inhibitor by
increasing both the in vitro and in vivo susceptibility of MRSA biofilms, which
can be associated with its ability to interact with the TraP receptor and affect the
release of eDNA (Brackman et al. 2011; Yuan et al. 2020; Jiang et al. 2019).

There are more examples of studies that equally show promising results of
phytochemicals regarding antiquorum sensing activity. It was demonstrated by
Niu et al. that Cinnamomum cassia extract, containing cinnamaldehyde and eugenol,
significantly inhibited QS of E. coli and Vibrio harveyi (Niu et al. 2006). In addition,
clove, cinnamon, peppermint, and lavender also exhibited antiquorum sensing
activity, according to Khan et al. (Khan et al. 2009). Iberin, which is an
isothiocyanate and sulfoxide, interfered with the QS mechanism of P. aeruginosa
and induced apoptosis. Organosulfur compounds from garlic, such as allicin and
ajoene, were able to inhibit QS of P. aeruginosa and E. coli (Borges et al. 2013). In
another study by Vikram et al. flavonoids were evaluated for their capacity to
interfere with QS of V. harveyi and inhibited the development of E. coli O157:H7
and V. harveyi biofilms (Vikram et al. 2010). The results showed that kaempferol,
naringenin, quercetin, and apigenin were able to act as nonspecific inhibitors of
autoinducer-mediated cell–cell signaling processes. In addition, these molecules
inhibited the formation of V. harveyi and E. coli O157:H7 biofilms (Vikram et al.
2010).

3.1.2 Effects of Phytochemicals on Motility

Motility, which generally depends on flagella and pili, is one of the crucial factors
that contribute to biofilm formation and development, especially at an earlier stage,
since these mechanisms require a multicellular movement and dispersion on a
surface (Monte et al. 2014; Lemon et al. 2007; Cai et al. 2020; Kearns 2010;
Köhler et al. 2000). It has been already shown that many natural compounds, extracts
or pure products, have the capacity to interfere with the bacterial motility of several
microorganisms (Vattem et al. 2007; Liaqat et al. 2018), which may be reflected on
the reduction of biofilm formation ability. Swimming and swarming motilities of
P. aeruginosa, Proteus mirabilis, and Serratia marcescens were inhibited by
methanolic extracts of Cuminum cyminum, especially methyl eugenol, a compound
with a well-studied antibiofilm activity. In addition, cinnamaldehyde and eugenol,
from Cinnamomum cassia, were able to compromise the development of E. coli
biofilms by interfering with their swimming motility (Monte et al. 2014). Gallic acid
and ferulic acid displayed potential to inhibit the motility and adhesion of four
pathogenic bacteria, including E. coli, P. aeruginosa, S. aureus, and Listeria
monocytogenes. Identical results were obtained for isothiocyanates allyl isothiocy-
anate (AITC) and 2-phenylethyl isothiocyanate (PEITC) (Borges et al. 2012).
Ferulic acid and salicylic acid (SA) were reported to inhibit swimming motility of
Bacillus cereus and Pseudomonas fluorescens (Lemos et al. 2014).

Camellia nitidissima Chi is a well-known edible plant from China with diverse
biological and medicinal properties, especially antibacterial activity. A study
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performed by Yang et al. assessed the inhibitory activity of the dichloromethane
fraction (DF) of C. nitidissima Chi flowers on the pyocyanin production, as well as
on the swarming and swimming motility of P. aeruginosa PAO1, at sub-minimum
inhibitory concentrations (Yang et al. 2018). DF was associated with a
concentration-dependent inhibition activity in relation to swarming and swimming
motility. Moreover, the half maximal inhibitory concentrations (IC50) were deter-
mined and they found values of 0.158 � 0.009 mg/mL for pyocyanin production,
0.139 � 0.004 mg/mL for swarming motility, and 0.334 � 0.049 mg/mL for
swimming motility. In addition, the results of a real-time polymerase chain reaction
(RT-PCR) showed that DF significantly downregulated the expression of rhlR and
lasR (Yang et al. 2018). In fact, las and rhl systems are the two principal QS
mechanism elements of P. aeruginosa. Finally, through the high-performance liquid
chromatography (HPLC)-triple-time of flight (TOF)-MS/MS analysis, it was found
that DF is mainly composed of gallic acid, catechin, ellagic acid, chlorogenic acid,
quercetin, and kaempferol. These six identified compounds displayed inhibitory
effects on pyocyanin production, swarming, and swimming motilities. Ellagic acid
showed the strongest effect with IC50 values of 0.067 � 0.002 mg/mL for
pyocyanin production, 0.024 � 0.008 mg/mL for swarming motility, and
0.020 � 0.003 mg/mL for swimming motility (Yang et al. 2018). Therefore, it is
possible to infer that all these alterations caused by DF may cause significant effects
on the ability of P. aeruginosa to form biofilms.

In another study by Borges et al., the effect of AITC and PEITC on planktonic
cell susceptibility, bacterial motility and adhesion, and biofilms of E. coli,
P. aeruginosa, S. aureus, and L. monocytogenes was evaluated (Borges et al.
2014b). AITC caused complete inhibition of swimming motility of P. aeruginosa
and total inhibition of swarming motility of E. coli, while PEITC caused complete
inhibition of swimming motility of E. coli, P. aeruginosa, and L. monocytogenes and
swarming motility of E. coli and P. aeruginosa. Moreover, the spreading motility of
S. aureus was completely inhibited by PEITC. AITC and PEITC presented a
preventive effect on biofilm formation, which may be related to the effects on the
inhibition of bacterial motility. Moreover, AITC and PEITC showed a high potential
to reduce the mass of biofilm formed by the Gram-negative bacteria (Borges et al.
2014b).

3.1.3 Effects of Phytochemicals on Adhesion

Bacterial adhesion to the surface of materials is the first step that leads to the
formation of a biofilm and, from the moment the adhesion occurs, it is possible for
the bacteria to communicate with each other and establish a community (Klančnik
et al. 2021; Dunne 2002; Flemming et al. 2016). Therefore, since bacterial adhesion
to a surface is an initial prerequisite for biofilm formation, it is essential to identify
natural compounds capable of interfering with this phenomenon, which may consti-
tute an important target when developing strategies for controlling pathogenicity
(Kostakioti et al. 2013; Verderosa et al. 2019). Within this context, phenolic
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compounds have been shown to exhibit important roles in preventing bacterial
adhesion, including the adhesion of Campylobacter jejuni (Klančnik et al. 2021).
In a study of Pogačar et al., thyme ethanolic extract (TE), thyme post-
hydrodistillation residue (TE-R), and olive leaf extract (OE) were evaluated for
their phytochemical composition using high-performance liquid chromatography
(HPLC) with photodiode array, and antimicrobial activity against C. jejuni (Šikić
Pogačar et al. 2016). The analysis showed that the main components present in TE
and TE-R were flavone glucuronides and rosmarinic acid derivatives, while in OE
verbascoside, luteolin 7-O-glucoside and oleuroside were the major compounds. The
compounds TE and TE-R were able to decrease C. jejuni adhesion to the abiotic
surface by up to 35%, at a concentration range between 50–200 μg/mL, and up to
30%, at a concentration range between 0.2–12.5 μg/mL. TE-R was more effective
than TE and displayed a meaningful inhibition of C. jejuni adhesion (higher than
30%), reaching up to 40%. When considering a concentration range of OE between
3.125–12.5 μg/mL, biofilm formation was affected and the adhesion inhibition
reached 10% to 23%, respectively. In addition, the anti-adhesion effect of C. jejuni
to cell cultures was also assessed and it was observed that the C. jejuni adhesion
toward pig small intestine epithelial cell line, PSI cl1 cells, was remarkably
decreased up to 30% in the presence of TE, TE-R, and OE at a concentration
range between 0.78–200 μg/mL (Šikić Pogačar et al. 2016).

The North American cranberry is also recognized for its high levels of phyto-
chemicals, including phenolic acids, flavonoids, and ellagic acid (Walton 2014). The
antimicrobial properties of cranberry species have been associated with high levels
of polyphenol compounds, particularly proanthocyanidin (PACs). So far, several
data have revealed that PACs have unique characteristics that allow the inhibition of
bacterial adhesion to epithelial cells. Indeed, the studies developed by various
authors have shown that there is a direct correlation between the ingestion of
cranberries and the prevention of urinary tract infections (UTIs) in females (Walton
2014; Kontiokari et al. 2005; Carson and Riley 2003; Tempera et al. 2010). Several
in vitro studies have already been performed and demonstrated that the anti-adhesion
effects of PACs are responsible for a reduction in the bacterial adherence to urinary
tract cells such as uroepithelial cells, but also to other biological materials (Walton
2014; Kontiokari et al. 2005). Furthermore, cranberry extracts also seem to have
similar inhibitory effects on tissue adhesion with regard to Gram-negative bacteria,
including the ones of the genera Proteus, Klebsiella, Enterobacter, and Pseudomo-
nas. The intake of cranberry has been associated with a decrease in the incidence of
gastric ulcer and gastric cancer (Walton 2014). Burger et al. showed that for cultured
gastric epithelial cells, the phytochemicals found in cranberry juice can specifically
interfere with a sialyllactose-specific adhesion mechanism that allows Helicobacter
pylori to adhere to the gastric mucosa. Consequently, these authors inferred that the
cranberry juice could also inhibit the adhesion of bacteria to the stomach in vivo and
acting in the prevention of stomach ulcers that are caused by H. pylori. (Walton
2014; Burger et al. 2002).

Phenolic and polyphenolic compounds have also been shown to have substantial
anti-adhesion effects. A work performed by Toivanen et al. evaluated the
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anti-adhesion activity of different molecular size fractions of wild cranberry
Vaccinium oxycoccos polyphenols against Streptococcus pneumoniae and Strepto-
coccus agalactiae (Toivanen et al. 2010).Moreover, according to Borges et al., there
are other phytochemicals with very impressive anti-adhesion activity, namely
cinnamaldehyde and eugenol, from Cinnamomum cassia, which interfered with
adhesion and biofilm formation of E. coli (Borges et al. 2013). Polyanacardic acid,
polysalicylic acid, catechin, epigallocatechin, and tannic acid also exhibited anti-
adhesion activity and inhibited the formation of Streptococcus mutans and
P. aeruginosa biofilms (Borges et al. 2013). In another work of Lee et al., the
potential effects of phloretin, which can be found, for instance, in apples, were
investigated (Lee et al. 2011). Phloretin reduced the attachment of E. coli O157:H7
to human colon epithelial cells and decreased the formation of E. coli O157:H7
biofilms. It was also demonstrated that phloretin was able to repress genes associated
with toxicity, hlyE and stx(2); the autoinducer-2 importer genes, lsrACDBF; curli
genes csgA and csgB; and also prophage genes of E. coli O157:H7 biofilms (Lee
et al. 2011).

3.1.4 Effects of Phytochemicals on the EPS Production

EPS have a wide range of biological functions, being part of the carbon and energy
reserves, preventing desiccation, protecting against environmental stresses, provid-
ing protection against toxins and antibiotics, as well as playing a crucial role in
pathogenicity, symbiosis phenomena, and adhesion to surfaces (Singha 2012;
Whitfield et al. 1993; Roberts 1996; Khan and Iqbal 2017). Hence, it is fundamental
to discover and understand the role of natural compounds in inhibiting the produc-
tion of EPS with regard to controlling and fighting biofilms (Mishra et al. 2020; Koo
et al. 2017). Several studies described significant action of extracts and specific
phytochemicals on EPS inhibition and removal. For instance, Borges et al showed
that methyl eugenol interfered with EPS production (Borges et al. 2013). In a study
developed by Packiavathy et al., the inhibitory properties of spices and vegetables,
commonly found in South India, on the QS and EPS production of the bacteria
C. violaceum were evaluated (Packiavathy et al. 2012). In the 22 samples tested, the
QS inhibitory compound present in the methanolic extract of Cuminum cyminum, at
a concentration of 2 mg/mL, was able to inhibit the production of violacein by
C. violaceum. In addition, it was demonstrated that the C. cyminum extract highly
interfered with the physiological functions regulated by AHL and the formation of
biofilms, including flagellar movement and EPS production. The QS inhibitory
effects shown by this plant were assigned to methyl eugenol, considering the results
of molecular docking analysis. At a sub-MIC level, it promoted damage to the
biofilm structure and strongly inhibited the biofilm formation of P. aeruginosa
PAO1, P. mirabilis, and Serratia marcescens (Packiavathy et al. 2012). Abraham
et al. assessed the inhibition of EPS production by methanolic fraction of the dried
fruits of Caesalpinia spinosa.Also, the ability to inhibit biofilm formation by E. coli,
P. mirabilis, S. marcescens, and P. aeruginosa PAO1 was assessed (Issac Abraham
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et al. 2011). In addition, its effect in inhibiting QS-dependent phenomena, such as
violacein production in C. violaceum and swimming and swarming motility was also
investigated. It was observed that the extract of C. spinosa interfered with swimming
and swarming motility, EPS production and biofilm formation in E. coli,
P. mirabilis, S. marcescens, and P. aeruginosa PAO1. Here, the extract revealed a
strong QS inhibition effect, in a concentration-dependent way, however, without
interfering with the microbial growth. At a concentration of 2 mg/mL, this extract
significantly restricted the EPS production to 58, 46, 66, and 67%, as well as limited
biofilm formation to 79, 75, 73, 70%, in S. marcescens, P. aeruginosa PAO1, E. coli,
and P. mirabilis, respectively (Issac Abraham et al. 2011).

There are other phytochemicals with a proven ability to inhibit EPS production. A
well-known compound is (�)-epigallocatechin gallate (EGCg), which has several
antimicrobial action modes, including the ability to decrease EPS production
(Borges et al. 2013). EGCg is the major component of tea catechins and displayed
an inhibitory effect, EPS degradation capacity, and a destructive action against
E. coli biofilms (Maeyama et al. 2005). Taking into account the EGCg effects,
Maeyama et al. developed a new bactericidal surface based on a catechin polymer
(Maeyama et al. 2005). The surfaces tested, containing EGCg, were prepared
through photopolymerization of liquid biodegradable polyesters and the rate of
releasing was potentiated by increasing the rate of surface-erosion of the polymers.
Interestingly, polymers exhibiting a higher releasing ability showed a lower biofilm
development on the surfaces. Moreover, EGCg induced a biofilm-destructing effect,
such as EPS degradation, damage of bacterial membrane, and cell detachment
(Maeyama et al. 2005). Allicin is another phytochemical with remarkable proven
evidence in relation to EPS production. Lihua et al. investigated the activity of allicin
against P. aeruginosa biofilm development, specifically their effect on the produc-
tion of virulence factors controlling the QS mechanism and EPS (Lihua et al. 2013).
The authors found that the EPS production increased over time, but decreased with
the concentration of allicin used in the treatment. The study also demonstrated that
although the dry weight of bacteria between the different groups was almost equal to
the one registered at the beginning of the experiments, the total amount of EPS was
significantly reduced when allicin was used. Moreover, bacterial adhesion was
significantly reduced compared to the saline control group, when 128 μg/mL of
allicin was used. Interestingly, when the biofilm was treated with 10 μg/mL of
allicin, it became thinner, and its structure was compromised. Similar results were
obtained for the group treated with 128 μg/mL of allicin, in which the biofilm
thickness was reduced from 28.83 μm to 16.50 μm. The effect of allicin on the
virulence factors exotoxin A, elastase, pyoverdine, and rhamnolipid was also
assessed, being demonstrated that allicin significantly downregulated the expression
of exotoxin A and elastase. In addition, there was a complete inhibition of
rhamnolipid and pyoverdine production. Thus, allicin can affect the development
and maturation of P. aeruginosa biofilms, suggesting that this compound may be a
promising therapy for treating bacterial biofilms (Lihua et al. 2013).
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4 Conclusions and Future Perspectives

Antibiotic resistance is a serious problem in modern society. It has been claimed for
many years that several natural plant products have medicinal effects, which make
them promising for the treatment of various diseases. The development of natural,
safe, and effective therapies helps control and minimize antibiotic resistance. Within
the broad therapeutic and nutritional effects of phytochemicals, the ability to impair
biofilm mechanisms, damage the bacterial membrane, restrict biofilm formation and
silence virulence factors make them highly sought-after, effective antimicrobial
agents. Besides the interference of phytochemicals with many planktonic bacterial
processes, these natural compounds also have promising antimicrobial effects on
biofilm mechanisms, such as adhesion, motility, QS and EPS production, displaying
a strong activity against virulence factors of both planktonic and sessile cells.
Nevertheless, further research is needed to develop and tailor specific applications
of phytochemicals for therapeutic and clinical purposes, to assess their safety profile,
to confirm their efficacy in vivo and in humans, and to ensure appropriate and
selected use to prevent the future emergence of resistances.
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