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Abstract. As the application of pure Transformer in CV field, ViT
shows the generality of Transformer model. However, it requires costly
training on large datasets. Recently, some researchers trying to improve
the training efficiency of ViT by combining ViT and CNN together which
will use the inductive bias of CNN. In these models, the MHSA layer
carries other modules on its side, but existing architectures cannot take
advantage of this feature to customize designs to improve computational
efficiency and resource utilization. The use of FPGA to customize spe-
cialized computing units can meet this need, but the existing hardware
computing units can’t adapt to the combination of different types of
layers, and switching between different models will result in expensive
re-production costs. In this paper, we use hardware and software co-
operation to design the FPGA computing unit and divide the layers
according to their functions. Convolution and Transformer are classi-
fied into one category. Under the coordination deployment of software,
it mix the outputs of the same type of layers through soft switches, so
as to adapt to those flexible models. Compared with the performance of
the original model on CPU, it achieves the acceleration performance of
26× under the condition that the accuracy is only decreased by 0.9%.
And the structure of common data block reduces the size of hardware
resource unit by 91.7%.
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1 Introduction

Since Transformer [1] was proposed, its variants shine in many fields, among
which ViT [2] has achieved remarkable results in CV field. However, with the
increase of training volume caused by the characteristics of Transformer itself,
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there are high requirements on the scale of model base. Excessive training vol-
ume also greatly increases the cost. Some researchers try to take advantage of
CNN’s high training efficiency and combine it with Transformer to meet the
requirements of both accuracy and training efficiency. Influenced by this idea,
ConViT [3], DeiT [4], CeiT [5] and LocalVit [6] models were gradually devel-
oped. They have different mixing modes, but when GPU is used to accelerate
calculation, due to its universal characteristics, the model is not optimized, and
the parallelism of the model is obviously unable to be utilized. Meanwhile, the
volume and power consumption have always been difficult to be solved by this
kind of universal computing unit. Customized FPGA can solve the above prob-
lems, and more and more researchers are trying to customize the calculation
module or deploy the whole calculation model on FPGA [8,9].

There are now many variants of ViT, and it’s very expensive to design ded-
icated computing units for each single variant, and rapid iterations of models
do not wait for delays in hardware design. In order to bring production envi-
ronments online quickly, there is a use of Vitis-AI technology to help quickly
load custom models on hardware, but this solution has limited optimization.
The inability to optimize data transfer between neurons and the need for spe-
cific DPU hardware accelerators greatly limit the minimum size of FPGA cells,
losing one of the original intentions of using FPGA to customize the original.

In this paper, based on the characteristics of the current variants of Vit,
and using the ConViT [3] model as a typical example, we designed a framework
to simultaneously compute CNN and ViT (which are two neurons involved in
most mainstream ViT variants) in one cell and output using soft switch con-
trol. In addition to speeding up the hardware through data quantization, neu-
ron optimization, reordering of computing units and other steps, according to
the analysis report, combined units are designed with software and hardware
co-optimization [10–12] under the mechanism of soft switch and data sharing
[13–15], which achieve better performance in computing efficiency [16–18] and
resource utilization than single units.

1.1 Contribution

The main contributions of this paper are as follows:

– The CNN and ViT units are calculated simultaneously on FPGA device with
each module being analyzed and optimized.

– Through the method of hardware and software co-design, it improves the uti-
lization rate of Convolution module and Transformer module, and optimizes
the generality of their combined units. Which makes models using CNN and
VIT with minimal hardware resources to achieve great performance improve-
ment.

– It is verified on the FPGA development board, and compared with the split
implementation of CPU, GPU and FPGA model, the performance of our
design is improved by 26×, 1.6× and 3.3×.
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1.2 Related Work

In the application of Transformer in CV field, there are many work combining
ViT and CNN. ConViT [3] introduced a new self-attention layer, GPSA (Gated
Positional Self-Attention), replacing some OF the SA layers with GPSA, based
on ViT. ConViT can be initialized like CNN. Each attention head has a gating
parameter to adjust expressiveness, which can be adjusted between local and
global features. This parameter allows the model to decide for itself whether to
maintain convolution.

Ah
ij := (1 − ρ(λh))softmax(Qh

i KhT
j ) + ρ(λh)softmax(vhT

posrij) (1)

Fig. 1. Internal structure of GPSA

The author calls the part of simulated CNN PSA, as shown in Fig. 1, with
the intention of introducing the locality of CNN into ViT, while the other part
is the original MHSA. This study proves that ViT variants can achieve better
results by absorbing the advantages of other modules on the basis of keeping the
original module unchanged.

2 Background

2.1 ViT

The starting point of ViT is to completely replace CNN with attention. Although
transformer was introduced in the CV field before, CNN or RNN was more
or less used. ViT directly uses pure Transformer structure and has achieved
good results. In the overall implementation, ViT completely uses the original
Bert transformer structure, mainly to convert images into token like processing,
and introduces the concept of patch, that is, the input images are divided into
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one patch after another, and then for each patch conversion (mainly flatten
operation), Convert to a Bert-like input structure. The emergence of ViT marks
the generality of transformer model and points the way for the unified universal
encoder.

2.2 Relative Position Coding

However, at the beginning of the ViT, the SA layer does not know the local
relationships of patches, but according to the CNN model, it is obvious that
this is relevant, which also leads to low training efficiency of the ViT model.
The introduction of relative position coding solves this problem well. Different
from general SA, PSA(positional self-attention) [7] is added to encode relevant
information at different positions.

Ah
ij := softmax(Qh

i KhT
j + vhT

posrij)

Each self-attention head uses a trainable embedded position code v and rel-
ative position code information r, and only relies on the distance between pixels
to simulate the effect of CNN.

3 Design Scheme Exploration

In this section, we will introduce the optimization steps of Convolution and
Transformer modules deployed on FPGA under the co-design of hardware and
software. Firstly, the parameter quantization scheme is determined based on the
commonality of the two modules, and then model by model analysis.

3.1 Parameter Quantitative

In the deep learning model, reducing a certain precision will only bring a very
small loss of the overall precision of the model [19]. The performance of FPGA is
very sensitive to the data transmission rate, that is, a certain loss of accuracy can
be used to exchange for a lower delay of FPGA as a whole. Therefore, reasonable
quantization is necessary to achieve a balance of performance, precision and
hardware utilization [20–22].

Some studies [23,24] show that when the accuracy is reduced to 8 bits, the
accuracy of ViT model and CNN model is reduced by less than 1%. We used
data quantization of different precision and computational quantization of 8 and
32 bit integer types for quantitative analysis of Convit. We ran the Convit-Tiny
model to classify ImageNet data set, and the results were shown in Fig. 2.

The asymmetric quantization algorithm is used to carry out static quanti-
zation after the model training, and all tensors in the calculation process are
adjusted according to the corresponding scale and zero point according to the
input matching the classification test.

Q = round(
input − zeropoint

scale
)
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Fig. 2. As the bit width changes, the accuracy on ImageNet changes, the gray dotted
line is the original accuracy, the orange is the calculated quantization, and the blue is
the data quantization (Color figure online)

According to the quantization results, Q = 8 is the optimal quantization
scheme that comprehensively considers the accuracy and resource utilization in
scenarios that do not require extremely high accuracy. At the same time, when
Q > 8, the classification accuracy is slightly improved while the performance is
reduced. Therefore, if no other model is introduced, all experiments after this
section will use 8-bit quantization scheme for data representation.

3.2 Model Analysis

An important theory of hardware acceleration is to accelerate high probability
events, and the benefits of accelerating high probability events are far greater
than those of other events. Therefore, we need to analyze each part of the model,
find the commonness between modules, do common optimization, and optimize
the different parts separately and calculate in parallel. To this end, we calculate
the main Convit-Tiny calculations on FPGA and look for optimization break-
throughs from them.

As shown in Fig. 3, a large amount of time is spent on the convolution and
Transformer modules of the model, and the time spent optimizing these two
modules will play a decisive role in our overall performance. By default, pipeline
optimization has been carried out for these two modules in our subsequent exper-
iments. At the same time, we can also find that the remaining two modules
consume very short time, so it is not cost-effective to optimize such a neglected
module. However, we can see from the parameter information that their input
size is similar to that of the GPSA module. If we ignore them here, we will lose
a large amount of data space, which is also unacceptable. To do this, we need to
find ways to make temporally negligible modules possible in space. This leads to
the key of this article, the soft switch.
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Fig. 3. Cumulative time ratio of each module when Convit-Tiny runs ImageNet data
set

3.3 Soft Switch and Data Sharing

Previously, researchers used hard switches on hardware to switch between mod-
ules, which we called hard switches, that is, hard coded hardware before deploy-
ment. The hardware implemented by the hard switch is immutable in the exe-
cution order of each module at runtime, which brings the benefit of maximizing
the performance by optimizing unit layout and rearranging pipeline during the
coding phase. However, this also brings the defect of almost non-dynamic trans-
formation, which is also the defect of FPGA itself, each architecture adjustment
needs to regenerate the corresponding firmware.

Fig. 4. Data transmission mode under hard
switch

Fig. 5. Data transmission mode
under soft switch

Hard switches are implemented knowing the order of modules in advance, and
in order to achieve reusable designs, the conventional approach is that modules
are independent of each other, and the optimization of modules only exists inter-
nally. The final data transfer flow and logic are consistent, as shown in Fig. 4.
Now we need each module to reuse data blocks, so we do not want each module
to be independent of each other, and this hard switch design idea hinders this,
so we need to design a soft switch architecture.



Hardware and Software Co-design for Soft Switch 699

As shown in Fig. 5, in the soft switch mode, all the input data in a data pool,
at the beginning of the design and analysis of the maximum data needed for the
scale (generally speaking is the original length × original width × max number
of channel), run time, to the size of the data pool filled with dynamic data block,
and specialized in counting read this part is used to calculate. The Layers part
is almost identical to the hard switch mode, but transforms the corresponding
computing module based on the input. This dynamic way of filling, reading, and
calculating data is almost impossible to implement in hardware, which is why
previous designs used hard switches, but software and hardware work together
to achieve this. The next section describes how to use hardware and software
collaboration to cover all computing modules in the same cell and how to share
data blocks.

4 Hardware and Software Co-design

Based on the analysis in the previous section, we need not only to transmit
quantization data to the hardware computing unit, but also to tell the hardware
the mixing ratio of the two models. Software and hardware are not indepen-
dent. Therefore, in addition to their own internal optimization, both software
and hardware need to conduct collaborative design optimization for their inter-
action. In terms of software, in order to cooperate with hardware to do general
processing, data flow needs to do general processing, that is, data flow has noth-
ing to do with the shape and size of data block; For different mixing ratios, when
one side approaches 0, the jump pulse is released, and the asynchronous data
receiving wait for the model is closed when the data is received.

In terms of hardware, it is analyzed that CNN and Transformer need common
data block and create common data pool. The convolution operation is optimized
by loop unrolling and flow rearrangement. The data transformation analysis of
self-attention operation is carried out, and the relative position coding matrix
which changes with the size of matrix is loaded as the weight, the fixed position
coding information is hard coded, and the matrix multiplication is divided into
data blocks to optimize the occupancy of hardware resources.

4.1 Software Layer Design

In the transmission part, in order to be compatible with matrices of different
sizes, one-dimensional mapping of multidimensional matrices is required, and
then reconstructed by hardware.
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Fig. 6. Data flow between software layer and external and internal business logic

In order to enable the hardware unit of the driver to handle different types
and sizes of input, a separate software layer is used to dynamically distribute
data and send corresponding activation signals to the hardware. The software
layer is divided into four stages: parameter preprocessing, parameter distribu-
tion, activation of the hardware core, waiting for the core to finish reading data.
After the core is read, it will enter the next distribution. In general hardware
accelerators, the software layer only acts as data transmission, which is equiva-
lent to repeatedly doing the parameter distribution stage in this paper, that is,
continuously feeding weights to the hardware end without changing the execution
order of the model according to the specific situation, but the implementation
of this paper will be segmented to each Block.

As shown in Fig. 6, when a call is initiated,

– the software layer enters the parameter analysis stage, from which it reads
the corresponding module information, obtains the parameters, and converts
them into the corresponding software parameter configuration to prepare for
data transmission.

– Then the data is transmitted, the multi-dimensional matrix is flattened into
one dimension and continuously sent to the hardware core through the flow
channel, and the hardware model type is informed, and the corresponding
parameter recombination unit and calculation unit are activated.

– The latter stages of the parameter distribution and active hardware for paral-
lel execution, activate the signal immediately after resolving the parameters
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of the next Block, and wait for the last round of parameters used by all fin-
ished, hardware return after reading complete signals, said the data in RAM
can be covered.

A layer of software operation on end, began to continue loading parameters of
the round.

4.2 Hardware Layer Design

In general, each cell manages its own block of data, including loading (external
input), calculation, and output. This allows all cells to be block-sized in advance
on demand, but it also creates a problem because the algorithm flow is fixed and
any software changes require tweaking the entire hardware core. We use the data
pool inside the hardware unit to store all the data, whose size is related to the
maximum amount of data required for a single calculation. The software layer
informs the calculation scale, and the data is hashed during actual storage.

Fig. 7. shows the data flow direction and data block mapping when PatchEmbed’s
module is activated

As shown in Fig. 7, when an activation signal from the software layer is input
into the hardware, the corresponding module is activated, and the effective data
area of the data pool is divided according to the preset parameter size of the
module, and input, weight and bias are read. Taking input as an example, the
convit-Tiny model firstly divides the 3-channel image 224 × 224 into 196 patches
of 192 size by patchEmbed module. At this time, the input of patchEmbed
module is 3 × 224 × 224, that is, the size of data block is at least 3 × 224 ×
224. Observe that the size of subsequent input and output data blocks does not
exceed this size (for example, the input of gate position self-attention (GPSA)
module is 196 × 192, and the input of multi-head self-attention (MHSA) module
is 197 × 192).

The data usage is shown in Fig. 8. We can use a matrix with a maximum of
3 × 224 × 224 to hold all matrices smaller than it, and only receive the required
dimensions when receiving data. Extra space is skipped as padding, and extra
dimensions and padding are ignored in the calculation.
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Fig. 8. Usage of data pools by different computing modules

5 Experiments

5.1 Experimental Setup

This paper uses Vivado Hight-Level Synthesis (HLS) and uses commonly used
ImageNet data sets for validation. The hardware and software co-design unit
is equipped with Xilinx ZCU102 development board, and has an ARM core
running software layer and a FPGA programmable array running hardware layer.
The CPU and GPU models were built using PyTorch. The CPU model is 11th
Gen Intel(R) Core(TM) I5-1135G7 @ 2.40 ghz 2.42 ghz, and the GPU model is
NVIDIA GeForce RTX3060. All reasoning times are the average values of 50000
images in all validation sets.

5.2 Experimental Results

In order to show the improvement of optimization in this paper intuitively,
we will carry out combinational optimization on the original model succes-
sively, including the flow rearrangement, parameter quantization and soft-
ware/hardware coordination mentioned in the previous chapter.

As can be seen from Fig. 9, quantization brings the largest increase in the
size of input data, while pipeline rearrangement brings the largest performance
improvement. The combination of pipeline rearrangement and quantization alone
can bring 70.3% performance acceleration and 87.1% reduction in the size of
input data. Full-text soft switch is the key to design at the same time, it can
give the cell dynamic ability is derived, of course, the design of hardware and
software collaborative also partly destroyed the oneness of hardware, software is
the concurrent design reduces the affect of this operation on performance, makes
the performance loss caused by the negligible, and to a certain extent reduce the
data size, about a third.

Overall performance and data occupancy, as well as dynamics, this paper
finally adopted a combination of all three optimizations, achieving a 69.5% per-
formance improvement and a 91.4% reduction in input data size. Based on the
above optimization combinations, we selected all optimization combinations as
the final results of this paper and compared them with running the same param-
eters on CPU and GPU using the original PyTorch version.
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Fig. 9. Performance and data size under different combinatorial optimizations

Table 1. Comparison with CPU and GPU

Device CPU GPU FPGA

Execution time (ms) 93.7 4.5 3.6

Parameters (M) 5.7 5.7 5.7

Acc@1 73.1 73.1 72.4

As can be seen from Table 1, FPGA can still achieve better performance than
GPU under the condition of limited hardware resources and dynamic capability
of hardware, while the accuracy is only reduced by 0.9%, proving that the soft
switch architecture proposed in this paper is sufficient to cope with the variable
model.

6 Conclusion

Based on the model combined with CNN and Transformer, this paper took Con-
vit as an example and tried to solve the inflexible defects of current hardware
development by means of soft switching and data sharing on the basis of con-
ventional quantization and rearrangement flow and designed a hardware and
software co-architecture. We tested our ideas on the Xilinx ZCU102 develop-
ment board, achieved performance exceeding GPU under the same model with
extremely limited resources and using less than 10% of the data size compared
to the original hardware.
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