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Abstract. This paper describes a stochastic clustering method that is
used for making predictions over energy data. The distinguishing feature
of the method is discrete, localised optimisations based on similarity mea-
surements, followed by a global aggregating layer, which can be compared
with construction layers in deep neural networks. The developed model
with the method is essentially a look-up table of the key energy bands
that each appliance would use. Each band represents a level of consump-
tion by the appliance. This table can replace disaggregation from more
complicated methods, for instance constructed from probability theory.
Experimental results show that the table can accurately disaggregate a
single energy source to a set of appliances, because each appliance has
quite a unique energy footprint. As part of predicting energy consump-
tion, the model could possibly reduce costs by 50% and more than that
if the proposed schedules are also included.

Keywords: Energy consumption prediction · Stochastic clustering ·
Unsupervised machine learning · Energy disaggregation

1 Introduction

This paper introduces the development of an unsupervised stochastic clustering
method, called Hyper-Grid, and use of this method for making predictions over
energy data. The work developed relates to the IDEAS Smart Home Energy
Project [10], where as a client-side Artificial Intelligence component, it can pre-
dict energy consumption for appliances. The proposed model with this method
is essentially a look-up table of the key energy bands that each appliance would
use. Each band represents a level of consumption by the appliance. This table
can replace disaggregation from more complicated methods like probability the-
ory, for example. Disaggregation is the process of estimating how much energy
each appliance would use from a single input amount. It is helpful to be able
to estimate this, so that it can be learned by an AI model that can then make
future predictions over similar appliance usage. Because the energy footprint for
an appliance is quite unique however, the energy bands generated from it are also
quite unique, which may be enough to identify each appliance, rather than rely
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
G. Memmi et al. (Eds.): KSEM 2022, LNAI 13370, pp. 631–643, 2022.
https://doi.org/10.1007/978-3-031-10989-8_50

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-10989-8_50&domain=pdf
https://doi.org/10.1007/978-3-031-10989-8_50


632 K. Greer and Y. Bi

on more complex probability methods. The energy provider therefore, is tasked
with trying to predict how much energy will be required at a particular time. The
provider sees this as a single problem over the whole set of input variables. The
user-side is more discrete, when there can be more than 1 independent entity,
resulting in input that is more event-based. As such, it may be more appropriate
to split the client-side model into separate parts, each modelling one of the inde-
pendent entities. A stochastic method that can produce non-continuous solutions
may therefore have some advantages over a functional model. A Hyper-Grid is
therefore proposed for clustering the data and can accommodate this essential
difference - not the single provider, but discrete consumers with unrelated events.
The resulting clusters can be then aggregated by some ways, such as by a Count-
ing Mechanism of the Frequency Grid [8]. The process is stochastic in nature,
clustering randomly, only a subset of the input data each time. It is costly to run,
but this can be configured with smaller-sized dataset batches, when the results
from each batch can be accumulated and so it can in theory be used with larger
datasets, but over a longer period of time. The tests firstly consider creating a
lookup table of unique energy bands to describe each household appliance. While
this should be very quick to use in real-time, it is also able to provide a reason-
able amount of economy, by making the energy prediction more accurate. The
tests are then extended to consider clustering feature sets in the row clusters.
As such, the Hyper-Grid can cluster rows first and then features of those rows,
using the same method. Tests on energy data show that the method can produce
consistent and logical results and has potential for a wide range of applications.

2 Related Work

2.1 Stochastic Clustering

Stochastic clustering is not new and in fact it may be the preferred method for
clustering something like electric vehicle charging [18]. They state that coor-
dinated charging of EVs can bring some benefits by itself and implementation
of this scenario without coordinated charging can impose a huge amount of
excess load on the national grid. They give a description of stochastic schedul-
ing, where they state that ‘since there are a lot of uncertainties in a real-world
situation and specifically in EV energy scheduling problems, such as EVs driv-
ing pattern, diverse temporal and spatial EV charging pattern and so on, in the
literature in this field, deterministic scheduling has been implemented much less
than stochastic one. A stochastic model has one or more stochastic elements. The
system having stochastic element is generally not solved analytically, moreover,
there are several cases for which it is difficult to build an intuitive perspective.’
While this paper is interested in a different field of energy prediction, it has to
solve a similar type of problem. To make the Hyper-Grid practical, it is pos-
sible to use a form of bootstrapping over randomised datasets. Bootstrapping
[7] removes some rows from the dataset each time and solves the problem for
the remaining rows. It then averages over the final solutions. The hyper-grid by
nature, solves over localised parts of the whole problem and so this is always part
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of constructing any solution. It would therefore be natural to include a boot-
strapping process with the hyper-grid, which would allow it to use subsets of the
whole dataset each time. It would also help a lot in practical terms, to reduce the
size of the data grid, which is very time-costly to solve. This method is also the
one proposed in [3], that suggests protecting linear classifiers from adversarial
attack, through the use of bagging and random subspaces. Aggregating the sub-
set results from the hyper-grid is therefore a very similar idea. The architecture
may also have similarities with neural networks. Deep Learning neural networks
[5], for example, learn discrete elements before summarising them through a
pooling layer. The stochastic and distributed nature however may have more in
common with random neural network architectures [17]. Likelihood estimators
have been used to predict energy usage before. One new version associated with
Generative modelling (GANs) and variational autoencoders (VAEs) is described
in [16]. Part of their intuition states:

‘Since likelihood is the product of densities evaluated at all data examples, the
model density at each data example should be high. Suppose we don’t observe the
model distribution directly, and instead only observe independent and identically
distributed (i.i.d.) samples drawn from the model. Because the density at data
examples is high, more samples are expected to lie near data examples than
elsewhere.’

It then defines a series of likelihood estimates for random variables that
contain distances between x and the nearest sample and uses the minimum
solution as the best one. Another paper [4] uses regression models to predict
the appliance energy usage in a house. It notes that the larger white goods
appliances (fridge, cooker, clothes washer, freezer) consume the most energy
and appears to suggest that their best regression model can predict the energy
consumption to 57% accuracy. If that is the case, then the results of the case
study in Sect. 4 are not too bad. Another paper that uses genetic algorithms to
predict energy usage [12], quotes 29% saving or 36% during peak time.

2.2 Energy Systems

Predicting the household energy use at the level of appliances is quite a popular
topic. Modern systems are quite inefficient and so there is a potential for a
huge amount of energy saving. Because it is difficult to measure the energy
consumption of each appliance in real time and it is also an intrusive and possibly
expensive process, the current trend is to disaggregate the total power input to
each appliance, to estimate their use from a behaviour model, generated from
AI. This is typically done by first using raw data to train an AI model of the
appliances and then using that to estimate the disaggregated values for each
appliance. The training phase would typically log on-off switching events for
each appliance in the house and then train possibly a Hidden Markov Model to
recognise the hidden or unobserved states, which are the individual appliances,
from the observed state, which would be the total power usage per unit time
[1,2,13,15]. After training, the internal measurements do not need to be made,
but can be estimated by the model. While this system is shown to work well, it
is proposed in this project that it is overly complicated and that with today’s
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computing power and memory resources, a much more direct approach could be
just as effective. For one thing, the Markov Model is state-based and time-related,
where switching events are placed in order. The new method to be proposed is
set-based, where it will suggest an amount of energy that may get used during
the day, but not the exact order in which it gets used. The set-based approach
has been looked at previously, where Gaussian equations are used as part of the
model and the Markov process [2] can be an extension of a Bayesian Network
[14] for example. But these calculations are also expensive and may also include
other probability measures, such as Expectation-Maximisation or Likelihood.
The method in this project will make use of the idea that most appliances have
quite a unique footprint, in terms of their unit energy use, and so a large lookup
table may be sufficient to allow disaggregated appliance usage to be recognised
from a single input power measurement.

3 Summary of the Clustering Algorithms

3.1 Hyper-Grid

The idea of the Hyper-Grid is to discover rows within two dimension tables,
which are closer together in terms of some similarities, where one row is to evolve
the matched pairs further, as in Genetic Algorithms [9]. This idea forms the
basis for some clustering phases that result in energy bands, which can define the
appliance usage over the course of a day. An underlying mechanism of the Hyper-
Grid is the heuristic that works as follows: It reads a dataset of values, randomises
the row ordering and also keeps a record of the original ordering for identification
purposes. For the problem of learning the appliance behaviour, the dataset is
a single column of values, representing the appliance energy consumption every
time unit, but the dataset could have any number of columns. Randomising the
row ordering means that there cannot be any bias in the ordering during the
row matching process. The heuristic then compares the data rows and notes
which pairs are most similar, according to some metric, such as the Manhattan
distance. So that the heuristic does not result simply in hill-climbing, a matching
process is preferred to one that selects the largest scores only. Also, if two rows
are selected, any rows between them are removed from the solution, which means
that it also discriminates. All of the potential matches are saved and then sets
of row pairs are selected that would optimise the total score. This optimisation
gives the heuristic some direction and helps to ensure a better result. The process
of the method is illustrated via Table 1 below.

1. Compare every row with every other row and save a difference score based
on the Euclidean difference between the cell values.

2. The rows that are closest to each other are:
– 1 and 7 with difference 4
– 2 and 7 with difference 3,
– 3 and 5 with difference 1,
– 4 and 6 with difference 1.



Energy Consumption Prediction Using Bands-Based Data Analytics 635

3. The sum score for rows 1 and 7 is 18 and for rows 2 and 7 it is 15. But rows
2 and 7 are more similar and so they are preferred.

– The rows in-between can be removed, but if they also have matches, then
the matches can be added first.

4. The similarity scores for rows 3 and 5, or 4 and 6 are the same with a score
of 1. The sum score for rows 4 and 6 is larger however, with a value of 27
and so rows 4 and 6 are preferred. Because this cuts across rows 3 and 5, the
matching pair of 3 and 5 is not included in the solution - row 5 is removed
from the solution.

5. This leads to a final solution with the row pairs 2 and 7, and 4 and 6.
6. These row pairs are then saved to a list that can store all rows pairs for all

of the test runs.
7. The final list of row pairs are then fed through the frequency grid that clusters

them into mini-clusters for similar frequency counts.
8. The mini-clusters can then determine the energy bands, for example.

Table 1. Example of the optimisation process.

For the appliance problem and again to prevent hill-climbing from the unique
footprint, row matches can be treated as equal if the difference falls inside of a
particular value or band and is not only the smallest difference possible. There-
fore, if a band similarity value is 2 and one matching score is 0 and another is 2,
then they would both return a band value of 1. The use of bands or score ranges
is interesting and might also work with other algorithms. Due to combinatorial
explosion, a complete search over a larger dataset is not possible and so the algo-
rithm has to split a dataset up into smaller-sized parts and solve the problem on
each part separately. Because the rows are randomised first, this can still give
a reliable result. For example, if Table 1 is a subset of the whole dataset and
there are another 7 rows that have been clustered during a different batch run,
the row pairs from the other subset can be added to the row pairs from Table 1
and the combined list can be clustered using the frequency grid.

3.2 Frequency Grid

The Hyper-Grid therefore also requires an aggregating layer, which can be a
counting mechanism in form of the Frequency Grid [8]. This reads the list of



636 K. Greer and Y. Bi

row pairs and produces sets of count values that represent which rows are more
often paired together. It is more entropy-based than local counts however, where
the aggregation from the frequency grid can produce a holistic view of the row
pairs and produce clusters for the whole dataset. The following is the detailed
description of the process. Consider a different set of data, but again for 7 rows,
shown in Table 2.

Table 2. Frequency counts would group rows 1–4 and rows 5–7 together.

It is clear from the data that rows 1–4 all reinforce each other (pattern 1), as
do rows 5–7 (pattern 2). With a grid format, the input is represented by a single
pattern group, where a count is incremented for each row pair occurrence. The
grid format lists each variable, or in this case it would be a row number, both
as a row and a column. Each time a pattern is presented, the related cell value
for both the row and the column is incremented by 1. In row 1, for example,
the counts suggest that it should be clustered with rows 2–4, because they have
higher counts with row 1. The same conclusion can be made for rows 5–7. It
is probably not necessary to update a self-reference in the grid, so the leading
diagonal can be empty.

4 Case Study: Disaggregating Energy to Appliances

This was one of the main research topics on the IDEAS project [11] and it
is a well-known problem of trying to predict how much energy is required, by
measuring the energy consumption of a set of household appliances and using
that model to make the prediction. The single input power source needs to be
disaggregated to each of the appliances, or an estimate of how much would go
to each appliance needs to be made. This problem therefore requires a training
stage to learn the model and then a testing stage to match that with the input
source. The proposed algorithm ran a number of bootstrapped tests on raw data
and generated row pairs that resulted in sets of mini-clusters. As the cluster-
ing involves a similarity measure, a more obvious approach is to aggregate the
raw data into the time unit, hours for example, and then count the number of
occurrences of each aggregated value. If this is done however, there is too much
variability in the aggregated values. They do not conform to a set of values and
so it is not possible to produce an aggregated view. This may be because the
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behaviour of any appliance is unpredictable and so aggregated values will typi-
cally be different to each other. Therefore, some form of clustering is required to
recognise patterns or structure in the data and the hyper-grid was selected for
this project.

4.1 Second Clustering Phase

The first clustering phase therefore selected time slots during the day that were
similar. A second clustering stage then took the full list of mini-clusters and
retrieved the energy values for each row in a cluster and placed that in an energy
cluster for the row cluster. Energy clusters that overlapped could result in an
energy band with an upper and a lower limit, although, single values were more
typical. These energy bands could then be used to determine the user behaviour
of the system. For example, if there were 3 events of band A and 1 event of band
B, the energy supplier could expect band A, 3 times more often. After band
B occurred, it could expect only band A until it had occurred 3 times, and so
on. The bands are most useful for reducing the complexity of the system and
recognising some inherent structure or behaviour. If there is a range, then the
upper limit would typically have to be accommodated for by the system. But it
is the fact that there is now some sort of model that can describe the application
behaviour in a tractable way that makes it useful.

4.2 Third Clustering Phase

A third clustering phase is also likely, not when training the data model, but
when reading it into the energy network, to be used by the system during run-
time. This would help to reduce the complexity even further, so that a lookup
table can be generated for an exhaustive combination search. To do this, energy
bands with the same ‘integer’ upper and lower-limit parts were further combined,
resulting in only one energy band for the whole range. See Table 1 in Sect. 4.5,
for an example.

4.3 Optimisation

The intention is to optimise some process that is part of an energy system.
As described earlier in this section, the energy bands can be used to predict
how much energy the appliances are likely to use. The system can therefore
plan for the calculated maximum energy requirement at any one time and then
when energy band events occur, they can be removed and the prediction can be
adjusted to the remaining set. It is always important that there is enough energy
provided for any eventuality and so there always needs to be additional energy
in the system that may not get used. This is one place where energy savings can
be made, if predictions can minimise this additional amount. Other methods
may typically recognise on-off switching events for appliances and then generate
Markov Models or other probability measures, such as Likelihood evaluations
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and with that research, disaggregation is helpful. The model would be trained
to recognise on-off switching events for appliances, which gives a state-based or a
probability model for each appliance. Then from a single input value, the system
would disaggregate the input power source to each of the appliances, by learning
when the appliances are likely to be on or off. A Markov Model can be used
with time-based events, or a Likelihood probability estimate can be used with
set-based events, for example. The method of this paper does not have sequential
events, but is more set-based. It only defines that this set of events may have
occurred in a particular time period. This is both good and bad, because it may
be possible to produce an alternative to the Markov Model, that is more flexible,
but also more simplistic than a Likelihood estimate. On the down-side, it would
still benefit from the accuracy of learning some amount of timing and so the
future work for this section describes how that might be achieved.

4.4 Test Case

An algorithm has been implemented in the Java programming language and
tested on real data [6] from households in Switzerland. This data has been used
before to generate Markov Models in [1,2]. A number of houses were monitored,
where a smart plug was able to measure the energy consumption for an appliance.
This was relayed to a central system and logged every second. Therefore, each
appliance was logged every second for a period of approximately 8 months. For
the hyper-grid, a measurement of every second was too fine-grained and so the
data was converted into aggregated values for each hour. That is the average
amount of energy used by the appliance each hour. The data for each appliance
was then clustered using the Hyper and Frequency Grids, as described earlier in
this section. The final set of energy bands would be used to define the behaviour
of the appliance over the course of a day. For the 8-month period, there was no
large change in the appliance behaviour from one month to the next, but this
could certainly be modelled as individual and seasonal sets of bands. The energy
system was then able to guess how much energy each house was likely to require
during the day. It would have to provide the upper limit each time, so that the
house does not run out of energy. This can be achieved by returning the largest
energy band for each appliance in the house each time. While that is an upper
limit, the system would test the accuracy of this by then removing an energy
band instance, at random, for each appliance. The next prediction would then
be calculated on the remaining energy bands and the accuracy would be the
difference between the estimate and the randomly selected set of used bands.
This system therefore does not need to model exactly when an appliance was
used, but knowing when, would still make it more accurate.

4.5 Lookup Table

It is proposed that a simple lookup table can be used to good effect. The energy
bands reduce the combinatorial complexity enough to suggest that for all appli-
ances in a household, a lookup table of under 1 million entries could be sufficient.
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The table needs to map every energy band events for each appliance with every
other one and so it has to provide a combination for every possibility. There
could of course be statistical methods to reduce the number further, when the
entries are very similar, such as the third clustering phase of Sect. 4.2. For exam-
ple, Table 3 is a set of energy bands that were produced for a fridge in some
household over the course of a day. Each band represents an hour of energy con-
sumption by the appliance and the frequency is how many times that occurred
during the day. Most bands contained a single value that was the result of the
first two phases of clustering. In rarer occasions, for example: 31.0813 – 28.1024,
there was an overlap in the clusters leading to a value range. When reading these
into the model however, the lower-values bands with the same integer number
can be combined. For example, all bands starting with the integer value of ‘1’
can be combined.

Then with each combination of all appliances, a power input total can be
calculated by taking the upper limit or average of each energy band in the
combination. The lookup table would be produced for each appliance during a
short training phase, when the system is being setup. After that, the system
would read the power consumption at some time unit and pass that to the table,
which would return the appliance combination that matches closest to the power
value. Because the band values are quite unique, the combination value can be
a key to a table, where the table value is then the set of appliances that created
it. The selected band events could then be removed from the day’s set, allowing
the next consumption amount to be more accurately predicted.

Table 3. Example of energy bands for an appliance, with power consumed per hour.
Set of energy bands that occurred over the course of a single day for a Fridge.

This method should work reasonably well because of the unique energy foot-
prints, but there is also quite a wide margin of error that would be acceptable.
For example, if the system has a set that contains energy bands of ‘5 units’ for
both appliances A and B. Then maybe the next event reads an energy band of
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5 and the system mistakenly attributes that to appliance B instead of A. For
the following time unit, the system would then expect appliance A to produce
a 5-unit band instead of B. But if B produces the 5-unit band in the next time
unit instead, this does not in fact harm operation of the system. The system
only needs to match with the energy requirement, it does not need to know
exactly, which appliance any band came from. Although, the authors recognise
that for a more sophisticated system, individual appliance usage may need to be
monitored and may prove more problematic.

This method should work reasonably well because of the unique energy foot-
prints, but there is also quite a wide margin of error that would be acceptable.
For example, if the system has a set that contains energy bands of ‘5 units’ for
both appliances A and B. Then maybe the next event reads an energy band of
5 and the system mistakenly attributes that to appliance B instead of A. For
the following time unit, the system would then expect appliance A to produce
a 5-unit band instead of B. But if B produces the 5-unit band in the next time
unit instead, this does not in fact harm operation of the system. The system
only needs to match with the energy requirement, it does not need to know
exactly, which appliance any band came from. Although, the authors recognise
that for a more sophisticated system, individual appliance usage may need to be
monitored and may prove more problematic.

4.6 Test Results

After the energy band clusters were produced, an energy network and disag-
gregator were created from them and a predictor was asked to simulate the
network activity. It would return its maximum requirement for energy each time
and then remove a random set of energy bands as the actual event. The maxi-
mum requirement could in fact be summed and the total then passed through
the disaggregator, to return an estimate for it instead. This produced only a
small reduction in the accuracy overall. For 3 locations of the datasets [6], the
following result of Fig. 1, was achieved.

Fig. 1. Prediction accuracy for locations House 1, 2 and 4.

This figure indicates that the accuracy of the prediction to the actual random
events is only about 20% accurate, or there is an 80% power loss when predicting
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how much energy should be provided. But this is for random selections that have
to accommodate the spiking events. Disaggregating the single input source to
the appliance lookup table however is very accurate and the error may be down
to the computer processing floating point numbers. This gives support to the
idea of unique energy bands for the appliances. Then, the difference in providing
the upper bound on the energy bands each time and the predicted amount, over
the course of a day, is shown in the second set of figures. It could be around
50% savings, but house 4 is less at only 19% savings. A key concern is to guess
when the spiking event might occur. This is where an analysis that includes
time would be helpful. A calculation using only the upper bound would have
to accommodate this for every hour, while the prediction can remove it as soon
as it occurs, which on average might be half-way through the day for random
events, for example. But the energy bands themselves are a unique solution that
make the whole problem very tractable.

5 Conclusions

This paper proposes a method that includes both discrete and centralising ele-
ments and therefore has some similarities with neural network architectures. A
stochastic and discrete layer clusters randomly selected subspaces of the data
into mini-clusters, not using gradient descent as in neural networks, but using a
Euclidean distance linear classifier, as in [3] or the random networks [17]. Then,
an aggregating layer combines the discrete results, rather like a deep learning
pooling layer [5]. The algorithm can be trained to recognise similarities across
data rows, or data columns (features), in a self-similar way. An optimising fea-
ture means that the algorithm prefers to cluster similar rows with larger values
first. One might think about an energy surface with peaks and troughs, for
example, but the surface is being traversed in many different places at the same
time. Overtraining might then be recognised when the localised peak distribu-
tions start to merge with each other, which can happen when more lower-valued
rows are linked with the higher-valued ones, through the continued aggregation
of mini-clusters from a random ordering. In this paper, the method is used to
cluster and make predictions over energy data, using a stochastic Hyper-Grid
and a Frequency Grid. The discrete, localised optimisations in the hyper-grid
match dataset rows that are more similar, using a distance measurement, but is
also able to discriminate and keep only the row sets that will optimise for some
overall total. A similar method is also described in [3], in terms of bagging and
random subspaces, as being a possibility to protect from adversarial attack, by
keeping some of the data always hidden.

This method has been integrated into a client-side Artificial Intelligence com-
ponent that is used to predict energy consumption for appliances for the IDEAS
Smart Home Energy Project. Preliminary experiments demonstrate that as part
of predicting energy consumption, the method could possibly reduce costs by
50% and more than that if the proposed schedules are also included [11].
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