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Abstract. Despite the success of classical collaborative filtering (CF)
methods in the recommendation systems domain, we point out two
issues that essentially limit this class of models. Firstly, most classical
CF models predominantly yield weak collaborative signals, which makes
them deliver suboptimal recommendation performance. Secondly, most
classical CF models produce unsatisfactory latent representations result-
ing in poor model generalization and performance. To address these
limitations, this paper presents the Collaborative Diffusion Genera-
tive Model (CODIGEM), the first-ever denoising diffusion probabilistic
model (DDPM)-based CF model. CODIGEM effectively models user-
item interactions data by obtaining the intricate and non-linear patterns
to generate strong collaborative signals and robust latent representations
for improving the model’s generalizability and recommendation perfor-
mance. Empirically, we demonstrate that CODIGEM is a very efficient
generative CF model, and it outperforms several classical CF models on
several real-world datasets. Moreover, we illustrate through experimental
validation the settings that make CODIGEM provide the most signifi-
cant recommendation performance, highlighting the importance of using
the DDPM in recommendation systems.

Keywords: Recommendation systems · Collaborative filtering ·
Denoising diffusion probabilistic model · Generative model

1 Introduction

The enormous magnitude of user-item interactions data on the internet today
has necessitated the design of various personalized recommendation models to
deliver to users a set of unseen items that may be of interest to them [2,15,22,23].
Among the several recommendation techniques available, classical collaborative
filtering (CF)-based techniques have been widely adopted. Classical CF methods
predict the preferences of users for items by learning from user-item historical
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interactions, employing either explicit feedback (e.g., ratings and reviews) or
implicit feedback (e.g., clicks and views) [3,9,15]. In general, there are two kinds
of classical CF-based approaches: neighborhood-based techniques and model-
based methods [15]. The neighborhood-based approaches such as Item-KNN [5])
use original user-item interaction data (e.g., rating matrices) to infer unseen
ratings by combining similar users’ preferences or similar items. On the other
hand, model-based methods such as matrix factorization (MF) [1,12,19]) obtain
user tastes for items by employing the idea that a low-dimensional latent vector
might represent a user’s taste or an item’s attribute. These matrix factorization
techniques (latent factor models) deconstruct the high-dimensional user-item
rating matrix into low-dimensional user and item latent vectors. Subsequently,
recommendation prediction is made by computing the dot product of the latent
vectors of the user and item [16,20]. It is important to note that Classical CF
models are still dominant approaches both in the industry and academia due to
their simplicity and intuitive justification for the computed predictions [4,15,23].

Challenges: Despite the success of classical collaborative filtering (CF) models,
there are still pertinent issues with these models [1,12,19]. Firstly, most classical
CF models predominantly yield weak collaborative signals, which makes them
deliver suboptimal recommendation performance. This issue is because these
classical CF models are designed with the notion that users and items have a
linear relationship, so they do not capture the intricate information and non-
linearities embedded in the real-world user-item interaction data. Secondly,
most classical CF models produce unsatisfactory latent representations resulting
in poor model generalization and performance. This problem is prevalent because
the models cannot extensively capture high-quality collaborative information
from the underlying data distribution due to their non-Bayesian properties.

Contributions: Recently, a new class of deep generative model (DGM) called
denoising diffusion probabilistic models (DDPM) has achieved exceptional per-
formance on several image synthesis benchmarks, even outperforming generative
adversarial networks (GANs) [6,10,11,21]. Inspired by the outstanding results of
DDPM, we extend DDPM to implicit feedback data-based collaborative filter-
ing (CF) to address the pertinent limitations of classical CF models mentioned
above. Notably, we systematically explore and design a novel DDPM-based CF
model called Collaborative Diffusion Generative Model (CODIGEM). CODI-
GEM adopts a forward Gaussian diffusion process and a reversed diffusion proce-
dure that utilizes flexible parameterized neural networks to capture high-quality
collaborative information from the underlying implicit feedback data. This novel
technique yields quality latent representations to improve the model’s general-
ization and produce excellent recommendations. Overall, our main contributions
can be summarized as follows:

– We present the first-ever DDPM-based model that effectively models the
user-items interactions data to capture the intricate and non-linear patterns
in order to generate strong collaborative signals for the implicit feedback-
based recommendations.

– We alleviate the issue of unsatisfactory generation of latent representations by
effectively capturing the underlying distribution of the implicit feedback data.
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This technique enhances the model’s generalization and yields outstanding
recommendation results.

– We design an efficient deep generative model (DGM)-based CF model. We
highlight that, unlike DDPM employed in image synthesis that uses a costly
iterative sampling process, CODIGEM is very efficient as it achieves good
performance using very few iterative sampling processes. Besides, when com-
pared to a different class of DGM-based CF model [17,18], CODIGEM exhibit
superior computational efficiency.

– Empirically, we demonstrate that CODIGEM outperforms several classical
CF models on several real-world datasets. This performance highlights the
importance of using the DDPM in recommendation systems. To ensure repro-
ducibility, we release our codes via this link1.

2 Collaborative Diffusion Generative Model

Overview: Our novel Collaborative Diffusion Generative Model (CODIGEM) is
essentially a DDPM [10,21]. DDPM is a kind of DGM that consists of two main
processes: a forward diffusion (noising) process (FDP) and the reverse diffusion
(noising) process (RDP). The overall architecture of CODIGEM is illustrated in
Fig. 1. Next, we describe the mathematical underpinnings and the model learning
method of CODIGEM.

Fig. 1. An illustration of CODIGEM model architecture

Inspired by intuitions from non-equilibrium statistical physics Sohl-Dickstein
et al. [21] proposed the first Deep diffusion probabilistic model (DDPM). The
core intuition is to iteratively introduce noise into the underlying structure of
data through a forward diffusion process (FDP). Next the structure of the data
is regenerated through a reverse diffusion process (RDP). Recently, Ho et al.[10],
designed a powerful and flexible DDPM framework that resulted in SOTA per-
formance in the task of image synthesis. Generally, the goal is to determine a
distribution over data, pθ(x), but, we also consider other set of latent variables

1 https://github.com/WorldChanger01/CODIGEM.

https://github.com/WorldChanger01/CODIGEM
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z1:T = [z1, . . . , zT ]. Now, we define the marginal likelihood by integrating out
all latent variables:

pθ(x) =
∫

pθ(x, z1:T ) dz1:T (1)

Using the first-order Markov chain with Gaussian transitions we can model the
joint distribution as follows:

pθ(x, z1:T ) = pθ(x|z1)
(

T−1∏
i=1

pθ(zi|zi+1)

)
pθ(zT ) (2)

where x ∈ R
D and zi ∈ R

D for i = 1, . . . , T . Here, the latent and the observable
variables have the same dimensions. Note that all the distributions are param-
eterized using deep neural networks (DNNs). Now we proceed to describe the
forward diffusion process (FDP) and the reverse diffusion process (RDP).

2.1 Forward Diffusion Process

In this forward diffusion procedure Qφ(z1:T |x), the structure of user-item interac-
tion data (x) is degraded over time by applying specified noise schedule. Similar
to hierarchical VAEs, we define a family of variational posteriors for the FDP in
the following way:

Qφ(z1:T |x) = qφ(z1|x)

(
T∏

i=2

qφ(zi|zi−1)

)
(3)

The significant point is the definition of these distributions. Here, we formu-
late them as Gaussian diffusion process following the example of Sohl-Dickstein
et al. [21] in this way:

qφ(zi|zi−1) = N (zi|
√

1 − βizi−1, βiI) (4)

where z0 = x. A single step of the diffusion, qφ(zi|zi−1), works in a relatively
easy manner. Mainly, it utilizes the previously generated variable zi−1, scales
it by

√
1 − βi and then adds noise with variance βi. Notably, we can use the

reparameterization trick to define it as this:

zi =
√

1 − βizi−1 +
√

βi � ε, (5)

where ε ∼ N (0, I). In principle, βi could be learned by backpropagation, however,
as noted in previous research [10,21], it could be fixed. In our recommendation
model, we find that this is a very sensitive hyperparameter that significantly
affects model performance.
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2.2 Reverse Diffusion Process

For the reverse denoising process (Pθ(x0:T )), the goal is to retrieve the origi-
nal user-item interaction data (x) from the noisy input. Note that the reverse
procedure is also parameterized using first-order Markov chain with a learned
Gaussian transition distribution as follows:

Pθ(x0:T ) = pθ(x|z1)
(

T−1∏
i=1

pθ(zi|zi+1)

)
(6)

pθ(zi|zi+1) = N (μθ(zi, t),Σθ(zi, t)) (7)

2.3 Learning Procedure of CODIGEM

The learning objective is essentially the evidence lower bound (ELBO) [14]. We
highlight that, the distribution qφ(z1|x) will resemble an isotropic Gaussian given
T and a well-behaved variance schedule of βt. By choosing a latent variable from
the isotropic Gaussian distribution and executing the reverse procedure (RDP),
we can generate novel user-item interaction instances from the underlying data
distribution. The RDP is trained to minimize the following upper bound over the
negative log-likelihood. Basically, the learning objective (ELBO) of CODIGEM
is derived as follows:

ln pθ(x) = ln

∫
Qφ(z1:T |x)

pθ(x, z1:T )

Qφ(z1:T |x)
dz1:T (8)

≥ EQφ(z1:T |x)[ln pθ(x|z1)

+

T−1∑
i=1

ln pθ(zi|zi+1) + ln pθ(zT ) −
T∑

i=2

ln qφ(zi|zi−1) − ln qφ(z1|x)] (9)

= EQφ(z1:T |x)[ln pθ(x|z1) + ln pθ(z1|z2) +

T−1∑
i=2

ln pθ(zi|zi+1) + ln pθ(zT )

−
T−1∑
i=2

ln qφ(zi|zi−1) − ln qφ(zT |zT−1) − ln qφ(z1|x)] (10)

= EQφ(z1:T |x)[ln pθ(x|z1) +

T−1∑
i=2

(ln pθ(zi|zi+1) − ln qφ(zi|zi−1))

+ ln pθ(zT ) − ln qφ(zT |zT−1) + ln pθ(z1|z2) − ln qφ(z1|x)] (11)

df
= L (x; θ, φ) (12)

Eventually, the ELBO is the following:

L(x; θ, φ) = EQφ(z1:T |x)[ln pθ(x|z1) +
T−1∑

i=2

(
ln pθ(zi|zi+1)− ln qφ(zi|zi−1)

)
+ ln pθ(zT )−

ln qφ(zT |zT−1) + ln pθ(z1|z2)− ln qφ(z1|x)] (13)
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Note that we use continuous distribution to model p(x|z1). Moreover, we
normalize our inputs to values between −1 and 1, and apply the Gaussian dis-
tribution with the unit variance and the mean being constrained to [−1, 1] using
the Tanh non-linear activation function. Subsequently, we obtain the expression:
p(x|z1) = N (x|tanh (NN(z1)) , I), where NN(z1) is a deep neural network.

2.4 Recommendation Generation

Given a user’s click history x, we can sample a latent distribution from p(zT )-
an isotropic Gaussian distribution and execute the reverse procedure (RDP) to
generate scores of each item for this user. In a typical top − N recommendation
system, we take the top − N values as the prediction items for this user.

3 Experiments

To validate our model and technical contributions we aim to answer these all-
important questions:

RQ1: Can the denoising diffusion probabilistic model (DDPM) effectively model
non-linear user-item interactions? If so, how can we extend it to CF for implicit
feedback data to obtain competitive performance?
RQ2: Is DDPM helpful in generating valuable recommendations? If yes, how
does it work, and what is the cost?
RQ3: How do key hyperparameters of DDPM affect model performance?
RQ4: How efficient is the proposed DDPM-based CF model?

3.1 Experimental Settings

Datasets: We conducted our empirical evaluations on three real-world and
publicly available datasets: MovieLens-1m (ML-1m)2, MovieLens-20m (ML-
20m)3, and Amazon Electronics (AE)4. We adopt standard practise of data-
preprocessing for implicit feedback-based recommendations. Specifically, for all
these datasets, we used a rating value three (3) and above. We also only kept
users with at least ten (10) interactions, and we used items which had at least
ten (10) interactions. We additionally converted all scores to 1 because we are
focusing on the implicit feedback setting. The dataset statistics is depicted in
Table 1.

Baseline Models: We compare CODIGEM to the following baseline models to
validate its performance:
Pop: This model considers the most popular items in a dataset and recommends
these items to users.

2 https://grouplens.org/datasets/movielens/1m/.
3 https://grouplens.org/datasets/movielens/20m/.
4 http://jmcauley.ucsd.edu/data/amazon/.

https://grouplens.org/datasets/movielens/1m/
https://grouplens.org/datasets/movielens/20m/
http://jmcauley.ucsd.edu/data/amazon/
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Table 1. Statistics of all datasets after pre-processing

Dataset ML-20m ML-1m AE

Number of users 136677 6034 13456

Number of items 20108 3124 8361

Number of item interactions 9990682 834449 234521

Sparcity percentage 99.64% 95.57% 99.79%

Item-KNN [5]: A type of model-based recommendation algorithm that identi-
fies the collection of items to be recommended by first determining the similari-
ties between the various items.
BPR [19]: BPR is a Bayesian-based framework that presents a generic opti-
mization approach for personalized ranking.
Weighted matrix factorization (WMF) [12]: WMF is a low-rank factoriza-
tion algorithm with a linear structure.
ENMF [1] ENMF is a well-optimized neural recommendation model that
employs whole training data without sampling.
NeuMF [8]: NeuMF generalizes MF for CF using a neural network to overcome
the constraint of linear interaction in MF.
Multi-VAE [17]: This is a representative VAE-based CF model. Its objective
function incorporates multinomial likelihood, which is a distinguishing feature.
MacridVAE [18]: MacridVAE is a model that is used for learning disentangled
representations from user behavior.
Evaluation Metrics: We employ two standard recommender system met-
rics such as Recall@R (R@R) and the normalized discounted cumulative gain
(NDCG@R). We contrast the predicted rank of the held-out items to the actual
rank using the Recall@R and NDCG@R metrics. By sorting the unnormal-
ized probability, we get the predicted rank. NDCG@R employs a monotonically
increasing discount to signal the relevance of higher rankings over lower ones,
whereas Recall@R considers all items ranked inside the first R to be equally rel-
evant. Notably, we calculate the Recall and NDCG at rank positions 20 and 50.

Implementation Details: We implement CODIGEM with Pytorch. We divide
each dataset into training, validation, and test sets using the ratio 8:1:1. We use
Xavier initialization. We utilize a learning rate of 0.001 and train the model with
the Adamax optimizer [13]. Hyper-parameters βt and T are set to 0.0001 and
3, respectively. We use an architecture comprising six (6) layers of MLP with
PReLU non-linear activation function in between the layers to parametrize the
distributions in FDP and RDP components of CODIGEM. Note that we use the
Tanh activation function in the last layer of the RDP. During training we use a
batch size of 200 and set up our model to train for 100 epochs. Also, we adopt
early stopping when model performance does not increase for ten (10) successive
epochs.
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3.2 Results and Analysis

RQ 1: Performance Evaluation: Table 2 depicts the performance of CODI-
GEM in comparison to representative classical and DNN-based recommendation
models on the Movielens-1m (ML-1m), Movielens-20m (ML-20m), and Amazon
Electronics (AE) datasets. For all the results, a paired t-test is conducted. Here,
p < 0.001 indicates statistical significance. After careful analysis, we observe the
following: Interestingly, BPR and Item-KNN models generally outperform DNN-
based models such as ENMF and NeuMF, highlighting the intrinsic robustness
of some traditional models. However, Linear models such as Pop and WMF are
not competitive with respect to all the DNN-based methods (ENMF, NeuMF,
MacridVAE, Multi-VAE, and CODIGEM) because of their inability to effectively
capture complex non-linear patterns from user-item interactions data which can
aid in the recommendation task. This trend demonstrates the importance of
learning the non-linear information from user-item interactions data. Generally,
deep generative models such as (MacridVAE, Multi-VAE, and CODIGEM) show
strong performance over their non-generative counterparts. The possible reason
for this trend is that generative models can effectively capture the intricate and
non-linear patterns from the unobserved user-item interactions to obtain strong
collaborative signals for the recommendation task. Moreover, these DGM-based
models can obtain high-quality collaborative information from the underlying
implicit feedback data, thereby generalizing better and producing excellent rec-
ommendations than the non-generative models. Multi-VAE, an earlier proposed
DGM-based CF model, outperforms all classical and DNN-based models. Nev-
ertheless, we point out that CODIGEM is yet another competitive DGM-based
CF model worthy of research attention. Mainly, we see that CODIGEM out-
performs robust classical models (BPR, Item-KNN, WMF, and Pop) and some
DNN-based models on all the metrics for all the datasets. Moreover, CODIGEM
is more computationally efficient than Multi-VAE.

Table 2. Comparison of performance of baseline models and CODIGEM on ML-1M,
ML-20M and AE datasets

Models ML-1M ML-20M AE

R@20 R@50 N@20 N@50 R@20 R@50 N@20 N@50 R@20 R@50 N@20 N@50

Pop 0.1289 0.2202 0.1218 0.1460 0.1463 0.2473 0.1138 0.1422 0.0480 0.0899 0.0209 0.0296

BPR 0.2647 0.4252 0.2460 0.2919 0.2955 0.4596 0.2478 0.2964 0.0732 0.1254 0.0325 0.0436

WMF 0.2390 0.3994 0.2206 0.2675 0.2833 0.4254 0.2259 0.2904 0.0655 0.1118 0.0281 0.0378

ENMF 0.2582 0.4103 0.2467 0.2876 0.2234 0.3398 0.1941 0.2561 0.0564 0.0995 0.0263 0.0354

NeuMF 0.2403 0.4009 0.2219 0.2689 0.3021 0.4563 0.2469 0.2965 0.0702 0.1219 0.0307 0.0417

Item-KNN 0.2539 0.4039 0.2430 0.2829 0.2843 0.4264 0.2469 0.2909 0.0588 0.0917 0.0316 0.0389

Multi-VAE 0.2925 0.4588 0.2574 0.3081 0.3698 0.5348 0.3105 0.3508 0.0774 0.1340 0.0364 0.0484

MacridVAE 0.2389 0.3854 0.2371 0.2759 0.2996 0.4358 0.2704 0.3005 0.0769 0.1320 0.0353 0.0465

CODIGEM 0.2796 0.4354 0.2447 0.3026 0.3512 0.4698 0.3031 0.3414 0.0771 0.1338 0.0360 0.0478

RQ 2: Study of CODIGEM: CODIGEM is intrinsically a hierarchical latent
variable model, and like VAE, they also utilize a family of variational posteriors.
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In CODIGEM, we define these posterior distributions as a Gaussian diffusion
process. Since CODIGEM and VAE-based CF models belong to the same family,
we incorporate some well-known and proven VAE techniques into CODIGEM
and study its impacts. Notably, we create these variants: CODIGEM-I (CODI-
GEM with annealing [17]), CODIGEM-II (CODIGEM with skip connections [7]
in the FDP), CODIGEM-III (CODIGEM with skip connections in the RDP),
CODIGEM-IV (CODIGEM with multinomial likelihood [17]). The empirical
results are depicted in Fig. 3. From these results, we observe that annealing does
not negatively affect model performance. We witness a slight decline in CODI-
GEM’s performance when skip-connections are used. Additionally, employing
the multinomial likelihood worsens CODIGEM’s performance.

Table 3. Study of the impact of diverse techniques on CODIGEM

Model variants Model performance

R@50 N@50

CODIGEM-I 0.4696 0.3411

CODIGEM-II 0.4627 0.3359

CODIGEM-III 0.4602 0.3311

CODIGEM-IV 0.2563 0.1353

CODIGEM 0.4698 0.3414

Fig. 2. The impact of βt on CODIGEM on the ML-20m dataset. The left subfigure
depicts a sharp decline in performance in the range 0.0001 to 0.1 and the right subfigure
depicts a slight decline in performance in the range 0.0001 to 0.0009.

RQ 3: Parameter Sensitivity: Here, we study the impact of the critical hyper-
parameters such as βt and T on the overall performance of CODIGEM. For βt,
we experiment with several values in the range of 0.0001 to 0.9. The best results
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Fig. 3. The left subfigure shows the study of the impact of T on CODIGEM and the
right subfigure depicts convergence of CODIGEM for all the datasets

across datasets are 0.0001. As depicted in Fig. 2, a change in the βt value dras-
tically affects model performance. Hence, a careful tuning of βt on your dataset
is always required. Regarding T , we observe that unlike DDPM models used
in image synthesis, increasing the value of T does not improve model perfor-
mance. From the left subfigure of Fig. 3, we consistently obtain the best model
performance when T is 3.

RQ 4: Computational Efficiency: T is a hyperparameter that significantly
impacts the computational efficiency of DDPM models-a large T value results
in a computationally inefficient model (see Table 4). As indicated earlier (see
the left subfigure of Fig. 3), we observed during the empirical studies of DDPM
for CF that setting T = 3 yields optimal performance. To further ascertain the
efficiency of CODIGEM, we study its training efficiency. From the convergence
graphs of CODIGEM on all three datasets (see the right subfigure of Fig. 3), we
notice that the CODIGEM model converges mainly around 15 to 25 epochs. On
the other hand, MacridVAE and Multi-VAE converge to good performance after
75 to 200 epochs. Additionally, in Table 5 we report the training and evaluation
convergence time for all the generative models. Overall, considering the rapid
convergence and relatively less training time of CODIGEM, we can conclude
that CODIGEM is more computationally efficient than the baseline VAE-models.
We remark that our proposed CODIGEM model’s computational efficiency is a
significant advantage.
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Table 4. Impact of T value on computational efficiency of CODIGEM

T value Total model
execution time

Number
of epochs

3 824.682 s 18

5 1212.060 s 18

8 1861.488 s 18

10 2416.659 s 19

15 3384.233 s 18

Table 5. Comparison of computational efficiency of the generative models

Model Training time Evaluation time Average number of Total time

(sec/epoch) (sec/epoch) epochs to convergence of convergence

MacridVAE 142.35 124.81 95 25380.20 s

Multi-VAE 53.17 48.45 150 15243.00 s

CODIGEM 48.22 46.67 18 1708.02 s

4 Concluding Remarks

Paper Conclusions: This paper presented the first-ever DDPM-based RS
model that effectively models non-linear user-item interactions to generate strong
collaborative signals for enhancing the generalizability of recommendations. We
also demonstrated through systematic experimental validation the settings that
enable CODIGEM to produce excellent recommendations performance. More-
over, the empirical studies indicate that CODIGEM is very efficient and out-
classes several classical RS models on three real-world datasets. Overall, our
findings highlight the significance of using the diffusion probabilistic model in
recommendation systems. Our studies conclude that DDPM is a viable DGM
alternative for RS tasks that needs more research attention.

Open Research Directions: Here, we highlight some unexplored potential of
DDPM-based DGMs that can significantly enhance recommendation systems.
Firstly, a crucial problem of VAE-based CF models is variational posterior col-
lapsing to the prior, resulting in meaningless representation learning. DDPMs
are robust against posterior collapse issues and can mitigate this limitation.
Hence, integrating DDPMs and VAEs would be exciting research as both can
take advantage of each other to generate excellent recommendations. Secondly,
simplistic prior in VAE-based CF models results in sub-optimal recommendation
performance. An interesting new direction would be to use DDPMs as flexible
priors in VAEs. Moreover, we can incorporate important side information such
as visual content-based information into these priors, ultimately addressing data
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sparsity and cold-start issues. Lastly, we can enhance the stability and perfor-
mance of DDPMs by learning the covariance matrices in reverse diffusion and
using different noise schedules.
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