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Abstract. Reliability is a fundamental property for mission and safety-critical
systems, and adopting redundancy architectures is a common and prominent prac-
tice to increase system reliability. This paper proposes a novel approach for the
modeling and quantitative reliability analysis of redundancy architectures based
on the SBIP framework. Our approach supports modeling the nominal system
behavior and the system faults in a unified formal model, which can be further
integrated into the rigorous component-based system design paradigm advocated
by BIP. We also propose two categories of metrics for formal reliability eval-
uation of redundancy architectures in terms of whether the system can operate
correctly or provide reduced functionalities in the presence of faults. We take a
computation unit as the running example and apply the proposed approach to
analyze static redundancy and dynamic redundancy, which are Triple Module
Redundancy architecture and Cold Standby architecture respectively. The exper-
imental results show that our approach can accurately model various redundancy
architectures and provide a comprehensive analysis of reliability and related prop-
erties in an automated manner. Moreover, our approach can be easily extended to
a wide range of fault types and behaviors.

Keywords: Model based system design · Model based reliability analysis ·
Statistical model checking · Redundancy architecture

1 Introduction

Reliability is the desired ability for mission and safety-critical systems, which generally
speaking characterizes the ability of the system to continue to operate the intended func-
tions correctly even in the presence of faults [2,18]. Among all the possible approaches
to increase the system reliability, a common and prominent practice in reliability engi-
neering is to replicate the components carrying out critical functions and encapsu-
late them in architectural redundancy patterns so that the single point of failure can
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be avoided and when faults occur in a limited number of critical components, they
can be identified and excluded upon reconfiguration without compromising the overall
functionality of the system. The most well-known redundancy architectural patterns are
static Triple Modular Redundancy (TMR) and dynamic Cold Standby, which have been
widely used in the practical development of mission and safety-critical systems [23].

Despite the practical needs of designing and analyzing safety-critical systems, the
reliability analysis of systems built with redundancy architectures, in general, is a diffi-
cult task due to the lack of specific techniques addressing both modeling and automated
analysis. Previous works mostly use fault tree analysis (FTA) [16] and rely on a sub-
stantial amount of labor effort for the reliability verification and analysis. In [15] the
authors analyze the reliability of cascaded TMR with “paper-and-pencil” techniques.
However, such approaches cannot be generalized to cover a wide range of architec-
tural patterns. Some other works [9,10] propose to use SMT techniques to perform
automated analysis of redundancy architectures and it improves the overall scalability
concerning the monolithic case, obtaining speed-ups of various orders of magnitude.
However, they do not consider the system’s dynamic behavior or integrate it with the
process of model-based system design.

In order to automate the reliability evaluation of different redundancy architectures,
we follow the methodology of model-based design and safety analysis [21], which has
been promoted as an increasingly prominent approach for the development of safety-
critical systems. In model-based design, various development activities such as simula-
tion, verification, testing, and code generation are based on a unified model, describing
system behavior and architectures. In the model-based safety analysis, the model of the
system behavior is further extended and augmented by taking into account the faulty
behavior of software and hardware components. We then can analyze the reliability
properties based on the extended system in the presence of faults. The main advan-
tage of this methodology is that the system and safety engineers work off a common,
unambiguous model of the system leading to tighter integration between the systems
and safety engineering processes. The common model ensures that reliability analy-
sis results are relevant and up-to-date as the system architecture evolves and allows
reliability assessment early in the system design process. Additionally, it supports the
exploration of different architectures and design choices by automatically determin-
ing which choices will increase reliability. Ideally, computational tools such as model
checkers can automate many reliability analysis activities, leading to more accurate and
complete reliability analyses while reducing manual effort.

In this work, we leverage the SBIP framework. SBIP [22] is a stochastic extension
of BIP (Behavior-Interaction-Priority) [3,4,7,17] with an emphasis on formal model-
ing and statistical analysis of safety-critical systems exhibiting stochastic behaviors.
BIP is a component-based system design framework advocating the rigorous design
methodology for complex hardware/software mixed system design [3,24]. The concept
of rigorous system design can be understood as a formal, accountable and coherent pro-
cess for deriving correct-by-construct system implementations from high-level spec-
ifications. The essential safety properties of the design are guaranteed at the earliest
possible design phase by applying algorithmic verification to the system model. Then
the system implementation is automatically generated by a sequence of property pre-
serving model transformations, progressively refining the model with details specific to
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the target platforms. The BIP framework provides a well-defined modeling language
and an associated toolbox to realize the rigorous system design flow. The modeling
language allows the construction of composite components from atomic components
through the layered application of interactions and priorities. The BIP toolbox supports
both verifications of high-level system designs [5] and automatic model transformation
and code generation of low-level implementations from high-level system designs. In
practice, BIP has been actively used in several applications [1,19].

To this end, the contributions of this work can be summarized as follows.

(1) We propose a novel approach for the modeling and quantitative reliability analysis
of redundancy architectures based on the SBIP framework. Our approach supports
modeling the nominal system behavior and the system faults in a unified formal
model, which can be further integrated into the rigorous component-based system
design paradigm.

(2) We propose two categories of metrics to evaluate the reliability and related proper-
ties of redundancy architectures, in terms of whether the system is able to operate
correctly or provide reduced functionalities in the presence of faults. All the prop-
erties are specified as formulas in bounded LTL and automatically analyzed using
the statistical model checker for BIP [22].

(3) We further take a computation unit as the running example and apply the proposed
approach to the analysis of two widely used redundancy architectures, i.e., the
static triple duplication redundancy and the dynamic cold standby redundancy. The
experimental results show that our approach can accurately model various redun-
dancy architectures and provide a comprehensive analysis of reliability and related
properties in an automated manner.

The remainder of this paper is organized as follows. Section 2 describes the related
works. In Sect. 3, we carry out a study with the computation unit and build a formal
model of CU including both nominal and faulty behavior within the SBIP framework.
Then we develop the formal model of TMR and Cold Standby architectures and analyze
their reliability using SBIP. Finally, Sect. 4 concludes the paper and points out our future
work.

2 Related Work

COMPASS (Correctness, Modeling, and Performance of Aerospace Systems) [8] is an
international research effort aiming to ensure system-level correctness, safety, depend-
ability, and performability of onboard computer-based aerospace systems. COMPASS
uses a System-Level Integrated Modeling (SLIM) language for modeling and specify-
ing hardware/software systems, and the COMPASS toolset supports for timed failure
propagation graphs, non-deterministic models, the newly developed statistical model
checking and requirement formalization approaches.

The Altarica language [6] can also formally specify the behavior of systems when
faults occur. An Altarica model can be assessed be employing complementary tools
such as fault tree generator and model-checker. FSAP/NuSMV-SA [11,12] is a toolset
for safety and reliability analysis. FSAP/NuSMV-SA supports failure mode definition
and model extension through automatic failure injection.
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The work in [14] proposes a model-based approach using dynamic fault trees for the
safety analysis of vehicle guidance systems. Its flexibility could support new partitions
and architectural changes being accommodated automatically. The fault tree analysis
in [9,10] aims at evaluating characteristics of redundancy architectures without con-
sidering the behaviors of components. The work in [20] proposes an intelligent fault
diagnosis method based on an improved domain adaptation method. In [25], a module
based on redundancy is designed within the formalism of timed automata and formally
analyzed using the UPPAAL model checker. The work in [13] presents an approach
based BIP framework for the rigorous design of FDIR components. It leverages the
statistical model checking to check the requirement satisfaction and the code genera-
tion feature of the BIP compiler. Our work differs from the previous work in that we
mainly focus on the reliability analysis of redundancy architectures. The work in [15]
presents an ad-hoc algorithm that can analyze the reliability of computational chains
based on Triple Modular Redundancy with one voter. Differently, we provide ways to
make quantitative analyses reliability of redundancy architectures in full automation.

3 Formal Modeling and Reliability Analysis in SBIP

This section introduces a simple computation unit (CU) that will be used as a run-
ning example to illustrate the concepts and our approach throughout. Firstly, we build
a formal model of CU including both nominal and faulty behavior within the SBIP
framework. Then we build the formal model of TMR and Cold Standby architectures.

3.1 A Computation Unit Example

The computation unit is a common module in many embedded systems, for instance,
the detection system in the space field. Its function is to receive the instructions of the
upper main control system, then obtain the data from the lower sensor, process the data,
and return the processing results to the main control system.

We consider an abstract model of CU, which receives data from some components
as its input and computes an output to the other components. Let cu input be the input
and cu output be the output of the CU. To simplify the model, we assume that the
value of cu output ranges from −1 to 1, where 1 indicates the correct computation,
−1 indicates the incorrect computation and 0 is the cleared output. Initially, the value
of cu output is 1. An impulse generator is used to first issue an edge impulse xms
every T time unit to force the CU to read its input, compute and place the result in
cu output, and then clear the output. Figure 1 displays a system with one fault-free
CU, one Impulse generator and their connector modeled in SBIP. In the Impulse gener-
ator model, the Impulse generator automaton models the impulse generator periodically
produces edge impulses. A clock x is declared to record the time between sending of
two edge impulses. Starting from the initial state S0, it generates a signal through port
xms in each T time unit that synchronizes with the port xms of the CU automaton,
then generates a signal through port clear that synchronizes with the port clear of the
CU automaton. In the CU model, a variable cu output is declared to represent the
computing result of CU. Starting from the initial state Good, it receives a signal through
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Fig. 1. Fault-free CU model

port xms that computes an output and receives a signal through port clear that clears
an output.

We consider that following three kinds of faults that may occur in a CU.

– FAULT0: CU enters a deadlock state.
– FAULT1: CU enters an error state in which it computes incorrect results.
– FAULT2: CU enters a livelock state and executes only internal actions without any
outputs.

The fault-affected CU model is shown in Fig. 2. Initially, CU works well and stays
in location Good. The self-loop in fault-free location Good models the scenario when
a synchronization impulse xms occurs, and the CU outputs a correct result. From loca-
tion Good, the CU automaton selects which fault may occur in a stochastic manner.
We use exponential distribution to approximate the failure occurrence model for the
faults mentioned above in this work. In SBIP, we define a stochastic port with a gamma
density function, i.e., its scheduling time is sampled with respect to a gamma func-
tion with alpha 1 and beta 100 to indicate the probability of the occurring fault. If
FAULT0 occurs, it moves to the error location Error0 and the automaton deadlocks.
Since the xms is defined as a broadcast channel, the Impulse automaton can still execute
it when the CU stays in location Error0. The Impulse automaton can still execute the
xms. The location Error1 is reached from location Good when FAULT1 occurs. The
model outputs incorrect data when the signal xms is issued in this location. Similarly,
if FAULT2 occurs, the CU goes to location Error2, in which it fails to output data
when the signal xms is issued. We also add fault transitions from location Error1 to
Error0 and Error2, because a FAULT1 may be followed by one of the other faults.

An auxiliary variable cu fault indicates whether the CU is faulty. It is initially 0,
representing that the CU is in location Good. When a fault occurs in the CU, the value
of cu fault becomes 1.

3.2 Formal Model of Triple Modular Redundancy Architecture

The TMR model consists of three replicated CUs, one Impulse generator and one
Voter (see Fig. 3). Since the Impulse generator and Voter are not redundant in this
architecture, it is prone to single-point failures. However, its complexity is usually sig-
nificantly lower than that of the three modules, and this safety gap is tolerated. So we
assume that no faults occur in the Impulse generator or the Voter.
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Fig. 2. A SBIP model of fault-effected CU

In the Impulse generator model (see Fig. 4), the automaton generates a synchroniza-
tion signal through port xms to trigger the three CUs to process their inputs and start
the computation. Then it generates a signal through port x5ms to trigger the Voter to
check on the outputs of CUs after CU PERIOD time units. Finally, a clear is sent
after V OTER PERIOD time units to trigger the three CUs to clear their outputs.

In TMR, the CU model (see Fig. 5) is similar to fault-effected CU, but it has two
additional ports. The port fault of CUi synchronizes with the port faulti of the Voter
automaton, and the port output of CUi synchronizes with the port outputi of the Voter
automaton. InTMR, we define the system as in a degraded state when one CU is faulty
and the other two CUs are fault-free.

In this model, a Voter is used to detect the faults (see Fig. 6). When it receives
the x5ms signal, it calls two functions: fault check() and vote(). Function
fault check() evaluates whether any CU is faulty. It gets the value of variable
cu fault of CUi through port faulti. If it is 1, then Voter treats CUi as faulty. Oth-
erwise, it is fault-free. Function vote() computes the voting algorithm. It compares
results from the three CUs and outputs the majority value to the buffer voter output.
If the results of the three CUs are different, it computes the value of CU0.

3.3 Formal Model of Dynamic Cold Standby Redundancy Architecture

We build the cold standby redundancy architecture model (see Fig. 7), which contains
one Impulse generator, one Primary CU, one Backup CU, and one Switch. The Impulse
generator and Primary CU are similar to that of the TMR model, but all ports of
Primary CU are connected to the port primary of Switch.
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Fig. 3. Triple Modular Redundancy model

Fig. 4. A SBIP model of Impulse generator

The Switch automaton is shown in Fig. 9. The Switch initiates in the state S0 and
sets variable is fault to 0, which means the Primary CU is fault-free. Moreover, the
Switch only interacts with the Primary CU in state S0. The port isswitch connects with
the port fault of the Primary CU. The port isswitch is active and the state S0 transfers
to state S1 when the condition is faulty == 1 holds. Then the Switch interacts with
the Backup CU in the state S1.

The Backup CU automaton is shown in Fig. 8. The initial state is in Start, and
it transfers to state Good when the port backup is active. Moreover, the function of
Backup CU is similar to Primary CU after it locates the state Good. It may still locate
in state Good in the next state, or transfer to state Errori. All ports of the Backup CU
except port backup are connected to the port backup of Switch.

3.4 Formal Reliability Analysis Using SBIP

As stated above, reliability refers to the capability of the system to operate correctly in
the presence of faults. The system is in a fault-free state if the system safely operates,
and the system is in a degraded state if the system still safely operates but provides
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Fig. 5. A SBIP model of TMR’s CU

reduced functionality. Furthermore, the system is in a failure state if the function of the
system, parts or components are lost or abnormal, resulting in its inability to perform
the expected function. We propose two categories of metrics for formal reliability eval-
uation of the system in terms of whether the system can operate correctly or provide
reduced functionalities in the presence of faults.

We use the following four measures to analyze the reliability of the system.
Reliability means the probability of the system being in a fault-free state.
Failures In Time (FIT) means the average probability of the system being in a fault-
free state during the considered operational lifetime. Degraded Availability (DA)
means the probability of the system being in a degraded state. Moreover,
Full Function Availability (FFA) means the probability of the system being in
a fault-free and degraded state.

Reliability is obtained by first computing the time-bounded probability to reach
a state where the system has failed and then complementing this value. To obtain the
average failure-probability, the complement of the reliability is scaled with the lifetime
(to determine the failures in time, FIT). DA is obtained by computing the time-bounded
reachability probability for reaching a degraded state. FFA is obtained by computing
the complement of the time-bounded reachability probability for reaching a failed or
degraded state.

The formal definition of the measures is given in Table 1. The detailed BLTL spec-
ifications of the measures estimated on the Triple Modular Redundancy model and
dynamic redundancy model are followed.

In order to simplify writing, we assume that the cfi represents that the i-th CU is
faulty, i.e., variable cu fault of the i-th CU equals to 1, and cfi represents the i-th
CU is fault-free, i.e., variable cu fault of the i-th CU equals to 0. The φT represents
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Fig. 6. A SBIP model of TMR’s Voter

Fig. 7. Cold Standby model

the detailed BLTL specification of the Triple Modular Redundancy model, and the φD

represents the detailed BLTL specification of the dynamic redundancy model.

• For Reliability:

φT (t) = 1 − F[0, t]((cf0 ∧ cf1 ∧ cf2) ∨ (cf0 ∧ cf1 ∧ cf2)

∨(cf0 ∧ cf1 ∧ cf2) ∨ (cf0 ∧ cf1 ∧ cf2))
(1)

φD(t) = 1 − F[0, t](cf0 ∧ cf1) (2)
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Fig. 8. A SBIP model of Backup CU

Fig. 9. A SBIP model of Switch

• For FIT:

φT (t) =
1

lifetime
(1 − F[0, lifetime]((cf0 ∧ cf1 ∧ cf2)

∨(cf0 ∧ cf1 ∧ cf2) ∨ (cf0 ∧ cf1 ∧ cf2) ∨ (cf0 ∧ cf1 ∧ cf2)))
(3)

φD(t) =) =
1

lifetime
(1 − F[0, lifetime](cf0 ∧ cf1)) (4)

• For DA:
φT (t) = F[0, t]((cf0 ∧ cf1 ∧ cf2) ∨ (cf0 ∧ cf1 ∧ cf2)

∨(cf0 ∧ cf1 ∧ cf2))
(5)

φD(t) = F[0, t](cf0 ∧ cf1) (6)



Reliability Analysis of Redundancy Architectures Using Statistical Model Checking 473

Table 1. Definition of measures

Measure Model checking queries

System Reliability 1 − P (Ft failed)

FIT 1
lifetime

· (1 − P (Flifetime failed))

Degradation DA P (Ft degraded)

FFA 1 − P (Ft (failed ∨ degraded))

Fig. 10. Results of experimental evaluations using statistical model checking

• For FFA:

φT (t) = 1 − F[0, t]((cf0 ∧ cf1 ∧ cf2) ∨ (cf0 ∧ cf1 ∧ cf2)

∨(cf0 ∧ cf1 ∧ cf2) ∨ (cf0 ∧ cf1 ∧ cf2) ∨ (cf0 ∧ cf1 ∧ cf2)

∨(cf0 ∧ cf1 ∧ cf2) ∨ (cf0 ∧ cf1 ∧ cf2))

(7)

φD(t) = 1 − F[0, t]((cf0 ∧ cf1) ∨ (cf0 ∧ cf1)) (8)

In the experimental evaluations, probability estimation algorithm is utilized. It
enables to compute the probability p for S to satisfy φ. Give a precision δ, this algo-
rithm computes a value for p′ such that |p′ − p| ≤ δ with confidence 1 − α. We use
probability estimation with (α = 0.2, δ = 0.2) for all the analyses and rely on the para-
metric exploration to analyze specifications φT (t) and φD(t).
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Figure 10(a) shows a comparison of the reliability of a single CU,TMR, and Cold
Standby model. The x-axis represents the time steps and the y-axis represents the prob-
ability of property. We observe that TMR is slightly more reliable than single CU
and Cold Standby is more reliable than single CU and TMR. Because three CUs in
TMR are executed concurrently and the backup CU is activated after the primary CU
is faulty, the reliability of Cold Standby is higher at the beginning of a period. The result
of Fig. 10(b) shows that the FIT betweenTMR and single CU are nearly the same, and
the FIT of Cold Standby is greater than the others. Figure 10(c) indicates that the differ-
ences between DA of TMR and Cold Standby are marginal. Figure 10(d) shows that
the FFA of Cold Standby is Slightly higher than TMR at the beginning of a period,
and then the FFA of Cold Standby is similar to TMR.

4 Conclusions and Future Work

We propose a novel approach to automated reliability analysis of redundancy architec-
tures based on the BIP framework and illustrate it on Triple Modular Redundancy and
Cold Standby. The reliability analysis uses the statistical model checking tool SBIP. We
propose a relatively complete set of metrics for reliability, including system reliabil-
ity metrics and degradation reliability metrics, and use it to evaluate the reliability of
redundancy architectures. We apply our approach to a computation unit example and
experimental results show that our approach can automatically model various redun-
dancy architectures and perform a comprehensive analysis of reliability in practical
redundancy systems. Moreover, our models are scalable and our approach is open to
additional - models that can be easily extended to further types of fault rates, behavior
types, etc. In the future, we will integrate qualitative analysis of reliability into our app-
roach such that qualitative and quantitative analysis can be integrated into the rigorous
component-based system design paradigm. Moreover, we can broaden the evaluation
architecture and guide the system design according to the evaluation results.
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